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8 1 Introduction

Introduction

Let L|K be a Galois extension of number fields with Galois group G, further denote
by OL and OK the ring of integers of L and K, respectively. The ring OL is naturally a
Z[G]-module and its structure as such has been a matter of interest for a long time.
One knows by a theorem of Noether that OL is locally Z[G]-free whenever L|K is a
tame extension and M. Taylor was able to express the class [OL] defined by OL in the
class group cl(Z[G]) of projective Z[G]-modules in terms of Artin root numbers (cf.
[Tay81]). The latter result is commonly regarded as the highlight of classical Galois
module theory.
Other Z[G]-modules that have been studied include the inverse different of L|K, which
is defined as

CL|K = {x ∈ L | ∀y ∈ OL : TrL|K(xy) ∈ OK},

as well as, if it exists, the square root AL|K of CL|K. Note that Hilbert’s valuation
formula ensures the existence of AL|K if, for example, [L : K] is odd. Define the dual
of an ideal a of L with respect to trace form of L|K by

a# = {x ∈ L | ∀a ∈ a : TrL|K(xa) ∈ OK} ∼= HomOK(a,OK),

then CL|K = O#
L and one can show that AL|K is the only ideal of L satisfying AL|K =

A#
L|K. One is therefore interested in comparing the Z[G]-module structures of those

two modules with the structure of OL.

The detailed study of the Z[G]-module structure of AL|K was initiated by Erez, who
showed in [Ere91b] that AL|K, whenever it exists1, is a locally free Z[G]-module if and
only if the extension L|K is weakly ramified, i. e. the second ramification group of
any prime ideal in K vanishes. Moreover, he proved that AL|K is a free Z[G]-module if
L|K is tamely ramified and of odd degree. Those were the first general results on the
Z[G]-module structure of a module other than the ring of integers OL.

Recall that Z[G] admits locally free cancellation if we assume |G| to be odd ([CR87,
(51.3) and (51.24)]), so under this assumption a locally free Z[G]-module is free if and
only if its class in cl(Z[G]) is trivial. Thus, the statements mentioned above combine
to yield for a tame extension L|K the equality

[AL|K] = [OL]

in cl(Z[G]), where both classes in fact are trivial. Caputo and Vinatier showed in
[VC16] that this equality also extends to locally abelian tame extensions of even de-
gree, but does not necessarily take the value of the trivial class. In some more detail,

1In Erez’s original work, this theorem is stated only for L|K being of odd degree. However, Caputo and
Vinatier point out in [VC16, footnote on p. 6] that his proof also works for even degree extensions
such that AL|K exists.
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they exhibit an extension having Galois group SL2(F3) such that the class [AL|K] of
AL|K in cl(Z[G]) is non-trivial and subsequently prove that this example is minimal
in the sense that [AL|K] is trivial for all extensions of degree [L : K] ≤ 24 and Galois
group G 6∼= SL2(F3). One might therefore ask if such extensions having Galois group
SL2(F3) also fail other properties related to AL|K that are known to hold in the case of
[L : K] being odd.

Some time before that Vinatier showed in [Vin01] that AL|Q is Z[G]-free, if [L : Q] is
locally abelian. This, and some numerical computations, encouraged him to make in
[Vin03] the following

Conjecture (Vinatier). If L|Q is a finite Galois extension with Galois group G such
that AL|Q exists, then AL|Q is a free Z[G]- module.

Bley, Burns and Hahn approached this conjecture in [BBH17] using a fairly general
principle. Roughly speaking, one seeks distinguished elements of a relative algebraic
K0-group K0(Z[G], Q[G]), respectively its subgroup K0(Z[G], Q[G]), that project to
arithmetic invariants that have been considered previously. One can then hope to
prove, or at least conjecture, relations in K0(Z[G], Q[G]) that provide refinements of
existing results or conjectures. One advantage of such a refinement is that we have a
canonical decomposition

K0(Z[G], Q[G]) ∼=
⊕

p
K0(Zp[G], Qp[G]), (∗)

where p ranges over all primes, so previously entirely globally formulated problems
might now turn into problems that admit a local decomposition and hence become
easier to study. Secondly, the fairly abstract point of view may help to uncover rela-
tionships between earlier results explaining previously known but not yet understood
parallelisms.

Concretely, Bley, Burns and Hahn consider weakly ramified global extensions L|K of
odd degree and assign an element aL|K ∈ K0(Z[G], Q[G]) to each of these defined
using Galois-Gauss sums. Subsequently they show that aL|K projects to [AL|K] under
the natural map

K0(Z[G], Q[G])→ cl(Z[G]),

hence AL|K is Z[G]-free if and only if aL|K projects to the trivial class. Bley, Burns and
Hahn also investigate the local components under the decomposition (∗) and prove
that every component associated to an (at most) tamely ramified place of L|K projects
to zero in cl(Z[G]). Thus, if we prescribe the wildly ramified primes of L|K, it suffices
to verify Vinatier’s Conjecture for a (finite) representative set of extensions realising
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this local behaviour. This makes the conjecture accessible for numerical computations
and Bley, Burns and Hahn used this to obtain the following result:

Theorem ([BBH17], Thm. 10.1 and 10.6). Vinatier’s Conjecture holds true in the fol-
lowing cases:

(a) L|Q is non-abelian of degree 27,

(b) the only wildly ramified prime is 7, the decomposition group Gp has order 63 for
all p | 7 and Gp/P ∼= Z/3Z×Z/3Z, where P E Gp denotes the unique 7-Sylow
group of Gp.

The main objective of this thesis is to provide preparational work needed to treat the
case of Gp/P ∼= Z/9Z similarly. Strictly speaking,

• in the first chapter we will explore the irreducible characters of groups of order
p3 and l2 p, where l, p denote odd primes such that l | (p− 1), as well as collect
some entirely group-theoretic statements about those groups needed later on,

• in the second chapter we will classify all non-abelian and weakly ramified ex-
tensions Lp|Qp of degree l2 p and prove there is no local Galois extension Lp|Qp

having Galois group SL2(F3),

• in the third chapter we will describe how to find a set of representative extensions
L|Q realising these local extensions mentioned above.
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2.1 Characters

This section contains a short overview of (ordinary) character theory of finite groups
with emphasis on the interplay between characters of a group and of its (normal)
subgroups. This will be needed in section 2.2 to classify all irreducible characters
of groups of order p3 and l2 p, respectively, where l, p denote odd primes satisfying
l | (p − 1). For more details on the general theory the reader might consult [Isa76],
which served as main source thereof.

Group Representations

Let G be a finite group.. A map χ : G → C is called an (ordinary) character of G if
there is a homomorphism X : G → GLn(C) for some n ∈N such that χ(g) = Tr(X(g))
for all g ∈ G. In this case, one says that χ is afforded by X and the number n is called
the degree of χ, denoted by deg χ. Note also that deg χ = χ(1).

(2.1) Example. The characters of degree 1 of G are exactly the homomorphisms G →
C×. These characters are called linear. In particular, the map taking constant value 1
on G is a linear character, which will be referred to as the trivial character. �

A character χ is called irreducible if it is afforded by a homomorphism X : G → GLn(C)

that turns Cn into a simple C[G]-module. The set of all irreducible characters, which
is finite by Wedderburn’s theorem, will be denoted by Irr(G).

Now the following fundamental formula holds:

|G| = ∑
χ∈Irr(G)

(deg χ)2.

Furthermore, | Irr(G)| equals the number of conjugacy classes of G, so G is abelian if
and only if every irreducible character of G is linear.

Recall that characters are class functions, i. e. constant on conjugacy classes, since for
a character of G afforded by X we have

χ(xgx−1) = Tr(X(xgx−1)) = Tr
(
X(x) ·X(g) ·X(x)−1

)
= Tr(X(g)) = χ(g).

One now has the following (see [Isa76, Thm 2.8] for a proof)

(2.2) Theorem. The set of class functions G → C carries the structure of a C-vector
space and Irr(G) forms a basis of this vector space. Moreover, a class function is
a character if and only if it is a nonzero linear combination in Irr(G) with integer
coefficients.
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Note that the product χ1 · χ2 of characters χ1, χ2 : G → C is a character again. In fact,
the product character χ1 · χ2 is afforded by the tensor product of the representations
affording the characters χ1 and χ2, respectively.

(2.3) Definition. Let χ, ϕ be class functions of a finite group G, then

[χ, ϕ] =
1
|G| ∑

g∈G
ϕ(g) · χ(g−1)

defines an inner product on the set of class functions of G.

One now can show that Irr(G) forms an orthogonal basis with respect to this inner
product (cf. [Isa76, Cor. (2.14)]). In particular, if φ is a character and

φ = ∑
χ∈Irr(G)

nχχ

is its unique decomposition as a sum of irreducible characters, then nχ = [χ, φ] for all
χ ∈ Irr(G). Those χ ∈ Irr(G) satisfying [χ, φ] > 0 are called the irreducible constitu-
ents of φ.

Characters on Subgroups

Let G be a finite group and U ⊆ G a subgroup. If χ is a character of G, then its
restriction χU to U is a character of U. Note that if χU ∈ Irr(U), then χ ∈ Irr(G). Of
course, the converse of this statement is false.

We now consider a process that resembles a dual to restriction.

(2.4) Definition. Let χ be a class function of U, then

indG
U(χ) : G → C, g 7→ 1

|U| ∑
x∈G

χ0(xgx−1), where χ0(y) =

{
χ(y) if y ∈ U,

0 otherwise,

is called the induced class function of χ on G.

We will see shortly that characters induce characters.

(2.5) Lemma (Frobenius reciprocity). Let U ⊆ G be a subgroup and suppose that
ϕ is a class function on U and θ is a class function on G. Then

[ϕ, θU ] = [indG
U(ϕ), θ].
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Proof. We calculate:

[indG
U(ϕ), θ] =

1
|G| ∑

g∈G
indG

U(ϕ)(g−1) · θ(g) =
1

|G| · |H| ∑
g∈G

∑
x∈G

ϕ0(xg−1x−1)θ(g) =

=
1

|G| · |H| ∑
g∈G

∑
x∈G

ϕ0(g−1)θ(xgx−1)
(∗)
=

1
|G| · |H| ∑

g∈G
∑

x∈G
ϕ0(g−1)θ(g) =

=
|G|

|G| · |H| ∑
g∈U

ϕ(g−1)θ(g) = [ϕ, θU ]

Here equality (∗) uses that θ is constant on conjugacy classes.

(2.6) Corollary. Let U ⊆ G be a subgroup and χ a character of U, then indG
U(χ) is a

character of G.

Even more can be said about the relationship between characters of G and those of a
subgroup if one considers a normal subgroup.

Recall that the kernel of a character χ of G is defined as

ker χ = {g ∈ G | χ(g) = deg χ}.

Note that one recovers the known notion of a kernel in the case of linear characters. If
N denotes a normal subgroup of G, the following holds:

Irr
(
G�N

)
= {χ ∈ Irr(G) | N ⊆ ker χ},

where we identify a character ϕ of G/N with the character ϕ̂ of G given by ϕ̂(g) =

ϕ(gN) for all g ∈ G. An application of this equality is that the number of linear
characters of G equals (G : [G, G]), where [G, G] denotes the commutator subgroup of
G.

(2.7) Lemma. Let G be a group and N ⊆ G a normal subgroup. If χ ∈ Irr(G), then

indG
N(χN) = χ ·∑

ϕ∈Irr(G/N)

(deg ϕ) · ϕ.

Proof. Let g, x ∈ G, then

xgx−1 ∈ N ⇔ g ∈ x−1Nx = N,

so we have

indG
N(χN)(g) =

{
(G : N)χ(g) if g ∈ N,

0 otherwise.
.



2.1 Characters 17

Let ρ = ∑ϕ∈Irr(G/N) deg ϕ · ϕ, then

ρ(g) =

{
(G : N) if g ∈ N,

0 otherwise,

by [Isa76, Lemma (2.10) and (2.11)], so the lemma follows.

Let N ⊆ G be a normal subgroup and χ ∈ Irr(N), then for x ∈ G we can define

χx : N → K, g 7→ xgx−1,

which is again an irreducible character of N. We say that χx is conjugate to χ.

(2.8) Theorem (Clifford). Let N E G be a normal subgroup and χ ∈ Irr(G). Let θ be
an irreducible constituent of χN and θ = θ1, . . . , θt its distinct conjugates in G. Then

χN = e
t

∑
i=1

θi,

where e = [χN , θ].

Proof. Let n ∈ N, then

indG
N(θ)(n) =

1
|N| ∑

x∈G
θx(n),

since xnx−1 ∈ N for all x ∈ G. Thus, the irreducible constituents of
(

indG
N(θ)

)
N

are exactly the conjugates of θ in G. Now χ is a constituent of indG
N(θ) by

Frobenius reciprocity (2.5), so χN appears as a summand in
(

indG
N(θ)

)
N

. In par-
ticular, every irreducible constituent of χN is also a conjugate of θ and it remains
to show that

[χN , θx] = [χN , θ]

for all x ∈ G. This is done via the following calculation:

[χN , θx] =
1
|N| ∑

n∈N
χN(n−1) · θ(xnx−1) =

1
|N| ∑

n∈N
χN(xn−1x−1) · θ(n) =

=
1
|N| ∑

n∈N
χN(n−1) · θ(n) = [χN , θ]

The following corollary is a slightly stronger version of Clifford’s theorem for normal
subgroups of prime index and will be crucial to our applications of the theory.
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(2.9) Corollary. Let N E G be a normal subgroup of index p, where p is a prime,
and χ ∈ Irr(G). Then either

(a) χN is irreducible or

(b) e = 1 and t = p in Theorem (2.8).

Proof. Assume that χN is reducible. Consider ρ = ∑ϕ∈Irr(G/N) ϕ, then indG
N(χN) =

χρ by Lemma (2.7) as G/N is abelian, therefore every ϕ ∈ Irr(G/N) is linear.
Moreover, we have

[ϕχ, ϕχ] =
1
|G| ∑

g∈G

(
ϕ(g−1)χ(g−1)

)
· (ϕ(g)χ(g)) =

=
1
|G| ∑

g∈G

(
ϕ(g−1) · ϕ(g)

)
·
(

χ(g−1) · χ(g)
)
=

= [χ, χ] = 1.

Consequently, every summand ϕχ in

indG
N(χN) = ρχ = ∑

ϕ∈Irr(G/N)

ϕχ

is irreducible. Due to

[indG
N(χN), ϕχ] = [χN , (ϕχ)N ] = [χN , χN ] = e2t,

every irreducible constituent χϕ appears with multiplicity e2t in indG
N(χN). Let s

be the number of distinct summands ϕχ, then

(G : N)deg χ = deg indG
N(χN) = s · e2t · deg χ.

Hence p = se2t. We therefore must have e = 1 and p = st. If t = 1, then χN would
be irreducible, so we can conclude that t = p.

2.2 Non-abelian groups of order p3 and l2p

The aim of this section is to classify all irreducible characters of non-abelian groups
of order p3 and l2 p, where p denotes a prime and, in the latter case, p and l are odd
primes satisfying l | (p− 1). Along the way we will also gather some basic properties
of these groups that will be useful later as the non-abelian groups of order l2 p will
occur repeatedly throughout chapters 2 and 3.
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Non-abelian groups of order p3

Non-abelian groups of order p3 are, in some sense, the easiest non-abelian groups. One
can even show there exist only two isomorphism classes of such groups (cf. [Hal63,
4.4]) and describe those explicitly. However, we will need neither this statement nor
the resulting explicit representation.

