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Playing field

Let M(n) be an n-dimensional manifold without boundary, n ≥ 2.

Will denote local coordinates by x = (x1, . . . , xn).

A half-density is a quantity M(n) → C which under changes of

local coordinates transforms as the square root of a density.

Will work with m-columns v : M(n) → Cm of half-densities.

Inner product 〈v, w〉 :=
∫
M(n)

w∗v dx, where dx = dx1 . . . dxn.

Want to study a formally self-adjoint first order linear differential

operator L acting on m-columns of complex-valued half-densities.

2



In local coordinates our operator reads

L = Pα(x)
∂

∂xα
+Q(x),

where Pα(x) and Q(x) are some m ×m matrix-functions. The
full symbol of the operator L is the matrix-function

L(x, p) := iPα(x) pα +Q(x),

where p = (p1 . . . , pn) is the dual variable (momentum).

We decompose the full symbol into homogeneous components,

L1(x, p) := iPα(x) pα, L0(x) := Q(x),

and define the principal and subprincipal symbols as

Lprin(x, p) := L1(x, p),

Lsub(x) := L0(x) +
i

2
(Lprin)xαpα(x).
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Fact: Lprin and Lsub are invariantly defined Hermitian matrix-

functions on T ∗M(n) and M(n) respectively.

Fact: Lprin and Lsub uniquely determine the operator L.

We say that our operator L is elliptic if

detLprin(x, p) 6= 0, ∀(x, p) ∈ T ∗M(n) \ {0}, (1)

and non-degenerate if

Lprin(x, p) 6= 0, ∀(x, p) ∈ T ∗M(n) \ {0}. (2)

The ellipticity condition (1) is a standard condition in the analysis

of PDEs. Our non-degeneracy condition (2) is less restrictive and

will allow us to describe a certain class of hyperbolic operators.
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Suppose that M(n) is compact, L is elliptic and eigenvalues of

Lprin(x, p) are simple.

Want to study the spectral problem

Lv = λv.

Spectrum is discrete but not semi-bounded. Eigenvalues λk of

the operator L accumulate to +∞ and −∞.

Also want to study the Cauchy problem

w|xn+1=0 = v

for the hyperbolic system(
L− i∂/∂xn+1

)
w = 0 .

Operator in LHS is automatically non-degenerate on M(n) × R.
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Objects of study

Object 1. The counting function

N(λ) :=
∑

0<λk<λ

1 ,

i.e. number of eigenvalues between zero and a given positive λ.

Object 2. The propagator U(xn+1), i.e. one-parameter family

of operators which solves the Cauchy problem for the hyperbolic

operator L− i∂/∂xn+1 on the extended manifold M(n) × R.
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Objectives

Objective 1. Derive a two-term asymptotic expansion for the
counting function

N(λ) = aλn + bλn−1 + o(λn−1)

as λ → +∞, where a and b are some real constants. More
specifically, our objective is to write down explicit formulae for
the asymptotic coefficients a and b.

Objective 2. Construct the propagator explicitly in terms of os-
cillatory integrals, modulo an integral operator with an infinitely
smooth integral kernel. More specifically, want a two-term (with
regards to smoothness) explicit formula for the propagator.

Objectives achieved in O.Chervova, R.J.Downes and D.Vassiliev,
Journal of Spectral Theory, 2013.
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Explicit formula for the second asymptotic coefficient

b = −
n

(2π)n
∑
j

∫
0<h(j)<1

( obvious term︷ ︸︸ ︷
[v(j)]∗Lsubv

(j)

Safarov’s term︷ ︸︸ ︷
−
i

2
{[v(j)]∗, Lprin − h(j), v(j)}

+
i

n− 1
h(j){[v(j)]∗, v(j)}

)
dx dp ,

h(j)(x, p), and v(j)(x, p) are eigenvalues and eigenvectors of Lprin(x, p),

{P,R} := PxαRpα − PpαRxα

is the Poisson bracket on matrix-functions and

{P,Q,R} := PxαQRpα − PpαQRxα

is its further generalisation.
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The U(1) connection

Each eigenvector v(j)(x, p) of Lprin(x, p) is defined modulo a

gauge transformation

v(j) 7→ eiφ
(j)
v(j),

where

φ(j) : T ∗M(n) \ {0} → R

is an arbitrary smooth function. There is a connection associated

with this gauge degree of freedom, a U(1) connection on the

cotangent bundle (similar to electromagnetism).

The U(1) connection has curvature, and this curvature appears

in asymptotic formulae for counting function and propagator.
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Why am I confident that my formulae are correct?

I analyzed what happens when we perform gauge transformations

of the original operator

L 7→ R∗LR,

where

R : M(n) → U(m)

is an arbitrary smooth unitary matrix-function.

The spectrum does not change under unitary transformations,

so the asymptotic coefficients a and b should not change.
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Two by two operators are special

Suppose that m = 2. Then the determinant of the principal

symbol is a quadratic form in momentum

detLprin(x, p) = −gαβ(x) pαpβ

and the coefficients gαβ(x) = gβα(x), α, β = 1, . . . , n, can be in-

terpreted as components of a (contravariant) Riemannian metric.

