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Will study Weyl’s equation (massless Dirac).

Formulating Weyls’s equation requires:

(a) spinors,

(b) Pauli matrices,

(c) covariant differentiation.

My reformulation of Weyl’s equation requires:

(a) differential forms,

(b) wedge product,

(c) exterior differentiation.
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Traditional formulation of Weyl’s equation

Work on a 4-manifold with prescribed Lorentzian

metric g.

Dynamical variable is a 2-component spinor ξ.

Weyl’s equation

iσα
aḃ∇αξa = 0.

Weyl’s Lagrangian

LWeyl(ξ) :=
i

2
(ξ̄ḃσα

aḃ∇αξa − ξaσα
aḃ∇αξ̄ḃ) ∗ 1.
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Teleparallel formulation of Weyl’s equation

Work on a 4-manifold with prescribed Lorentzian
metric g.

Dynamical variable is coframe ϑj, j = 0,1,2,3,
i.e. quartet of real covector fields satisfying
metric constraint

g = ojk ϑj ⊗ ϑk

where ojk = ojk := diag(1,−1,−1,−1).

Notion of parallelism: each covector field ϑj,
j = 0,1,2,3, is parallel by definition.

Parallelism =⇒ connection. Curvature R = 0.

Field strength: torsion T = ojk ϑj ⊗ dϑk .

Irreducible piece of field strength: axial (totally
antisymmetric) torsion

T =
1

3
ojk ϑj ∧ dϑk.
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Put l = ϑ0 + ϑ3 and define Lagrangian

L = l ∧ Taxial

Theorem 1 Above Lagrangian is, up to a non-
linear change of variable, Weyl’s Lagrangian.

Proof of Theorem 1 Perform transformation
ϑ0

ϑ1

ϑ2

ϑ3

7→

1 + 1

2|f |
2 Re f Im f 1

2|f |
2

Re f 1 0 Re f
Im f 0 1 Im f

−1
2|f |

2 −Re f − Im f 1− 1
2|f |
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ϑ0

ϑ1

ϑ2

ϑ3


where f : M → C is an arbitrary scalar function.

Metric and Lagrangian are invariant! Hence,
solutions come in equivalence classes. Geo-
metric meaning of these equivalence classes?

We are looking at an Abelian subgroup of the
Lorentz group. Geometric fact: cosets of this
subgroup can be identified with spinors.

Remains to perform very long calculation ... �
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Big worry

In my construction I took

l = ϑ0 + ϑ3

but I could have as well taken

l = ljϑ
j

where the lj are real constants satisfying

ojkljlk = 0.

Would have still gotten Weyl’s equation!

This extra degree of freedom is worrying.

Constants lj should have a physical meaning.
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Origin of Lagrangian L = l ∧ Taxial

Consider Lagrangian

L = ‖Taxial‖2 ∗ 1.

Let metric be Minkowski. Look for explicit

solutions of the Euler–Lagrange equation.

Explicit solution:
ϑ0

ϑ1

ϑ2

ϑ3

=


1 0 0 0
0 cos(x0 + x3) ± sin(x0 + x3) 0
0 ∓ sin(x0 + x3) cos(x0 + x3) 0
0 0 0 1




ϑ0

ϑ1

ϑ2

ϑ3


where ϑj is a constant coframe.

Call this plane wave solution with momentum

l = ϑ0 + ϑ3.

Can similarly write down plane wave solution

with momentum l = ljϑ
j where ojkljlk = 0 .
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Now look for solutions that are not necessar-

ily plane wave. Formal perturbation argument:

the ϑj are no longer constant but slowly vary-

ing. Write linearized field equation dropping

second derivatives. Choose convenient basis.

Theorem 2 Formal perturbation argument gives

the following equation in C3:σα(i∇± 1
2 l)α

0
0

0 0 0


ξ1

ξ2

ξ3

 = 0.

Proof of Theorem 2 Being written down ...�

Bottom line: I think that the “true” Lagrangian

for the neutrino is

L = ‖Taxial‖2 ∗ 1.
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Comparison with Maxwell’s equation

Maxwell’s equation My equation

Dynamical Covector Quartet of co-
variable field A vector fields ϑj

Field 2-form dA 3-form Taxial

strength

Lagrangian ‖dA‖2 ∗ 1 ‖Taxial‖2 ∗ 1
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Dirac’s equation

Klein’s interpretation of mass: prescribed os-
cillation along 5th coordinate. Separation of
variables gives mass term.

Conjecture: my Lagrangian L = ‖Taxial‖2 ∗ 1
in dimension 5 generates the Dirac equation.
“Separation of variables” = one rotation of
coframe as we move along the 5th coordinate.

Dirac’s equation with electromagnetic field

Electromagnetism in Dirac’s equation:

∇ → ∇+ iA.

Kaluza’s interpretation of electromagnetism:
perturbation (shear) of the extended metric(

gαβ 0
0 −1

)
→

(
gαβ −AαAβ Aα

Aβ −1

)
.

Conjecture: Kaluza’s construction works in my
model to give Dirac’s equation with electro-
magnetic field.
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End goal of project

To derive all Quantum Electrodynamics from

the Lagrangian

L = ‖Taxial‖2 ∗ 1.
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