(2.10) Lemma. Let p be a prime, G a non-abelian group order p3 and Z(G) its centre.
We have

|Z(G)| = p and G�Z(G)
∼= Z�pZ×Z�pZ.

Moreover, Z(G) = [G, G].

Proof. As G is a p-group, Z(G) must at least contain p elements. Now the first
two statements follow from the general fact that G/Z(G) being cyclic implies G is
abelian. Since G/Z(G) is abelian, we have [G, G] ⊆ Z(G). Since G is abelian, this
has to be an equality.

(2.11) Remark. A p-group G with the property that its centre Z(G) has order p and
G/Z(G) is abelian of exponent p is also called extra special and most of what follows
could also be done for such groups.

We begin the investigation of the character theory of non-abelian groups of order p3

by establishing a fairly general lemma.

(2.12) Lemma. Let G be a group, A E G an abelian normal subgroup of index p, where
p is a prime, and χ ∈ Irr(G), θ ∈ Irr(A).

(a) χ is a linear character if and only if χA is irreducible,

(b) if χA is reducible, then ϕ ∈ Irr(A) is a constituent of χA if and only if indG
A(ϕ) =

χ. In particular, χ is of degree p,

(c) let B ⊆ A be another subgroup, then

{ϕ ∈ Irr(A) | ϕB = θB} = {θρ | ρ ∈ Irr
(

A�B
)
},

(d) θ is fixed by conjugation on G if and only if [G, G] ⊆ ker θ.

Proof. (a): If χ is linear, χA is linear as well. In particular, χA is irreducible. Con-
versely, suppose χA is irreducible. Since A is abelian, χA is linear and so is χ.

(b): Assume ϕ is an irreducible constituent of χA, then by Corollary (2.9), we have

χA =
p

∑
i=i

ϕi,
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where ϕ = ϕ1, ..., ϕp are the distinct conjugates of ϕ. In particular, χ is of degree
p. Frobenius reciprocity yields

[χ, indG
A(ϕ)] = [χA, ϕ] = 1,

so χ is an irreducible constituent of indG
A(ϕ). Since

deg χ = p = (G : A) = indG
A(ϕ),

we must have χ = indG
A(ϕ).

Now suppose χ = indG
A(ϕ), then

1 = [χ, indG
A(ϕ)] = [χA, ϕ].

This shows that ϕ is an irreducible constituent of χA.

(c): Let ϕ be in the set on the left hand side. We have

1 = [ϕB, θB] = [ϕ, indA
B (θB)],

so ϕ is an irreducible constituent of indA
B (θB). Applying Lemma (2.7) gives that

indA
B (θB) = ∑ρ∈Irr(A/B θρ is a decomposition into distinct irreducible characters,

because A is abelian. It follows ϕ = θρ for some ρ ∈ Irr (A/B).

(d): The following holds:

∀x ∈ G : θx = θ ⇔ ∀x ∈ G, a ∈ A : θ(xax−1) = θ(a)

⇔ ∀x ∈ G, a ∈ A : θ(xax−1a−1) = 1.

It therefore suffices to show [G, G] = [G, A]. Let xyx−1y−1 be a generator of [G, G].
We may assume x, y 6∈ A, so xA generates G/A and we can write y = xna for some
a ∈ A and n ∈N. Now

xyx−1y−1 = x(xna)x−1(a−1x−n) = x(xnax−n)x−1(xnax−n)−1 ∈ [G, A].

(2.13) Proposition. Let p be a prime and G a non-abelian group of order p3.
Moreover, let Z ⊆ G be its centre and choose a normal subgroup A E G of order
p2 containing Z.



2.2 Non-abelian groups of order p3 and l2 p 21

(a) Irr(G) consists of p2 linear characters and (p− 1) characters of degree p,

(b) every ϕ ∈ Irr(A) that is non-trivial on Z induces an irreducible character of
G of degree p and all degree p characters of G are of this form,

(c) indG
A(χ) = indG

A(ϕ) for characters Irr(A) being non-trivial on Z if and only
if ϕZ = χZ.

Proof. (a): Since the commutator subgroup [G, G] of G equals Z, there are exactly
(G : Z) = p2 linear characters of G. By Lemma (2.12) (b), all non-linear characters
of G are of degree p, therefore we get from

p3 = |G| = ∑
χ∈Irr(G)

(deg χ)2

that the number of irreducible degree p characters is p3−p2

p2 = p− 1.

(b): Let ϕ ∈ Irr(A) be non-trivial on Z and choose an irreducible constituent χ of
indG

A(ϕ), then we have
0 < [χ, indG

A(ϕ)] = [χA, ϕ],

so ϕ is an irreducible constituent of χA. As Z 6⊆ ker ϕ, we get from Lemma (2.12)
(d) that ϕ is not fixed by conjugation on G. Applying Theorem (2.8) shows that
χA is reducible, so χ = indG

A(ϕ) by Lemma (2.12) (b).
Conversely, if χ ∈ Irr(G) is of degree p, it is induced by an ϕ ∈ Irr(A) according
to Lemma (2.12) (b). Suppose Z ⊆ ker ϕ, then also Z ⊆ ker indG

A(ϕ) and therefore
χ defines an irreducible character of the abelian group A/Z. Hence χ is linear,
contradiction.

(c): Let ϕ ∈ Irr(A) be non-trivial on Z. We first show the following equality:

{θ ∈ Irr(A) | θZ = ϕZ} = {ϕx | x ∈ G}.

Take θ from the set on the left hand side. By Lemma (2.12) (c), we have θ = ϕρ for
some ρ ∈ Irr(A/Z). Thus, the cardinality of the left hand side set is (A : Z) = p.
We have shown above that χ = indG

A(ϕ) is irreducible of degree p and so χA is
the sum of the p distinct conjugates of ϕ by Corollary (2.9). In particular, the right
hand side set above also consists of p elements. Since “⊇” is clear, this shows
equality.

Now suppose indG
A(χ) = indG

A(ϕ). Because of

[χ, (indG
A(ϕ))A] = [indG

A(χ), indG
A(ϕ)] = 1,
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χ is an irreducible constituent of (indG
A(ϕ))A. As already mentioned, (indG

A(ϕ))A
is the sum of the p distinct conjugates of ϕ, so χ and ϕ must be conjugate to each
other. Conversely, suppose χ and ϕ are conjugate to each other. Since indG

A(ϕ) is
an irreducible character of degree p, the restriction (indG

A(ϕ))A is reducible and
therefore the sum of all conjugates of ϕ by Corollary (2.9). In particular, χ is
an irreducible constituent of (indG

A(ϕ))A and Lemma (2.12) (b) gives indG
A(ϕ) =

indG
A(χ).

Non-abelian Groups of Order l2p

Let l, p denote odd primes satisfying l | (p − 1). We now investigate non-abelian
groups of order l2 p, which should be thought of as slightly more complicated than
non-abelian groups of order p3.

(2.14) Lemma. Let G be a group of order l2 p, then

(a) G has a unique p-Sylow group,

(b) G is abelian if and only if there is a unique l-Sylow group.

Proof. (a): Let νp and νl be the number of p- and l-Sylow groups, respectively.
Sylow’s theorems yield

νp | l2 ⇒ νp ∈ {1, l, l2}

and νp ≡ 1 mod p. Because of l | (p− 1) we have l ≤ (p− 1) and l ≡ 1 mod p
would force l = 1. In the case of l2 ≡ 1 mod p we would either encounter the
case of l ≡ 1 mod p again or get l ≡ −1 mod p. However, the latter contradicts
l being odd.

(b): If there is a unique l-Sylow group, G decomposes as a direct product of its l-
and p-Sylow group. In particular, G is abelian. The converse is clear from the fact
that a Sylow group is unique if and only if it is a normal subgroup.

(2.15) Lemma. Let G be a non-abelian group of order l2 p. If l2 - (p− 1) or no l-Sylow
group of G is cyclic, then G contains a cyclic normal subgroup of order lp.
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Proof. Let P denote the unique p-Sylow group and L an arbitrary l-Sylow group
of G. We have G ∼= Poφ L, where the semi-direct product is formed with respect
to

φ : L→ Aut(P) ∼= Z�(p− 1)Z, x 7→
{

g 7→ xgx−1
}

.

Since G is non-abelian, φ has to be non-trivial. Now our assumption implies that
φ cannot be injective, so ker φ is a subgroup of order l and

〈P, ker φ〉 = Poφ ker φ

is a cyclic subgroup of order lp. As G/P ∼= L is abelian, this is also a normal
subgroup.

(2.16) Remark. Using the same notation as in the proof of Lemma (2.15) we can de-
scribe the conjugacy class of an element g ∈ P as the set

{φ(x)(g) | x ∈ L}.

This description will be used later.

The normal subgroup described in Lemma (2.15) can be characterised in more detail:

(2.17) Lemma. Let G be a non-abelian group of order l2 p and N ⊆ G a subgroup. The
following statements are equivalent:

(a) N is a cyclic subgroup of order lp,

(b) N = P · Z(G), where P E G is the unique p-Sylow group and Z(G) the centre of
G.

Proof. “(a) ⇒ (b)”: Let N ⊆ G be an abelian subgroup of order lp. Take an ele-
ment x ∈ N of order l and choose an l-Sylow group L containing x. The element
x commutes with all elements in L and all elements in the unique p-Sylow group
P ⊆ N. Thus, x ∈ Z(G) due to G = P · L and it suffices to show Z(G) = 〈x〉.

Since G is non-abelian, we have |Z(G)| 6= l2 p. We also cannot have |Z(G)| = lp,
because in this case G/Z(G) would be cyclic, hence G would be abelian. Since
x ∈ Z(G) is an element of order l, the only possible case remaining is |Z(G)| = l.

“(b)⇒ (a)”: Clear since P · Z(G) is obviously abelian.

We now explore the irreducible characters of non-abelian groups of order lp, as this
will be useful when considering non-abelian groups of order l2 p. Note that a non-
abelian group of order lp exists only for l | (p− 1).
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(2.18) Lemma. Let l, p be primes satisfying l | (p− 1) and G a non-abelian group of
order lp with unique p-Sylow group P E G.

(a) G has l linear and p−1
l non-linear irreducible characters,

(b) every non-linear character of G is induced by a non-trivial character of P. In
particular, they are of degree l.

Proof. G being non-abelian implies [G, G] 6= 1, so from G/P being abelian follows
P = [G, G]. The number of linear characters of G is therefore (G : P) = l.

Let χ ∈ Irr(G) be non-trivial. Then χ = indG
P (λ) for some λ ∈ Irr(P) by Lemma

(2.12) (a) and (b). Suppose λ = 1P, then

χ = indG
P (1P) = ∑

ρ∈Irr(G/P)
ρ

is not irreducible, hence λ must be non-trivial. Moreover, χ being induced by λ

implies that χ is of degree l and so the number of non-linear irreducible characters
can be calculated from the equation

lp = |G| = ∑
χ∈Irr(G)

(deg χ)2.

We are finally in a position to state our main result on the character theory of non-
abelian groups of order l2 p.

(2.19) Proposition. Let l, p be odd primes with l | (p− 1), and G a non-abelian
group of order l2 p.

(a) G has l2 linear characters,

(b) every non-linear character of G has degree l or l2 and we have

p = 1 + s1 + s2l2,

where s1 and s2 denote the number of irreducible degree l and degree l2

characters, respectively,

(c) s1s2 = 0, where s2 = 0 if and only if G has an abelian normal subgroup N
of order lp.

(2.20) Remark. The proof of Proposition (2.19) shows:
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• If s2 = 0, every irreducible character of N that is non-trivial on the p-Sylow
group P induces an irreducible character of G of degree l, where the induced
characters only depend on the restriction to P, and all non-linear character of G
are of this form,

• if s1 = 0, every non-trivial character of P induces an irreducible character of G
and every non-linear character of G is of this form.

Proof. (a): Let P be the unique p-Sylow group of G. The factor group G/P is
abelian, hence [G, G] ⊆ P. Since G is non-abelian, we must have P = [G, G]. Con-
sequently, G has (G : P) = l2 linear characters.

(b): Let χ be a non-linear irreducible character of G and N ⊆ G a subgroup of or-
der lp. Applying Lemma (2.12) (a) and (b) yields χ = indG

N(ϕ) for any irreducible
constituent ϕ of χN . Thus, χ has degree l or l2 by Lemma (2.18).

Let the numbers s1 and s2 be defined as above, then

l2 p = |G| = l2 + s1l2 + s2l4 ⇔ p = 1 + s1 + s2l2.

(c): Assume there is an abelian normal subgroup N E G of order lp. Every irre-
ducible character of N is linear, so the same argument as given in (b) shows that
s2 = 0.

Now consider the case that every subgroup of order lp is non-abelian. Choose
any l-Sylow group L of G, then we may assume L to be cyclic by Lemma (2.15).
Moreover, we have G = Poφ L, where φ is defined by

φ : L→ Aut(P), y 7→
{

x 7→ yxy−1
}

.

Let α ∈ L and x ∈ P be generators. Then φ(α) must be of order l2 because other-
wise φ would have a non-trivial kernel and we would get an abelian subgroup of
order lp (cf. the proof of Lemma (2.15)). Furthermore, we have

φ(αi)(x) = φ(αj)(x) ⇔ φ(αi) = φ(αj) ⇔ l2 | j− i.

Hence φ(αi)(x) 6= φ(αj)(x) for all 0 ≤ i, j ≤ l2 − 1. This shows that the conjugacy
class of x in G consists of (at least) l2 elements.
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Let λ 6= 1 be a linear character of P. Then λ(x) determines λ uniquely. Let gxg−1

be conjugate to x, then

λg : P→ C×, x 7→ λ(gxg−1)

also defines a linear character of P. Since λ is injective, we get (at least) l2 distinct
G-conjugates of λ.

Let ϕ be an irreducible character of N of degree l, then ϕP is reducible and Lemma
(2.12) (b) gives ϕ = indN

P (λ) for a non-trivial character λ ∈ Irr(P). More precisely,
ϕ = indN

P (θ) if and only if θ and λ are conjugate to each other. Let g ∈ G and
n ∈ N, then

ϕg(n) = ϕ(gng−1) = indN
P (λ)(gng−1) =

=
1
|P| ∑

m∈N
λ0(mgng−1m−1)

(∗)
=

=
1
|P| ∑

m∈N
λ0(gmnm−1g−1) = indN

P (λ
g)(n),

where Ng = gN was used at (∗). We have seen above that λ has at least l2 con-
jugates, of which l each induce the same character on N. As a consequence, ϕ has
at least l conjugates in G.

Now let χ be an irreducible constituent of indG
N(ϕ), then ϕ is an irreducible con-

stituent of χN and so is every conjugate of ϕ. In particular, χN is reducible and
Lemma (2.12) (b) yields

χ = indG
N(ϕ) = indG

P (λ).

Since there are p−1
l irreducible characters of degree l of N and each l of them

induce an irreducible character of degree l2 of G, we have constructed p−1
l2 of

them in total. Comparing with the equation in (b), we get s2 = p−1
l2 and s1 = 0 as

desired.

2.3 Idempotents

The aim of this section is to collect all results on idempotents that will be necessary in
the next chapter.