Further on we always assume that m = 2.
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Dimensions 2, 3 and 4 are special

Lemma If n ≥ 5, then our metric is degenerate, i.e.

det gαβ(x) = 0, ∀x ∈M(n).

Further on we always assume that n ≤ 4.
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In dimension four the metric can only be Lorentzian

Lemma If n = 4 and our operator L is non-degenerate, then our

metric is Lorentzian, i.e. metric tensor gαβ(x) has three positive

eigenvalues and one negative eigenvalue.

Note: in dimension four half-densities are equivalent to scalars.

Just multiply or divide by |det gαβ(x)|1/4 .
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Extracting more geometry from our differential operator

Let us perform gauge transformations of the original operator

L 7→ R∗LR

where

R : M(4) → SL(2,C)

is an arbitrary smooth matrix-function with determinant 1. Why
determinant 1? Because I want to preserve the metric.

Principal and subprincipal symbols transform as

Lprin 7→ R∗LprinR,

Lsub 7→ R∗LsubR+
i

2

(
R∗xα(Lprin)pαR−R∗(Lprin)pαRxα

)
.
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Problem: subprincipal symbol does not transform covariantly.

Solution: define covariant subprincipal symbol Lcsub(x) as

Lcsub := Lsub +
i

16
gαβ{Lprin, adjLprin, Lprin}pαpβ ,

where adj stands for the operator of matrix adjugation

P =

(
a b
c d

)
7→
(
d −b
−c a

)
=: adjP

from elementary linear algebra.
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Electromagnetic covector potential appears out of thin air

Covariant subprincipal symbol can be rewritten as

Lcsub(x) = Lprin(x,A(x)),

where A is a real-valued covector field.

Above formula is simply an expansion of the matrix Lcsub with

respect to the basis (Lprin)pα, α = 1,2,3,4, in the real vector

space of 2× 2 Hermitian matrices.
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Definition The adjugate of a 2×2 matrix differential operator L

is an operator whose principal and covariant subprincipal symbols

are matrix adjugates of those of the original operator L.

I denote matrix adjugation adj and operator adjugation Adj .

Non-geometric representation of Dirac operator in 4D

Theorem (arXiv:1401.3160) The Dirac operator in curved 4-

dimensional spacetime can be written as a 4×4 matrix operator(
L mI
mI AdjL

)
.

Here m is mass and I is the 2× 2 identity matrix.
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Analysis of the 3-dimensional case

We continue studying a 2× 2 operator but assume now that

n = 3, (3)

trLprin(x, p) = 0, ∀(x, p) ∈ T ∗M(3). (4)

Also, in the remainder of the talk we assume ellipticity (1). Note

that under assumptions (3) and (4) the ellipticity condition (1)

is equivalent to the non-degeneracy condition (2).

Lemma Under the above assumptions our metric is Riemannian,

i.e. metric tensor gαβ(x) is positive definite.
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Geometric meaning of asymptotic coefficients

Theorem (arXiv:1403.2663)

a =
1

6π2

∫
M(3)

√
det gαβ dx , (5)

b = −
1

4π2

∫
M(3)

(trLcsub)
√

det gαβ dx . (6)

If we consider the hyperbolic operator L−i∂/∂x4 on the extended

manifold M(3) × R and express its covariant subprincipal symbol

via the electromagnetic covector potential A, we get

1

2
trLcsub = A4 .

This means that
1

2
trLcsub is the electric potential.
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Four fundamental equations of theoretical physics

1 Maxwell’s equations. Describe electromagnetism and photons.

2 Dirac equation. Describes electrons and positrons.

3 Massless Dirac equation. Describes∗ neutrinos and antineutrinos.

4 Linearized Einstein field equations of general relativity.

Describe gravity.

All four contain the same physical constant, the speed of light.

∗OK, I know that neutrinos actually have a small mass.
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Accepted explanation: theory of relativity

God is a geometer. He created a 4-dimensional world parame-
terized by coordinates x1, x2, x3, x4 (here x4 is time), in which
distances are measured in a funny way:

distance2 = (dx1)2 + (dx2)2 + (dx3)2 − c2(dx4)2 ,

where c is the speed of light.

Without the term −c2(dx4)2 this would be Pythagoras’ theorem.
Funny way of measuring distances is called Minkowski metric.

Having decided to use the Minkowski metric, God then wrote
down the main equations of theoretical physics using only geo-
metric constructions, i.e. using concepts such as connection,
curvature etc. This way all equations have the same physical
constant, the speed of light, encoded in them.
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Alternative explanation

God is an analyst. He created a 4-dimensional world, then wrote

down one system of nonlinear PDEs which describes phenomena

in this world. In doing this, God did not have a particular way of

measuring distances in mind. This system of PDEs has different

solutions which we interpret as electromagnetism, gravity, elec-

trons, neutrinos etc. The reason the same physical constant,

the speed of light, manifests itself in all physical phenomena is

because we are looking at different solutions of the same system

of PDEs.

Action plan: spend next 100 years performing meticulous micro-

local analysis of systems of first order PDEs in dimension four.
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