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Dirac’s equation is a model for

(a) electron and positron (massive case),

(b) neutrino and antineutrino (massless case).
Formulating Dirac’s equation requires:

(i) spinors,

(ii) Pauli matrices,

(iii) covariant differentiation.
Also, logical issues with Dirac’s equation:

(iv) difficult to distinguish particle from an-
tiparticle, both in massive and massless cases,

(v) electromagnetism doesn’t admit a sensible
geometric interpretation (0 +— 9+ iA).



My model requires:
(i) differential forms,
(ii) wedge product,
(ii1) exterior differentiation.
Also, logical issues are resolved:

(iv) easy to distinguish particle from antipar-
ticle, both in massive and massless cases,

(v) electromagnetism admits a sensible geo-
metric interpretation.

Price I will pay: my model will be nonlinear.



Formulation of Dirac’s equation
Start with massless Dirac equation.
Also assume metric to be flat (no gravity).

Unknown quantity is a 2-component spinor
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Pair of ‘scalar’” complex-valued functions of
time ¢t and Euclidean coordinates z!, 22, z3.

Massless Dirac equation:
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Equation transforms in complicated way un-
der rotations of coordinate system. Spinor is
“square root” of a complex isotropic vector.



Describing a deformable continuous medium

(a) Classical elasticity: displacements only.

(b) Cosserat elasticity: displacements and ro-
tations. See

E. Cosserat and F. Cosserat, T héorie des Corps
Déformables, 1909. Available from Amazon.

(c) Teleparallelism (absolute parallelism, fern-
parallelismus): rotations only.



Teleparallelism in Euclidean 3-space

Work in R3 equipped with standard metric

1 00
gog= [0 1 0
00 1

and Cartesian coordinates z%, a=1,2,3.

A coframe {91,192 03} is a triplet of covector
fields satisfying metric constraint

g=0'®9! +92 9% + 93 293

Same in plain English: a coframe is a field of
orthonormal bases.

Coframe lives separately from Cartesian coor-
dinates (not aligned with coordinate lines).

Coframe will play the role of unknown quantity
(dynamical variable).



Measure of deformation: the 3-form
1
T3 = g(191 A ddt + 92 A d9? 4 93 A d93).

Called “axial torsion of teleparallel connection’ .

The 3-form T9* is conformally covariant. Let
19j|—>eh19j, 7 =1,2,3,

where h : R3 — R is arbitrary scalar function.
T hen
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without the derivatives of h appearing.



My Lagrangian density

L= |T*|p

where p is an additional dynamical variable.
My Lagrangian is conformally invariant!

Action (variational functional) /deldedx?’.

Vary action with respect to coframe ¥ and den-
sity p to get Euler—Lagrange equations.

Difference with existing models
1. I assume metric to be fixed (prescribed).

2. My Lagrangian has never been considered.



Introducing time into my model

Define 2-form
9 =9t A G 492 A 92 4 93 A D3,

Note: ¢ is the vector of angular velocity.

L= (91> = IT**)p

Model remains conformally invariant, only now
in the Lorentzian sense.

Solving Euler—Lagrange equations

Switch to spinors:

coframe ¥ and density p > 0

)

nonvanishing spinor field &€ modulo sign

Lagrangian density L(£) is a rational function
of &, € and partial derivatives of &, €.



LLook first for quasi-stationary solutions

e(t,xt, 22, 23) = e in(al, 22, 23), w # 0.

Theorem 1 In the quasi-stationary case my
Euler—Lagrange equation is equivalent to a pair
of massless Dirac equations.

Proof My Lagrangian density L factorises as

_ Ly(m)L—(n)
L) = — ()

where Ly (n) are the Dirac Lagrangians. Use
also scaling covariance of Dirac Lagrangians:

Ly(en) = e2"Ly(n)

where h : R3 — R is arbitrary scalar function.
L]




Special case of quasi-stationary solution
E(t, ZC]', $27 ZE3) — e—i(wt+k-x)n

where n is constant spinor. This is plane wave.