Let G be an abelian group of order n and K a field such that |G| ∈ K×. We set
Ĝ = Hom(G, K×), which coincides with the previous definition of Irr(G) in the case
of K = C.
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(2.21) Lemma. Let G be an abelian group of finite order n and K a field. If χ, ϕ ∈ Ĝ,
then

(a) ∑
g∈G

χ(g) =

{
|G| if χ = 1,

0 otherwise,

(b) ∑
g∈G

χ(g)ϕ(g−1) =

{
|G| if χ = ϕ,

0 otherwise.

Proof. (a): Assume χ 6= 1, then there is x ∈ G such that χ(x) ∈ K× \ {1}. We
therefore get

χ(x) ∑
g∈G

χ(g) = ∑
g∈G

χ(xg) = ∑
g∈G

χ(g),

which gives ∑g∈G χ(g) = 0.

(b): Follows from (a) as the product of (linear) characters is again a (linear) char-
acter.

(2.22) Lemma. Let G be an abelian group of finite order n and K a field such that
|G| = |Ĝ| and char(K) - n. If g, h ∈ G, then

(a) ∑
χ∈Ĝ

χ(g) =

{
|G| if g = 1,

0 otherwise,

(b) ∑
χ∈Ĝ

χ(g)χ(h−1) =

{
|G| if g = h,

0 otherwise.

Proof. (b): Write G = {g1, ..., gn} and Ĝ = {χ1, ..., χn}, then Lemma (2.21)(b) is
equivalent to stating that

n

∑
k=1

χi(gk)χj(g−1
k ) = δij · |G| (∗)

for all 1 ≤ i, j ≤ n. Let A = (aik) and B = (bik) be the (n× n)-matrices with entries

aik = χi(gk) and bik = χi(g−1
k ),

respectively. Now (∗) gives
A · Bt = |G| · I,

where I denotes the identity matrix. Since |G| is a unit in K, we also have Bt A =
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|G| · I, which is equivalent to

n

∑
k=1

χk(gi)χk(g−1
j ) = |G|δij

for all 1 ≤ i, j ≤ n.

(a): Follows from (b) by evaluating at h = 1.

(2.23) Remark. The condition |G| = |Ĝ| in Lemma (2.22) is fulfilled if, for example, K
is a finite field and G is an abelian finite group such that the exponent of G divides
|K×| or if K is algebraically closed.

(2.24) Definition. Let G be an abelian finite group and K a field such that |G| ∈ K×.
For every χ ∈ Ĝ we set

eχ =
1
|G| ∑

g∈G
χ(g)g−1 ∈ K[G].

The next lemma collects some useful properties of these elements eχ, among which is
also the explanation why one usually refers to them as idempotents.

(2.25) Lemma. Let G be a finite abelian group and K a field such that |G| ∈ K× and
|G| = |Ĝ|.

(a) ∑χ∈Ĝ eχ = 1G,

(b) g · eχ = χ(g)eχ for any g ∈ G,

(c) eχeϕ =

{
eχ if χ = ϕ,

0 otherwise.

Proof. (a): We calculate:

∑
χ∈Ĝ

eχ = ∑
χ∈Ĝ

1
|G| ∑

g∈G
χ(g)g−1 (2.22)(a)

=
1
|G| · (|G| · 1G) = 1G.

(b): This is again a short calculation:

g · eχ =
1
|G| ∑

h∈G
χ(h)gh−1 =

1
|G| ∑

h∈G
χ(hg−1)χ(g)(hg−1)−1 = χ(g)eχ.
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(c): One last calculation:

eχeϕ =
1
|G| ∑

g∈G
χ(g)g−1eϕ

(b)
=

1
|G| ∑

g∈G
χ(g)ϕ(g−1)eϕ

(2.21)(b)
=

{
eχ if χ = ϕ,

0 otherwise.

We are now able to prove the main result of this section, the decomposition of K[G]-
modules using idempotents.

(2.26) Theorem. Let G be a finite abelian group and K a field such that |G| ∈ K×

and |G| = |Ĝ|. If A is a K[G]-module, the maps

f : A→
⊕
χ∈Ĝ

eχ A, a 7→ (eχa)χ and g :
⊕
χ∈Ĝ

eχ A→ A, (eχaχ)χ 7→∑
χ∈Ĝ

eχaχ

define K[G]-ismorphisms that are inverse to each other.

Proof. Let a ∈ A, then

(g ◦ f )(a) = g ((eχa)χ) = a ·∑
χ∈Ĝ

eχ
(2.25)(a)
= a.

Conversely, if (eχaχ)χ is an element in
⊕

χ∈Ĝ eχ A, we have

( f ◦ g)
(
(eχaχ)χ

)
= f ( ∑

χ∈Ĝ

eχaχ) =

 (∑
χ∈Ĝ

eχaχ)eϕ


ϕ

(2.25)(c)
= (eϕaϕ)ϕ.
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3.1 Higher ramification groups

In this section we state some well-known facts about higher ramification groups needed
later on. For a more comprehensive discussion of these see [Ser79, Ch. IV] or [Neu92,
Ch. II, 10].
By a local field we will always mean a non-archimedean local field.

(3.1) Definition. Let L|K be a Galois extension of local fields with Galois group G
and valuation vL on L, then

Gs = {σ ∈ G | ∀x ∈ OL : vL(σx− x) ≥ s + 1}, s ≥ −1

is called the s-th ramification group.

Observe that G−1 = G and G0 is the inertia subgroup of G.

(3.2) Lemma. Let L|K be a finite Galois extension of local fields.

(a) The Gs form a decreasing sequence of normal subgroups,

(b) there is s0 ∈ Z such that Gs = 1 for all s ≥ s0.

Proof. (a): Let σ, τ ∈ Gs and x ∈ OL, then

vL (στx− x) = vL (στx− τx + τx− x) ≥ min {vL(στx− τx), vL(τx− x)} ≥ s+ 1.

This shows that Gs is a subgroup of G. Now take ρ ∈ G arbitrary. We have

vL(ρτρ−1x− x) = vL(τρ−1x− ρ−1x) ≥ s + 1,

so Gs is indeed a normal subgroup.

(b): By [Neu92, Lemma II.10.4], there is α ∈ OL such that OL = OK[α]. Set

s0 = max
σ∈G\{1}

vL(σα− α),

then s0 is finite, because σx − x = 0 would imply σ = 1. This shows that the
identity is the only element of Gs for s ≥ s0.

(3.3) Lemma. Let L|K be a finite Galois extension of local fields with Galois group G
and H ⊆ G a subgroup. If M = LH is the fixed field of H, then

Hs = Gs ∩ H for all s ≥ −1.
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Proof. An element σ ∈ G is in Gs ∩ H if and only if

σ ∈ H and vL(σx− x) for all x ∈ OL,

which is exactly the condition of σ belonging to Hs.

For each n ∈ N we put U(n)
L = 1 + pn

L, where pL denotes the maximal ideal of the
p-adic number field L, and call U(n)

L the group of principal units of level n.

(3.4) Proposition. Let L|K be a finite Galois extension of local fields with Galois group
G and πL ∈ OL a uniformising element. For every integer s ≥ 0, the map

Gs�Gs+1 → U(s)
L �U(s+1)

L
, σ 7→ σπL

πL

is an injective homomorphism independent of the choice of πL.

(3.5) Remark. If λ denotes the residue field of L, we have

U(0)
L �U(1)

L
∼= λ× and U(s)

L �U(s+1)
L

∼= λ

for every integer s ≥ 1. Thus, G1 is the unique p-Sylow subgroup of G0 and Gs is a
p-group for s ≥ 1.

Proof. We first check the described map is well-defined. Let σ ∈ Gs for some s ≥ 0,
then

vL(σπL − πL) ≥ 1 + s ⇔ σπL − πL ∈ p1+s
L ⇔ σπL

πL
− 1 ∈ ps

L,

which shows σπL
πL
∈ U(s)

L . The same argument shows that the map only depends
on the coset in Gs/Gs+1 as soon as we show it to be a homomorphism. In order to
do this, take σ, τ ∈ Gs. We now have:

στπL

πL
=

στπL

τπL
· τπL

πL
.

It therefore suffices to show the independence of the choice of uniformising ele-
ment. Let π′L = επL, where ε ∈ O×L , be another choice of uniformiser. Then

σε− ε ∈ ps+1
L ⇔ σε

ε
− 1 ∈ ps+1

L ,

hence
σπ′L
π′L
· πL

σπL
=

σε

ε
∈ U(s+1)

L .
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It remains to check injectivity. The following equivalence holds:

σπL

πL
∈ U(s+1)

L ⇔ σπL − πL ∈ ps+2
L .

We show that this already implies σx − x ∈ ps+2
L for all x ∈ OL. Firstly, by

Lemma (3.3) we may assume that L|K is totally ramified. In this case, we have
OL = OK[πL] (see [Ser79, I§6, Prop. 18]) and writing x = ∑n

k=0 akπk
L, we get

vL(σx− x) = vL

(
n

∑
k=0

ak(σπk
L − πk

L)

)
≥ min

0≤k≤n
vL(ak) + vL(σπk

L − πk
L) ≥ s + 2.

Herbrand’s Theorem

Let L|K be a finite Galois extension of local fields and M an intermediate field. A
natural question to ask is whether the higher ramification groups of L|M and M|K are
determined by those of L|K, as it is the case when considering inertia subgroups only.
We saw in Lemma (3.3) that higher ramification groups behave well when passing to
subgroups, which is, unfortunately, not the case when passing to quotients. However,
one can nonetheless obtain a compatibility statement for this case if one twists the
numbering of the Gs. In order to do this, define the following function:

ηL|K : [−1, ∞[ −→ [−1, ∞[, s 7→
∫ s

0

1
(G0 : Gx)

dx,

where we set (G0 : Gx) = (Gx : G0)−1 for x ≤ 0. In other words, ηL|K(s) = s for
−1 ≤ s ≤ 0 and

ηL|K(s) =
1
|G0|

(
(
bsc

∑
i=1
|Gi|) + (s− bsc) · |Gdse|

)
for s ≥ 0

using the floor and ceiling functions. Observe that ηL|K is a continuous and strictly
increasing function, hence a homeomorphism of [−1, ∞[ into itself. Denote by ψL|K its
inverse.

We can now define the upper numbering of higher Ramification subgroups by setting

Gs = GψL|K(s) or equivalently GηL|K(s) = Gs

for all s ≥ −1.

One can also express ψL|K(s) as an integral involving higher Ramification subgroups
in upper numbering.
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(3.6) Lemma. Let L|K be a finite Galois extension of local fields. Let s ≥ −1, then

ψL|K(s) =
∫ s

0
(G0 : Gx)dx.

Proof. Let f (s) denote the integral above, then we have

( f ◦ η)′(s) =
d
ds

∫ η(s)

0
(G0 : Gx)dx = (G0 : Gη(s)) · η′(s) = (G0 : Gs) ·

1
(G0 : Gs)

= 1.

Moreover, ( f ◦ η)(0) = 0, so f ◦ η = id by integration. Evaluating this equation at
ψ(s) gives f = ψ.

An important result which makes dealing with the upper numbering in most cases
much easier is

(3.7) Theorem (Hasse-Arf). Let L|K be a finite abelian extension of local fields. If
s ≥ −1 is a jump in the upper numbering, i. e. Gs+ε 6= Gs for all ε > 0, then s ∈ Z.

Proof. See [Ser79, Chapter V, §7].

Using the Theorem of Hasse-Arf we can rephrase Lemma (3.6) for an abelian extension
L|K as

ψL|K(s) = |G0| ·
(
(
bsc

∑
i=1

1
|Gi| ) +

s− bsc
|Gdse|

)
for s ≥ 0.

The statement commonly refered to as Herbrand’s Theorem is now the following

(3.8) Theorem (Herbrand). Let L|K be a finite Galois extension with Galois group G
and L|M an intermediate extension with Galois group H. Let s ≥ −1, then

(Gs · H)�H =
(
G�H

)
t , where t = ηL|M(s).

Proof. See [Neu92, Ch. II, Thm. (10.7)] or [Ser79, IV§3, Lemma 5].

A somehow more natural way of stating this result is given below.

(3.9) Corollary. Let L|K be a finite Galois extension with Galois group G and L|M an
intermediate extension with Galois group H. Let s ≥ −1, then

(Gs · H)�H =
(
G�H

)s .
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Proof. See [Neu92, Ch. II, Thm. (10.9)] or [Ser79, IV§3, Proposition 14].

The following two Lemmas comprise two statements that will be crucial to our pur-
poses.

(3.10) Lemma. Let L|K be a Galois extension of local fields with Galois group G. If G
is a simple group and s ≥ −1, then

Gs = 0 ⇔ Gs = 0.

Proof. “⇒”: We have ΨL|K(s) ≥ s for all s ≥ −1, so Gs = GΨL|K(s) ⊆ Gs = 0.

“⇐”: We proceed by contraposition. Assume Gs 6= 0, then

G = G−1 = ... = Gs

and we have
ηL|K(s) =

∫ s

0

1
(G0 : Gx)

dx = s.

Hence Gs = GηL|K(s) = Gs 6= 0.

(3.11) Lemma. Let L|K be a finite abelian extension of local fields with Galois group G
and set n = |G0/G1|. If s ≥ −1 is an integer such that n - s, then Gs = Gs+1.

Proof. See [Ser79, IV§2, Corollary 2].

3.2 Some results from local class field theory

We use this section to state some rather special results of local class field theory we
will need later on. We begin with the relationship of higher Ramification groups and
the local reciprocity map. If L|K is an abelian extension of local fields, the latter will
be denoted by (−, L|K).

(3.12) Proposition. Let L|K be a finite abelian extension of local fields and s ≥ −1 an
integer. Then

(U(s)
K , L|K) = Gs.
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Proof. See [Iwa86, Thm. 7.12].

Next we want to explore the interaction of local class field theory and Galois actions.

(3.13) Lemma. Let L|K be a finite extension of local fields and let M be an intermediary
field such that L|M and M|K are both abelian extensions. Then L|K is Galois if and
only if NL|M(L×) is stable under the action of GM|K.

Proof. Let K be an algebraic closure of K and τ ∈ HomK(L, K), then τL|M is also
Galois and

GL|M → GτL|M, σ 7→ τστ−1

is an isomorphism. Hence NτL|M(τL×) = τNL|M(L×).

Since τ was chosen arbitrarily, L|K is Galois if and only if τL = L, which is
equivalent to NL|M(L×) = NτL|M(τL×) by local class field theory. Comparing
with the calculation above now gives the result.

If L, M, K are as in Lemma (3.13) and the extension L|K is Galois, then we have a
well-defined natural action on the quotient M×/NL|M(L×).

(3.14) Lemma. Let L|K be a finite Galois extension of local fields and M an intermedi-
ary field such that L|M is an abelian and M|K a cyclic extension. Then L|K is abelian
if and only if GM|K acts trivially on M×/NL|M(L×).

Proof. Let G = GL|K and H = GL|M. Now H is a normal subgroup of G, so G
acts on H by conjugation. This action coincides with the action of G/H on H
by conjugation because H is abelian by assumption. Thus, H is contained in the
centre Z(G) of G if and only if G/H acts trivially on H. On the other hand, the
former holds if and only if G/Z(G) is a quotient of G/H. Since M|K is assumed
to be a cyclic extension, we get that G/Z(G) is cyclic and G therefore abelian. It
therefore suffices to show that the action of G/H on H by conjugation is the same
as the action of GM|K on M×/NL|M(L×). However, this is exactly [Neu11, II§5, Satz
(5.10)].

