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TWO-TERM ASYMPTOTICS OF THE SPECTRUM
OF A BOUNDARY VALUE PROBLEM
IN THE CASE OF A PIECEWISE SMOOTH BOUNDARY
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1. Let Go be a compact n-dimensional manifold with an (n — 1)-dimensional piecewise
smooth boundary G;. By this it is meant that in a neighborhood of any point M the
manifold Gy is diffeomorphic to a neighborhood of the vertex of an [-faced solid angle
in R", 0 < | < n; we call all of R" a O-faced angle and the half-space (z, ey > 0,
where £(1) # 0 is some fixed element of R", a 1-faced angle, while an l-faced angle for
2 < | < n we define by induction as the union or intersection of an (! — 1)-faced angle
with the half-space (z,£)) > 0, where £() is linearly independent of e g0,
The closure of the set of points M € Gg with the same index ! we denote by Gy; thus,
Gngcn—lg"'QGchg. E

The set G; \ G2 has a finite number g > 0 of connected components. We call the

closures of these connected components faces and write them Gip, p = 1,...,q.
In this note we investigate the eigenvalue problem for the system of equations
C (1) (Au(z) - Au(z))go\g, =0
with boundary conditions
(2) (Bjpu(z))a,n\G, =0, j=1,...,8m, p=1,...,q;

here u is an s-dimensional column, A is a matrix-valued differential operator of order 2m
and size s x 3, and the Bj, are “boundary” differential operators of orders m;, and size
{ x 5. Problem (1), (2) is assumed to be formally selfadjoint on functions of the class

() u(z) € C*(Go),  suppu(z) NGy =9,

and regularly elliptic; the concept of regular ellipticity is formulated in a manner analo-
gous to the case of smooth boundary (G2 = @); see (1}, Chapter 2, §1.4, and (4], §6; we
mention only that the orders of the boundary conditions m;, on neighboring faces may
be distinct, and the coefficients in A and B;, are infinitely smooth up to G2.

In the case G = @ the conditions enumerated above suffice for the problem to be
well-posed; however, since in this note, generally speaking G, # &, we must additionally
require that problem (1), (2) possesses an energy functional F(u,v) which “retains” the
Sobolev norm || - [|gm(G,)- By this we mean that for any u and v satisfying (2) and (3)
the expression (Au, V) can be transformed to the form

(Au.v)=/c ( 3 (a;u)ua,,(afv)) dz % F(u,v)

laj<m,|Bl<m
(eap(z) € C(Go), €ap = €p,), and
F(u,u) > c{]ull?,m(co) —c Yu?, ¢>0,
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uniformly with respect to all u(z) € D(F), where D(F) is the linear space of column-
functions of H™(Gj) satisfying the boundary conditions (2) with orders m;, < m — 1.
We note immediately that, although the presence of an energy functional F(u,v) is a
very nontrivial condition, in practically all physically realizable problems (in the theory
of membranes, acoustics, the theory of bending and tangential oscillations of plates (6],
[7], and the three-dimensional theory of elasticity [8]) it exists, and F(u,u)/2 has the
meaning of the potential energy.
The variational formulation of the problem

4 A = inf su F(u,u) |,
*) g ukcm(m(ueuk.ﬁnﬁ( ))

where Uy C D(F) is a k-dimensional linear subspace, is well-posed (cf. [7] and [9]). It
can be shown that problem (4) had discrete spectrum A; < A < --- accumulating at
+00, and the column eigenfunctions uk(z) on which the infsup is achieved belong to
H™(Go) N C*®(Gy \ G2) and satisfy the system of equations (1) (A = Ax) and all the
boundary conditions (2).

2. We denote by o9 (z, £) the principal symbol of the operator A4, by Ax(z, &), k =
1,...,r, the distinct eigenvalues of o2/ (z, ), and by s their multiplicities (of course,
81 + -+ 8, = 38). We denote by n4(z, &, A) and N()) the distribution functions of the
eigenvalues (the number of eigenvalues, counting multiplicity, less than a given A) of the
matrix 2., (z, ) and of problem (4) respectively. ‘ :

Repeating the arguments of [2]-[4] with minor changes, we arrive at the following
result (cf. also [5]). .

THEOREM 1. Suppose the multiplicities s of the eigenvalues of the principal symbol
are constant on T*Go \ 0. Then as A — +o00

(5) N(A) = aA™?m 4 O(A(n=1)72m),
If, moreover, the problem is not absolutely periodic and is not of deadend type, then
(6) N(X) = aA™/2m 4 pA(n=1)/2m 4 o(R(n=1)/2m),

The constants a and b in (5) and (6) are defined by

a=@n™ [ nalwg1)dedg

and

+
q ~
= (2m)*-" . es(er.ér,1)
b= (27") ,;./T'Glp (nB(xl 961‘91) o ) dxr‘ d€F1

where np(zr, &r, A) and wp(zr, ér, A) for fixed zr and &r are, respectively, the distribu-
tion function of the eigenvalues and the scattering phase of a one-dimensional problem
with constant coefficients on the semiaxis 0 < z, < +o0o which is obtained from (1)
and (2) (p is fixed) if only terms with leading differentiations (of orders 2m and m;,)

are retained in the operators, all differentiations 8/8zk, k = 1,...,n — 1, along the face
G1p are replaced by i€k, and in the coefficients we set z = (zr,0); see [2]-[4]. Here
z = (21,...,Z,) are local coordinates on Gg, and & = (£;,...,£,) € R™. It is assumed

that in a neighborhood of G, local coordinates are introduced so that G 1p = {Tn =0}
and z, >0 on Go \ Gip; zr = (21,...,2Zn-1) and & = (&1,.-+, En-1)-

