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Typical problem in my subject area

—Av=Xv in MCR3 vlgy = 0.
Finding eigenvalues 0 < A1 < Ao < A3 < ... is difficult, so one
introduces the counting function
NN = > 1
O<>‘k<>‘

(“number of eigenvalues below a given X" ) and studies the asymp-
totic behaviour of N(\) as A — +oo.

Rayleigh—Jeans law (1905):

v
N(\) = FAZJ’/Q +0(03%) as A — +oo,
T
where V is the volume of M. Rigorous proof: H.Weyl (1912).
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Weyl's Conjecture (1913): one can do better and write a two-
term asymptotic formula

N\ = —2\3/2_ 2 A) as A\ — ,
( ) 672 167 +O( ) o9
where S is the surface area of OM. Proved, under certain geo-

metric assumptions on the billiard flow, by V.Ivrii (1980).
My contribution: similar results for higher order operators.

Yu.Safarov and D.Vassiliev, The asymptotic distribution of eigen-
values of partial differential operators, American Mathematical
Society, 1997 (hardcover), 1998 (softcover).

“In the reviewer’'s opinion, this book is indispensable for seri-
ous students of spectral asymptotics”’. Lars HOormander for the
Bulletin of the London Mathematical Society.



Will be studying the spectral problem for a system

Av = \v

where A is a first order elliptic self-adjoint m X m matrix pseudo-
differential operator acting on columns of m complex-valued half-
densities v over a connected compact n-dimensional manifold M
without boundary. The operator is not necessarily semi-bounded.

Principal symbol Aq(z, &) is matrix-valued function on T*M \ {0}.

The eigenvalues of the principal symbol are denoted h(j)(:c,g).
These hU)(z, &) are assumed to be simple.



Spectral function e(\,z,z) == ) v ()2
O<AL<A

Counting function N()\) = Z 1 =/ e(A\,x,x)dz.
0< Mg <A M

Want to derive, under appropriate assumptions on Hamiltonian
trajectories, two-term asymptotics

e\ z,2) = al(z) \" 4+ b(z) N4+ oA D),

N\ = a4+ A"t 4 o2 1),

as A\ — +o0o. Here I expect the real constants a, b and real
densities a(x), b(xz) to be related as

a = /M a(x) dx, b= /M b(x) dx.



Warning: doing microlocal analysis for systems is not easy
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Correct formula for the second asymptotic coefficient

b(z) = —n Z / ([U(w] Aol __{[Uu)]* Aq — B Ny
h() (z,8)<1

D100} ) (2,6) &
where v(j)(a;,g) are eigenvectors of principal symbol,

{P, R} L= P:EO‘Rfa — P&XR
iIs the Poisson bracket on matrix-functions and

{P7 Q7 R} L= PZCO‘QRﬁ’a — PgaQRxO‘

IS its further generalisation.



The U(1) connection

Each eigenvector v{U)(z,¢) of the principal symbol is defined
modulo a gauge transformation

o@D s o199 ()
where
o) M\ {0} = R

IS an arbitrary smooth function. Want to parallel transport eigen-
vector so that derivative of eigenvector along the curve is orthog-
onal to eigenvector itself. This gives a U(1) connection charac-
terized by a 2n-component real covector potential (Py, QB) where

P, = i[v(j)]*véﬂ), QP = i[v(j)]*vég) :
Covariant derivative on functions T*M\ {0} - {z € C: |z| =1} is
o = 0/0z% — iP,, VP = 0/0¢5 —iQP.



The curvature of our U(1) connection is

B (vavﬁ VsVa VaVo— v5va>

VIVg—VgV7T VIVO — VOV?
T his curvature is the exterior derivative of the covector potential
(with minus sign).

The scalar curvature of our U(1) connection is
—i(VaV® — VOV, = —i{[v]* ()}
Recall: curly brackets denote Poisson bracket on matrix-functions

{P, R} L= anRga — PgaRxoz .



Analysis of special case

Additional assumptions:

our manifold has dimension 3,
the number of equations in our system is 2,
our operator is differential (as opposed to pseudodifferential),

the principal symbol is trace-free.
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Geometric object 1: the metric

The determinant of the principal symbol is a negative definite
quadratic form

det Aq(z, &) = —g™P¢ats

and the coefficients ¢®f(z) = ¢5%(z), o,8 = 1,2,3, can be inter-
preted as components of a (contravariant) Riemannian metric.
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Geometric object 2: the teleparallel connection

Define an affine connection as follows. Suppose we have a co-
vector £ based at the point x € M and we want to construct a
parallel covector £ based at the point £ € M. This is done by
solving the linear system of equations

A1(Z,€) = A1(x,€).

