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Playing field

Let M(n) be an n-dimensional manifold without boundary, n ≥ 2.

Will denote local coordinates by x = (x1, . . . , xn).

A half-density is a quantity M(n) → C which under changes of

local coordinates transforms as the square root of a density.

Will work with m-columns v : M(n) → Cm of half-densities.

Inner product 〈v, w〉 :=
∫
M(n)

w∗v dx, where dx = dx1 . . . dxn.

Want to study a formally self-adjoint first order linear differential

operator L acting on m-columns of complex-valued half-densities.
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Need an invariant analytic description of my differential operator.

In local coordinates my operator reads

L = Pα(x)
∂

∂xα
+Q(x),

where Pα(x) and Q(x) are some m×m matrix-functions.

The principal and subprincipal symbols are defined as

Lprin(x, p) := iPα(x) pα,

Lsub(x) := Q(x) +
i

2
(Lprin)xαpα(x),

where p = (p1, . . . , pn) is the dual variable (momentum).
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Fact: Lprin and Lsub are invariantly defined Hermitian matrix-

functions on T ∗M(n) and M(n) respectively.

Fact: Lprin and Lsub uniquely determine the operator L.

We say that our operator L is elliptic if

detLprin(x, p) 6= 0, ∀(x, p) ∈ T ∗M(n) \ {0}, (1)

and non-degenerate if

Lprin(x, p) 6= 0, ∀(x, p) ∈ T ∗M(n) \ {0}. (2)

The ellipticity condition (1) is a standard condition in the analysis

of PDEs. Our non-degeneracy condition (2) is less restrictive and

will allow us to describe a certain class of hyperbolic operators.
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Setting basic elliptic and hyperbolic problems

Suppose that M(n) is compact, L is elliptic and eigenvalues of
Lprin(x, p) are simple.

Want to study the spectral problem

Lv = λv.

Spectrum is discrete but not semi-bounded. Eigenvalues λk of
the operator L accumulate to +∞ and −∞.

Also want to study the Cauchy problem

w|xn+1=0 = v

for the hyperbolic system(
L− i∂/∂xn+1

)
w = 0 .

Operator in LHS is automatically non-degenerate on M(n) × R.
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Objects of study

Object 1. The propagator U(xn+1), i.e. one-parameter family

of operators which solves the Cauchy problem for the hyperbolic

operator L− i∂/∂xn+1 on the extended manifold M(n) × R.

Object 2. The two counting functions

N+(λ) :=


0 if λ ≤ 0,∑
0<λk<λ

1 if λ > 0, N−(λ) :=


0 if λ ≤ 0,∑
−λ<λk<0

1 if λ > 0.

Object 3. The eta function which measures spectral asymmetry

η(s) :=
∑
|λk|−s signλk =

+∞∫
0

λ−s (N ′+(λ)−N ′−(λ)) dλ .
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Objectives

Objective 1. Construct the propagator explicitly in terms of os-

cillatory integrals, modulo an integral operator with an infinitely

smooth integral kernel. More specifically, want a two-term (with

regards to smoothness) explicit formula for the propagator.

Objective 2. Derive two-term asymptotic expansions for the

two counting functions

N±(λ) = a±λ
n + b±λ

n−1 + o(λn−1)

as λ → +∞, where a± and b± are some real constants. More

specifically, our objective is to write down explicit formulae for

the asymptotic coefficients a± and b±.
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Stop! Two-term asymptotics require conditions on periodic tra-

jectories. Better work with mollified counting functions

(N± ∗ ρ)(λ) = a±λ
n + b±λ

n−1 + o(λn−1),

where ρ(λ) is a function from Schwartz space such that ρ̂(t) has

small compact support and ρ̂(t) = 1 in a neighbourhood of zero.

Objective 3. Determine the residues of the eta function η(s).

Maybe even determine the eta invariant η(0) .
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Warning: doing microlocal analysis for systems is not easy

1 V.Ivrii, 1980, Soviet Math. Doklady.

2 V.Ivrii, 1982, Funct. Anal. Appl.

3 G.V.Rozenblyum, 1983, Journal of Mathematical Sciences.

4 V.Ivrii, 1984, Springer Lecture Notes.

5 Yu.Safarov, DSc thesis, 1989, Steklov Mathematical Institute.

6 V.Ivrii, book, 1998, Springer.

7 W.J.Nicoll, PhD thesis, 1998, University of Sussex.

8 I.Kamotski and M.Ruzhansky, 2007, Comm. PDEs.
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Formula for the first asymptotic coefficient

a+ = a− =
1

(2π)n
∑
j

∫
0<h(j)<1

dx dp ,

where the h(j)(x, p) are the positive eigenvalues of Lprin(x, p).
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Formula for the second asymptotic coefficient

b+ = −b− = −
n

(2π)n
∑
j

∫
0<h(j)<1

( obvious term︷ ︸︸ ︷
[v(j)]∗Lsubv

(j)

