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Dirac’s equation is a model for the electron

and its antiparticle, positron.

Aim of talk: to understand Dirac’s equation.

Formulating Dirac’s equation requires:

(a) spinors,

(b) Pauli matrices,

(c) covariant differentiation.

Also, difficult to distinguish electron from positron.

My reinterpretation of Dirac’s eq-n will require:

(a) differential forms,

(b) wedge product,

(c) exterior differentiation.

Also, easy to distinguish electron from positron.

Price I will pay: my model will be nonlinear.
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Formulation of Dirac’s equation

For simplicity will deal with massless Dirac equa-

tion. Model for the neutrino and antineutrino.

Will also assume metric to be flat (no gravity).

Unknown quantity is a 2-component spinor

ξ =

(
ξ1

ξ2

)
.

Pair of “scalar” complex-valued functions of

time t and Euclidean coordinates x1, x2, x3.

Massless Dirac equation:

∂t

(
ξ1

ξ2

)
= ±

(
∂3 ∂1 + i∂2

∂1 − i∂2 −∂3

)(
ξ1

ξ2

)
.

Equation transforms in a complicated way

under rotations of coordinate system. Spinor

is “square root” of a complex isotropic vector.
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Describing a deformable continuous medium

(a) Classical elasticity: displacements only.

(b) Cosserat elasticity: displacements and ro-

tations. See

E. Cosserat and F. Cosserat, Théorie des Corps

Déformables, A. Hermann et Fils, Paris, 1909.

(c) Teleparallelism (absolute parallelism, fern-

parallelismus): rotations only.
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Teleparallelism in Euclidean 3-space

Work in R3 equipped with standard metric

gαβ =

1 0 0
0 1 0
0 0 1


and Cartesian coordinates xα, α = 1,2,3.

A coframe {ϑ1, ϑ2, ϑ3} is a triad of covector

fields satisfying metric constraint

g = ϑ1 ⊗ ϑ1 + ϑ2 ⊗ ϑ2 + ϑ3 ⊗ ϑ3.

Same in plain English: a coframe is a field of

orthonormal bases.

NB. Coframe lives separately from Cartesian

coordinates (not aligned with coordinate lines).

Coframe will play the role of unknown quantity

(dynamical variable).
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Measure of deformation: the 3-form

Tax :=
1

3
(ϑ1 ∧ dϑ1 + ϑ2 ∧ dϑ2 + ϑ3 ∧ dϑ3).

Called “axial torsion of teleparallel connection”.

The 3-form Tax is conformally covariant. Let

ϑj 7→ ehϑj, j = 1,2,3,

where h is arbitrary real scalar function. Then

g 7→ e2hg,

Tax 7→ e2hTax

without the derivatives of h appearing.
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My Lagrangian density

L = ‖Tax‖2ρ

where ρ is an additional dynamical variable.

My Lagrangian is conformally invariant!

Action (variational functional)
∫

L dx1dx2dx3 .

Vary action with respect to coframe ϑ and den-

sity ρ to get Euler–Lagrange equations.

Difference with existing models

1. I assume metric to be fixed (prescribed).

2. My Lagrangian has never been considered.
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Introducing time into my model

Define 2-form

ϑ̇ := ϑ1 ∧ ϑ̇1 + ϑ2 ∧ ϑ̇2 + ϑ3 ∧ ϑ̇3.

Note: ∗ϑ̇ is the vector of angular velocity.

L = (‖ϑ̇‖2 − ‖Tax‖2)ρ

Model remains conformally invariant, only now
in the Lorentzian sense.

Solving Euler–Lagrange equations

Switch to spinors:

coframe ϑ and density ρ 6= 0

m

nonvanishing spinor field ξ modulo sign

Lagrangian density L(ξ) is a rational function
of ξ, ξ̄ and partial derivatives of ξ, ξ̄.
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Look first for quasi-stationary solutions

ξ(t, x1, x2, x3) = e−iωtη(x1, x2, x3), ω 6= 0. (1)

Theorem 1 Let ξ be of the form (1). Then

my Euler–Lagrange equation is equivalent to a

pair of massless Dirac equations.

