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We study Euler systems forGm over a number field k. Motivated by a distribution-
theoretic idea of Coleman, we formulate a conjecture regarding the existence of such
systems that is elementary to state and yet strictly finer than Kato’s equivariant
Tamagawa number conjecture for Dirichlet L-series at s = 0. To investigate the
conjecture, we develop an abstract theory of ‘Euler limits’ and, in particular, prove
the existence of canonical ‘restriction’ and ‘localisation’ sequences in this theory.
By using this approach we obtain a variety of new results, ranging from a proof,
modulo standard µ-vanishing hypotheses, of our central conjecture in the case k
is Q or imaginary quadratic to a proof of the ‘minus part’ of Kato’s conjecture in
the case k is totally real. In proving these results, we also show that higher-rank
Euler systems for a wide class of p-adic representations control the structure of
Iwasawa-theoretic Selmer groups in the manner predicted by ‘main conjectures’.
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1. Introduction

The mysterious link between L-series and arithmetic, manifestations of which include the ana-
lytic class number formula and the Conjecture of Birch and Swinnerton-Dyer, is a key theme
in modern arithmetic geometry. The theory of Euler systems has, since the 1980s, been crucial
to investigations of this link, though finding concrete examples of such systems has proved to
be a difficult problem. In the present article, we consider in detail the apparent scarcity of
Euler systems in the setting of the multiplicative group Gm over number fields, and find that
this scarcity itself, when made precise, has important consequences regarding the formulation
and study of special value conjectures.
To help motivate our approach we recall that, in 1989, Coleman conjectured a striking, and
intrinsically global, distribution-theoretic analogue of the fact that norm-compatible families
of units in towers of local cyclotomic fields arise by evaluating a power series at roots of unity,
as had been proved in [Col79]. Hitherto, however, a resolution of this conjecture has seemed
out of reach, with comparatively little supporting evidence and no proof strategy apparent (see
[Seo01] or [BS21b] for a discussion of the history).
To generalise Coleman’s idea, we note that, after suitable reinterpretation, his conjecture im-
plies that every Euler system (of rank one) for Gm over Q should, modulo certain torsion
considerations, arise as a product of Galois-conjugates of the system of cyclotomic units. We
then further note that, for any number field k, the collection of Euler systems of any given
rank for Gm over k is a module over the algebra Rk := lim←−E Z[Gal(E/k)], where E runs over
all finite abelian extensions of k (and the transition maps in the inverse limit are the natural
projection maps). Then, roughly speaking, our central conjecture will assert that every Euler
system over k that satisfies certain natural, and explicit, auxiliary conditions should be an
Rk-multiple of the ‘Rubin–Stark system’ cRS

k that is defined in [Rub96]. This straightforward
prediction (which, in the sequel, we refer to as the ‘Scarcity Conjecture’) is stated precisely as
Conjecture (2.24) and lies at the centre of our approach.
At this point, it is important to note Rk is neither Noetherian nor compact and hence that
various standard algebraic techniques cannot be applied to the study of these questions. To
overcome such difficulties, we develop an abstract theory of ‘Euler limits’ that simultaneously
incorporates, amongst other things, the theories of inverse limits, Euler systems and Perrin-
Riou functionals. This general theory is then the main theoretical advance that we make in this
article and can be expected to have applications beyond those that we discuss here. In particu-
lar, the theory concerns systems that are defined integrally (that is, over Z) rather than either
p-adically (for a fixed prime p) or adelically, and hence crucially incorporates techniques from
both classical, and (what one might call) ‘horizontal’, Iwasawa theory. For instance, these dif-
fering techniques can be combined with a detailed analysis of the classical embedding problem
for number fields to prove the existence of canonical p-adic ‘restriction’ and global ‘localisation’
exact sequences for modules arising from Euler limits, and also to carefully analyse completion
functors in this setting.
These general results can then be used to reduce the classification of Euler systems to a family
of p-primary problems (for all p) and thereby to prove, under natural hypotheses, that the
Scarcity Conjecture is implied by the sort of divisibilities in ‘Iwasawa Main Conjecture’-type
statements that Euler systems are already expected to satisfy (and can often be verified using
existing techniques). This approach therefore provides both a conceptual underpinning of the
Scarcity Conjecture and also an effective means of obtaining strong supporting evidence, such
as the following result concerning Euler systems of rank one.

