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Group at UCL involved in rotational elasticity:

1) Christian Böhmer,

2) James Burnett,

3) Olga Chervova,

4) Rob Downes,

5) Yuri Obukhov,

6) Dmitri Vassiliev.

We are part of the UCL Institute of Origins.
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Describing a 3-dimensional elastic medium

(a) Classical elasticity: displacements only.

(b) Cosserat elasticity: displacements and rotations. See

E.Cosserat and F.Cosserat, Théorie des Corps Déformables, 1909.

Reprinted by Cornell and now available from Amazon.

(c) Rotational elasticity: rotations only.

Classical and rotational elasticity are two limit cases of Cosserat.
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Motivation for rotational elasticity.

(a) Curiosity.

(b) MacCullagh, 1839. Tried modelling world aether in terms of
rotational elasticity. Inadequate mathematical apparatus.

(c) A. Einstein and É. Cartan, 1920s. Teleparallelism = absolute
parallelism = fernparallelismus. Formal geometric definition of
teleparallelism: curvature is zero but torsion is nonzero. Compare
with general relativity: torsion is zero but curvature is nonzero.

Note: Cartan knew the Cosserat book. He wrote that he drew
inspiration from the ‘beautiful’ work of the Cosserat brothers.

(d) Ericksen fluid. See J. L. Ericksen, Twist waves in liquid
crystals, Q. Jl Mech. Appl. Math. 21 (1968) 463-465.
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Elastic medium occupies R3. To describe rotations of material
points I attach to each geometric point of R3 a coframe.

A coframe ϑ is a triple ϑj, j = 1,2,3, of orthonormal covector
fields. Each ϑj has hidden tensor index: ϑj = ϑj

α, α = 1,2,3.

Same in plain English: a coframe is a field of orthonormal bases.

Can think of the coframe as a field of orthogonal matrices ϑj
α.

NB. Coframe lives separately from Cartesian coordinates. It is
not aligned with coordinate lines.

The coframe ϑ is a dynamical variable (unknown quantity).

The other dynamical variable is a density ρ (unlike in Böhmer’s
talk where ρ = 1).
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Measuring rotational deformations

The natural measure of rotational deformations is torsion

T := ϑ1 ⊗ dϑ1 + ϑ2 ⊗ dϑ2 + ϑ3 ⊗ dϑ3.

Torsion is a rank 3 tensor antisymmetric in the last pair of indices.

Convenient to switch to tensor
∗
Tαβ :=

1

2
Tα

γδεγδβ .

∗
T is a rank 2 tensor without symmetries and with arbitrary trace.
Sometimes called dislocation density tensor. Explicit formulae:

∗
T = ϑ1 ⊗ curlϑ1 + ϑ2 ⊗ curlϑ2 + ϑ3 ⊗ curlϑ3,

∗
Tαβ =

3∑
j=1

ϑj
1∂2ϑj

3 − ϑj
1∂3ϑj

2 ϑj
1∂3ϑj

1 − ϑj
1∂1ϑj

3 ϑj
1∂1ϑj

2 − ϑj
1∂2ϑj

1
ϑj

2∂2ϑj
3 − ϑj

2∂3ϑj
2 ϑj

2∂3ϑj
1 − ϑj

2∂1ϑj
3 ϑj

2∂1ϑj
2 − ϑj

2∂2ϑj
1

ϑj
3∂2ϑj

3 − ϑj
3∂3ϑj

2 ϑj
3∂3ϑj

1 − ϑj
3∂1ϑj

3 ϑj
3∂1ϑj

2 − ϑj
3∂2ϑj

1

.
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Irreducible decomposition of rotational deformations

∗
T =

∗
Tax +

∗
T vec +

∗
T ten

where

∗
Tax

αβ :=

∗
T γ

γ

3
gαβ ,

∗
T vec

αβ :=

∗
Tαβ −

∗
Tβα

2
,

∗
T ten

αβ :=

∗
Tαβ +

∗
Tβα

2
−

∗
Tax

αβ .

Adjectives axial, vector and tensor
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Potential energy

P (x0) =
∫
R3

(
cax‖

∗
Tax‖2 + cvec‖

∗
T vec‖2 + cten‖

∗
T ten‖2

)
ρ dx1dx2dx3.

Here x1, x2, x3 are Cartesian coordinates and x0 is time.

Kinetic energy

K(x0) = ckin
∫
R3
‖ω‖2ρ dx1dx2dx3

where ω =
1

2
∗(ϑ1∧∂0ϑ1+ϑ2∧∂0ϑ2+ϑ3∧∂0ϑ3) is the (pseudo)vector

of angular velocity. Explicit formula for angular velocity:

ωα =
1

2

3∑
j=1

ϑj
2∂0ϑj

3 − ϑj
3∂0ϑj

2
ϑj

3∂0ϑj
1 − ϑj

1∂0ϑj
3

ϑj
1∂0ϑj

2 − ϑj
2∂0ϑj

1

 .
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Action (variational functional) of rotational elasticity

S(ϑ, ρ) =
∫
R
(P (x0)−K(x0))dx0 =

∫
R×R3

L(ϑ, ρ) dx0dx1dx2dx3

where

L(ϑ, ρ) =
(
cax‖

∗
Tax‖2 + cvec‖

∗
T vec‖2 + cten‖

∗
T ten‖2 − ckin‖ω‖2

)
ρ

is the Lagrangian density.