Proof My Lagrangian density L factorises as

L(ξ) =
L+(ξ)L−(ξ)

L+(ξ)− L−(ξ)

where L±(ξ) are the Dirac Lagrangians. Use

also scaling covariance of Dirac Lagrangians:

L±(ehξ) = e2hL±(ξ)

where h is an arbitrary real scalar function. �
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Special case of quasi-stationary solution

ξ(t, x1, x2, x3) = e−i(ωt+k·x), ω 6= 0.

This is a plane wave.

Corollary 1 Plane wave solutions in my model

are the same as for a pair of massless Dirac

equations.

Visualising plane wave solutions

Up to a rigid orthogonal transformation

ϑ1
α =

 cosϕ
± sinϕ

0

 , ϑ2
α =

∓ sinϕ
cosϕ

0

 , ϑ3
α =

0
0
1

 ,

ρ = 1,

where

ϕ := 2|ω|(t + x3).

Looking at a travelling wave of rotations.
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Perturbations of plane waves

Idea: seek spinor field in the form

slowly varying amplitude ×e−i(ωt+k·x).

Deriving equation for perturbed plane wave:

• substitution ξ 7→ ξe−i(ωt+k·x) in Lagrangian;

• write down Euler–Lagrange equation;

• linearize Euler–Lagrange equation;

• drop second derivatives;

• substitution ξ 7→ ξei(ωt+k·x) in equation.

Theorem 2 Perturbations of plane wave solu-
tions in my model are described by a pair of
massless Dirac equations.
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Relativistic version of my model

Work in Minkowski space.

Coordinates xα, α = 0,1,2,3.

Metric gαβ =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 .

Coframe {ϑ0, ϑ1, ϑ2, ϑ3}.

g = ϑ0 ⊗ ϑ0 − ϑ1 ⊗ ϑ1 − ϑ2 ⊗ ϑ2 − ϑ3 ⊗ ϑ3.

Tax =
1

3
(ϑ0∧dϑ0−ϑ1∧dϑ1−ϑ2∧dϑ2−ϑ3∧dϑ3).

Lagrangian density L = ‖Tax‖2ρ.
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Comparing the relativistic

and nonrelativistic models

Relativistic model has 3 extra degrees of free-

dom (Lorentz boosts in 3 directions) and, con-

sequently, 3 extra field equations.

Theorem 3 At the asymptotic level (plane waves

and their formal perturbations) the 3 extra

field equations are automatically satisfied.

My nonrelativistic model possesses relativistic

invariance at the asymptotic level.
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Incorporating mass m and

electromagnetic (co)vector potential A

Kaluza–Klein extension.

Introduce 5th coordinate: (x0, x1, x2, x3, x4 ).

O.Klein (1926): mass m is prescribed oscilla-

tion ξ ∼ e−imx4
along extra coordinate. Mass

appears when we separate out the variable x4.

T.Kaluza (1921): electromagnetism is a per-

turbation (shear) of the extended metric

(
gαβ 0
0 −1

)
→

gαβ − 1
m2AαAβ

1
mAα

1
mAβ −1

 .
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Mathematical difficulties

• Symbol of linearized system is degenerate

(has determinant 0).

• Don’t know how to handle situation ρ = 0.

• Cannot set problem rigorously in terms of

function spaces.

• Cannot justify formal asymptotic analysis.
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Summary

New mathematical model for fermions.

• Spacetime viewed as Cosserat continuum.

• Lagrangian chosen from the condition of
conformal invariance.

• Mass and electromagnetic field incorporated
via Kaluza–Klein extension.

What is to be done?

Perform mathematical analysis of my model.

Spin-off

There is a class of beautiful nonlinear PDEs
arising in Cosserat elasticity which has never
been studied by analysts.
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