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Massless Dirac operator

Journal of the LMS, 2014, vol. 89, p. 301–320.

Let M be a 3-dimensional connected compact oriented mani-
fold without boundary equipped with a Riemannian metric gαβ,
α, β = 1,2,3 being the tensor indices. Will denote local coordi-
nates by x = (x1, x2, x3).

Choose a triple of smooth orthonormal vector fields ej, j =
1,2,3. This is the frame. Each vector ej(x) has coordinate
components ej

α(x), α = 1,2,3.

The coframe ej, j = 1,2,3, is defined via the relation

ej
αekα = δj

k.
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Define Pauli matrices

σα(x) := sj ej
α(x) , σα(x) := sj e

j
α(x) ,

where

s1 :=

(
0 1
1 0

)
= s1 , s2 :=

(
0 −i
i 0

)
= s2 , s3 :=

(
1 0
0 −1

)
= s3 .

The massless Dirac operator is the 2× 2 matrix operator

W := −iσα
(
∂

∂xα
+

1

4
σβ

(
∂σβ

∂xα
+

{
β

αγ

}
σγ
))

acting on 2-columns of complex-valued scalars v : M → C2.

It is formally self-adjoint with respect to the inner product∫
M
w∗v

√
det gαβ dx .
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Example: 3-torus equipped with Euclidean metric

We work on the unit torus T3 parameterized by cyclic coordinates

xα, α = 1,2,3, of period 2π. Metric is assumed to be Euclidean.

The massless Dirac operator reads

W = −i

 ∂
∂x3

∂
∂x1 − i ∂

∂x2
∂
∂x1 + i ∂

∂x2 − ∂
∂x3

 .

Seek eigenfunctions in the form v(x) = ueimαxα, m ∈ Z3, u ∈ C2.
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The spectrum is as follows.

• Zero is an eigenvalue of multiplicity two.

• For each m ∈ Z3\{0} we have the eigenvalue ‖m‖ and unique

(up to rescaling) eigenfunction of the form ueimαxα.

• For each m ∈ Z3 \ {0} we have the eigenvalue −‖m‖ and

unique (up to rescaling) eigenfunction of the form ueimαxα.
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Spectral asymmetry

The spectrum is said to be symmetric if, as a set, it is invariant
under the transformation λ→ −λ.

M. F. Atiyah, V. K. Patodi and I. M. Singer: there is no reason
for the spectrum of a first order system to be symmetric.

The eta function of the massless Dirac operator W is defined as

ηW (s) :=
∑ signλ

|λ|s
,

where summation is carried out over all nonzero eigenvalues λ
of W , and s ∈ C is the independent variable.

Series converges absolutely for Re s > 3. Extends meromorphi-
cally to whole s-plane with simple poles. No poles at s = 3 and
s = 0. Quantity ηW (0) is called eta invariant of the operator W .
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Large eigenvalues versus small eigenvalues

Residue of the first pole, at s = 2, was calculated in JST, 2013,

vol. 3, p. 317-360. Was done for a general first order system.

Unfortunately, for the massless Dirac the residue at s = 2 is zero.

J.-M. Bismut and D. S. Freed: for the massless Dirac operator

there are also no poles at s = 1 and s = −1. Eta function is

holomorphic in the half-plane Re s > −2.

Bottom line: in order to establish spectral asymmetry for the

massless Dirac operator should be looking at small eigenvalues.
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Subject of this talk

We work on the unit torus T3 and perturb the metric, gαβ(x; ε),

where ε is a small parameter and

gαβ(x; 0) = δαβ.

Our goal is to derive an asymptotic expansion for the eigenvalue

with smallest modulus, λ0(ε).
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A minor impediment

Inner product depends on ε, so Hilbert space depends on ε.

Addressing this issue is easy: work with massless Dirac operator

on half-densities

W1/2 := (det gκλ)1/4W (det gµν)−1/4.

Recall that a half-density is a quantity which under changes of

local coordinates transforms as the square root of a density.
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A major impediment

The massless Dirac operator commutes with the antilinear op-

erator of charge conjugation

v =

(
v1
v2

)
7→
(
−v2
v1

)
=: C(v).

This implies that all its eigenvalues have even multiplicity. In

particular, the eigenvalue with smallest modulus, λ0(ε), has mul-

tiplicity two.

Had to develop a perturbation theory which accounts for this

charge conjugation symmetry.
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Technical impediment I

Spectral asymmetry shows up only at the second step of the
perturbation process, i.e. λ0(ε) = c ε2 +O(ε3) as ε→ 0.

Technical impediment II

Intermediate formulae are messy and it is hard to write them in
a geometrically invariant way.

We overcame this difficulty by using the geometrically invariant
explicit formula for the subprincipal symbol of the massless Dirac
operator on half-densities. This was derived in Journal of the
LMS, 2014, vol. 89, p. 301–320.