Theorem A. After inverting 2 and all primes that ramify in k, and assuming standard µ-
vanishing hypotheses, the Scarcity Conjecture is valid if k is either Q or imaginary quadratic.

This result is later stated precisely as Theorem (6.12), whilst concrete evidence in support of
the Scarcity Conjecture for Euler systems of rank greater than one can be found, for example,
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in Theorems (5.9) and (6.16).
With some additional effort, the methods developed here will allow one to prove the result of
Theorem A without inverting any rational primes. We also stress that, whilst its proof relies
on key properties of cyclotomic and elliptic units, for the reasons given above the content of
Theorem A goes far beyond what has previously been shown in these classical settings. For
example, the argument used to prove it also leads to a proof of Coleman’s original distribution-
theoretic conjecture and, beyond that, to an explicit characterisation of all of the distributions
that are considered by Coleman (many of which are not cyclotomic in nature). For brevity,
however, the treatment of these important issues concerning Theorem A is deferred to the
supplementary article [Bul+23].
In the present article, we instead choose to focus on the link between our study of Euler systems
and the ‘equivariant’ strengthening of the Tamagawa Number Conjecture of Bloch and Kato
[BK90] that is formulated by Kato in [Kat93a; Kat93b] (where the conjecture is referred to as
the ‘generalised Iwasawa Main Conjecture’). More precisely, our approach is related to Kato’s
conjecture in the case of leading terms at zero of Dirichlet L-series and, for ease, we refer to
this as ‘eTNC(Gm)’. We recall, in particular, that eTNC(Gm) is known to imply a wide range
of previously formulated refinements of Stark’s Conjecture (cf. Remark (3.3)).
To explain this link, we recall that, aside from the analytically-defined system cRS

k , there
also exists (unconditionally) a family of Galois-cohomological Euler systems ccohk for Gm over
k (as constructed by Sano and the second author in [BS21a]). Then, roughly speaking, a
special case of the Scarcity Conjecture implies that ccohk = λ · cRS

k for an element λ of Rk,
the analytic class number formula implies that any such element λ belongs to R×

k , and the
resulting relation between cRS

k and ccohk implies eTNC(Gm) over all abelian extensions of k.
In this way, then, eTNC(Gm) is seen to be a direct consequence of the analytic class number
formula and the scarcity of Euler systems, thereby providing a straightforward philosophy to
underpin eTNC(Gm). To the best of the authors’ knowledge, excluding the basic analogy to
Deligne’s proof of the Weil Conjectures for varieties over function fields, no heuristic of any
sort has previously been available for Kato’s conjecture.
In fact, it turns out that the Scarcity Conjecture is strictly finer than eTNC(Gm) and also
encodes precise information about the structure of the Selmer module of Gm over the abelian
closure of k (for details see [Bul+23]). Fortunately, however, the theory of Euler limits is flexible
enough to provide an effective strategy for proving eTNC(Gm) without requiring one to first
prove the Scarcity Conjecture. The resulting approach then has a significant advantage over
previous strategies in this context since it avoids delicate issues relating to Iwasawa-theoretic
descent that have been key obstacles to progress on eTNC(Gm).
The point here is that, for any given prime p, the methods of p-adic Iwasawa theory involve
passing to the limit over Zp-power extensions of k and therefore primarily concern extensions
that ramify at p-adic places. Hence, when considering extensions of k that are unramified at
any such places, this approach can introduce undesired Euler factors that are not invertible (in
the presence of ‘trivial zeroes’) and so cannot easily be removed. Whilst previous strategies
to deal with this issue have relied on the deep conjectures of Gross–Kuz’min, of Leopoldt and
of Mazur-Rubin and Sano, the validity of which remain restricted to a small number of well-
known cases, our theory completely avoids any reliance on the first two of these conjectures
and only depends on the third conjecture in the (much easier) setting of tamely ramified cyclic
extensions since the Euler systems we study are essentially characterised by their values on
extensions that ramify at all p-adic places.
In this way we can therefore directly leverage existing techniques to obtain concrete new evid-
ence for Kato’s conjecture such as in the following result. Before stating this result, we recall
that eTNC(Gm) predicts, for each finite abelian extension of number fields K/k, an equality
of graded invertible Z[Gal(K/k)]-modules (cf. Remark (3.3) (a)).
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Theorem B. Fix a finite abelian extension of number fields K/k and set G := Gal(K/k).
Then eTNC(Gm) for K/k is valid in both of the following cases:

(a) k is totally real, K is CM and one extends scalars from Z[G] to Z[1/2][G](1− τ), where
τ denotes the element of G corresponding with complex conjugation;

(b) k is imaginary quadratic and such that for every finite abelian extension (and every prime)
a certain Iwasawa µ-invariant vanishes, and one inverts all prime divisors of the number
of roots of unity in k.

Claim (a) of this result verifies what is often referred to as the ‘minus part’ eTNC(Gm)
−

of eTNC(Gm), and our approach reduces its proof to a statement in Iwasawa theory that
is easily seen to follow from the ‘Strong Brumer–Stark Conjecture’ recently proved (outside
2) by Dasgupta and Kakde in [DK23]. In particular, in this setting the horizontal Iwasawa
theory of Euler limits allows us, via Theorem (4.10), to avoid technical hypotheses used in
other attempts to derive eTNC(Gm)

− from the seminal results of [DK23], either directly as in
Nickel [Nic21] (though the deduction in loc. cit. of the p-part of eTNC(Gm)

− for extensions
that are tamely ramified at p does play a role in our argument) or by strengthening relevant
aspects of the arguments in [DK23] as in Atsuta and Kataoka [AK21b], whilst at the same
time avoiding difficult hypotheses related to the Gross–Kuz’min Conjecture that arose in earlier
attempts to use Iwasawa theory in this context. The result of claim (a) also itself has interesting
consequences: for example, it implies the validity, after inverting 2, of the ‘integral Gross–Stark
Conjecture’ from [Gro88] (cf. Remark (3.3) (b)) and this fact has recently been used by Honnor
to remove, up to 2-power torsion, the ‘root of unity ambiguity’ in the p-adic analytic formula
for Brumer–Stark units that is proved by Dasgupta and Kakde in [DK21, Th. 1.6] (for details
see [Hon22]). In addition, claim (a) also combines with work of Atsuta and Kataoka [AK21a]
to imply an explicit description for the Fitting ideals of the minus parts of class groups in the
relevant cases.
Claim (b) of Theorem B will be made precise in § 6.3.1 and strongly improves upon previous
results towards eTNC(Gm) over imaginary quadratic fields. In addition, in recent work of Hofer
and the first author [BH21], it is shown that the hypothesis on µ-invariants that occurs in this
result, and which Iwasawa has conjectured to always hold, can sometimes be avoided. However,
this observation relies on techniques that seem to be restricted to the setting of imaginary
quadratic fields, whilst the approach used here appears, in principle, to be completely general
and thereby applicable to many different contexts.
The arguments proving Theorem B also lead us, at the same time, to a new proof of eTNC(Gm)
for K/k in the case that k = Q and one extends scalars from Z[G] to Z[1/2][G]. This result
was first proved as the main result of Greither and the second author in [BG03], but the proof
obtained here is much simpler since it avoids the extensive, and delicate, descent calculations
in Iwasawa theory that are key to the argument of loc. cit.
Going beyond special cases, our approach provides an effective strategy for deriving the validity
of the Scarcity Conjecture over an arbitrary number field k, and hence also of eTNC(Gm) and
the numerous conjectures it implies, from a single, explicit, ‘integrality’ prediction of Rubin
[Rub96] concerning the system cRS

k (that is usually referred to as the ‘Rubin–Stark Conjecture’).
In addition, at this stage, the theory of higher-rank Euler, Kolyvagin and Stark systems de-
veloped by Sakamoto, Sano and the second author in [BSS19a] already allows us to partially
achieve this goal, and thereby to obtain strong evidence for the Scarcity Conjecture over any k.
In particular, as a key aspect of these arguments we prove (in an appendix) that higher-rank
Euler systems for a wide class of p-adic representations control the structure of Selmer groups
in precisely the manner predicted by ‘Main Conjectures’ in this setting. In fact, to complete
the deduction of the Scarcity Conjecture from the Rubin–Stark Conjecture, it would suffice
to extend the latter result to an ‘equivariant’ setting in just the same degree of generality as
has already been established for Euler systems of rank one in [Rub00], and we will discuss this
problem elsewhere. We note, however, that the Rubin–Stark Conjecture itself is of a differ-
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ent nature and that its verification may well require both an explicit construction of cRS
k by

geometric means and the proof of an appropriate explicit reciprocity law, as has already been
achieved in the case k = Q by Urban in [Urb20].