Safarov’s term︷ ︸︸ ︷
−
i

2
{[v(j)]∗, Lprin − h(j)I, v(j)}

+
i

n− 1
h(j){[v(j)]∗, v(j)}

)
dx dp ,

where the v(j)(x, p) are the eigenvectors of Lprin(x, p) correspond-
ing to the positive eigenvalues h(j)(x, p),

{P,R} := PxαRpα − PpαRxα
is the Poisson bracket on matrix-functions and

{P,Q,R} := PxαQRpα − PpαQRxα
is its further generalisation.
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The U(1) connection

Each eigenvector v(j)(x, p) of Lprin(x, p) is defined modulo a

gauge transformation

v(j) 7→ eiφ
(j)
v(j),

where

φ(j) : T ∗M(n) \ {0} → R

is an arbitrary smooth real-valued function. There is a connec-

tion associated with this gauge degree of freedom, a U(1) con-

nection on the cotangent bundle (similar to electromagnetism).

The U(1) connection has curvature, and this curvature appears

in asymptotic formulae for the counting function and propagator.
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Why am I confident that my formulae for b± are correct?

Invariance under gauge transformations of the operator

L 7→ R∗LR,

where

R : M(n) → U(m)

is an arbitrary smooth unitary matrix-function.
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Two by two operators are special

If m = 2 then detLprin is a quadratic form in momentum

detLprin(x, p) = −gαβ(x) pαpβ .

The coefficients gαβ(x) = gβα(x), α, β = 1, . . . , n, can be inter-

preted as components of a (contravariant) metric tensor.

Further on we always assume that m = 2.
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Dimensions 2, 3 and 4 are special

Lemma If n ≥ 5, then our metric is degenerate, i.e.

det gαβ(x) = 0, ∀x ∈M(n).

Further on we always assume that n ≤ 4.
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In dimension four the metric can only be Lorentzian

Lemma If n = 4 and our operator L is non-degenerate

Lprin(x, p) 6= 0, ∀(x, p) ∈ T ∗M(n) \ {0},

then our metric is Lorentzian, i.e. the metric tensor gαβ(x) has

three positive eigenvalues and one negative eigenvalue.

Note: half-densities are now equivalent to scalars. Just multiply

or divide by |det gαβ(x)|1/4 .
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Extracting more geometry from our differential operator

Let us perform gauge transformations of the operator

L 7→ R∗LR

where

R : M(4) → SL(2,C)

is an arbitrary smooth matrix-function with determinant 1. Why
determinant 1? Because I want to preserve the metric.

Principal and subprincipal symbols transform as

Lprin 7→ R∗LprinR,

Lsub 7→ R∗LsubR+
i

2

(
R∗xα(Lprin)pαR−R∗(Lprin)pαRxα

)
.
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Problem: subprincipal symbol does not transform covariantly.

Solution: define covariant subprincipal symbol Lcsub(x) as

Lcsub := Lsub +
i

16
gαβ{Lprin, adjLprin, Lprin}pαpβ ,

where adj stands for the operator of matrix adjugation

P =

(
a b
c d

)
7→
(
d −b
−c a

)
=: adjP

from elementary linear algebra.
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Electromagnetic covector potential appears out of thin air

Fact: covariant subprincipal symbol can be rewritten as

Lcsub(x) = Lprin(x,A(x)), (3)

where A is a real-valued covector field.

Explanation: the matrices (Lprin)pα, α = 1,2,3,4, are Pauli ma-

trices and these form a basis in the real vector space of 2 × 2

Hermitian matrices. Formula (3) is simply an expansion of the

matrix Lcsub with respect to the basis of Pauli matrices.
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Definition The adjugate of a 2×2 matrix differential operator L

is an operator whose principal and covariant subprincipal symbols

are matrix adjugates of those of the original operator L.

I denote matrix adjugation adj and operator adjugation Adj .

Non-geometric representation of the Dirac equation in 4D

Theorem The Dirac equation in curved Lorentzian spacetime

can be written as a system of 4 equations(
L mI
mI AdjL

)(
v
w

)
= 0.

Here m is the electron mass, I is the 2×2 identity matrix, and v

and w are unknown 2-columns of complex-valued half-densities.
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Analysis of the 3-dimensional case

Continue studying a 2× 2 operator but assume now that n = 3

and that the principal symbol is trace-free. Also assume ellip-

ticity, which in this case is equivalent to nondegeneracy.

Lemma Under the above assumptions our metric is Riemannian,

i.e. the metric tensor gαβ(x) is positive definite.

21



Geometric meaning of asymptotic coefficients in 3D

Theorem

a± =
1

6π2

∫
M(3)

√
det gαβ dx ,

b± = ∓
1

4π2

∫
M(3)

(trLcsub)
√

det gαβ dx .

