Dirac equation as a special case

of Cosserat elasticity

James Burnett, Olga Chervova
and Dmitri Vassiliev

1 September 2008

International Conference on Partial
Differential Equations and Spectral Theory

Goslar, Germany



Aim of talk: to understand Dirac’s equation.

Will look ar Dirac’s equation: a system of 4 ho-
mogeneous linear partial differential equations
for 4 complex unknowns in dimension 1+43.

Formulating Dirac’s equation requires:
(a) spinors,

(b) Pauli matrices,

(c) covariant differentiation.

My reinterpretation of Dirac’s eg-n will require:
(a) differential forms,

(b) wedge product,

(c) exterior differentiation.

Price I will pay: my model will be nonlinear.



Formulation of Dirac’s equation
Work on 4-manifold with Lorentzian metric g,

Unknown quantity is a pair of 2-component
spinors &, and i, . Such a pair is called “bispinor” .

Raise and lower spinor indices using “metric

T _ __ab _ ab _ 0O 1
spinor” egp = €5 = €7 = € _<_1 O)'

Pauli matrices Jaab defined by condition

O_aaboﬁcb + Oﬁabo_acb — 29aﬁ5ac.

Covariant derivative of a spinor field
Vu€® = 0u€* + 1% e°,

v,una — 8,u77a + Faubnb



Dirac’s equation:
(Y 4 A)an;

where m is mass and A is the electromagnetic
(co)vector potential.

m&*,

mnb



Describing a deformable continuous medium

(a) Classical elasticity: displacements only.

(b) Cosserat elasticity: displacements and ro-
tations. See

E. Cosserat and F. Cosserat, T héorie des Corps
Déformables, A. Hermann et Fils, Paris, 19009.

(c) Teleparallelism (absolute parallelism, fern-
parallelismus): rotations only.



My model

Initially work on 3-manifold M equipped with
prescribed positive metric g.

A coframe {91,02,93} is a triad of covector
fields satisfying metric constraint

g=09'®9 +92 9% + 93 293

Same in plain English: a coframe is a field of
orthonormal bases.

NB. Coframe lives separately from local coor-
dinates (not aligned with coordinate lines).

Coframe will play the role of unknown quantity
(dynamical variable).



Measure of deformation: the 3-form
1
T3 = g(191 A ddt + 92 A d9? 4 93 A d93).

Called “axial torsion of teleparallel connection’ .

The 3-form T9* is conformally covariant. Let
9 s eh9d

where h : M — R is an arbitrary scalar function.
T hen

2h
g—e¢€ g,
TaX s thTaX

without the derivatives of h appearing.



My Lagrangian density

L= |T*|p

where p is an additional dynamical variable.
My Lagrangian is conformally invariant!

Action (variational functional) /deldedx?’.

Vary action with respect to coframe ¥ and den-
sity p to get Euler—Lagrange equations.

Difference with existing models
1. I assume metric to be fixed (prescribed).

2. My Lagrangian has never been considered.



Introducing time into my model

Switch to 4-manifold with Lorentzian metric g.
Coframe {190,191,192,193}.
g=9° 290 -9l @9l — 92 9% - 9393
T3 = %(ﬁoAdﬁo—ﬁl/\dﬁl — 92 AdO? — 93 AdDD).

Lagrangian density L = ||T%||°p.

The resulting system of equations is not yet
the Dirac system. Need to incorporate mass
m and electromagnetic (co)vector potential A.



Kaluza-Klein extension

Introduce 5th coordinate: (29,21, 22, 23, z%).

O.Klein (1926): prescribe oscillation ~ e—ima’

along extra coordinate, then separate variables.
Will use bold for extended quantities.

Extended coframe {99,991, 92,93, 94}:

o) 3
90 = (%a) . 93 = (%a) R <01a> |

1 02 .
(9! + i92) = ((0 —I-Om? )a) o—2ima®

. . . . 1
Coordinate z% parametrises circle of radius —.

2m
Coframe makes full turn in the 91, 92-plane

as we move along the circle.

Axial torsion of extended coframe

T = %(ﬂoAdﬁo—ﬂl/\dﬂ L 9AdI*— 9 NdI— T A dIT).
=0




T.Kaluza (1921): electromagnetism is a per-
turbation (shear) of the extended metric

1 1
— —AqAg A
CRATY A

0 -1 = 8af-

1
mAs -1

Note: with electromagnetism, extended coframe
and extended metric no longer agree

g = 9009° -9l —9209° -3 993 —9* 9%
I don't care (in this talk).

Consider Lagrangian density

L = | T3]

Dynamical variables: original (unextended) co-
frame ¥ and density p. Note: conformal invari-
ance is destroyed by Kaluza—Klein extension.

Question: do I get the Dirac equation?

Answer: almost.
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Comparing my model with Dirac equation

Where are the spinors in my model?

Geometric fact: in dimension 143

coframe 9 and density p # 0

)

bispinor &,, n, subject to constraint Im¢%n, =0

My nonlinear field equations can be rewritten
in the same language as the Dirac equation.

Remains to compare the two.
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Special case: no dependence on 3
Suppose that ¢ and A do not depend on 3.

Suppose also that

900 901 902 O Ap
g5 = 910 911 912 O A, = |4
ap 920 921 922 O |’ Ao

0 O 0O -1 0

Seek solutions which do not depend on z3.

Problem simplifies: no need for a bispinor and
no need for constraint Im&%n, = 0. Single
spinor £ plays the role of dynamical variable.
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Main result of this talk:

Theorem 1 In the special case when there is
no dependence on 3 my nonlinear field equa-
tions are equivalent to the Dirac equation.

Proof My Lagrangian density L factorises as

LL(OL(O)
LO=1T"©o-1_0

where
L1 (§) =
1 . .
(@0 ((VHA)ag " —£"0°  (1IV—A)al”)

:I:ma3ab§a£_b] \/| det g].

Use also scaling covariance of Dirac Lagrangian:

Ly(ehe) = 2Ly (€)

where h is an arbitrary real scalar function. U
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Summary

New mathematical model for the electron.

e Spacetime viewed as Cosserat continuum.

e Lagrangian chosen from the condition of
conformal invariance.

e Mass and electromagnetic field incorporated
via Kaluza—Klein extension.

What is to be done?
Develop a proper spectral theory for my model.
Spin-off
There is a class of beautiful nonlinear PDEs

arising in Cosserat elasticity which has never
been studied by analysts.
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