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Dirac’s equation is a model for

(a) electron and positron (massive case),

(b) neutrino and antineutrino (massless case).

Formulating Dirac’s equation requires:

(i) spinors,

(ii) Pauli matrices,

(iii) covariant differentiation.

Also, logical issues with Dirac’s equation:

(iv) difficult to distinguish particle from an-

tiparticle, both in massive and massless cases,

(v) electromagnetism doesn’t admit a sensible

geometric interpretation (∂ 7→ ∂ + iA).
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My model requires:

(i) differential forms,

(ii) wedge product,

(iii) exterior differentiation.

Also, logical issues are resolved:

(iv) easy to distinguish particle from antipar-

ticle, both in massive and massless cases,

(v) electromagnetism admits a sensible geo-

metric interpretation.

Price I will pay: my model will be nonlinear.
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Formulation of Dirac’s equation

Start with massless Dirac equation.

Also assume metric to be flat (no gravity).

Unknown quantity is a 2-component spinor

ξ =

(
ξ1

ξ2

)
.

Pair of “scalar” complex-valued functions of

time t and Euclidean coordinates x1, x2, x3.

Massless Dirac equation:

±∂t

(
ξ1

ξ2

)
=

(
∂3 ∂1 + i∂2

∂1 − i∂2 −∂3

)(
ξ1

ξ2

)
.

Equation transforms in complicated way un-

der rotations of coordinate system. Spinor is

“square root” of a complex isotropic vector.
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Describing a deformable continuous medium

(a) Classical elasticity: displacements only.

(b) Cosserat elasticity: displacements and ro-

tations. See

E. Cosserat and F. Cosserat, Théorie des Corps

Déformables, 1909. Available from Amazon.

(c) Teleparallelism (absolute parallelism, fern-

parallelismus): rotations only.
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Teleparallelism in Euclidean 3-space

Work in R3 equipped with standard metric

gαβ =

1 0 0
0 1 0
0 0 1


and Cartesian coordinates xα, α = 1,2,3.

A coframe {ϑ1, ϑ2, ϑ3} is a triplet of covector

fields satisfying metric constraint

g = ϑ1 ⊗ ϑ1 + ϑ2 ⊗ ϑ2 + ϑ3 ⊗ ϑ3.

Same in plain English: a coframe is a field of

orthonormal bases.

Coframe lives separately from Cartesian coor-

dinates (not aligned with coordinate lines).

Coframe will play the role of unknown quantity

(dynamical variable).
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Measure of deformation: the 3-form

Tax :=
1

3
(ϑ1 ∧ dϑ1 + ϑ2 ∧ dϑ2 + ϑ3 ∧ dϑ3).

Called “axial torsion of teleparallel connection”.

The 3-form Tax is conformally covariant. Let

ϑj 7→ ehϑj, j = 1,2,3,

where h : R3 → R is arbitrary scalar function.

Then

g 7→ e2hg,

Tax 7→ e2hTax

without the derivatives of h appearing.
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My Lagrangian density

L = ‖Tax‖2ρ

where ρ is an additional dynamical variable.

My Lagrangian is conformally invariant!

Action (variational functional)
∫

L dx1dx2dx3 .

Vary action with respect to coframe ϑ and den-

sity ρ to get Euler–Lagrange equations.

Difference with existing models

1. I assume metric to be fixed (prescribed).

2. My Lagrangian has never been considered.
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Introducing time into my model

Define 2-form

ϑ̇ := ϑ1 ∧ ϑ̇1 + ϑ2 ∧ ϑ̇2 + ϑ3 ∧ ϑ̇3.

Note: ∗ϑ̇ is the vector of angular velocity.

L = (‖ϑ̇‖2 − ‖Tax‖2)ρ

Model remains conformally invariant, only now
in the Lorentzian sense.

Solving Euler–Lagrange equations

Switch to spinors:

coframe ϑ and density ρ > 0

m

nonvanishing spinor field ξ modulo sign

Lagrangian density L(ξ) is a rational function
of ξ, ξ̄ and partial derivatives of ξ, ξ̄.
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Look first for quasi-stationary solutions

ξ(t, x1, x2, x3) = e−iωtη(x1, x2, x3), ω 6= 0.

Theorem 1 In the quasi-stationary case my

Euler–Lagrange equation is equivalent to a pair

of massless Dirac equations.

Proof My Lagrangian density L factorises as

L(η) =
L+(η)L−(η)

L+(η)− L−(η)

where L±(η) are the Dirac Lagrangians. Use

also scaling covariance of Dirac Lagrangians:

L±(ehη) = e2hL±(η)

where h : R3 → R is arbitrary scalar function.