(3.15) Corollary. Let L|K be a finite Galois extension of local fields and M an interme-
diary field such that L|M is unramified and M|K is cyclic. Then L|K is abelian.
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Proof. Let π ∈ M× be a uniformising element of M, then we have a decomposition

M× = 〈π〉 ×U(0)
M

and NL|M(L×) = 〈πn〉 × U(0)
M , where n = [L : M]. Now if σ ∈ GM|K, we have

σπ = επ for some ε ∈ U(0)
M . Thus, σπ ≡ π mod NL|M(L×). This shows that GM|K

acts trivially on M×/NL|M(L×).

3.3 Weakly ramified extensions

Recall that a finite Galois extension L|K of local fields with Galois group G is called
unramified if G0 vanishes and tamely ramified if G1 vanishes.

(3.16) Definition (Erez). A finite Galois extension L|K of local fields with Galois
group G is called weakly ramified if G2 = 0.

In particular, any unramified or tamely ramified extension is weakly ramified. We will
see later that if p is a prime and n ∈ N is divisible by p, then there is a wildly and
weakly ramified extension L|Qp of degree n (cf. Proposition (3.29)).

(3.17) Lemma. Every Galois sub-extension of a weakly ramified extension is itself
weakly ramified.

Proof. Let L|K be a weakly ramfied extension with Galois group G and M an in-
termediate field. Lemma (3.3) then gives that L|M is weakly ramified.
Observe that ψL|M(2) ≥ 2, hence GψL|M(2) ⊆ G2 = 0. Applying Herbrand’s The-
orem (3.8) yields

(GM|K)2 = (GψL|M(2) · GL|M)�GL|M = 0.

(3.18) Remark. Note that the composite of weakly ramified extensions is not necessar-
ily weakly ramified. As an example for this phenomenon, let p be an odd prime and
ξp, ξp2 ∈ Qp be a primitive p-th and p2-th root of unity, respectively, and consider the
cyclotomic extension L = Qp(ξp2). Put G = GL|Qp . According to [Ser79, IV4, Prop. 18],
we have

G = G0, G1 = ... = Gp−1, Gp = 0,
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where G1 is the unique subgroup of order p. In particular, LG1 = Qp(ξp) is a tamely
ramified extension field of Qp. Let H ⊆ G be the unique subgroup of index p, then
H1 = 0 and thus ηL|LH (s) = s

p−1 for all s ≥ 1. Hence(
G�H

)
2 = (GψL|LH (2) · H)�H = (G2(p−1) · H)�H = 0.

We have therefore shown that L = LH · LG1 |Qp is a not weakly ramified extension that
is the composite of two weakly ramified extensions. See also Proposition (3.21) on this
matter. �

An immediate consequence of Proposition (3.12) and Lemma (3.10) is the following
important

(3.19) Lemma. A finite abelian Galois extension L|K of p-adic number fields of
degree p is weakly ramified if and only if U(2)

K ⊆ NL|K(L×).

If L|K is a finite Galois extension of local fields and Lur|K its maximal unramified sub-
extension, then Lemma (3.3) implies that L|K is weakly ramified if and only if L|Lur

is weakly ramified. Even more can be said if L|Lur is of degree p, where p is an odd
prime such that Qp ⊆ L.

(3.20) Lemma. Let p be an odd prime and K|Qp a finite unramified extension. If L|K
is a Galois extension of degree p, then L|K is weakly ramified.

Proof. We have (U(1)
K )p ⊆ NL|K(L×) according to local class field theory, so the

statement follows from (U(1)
K )p = U(2)

K using Lemma (3.19).

We are now able to give a full description of abelian and weakly ramified extensions
of Qp, where p denotes an odd prime.

(3.21) Proposition. Let p be an odd prime. For any finite abelian extension L|Qp the
following assertions are equivalent:

(a) L|Qp is weakly ramified,

(b) the ramification degree of L|Qp is either equal to p or coprime to p.

Proof. “(a) ⇒ (b)”: Denote by G the Galois group of L|Qp and suppose p divides
the ramification index of L|Qp. Since G1 6= G2, it follows from Lemma (3.11) that
|G0/G1| is a divisor of 1, hence G0 = G1. We have

G0 = G1 = G1�G2 ↪→ U(1)�U(2) ∼= Fp
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by Proposition (3.4), so |G0| = p.

“(b)⇒ (a)”: If the ramification degree of L|Qp is coprime to p, the extension L|Qp

is tamely ramified. We therefore may assume that |G0| = p and the statement
follows from the previous Lemma (3.20).

3.4 Kummer theory

For the convenience of the reader, we briefly state the main results of Kummer theory
needed shortly.

(3.22) Theorem (Kummer correspondence). Let n > 0 be an integer and K a field such
that char K - n and K× contains the n-th roots of unity µn. There is a bijective inclusion
preserving correspondence defined by

{
subgroups of K×/(K×)n

} { abelian Galois extensions L|K
of exponent dividing n

}
,

∆ K( n
√

a | a ∈ ∆),

(L×)n ∩ K× L.

Denoting the Galois group of K( n
√

a | a ∈ ∆)|K by G, we furthermore have an iso-
morphism

Φ : G → Hom(∆, µn), σ 7→
{

a 7→ σ( n√a)
n√a

}
.

In particular ∆ ∼= G, if |∆| is finite.

Proof. See, for example, [Bos09, 4.9, Thm. 3].

The following is the Kummer-theoretic version of Lemma (3.13).

(3.23) Lemma. Let n > 0 be an integer and M a field such that char K - n and K× con-
tains the n-th roots of unity µn. Let further M|K be a Galois extension, ∆ ⊆ M×/(M×)n

a subgroup, and L = M( n
√

a | a ∈ ∆). The extension L|K is Galois if and only if ∆ is
stable by the Galois group GM|K.
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Proof. Let K be an algebraic closure of K and τ ∈ HomK(L, K), then, as τ was
chosen arbitrarily, L|K is Galois if and only if τL = L. Since τL = M( n

√
a | a ∈ τ∆),

this is the case if and only if τ∆ = ∆ by Kummer correspondence (3.22).

Let K now be a local field satisfying the conditions of Theorem (3.22), then the iso-
morphism mentioned in Theorem (3.22) and the local reciprocity map team up with
each other to give a non-degenerate bilinear map

κ : K×�(K×)n × K×�(K×)n → µn, (a, b) 7→ (a, K( n
√

b)|K)( n
√

b)
n
√

b
,

which is called the Hilbert symbol. This pairing admits the following properties.

(3.24) Proposition. Using the notations introduced above, we have

(a) κ(a, b) = 1 if and only if a ∈ NK( n√b)|K,

(b) κ(a, b) = κ(b, a)−1,

(c) κ(a, 1− a) = 1 and κ(a,−a) = 1.

Proof. See [Neu92, Ch. V, Satz (3.2)].

3.5 Non-abelian and weakly ramified extensions of degree l2p

Let l, p be odd primes satisfying l | (p− 1). The aim of this section is to classify all local
extensions L|Qp of degree l2 p that are non-abelian and weakly ramified. To achieve
this, we will use some of the results on non-abelian groups of order l2 p that have been
proved in chapter II. In particular, recall that such a group contains a unique p-Sylow
group.

The following was proved by Bley, Burns and Hahn in [BBH17, Prop. 9.8].

(3.25) Proposition. Let l, p be odd primes with l | (p− 1). Then there exist exactly
l distinct non-abelian and weakly ramified Galois extension L|Qp of degree l2 p
such that GE|Qp

∼= Z/lZ ×Z/lZ, where E = LP denotes the fixed field of the
unique p-Sylow group P E GL|Q.

The rest of this section will therefore treat the case of E|Qp being a cyclic extension.



42 3 Local Considerations

(3.26) Lemma. Let L|Qp be a non-abelian and weakly ramified Galois extensions of
degree l2 p with Galois group G. Let further P E G be the unique p-Sylow group
and E = LP its fixed field. If l2 - (p− 1) and all l-Sylow groups of G are cyclic, the
extension E|Qp is unramified.

Proof. Assume E|Qp is of ramification degree at least l. By Lemma (2.15) there is
a cylic normal subgroup N E G containing P. Let E′ = LN be its fixed field, then
E|E′ is the unique subextension of E|Qp of degree l and therefore must be totally
ramified by assumption. Now L|E is totally ramified as well by Corollary (3.15),
so L|E′ is a totally ramified extension. We have

∣∣N0�N1

∣∣ = ∣∣∣N�GL|E

∣∣∣ = lp
p

= l,

so N2 = N1 6= 0 by Lemma (3.11) contradicting that L|Qp is weakly ramified.

Unramified case

We will now first treat the case of E|Qp being unramified. As it does not require more
effort, we will consider the slightly more general case of [E : Qp] = n, where n ∈ N is
arbitrary. We begin with some preliminary results on GFq|Fp -stable subgroups of order
p contained in Fq, where q is a power of p.

(3.27) Lemma. Let q = pn for some n ∈N and denote by G = 〈γ〉 the Galois group of
Fq|Fp. Furthermore let b ∈ Fq. The following are equivalent:

(a) |〈b〉| = p and G · 〈b〉 ⊆ 〈b〉,
(b) b is a root of Xp−1 − r for some r ∈ F×p ,

(c) b 6= 0 and 〈b〉 is the zero set of Xp − rX for some r ∈ F×p .

Proof. “(a) ⇒ (b)”: As 〈b〉 is G-stable, we must have γb = rb for some r ∈ Fp.
Now |〈b〉| = p is equivalent to b 6= 0, so γb 6= 0 as well. Hence r ∈ F×p . Thus

γb = bp = rb ⇔ bp−1 = r.

“(b) ⇒ (c)”: As zero is not a root of Xp−1 − r, we must have b 6= 0. Let c ∈ 〈b〉,
that is c = kb for some k ∈ Fp, then

(kb)p = bp = rb.
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Since Xp − rX can have at most p zeros in Fq, the statement follows.

“(c)⇒ (a)”: Firstly, |〈b〉| = p is clear from b 6= 0. Let c ∈ 〈b〉, then

cp − rc = 0 ⇔ γc = rc,

so γkc = rkc ∈ 〈b〉 for all k ∈N by induction.

Using Lemma (3.27) we therefore seek for all r ∈ F×p such that the polynomial Xp−1− r
has a root in Fq.

(3.28) Lemma. Let q = pn for some n ∈ N and r ∈ F×p . The polynomial Xp−1 − r has
a root in Fq if and only if ord r | gcd(n, p− 1).

Proof. Let ∆ ⊆ F×p be the set of elements r ∈ F×p such that Xp−1 − r has a root in
Fq, i. e. the subgroup

∆ = (F×q )
p−1 ∩F×p .

Let ∆1/(p−1) ⊆ F×q be the set of (p− 1)-th roots of elements in ∆, then Kummer
theory (Theorem (3.22)) tells us that

∆ = ∆�(F×p )p−1 ∼= GFp(∆1/(p−1))|Fp
,

so we need to find [Fp(∆1/(p−1)) : Fp]. Observe that Fpp−1 is the maximal abelian
extension of exponent (p− 1) of Fp, so (F×pp−1)

p−1 ∩F×p = F×p by Kummer corres-
pondence and we get

(F×q ∩F×pp−1)
p−1 ∩F×p = ∆∩F×p = ∆.

Thus, Fpn ∩Fpp−1 = Fp(∆1/(p−1)) by Kummer correspondence, so

Fp(∆
1/(p−1)) = Fpgcd(p−1,n) .

Hence ∆ is the unique subgroup of F×p of order gcd(p− 1, n).

(3.29) Proposition. Let n ∈N and E|Qp be the unramified extension of degree n.
The number of extension fields L of E such that L|Qp is a non-abelian and weakly
ramified extension of degree np is gcd(n, p− 1)− 1.



44 3 Local Considerations

(3.30) Remark. The proof will show that for each of these fields L defining a non-
abelian and weakly ramified extension L|Qp there is a unique r ∈ F×p \ {1} such that

NL|E(L×) = (E×)p ·U(2)
E · (1 + N(Xp − rX)⊥ · pE),

where N(Xp− rX) denotes the zero set of the polynomial Xp− rX and the orthogonal
complement is formed with respect to the trace form of Fpn |Fp.

Proof. By local class field theory (Lemma (3.13), Lemma (3.14) and Lemma (3.19)),
every extension field L of E such that L|Qp is a non-abelian and weakly ramified
extension of degree np corresponds to a subgroup U of index p of

E×�(E×)p ·U(2)
E
∼= Z�pZ×U(1)

E �U(2)
E

(∗)

such that U is stable under the action of G = GE|Qp and G acts non-trivially on the
quotient of (∗) by U. Observe that

U(1)
E �U(2)

E
→ Fpn , (1 + xp)U(2)

E 7→ x + pE

is an isomorphism of G-modules, since E|Qp is unramified. Put

V = Fp ×Fpn

and define

b : V ×V → Fp, ((n, α), (m, β)) 7→ n ·m + Tr(αβ),

then b is a non-degenerate and G-invariant bilinear form on V. Thus,{
G-stable subgroups

U ⊆ V of index p

} {
G-stable subgroups

U ⊆ V of order p

}
,

U U⊥,

where the orthogonal complement is formed with respect to b, defines a bijective
correspondence. Let U = 〈(n, α)〉 ⊆ V be a G-stable subgroup of V of order p. We
have

V�U⊥ = U ⊕U⊥�U⊥ ∼= U,

so G acts non-trivially on the quotient if and only if it acts non-trivially on U.
Let σ ∈ G \ {id}. If n 6= 0, then

(n, σα) = σ(n, α) = k(n, α) for some k ∈ F×p
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implies k = 1. That is, G acts trivially on U and hence U⊥ corresponds to an
abelian extension of Qp. We therefore may, and do, assume that U is a G-stable
subgroup of order p of Fpn . By Lemma (3.27) and Lemma (3.28) such subgroups
are exactly the zero sets of the polynomials Xp − rX, where r ranges over all
elements of F×p satisfying rgcd(n,p−1) = 1. The action of G on the roots of one of
these polynomials Xp − rX is given by multiplication by r, so r = 1 is the only
element we need to exclude to ensure a non-trivial G-action on the quotient V/U⊥.

Totally ramified case

Next we deal with the case that E|Qp is a totally ramified extension and begin by
determining such fields E. This turns out to be a Kummer-correspondence-type result.

(3.31) Lemma. Let n ∈ N be a divisor of (p− 1). Denote by µ′ ⊆ Q×p the group of
(p − 1)-th roots of unity and let ξ ∈ µ′, then ξ 7→ Eξ = Q( n

√
ξ p) defines a bijective

correspondence between µ′/(µ′)n and the set of totally ramified cyclic extensions of
Qp of degree n.

Proof. Let ξ ∈ µ′ and choose an n-th root n
√

ξ p of ξ p. We first check that Eξ =

Qp( n
√

ξ p) is indeed a totally ramified cyclic extension of Qp. Note that Xn − ξ p ∈
Zp[X] is an Eisenstein polynomial, so [Eξ : Qp] = n. Observe that

GEξ |Qp → µ′, σ 7→
σ( n
√

ξ p)
n
√

ξ p

is an injective homomorphism, hence GEξ |Qp is cyclic of order n. Let e be the
ramification degree of Eξ |Qp, then comparing valuations gives

e · vQp(ξ p) = vEξ
(ξ p) = n · vEξ

( n
√

ξ p) ≥ n.

