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In abstract Yang–Mills theory the standard instanton construction relies on the Hodge star
having real eigenvalues which makes it inapplicable in the Lorentzian case. We show that
for the affine connection (i.e. connection on vectors) an instanton-type construction can be
carried out in the Lorentzian setting. Namely, the Lorentzian analogue of an instanton is
a metric compatible connection whose curvature is irreducible and simple (“pseudoinstan-
ton”). We prove that a pseudoinstanton is a solution of the Yang–Mills equation for the
affine connection. In fact, we prove a much stronger result: a pseudoinstanton is a stationary
point of any Lorentz-invariant quadratic action with respect to the independent variation of
the metric and the connection. We present examples of pseudoinstantons and discuss them
within the context of non-Riemannian theories of gravity.

1 Mathematical model

We consider space-time to be a connected real 4-manifold M equipped with a Lorentzian metric g
and an affine connection Γ. The 10 independent components of the (symmetric) metric tensor gµν

and the 64 connection coefficients Γλ
µν are the unknowns of our theory. This approach is known

as metric-affine gravity. Its origins lie in the works of authors such as É. Cartan, A.S. Eddington,
A. Einstein, T. Levi-Civita, E. Schrödinger and H. Weyl. A review of the more recent work in
this area can be found in [1].

We define our action as

S :=
∫

q(R) (1)

where q is an O(1, 3)-invariant quadratic form on curvature R. Independent variation of the met-
ric g and the connection Γ produces Euler–Lagrange equations which we will write symbolically
as

∂S/∂g = 0, (2)
∂S/∂Γ = 0. (3)

Our objective is the study of the combined system of field equations (2), (3). This is a system
of 10 + 64 real nonlinear partial differential equations with 10 + 64 real unknowns.

Our motivation comes from Yang–Mills theory. The Yang–Mills action for the affine connec-
tion is a special case of (1) with

q(R) = qYM(R) := Rκ
λµν Rλ

κ
µν . (4)

With this choice of q equation (3) is the Yang–Mills equation for the affine connection. There
is a substantial bibliography devoted to the study of the system (2), (3) in the special case (4);
see, for example, references in [2].

The idea of modelling gravity by means of a quadratic action goes back to H. Weyl, see end
of his paper [3]. Weyl also pointed out that such an action should contain all possible invariant
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quadratic combinations of curvature, say, the square of Ricci curvature, the square of scalar
curvature, etc. It turns out (see Appendix B.4 in [1]) that in the metric-affine setting curvature
has 11 irreducible pieces. There are 16 ways of squaring these irreducible pieces to a scalar.
The reason why the number of different invariant quadratic combinations is greater than the
number of pieces is that some of the irreducible subspaces of curvature are isomorphic. Namely,
all three 6-dimensional subspaces are isomorphic, and there are also two pairs of isomorphic
9-dimensional subspaces. The explicit formula for a general O(1, 3)-invariant quadratic form
q(R) with 16 coupling constants is given in Appendix B of [4].

The paper has the following structure. In Section 3 we state and prove our main result,
Theorem 1. In Sections 4 and 5 we use this theorem to construct solutions to our field equations
(2), (3). Finally, in Section 6 we discuss the possible physical interpretation of our solutions.

2 Notation

Our notation follows [2, 5]. In particular, we denote local coordinates by xµ, µ = 0, 1, 2, 3,
and write ∂µ := ∂/∂xµ. We define the covariant derivative of a vector function as ∇µvλ :=
∂µvλ + Γλ

µνv
ν , torsion as T λ

µν := Γλ
µν − Γλ

νµ , curvature as Rκ
λµν := ∂µΓκ

νλ − ∂νΓκ
µλ +

Γκ
µηΓη

νλ−Γκ
νηΓη

µλ, and Ricci curvature as Ricλν := Rκ
λκν . Given a scalar function f : M → R

we write for brevity
∫

f :=
∫
M f

√|det g| dx0dx1dx2dx3 where det g := det(gµν). The Christoffel
symbol is

{
λ
µν

}
:= 1

2gλκ(∂µgνκ + ∂νgµκ − ∂κgµν). We define the action of the Hodge star on
a rank q antisymmetric tensor as (∗Q)µq+1...µ4 := (q!)−1

√|det g|Qµ1...µqεµ1...µ4 where ε is the
totally antisymmetric quantity.

3 Main result

The following definition plays a crucial role in our construction.

Definition 1. We call a space-time {M, g, Γ} a pseudoinstanton if the connection is metric
compatible and curvature is irreducible and simple.

Here irreducibility of curvature means that all irreducible pieces but one are identically zero.
Simplicity means that the given irreducible subspace is not isomorphic to any other irreducible
subspace. Metric compatibility means, as usual, that ∇g ≡ 0.