�
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Special case of quasi-stationary solution

ξ(t, x1, x2, x3) = e−i(ωt+k·x)η

where η is constant spinor. This is plane wave.

Corollary 1 Plane wave sol-s in my model are

same as for pair of massless Dirac equations.

Visualising plane wave solutions

Up to a rigid orthogonal transformation

ϑ1
α =

 cosϕ
± sinϕ

0

 , ϑ2
α =

∓ sinϕ
cosϕ

0

 , ϑ3
α =

0
0
1

 ,

ρ = 1,

where

ϕ := 2|ω|(t + x3).

Looking at a travelling wave of rotations.
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Perturbations of plane waves

Idea: seek spinor field in the form

slowly varying amplitude ×e−i(ωt+k·x).

Deriving equation for perturbed plane wave:

• substitution ξ 7→ ξe−i(ωt+k·x) in Lagrangian;

• write down Euler–Lagrange equation;

• linearize Euler–Lagrange equation;

• drop second derivatives;

• substitution ξ 7→ ξei(ωt+k·x) in equation.

Theorem 2 Perturbations of plane wave solu-
tions in my model are described by a pair of
massless Dirac equations.
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Analytic challenges

• My model is nonlinear.

• My model does not appear to fit into stan-

dard scheme of hyperbolic systems of PDEs.

• Don’t know how to handle situation ρ = 0.

• Cannot set problem rigorously in terms of

function spaces.

• Cannot justify formal asymptotic analysis.
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Relativistic version of my model

Work in Minkowski space.

Coordinates xα, α = 0,1,2,3.

Metric gαβ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Coframe {ϑ0, ϑ1, ϑ2, ϑ3}.

g = ϑ0 ⊗ ϑ0 − ϑ1 ⊗ ϑ1 − ϑ2 ⊗ ϑ2 − ϑ3 ⊗ ϑ3.

Tax =
1

3
(ϑ0∧dϑ0−ϑ1∧dϑ1−ϑ2∧dϑ2−ϑ3∧dϑ3).

Lagrangian density L = ‖Tax‖2ρ.
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Comparing the relativistic

and nonrelativistic models

Relativistic model has 3 extra degrees of free-

dom (Lorentz boosts in 3 directions) and, con-

sequently, 3 extra field equations.

Theorem 3 At the asymptotic level (plane waves

and their formal perturbations) the 3 extra

field equations are automatically satisfied.

Conclusion: my nonrelativistic model possesses

relativistic invariance at the asymptotic level.
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Kaluza-Klein extension

Introduce 5th coordinate: (x0, x1, x2, x3, x4).

O.Klein (1926): prescribe oscillation ∼ e−imx4

along extra coordinate, then separate variables.

Will use bold for extended quantities.

Extended coframe {ϑ0, ϑ1, ϑ2, ϑ3, ϑ4}:

ϑ0
α =

(
ϑ0

α
0

)
, ϑ3

α =

(
ϑ3

α
0

)
, ϑ4

α =

(
0α

1

)
,

(ϑ1 + iϑ2)α =

(
(ϑ1 + iϑ2)α

0

)
e−2imx4

.

Coordinate x4 parametrises circle of radius 1
2m.

Coframe makes full turn in the ϑ1, ϑ2-plane as
we move along the circle.

Axial torsion of extended coframe

Tax=
1

3
(ϑ0∧dϑ0−ϑ1∧dϑ1−ϑ2∧dϑ2−ϑ3∧dϑ3−ϑ4∧ dϑ4︸ ︷︷ ︸

=0
).
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T.Kaluza (1921): electromagnetism is a per-
turbation (shear) of the extended metric

(
gαβ 0
0 −1

)
→

gαβ − 1
m2AαAβ

1
mAα

1
mAβ −1

 =: gαβ .

Note: with electromagnetism, extended coframe
and extended metric no longer agree

g 6= ϑ0⊗ϑ0−ϑ1⊗ϑ1−ϑ2⊗ϑ2−ϑ3⊗ϑ3−ϑ4⊗ϑ4.

I don’t care (in this talk).

Consider Lagrangian density

L = ‖Tax‖2ρ

Dynamical variables: original (unextended) co-
frame ϑ and density ρ. Note: conformal invari-
ance is destroyed by Kaluza–Klein extension.

Theorem 4 In special case with no dependence
on x3 my model is equivalent to the massive
Dirac equation with electromagnetic field.
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Summary

New mathematical model for fermions.

• Spacetime viewed as Cosserat continuum.

• Lagrangian chosen from the condition of
conformal invariance.

• Mass and electromagnetic field incorporated
via Kaluza–Klein extension.

What is to be done?

Perform mathematical analysis of my model.

Spin-off

There is a class of beautiful nonlinear PDEs
arising in Cosserat elasticity which has never
been studied by analysts.
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