Dirac equation as a special case of Cosserat elasticity

Olga Chervova and Dmitri Vassiliev

1 July 2008

Conference "Analysis, PDEs and Applications on the occasion of the 70th birthday of Vladimir Maz'ya"

Rome

Aim of talk: to understand Dirac's equation.

Will look ar Dirac's equation: a system of 4 homogeneous linear partial differential equations for 4 complex unknowns in dimension 1+3.

Formulating Dirac's equation requires:

- (a) spinors,
- (b) Pauli matrices,
- (c) covariant differentiation.

My reinterpretation of Dirac's eq-n will require:

- (a) differential forms,
- (b) wedge product,
- (c) exterior differentiation.

Price I will pay: my model will be nonlinear.

Formulation of Dirac's equation

Work on 4-manifold with Lorentzian metric $g_{lphaeta}$

Unknown quantity is a pair of 2-component spinors ξ_a and $\eta_{\dot{a}}$.

Raise and lower spinor indices using "metric spinor" $\epsilon_{ab}=\epsilon_{\dot{a}\dot{b}}=\epsilon^{ab}=\epsilon^{\dot{a}\dot{b}}=\left(\begin{array}{cc}0&1\\-1&0\end{array}\right).$

Pauli matrices $\sigma^{\alpha}_{a\dot{b}}$ defined by condition

$$\sigma^{\alpha}{}_{a\dot{b}}\sigma^{\beta c\dot{b}} + \sigma^{\beta}{}_{a\dot{b}}\sigma^{\alpha c\dot{b}} = 2g^{\alpha\beta}\delta_a{}^c.$$

Covariant derivative of a spinor field

$$\nabla_{\mu}\xi^{a} = \partial_{\mu}\xi^{a} + \Gamma^{a}{}_{\mu b}\xi^{b},$$

$$\nabla_{\mu}\eta^{\dot{a}} = \partial_{\mu}\eta^{\dot{a}} + \bar{\Gamma}^{\dot{a}}{}_{\mu\dot{b}}\eta^{\dot{b}}$$

where

$$\Gamma^{a}{}_{\mu b} = \frac{1}{4} \sigma_{\alpha}{}^{a\dot{c}} \left(\partial_{\mu} \sigma^{\alpha}{}_{b\dot{c}} + \begin{Bmatrix} \alpha \\ \mu \beta \end{Bmatrix} \sigma^{\beta}{}_{b\dot{c}} \right),$$

$$\begin{Bmatrix} \alpha \\ \mu \beta \end{Bmatrix} = \frac{1}{2} g^{\alpha \kappa} (\partial_{\mu} g_{\beta \kappa} + \partial_{\beta} g_{\mu \kappa} - \partial_{\kappa} g_{\mu \beta}),$$

$$\bar{\Gamma}^{\dot{a}}{}_{\mu \dot{b}} = \bar{\Gamma}^{a}{}_{\mu \dot{b}}.$$

Dirac's equation:

$$i\sigma^{\alpha ab}\nabla_{\alpha}\eta_{\dot{b}} = m\xi^{a},$$

$$i\sigma^{\alpha}{}_{a\dot{b}}\nabla_{\alpha}\xi^{a} = m\eta_{\dot{b}}$$

where m is mass.

Will deal first with massless Dirac (m = 0). Then Dirac's equation reduces to Weyl's eq-n

$$i\sigma^{\alpha}_{a\dot{b}}\nabla_{\alpha}\xi^{a}=0.$$

More precisely, massless Dirac reduces to a *pair* of Weyl's equations.

Weyl's equation is simpler: system of 2 homogeneous linear PDEs for 2 complex unknowns.

Why is massless Dirac interesting?

- Retains main features of massive Dirac.
- Describes neutrino.
- Separation of variables $\xi \sim e^{-imx^3}$ in massless Dirac equation in dimension 1+3 gives massive Dirac equation in dimension 1+2.

Describing a deformable continuous medium

- (a) Classical elasticity: displacements only.
- (b) Cosserat elasticity: displacements and rotations. See
- E. Cosserat and F. Cosserat, *Théorie des Corps Déformables*, A. Hermann et Fils, Paris, 1909.
- (c) Teleparallelism (absolute parallelism, fernparallelismus): rotations only.

Teleparallelism in Euclidean 3-space

Work in \mathbb{R}^3 equipped with standard metric g and Cartesian coordinates x^{α} , $\alpha = 1, 2, 3$.