Thus, e = n. It remains to show that Eξ = Eζ implies ξζ−1 ∈ (µ′)n for ξ, ζ ∈ µ′.
By Kummer correspondence (3.22), the assertion Eξ = Eζ is true if and only if ξ p
and ζ p generate the same subgroup modulo (Q×p )

n. Suppose

ξ p(ζ p)−k ∈ (Q×p )
n = 〈pn〉 × (µ′)n ×U(1)

Qp

for some k ∈ Z, then k− 1 ∈ nZ by comparing valuations and ξζ−k ∈ (µ′)n. These
observations combine to give

ξζ−1 ≡ ξζ−k ≡ 1 mod (µ′)n
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as desired.

Now let E|Qp be an arbitrary totally ramified cyclic extension of degree n. Let
πE ∈ E be a uniformising element. Since E|Qp is totally ramified, we have πn

E =

ξup for some ξ ∈ µ′ and u ∈ U(1)
E . As n is coprime to p, we may write u = vn for

some v ∈ U(1)
E and get (πE

v )n = ξ p. That is, E contains an n-th root of ξ p and we
must have E = Qp( n

√
ξ p).

Knowing now all totally ramified cyclic extensions E|Qp, we continue by investigating
how such a field E can be extended by a field extension L|E of degree p in order to
obtain a non-abelian weakly ramified extension L|Qp.

(3.32) Lemma. Let n ∈N be coprime to p and E|Qp a totally ramified cyclic extension
of degree n. Then

(a) we necessarily have n | (p− 1),

(b) there is exactly one extension field L of E such that L|Qp is a non-abelian and
weakly ramified extension of degree np.

Proof. (a): By [Neu11, Ch. II, Satz (7.17)], the norm group of E|Qp contains a
uniformising element π of Qp and therefore corresponds to a subgroup of index
n of

Q×p�(Q×p )n · 〈π〉 ∼= µ′�(µ′)n ∼= Z�gcd(n, p− 1)Z,

where µ′ ⊆ Q×p denotes the subgroup of (p− 1)-th roots of unity. The existence
of a subgroup of index n therefore forces n to be a divisor of p− 1.

(b): Every such extension field L corresponds to a subgroup U of index p of

E×�(E×)p ·U(2)
E
∼= Z�pZ×U(1)

E �U(2)
E
∼= Z�pZ×Z�pZ (∗)

that is stable under G = GE|Qp and such that G acts non-trivially on the quotient
of (∗) by U. We therefore first investigate the action of G on (∗).

By Lemma (3.31) we have E = Qp( n
√

ξ p), where ξ is a (p− 1)-th root of unity. Set
πE = n

√
ξ p and choose a generator γ of G, then γπE = ξγπE for some primitve

n-th root of unity ξγ. In particular,

γπE ≡ πE mod (E×)p,

so we may assume that G acts trivially on the first component of (∗). Consider
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the isomorphism

θ : U(1)
E �U(2)

E
→ Fp, (1 + xπE)U

(2)
E 7→ x + pE,

which induces the following G-action on Fp: Let x + pE ∈ Fp, then we have

γ(x + pE) = θ
(

γ(1 + xπE)U
(2)
E

)
= ξγx + pE,

where we used that γx ≡ x mod pE since E|Qp is totally ramified. Let U be a
G-stable subgroup of (∗) of order p and pick a generator (a, b) ∈ U. We have

γb = b ⇔ ξγb = b ⇔ b = 0 or ξγ = 1.

As ξγ is a primtive n-th root, we get that

(a, b)− γ(a, b) = (0, b− γb) ∈ U

is nonzero if b 6= 0. Hence U = 〈(0, b− γb)〉 = {0} ×Fp. Now G acts trivially on
the quotient of (∗) by U, so this U provides an abelian extension of E. We therefore
may assume b = 0, i. e. U = Fp × {0}. As seen above, G acts non-trivially on the
quotient of (∗) by U, so this U indeed corresponds to a non-abelian extension of
E.

Lemma (3.31) and Lemma (3.32) in conjunction give

(3.33) Proposition. Let l, p be odd primes such that l2 | (p − 1), then there are
exactly l2 non-abelian and weakly ramified extensions L|Qp of degree l2 p with
LP|Qp being totally ramified and cyclic, where P denotes the unique p-Sylow
subgroup of the Galois group GL|Qp .

Proof. Follows from Lemma (3.31) and Lemma (3.32) as every such extension L|Qp

contains a unique subextension E|Qp of degree l2.

(3.34) Remark. The proof of Proposition (3.33) shows that each of these non-abelian
and weakly ramified extension L|Qp of degree l2 p with E = LP|Qp being totally rami-
fied and cyclic, where P denotes the unique p-Sylow subgroup of the Galois group
GL|Qp , arises in the following way:
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The unique subfield E is of the form E = Qp( l2
√

ξ p), where ξ is a (p− 1)-th root of
unity of Qp. Now L is the unique extension field of E having norm group

NL|E(L×) = 〈 l2
√

ξ p〉 · µ′ ·U(2)
E ,

where µ′ ⊆ Q×p denotes the subgroup of (p− 1)-th roots of unity.

Ramification degree l case

It remains to look at the case that E|Qp is a cyclic extension of degree l2 and ramifica-
tion index l. By Lemma (3.26) we may assume l2 | (p− 1).

(3.35) Lemma. Let l, p be odd primes such that l2 | (p − 1), then there are exactly
(l − 1) distinct cyclic extensions E|Qp of ramification index l such that [E : Qp] = l2.

Proof. Let E|Qp be such an extension and G its Galois group, then the inertia
subgroup G0 is the unique subgroup of order l, and E′ = EG0 , the unique subfield
of degree l, is unramified over Qp. Hence

(Q×p )
l2 ⊆ NE|Qp(E×) ⊆ NE′|Qp

(
(E′)×

)
= 〈pl〉 ×Z×p

by local class field theory. If we pass to the quotient, this chain corresponds to a
chain

{0} ⊆ N ⊆ N′ in Q×p�(Q×p )l2 ∼= Z�l2Z×Z�l2Z,

where
N′ = 〈(l, 0), (0, 1)〉 ⊆ Z�l2Z×Z�l2Z

corresponds to the norm group of E′|Qp. Now N is a subgroup of index l2 of
Q×p /(Q×p )l2 , so it is a subgroup of order l2 of N′. Firstly, N′ contains l(l − 1) · l
elements of order l2, therefore it contains l cyclic subgroups of order l2, which are
explicitely given by

Uk = 〈(kl, 1)〉, where 0 ≤ k ≤ l − 1.

If U ⊆ N′ is a non-cyclic subgroup of order l2, every of its non-trivial elements has
order l. Counting elements yields that there is exactly one such subgroup, namely

U = 〈(l, 0), (0, l)〉.

However, we have

(Z/l2Z×Z/l2Z)�U ∼= Z�lZ×Z�lZ,
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so U corresponds to a non-cyclic extension of Qp. Now U0 corresponds to

〈pl2〉 × µ′ ×U(1)
Qp

,

i. e. the unramified extension of Qp. It follows that the remaining subgroups Uk
for k ∈ {1, ..., l − 1} correspond to extensions of ramification index l and we only
have to check these extensions to be cyclic as well. Take (l, 1) ∈ Z/l2Z×Z/l2Z

and k ∈ {1, ..., l − 1}, then

n · (1, 1) ∈ Uk ⇔ (n, n) = (rkl, r)

for some r ∈ Z. The latter implies

rkl ≡ n ≡ r mod l2 ⇔ r(kl − 1) ≡ 0 mod l2.

As kl − 1 6≡ 0 mod l, we must have n ≡ r ≡ 0 mod l2. This shows that (1, 1) is
an element of order l2 in (Z/l2Z×Z/l2Z)/Uk.

(3.36) Lemma. Let l, p be odd primes such that l2 | (p− 1) and E|Qp a cyclic extension
of degree l2 and ramification degree l. Then there are exactly l extension fields L of E
such that L|Qp is a non-abelian and weakly ramified extension of degree l2 p.

Proof. Let L be such a field, then its norm group over E corresponds to a subgroup
U of index p of

E×�(E×)p ·U(2)
E
∼= Z�pZ×Fpl (∗)

that is stable under the action of G = GE|Q and such that G acts non-trivially on
the quotient of (∗) by U. We therefore first search for such groups.
Let V be the factor group (∗), then V is an Fp[G]-module and we can apply
Theorem (2.26) to obtain a decomposition

V =
⊕
χ∈Ĝ

eχV,

where Ĝ = Hom(G, F×p ). Every nonzero component of this decomposition is of
order at least p. We now show that there are (l + 1) nonzero components, hence
every nonzero component is of order p.

Let E′ be the unique intermediary field of E|Q, i. e. E′|Qp is the unramified
extension of degree l. Choose a generator γ ∈ G such that γ is an extension of the
Frobenius automorphism of E′|Qp. Since E|E′ is totally, but tamely, ramified, we
can choose a uniformiser πE of E such that πE′ = πl

E is a uniformiser of E′. We
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now have GE|E′ = 〈γl〉 and hence γl(πE) = ξπE for some primitive l-th root of
unity ξ ∈ Z×p , where we may assume ξ = al for some primitive l2-th root of unity
a ∈ Z×p , i. e. γ(πE) = amπE for an integer m satisfying m ≡ 1 mod l. Now define

ψ : G → F×p , γi 7→ ai,

then Ĝ = 〈ψ〉. We furthermore define for r ∈ (Z/l2Z)× an automorphism
fr ∈ Aut(G) by f (γ) = γr.

Pick r such that rl = 1, which is the same as saying that r ≡ 1 mod l, and set
φr = ψ ◦ fr ∈ Ĝ. We now have

eφr =
1
l2 ∑

σ∈G
φr(σ)σ

−1 =
1
l2 ∑

σ∈G/GE|E′
∑

ρ∈GE|E′

φr(σρ)(σρ)−1 =

=
1
l2

l−1

∑
i=0

l−1

∑
j=0

φr(γ
iγjl)γ−iγ−jl (∗∗)

=
1
l2

l−1

∑
i=0

l−1

∑
j=0

ψ(γir+jl)γ−i−jl =

=
1
l2

l−1

∑
i=0

l−1

∑
j=0

air+jlγ−i−jl =
1
l2

(
l−1

∑
i=0

airγ−i

)
·
(

l−1

∑
j=0

ajlγ−jl

)
,

where we used r ≡ 1 mod l at equality (∗∗). Consider the isomorphism

θ : U(1)
E �U(1)

E
→ Fpl , (1 + xπE)U

(1)
E 7→ x + pE,

which induces the following action of G on Fpl : Let x + pE ∈ Fp, then

γi · (x + pE) = θ
(

γi(1 + xπE)U
(1)
E

)
= γi(x)aim + pE

for all i ∈ Z. In particular, we have

γil · (x + pE) = xailm + pE = xail + pE,

since x + pE can be represented by an element x ∈ E′ and m ≡ 1 mod l. Using
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the expression obtained above, we therefore get

eφr · (x + pE) =
1
l2

(
l−1

∑
i=0

airγ−i

)
·
(

l−1

∑
j=0

ajlγ−jl

)
· (x + pE) =

=
1
l2

(
l−1

∑
i=0

airγ−i

)
·

l−1

∑
j=0

ajl · a−jl · (x + pE) =

=
1
l

l−1

∑
i=0

ai(r−m)γ−i · (x + pE) =
1
l

l−1

∑
i=0

airxpl−i
+ pE

If we choose a normal basis element b ∈ Fpl of Fpl |Fp, we thus get eφr · b 6= 0.
Moreover, if ψ0 denotes the trivial character, we have

eψ0 · p =
1
l2 ∑

σ∈G
ψ0(σ)σ−1(p) =

(
NE|Qp(p)

)1/l2

= p 6∈ (E×)p ·U(2)
E ,

so ψ0 and φr for r ∈ (Z/l2Z)× with rl = 1 are the (l + 1) characters giving non-
vanishing components in the decomposition of V above.
It follows that the subgroups of the form (eφr − 1)V are of index p, G-stable and
yield a quotient

V�(eφr − 1)V ∼= eφr V,

on which G acts non-trivially. This way we obtain by local class field theory l ex-
tension fields L of E such that L|Qp is non-abelian, weakly ramified, and of degree
l2 p.

Conversely, if L is a field with these properties, we have

GL|E ∼= E×�NL|E(L×) =
⊕
χ∈Ĝ

eχ ·
(

E×�NL|E(L×)
)

.

As |GL|E| = p, exactly one component is nonzero. Let χ0 be the corresponding
character, then we have

(eχ0 − 1)
(

E×�NL|E(L×)
)
= 0 ⇔ (eχ0 − 1)E× ⊆ NL|E(L×).

Now NL|E(L×) corresponds to a subgroup of index p of

E×�(eχ0 − 1)E× · (E×)p ·U(2)
E

= V�(eχ0 − 1)V ∼= eχ0V.
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We have seen above that this is only possible if χ0 = φr for some r ∈ (Z/l2Z)×

with rl = 1 and
NL|E(L×) = (eχ0 − 1)E× · (E×)p ·U(2)

E .

Lemma (3.35) and Lemma (3.36) combine to give

(3.37) Proposition. Let l, p be odd primes such that l2 | (p − 1), then there are
exactly l(l − 1) non-abelian and weakly ramified extensions L|Qp of degree l2 p
with LP|Qp being cyclic of ramification degree l, where P denotes the unique
p-Sylow subgroup of the Galois group GL|Qp .

We summarise the Propositions (3.29), (3.33) and (3.37) by giving the following table
that displays the respective number of non-abelian and weakly ramified extensions in
each of the possible cases for the ramification index eE|Qp :

eE|Qp 1 l l2

l2 - (p− 1) l − 1 - -

l2 | (p− 1) l2 − 1 l(l − 1) l2

3.6 Local extensions with Galois group SL2(F3)

In this section we prove that for any prime p there is no Galois extension L|Qp whose
Galois group is SL2(F3).

The Binary Tetrahedral Group

Recall that SL2(F3), the Special Linear Group of dimension 2 with coefficients in F3,
is defined as

SL2(F3) = {A ∈ GL2(F3) | det A = 1}

and fits into an exact sequence

1 Z/2Z SL2(F3) A4 1,

where A4 E S4 denotes the Alternating Group of four symbols. As A4 is the sym-
metry group of the tetrahedron, SL2(F3) is sometimes also called the Binary Tetrahed-
ral Group and denoted by Ã4. However, we will stick to the notation SL2(F3).
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〈(
2 1
0 2

)
,
(

2 0
1 2

)〉
〈(

2 2
2 1

)
,
(

1 2
2 2

)〉
〈(

2 1
0 2

)〉 〈(
2 0
1 2

)〉 〈(
0 1
2 1

)〉 〈(
0 2
1 1

)〉
〈(

2 2
2 1

)〉〈(
1 2
2 2

)〉〈(
0 2
1 0

)〉
〈(

1 1
0 1

)〉 〈(
1 0
1 1

)〉 〈(
2 1
2 0

)〉 〈(
2 2
1 0

)〉
〈(

2 0
0 2

)〉
〈(

1 0
0 1

)〉

SL2(F3)

Q

Z/6Z

Z/4Z

Z/3Z

Z/2Z

{0}

N

N

N

N

Figure (3.1): Subgroup lattice of SL2(F3): On the left hand side the respective isomorphism
type is given (Q denotes the Quaternion group). The symbol N indicates a normal subgroup.
The diagram is taken from [Ros09, p. 175].

