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Subject of talk

Weyl equation (massless Dirac equation):

σαȧb∇αξb = 0.

Here

• σα, α = 0,1,2,3, are Pauli matrices,

• ∇α are covariant derivatives with respect to local coordinates

xα, α = 0,1,2,3, and

• ξb, b = 1,2, is the unknown spinor field.

Will construct an alternative model without spinors, Pauli ma-

trices or covariant derivatives.

1



Describing a 3D deformable medium

(a) Classical elasticity: displacements only.

(b) Cosserat elasticity: displacements and rotations. See

E. Cosserat and F. Cosserat, Théorie des Corps Déformables,

1909. Available from Amazon.

I will assume that there are no displacements, only rotations.
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To describe rotations of material points mathematically I attach

to each geometric point a coframe.

A coframe ϑ in 3D is a triplet ϑj, j = 1,2,3, of orthonormal

covector fields. Each covector field ϑj has a hidden tensor index:

ϑj = ϑ
j
α, α = 1,2,3.

Same in plain English: a coframe is a field of orthonormal bases.

NB. Coframe lives separately from local coordinates (not aligned

with coordinate lines).

The coframe ϑ is an unknown quantity (dynamical variable).

The other dynamical variable is a density ρ.
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Choose potential energy from the condition of conformal invari-
ance. Explicit formula:

P (x0) =
∫
‖Tax‖2ρ dx1dx2dx3,

Tax =
1

3
(ϑ1 ∧ dϑ1 + ϑ2 ∧ dϑ2 + ϑ3 ∧ dϑ3).

Standard kinetic energy

K(x0) =
∫
‖ϑ̇‖2ρ dx1dx2dx3,

ϑ̇ =
1

3
(ϑ1 ∧ ∂0ϑ

1 + ϑ2 ∧ ∂0ϑ
2 + ϑ3 ∧ ∂0ϑ

3).

My action (variational functional)

S =
∫

(P (x0)−K(x0))dx0.
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Difference with existing models (teleparallelism)

1. I assume metric to be fixed, i.e. I do not vary metric.

2. My Lagrangian has never been considered.
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Solving Euler–Lagrange equations

Vary coframe and density to get Euler–Lagrange equations. Too

complicated!

Switch to spinors:

coframe ϑ and density ρ > 0

m

nonvanishing spinor field ξ modulo sign

My Lagrangian density L(ξ) is a rational function of ξ, ξ̄ and

partial derivatives of ξ, ξ̄.
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Stationary solutions

Look first for stationary solutions

ξ(x0, x1, x2, x3) = e−iεx
0
η(x1, x2, x3), ε 6= 0.

Theorem 1 In the stationary case my Euler–Lagrange equation
is equivalent to a pair of Weyl equations.

Proof Turns out my Lagrangian factorises as

L(η) =
L+

Weyl(η)L−Weyl(η)

L+
Weyl(η)− L−Weyl(η)

.

Result follows from factorisation. �

See http://arxiv.org/abs/0902.1268.
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Question 1. Can I handle the non-stationary case, i.e. when time
dependence is arbitrary? Yes, by means of perturbation theory.
I look at perturbations of plane wave solutions. Again I get a
pair of Weyl equations.

Question 2. Can I make my model relativistically invariant? Yes,
by viewing (1 + 3)-dimensional spacetime as a Cosserat contin-
uum. At perturbative level there is no difference between the
nonrelativistic and relativistic models.

Question 3. Can I incorporate mass and external electromagnetic
field into my model? Yes, by means of a Kaluza–Klein extension,
i.e. by adding an extra coordinate x4. See http://arxiv.org/abs/

0812.3948.

Theorem 2 In the special case with no dependence on x3 (i.e.
for electron in dimension 1+2) the massive version of my model
is equivalent to the massive Dirac equation.
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Summary

New mathematical model for fermions.

• Spacetime viewed as Cosserat continuum.

• Lagrangian chosen from condition of conformal invariance.

• Mass and electromagnetic field incorporated via Kaluza–Klein

extension.
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