A coframe $\{\vartheta^1, \vartheta^2, \vartheta^3\}$ is a triad of covector fields satisfying metric constraint

$$g = \vartheta^1 \otimes \vartheta^1 + \vartheta^2 \otimes \vartheta^2 + \vartheta^3 \otimes \vartheta^3.$$

Same in plain English: a coframe is a field of orthonormal bases.

NB. Coframe lives separately from Cartesian coordinates (not aligned with coordinate lines).

Coframe will play the role of unknown quantity (dynamical variable).

Natural measure of deformation: torsion

$$T = \vartheta^1 \otimes d\vartheta^1 + \vartheta^2 \otimes d\vartheta^2 + \vartheta^3 \otimes d\vartheta^3.$$

Analogue of strain tensor.

Irreducible pieces of torsion $T^{(1)}$, $T^{(2)}$, $T^{(3)}$.

Lagrangian density

$$L = (c_1 ||T^{(1)}||^2 + c_2 ||T^{(2)}||^2 + c_3 ||T^{(3)}||^2) \rho$$

where ρ is a density. Either take $\rho = \sqrt{\det g}$ or view ρ as a dynamical variable.

Action (variational functional) $\int L dx^1 dx^2 dx^3$.

Vary action to get Euler-Lagrange equations.

NB. I keep the metric fixed.

My model

Need only one irreducible piece of torsion: axial (totally antisymmetric) torsion

$$T^{(1)} = \frac{1}{3}(\vartheta^1 \wedge d\vartheta^1 + \vartheta^2 \wedge d\vartheta^2 + \vartheta^3 \wedge d\vartheta^3).$$

Analogue of trace free part of strain tensor.

I like my own notation

$$d\vartheta := 3T^{(1)} = \vartheta^1 \wedge d\vartheta^1 + \vartheta^2 \wedge d\vartheta^2 + \vartheta^3 \wedge d\vartheta^3.$$

"Exterior derivative of coframe".

My Lagrangian density

$$L = ||d\vartheta||^2 \rho$$

Dynamical variables: coframe ϑ and density ρ .

My model is conformally invariant!

Introducing time into my model

$$\dot{\vartheta} := \vartheta^1 \wedge \dot{\vartheta}^1 + \vartheta^2 \wedge \dot{\vartheta}^2 + \vartheta^3 \wedge \dot{\vartheta}^3.$$

 $*\dot{\vartheta}$ is the vector of angular velocity.

$$L = (\|\dot{\vartheta}\|^2 - \|d\vartheta\|^2)\rho$$

Model remains conformally invariant!

Solving Euler-Lagrange equations

Switch to spinors:

coframe ϑ and density ho

nonvanishing spinor field ξ modulo sign

Lagrangian density $L(\xi)$ is a rational function of ξ , $\bar{\xi}$ and partial derivatives of ξ , $\bar{\xi}$.

Look first for plane wave solutions

$$\xi \sim e^{-i(\omega t + k \cdot x)}, \qquad \omega \neq 0.$$

Theorem 1 Plane wave solutions in my model are the same as for a pair of Weyl equations

$$\left[\sigma^0 \partial_t \pm \left(\sigma^1 \partial_1 + \sigma^2 \partial_2 + \sigma^3 \partial_3\right)\right]_{a\dot{b}} \xi^a = 0.$$

Visualising plane wave solutions

Up to a rigid orthogonal transformation

$$\vartheta_{\alpha}^{1} = \begin{pmatrix} \cos \varphi \\ \pm \sin \varphi \\ 0 \end{pmatrix}, \quad \vartheta_{\alpha}^{2} = \begin{pmatrix} \mp \sin \varphi \\ \cos \varphi \\ 0 \end{pmatrix}, \quad \vartheta_{\alpha}^{3} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

$$\rho = \text{const},$$

where

$$\varphi := 2|\omega|(t+x^3).$$

Looking at a travelling wave of rotations.

Perturbations of plane waves

Idea: seek spinor field in the form slowly varying amplitude $\times e^{-i(\omega t + k \cdot x)}$.

Deriving equation for perturbed plane wave:

- substitution $\xi \mapsto \xi e^{-i(\omega t + k \cdot x)}$ in Lagrangian;
- write down Euler-Lagrange equation;
- linearize Euler-Lagrange equation;
- drop second derivatives;
- substitution $\xi \mapsto \xi e^{i(\omega t + k \cdot x)}$ in equation.