It is easy to see that there are only three possible types of pseudoinstantons:

• scalar pseudoinstanton (all pieces of curvature apart from the scalar piece are identically
zero),

• pseudoscalar pseudoinstanton (all pieces of curvature apart from the pseudoscalar piece
are identically zero), and

• Weyl pseudoinstanton (all pieces of curvature apart from the Weyl piece are identically
zero).

Here scalar, pseudoscalar, and Weyl curvatures are defined by the conditions

Rκλµν ∼ gκµgλν − gλµgκν , (5)
Rκλµν ∼ εκλµν , (6)

Rκλµν = Rµνκλ, Ric = 0, εκλµνRκλµν = 0 (7)

respectively, with ∼ standing for proportionality.
Our main result is
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Theorem 1. A pseudoinstanton is a solution of the field equations (2), (3).

Proof. Let Rpseudo be the irreducible piece of curvature corresponding to the type of our pseudo-
instanton; that is, Rpseudo denotes scalar, pseudoscalar, or Weyl curvature depending on whether
we are proving Theorem 1 for a scalar, pseudoscalar, or Weyl pseudoinstanton. Then for any
curvature R we have q(R) = q(Rpseudo) + q(R − Rpseudo). Here we used the fact that the piece
Rpseudo is simple: if not, then we would have cross-over terms of the type Rpseudo×(R−Rpseudo).

When we start our variation from a space-time with R − Rpseudo ≡ 0 the resulting variation
of

∫
q(R − Rpseudo) is zero. Thus, the proof of Theorem 1 reduces to proving that our pseudo-

instanton is a stationary point of the action
∫

q(Rpseudo). But examination of the explicit
formula for q(R) given in Appendix B of [4] shows that q(Rpseudo) = const(Rpseudo, Rpseudo)YM

where (R, Q)YM := Rκ
λµνQ

λ
κ

µν is the Yang–Mills inner product on curvatures. Thus, the
action

∫
q(Rpseudo) is of the type studied in [2] and the result follows from Theorem 2.1 of that

paper. �

4 Riemannian pseudoinstantons

Definition 2. We call a space-time {M, g, Γ} Riemannian if the connection is Levi-Civita (i.e.
Γλ

µν =
{

λ
µν

}
), and non-Riemannian otherwise.

Note that the word “Riemannian” has a different meaning in mathematics and theoreti-
cal physics. In mathematical literature the connection is usually Levi-Civita by default and
“Riemannian” indicates that the metric is definite, whereas in theoretical physics literature the
metric is usually Lorentzian by default (as it is in our paper) and “Riemannian” indicates that
the connection is Levi-Civita. In Definition 2 we adopt the theoretical physics terminology.

In the Riemannian case the first and third conditions (7) are automatically fulfilled, so a Rie-
mannian space-time is a Weyl pseudoinstanton if and only if

Ric = 0. (8)

Therefore, according to Theorem 1, Riemannian space-times satisfying the vacuum Einstein
equation (8) are solutions to our field equations (2), (3).

The above argument demonstrates both the power and the limitations of the pseudoinstanton
technique. This technique allowed us to obtain an important class of solutions without having
to write down explicitly the field equations. On the other hand, it did not give us all the Rie-
mannian solutions: it is known [4] that Einstein spaces with arbitrary cosmological constant are
solutions as are pp-spaces with parallel Ricci curvature, but such space-times are not necessarily
pseudoinstantons.

5 Non-Riemannian pseudoinstanton

We know only one non-Riemannian solution to our field equations (2), (3). It is constructed as
follows.

Let us define Minkowski space M
4 as a real 4-manifold equipped with global coordinates

(x0, x1, x2, x3) and metric gµν = diag(+1,−1,−1,−1). Working in M
4, let us consider a complex-

valued vector field

A(x) = a e−il·x (9)

which is a plane wave solution of the polarized Maxwell equation

∗dA = ±idA. (10)
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Define torsion

T =
1
2

Re(A ⊗ dA) = −1
2

Re
(
i a ⊗ (l ∧ a) e−2il·x

)
(11)

and let Γ be the corresponding metric compatible connection. Straightforward calculations give
the following explicit formula for curvature:

R = Re (dA ⊗ dA) = −Re
(
(l ∧ a) ⊗ (l ∧ a) e−2il·x

)
. (12)

It is easy to see that formulae (9), (10), (12) imply (7). Therefore, the space-time {M
4, Γ} is

a Weyl pseudoinstanton, and hence, by Theorem 1, a solution of our field equations (2), (3).
For the Yang–Mills case (4) the “torsion wave” solution described above was first obtained by

Singh and Griffiths: see last paragraph of Section 5 in [6] and put k = 0, N = const e−2il·x . Our
contribution is the observation that this torsion wave remains a solution for a general quadratic
action (1) and that this fact can be established without having to write down explicitly the field
equations.

