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Dirac’s equation is a model for the electron
and its antiparticle, positron.

Aim of talk: to understand Dirac’s equation.

Formulating Dirac’s equation requires:
(a) spinors,

(b) Pauli matrices,

(c) covariant differentiation.

Also, difficult to distinguish electron from positron.

My reinterpretation of Dirac’s eg-n will require:
(a) differential forms,

(b) wedge product,

(c) exterior differentiation.

Also, easy to distinguish electron from positron.

Price I will pay: my model will be nonlinear.



Formulation of Dirac’s equation

For simplicity will deal with massl/ess Dirac equa-
tion. Model for the neutrino and antineutrino.

Will also assume metric to be flat (no gravity).

Unknown quantity is a 2-component spinor

-(3)

Pair of ‘scalar’” complex-valued functions of
time t and Euclidean coordinates z!, 22, x3.

Massless Dirac equation:

ety _ 03 91 +id) (&t
n(@) =+ (0,20, ") (&)

Equation transforms in a complicated way
under rotations of coordinate system. Spinor
is ‘“‘square root” of a complex isotropic vector.
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Describing a deformable continuous medium

(a) Classical elasticity: displacements only.

(b) Cosserat elasticity: displacements and ro-
tations. See

E. Cosserat and F. Cosserat, T héorie des Corps
Déformables, A. Hermann et Fils, Paris, 19009.

(c) Teleparallelism (absolute parallelism, fern-
parallelismus): rotations only.



Teleparallelism in Euclidean 3-space

Work in R3 equipped with standard metric

1 00
gop= 0 1 0
00 1

and Cartesian coordinates z%, a=1,2,3.

A coframe {91,92,93} is a triad of covector
fields satisfying metric constraint

g=9'®9 +92 9% + 93 @93

Same in plain English: a coframe is a field of
orthonormal bases.

NB. Coframe lives separately from Cartesian
coordinates (not aligned with coordinate lines).

Coframe will play the role of unknown quantity
(dynamical variable).



Measure of deformation: the 3-form
1
T@X:::g(ﬁl/\dﬁl4—02/\d624—ﬁ3/\dﬁ3)

Called “axial torsion of teleparallel connection’ .

The 3-form T°9% is conformally covariant. Let
9 s eMe9d. i=1,2,3,
where h is arbitrary real scalar function. Then
g €2h97
Tax e2hTax

without the derivatives of h appearing.



My Lagrangian density

L= |T*|p

where p is an additional dynamical variable.
My Lagrangian is conformally invariant!

Action (variational functional) /deldedx?’.

Vary action with respect to coframe ¥ and den-
sity p to get Euler—Lagrange equations.

Difference with existing models
1. I assume metric to be fixed (prescribed).

2. My Lagrangian has never been considered.



Introducing time into my model

Define 2-form
9 =9t A G 492 A 92 4 93 A D3,

Note: ¢ is the vector of angular velocity.

L= (91> = IT**)p

Model remains conformally invariant, only now
in the Lorentzian sense.

Solving Euler—Lagrange equations

Switch to spinors:

coframe 9 and density p # 0

)

nonvanishing spinor field &€ modulo sign

Lagrangian density L(£) is a rational function
of &, € and partial derivatives of &, €.



ook first for quasi-stationary solutions

E(t,zt, 22, 23) = e Win(al, 22, 23), w#0. (1)

Theorem 1 Let £ be of the form (1]). Then
my Euler—Lagrange equation is equivalent to a
pair of massless Dirac equations.

Proof My Lagrangian density L factorises as

Ly (§)L—(&)
L4 (&) — L-(&)

where L1 (&) are the Dirac Lagrangians. Use
also scaling covariance of Dirac Lagrangians:

Li(ehe) = 2Ly (€)

where h is an arbitrary real scalar function.

L(§) =



Special case of quasi-stationary solution

g(t, Cl?l, IQ, 333) — e—i(wt—kk-x)’ W 7{_& O

This is a plane wave.

Corollary 1 Plane wave solutions in my model
are the same as for a pair of massless Dirac
equations.

Visualising plane wave solutions

Up to a rigid orthogonal transformation

COS Fsiny O
0L = | tsing|, 92=| cosp |, 92=|0],
O 0 1
p=1,

where
o = 2lw|(t + z3).

Looking at a travelling wave of rotations.
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Perturbations of plane waves
Idea: seek spinor field in the form
slowly varying amplitude xe #witk-z)

Deriving equation for perturbed plane wave:
e substitution ¢ — ge—{wi+kT) in Lagrangian:
e Write down Euler—Lagrange equation;
e linearize Euler—Lagrange equation;
e drop second derivatives;

e substitution ¢ — geiwi+k2) in equation.

Theorem 2 Perturbations of plane wave solu-
tions in my model are described by a pair of
massless Dirac equations.
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Relativistic version of my model

Work in Minkowski space.

Coordinates z%, o =0,1,2,3.

1 0 0 O

: O -1 0 O
Metric gog = 0 0 -1 0
O 0 0 -1

Coframe {190,191,192,193}.
g=9029% -9l gv!l — 9292 - 9393
1
T3 = 5(190/\d190—191/\d191 — 92 Nd9? — 93 ANdD3).

Lagrangian density L = ||T%%||%p.
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Comparing the relativistic

and nonrelativistic models

Relativistic model has 3 extra degrees of free-
dom (Lorentz boosts in 3 directions) and, con-
sequently, 3 extra field equations.

Theorem 3 At the asymptotic level (plane waves
and their formal perturbations) the 3 extra
field equations are automatically satisfied.

My nonrelativistic model possesses relativistic
invariance at the asymptotic level.

12



Incorporating mass m and

electromagnetic (co)vector potential A

Kaluza—Klein extension.

Introduce 5th coordinate: (z°,z!, 22, 23, z%).

O.Klein (1926): mass m is prescribed oscilla-
tion £ ~ e—ima® along extra coordinate. Mass
appears when we separate out the variable x4

T.Kaluza (1921): electromagnetism is a per-
turbation (shear) of the extended metric

1 1

0 -1 .
mAs -1
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Mathematical difficulties

Symbol of linearized system is degenerate
(has determinant 0).

Don’t know how to handle situation p = 0.

Cannot set problem rigorously in terms of
function spaces.

Cannot justify formal asymptotic analysis.
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Summary

New mathematical model for fermions.

e Spacetime viewed as Cosserat continuum.

e Lagrangian chosen from the condition of
conformal invariance.

e Mass and electromagnetic field incorporated
via Kaluza—Klein extension.

What is to be done?
Perform mathematical analysis of my model.
Spin-off
There is a class of beautiful nonlinear PDEs

arising in Cosserat elasticity which has never
been studied by analysts.
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