Theorem 2 Perturbations of plane wave solutions are described by a pair of Weyl equations

$$\left[\sigma^0 \partial_t \pm \left(\sigma^1 \partial_1 + \sigma^2 \partial_2 + \sigma^3 \partial_3\right)\right]_{ab} \xi^a = 0.$$

Relativistic version of my model

Work in Minkowski space.

Coordinates x^{α} , $\alpha = 0, 1, 2, 3$.

Metric $g_{\alpha\beta} = \text{diag}(1, -1, -1, -1)$.

Coframe $\{\vartheta^0, \vartheta^1, \vartheta^2, \vartheta^3\}.$

$$g = \vartheta^0 \otimes \vartheta^0 - \vartheta^1 \otimes \vartheta^1 - \vartheta^2 \otimes \vartheta^2 - \vartheta^3 \otimes \vartheta^3.$$

$$T = \vartheta^{0} \otimes d\vartheta^{0} - \vartheta^{1} \otimes d\vartheta^{1} - \vartheta^{2} \otimes d\vartheta^{2} - \vartheta^{3} \otimes d\vartheta^{3}.$$

$$d\vartheta = \vartheta^0 \wedge d\vartheta^0 - \vartheta^1 \wedge d\vartheta^1 - \vartheta^2 \wedge d\vartheta^2 - \vartheta^3 \wedge d\vartheta^3.$$

Lagrangian density $L = ||d\vartheta||^2 \rho$.

Comparing the relativistic and nonrelativistic models

- Relativistic model has 3 extra degrees of freedom (Lorentz boosts in 3 directions).
- ullet Relativistic model admits gauge transformations: transformations of coframe which preserve $d\vartheta$ up to scaling. This appears to gauge out 3 degrees of freedom.

Conjecture: the two models are equivalent.

Theorem 3 At the asymptotic level (plane waves and their formal perturbations) solutions of the relativistic and nonrelativistic models differ only by gauge transformations.

Comparison with Maxwell's equation

	Maxwell's equation	My equation
Dynamical variable	Covector field $\cal A$	Quartet of orthonormal covector fields $\{\vartheta^0, \vartheta^1, \vartheta^2, \vartheta^3\}$ and density ρ
Field strength	2-form dA	3-form $d\vartheta$
Lagrangian density	$ dA ^2\sqrt{ \det g }$	$ d\vartheta ^2\rho$
Gauge degrees of freedom	1	3
Conformal invariance	Yes	Yes

Massive Dirac equation

What is the geometric meaning of mass m?

Klein's interpretation of mass, as illustrated by Klein–Gordon equation in Minkowski space

$$(\partial_0^2 - \partial_1^2 - \partial_2^2 - \partial_3^2)\psi + m^2\psi = 0.$$

Introduce 5th coordinate: $(x^0, x^1, x^2, x^3, \underline{x^4})$.

Consider wave equation in extended space

$$(\partial_0^2 - \partial_1^2 - \partial_2^2 - \partial_3^2 - \partial_4^2)\psi = 0.$$

Separate out the variable x^4 : $\psi \sim e^{-imx^4}$.

Conjecture: Klein's construction works in my model to give massive Dirac equation. "Separation of variables" means one full rotation of coframe as we move along the 5th coordinate.

Dirac's equation with electromagnetic field

Electromagnetism in Dirac's equation:

$$\nabla \rightarrow \nabla + iA$$
.

Kaluza's interpretation of electromagnetism: perturbation (shear) of the extended metric

$$\begin{pmatrix} g_{\alpha\beta} & 0 \\ 0 & -1 \end{pmatrix} \rightarrow \begin{pmatrix} g_{\alpha\beta} - A_{\alpha}A_{\beta} & A_{\alpha} \\ A_{\beta} & -1 \end{pmatrix}.$$

NB. Kaluza did not devise above substitution for use in quantum mechanics. In fact, at the time (1921) quantum mechanics didn't exist.

Conjecture: Kaluza's construction works in my model to give massive Dirac equation with electromagnetic field.

Summary

I am suggesting a new equation which is, in effect, a generalisation of Maxwell's equation.

- Dynamical variables: coframe and density.
- Lagrangian: quadratic in torsion and conformally invariant.

End goal of project

To derive all (or as much as possible) of Quantum Electrodynamics from above equation.

Spin-off

There is a class of beautiful nonlinear PDEs arising in Cosserat elasticity which has never been studied by analysts.

Bibliography

Precursor paper

Phys. Rev. D75, 025006 (2007).

Different Lagrangian (linear in torsion) but ideologically similar to today's talk:

- metric is fixed;
- coframe is dynamical variable;
- only axial piece of torsion is used.