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Typical problem in my subject area

—Av=)Xv in MCR3 vlga = O.
Finding eigenvalues 0 < A1 < Ao < A3 < ... is difficult, so one
introduces the counting function
N = ) 1
>‘k<>‘

(number of eigenvalues below a given positive A) and studies the
asymptotic behaviour of N(\) as A — +oo.

Rayleigh—Jeans law (1905):
Vv
62
where V is the volume of M.

NO) = —=232460032) as A — +oo,



Lord Rayleigh’s “proof’”’ of the Rayleigh—Jeans law

Suppose the domain M is a cube with side length a. Then the
eigenvalues and eigenfunctions can be calculated explicitly:
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where x = (a1, 22, 23) are Cartesian coordinates in R3 and
k1, ko, k3 are arbitrary natural numbers.

We see that N()) is the number of integer lattice points in the

positive octant of a ball of radius % A, SO

1/4 a 3 a3 V
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Sir James Jeans’' contribution to the Rayleigh—Jeans law:

“It seems to me that Lord Rayleigh has introduced an unneces-
sary factor 8 by counting negative as well as positive values of
his integers’ .



1910: Lorentz visits Gottingen at Hilbert's invitation and de-
livers a series of lectures “Old and new problems in physics’”.
Lorentz states the Rayleigh—Jeans law as a mathematical con-
jecture. Hermann Weyl is in the audience.

1912: Weyl publishes a rigorous proof of Rayleigh—Jeans law.
Almost incomprehensible.

Comprehensible proof: in R.Courant and D.Hilbert, Methods of
Mathematical Physics (1924).

Courant’s method. Approximate domain M by a collection of
small cubes, setting Dirichlet or Neumann boundary conditions
on boundaries of cubes. Setting extra Dirichlet conditions raises
the eigenvalues whereas setting extra Neumann conditions low-
ers the eigenvalues. Remains only to a) choose size of cubes
correctly in relation to A and b) estimate contribution of bits of
domain near the boundary (we throw them out).



General statement of the problem. Let M be a compact n-
dimensional manifold with boundary oM. Consider the spectral
problem for an elliptic self-adjoint semi-bounded from below dif-
ferential operator of even order 2m:

Au=)u on M, (B 0, j=1,...,m.

“)‘aM —

Has been proven (by many authors over many years) that
N = aX@m) 4 o\ (2m)y 35 X 5 400

where the constant a is written down explicitly.



Weyl's Conjecture (1913): one can do better and prove two-term
asymptotic formulae for the counting function. Say, for the case

of the Laplacian in 3D with Dirichlet boundary conditions Weyl's
Conjecture reads

N\ = 6—‘/2/\3/2 I o(\) as A — +oo,

T 167
where S is the surface area of oM. For a general partial differ-

ential operator of order 2m Weyl's Conjecture reads
N(A) = ax®@m) 4 pa(n=1)/@m) 4 ,(\(n=1)/(2m)y 35\ 5 4o,

where the constant b can also be written down explicitly.



For the case of a second order operator Weyl's Conjecture was
proved, under certain geometric assumptions on the billiard flow,
by Victor Ivrii in 1980.

I proved it for operators of arbitrary order in 1984.

My main research publication:

Yu.Safarov and D.Vassiliev, The asymptotic distribution of eigen-
values of partial differential operators, American Mathematical

Society, 1997 (hardcover), 1998 (softcover).

“In the reviewer’s opinion, this book is indispensable for seri-
ous students of spectral asymptotics”. Lars HOormander for the
Bulletin of the London Mathematical Society.



Idea of the proof of Weyl’'s Conjecture
Key word: microlocal analysis. L.Hormander (Fields Medal 1962).

Introduce time t and study the “hyperbolic’ equation
o 2m
Aw = (z—) w
subject to the initial condition w|,—g = v.

The operator which provides the solution to this “Cauchy prob-
lem” is the propagator

U(t) . =e
Fact: the propagator can be constructed explicitly, modulo an
integral operator with smooth kernel, in the form of a Fourier

integral operator. This is a way of doing the Fourier transform
for operators with variable coefficients.

—itAl/(2m)



A Fourier integral operator is an oscillatory integral. Similar to
Feynman diagrams, the variability of coefficients playing role of
perturbation. Unlike Feynman diagrams, 100% rigorous.

Having constructed the propagator, recover information about
the spectrum using Fourier Tauberian theorems. These allow us
to perform the inverse Fourier transform from variable t (time)
to variable X (spectral parameter) using incomplete information,
with control of error terms.

Similar to Tauberian theorems used in analytic number theory.
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Today: will be studying the spectral problem for a system

Av = v,

where A is a first order elliptic self-adjoint m x m matrix dif-
ferential operator acting on columns of m complex-valued half-
densities v over a connected compact n-dimensional manifold M
without boundary. The operator is not semi-bounded.