Euler–Lagrange equations: vary coframe ϑ and density ρ.

Model is physically linear but geometrically nonlinear.
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Solving Euler–Lagrange equations

Varying coframe is difficult because of kinematic constraint: co-

vectors ϑj, j = 1,2,3, have to remain orthonormal. Could use

Euler angles (yaw, pitch, and roll) but this is inconvenient.

Most convenient description of rotations in R3: switch to spinors

coframe ϑ and density ρ > 0

m

nonvanishing 2-component complex spinor field ξ modulo sign

My Lagrangian density L(ξ) is a rational function of ξ, ξ̄ and

partial derivatives of ξ, ξ̄.
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Expressing density ρ and coframe ϑ via spinor ξa =

(
ξ1

ξ2

)
:

ρ = ξ̄1̇ξ1 + ξ̄2̇ξ2,

ϑ1
α = ρ−1 Re

 (ξ1)2 − (ξ2)2

i(ξ1)2 + i(ξ2)2

−2ξ1ξ2

 ,

ϑ2
α = ρ−1 Im

 (ξ1)2 − (ξ2)2

i(ξ1)2 + i(ξ2)2

−2ξ1ξ2

 ,

ϑ3
α = ρ−1

 ξ̄2̇ξ1 + ξ̄1̇ξ2

iξ̄2̇ξ1 − iξ̄1̇ξ2

ξ̄1̇ξ1 − ξ̄2̇ξ2

 .

11



Plane wave solutions

Look first for plane wave solutions

ξ(x0, x1, x2, x3) = e−i(p0x0+p1x1+p2x2+p3x3)ζ .

Theorem 1 My Euler–Lagrange equation admits plane wave

solutions with velocities

√
4cax + 2cten

3ckin
and

√
cvec + cten

2ckin
.
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Purely axial material

cax 6= 0, cvec = cten = 0.

Potential energy feels only the axial deformation, i.e. only the

trace of the dislocation density tensor
∗
T .

For convenience normalise the kinetic term by setting ckin =
4

3
cax.

Look for stationary solutions

ξ(x0, x1, x2, x3) = e−ip0x0
η(x1, x2, x3).

Theorem 2 In the stationary setting my Euler–Lagrange
equation is equivalent to a pair of massless Dirac equations

i

(
∓∂0 + ∂3 ∂1 − i∂2
∂1 + i∂2 ∓∂0 − ∂3

)(
ξ1

ξ2

)
= 0.
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Nonlinear second order PDEs

which reduce to pairs of linear first order PDEs

Consider a pair of formally self-adjoint first order linear differen-
tial operators A± acting on smooth vector functions u : Rn → Cm.

Corresponding Lagrangian densities are L±(u) := Re(u∗A±u).

Define new Lagrangian density

L(u) :=
L+(u)L−(u)

L+(u)− L−(u)
. (1)

Work with vector functions such that L+(u) 6= L−(u).

Lemma 1 A vector function u is a solution of the Euler–Lagrange
equation for the Lagrangian density (1) if and only if it is a
solution of A+u = 0 or A−u = 0.
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Example illustrating the use of Lemma 1

The pair of linear first order ordinary differential equations

iu′ ± u = 0

is equivalent to a single nonlinear second order equation(
ūu′ − uū′

2|u|2
u

)′
+

(ūu′)2 − (uū′)2

4|u|4
u + u = 0 .

Same trick works for systems of PDEs with variable coefficients.
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Can we incorporate mass and electromagnetic field

into rotational elasticity?

Yes. Start with Minkowski space and perform perform a Kaluza–

Klein extension. The extra space coordinate takes over the role

previously played by time.

This way we derive the massive Dirac equation in dimension 1+2.

In dimension 1+3 we get an equation which is slightly different

from Dirac. Is it better or worse than the Dirac equation?

16



Do I really believe that world aether

is made up of rotating points?

No. I believe that world aether is described by a system of

nonlinear hyperbolic PDEs. The way to analyse this system is to

start from the linearised system, write down a solution explicitly

in the form of a “wave packet” and then treat the nonlinearity

as a perturbation. This will hopefully give, in the end, a soliton

with the properties of an elementary particle.

How is this related to rotational elasticity? Fact: the principal

symbol of a traceless linear elliptic first order differential operator

in 3D acting on a pair of complex half-densities is equivalent to a

frame. Varying the frame means that we are making our system

of PDEs nonlinear.
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Is there a good mathematical technique

for the analysis of linear hyperbolic PDEs?

Yes. It is called microlocal analysis. Sources:

1) book by L.Hörmander (in 4 volumes),

2) book by Yu.Safarov and D.Vassiliev,

3) papers by Yu.Safarov (1980s) and PhD Thesis of Wilfred

Nicoll (Sussex, 1999).

Item 3) is important for dealing with systems.

My conjecture: all the stuff I described today (rotational elastic-

ity, teleparallelism, torsion, Dirac equation etc) is already present

in microlocal analysis, only nobody has noticed it.
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Summary

• Rotational elasticity is a fun subject.

• Nobody has previously studied rotational elasticity.

• Rotational elasticity may lead to an alternative description
of fermions (neutrinos, electrons) in quantum mechanics.

Papers and preprints can be found on my web page

http://www.homepages.ucl.ac.uk/∼ucahdva/

My talks (including this one) are also on my web page.
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