For more details on SL2(F3) the reader is kindly referred to [Ros09, Chapter 8.2].
For example, we will make use of the subgroup structure of SL2(F3) as displayed in
Figure (3.1) and of the fact that SL2(F3) is the unique non-abelian group of order 24
containing no normal subgroup of order 12.

The case of odd p

We will now show that if p is odd, there is not even Galois extension L|Qp with Galois
group A4. In particular, no Galois extension with Galois group SL2(F3) can exist. It is
crucial for the proof that A4 contains only one non-trivial normal subgroup, namely
the Klein four-group (cf. Figure (3.1)).

(3.38) Proposition. Let p be an odd prime. There is no p-adic number field L such that
L|Qp is a Galois extension with Galois group A4.
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Proof. Suppose there is a Galois extension L|Q with Galois group G ∼= A4. Let
V4 E A4 be the Klein four-group, then LV4 |Qp is a Galois extension of degree 3
and L|LV4 is an extension of degree 4 and exponent 2. We have

(LV4)×�((LV4)×
)2 ∼= Z�2Z× µ′�(µ′)2 ×U(1)

LV4�(U(1)
LV4

)2 ∼= Z�2Z×Z�2Z,

where µ′ ⊆ (LV4)× denotes the subgroup of (p f − 1)-th roots of unity with f being
the residue degree of LV4 |Qp. Choose a uniformising element π ∈ LV4 , then we
have

NL|LV4 (L×) = 〈π2〉 × (µ′)2 ×U(1)
LV4

,

so the extension LV4 |L has ramification degree 2. It follows that L|Qp has ramific-
ation degree 2 or 6. However, A4 contains neither a normal subgroup of order 2
nor of order 6.

The case p = 2

Unlike in the case of odd p, it turns out that there actually does exist a unique Galois
extension L|Q2 with Galois group A4. Before proving this, we first prove a prepara-
tional

(3.39) Lemma. Let L|Q2 be a Galois extension with Galois group A4. Then LV4 |Q2 is
unramified and L|LV4 is totally ramified.

Proof. Observe that
Q×2�(Q×2 )3 ∼= Z�3Z,

so there is a unique Galois extension of Q2 of degree 3, namely the unramified one.

The extension L|LV4 cannot be unramified, as this would mean that L|Q2 is un-
ramified, hence abelian. So we must have 2 ≤ eL|Q2

≤ 4, where eL|Q2
denotes the

ramification index of L|Q2. Now the inertia subgroup of L|Q2 is a normal sub-
group having degree eL|Q2

and as V4 is the only non-trivial normal subgroup of
A4, we must have eL|Q2

= 4. Thus, L|LV4 is a totally ramified extension.

We now determine the unique extension field Z of Q2 such that Z|Q2 is a Galois
extension with Galois group A4.

(3.40) Proposition. There is a unique field Z such that Z|Q2 is a Galois extension with
Galois group A4. Let E = ZV4 , i. e. E|Q2 is the unramified extension of degree 3, pick
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a root α ∈ E× of X3 + X + 1 and denote by ϕ ∈ GE|Q2
the Frobenius automorphism,

then we have

Z = E
( √

5(1 + 2α),
√

5(1 + 2ϕ(α))

)
.

Moreover, the respective norm group is

NZ|E(Z×) = 〈2〉 × µ7 × 〈−1, U(2)
E 〉 ⊆ E×.

Proof. It follows from the exact sequence

1 U(2)
E /(U(1)

E )2 U(1)
E /(U(1)

E )2 U(1)
E /U(2)

E 1

and [Neu11, Satz II.(3.7)] that U(2)
E /(U(1)

E )2 is of order 2, so it is generated by the

class of a single element of U(2)
E that is not a square. Suppose 5 ∈ (U(1)

E )2, i. e.
there is x ∈ OE such that

1 + 2 · 2 = (1 + 2x)2 ⇔ 1 + 4 = 1 + 4(x + x2) ⇔ 1 = x + x2.

In particular, x + pE would be a root of the polynomial X2 + X + 1 in F8. How-
ever, X2 + X + 1 is irreducible in F8[X]. The exact sequence above is a split ex-
act sequence of F2-vector spaces, hence {−1, 1 + 2α, 1 + 2ϕ(α), 5} is a F2-basis of
U(1)

E /(U(1)
E )2 using the isomorphism

θ : U(1)
E �U(2)

E
→ F8, (1 + 2x)U(2)

E 7→ x + pE.

The polynomial X3 + X + 1 encodes the following equations:

0 = TrE|Q2
(α)

1 = αϕ(α) + αϕ2(α) + ϕ(α)ϕ2(α)

−1 = NE|Q2
(α)

A short calculation now yields

NE|Q2
(1 + 2α) = (1 + 2α)(1 + 2ϕ(α))(1 + 2ϕ2(α)) =

= 1 + 2 TrE|Q2
(α) + 4(αϕ(α) + αϕ2(α) + ϕ(α)ϕ2(α)) + 8NE|Q2

(α) =

= 1 + 4− 8 =

= −3.
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Observe that −3 ∈ U(2)
E \ (U

(1)
E )2 by the same argument as was used above to show

5 ∈ U(2)
E \ (U

(1)
E )2. Consequently, the action of GE|Q2

on U(1)E/(U(1)
E )2 is defined by

ϕ(1 + 2α) = 1 + 2ϕ2(α), ϕ(1 + 2ϕ(α)) = 5(1 + 2α)(1 + 2ϕ(α)) mod (E×)2

and one immediately checks that

U(1)E�(U(1)
E )2 ={1} ∪ {−1} ∪ {5} ∪ {−5}

∪ {(1 + 2α), (1 + 2ϕ(α)), 5(1 + 2α)(1 + 2ϕ(α))}
∪ {−(1 + 2α), −(1 + 2ϕ(α)), −5(1 + 2α)(1 + 2ϕ(α))}
∪ {5(1 + 2α), 5(1 + 2ϕ(α)), (1 + 2α)(1 + 2ϕ(α))}
∪ {−5(1 + 2α), −5(1 + 2ϕ(α)), −(1 + 2α)(1 + 2ϕ(α))}

is the decomposition into disjoint GE|Q2
-orbits. From this explicit description it

is obvious that the only GE|Q2
-stable subgroup of E×/(E×)2 of order 4 on which

GE|Q2
acts non-trivially is

〈5(1 + 2α), 5(1 + 2ϕ(α))〉.

Observe that if U = 〈a, b〉 is a subgroup of E×/(E×)2 generated by elements
a, b ∈ Q2, then E(

√
a,
√

b) = E ·Q2(
√

a,
√

b) is the composite of two linearly dis-
joint abelian extensions of Q2, hence it is itself an abelian extension of Q2. Thus,
Kummer correspondence (3.22) and Lemma (3.23) give that

Z = E
(√

5(1 + 2α),
√

5(1 + 2ϕ(α))

)
is the only candidate for an extension Z|E having Galois group V4 such that Z|Q2

is a non-abelian Galois extension. Since 5(1 + 2α) is not fixed by ϕ, the exten-
sion E(

√
5(1 + 2α))|Q2 is not Galois by Lemma (3.23), hence Z|Q2 is indeed non-

abelian. Thus, the Galois group GZ|Q2
is a non-abelian group of order 12 having

GZ|E ∼= V4 as a normal subgroup. The only such group is A4.

Now the norm group of an extension K|E with GK|E = V4 and such that K|Q2

is non-abelian corresponds to a GE|Q2
-stable subgroup U of index 4 of Z×/(Z×)2

such that GE|Q2
acts non-trivially on the quotient (Z×/(Z×)2)/U. We know from

the previous discussion that there is exactly one such group, so we must have

U = 〈2,−1, 5〉,

which concludes the proof.
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L

Z := LZ(G)

E′2

E := EQ

Q2

E′1 E′3

2 ramified

2 ramified

2 ramified

3 unramified

V4

Q

Z/3Z

Z/2Z

A4

SL2(F3)

Z/4Z

Z/2Z

Z/2Z

Figure (3.2): Illustration of a field extension L|Q2 with Galois group G ∼= SL2(F3). Here Z(G)
denotes the centre of G and Q ⊆ G the unique 2-Sylow group. All Galois subextensions are
marked with a square bracket carrying the isomorphism type of the respective Galois group.

(3.41) Remark. According to the LMFDB database3, the field Z determined in Propos-
ition (3.40) is, as an extension of Q2, generated by the polynomial

X12 − 2X11 + 6X10 + 4X9 + 6X8 + 12X7 − 4X6 − 8X3 + 16X2 − 8.

Crucial to the remaining proof is now the following result.

(3.42) Theorem (Fröhlich). Let K be a local field of characteristic 6= 2 and a, b ∈ K× \
(K×)2. The field K(

√
a,
√

b) has an extension field L such that L|K is a Galois extension
with GL|K = Q, the quaternion group, if and only if

κ(a, b) · κ(a,−1) · κ(b,−1) = 1,

where κ : K×/(K×)2 × K×/(K×)2 → {±1} denotes the Hilbert symbol.

Proof. See [Frö85, (7.7)]

(3.43) Theorem. There is no Galois extension L|Q2 such that GL|Q2
∼= SL2(F3).

3See http://www.lmfdb.org/LocalNumberField/2.12.18.59

http://www.lmfdb.org/LocalNumberField/2.12.18.59
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Proof. Suppose there is such an extension L|Q2, then Z ⊆ L, where Z denotes
the unique field of Proposition (3.40), and L|E is a Galois extension having Galois
group Q. It therefore suffices to show that such a field does not exist.

It also follows from Proposition (3.40) (using the notation introduced there) that

NE(
√

5(1+2α))|E

(
E(
√

5(1 + 2α)×
)
= 〈2〉 × µ7 × 〈−1, 1 + 2α, U(2)

E 〉,

NE(
√

5(1+2ϕα))|E

(
E(
√

5(1 + 2ϕα)×
)
= 〈2〉 × µ7 × 〈−1, 1 + 2ϕα, U(2)

E 〉.

We thus have

κ (5(1 + 2α), −1) = κ(−1, 5(1 + 2α))−1 = 1,

κ(5(1 + 2ϕ(α)),−1) = κ(−1, 5(1 + 2ϕ(α)))−1 = 1,

κ(5(1 + 2α), 5(1 + 2ϕ(α)) = −1.

Now the statement follows from Theorem (3.42).

Because of the following Lemma we have thereby also classified all Galois extensions
L|Q2 of degree 24 containing Z as a subfield.

(3.44) Lemma. Let M|K be a Galois extension with Galois group G ∼= A4 and L an
quadratic extension field of M such that L|K is Galois. Then either

(a) GL|K ∼= SL2(F3) or

(b) there is a quadratic sub-extension k|Q2 of L|K and L = k · M. In this case, k is
unique as quadratic subfield of L and GL|K ∼= A4 ×Z/2Z.

Proof. Let H = GL|M. As a non-abelian group of order 24, G is isomorphic to
SL2(F3) if and only if G contains no normal subgroup N of order 12.
Suppose there is such a normal subgroup N E G of order 12. If H ⊆ N, we have

N�H ↪→ G�H ∼= A4.

However, A4 contains no subgroup of order 6, so we must have N ∩ H = 1. This
implies G = H · N and

A4
∼= G�H = HN�H ∼= N�H ∩ N ∼= N.

Hence G ∼= N × H ∼= A4 × Z/2Z. Now A4 is the only subgroup of order 12
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of A4 ×Z/2Z (cf. [Ros09, p. 290]), thence k = LA4 is the unique subfield of L
satisfying [k : K] = 2. Moreover, k is not contained in M, whence L = k ·M.
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4.1 Embedding problems

In this section we first define the notion of an embedding problem associated to a
number field and subsequently prove a theorem about solvability of such an embed-
ding problem with additional local conditions. This will be used later to construct
non-abelian and weakly ramified extensions L|Qp of degree l2 p, where l, p are odd
primes satisfying l | (p− 1). The main source for the material presented in this section
is [Neu73].

(4.1) Definition. Let L|K be a finite Galois extension with Galois group GL|K and de-
note by Γ the absolute Galois group of K. An embedding problem E associated to L|K
consists of a diagram

Γ

1 A B GL|K 1,

ϕ

j

where A, B are finite groups, the sequence at the bottom is exact, and ϕ : Γ → GL|K
is the natural homomorphism defined by restriction. The group A is sometimes also
called the kernel of E . A (proper) solution of this embedding problem is a (surjective)
continuous homomorphism ψ : Γ → B such that j ◦Ψ = ϕ, i. e. the diagram

Γ

1 A B GL|K 1,

ϕ
ψ

j

commutes.

(4.2) Remark. Let E be an embedding problem given by

Γ

1 A B GL|K 1,

ϕ

j

then E has a proper solution if and only if there is an extension field L′ of L such that
L′|K is Galois and GL′|K ∼= B. Indeed, if ψ : Γ → B is a proper solution to E and we

set L′ to be the fixed field Kker ψ of ker ψ, then the extension L′|K is Galois with Galois
group isomorphic to B. Moreover, j ◦ ψ = ϕ, whence ker ψ ⊆ ker ϕ = GK|L. As a
consequence, L is contained in L′.
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Since we are mainly interested in the field theoretic interpretation as given in Remark
(4.2), it is sufficient for our purposes to use the following, somehow slightly weaker,
notion of a solution to an embedding problem, which does however not affect the field
obtained by the procedure described in Remark (4.2).

(4.3) Definition. Let E be an embedding problem and ψ, ψ′ : Γ → B two solutions of
E . We say that ψ and ψ′ are equivalent, if there is a ∈ A such that

ψ(σ) = aψ′(σ)a−1 for all σ ∈ Γ.

Every equivalence class [ψ] is now called a solution to E and the set of all such solu-
tions is called the space of solutions, denoted by L (E ). If in addition ψ is proper, the
equivalence class [ψ] is also called proper.

If E is an embedding problem given by

Γ

1 A B C 1

ϕ

j

with abelian kernel A, then A is equipped with a C-module structure given by

C× A→ A, (c, a) 7→ j−1(c) · a · j(c).

One immediately convinces oneself that this definition does not depend on the choice
of preimage j−1(c). In particular, A is a Γ-module.

(4.4) Lemma. Let E be a solvable embedding problem with abelian kernel A. Then

H1(Γ, A)×L (E )→ H1(Γ, A), ([ξ], ψ) 7→ ξψ,

where ξψ(σ) = ξ(σ) · ψ(σ) for all σ ∈ Γ, is a well-defined map defining a simply
transitive group action of H1(Γ, A) on L (E ).