The teleparallel connection coefficients I‘O‘ﬁ,y(x) can be written
down explicitly in terms of the principal symbol and this allows
us to define yet another geometric object — the torsion tensor

Ty = T%y = T%.

The teleparallel connection has zero curvature and nonzero tor-
sion. It is the opposite of the Levi-Civita connection.
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Geometric object 3: the topological charge

Put

¢ 1= 2 \[det g tr((An)g, (ADg, (A1)

The number ¢ can take only two values, +1 or —1. It describes
the orientation of the principal symbol A{(x,£) relative to the
chosen orientation of local coordinates.
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Simplified formula for the second asymptotic coefficient

b(z) = # (130T = 2tr Agp ] \/det gog ) (2)

where
ax . 1
Ty = 3(Tapy + Thap + Tpya)

is axial torsion (totally antisymmetric piece of the torsion tensor)
and x is the Hodge star.

Note absence of integration in &: it was performed explicitly.
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Spectral theoretic characterization
of the massless Dirac operator

Imagine a single neutrino living in a compact 3-dimensional uni-
verse. I want to find the spectrum of energy levels this neutrino
can occupy. This leads to an eigenvalue problem

Av = M\

where A is the massless Dirac operator, a particular 2 x 2 matrix
first order differential operator with trace-free principal symbol.

Note: the explicit formula for the massless Dirac operator in
curved space is very complicated.

Now suppose I am a spectral analyst and I want to know whether
my differential operator A is a massless Dirac operator, without
having to learn the differential geometry of spinors.
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Theorem 1 An operator is a massless Dirac operator iff
a) subprincipal symbol is proportional to the identity matrix, and

b) second asymptotic coefficient of the spectral function is zero.

Note: the conditions of Theorem 1 are invariant under transfor-
mations of the operator A — RAR* where R: M — SU(2).

Note: Theorem 1 does not feel the topological differences be-
tween different parallelizations of the manifold M.

Bottom line: the differential geometry of spinors is encoded

within the microlocal analysis of PDEs.
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Spectral theoretic characterization
of the massless Dirac action

Working on a compact 3-manifold, consider eigenvalue problem

Av = \wv

where A is a first order elliptic self-adjoint 2 x 2 matrix differential
operator with trA1(z,&§) = 0 and Agp(x) = 0, and w : M —
(0,4+o00) is a scalar weight function.

Consider the map
Aq(x,€) and w(z) +~— b
subject to the constraint “det Aq(x, &) is preserved” .
Theorem 2 The above map is equivalent to the map
spinor field —> massless Dirac action.
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Four fundamental equations of theoretical physics
1 Maxwell's equations. Describe electromagnetism and photons.
2 Dirac equation. Describes electrons and positrons.
3 Massless Dirac equation. Described*| neutrinos and antineutrinos.

4 Linearized Einstein field equations of general relativity. De-
Sscribe gravity.

All four contain the same physical constant — the speed of light.

*OK, I know that neutrinos actually have a small mass.

18



Accepted explanation: theory of relativity

God is a geometer. He created a 4-dimensional world parametrized
by coordinates z°, z1, 22, 23 (here 20 is time), in which distances
are measured in a funny way:

distance? = —c2(da:0)2 -+ (d:cl)2 + (d$2)2 + (d563)2

where ¢ is the speed of light.

Without the term —c¢?(dz®)? this would be Pythagoras’ theorem.
Funny way of measuring distances is called Minkowski metric.

Having decided to use the Minkowski metric, God then wrote
down the main equations of theoretical physics using only geo-
metric constructions, i.e. using concepts such as connection,
curvature etc. This way all equations have the same physical
constant — the speed of light — encoded in them.
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Alternative explanation

God is an analyst. He created a 3-dimensional Euclidean world,
then added (absolute) time and wrote down one system of non-
linear PDEs which describes phenomena in this world. This
system of PDEs has different solutions which we interpret as
electromagnetism, gravity, electrons, neutrinos etc. The reason
the same physical constant — the speed of light — mani-
fests itself in all physical phenomena is because we are |looking
at different solutions of the same system of PDEs.

I cannot write down the unifying system of field equations but
I can extract some geometric constructs of theoretical physics
from systems of PDEs, simply by performing microlocal analysis.

Action plan: spend next 100 years studying systems of nonlinear
hyperbolic PDEs, hoping to find soliton-type solutions.
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Spectral asymmetry
Consider the unit torus T3 parameterized by cyclic coordinates

%, a=1,2,3, of period 27 and equipped with metric

Jap dada’ = [dm1+€(cosx1)d$2+€(5in xl)dfb’?)]z"' [dm2}2+ [dazﬂz.

Then the (double) eigenvalue of the massless Dirac operator
which is closest to zero is given by the explicit formula

2./1 2_2_2 4
A= +€4 ‘ =—§—6—I—O(e6) as e¢— 0.
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