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Will study Weyl's equation (massless Dirac).

Weyl's equation is a system of 2 homogeneous
linear partial differential equations for 2 com-
plex unknowns in dimension 143.

Formulating Weyls’s equation requires:
(a) spinors,

(b) Pauli matrices,

(c) covariant differentiation.

My reformulation of Weyl’s equation requires:
(a) differential forms,

(b) wedge product,

(c) exterior differentiation.



Traditional formulation of Weyl’s equation
Work on 4-manifold with Lorentzian metric g,
Deal with 2-component spinors &, or M-

Raise and lower spinor indices using ‘“metric

o . _ab __ ab 0O 1
Spinor” e, = €, = €7 = € _<_1 O)'

Pauli matrices Uaab defined by condition

e’ baﬁcb + Uﬁabaaci) — 29()455&0.

a

Covariant derivative of a spinor field
Vs = 0p€® + 18"
where

1 )
I_a,ub = ZO'Q{CLC <8M0-abc —I— {Maﬁ} O-ﬁbc> ;

Q 1
{Nﬂ} ~ Egam(a“gﬁm + 939us — Oxgpp)-



Weyl's equation

’I:O'aabvaga = 0.

Weyl’s Lagrangian

Lywey(§) = %(ﬁ_baaabvaﬁa - 'Saao‘abvaf_b) 1.



Describing a deformable continuous medium
(a) Classical elasticity: displacements only.

(b) Cosserat elasticity (multipolar elasticity):
displacements and rotations. See, for example,
Truesdell’'s First course in rational continuum
mechanics.

(c) Teleparallelism (absolute parallelism):
rotations only.



Teleparallelism in Euclidean 3-space

Cartesian coordinates =%, a=1,2,3.

Euclidean metric g,3 =

oOor
o =O
= O O

Euclidean distance squared = gaﬁdxadxﬁ.

Coframe {91,192, 93}: triad of covector fields
satisfying metric constraint

g=9' @9t +9229%2+9° 293

NB. Coframe lives separately from Cartesian
coordinates (not aligned with coordinate lines).

Notion of parallelism: each covector field 19"“,
k=1,2,3, is parallel by definition.

Parallelismm —— connection. Curvature R = 0.

Terminology: if R = 0 spacetime is called flat
or teleparallel or Weitzenbock.



Field strength: torsion
T = 9 @ d¥! + 92 ® dv? + 93 © dv3.

Analogue of strain tensor.

Irreducible piece of field strength: axial (totally
antisymmetric) torsion

- 1
Taxial — g(191 A d9t + 92 A d9? 4 93 A d93).
Analogue of shear.

Possible Lagrangians

L TaXia| (1)
L = ||7®%)2 1. (2)

Action (variational functional) /L.

Vary action with respect to coframe subject to
metric constraint to get Euler—Lagrange equa-
tion, a nonlinear PDE for unknown coframe.

Lagrangian ([1]) gives first order equation,
Lagrangian (2) gives second order equation.
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Teleparallel formulation of Weyl’s equation

Dimension is now 1+ 3.
Coframe {190,191,192,193}.
g=90 299 — 9l @9l — 92 9% - 93 x93
T = 9° @ d¥® — 9! @ d¥' — 92 ® d¥? — 93 ® dv3.

- 1
Taxial — g(ﬁOAdﬁo—ﬁl/\dﬁl—192/\d192—193/\d193).

Put [ = 99 + 93 and define Lagrangian

L =1 /\Taxial

Theorem 1 The above Lagrangian is, up to
change of variable, Weyl’'s LLagrangian.



Proof of Theorem [1] Perform transformation

(9% (14311 Ref Imf  3[f2 \[0°)
9l Re f 1 0 Re f 9l
92 Im f 0 1 Im f 92
\03) \ 3l/P —Ref —Imf 1-3|71?)\0°

where f : M — C is an arbitrary scalar function.

Metric and Lagrangian are invariant! Hence,
solutions come in equivalence classes. Geo-
metric meaning of these equivalence classes?

We are |looking at an Abelian subgroup of the
Lorentz group. Geometric fact: cosets of this
subgroup can be identified with spinors.

Remains to perform very long calculation ... [



Big worry

In my construction I took
[ =90 403
but I could have as well taken
[ = 1990 + 1191 + 1,97 + 13093
where the [; are real constants satisfying

(10)% — (11)% — (12)* — (I3)* = 0.
Would have still gotten Weyl's equation!

This extra degree of freedom is worrying.

Constants [; should have a physical meaning.



Origin of Lagrangian L = [ A 722!

Consider Lagrangian
(special case of Cosserat elasticity).

Let metric be Minkowski. Look for explicit
solutions of the Euler—Lagrange equation.

Explicit solution:

(99) /1 0 0 0\ [9°)
vl 10 cos(z® +23) =+sin(z®+23) off 9!
92| |0 Fsin(z? 4+ 23) cos(z® 4 23) 0] 92
\#3) \O 0 0 1)\93)

where {99, 91 92 93} is a constant coframe.

Call this plane wave solution with momentum
99 4+ 93.
Can similarly write down plane wave solution

with momentum [p9° + 1191 + 1,92 + 1393
where (1g)? — (1) — (12)%2 — (I3)? = 0.
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ook for solutions that are not necessarily plane
wave, with metric not necessarily MinkowskKi.

Formal perturbation argument.

Observe that for a plane wave solution

Tl = 12 (3)
3

where | = g0 + 1191 + 1,92 + 1393

Now linearize the quadratic Lagrangian
L= |72 x 1 (4)
at the point (3)).

Theorem 2 My original Lagrangian

[, = l /\Taxial

is the linearization of (4).

Should really be looking at the Lagrangain (4))!
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Comparison with Maxwell’s equation

Maxwell's equation My equation
Dynamical Covector Quartet of
variable field A covector fields
{99, 91,92, 93}
Field 2-form dA 3-form 77Xl
strength
Lagrangian |dA|? * 1 |77@%1al)|12 4 1
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Summary

Result 1. New representation for the Weyl La-
grangian (massless Dirac Lagrangian):

L — l /\Taxial
where | = 90 4 3.

Result 2. The above Lagrangian is the formal
linearization of the Lagrangian

about a plane wave solution.
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