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Will first study Weyl’s equation (massless Dirac).

Weyl’s equation is a system of 2 homogeneous

linear partial differential equations for 2 com-

plex unknowns in dimension 1+3.

Formulating Weyls’s equation requires:

(a) spinors,

(b) Pauli matrices,

(c) covariant differentiation.

My reformulation of Weyl’s equation requires:

(a) differential forms,

(b) wedge product,

(c) exterior differentiation.
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Traditional formulation of Weyl’s equation

Work on 4-manifold with Lorentzian metric gαβ

Unknown quantity is 2-component spinor ξa .

Raise and lower spinor indices using “metric

spinor” εab = εȧḃ = εab = εȧḃ =

(
0 1
−1 0

)
.

Pauli matrices σαaḃ defined by condition

σαaḃσ
βcḃ + σβaḃσ

αcḃ = 2gαβδa
c.

Covariant derivative of a spinor field

∇µξa = ∂µξ
a + Γaµbξ

b

where

Γaµb =
1

4
σα

aċ

(
∂µσ

α
bċ +

{
α

µβ

}
σβbċ

)
,

{
α

µβ

}
=

1

2
gακ(∂µgβκ + ∂βgµκ − ∂κgµβ).
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Weyl’s equation

iσαaḃ∇αξ
a = 0.

Weyl’s Lagrangian

LWeyl(ξ) :=
i

2
(ξ̄ḃσαaḃ∇αξ

a − ξaσαaḃ∇αξ̄
ḃ) ∗ 1.
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Describing a deformable continuous medium

(a) Classical elasticity: displacements only.

(b) Cosserat elasticity (multipolar elasticity):

displacements and rotations. See, for example,

Truesdell’s First course in rational continuum

mechanics.

(c) Teleparallelism (absolute parallelism):

rotations only.
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Teleparallelism in Euclidean 3-space

Cartesian coordinates xα, α = 1,2,3.

Euclidean metric gαβ =

1 0 0
0 1 0
0 0 1

.

Euclidean distance squared = gαβdx
αdxβ.

Coframe {ϑ1, ϑ2, ϑ3}: triad of covector fields
satisfying metric constraint

g = ϑ1 ⊗ ϑ1 + ϑ2 ⊗ ϑ2 + ϑ3 ⊗ ϑ3.

NB. Coframe lives separately from Cartesian
coordinates (not aligned with coordinate lines).

Notion of parallelism: each covector field ϑk,
k = 1,2,3, is parallel by definition.

Parallelism =⇒ connection. Curvature R = 0.

Terminology: if R = 0 spacetime is called flat
or teleparallel or Weitzenböck.
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Field strength: torsion

T = ϑ1 ⊗ dϑ1 + ϑ2 ⊗ dϑ2 + ϑ3 ⊗ dϑ3.

Analogue of strain tensor.

Irreducible piece of field strength: axial (totally
antisymmetric) torsion

Taxial =
1

3
(ϑ1 ∧ dϑ1 + ϑ2 ∧ dϑ2 + ϑ3 ∧ dϑ3).

Analogue of shear.

Possible Lagrangians

L = Taxial, (1)

L = ‖Taxial‖2 ∗ 1. (2)

Action (variational functional)
∫
L .

Vary action with respect to coframe subject to
metric constraint to get Euler–Lagrange equa-
tion, a nonlinear PDE for unknown coframe.

Lagrangian (1) gives first order equation,
Lagrangian (2) gives second order equation.
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Teleparallel formulation of Weyl’s equation

Dimension is now 1 + 3.

Coframe {ϑ0, ϑ1, ϑ2, ϑ3}.

g = ϑ0 ⊗ ϑ0 − ϑ1 ⊗ ϑ1 − ϑ2 ⊗ ϑ2 − ϑ3 ⊗ ϑ3.

T = ϑ0 ⊗ dϑ0 − ϑ1 ⊗ dϑ1 − ϑ2 ⊗ dϑ2 − ϑ3 ⊗ dϑ3.

Taxial =
1

3
(ϑ0∧dϑ0−ϑ1∧dϑ1−ϑ2∧dϑ2−ϑ3∧dϑ3).

Put l = ϑ0 + ϑ3 and define Lagrangian

L = l ∧ Taxial

Theorem 1 The above Lagrangian is, up to

change of variable, Weyl’s Lagrangian.
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Proof of Theorem 1 Perform transformation
ϑ0

ϑ1

ϑ2

ϑ3

7→

1 + 1

2|f |
2 Re f Im f 1

2|f |
2

Re f 1 0 Re f
Im f 0 1 Im f

−1
2|f |

2 −Re f − Im f 1− 1
2|f |

2



ϑ0

ϑ1

ϑ2

ϑ3


where f : M → C is an arbitrary scalar function.