Paper on virtues of subprincipal symbol to appear in J Phys A.
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In local coordinates our operator reads

L = Pα(x)
∂

∂xα
+Q(x),

where Pα(x) and Q(x) are some 2×2 matrix-functions. The full
symbol of the operator L is the matrix-function

L(x, p) := iPα(x) pα +Q(x),

where p = (p1, p2, p3) is the dual variable (momentum).

We decompose the full symbol into homogeneous components,

L1(x, p) := iPα(x) pα, L0(x) := Q(x),

and define the principal and subprincipal symbols as

Lprin(x, p) := L1(x, p),

Lsub(x) := L0(x) +
i

2
(Lprin)xαpα(x).
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Main result (JMP, 2013, vol. 54, article 111503)

Theorem 1 We have

λ0(ε) = c ε2 +O(ε3) as ε→ 0,

where the coefficient c is given by the formula

c =
i

16
εαβγ

∑
m∈Z3\{0}

(
δµν −

mµmν

‖m‖2

)
mα ĥβµ(m) ĥγν(m) .

Here

hαβ(x) :=
∂gαβ

∂ε

∣∣∣∣∣
ε=0

,

the hat stands for the Fourier transform and εαβγ is the totally

antisymmetric quantity. Repeated tensor indices indicate sum-

mation over the values 1,2,3.
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Nonlocal (global) nature of our asymptotic coefficient

Put

Lγνβµ :=
iεαβγ

(2π)3

∑
m∈Z3\{0}

(
δµν −

mµmν

‖m‖2

)
mα

∫
T3
ei(x−y)αmα ( · ) dy ,

Pγνβµ :=
1

4
(Lγνβµ + Lνγβµ + Lγνµβ + Lνγµβ).

This gives us a first order pseudodifferential operator P acting in
the vector space of rank two symmetric complex-valued tensor
fields, sβµ 7→ Pγνβµsβµ. If we equip this vector space with the
natural inner product

(r, s) :=
∫
T3
rαβ sαβ dx

then our formula for c can be rewritten as

c =
1

128π3
(Ph, h).
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Eta invariant for the 3-torus

Corollary 1 Suppose that the coefficient c in our asymptotic

formula λ0(ε) = c ε2 +O(ε3) is nonzero. Then

lim
ε→0

ηW (ε)(0) = 2 sign c .

Here W (ε) is the massless Dirac operator for the metric gαβ(x; ε)

and ηW (ε)(0) is the corresponding eta invariant.

Note: proof relies on the fact that the eta function ηW (ε)(s) is

holomorphic in the half-plane Re s > −2 .
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Example of quadratic dependence on ε

If

gαβ dx
αdxβ =

[
dx1

]2
+
[(

1 + ε
(
cosx1

))
dx2 + ε

(
sinx1

)
dx3

]2
+
[
ε
(
sinx1

)
dx2 +

(
1− ε

(
cosx1

))
dx3

]2
then

λ0(ε) = −
ε2

2(1− ε2)
= −

ε2

2
+O(ε4) as ε→ 0.
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Example of quartic dependence on ε

If

gαβ dx
αdxβ =

[
dx1+ε

(
cosx1

)
dx2+ε

(
sinx1

)
dx3

]2
+
[
dx2

]2
+
[
dx3

]2
then

λ0(ε) =
2
√

1 + ε2 − 2− ε2

4
= −

ε4

16
+O(ε6) as ε→ 0.
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Work in progress, jointly with Y-L Fang: the 3-sphere

For standard metric eigenvalues are

±
(
k +

1

2

)
, k = 1,2, . . . ,

with multiplicity k(k + 1).

Our aim is to derive asymptotic expansions

λ+3/2 =
3

2
+ (a+)ε+ (b+)ε2 +O(ε3),

λ−3/2 = −
3

2
− (a−)ε− (b−)ε2 +O(ε3).

We have a+ = a− = −
1

2

∂ lnV (ε)

∂ε

∣∣∣∣∣
ε=0

, where V (ε) =
∫
S3

√
det gαβ dx .
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Generalised Berger sphere

We work in R4 equipped with Cartesian coordinates (x1, x2, x3, x4).
Consider the following three covector fields

e1
α =


x4

x3

−x2

−x1

 , e2
α =


−x3

x4

x1

−x2

 , e3
α =


x2

−x1

x4

−x3

 .
These covector fields are cotangent to the 3-sphere

(x1)2 + (x2)2 + (x3)2 + (x4)2 = 1.

We define the rank 2 tensor

gαβ :=
3∑

j,k=1

cjk e
j
α e

k
β

and restrict it to the 3-sphere. Here the cjk are real constants,
elements of a positive symmetric 3× 3 matrix.
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