Proof. Let [ξ] ∈ H1(Γ, A) and ψ ∈ L (E ), then also ξψ ∈ L (E ), since ξ maps
into the kernel of j. If ζ is a cocycle representing [ξ], there is a ∈ A such that
ξ(σ) · ζ−1(σ) = (σa) · (a−1) for all σ ∈ Γ and the calculation

ζψ(σ) = ζ(σ)ψ(σ) = (a · (σa)−1)ξ(σ)ψ(σ) = (a · ψ(σ)a−1ψ(σ−1))ξ(σ)ψ(σ) =

= aξ(σ) · (ψ(σ)a−1ψ(σ−1ψ(σ)) = a
(
ξ(σ)ψ(σ)

)
a−1,

where we used σa = ψ(σ)aψ(σ−1) ∈ A, shows that ξψ and ζψ are equivalent
solutions. It is immediate that this action also respects the equivalence relation on
L (E ).
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Now let ψ′ ∈ L (E ) an arbitrary solution, then

ξ : Γ → A, σ 7→ ψ′(σ) · ψ(σ−1)

defines a cocycle satisfying ξψ = ψ′. If ψ and ψ′ are equivalent, there is a ∈ A
such that

ξ(σ) = ψ′(σ) ·
(

aψ′(σ−1)a−1
)
= (σa)a−1,

i. e. ξ is a coboundary. Conversely, if ξ is a coboundary, there is a ∈ A such that

ψ′(σ) = ξ(σ)ψ(σ) = (σa)a−1ψ(σ) =
(

ψ(σ)aψ(σ−1)
)

a−1ψ(σ) =

= a−1
(

ψ(σ)aψ(σ−1)
)

ψ(σ) = a−1ψ(σ)a.

As a consequence, the action defined above is indeed simply transitive.

Let L|K be a finite Galois extension of number fields and E an embedding problem
associated to L|K using the notations of above. Let moreover P be a prime of L
lying over a prime p of K and choose an extension p of p to K, then we can regard
the decomposition group Γp of p as absolute Galois group of the completion Kp and
therefore obtain a new local embedding problem Ep given by

Γp

1 A B′ GLP|Kp
1,

ϕ′

j

where ϕ′ is again given by restriction and B′ = j−1(GLP|Kp
).

If ψ is a solution of E , then its restriction to Γp defines a solution of Ep. We therefore
have a canonical restriction map

L (E )→ L (Ep)

in the case of L (E ) 6= ∅. Clearly, if L′ is the field defined by a solution [ψ] ∈
L (E ) in the sense of Remark (4.2), then the completion of L′ at the prime p ∩ L′

is determined by the restriction [ψΓp ] ∈ L (Ep). We can therefore control the local
behaviour of the extension L′|K by supplementing the embedding problem E with
additional conditions in terms of the local embedding problem Ep. Now the map

λ : L (E)→∏
p

L (Ep), [ψ] 7→ [ψΓp ]

is of central interest and we first strive for substituting its codomain by a slightly smal-
ler group.
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Let Ip ⊆ Γp be the inertia subgroup of p. For any Γ-module A and q ∈ Z we put
Hq(Kp, A) = Hq(Γp, A) and

Hq
nr(Kp, A) = im

{
Hq(Γp/Ip, A)

Inf−→ Hq(Kp, A)
}

.

(4.5) Definition. Let K be a number field and E an embedding problem associated to
K. We define the restricted product to be

−∏p L (Ep) =
{
([ψp])p ∈∏

p

L (Ep) | Ip ⊆ ker ψp for almost all p
}

,

−∏p Hq(Kp, A) =
{
(ξp)p ∈∏

p

Hq(Kp, A) | ξp ∈ Hq
nr(Kp, A) for almost all p

}
.

(4.6) Lemma. Let K be a number field and E an embedding problem associated to K.

(a) The image of λ : L (E)→ ∏p L (Ep) is contained in −∏ pL (Ep),

(b) the image of ρ : H1(K, A)→ ∏p H1(Kp, A) is contained in −∏ pH1(Kp, A).

Proof. (a): Let [ψ] ∈ L (E ), then only finitely many primes ramify in the finite
extension Kker ψ|K. Hence Kker ψ ⊆ K Ip for almost all p, which is equivalent to
Ip ⊆ ker ψ. In particular, Ip ⊆ ker ψp for almost every p, where ψp denotes the
restriction of ψ to Γp.

(b): Let ξ represent a cohomology class in H1(K, A). Since ξ : Γ → A is a con-
tinuous map, the subgroup ker ξ ⊆ Γ is closed and of finite index, so Kker ξ |K is a
finite extension and, like in (a), we must have Ip ⊆ ker ξ for almost all p. That is,
ξp is in the kernel of

Res : H1(Kp, A)→ H1(Ip, A)

for nearly all p. Thus ξp ∈ H1
nr(Kp, A) for all p by exactness of the Inflation-

Restriction sequence.

(4.7) Definition. Let M|K be a finite Galois extension of fields, E an embedding
problem associated to M|K and S a finite set of primes of K. A set of the form

L = ∏
p∈S
{[ψp]} ×−∏p 6∈S

L (Ep) ⊆ ∏
p

L (Ep),

where each [ψp] is a solution of the local embedding problem Ep, is called a local
requirement and abbreviated to L = ([ψp])p∈S. Accordingly, (E , L) is called an
embedding problem with local requirement and [ψ] ∈ L (E ) is called a solution
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of (E , L), if
λ : L (E )→−∏p L (Ep)

maps [ψ] into L.

We now want to extend the group action introduced in Lemma (4.4) to restricted
products of solution sets and cohomology groups, respectively.

(4.8) Lemma. Let K be a number field, E an embedding problem with abelian kernel
A associated to K, and L = ([ψp])p∈S a local requirement for E . The map

−∏p H1(Kp, A)×−∏p L (Ep)→−∏p L (EP), ((ξp)p, ([φp])p) 7→ ([ξpφp])p

gives a well-defined and simply-transitive group action.

Proof. Take ([φp])p ∈ −∏ pH1(Kp, A) and (ξp)p ∈ −∏ pL (Ep). By definition, the
inertia group Ip is contained in ker ξp and ker φp for almost every p, hence Ip ⊆
ker ξpφp for almost every p. If ([φ′p])p ∈ −∏ pL (Ep) is another element, then there
is a unique ξp ∈ L (Ep) such that ξpφp = φ′p by Lemma (4.4). It therefore suffices
to show that (ξp)p ∈ −∏ pL (Ep). However,

ξp = φ′p · φ−1

for every p, so the assertion holds.

If L = ([ψp])p∈S is a local requirement, we consider the subgroup

Λ = ∏
p∈S
{0p} ×−∏p 6∈S

H1(Γp, A),

which is maximal with respect to Λ · L ⊆ L, and the homomorphisms

πS : ∏
p

H1(Γp, A)→∏
p∈S

H1(Γp, A) as well as ρS = πS ◦ ρ : H1(Γ, A)→∏
p∈S

H1(Γp, A).

Moreover, we set ∆(Γ, A, S) = coker ρS.

(4.9) Lemma. Let (E , L) be a solvable embedding problem with local requirement and
abelian kernel A.

(a) Let l ∈ L and [ψ] ∈ L (E ), then

η([ψ]) = πS(λ([ψ]) · l−1) ∈ ∏
p∈S

H1(Γp, A)

does not depend on the choice of l and vanishes if and only if λ([ψ]) ∈ L,

(b) The image of η([ψ]) in ∆(Γ, A, S) does not depend on [ψ] and vanishes if and
only if λ−1(L) 6= ∅. We denote it by η(L).
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Proof. (a): Let k ∈ L be another element and x = (xp)p ∈ Λ be such that l = xk.
We now have

πS(λ([ψ])l−1) = πS

(
λ([ψ]) ·x (k−1)

)
= πS

(
λ([ψ]) · k−1

)
,

because xp = 0 for all p ∈ S by definition of Λ. In particular, if λ([ψ]) lies in L,
then η([ψ]) vanishes. Conversely, if η([ψ]) = 0, then(

λ([ψ]) · l−1
)
p
= 0 for all p ∈ S.

This means λ([ψ]) · l−1 ∈ L, hence λ([ψ]) ∈ L.

(b): Let [φ] ∈ L (E ) be another solution, then there is ξ ∈ H1(Γ, A) such that
ξφ = ψ and a short calculation yields

η([ψ]) = πS

(
λ([ψ]) · l−1

)
= πS

(
λ([ξφ]) · l−1

)
= πS

(
ρ(ξ)λ([φ]) · l−1

)
=

= πS

(
ρ(ξ) · λ([φ]) · l−1

)
= ρS(ξ) · η([φ]).

Thus, η([φ]) and η([ψ]) are equal in ∆(Γ, A, S). Now η(L) vanishes if and only if
there is [ψ] ∈ L (E ) such that η([ψ]) vanishes, which is equivalent to [ψ] ∈ λ−1(L)
by (a).

Our objective is henceforth to find suitable conditions that ensure ∆(Γ, A, S) = 0. In
order to do so, we will need Tate-Poitou duality.

(4.10) Theorem (Global Duality Theorem). Let A be a finite Γ-module and A′ =

Hom(A, Q/Z) its dual module. There is a canonical non-degenerate pairing

Hq(Kp, A)× H2−q(Kp, A′)→ Q�Z, 0 ≤ q ≤ 2

of finite groups such that the images of Hq(K, A) and Hq(K, A′) are orthogonal com-
plements of each other with respect to the pairing

Hq(K, A) H2−q(K, A′)

−∏p Hq(Kp, A) × −∏p H2−q(Kp, A′) Q�Z, 0 ≤ q ≤ 2,
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Proof. The formulation relies on [Neu73, Satz (4.2)], a proof can be found in [Poi67,
Exp. 15].

Using the maps ρ and ρS defined for a local requirement L = ([ψp])p above, we set

∇(Γ, A, S) = ker ρS�ker ρ.

(4.11) Lemma. Let A be a finite Γ-module, A′ = Hom(A, Q/Z) its dual module, and
Λ⊥ the orthogonal complement of Λ in −∏ pH1(Kp, A′). There is a canonical non-
degenerate pairing

∆(Γ, A, S)×∇(Γ, A′, S′)→ Q�Z,

where S′ denotes the set of all primes of K not in S.

Proof. According to Theorem (4.10), the images of

ρ : H1(K, A)→−∏p H1(Kp, A) and ρ′ : H1(K, A′)→−∏p H1(Kp, A′)

are orthogonal complements of each other with respect to the pairing

−∏p H1(Kp, A)×−∏p H1(Kp, A′)→ Q�Z.

Therefore we have

(im ρ ·Λ)⊥ = (im ρ)⊥ ∩Λ⊥ = im ρ′ ∩Λ⊥,

im ρ ·Λ = (im ρ ·Λ)⊥⊥ =
(

im ρ′ ∩Λ⊥
)⊥

,

whence we obtain a non-degenerate pairing

−∏p H1(Kp, A)�im ρ ·Λ×
(

im ρ′ ∩Λ⊥
)
→ Q�Z.

Note that

∆(Γ, A, S) =−∏p∈S
H1(Kp, A)�im ρS =

(
−∏p H1(Kp, A)/Λ

)
�(im ρ ·Λ/Λ) =

=−∏p H1(Kp, A)�im ρ ·Λ

and that the composite

ker ρ′S′ → H1(K, A′)
ρ′−→ im ρ′ ∩Λ⊥
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is surjective, hence induces an isomorphism

∇(Γ, A′, S′) = ker ρ′S′�ker ρ′
∼= im ρ ∩Λ⊥.

(4.12) Definition. Let G be a finite group and A a G-module. We set

X(G, A) = ker

{
H1(G, A)→ ∏

σ∈G
H1(〈σ〉, A)

}
.

Apparently, if G is cyclic, then X(G, A) = 0 for every G-module A.

Let K be a number field and Γ, as before, its absolute Galois group. If A is a finite
Γ-module and A′ = Hom(A, Q/Z) its dual module, we consider

StabΓ(A′) = {σ ∈ Γ | ∀a ∈ A′ : aσ = a} = ker{Γ → Aut(A′)}

and define K(A′) to be the fixed field KStabΓ(A′). Let G be the Galois group of K(A′)|K
and take a prime p, say, of K(A′). Denote by Gp the respective decomposition group
and define the homomorphisms

ρ̄′ : H1(G, A′)→−∏p H1(Gp, A′) as well as ρ̄′S : H1(G, A)→∏
p 6∈S

H1(Gp, A′),

where S is meant to be a finite set of primes.

(4.13) Lemma. Using the notation just introduced, the equality

∇(Γ, A′, S′) ∼= ker ρ̄′S�ker ρ̄′

holds and we have a canonical embedding

∇(Γ, A′, S′)→∏
p∈S

X(Gp, A′).

Proof. Recall that we defined ∇(Γ, A′, S′) to be ker ρ′S/ker ρ, where the appearing
maps are

ρ′ : H1(K, A′)→−∏p H1(Kp, A′) and ρ′S : H1(K, A′)→−∏p 6∈S
H1(Kp, A).

Let T be the set of all primes of k(A′) lying over any prime contained in S, then
we get a commutative diagram of the following sort:
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1 ker ρ̄′S ker ρ′S ker ρ′T

1 H1(G, A′) H1(K, A′) H1(K(A′), A′)

1 −∏p 6∈S
H1(Gp, A′) −∏p 6∈S

H1(Kp, A′) −∏P 6∈T
H1(K(A′)P, A′)

K(A′) is a trivial Γ′-module, where Γ′ denotes the absolute Galois group of K(A′),
so we have

H1(K(A′), A′) = Hom(Γ′, A′) and H1(K(A′)P, A′) = Hom(Γ′P, A′).

Pick ϕ ∈ ker ρ′T, then Γ′P ⊆ ker ϕ for all P 6∈ T. Let N be the fixed field of ker ϕ,
then we have that the decomposition group (GN|K(A′))q vanishes for every prime
q lying over some prime not in T. Hence almost all primes in N|K(A′) are com-
pletely split and we must have N = K(A′) by the Frobenius Density Theorem
[Neu92, Korollar VII. (13.7)]. In other words ϕ = 0, i. e. ker ρ′T = 0.

From the diagram we therefore get ker ρ̄′S
∼= ker ρ′S and, by taking S = ∅, also

ker ρ̄′ ∼= ker ρ′. Thus,

∇(Γ, A′, S′) = ker ρ′S�ker ρ′
∼= ker ρ̄′S�ker ρ̄′.

Considering the exact sequence

1 ker ρ̄′ ker ρ̄′S ∏p∈S H1(Gp, A′)

it suffices to show that ker ρ̄′S is mapped into ∏p∈S X(Gp, A′), which is equivalent
to showing that the composite

ker ρ̄′S ∏
p∈S

H1(Gp, A′) ∏
p∈S

∏
σ∈Gp

H1(〈σ〉, A′) (∗)

is the zero map. For every cyclic subgroup 〈σ〉 of G there are infinitely many
primes not in S such that 〈σ〉 is the respective decomposition group by Cebotarev’s
Theorem, hence

ker ρ̄′S → H1(〈σ〉, A′)

is the zero map by definition of ker ρ′S for every such cyclic subgroup 〈σ〉. In
particular, (∗) is the zero map.

All that remains to do in order to obtain the desired result about solvability of embed-
ding problems with a local requirement is reaping the harvest.
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(4.14) Theorem. Let K be a number field and (E , L) an embedding problem with
local requirement given by

Γ

1 A B C 1.

ϕ

j

If A is cyclic of odd order and the exact sequence at the bottom splits, there is a
proper solution to (E , L).