Metric and Lagrangian are invariant! Hence,

solutions come in equivalence classes. Geo-

metric meaning of these equivalence classes?

We are looking at an Abelian subgroup of the

Lorentz group. Geometric fact: cosets of this

subgroup can be identified with spinors.

Remains to perform very long calculation ... �
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Big worry

In my construction I took

l = ϑ0 + ϑ3

but I could have as well taken

l = p0ϑ
0 + p1ϑ

1 + p2ϑ
2 + p3ϑ

3

where the pj are real constants satisfying

(p0)
2 − (p1)

2 − (p2)
2 − (p3)

2 = 0.

Would have still gotten Weyl’s equation!

This extra degree of freedom is worrying.

Constants pj should have a physical meaning.
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Origin of Lagrangian L = l ∧ Taxial

Consider Lagrangian

L = ‖Taxial‖2 ∗ 1

(special case of Cosserat elasticity).

Let metric be Minkowski. Look for explicit
solutions of the Euler–Lagrange equation.

Explicit solution:
ϑ0

ϑ1

ϑ2

ϑ3

=


1 0 0 0
0 cos(x0 + x3) ± sin(x0 + x3) 0
0 ∓ sin(x0 + x3) cos(x0 + x3) 0
0 0 0 1




ϑ0

ϑ1

ϑ2

ϑ3


where ϑjα = δ

j
α is the constant coframe.

Call this plane wave solution with momentum

ϑ0 + ϑ3.

Can similarly write down plane wave solution
with momentum p0ϑ0 + p1ϑ1 + p2ϑ2 + p3ϑ3

where (p0)
2 − (p1)

2 − (p2)
2 − (p3)

2 = 0.
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Look for solutions that are not necessarily plane

wave, with metric not necessarily Minkowski.

Formal perturbation argument.

Observe that for a plane wave solution

Taxial = ±
2

3
∗ l (3)

where l = p0ϑ
0 + p1ϑ

1 + p2ϑ
2 + p3ϑ

3.

Now linearize the quadratic Lagrangian

L = ‖Taxial‖2 ∗ 1 (4)

at the point (3).

Theorem 2 My original Lagrangian

L = l ∧ Taxial

is the linearization of (4).

Should really be looking at the Lagrangain (4)!
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Comparison with Maxwell’s equation

Maxwell’s equation My equation

Quartet of
Dynamical Covector orthonormal
variable field A covector fields

{ϑ0, ϑ1, ϑ2, ϑ3}

Field 2-form dA 3-form Taxial

strength

Lagrangian ‖dA‖2 ∗ 1 ‖Taxial‖2 ∗ 1
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Dirac’s equation

What is the geometric meaning of mass m?

Klein’s interpretation of mass, as illustrated by

Klein–Gordon equation in Minkowski space

(∂2
0 − ∂2

1 − ∂2
2 − ∂2

3)ψ+m2ψ = 0.

Introduce 5th coordinate: (x0, x1, x2, x3, x4).

Consider wave equation in extended space

(∂2
0 − ∂2

1 − ∂2
2 − ∂2

3 − ∂2
4)ψ = 0.

Separate out the variable x4: ψ ∼ e−imx
4
.

Conjecture: Klein’s construction works in my

model to give Dirac’s equation with mass. “Sep-

aration of variables” means one full rotation of

coframe as we move along the 5th coordinate.
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Dirac’s equation with electromagnetic field

Electromagnetism in Dirac’s equation:

∇ → ∇+ iA.

Kaluza’s interpretation of electromagnetism:

perturbation (shear) of the extended metric(
gαβ 0
0 −1

)
→

(
gαβ −AαAβ Aα

Aβ −1

)
.

NB. Kaluza did not devise above substitution

for use in quantum mechanics. In fact, at the

time (1921) quantum mechanics didn’t exist.

Conjecture: Kaluza’s construction works in my

model to give Dirac’s equation with electro-

magnetic field.
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Summary of results

Result 1. New representation for the Weyl La-
grangian (massless Dirac Lagrangian):

L = l ∧ Taxial

where l = ϑ0 + ϑ3.

Result 2. The above Lagrangian is the formal
linearization of the Lagrangian

L = ‖Taxial‖2 ∗ 1

about a plane wave solution.

End goal of project

To derive all Quantum Electrodynamics from
the Lagrangian L = ‖Taxial‖2 ∗ 1. Bottom line:
I am suggesting a new equation which is a
natural generalisation of Maxwell’s equation.
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