The concepts of absolute periodicity and the deadend property are associated with
the behavior of trajectories of the Hamiltonian systems

(7 i=0hi/0E, £ =0h)0z
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on T*Go \ 0, hi(z,€) = (Ak(z, €)/?™ >0, k = 1,...,r, and are defined as follows.
We consider a trajectory z(zo, £o,t), £(To,&0,t) of one (k = ko) of the systems (7);
(x0,&0) € T*(Go \ G1) \ 0 is the initial point of the trajectory for t = 0. In the case of
intersection of the trajectory with the boundary we reflect the trajectory inside T*Go \ 0,
preserving the value of the Hamiltonian and the continuity of z(zo, o,t), €r(zo, €o,t)
at t = 7 (7 is the time of reflection) and allowing the trajectory to “jump” from one
Hamiltonian system (7) to another; here we agree to consider only regular reflections,
i.e., those such that #,(zo, &, 7 — 0) < 0, Tn(zo, &0, 7 + 0) > 0, and z(zo, o,7) & Ga.
As in (3] and [4], we observe that the reflected trajectory, generally speaking, is not
uniquely determined: to one incident trajectory there may correspond several (at most
sm) reflected trajectories; this phenomenon we call reproduction of trajectories, and in
using the notation z(zo, &,t), £(z0, £o,t), we imply that one of the trajectories of the
systems (7) is meant specifically a trajectory issuing from the point (zo, &) and depending
in an infinitely differentiable manner on zq, £, and t for z(zo, {o,t) &€ G1.

We call a point (EO,EO) absolutely periodic if there exist T > 0 and a trajectory
z(zo, 0, t), E(zo,&0,t) such that after a finite number | > 0 of regular reflections
(%0, €0y T) = Zo, £(T0,€0,T) = &, and, moreover, the diffeomorphism (zo, &) —
(2(zo0, €0, T), &(z0, &0, T)) of a p-neighborhood of (Zo, &p) differs from the identity map-
ping by O(p*>). We call a point (zo, o) a deadend point if there exists a trajectory
x(zg, €0,t), €(Zo,E0,t) experiencing an infinite number of regular reflections in finite
time. We call the problem not absolutely periodic (respectively, not of deadend type) if
the natural (2n — 1)-dimensional Lebesgue measure of absolutely periodic (respectively
deadend) points normalized by the condition hk,(z, £) = 1 is equal to zero.

3. In connection with Theorem 1 there arises the question of finding effective sufficient
conditions under which problem (1), (2) is not absolutely periodic and is not of deadend
type. One such set of sufficient conditions is presented in (2] (see also [4], §1): G2 = @,
r = 1, the condition of simple reflection is satisfied, Go, G1, and hy(z, €) are analytic, and
Gy is Hamiltonian-convex. Another set of sufficient conditions is formulated in Theorem
2 below. We emphasize that Theorem 2 admits r # 1 (r is the number of distinct
eigenvalues of oom(z, &), i.e., it is also applicable in the case of certain reproduction
of trajectories; this is important both in a theoretical and applied respect, since such a
situation is observed in a number of problems of mechanics, in particular, in the theory
of tangential oscillations of plates and in the three-dimensional theory of elasticity (here
r=2). .

THEOREM 2. Suppose the manifold Go is imbedded in R™ and its boundary has
nonpositive curvature, i.e., for any point M € G, \ Gy the hyperplane tangent to G,
passing through M belongs to G in some neighborhood of M. Suppose the Hamiltonian
systems (7) are isotropic, t.e., hy = ¢klé|, k = 1,...,r, where cx > O are constants notl
depending on = or €. Then problem (1), (2) is not absolutely periodic and is not of
deadend type.

The proof of Theorem 2 is based on the following considerations. It is easy to see that
under the assumptions of the theorem any diverging pencil of trajectories on reflection
from the boundary goes over into a diverging pencil, and hence for any periodic point
(Eo,zo) we have dz(Zo, fo, T)/6£<,|Eo=zo # 0, i.e., under the agsumptions of Theorem 2
no absolutely periodic points exist. Turning to deadend points, we note that in the case
r = 1 the measure of the set of such points is equal to zero by Lemma 2 of [10], Chapter
6, §1.2. In the case r # 1 the arguments of [10] do not go through, since they make
essential use of the preservation of the elementary phase volume dzd¢ under reflection,
while in our case this volume may increase on reflection « times, where 1 < k < 7, K
a natural number, due to reproduction of trajectories. However, it is not hard to show
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that under the conditions of Theorem 2 any deadend trajectory after some lgth reflection
ceases to “jump” from one Hamiltonian system (7) to another (the number !y depends
on the trajectory, generally speaking). We obtain the required result by classifying all
deadend trajectories z(zo, £o,t), £(o, £o0,t) according to the indices of the Hamiltonian
systems (7) corresponding to their first lp + 1 links and noting that for each class the
measure of the points (o, &) is equal to zero (this follows from Lemma 2 in (10}, loc.
cit., and the fact that after a finite number ly of reflections the measure cannot increase
more than a finite number r' of times) by the countable additivity of Lebesgue ieasure.

An important special case of the manifolds G satisfying the conditions of Theorem 2
are polyhedra (the curvature of the boundary is identically zero). It is curious that the
spectrum of the Laplace operator on a polyhedron was specially investigated in [11] and
[12], but the second term of the asymptotics of N()) was not derived.

The author is grateful to V. B. Lidskii for valuable discussions.
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