6 Discussion

Riemannian pseudoinstantons (see (8)) clearly model vacuum. So below we examine the non-
Riemannian pseudoinstanton from Section 5 with the aim of assigning a physical meaning.

We first list some remarkable properties of our non-Riemannian pseudoinstanton.
The curvature of our non-Riemannian pseudoinstanton (see (12)) satisfies the conditions

Rκλµν = −Rλκµν = −Rκλνµ = Rµνκλ, εκλµνRκλµν = 0.

These are the standard symmetries of curvature in Riemannian geometry. Thus, an observer of
our non-Riemannian pseudoinstanton might think that they live in a Riemannian world.

The torsion of our non-Riemannian pseudoinstanton (see (11)) satisfies the conditions

T λ
λν = 0, T κλµεκλµν = 0.

This means that the torsion is irreducible (purely tensor), see Appendix B in [2].
The Ricci curvature of our non-Riemannian pseudoinstanton is identically zero, which may

be interpreted classically as zero mass. Also, the wave vector 2l is light-like, which may be
interpreted quantum mechanically as zero mass.

Further on we assume that l �= 0 and a �∈ span l, which are the necessary and sufficient
conditions for non-flatness.

It is easy to check (see Section 10 in [4] for details) that our non-Riemannian pseudoinstanton
has holonomy

B2 :=
{(

1 b
0 1

)∣∣∣∣ b ∈ C

}
. (13)

Here we use the standard identification of the proper orthochroneous Lorentz group with
SL(2, C), and our notation for subgroups follows that of Section 10.122 of [7]. Note that the
group (13) is, up to conjugation, the unique nontrivial Abelian Lie subgroup of SL(2, C); in this
statement “nontrivial” is understood as “not 1-dimensional and not a product of 1-dimensional
subgroups”, with dimension understood as real dimension. Note also that the (restricted) holon-
omy group of a (metric compatible) space-time is a subgroup of the group (13) if and only if the
space-time admits a nonvanishing parallel rank 1 spinor field.
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Our non-Riemannian pseudoinstanton is determined by a pair of orthogonal isotropic vec-
tors, namely, a real vector l and a complex vector a. (We call a vector v isotropic if vµvµ = 0.)
By choosing different l and a we obtain a set of non-Riemannian pseudoinstantons. Any two
pseudoinstantons from this set can be obtained from one another by a rescaling and a Lorentz
transformation. This, however, ceases being true if we restrict ourselves to proper orthochro-
neous Lorentz transformations: with respect to such transformations our set of non-Riemannian
pseudoinstantons has two disjoint connected components. In other words, the construction from
Section 5 gives us two essentially different solutions. It is tempting to view these two essentially
different solutions as a particle and antiparticle.

Assuming that our non-Riemannian pseudoinstanton is indeed a very basic model for some
elementary particle, we nominate three particles as possible candidates: the photon, the gravi-
ton, and the neutrino. Our (highly speculative) arguments in favour of each of these three
interpretations go as follows.

The photon interpretation is based on the observation that our non-Riemannian pseudo-
instanton is constructed out of a vector field A which is a solution of Maxwell’s equation δdA = 0
(this is a consequence of (10)). However, an argument against the photon interpretation is that
at a quantum mechanical level the electromagnetic field should be associated with a U(1)-
connection, and the presence of this structure group is not evident in our construction.

The arguments in favour of the graviton interpretation are as follows. Torsion is not an
accepted physical observable but curvature is, so we base our interpretation on the analysis of
the curvature of our non-Riemannian pseudoinstanton. Examination of the explicit formula (12)
indicates that it is more convenient to deal with the complexified curvature dA ⊗ dA; note also
that complexification is in line with the traditions of quantum mechanics. Our complex curvature
is polarized, ∗(dA ⊗ dA) = (dA ⊗ dA)∗ = ±i(dA ⊗ dA), and purely Weyl, hence it is equivalent
to a (symmetric) rank 4 spinor ζ; see subsection 1.2.3 in [8] or Appendix C in [2] for details.
A rank 4 spinor corresponds to a spin 2 particle, and one naturally thinks of the graviton.

Finally, the neutrino interpretation is based on the observation that our rank 4 spinor (see
previous paragraph) has additional algebraic structure: it is the 4th tensor power of a rank 1
spinor, ζ = ξ⊗ξ⊗ξ⊗ξ. Direct calculations [5,9] show that the rank 1 spinor field ξ satisfies Weyl’s
equation, which is the accepted mathematical model for the neutrino. An attractive feature of
the neutrino interpretation of our non-Riemannian pseudoinstanton is that it explains [5,9] why
neutrinos are always left-handed whereas antineutrinos are always right-handed.
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