If we consider the hyperbolic operator L−i∂/∂x4 on the extended

manifold M(3) × R and express its covariant subprincipal symbol

via the electromagnetic covector potential A, we get

1

2
trLcsub = A4 .

This means that
1

2
trLcsub is the electric potential.
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Two special operators on a Riemannian 3-manifold:
massless Dirac operator and the operator curl

• Massless Dirac is a 2× 2 operator.

• Geometers drop the adjective “massless”.

• “Massless Dirac” 6= “Dirac type”.

• Massless Dirac is determined by metric∗ modulo gauge trans-
formations. There is no electromagnetic field in massless Dirac.

• Massless Dirac commutes with operator of charge conjugation(
v1
v2

)
7→
(
−v2
v1

)
.

All eigenvalues have even multiplicity.
∗And spin structure.
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• For massless Dirac the first five asymptotic coefficients of
(N ′+ ∗ ρ)(λ) and (N ′− ∗ ρ)(λ) appear to be the same. No hope of
observing spectral symmetry for large λ.

• Curl is a 3× 3 operator.

• Curl is not elliptic.

• Hardly any literature on the spectral theory of operator curl.

• Eigenvalue problem for the Maxwell system reduces to an
eigenvalue problem for the operator curl.

• The massless Dirac operator is a mathematical model for the
most basic fermion, the neutrino, whereas the operator curl is a
mathematical model for the most basic boson, the photon.
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Some results for the massless Dirac

• Second asymptotic coefficient for N+(λ) and N−(λ) is zero.

• Might soon write down third asymptotic coefficient.

• Asymptotic formulae for eigenvalues with smallest modulus.

Work on T3 or S3 and perturb metric starting from standard one:

gαβ(x; ε), with ε being a small parameter. Here asymptotic coef-

ficients are not expressed via differential geometric invariants.

• Special families of nontrivial metrics for which eigenvalues

can be evaluated explicitly. For S3 these are generalised Berger

spheres. For T3 there is no name for these special metrics.
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Generalised Berger sphere

We work in R4 equipped with Cartesian coordinates (x1, x2, x3, x4).
Consider the following three covector fields

e1
α =


x4

x3

−x2

−x1

 , e2
α =


−x3

x4

x1

−x2

 , e3
α =


x2

−x1

x4

−x3

 .
These covector fields are cotangent to the 3-sphere

(x1)2 + (x2)2 + (x3)2 + (x4)2 = 1.

We define the rank 2 tensor

gαβ :=
3∑

j,k=1

cjk e
j
α e

k
β

and restrict it to the 3-sphere. Here the cjk are real constants,
elements of a positive symmetric 3× 3 matrix.
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Two tricks for tackling the operator curl

Making curl elliptic. Introduce a new unknown, a scalar field

(pressure), and consider the extended operator(
curl −grad
div 0

)
. (4)

This gives additional eigenvalues, those of the operators ±
√
−∆ .

Dealing with double eigenvalues of the principal symbol.

The operator (4) reduces to a pair of massless Dirac operators

perturbed by lower order terms. Explicit formula representing a

covector field and scalar field as a rank two spinor.
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Four fundamental equations of theoretical physics

1 Maxwell’s equations. Describe electromagnetism and photons.

2 Dirac equation. Describes electrons and positrons.

3 Massless Dirac equation. Describes∗ neutrinos and antineutrinos.

4 Linearized Einstein field equations of general relativity.

Describe gravity.

All four contain the same physical constant, the speed of light.

∗OK, I know that neutrinos actually have a small mass.
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Accepted explanation: theory of relativity

God is a geometer. He created a 4-dimensional world parame-
terized by coordinates x1, x2, x3, x4 (here x4 is time), in which
distances are measured in a funny way:

distance2 = (dx1)2 + (dx2)2 + (dx3)2 − c2(dx4)2 ,

where c is the speed of light.

Without the term −c2(dx4)2 this would be Pythagoras’ theorem.
Funny way of measuring distances is called Minkowski metric.

Having decided to use the Minkowski metric, God then wrote
down the main equations of theoretical physics using only geo-
metric constructions, i.e. using concepts such as connection,
curvature etc. This way all equations have the same physical
constant, the speed of light, encoded in them.
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Alternative explanation

God is an analyst. He created a 4-dimensional world, then wrote

down a single system of nonlinear PDEs which describes all phe-

nomena in this world. In doing this, God did not have a partic-

ular way of measuring distances in mind. This system of PDEs

has different solutions which we interpret as electromagnetism,

gravity, electrons, neutrinos etc. The reason the same physical

constant, the speed of light, manifests itself in all physical phe-

nomena is because we are looking at different solutions of the

same system of PDEs.

Potential advantage of formulating a field theory in “non-geometric”

terms: there might be a chance of describing the interaction of

physical fields in a more consistent (non-perturbative?) manner.
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