I define the counting function

NN = > 1

0<>\k<)\

(number of eigenvalues between zero and a given positive \) and
want to study the asymptotic behaviour of N()),

NO) =a\"+ "1 4+0o(0" 1) as X— +oo.
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The concept of a symbol of a differential operator

The first order differential operator A reads

e i ? e

ox™
where B¥(z), a = 1,...,n, and C(x) are m x m matrix-functions.

To get the symbol, replace each 9/0z% by iy, a=1,...,n:
A(z, &) = B%a + C.

Principal symbol Apin(x,§) := B%a .

L i 0B“
Subprincipal symbol Ag p(x) :=C + = :
2 0x®

The asymptotic coefficients a and b should be expressed via
Aprin(x,€) and Agp(z) as some sort of integrals.
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Warning: doing microlocal analysis for systems is not easy
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http://arxiv.org/abs/1208.6015

Correct formula for the second asymptotic coefficient

b = sum of 3 terms.

Term 1: the obvious one, proportional to Ag,p(x).

Term 2: Safarov's term. Involves eigenvalues and eigenvectors
of Aprin(x,£) and their Poisson brackets. Poisson bracket under-
stood in the matrix sense.

Term 3: similar to term 2, only depends on dimension n in a

funny way. Contains factor —1-.

See formula (1.24) in http://arxiv.org/abs/1208.6015 for details.
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Analysis of simplest possible special case

Our manifold has dimension 3.

The number of equations in our system is 2.

The principal symbol is trace-free.

The subprincipal symbol is zero.
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Geometric object 1: the metric

The determinant of the principal symbol is a negative definite
quadratic form

det Aprin(z, &) = —g*P¢atp

and the coefficients ¢®f(z) = ¢°*(z), a, 8 = 1,2, 3, can be inter-
preted as components of a (contravariant) Riemannian metric.
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Geometric object 2: normalised spinor field

Consider the equivalence class of principal symbols with given
metric. Choose a representative Ap(z,£) and use it as a ref-
erence. Then any otherf| principal symbol from this equivalence

class can be written as

Aprin(wa §) = R(x) Aprin(xa £) R*(CU) 3
where R : M — SU(2) is a special unitary matrix-function.

=)
R = <_CC2 §1> P IR =1

The pair of complex numbers ¢ = (gl §2> is called a spinor.

* There are some topological issues here. To overcome them, assume, for
simplicity, that Apin(z, &) is sufficiently close to Apin(x,&).

17



Geometric meaning of the second asymptotic coefficient

L _ S

272
where S(¢) is the massless Dirac action with Pauli matrices
B%(x), « = 1,2,3, the matrix-functions which appear in the
formula for the reference principal symbol Apin(z,&) = B .

Bottom line: the differential geometry of spinors is encoded
within the microlocal analysis of PDEs.
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Four fundamental equations of theoretical physics

1 Maxwell's equations. Describe electromagnetism and photons.

2 Dirac equation. Describes electrons and positrons.

3 Massless Dirac equation. Described*| neutrinos and antineutrinos.

4 Linearized Einstein field equations of general relativity.
Describe gravity.

All four contain the same physical constant — the speed of light.

*OK, I know that neutrinos actually have a small mass.
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Accepted explanation: theory of relativity

God is a geometer. He created a 4-dimensional world parame-
terized by coordinates 29, z1, 22, 3 (here z° is time), in which

distances are measured in a funny way:
distance? = —c?(dz°)? + (dz1)? + (dz?)? + (dz>)?,
where ¢ is the speed of light.

Without the term —c¢?(dz®)? this would be Pythagoras’ theorem.
Funny way of measuring distances is called Minkowski metric.

Having decided to use the Minkowski metric, God then wrote
down the main equations of theoretical physics using only geo-
metric constructions, i.e. using concepts such as connection,
curvature etc. This way all equations have the same physical
constant — the speed of light — encoded in them.
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Alternative explanation

God is an analyst. He created a 3-dimensional Euclidean world,
then added (absolute) time and wrote down one system of non-
linear PDEs which describes phenomena in this world. This
system of PDEs has different solutions which we interpret as
electromagnetism, gravity, electrons, neutrinos etc. The reason
the same physical constant — the speed of light — mani-
fests itself in all physical phenomena is because we are |looking
at different solutions of the same system of PDEs.

I cannot write down the unifying system of field equations but
I can extract most geometric constructs of theoretical physics
from systems of PDEs, simply by performing microlocal analysis.

Action plan: spend next 100 years performing meticulous
microlocal analysis of systems of nonlinear hyperbolic PDEs.
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