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Will be studying the spectral problem for a system

Av = λv

where A is a first order elliptic self-adjoint m×m matrix pseudo-

differential operator acting on columns of m complex-valued half-

densities v over a connected compact n-dimensional manifold M

without boundary. The operator is not necessarily semi-bounded.

Principal symbol A1(x, ξ) is matrix-valued function on T ∗M \{0}.

The eigenvalues of the principal symbol are denoted h(j)(x, ξ).

These h(j)(x, ξ) are assumed to be simple.
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Objects of study

Object 1. Propagator

U(t) := e−itA =
∑
k

e−itλkvk(x)
∫
M

[vk(y)]∗( · ) dy

where λk and vk are eigenvalues and eigenfunctions of operator A.

Object 2. Spectral function

e(λ, x, x) :=
∑

0<λk<λ

‖vk(x)‖2.

Object 3. Counting function

N(λ) :=
∑

0<λk<λ

1 =
∫
M
e(λ, x, x) dx .
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Objectives

Objective 1: construct propagator explicitly in terms of oscilla-

tory integrals, modulo integral operator with smooth kernel.

Objectives 2 and 3: derive, under appropriate assumptions on

Hamiltonian trajectories, two-term asymptotics

e(λ, x, x) = a(x)λn + b(x)λn−1 + o(λn−1),

N(λ) = aλn + bλn−1 + o(λn−1),

as λ → +∞. Here I expect the real constants a, b and real

densities a(x), b(x) to be related as

a =
∫
M
a(x) dx, b =

∫
M
b(x) dx.
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Safarov’s formula for the second asymptotic coefficient

b(x) = −n
m+∑
j=1

∫
h(j)(x,ξ)<1

(
[v(j)]∗Asubv

(j)

−
i

2
{[v(j)]∗, A1 − h(j), v(j)}

)
(x, ξ) d̄ξ

where v(j)(x, ξ) are eigenvectors of principal symbol,

{P,R} := PxαRξα − PξαRxα

is the Poisson bracket on matrix-functions and

{P,Q,R} := PxαQRξα − PξαQRxα

is its further generalisation.
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Testing U(m) invariance of second asymptotic coefficient

Transform the operator as

A 7→ RAR∗

where

R : M → U(m)

is an arbitrary smooth unitary matrix-function. The coefficient

b(x) should be unitarily invariant.

There’s something missing in the integrand of Safarov’s formula:

[v(j)]∗Asubv
(j) −

i

2
{[v(j)]∗, A1 − h(j), v(j)} + ? .



The U(1) connection

Each eigenvector v(j)(x, ξ) of the principal symbol is defined
modulo a gauge transformation

v(j) 7→ eiφ
(j)
v(j)

where

φ(j) : T ∗M \ {0} → R

is an arbitrary smooth function. Want to parallel transport eigen-
vector so that derivative of eigenvector along the curve is orthog-
onal to eigenvector itself. This gives a U(1) connection charac-
terised by a 2n-component real covector potential (Pα, Qβ) where

Pα := i[v(j)]∗v(j)
xα , Qβ := i[v(j)]∗v(j)

ξβ
.

Covariant derivative on functions T ∗M \{0} → {z ∈ C : |z| = 1} is

∇α := ∂/∂xα − iPα, ∇β := ∂/∂ξβ − iQβ.
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The curvature of our U(1) connection is

R := −i
(
∇α∇β −∇β∇α ∇α∇δ −∇δ∇α
∇γ∇β −∇β∇γ ∇γ∇δ −∇δ∇γ

)
.

This curvature is the exterior derivative of the covector potential

(with minus sign).

The scalar curvature of our U(1) connection is

−i(∇α∇α −∇α∇α) = −i{[v(j)]∗, v(j)} .

Recall: curly brackets denote Poisson bracket on matrix-functions

{P,R} := PxαRξα − PξαRxα .
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How curvature of U(1) connection manifests itself
in microlocal analysis

U(t)
modC∞

=
∑
j

U(j)(t)

where phase function of each oscillatory integral U(j)(t) is asso-
ciated with corresponding Hamiltonian h(j)(x, ξ). New result:

tr[U(j)(0)]sub = −i{[v(j)]∗, v(j)} .

Note:
∑
j

{[v(j)]∗, v(j)} = 0.

Correct integrand in formula for second asymptotic coefficient:

[v(j)]∗Asubv
(j) −

i

2
{[v(j)]∗, A1−h(j), v(j)}+

i

n− 1
h(j){[v(j)]∗, v(j)} .
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Analysis of special case

Additional assumptions: n = 3, m = 2, operator is differential

(as opposed to pseudodifferential) and trA1 = 0.

In this case

• the subprincipal symbol does not depend on the dual variable

ξ (momentum) and is a function of x (position) only and

• the principal symbol admits a geometric description.
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Geometric object 1: the metric

The determinant of the principal symbol is a negative definite

quadratic form

detA1(x, ξ) = −gαβξαξβ
and coefficients gαβ(x), α, β = 1,2,3, can be interpreted as com-

ponents of a (contravariant) Riemannian metric. Our Hamilto-

nian (positive eigenvalue of principal symbol) takes the form

h+(x, ξ) =

√
gαβ(x) ξαξβ

and the x-components of Hamiltonian trajectories become geodesics.
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Geometric object 2: the teleparallel connection

Define an affine connection as follows. Suppose we have a co-

vector η “based” at the point y ∈M and we want to construct a

“parallel” covector ξ “based” at the point x ∈ M . This is done

by solving the linear system of equations

A1(x, ξ) = A1(y, η).