Corollary 1 Plane wave sol-s in my model are
same as for pair of massless Dirac equations.

Visualising plane wave solutions

Up to a rigid orthogonal transformation

COS Fsiny O
ﬁé: +sing |, 19§= Cosy |, 1932 0
O 0 1

p=1,

where
o = 2lw|(t + z3).

Looking at a travelling wave of rotations.
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Perturbations of plane waves
Idea: seek spinor field in the form
slowly varying amplitude xe #witk-z)

Deriving equation for perturbed plane wave:
e substitution ¢ — ge—{wi+kT) in Lagrangian:
e Write down Euler—Lagrange equation;
e linearize Euler—Lagrange equation;
e drop second derivatives;

e substitution ¢ — geiwi+k2) in equation.

Theorem 2 Perturbations of plane wave solu-
tions in my model are described by a pair of
massless Dirac equations.
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Analytic challenges

My model is nonlinear.

My model does not appear to fit into stan-
dard scheme of hyperbolic systems of PDEs.

Don’'t know how to handle situation p = 0.

Cannot set problem rigorously in terms of
function spaces.

Cannot justify formal asymptotic analysis.
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Relativistic version of my model

Work in Minkowski space.

Coordinates z%, o =0,1,2,3.

1 0 0 O

: O -1 0 O
Metric gog = 0 0 -1 0
O 0 0 -1

Coframe {190,191,192,193}.
g=9029% -9l gv!l — 9292 - 9393
1
T3 = 5(190/\d190—191/\d191 — 92 Nd9? — 93 ANdD3).

Lagrangian density L = ||T%%||%p.
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Comparing the relativistic

and nonrelativistic models

Relativistic model has 3 extra degrees of free-
dom (Lorentz boosts in 3 directions) and, con-
sequently, 3 extra field equations.

Theorem 3 At the asymptotic level (plane waves
and their formal perturbations) the 3 extra
field equations are automatically satisfied.

Conclusion: my nonrelativistic model possesses
relativistic invariance at the asymptotic level.
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Kaluza-Klein extension

Introduce 5th coordinate: (29,21, 22, 23, z%).

O.Klein (1926): prescribe oscillation ~ e—”m’?4

along extra coordinate, then separate variables.
Will use bold for extended quantities.

Extended coframe {99,991, 92,93, 9%}:

0 3
a-(f) a-(f) a-()

1 : 92 :
(9! 4 i92) o = (“” I >a> e—2ima?

Coordinate 2% parametrises circle of radius ﬁ

Coframe makes full turn in the 91, 9¥2-plane as
we move along the circle.

Axial torsion of extended coframe

T = %(ﬂOAdﬁo—ﬂl/\dﬂ - 9°Ad9* =9 Nd — T A d9T).
=0
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T.Kaluza (1921): electromagnetism is a per-
turbation (shear) of the extended metric

9ap 0

( ) Gaf — #AQAB 1 Ao
.
0 -1

. — gaﬁ°
mAs -1

Note: with electromagnetism, extended coframe
and extended metric no longer agree

g = 90099l —9209° -3 x93 —9*xu9*.
I don't care (in this talk).

Consider Lagrangian density

L = | T3

Dynamical variables: original (unextended) co-
frame ¥ and density p. Note: conformal invari-
ance is destroyed by Kaluza—Klein extension.

Theorem 4 In special case with no dependence
on z3 my model is equivalent to the massive
Dirac equation with electromagnetic field.
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Summary

New mathematical model for fermions.

e Spacetime viewed as Cosserat continuum.

e Lagrangian chosen from the condition of
conformal invariance.

e Mass and electromagnetic field incorporated
via Kaluza—Klein extension.

What is to be done?
Perform mathematical analysis of my model.
Spin-off
There is a class of beautiful nonlinear PDEs

arising in Cosserat elasticity which has never
been studied by analysts.
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