Proof. We have L (E ) 6= ∅, because by assumption the exact sequence at the
bottom of E splits. To account for existence of a solution to (E , L), by Lemma
(4.9)(b) it suffices to show that ∆(Γ, A, S) vanishes. By Lemma (4.11) the latter
is true if ∇(Γ, A′, S) vanishes, where A′ = Hom(A, Q/Z). If A′ is cyclic of odd
order, then Aut(A′) is also cyclic. The same therefore holds for

G = GK(A′)|K = Γ�StabΓ(A′) ∼= im
{

Γ → Aut(A′)
}

.

Now Lemma (4.13) provides us with an embedding

∇(Γ, A′, S) ↪→∏
p∈S

X(Gp, A′) = 0,

so the existence of a solution to (E , L) follows. It remains to show there even exists
a surjective such solution. Choose a prime q 6∈ S that splits completely in L|K and
consider the respective local embedding problem

Γq

1 A A 1 1.
j

As A is cyclic of odd order, the unramified extension of degree |A| over Kq defines
a solution ψq to this embedding problem. Let S# = S ∪ {q} and L# be the new
local requirement obtained by amending ψq to L, then the previous discussion
also applies to (E , L#). Now a solution to (E , L#) is automatically surjective.

(4.15) Remark. There is actually a whole list of different possible conditions one could
impose on A other than being cyclic of odd order and such that Theorem (4.14) holds,
see [Neu73, Thm. (6.6)].
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4.2 Some results from global class field theory

In the following sections we will need statements from global class field theory ana-
logous to those from local class field theory from the previous chapter. We assume the
reader is familiar with the core material of global class field theory as, for example,
is contained in [Neu11, Ch. III] and will make repeated use of it. Let us fix some
notation first.

For a number field K and a modulus m of K we denote by

clK(m) = JK(m)�PK(m) the ray class group mod m of K,

CK(m) = IK(m) · K×�K× the idèle ray class group mod m of K,

where in both cases m is dropped from the notation if m = (1).

(4.16) Lemma. Let M|K be a finite Galois extension of number fields and L|M a finite
abelian extension. Let m be a modulus of definition for L|M fixed by GM|K and H =

NL|M(JL(m)) · PM(m) ⊆ JM(m) the subgroup corresponding to L. Then

(a) the extension L|K is Galois if and only if H is stable by the action of GM|K,

(b) if (a) holds, then GL|M is contained in the centre of GL|K if and only if GM|K acts
trivially on JM(m)/H.

Proof. (a): Let σ ∈ HomK(L, C) and a ∈ JL(m), then σa ∈ JσL(m) and

σNL|M(a) = NσL|M(σa).

Note that σa ∈ JL(m) and σPM(m) ⊆ PM(m) because σm = m. Hence

σH ⊆ NσL|M(JσL(m)) · PM(m).

Since GσL|M ∼= GL|M, these two groups have the same index in JM(m) by class field
theory, so they must already be equal. As σ was chosen arbitrary, we have

L|K Galois ⇔ σL = L ⇔ σH = H

by class field theory.

(b): GL|M is contained in the centre of GL|K if and only if GL|M is fixed by conjug-
ation. Since GL|M is an abelian extension, this action factors through GM|K, so it
suffices to show that

(σp, L|M) = σ(p, L|M)σ−1
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for every σ ∈ GM|K = GL|K/GL|M and every prime p ∈ JM(m). However,

σ(p, L|M)σ−1 = σϕpσ−1 = ϕσp = (σp, L|M)

where ϕp and ϕσp denote the Frobenius at p and σp, respectively.

The same, entirely group-theoretic, considerations as in the local case bestow the fol-
lowing useful Corollary on us.

(4.17) Corollary. Let M|K be a cyclic extension of number fields and L|M a finite
abelian extension. Let m be a modulus of definition for L|M fixed by GM|K and H ⊆
JM(m) the subgroup corresponding to L. Then L|K is an abelian extension if and only
if

(a) GM|K · H ⊆ H and

(b) GM|K acts trivially on JM(m)/H.

The next ingredient we are going to need is the interrelation of the global (ideal-
theoretic) Artin symbol and the local norm residue symbol. For that purpose recall
that the conductor f of an abelian extension L|K can be written as

f = ∏
p

fp,

where for every prime p the local conductor fp is defined as the least power pn such
that the group of principal units U(n)

Kp
is contained in the local norm group NLP|Kp

(L×P).

(4.18) Lemma (cf. [Ble03, p. 75]). Let L|K a finite abelian extension of number fields,
p a prime of K and P | p a prime of L. Let f = ∏r

k=0 p
sk
k be the conductor of L|K and

assume p0 = p. Let further π ∈ OK be an element such that

vpj(π) =

{
1 if j = 0,

0 if 0 < j ≤ r

and α ∈ OK \ {0}. If ξ ∈ OK is a solution to

ξ ≡ πe mod psj for 0 < j ≤ r,

ξ ≡ πe

α
mod ps0

0 ,

where e = vp(α), then

(α, LP|Kp) = (ξ ∏
q|π
q 6=p

q−evq(π), L|K).



74 4 Global Considerations

Proof. Using the embedding

np : K×p → IK, x 7→ (xw)w, where xw =

{
x if w = p,

1 elsewise,

we have (np(α), L|K) = (α, LP|Kp), where the left hand side denotes the idèle-
theoretic norm residue symbol and the right hand side the local norm residue
symbol. Moreover, if a ∈ IK is an idèle such that np(α) ≡ a mod NL|K(CL) · K×

and the conductor f is coprime to the content c(a) = ∏q q
vq(aq) of a = (aq)q, then

(np(α), L|K) = (c(a), L|K).

Thus, we can first replace np(α) by 1
πe · np(α) and subsequently replace the latter

by (xw)w, where

xw =

{
ξ−1 if w | f,
π−e otherwise,

because we may multiply by elements of U(sk)
pk

in every component pk for k ∈
{0, ..., r}. Piecing everything together we get

(α, LP|Kp) = (np(α), L|K) =
(
(xw)w, L|K

)
=
(
(ξxw)w, L|K

)
= (c((ξxw)w)), L|K)

and c((ξxw)w) = ξOK · π−eOK · pe.

4.3 Weakly ramified and non-abelian extensions of degree l2p

We will now describe how to find global extensions L|Q of degree l2 p, where l, p
are odd primes satisfying l | (p − 1), that are non-abelian, weakly ramified, have
cyclic l-Sylow group and full decomposition group at p. Interested in performing
computations, we restrict ourselves to the case of l2 - (p − 1) modelling l = 3 and
p = 7. This method was also implemented in MAGMA by the author.

(4.19) Definition. Let L|K be a finite Galois extension, p an ideal of K, and P|p an ideal
of L. If LP|Kp is weakly ramified in the sense of Definition (3.16), we say that L|K is
weakly ramified at p. If L|K is weakly ramified at all primes p of K, then L|K is called
weakly ramified.

Note that this definition does not depend on the choice of P | p, since if P′ | p is
another choice, we have P′ = τP for some τ ∈ GL|K and

GP,s → GτP,s, σ 7→ τστ−1
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is an isomorphism for all s ≥ −1.

Let L|Q be a Galois extension as described above and E its unique subfield satisfying
[E : Q] = l2. We know from Lemma (3.26) that the condition l2 - (p− 1) forces E|Q to
be unramified at p, hence E is a subfield of some cyclotomic field Kn = Q(ξn) for an
n not divisible by p and such that p | ϕ(n), where ϕ denotes the Euler ϕ-function. We
therefore have a diagram of the following shape.

L Kn

E

Q

p
ϕ(n)

l2

l2 unramified at p

We now first describe how to find such a field E that fits our purposes. Let n ∈ N

be an integer such that l2 | ϕ(n) holds, Kn = Q(ξn) as before, and E ⊆ Kn a subfield
satisfying [E : Q] = l2.
Recall that the residue degree fp of Kn | Q at p equals the order of p in (Z/nZ)×,
which we denote by ord p. If we require ord pϕ(n)/l2 ≥ l2, we therefore obtain the
following inequalities for the respective decomposition groups

l2 ≥ |Dp(E|Q)| =
∣∣∣Dp(Kn|Q)�Dp(Kn|E)

∣∣∣ = fp

|Dp(Kn|Q) ∩ GKn|E|

≥
fp

gcd( fp, ϕ(n)
l2 )

=
ord p

gcd(ord p, ϕ(n)
l2 )

= ord p
ϕ(n)

l2 ≥ l2

forcing Dp(E|Q) = GE|Q as desired. It remains to show there always exists such an
integer n. This is done by the the following elementary Lemma based on a Lemma by
Van der Waerden (cf. [Lan95, Ch. X, 2, Lemma 1]).

(4.20) Lemma. Let l, p be odd primes such that l | (p− 1), but l2 - (p− 1). Then there
is a prime q enjoying the following properties:

(a) q 6= p,

(b) q ≡ 1 mod l2,

(c) the order of p(q−1)/l2
in (Z/qZ)× equals l2.

Proof. Firstly, observe that for every n ≥ 1

ker
{
(Z�ln+1Z)× → (Z�lnZ)×

}
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is the unique subgroup of order l, hence

pl ≡ 1 mod ln+1 ⇔ p ≡ 1 mod ln.

Our assumptions therefore ensure

pl − 1 ≡ 0 mod l2, pl − 1 6≡ 0 mod l3.

Now consider the integer

T =
pl2 − 1
pl − 1

= (pl − 1)l−1 + l(pl − 1)l−2 + ... + l(l − 1)(pl − 1) + l.

We have T ≡ 0 mod l, but T ≡ l mod l2. As T > l, there has to be a prime
divisor ξ of T such that ξ 6= l. Suppose ξ is also a divisor of pl − 1, then ξ | l,
whence l = ξ. This shows that the order of p in (Z/ξZ)× is l2 and it suffices to
show that there is such a prime divisor ξ accessory satisfying ξ−1

l2 ∈ (Z/l2Z)×,
which is the same as stating that l3 - (ξ − 1).

Let T = l ·∏ qνi
i be the prime decomposition of T. We have

T ≡ l(l − 1)(pl − 1) + l mod l4 ⇔ ∏ qνi
i ≡ (l − 1)pl + 1 mod l3.

The equivalences

(l − 1)pl + 1 ≡ 1 mod l3 ⇔ (l − 1)pl ≡ 0 mod l3 ⇔ pl ≡ 0 mod l3

show that we must have ∏ qνi
i 6≡ 1 mod l3, hence qi 6≡ 1 mod l3 for at least one

i.

Let z be a prime as provided by Lemma (4.20) and E the unique subfield of Q(ξz) of
degree [E : Q] = l2. Consider the embedding problem

Γ

1 Z/pZ G GE|Q 1,

ϕ

j

where G is a non-abelian subgroup of order l2 p. The exact sequence at the bottom
splits by the Theorem of Schur-Zassenhaus [Mac94, Ch. IV, Thm. 10.5] as Z/l2Z and
GE|Q have coprime group orders, hence Theorem (4.14) ensures the solvability of this
embedding problem. That is, if L is the set of l − 1 extension fields defining a non-
abelian weakly ramified extension of Qp as described in Proposition (3.29), there are
extension fields L1, ..., Ll−1 of E such that the set of completions of the Li at some prime



4.3 Weakly ramified and non-abelian extensions of degree l2 p 77

of Li lying above p is exactly L.

Computing candidates for Li

Let L be one of these Li and f the conductor of L|E. Since p is inert in E|Q and L|E
is weakly ramified at p, we have vp(f) = 2. Thus, f | qp2 for some integer q ∈ Z

coprime to z and L corresponds to a subgroup H of the ray class group clE(qp2). Let
H ⊆ clE(qp2) be an arbitrary subgroup and E(H) the corresponding class field, then

(a) (clE(qp2) : H) = p if and only if [E(H) : E] = p,

(b) H is stable by GE|Q if and only if E(H)|Q is Galois by Lemma (4.16),

(c) IGE|Q clE(qp2) 6⊆ H if and only if E(H)|Q is non-abelian by Lemma (4.17),

(d) vp(f) = 2, where f denotes the conductor of E(H)|E, if and only if E(H)|Q is
weakly ramified by Lemma (3.19).

Note that an extension E(H)|E satisfying condition (d) automatically has full decom-
position group at p | p, because p | f implies that p (totally) ramifies in E(H)|E.

Our set of global realisations is therefore in bijection with subgroups enjoying these
properties (a) - (d), where q ranges over the integers.

Determing the completion at p

We can easily decide which local field of L we get by the completion E(H)p, because
according to our local considerations in the previous chapter (see Remark (3.30)), every
field F ∈ L is uniquely determined by

1 + pN(Xp − rX)⊥ ⊆ NF|Ep ,

where r ∈ F×p \ {1} is of order l and N(Xp − rX)⊥ is a set of lifts from Fpl2 to E×p of
the orthogonal complement of the set of roots of the polynomial Xp − rX in Fpl2 with
respect to the trace form. Note that

Fp = Z�pZ and Fpl2 = OE�pOE,

so the set N(Xp − rX)⊥ can be chosen to consist of elements in E×. We therefore need
to check whether

(x, E(H)p|Ep) = 1

for all elements x of a Fp-basis of N(Xp − rX)⊥. Choose a solution ξ of

ξ ≡ 1 mod qOE and ξ ≡ 1
x

mod p2OE,
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then, by Lemma (4.18) from the previous section, we have

(ξOE, E(H)|E) = (x, E(H)p|Ep),

and hence
(x, E(H)p|Ep) = 1 ⇔ ξOE ∈ H.

Summarising these thoughts, the method is therefore as follows: Compute sub-
groups H ⊆ clE(qp2) satisfying the conditions (a)-(d) stated above for, if necessary,
gradually increasing q, while collecting those subgroups having pairwise different
completions at p | p until you have a set of l − 1 such subgroups.

(4.21) Remark. The method described works well for odd primes l, p such that l |
(p − 1) and l2 - (p − 1), only limited by computational power. If l = 3 and p = 7,
then the set L consists of two distinct local fields F1 and F2. Performing computations
in MAGMA using the method described above with E = Q(ζ37), one finds that the
number of suitable subgroups H ⊆ clE(qp2) such that E(H) takes Fi as completion is
distributed as follows:

F1 F2

1 ≤ q ≤ 20 1 -

1 ≤ q ≤ 40 8 1

100 ≤ q ≤ 120 10 4

When considering a pair of primes l, p satisfying l2 | (p− 1) the general method should
also work. However, the proof of Lemma (4.20) fails in this case, making the approach
only a heuristic one. Of course, one would not get a complete set of representatives
for all weakly ramified and non-abelian extensions of Qp with cyclic l-Sylow group
here but only of those extensions having ramification degree p.

An open question

When considering the table given above in Remark (4.21) one might wonder why one
of the two possible local fields appears much more often as completion at p|p for
small q or whether this finding is just coincidental, caused by the method of com-
putation. This question seems to be closely linked to the question of how the norm
group of E(qp2)p|Ep, where E(qp2) denotes the ray class field of qp2, can be explicitely
described, because each Fi was characterised by its norm group and if, for example,
q = 2, then p has full decomposition group in E(qp2)|E and as soon as

NE(qp2)|Ep
(E(qp2)×) ⊆ NFi |Ep(F×i ), (∗)
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we get at least one field E(H) ⊆ E(qp2) taking Fi as completion above p. Twisting by a
suitable cocycle of H1(clE(qp2), Z/l2Z) as in Lemma (4.4) should now give any other
such field contained in E(qp2). It is therefore an interesting question the author has
not been able to answer yet, whether one can find a condition on q (depending on E)
ensuring that (∗) holds.
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