The teleparallel connection coefficients Γαβγ(x) can be written

down explicitly in terms of the principal symbol and this allows

us to define yet another geometric object — the torsion tensor

Tαβγ := Γαβγ − Γαγβ.

The teleparallel connection has zero curvature and nonzero tor-

sion. It is the opposite of the Levi-Civita connection.
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Geometric object 3: the topological charge

Put

c := −
i

2

√
det gαβ tr

(
(A1)ξ1

(A1)ξ2
(A1)ξ3

)
.

The number c can take only two values, +1 or −1. It describes

the orientation of the principal symbol A1(x, ξ) relative to the

chosen orientation of local coordinates.

Note: under our assumptions (n = 3, m = 2, operator is differ-

ential and trA1 = 0) the existence of a principal symbol implies

that the manifold M is parallelizable, and, hence, orientable.
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Lemma 1 Locally, the metric, teleparallel connection and topo-

logical charge determine the principal symbol A1(x, ξ) uniquely

modulo a rigid rotation.

Here “rigid rotation” means transformation

A1(x, ξ) 7→ RA1(x, ξ)R∗

where R is a constant 2× 2 special unitary matrix.
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Simplified formula for the second asymptotic coefficient

b(x) =
1

8π2

(
[ 3 c ∗Tax − 2 trAsub ]

√
det gαβ

)
(x)

where

Tax
αβγ :=

1

3
(Tαβγ + Tγαβ + Tβγα)

is axial torsion (totally antisymmetric piece of the torsion tensor)

and ∗ is the Hodge star.

Note absence of integration in ξ: it was performed explicitly.
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Spectral theoretic characterization
of the massless Dirac operator

Imagine a single neutrino living in a compact 3-dimensional uni-
verse. I want to find the spectrum of energy levels this neutrino
can occupy. This leads to an eigenvalue problem

Av = λv

where A is the massless Dirac operator, a particular 2×2 matrix
first order differential operator with trace-free principal symbol.

Note: the explicit formula for the massless Dirac operator in
curved space is very complicated.

Now suppose I am a spectral analyst and I want to know whether
my differential operator A is a massless Dirac operator, without
having to learn the differential geometry of spinors.

17



Theorem 1 An operator is a massless Dirac operator iff

a) subprincipal symbol is proportional to the identity matrix, and

b) second asymptotic coefficient of the spectral function is zero.

Note: the conditions of Theorem 1 are invariant under transfor-
mations of the operator A 7→ RAR∗ where R : M → SU(2).

Note: Theorem 1 does not feel the topological differences be-
tween different parallelizations of the manifold M .

Bottom line: the differential geometry of spinors is encoded
within the microlocal analysis of PDEs.
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Spectral theoretic characterization
of the massless Dirac action

Working on a compact 3-manifold, consider eigenvalue problem

Av = λwv

where A is a first order elliptic self-adjoint 2×2 matrix differential
operator with trA1(x, ξ) = 0 and Asub(x) = 0, and w : M →
(0,+∞) is a scalar weight function. Note that this eigenvalue
problem is invariant under the gauge transformation

A 7→ fAf, w 7→ f2w

where f : M → (0,+∞).

Consider the map

A1(x, ξ) and w(x) 7→ b

subject to the constraint “detA1(x, ξ) is preserved”.
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Theorem 2 The above map is equivalent to the map

spinor field 7→ massless Dirac action.

Explanation

A 2×2 trace-free Hermitian matrix is not fully defined by its de-

terminant. The remaining degrees of freedom are called “spinor”.

Fixing the determinant of the principal symbol means fixing the

metric, which, in turn, means excluding gravitational effects.

Gauge invariance of the eigenvalue problem Av = λwv manifests

itself as the conformal invariance of the massless Dirac action.
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Four fundamental equations of theoretical physics

1 Maxwell’s equations. Describe electromagnetism and photons.

2 Dirac equation. Describes electrons and positrons.

3 Massless Dirac equation. Describes∗ neutrinos and antineutrinos.

4 Linearized Einstein field equations of general relativity. De-

scribe gravity.

All four contain the same physical constant — the speed of light.

∗OK, I know that neutrinos actually have a small mass.
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Accepted explanation: theory of relativity

God is a geometer. He created a 4-dimensional world parametrized
by coordinates x0, x1, x2, x3 (here x0 is time), in which distances
are measured in a funny way:

distance2 = −c2(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2

where c is the speed of light.

Without the term −c2(dx0)2 this would be Pythagoras’ theorem.
Funny way of measuring distances is called Minkowski metric.

Having decided to use the Minkowski metric, God then wrote
down the main equations of theoretical physics using only geo-
metric constructions, i.e. using concepts such as connection,
curvature etc. This way all equations have the same physical
constant — the speed of light — encoded in them.

22



Alternative explanation

God is an analyst. He created a 3-dimensional Euclidean world,
then added (absolute) time and wrote down one system of non-
linear PDEs which describes phenomena in this world. This
system of PDEs has different solutions which we interpret as
electromagnetism, gravity, electrons, neutrinos etc. The reason
the same physical constant — the speed of light — mani-
fests itself in all physical phenomena is because we are looking
at different solutions of the same system of PDEs.

I cannot write down the unifying system of field equations but
I can extract some geometric constructs of theoretical physics
from systems of PDEs, simply by performing microlocal analysis.

Action plan: spend next 100 years studying systems of nonlinear
hyperbolic PDEs, hoping to find soliton-type solutions.
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