In brief, the main contents of this article are as follows. In § 2 we define, for each non-negative
rank, several special families of Euler systems over k, prove some important preliminary results
and then formulate the Scarcity Conjecture. In § 3 we establish the precise link between the
Scarcity Conjecture and eTNC(Gm). In § 4 we introduce an abstract theory of ‘Euler limits’
and prove key results in this theory. In § 5 we prove a ‘Uniformisation Theorem’ for Euler
systems over k that are valued in a field, combine this with general results concerning Euler
limits to derive explicit criteria for the validity of the Scarcity Conjecture and of eTNC(Gm)
and finally use higher-rank Kolyvagin systems to provide evidence for these criteria. In § 6
we combine criteria established in § 5 with several existing results to obtain further evidence
in support of the Scarcity Conjecture and also prove precise versions of Theorems A and B.
Finally, in an appendix we prove new results concerning the ‘Iwasawa Main Conjecture’ for
p-adic representations over arbitrary number fields.

For the reader’s convenience, we end this section by specifying some general notation that
will be used throughout the article. Given a commutative ring R, an R-module M and an
integer r ≥ 0, we write

∧r
RM for the rth-exterior power over R of M . Given a homomorphism

f : M → N of R-modules we write f (r) for the induced map
∧r
RM →

∧r
RN . Except in cases

of ambiguity we will often abuse notation and simply refer to this map as f .
We write M∗ := HomR(M,R) for the R-linear dual of M and, if p denotes a prime ideal of R,
then we let Mp be the localisation of M at p.
For an abelian group A we denote by Ator its torsion-subgroup and by Atf = A/Ator its torsion-
free quotient. The Pontryagin dual of A will be denoted by A∨ = HomZ(A,Q/Z). If there is
no confusion possible, we often shorten the functor (−) ⊗Z A to just (−) · A (or even (−)A)
and, if A is also a Zp-module, similarly for the functor (−) ⊗Zp A. If A is finite, we denote

by Â = HomZ(A,C
×) its character group and write 1A for the trivial character, and for any

χ ∈ Â we write eχ for the primitive idempotent |A|−1
∑

σ∈A χ(σ)σ
−1 of C[A]. Furthermore,

NA =
∑

σ∈A σ ∈ Z[A] denotes the norm element of A.
The dualsM∗ andM∨ of a Z[A]-moduleM will in general be endowed with the contragredient
A-action.
Finally, for any finite set S of prime numbers, we often use the subring of Q defined by

ZS := Z
[
1/p | p ∈ S

]
(so that Z∅ = Z).
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2. Euler systems for Gm

For any number field E we write S∞(E) and Sfin(E) for the sets of archimedean and finite
(non-archimedean) places of E respectively, and Sp(E) for the subset of Sfin(E) comprising all
places that lie above a rational prime p. Given an extension F/E we write Sram(F/E) for the
places of E that ramify in F .
If S is a set of places of E, we denote by SF the set of places of F that lie above those contained
in S. We will however omit the explicit reference to the field in case it is clear from the context.
For example, OF,S will denote the ring of (SF ∩ Sfin(F ))-integers of F . We also define YF,S to
be the free abelian group on SF and write XF,S for the subgroup thereof comprising elements
whose coefficients sum to zero.
For any finite place v of E we write ordv : E

× → Z for the normalised valuation at v and Nv
for its absolute norm |OE/pv|, where pv is the ideal of OE corresponding to v. We also write
E(m) for the (narrow) ray class field of a given modulus m of E.
If F/E is a Galois extension and v is a finite place of E that is unramified in F , then we write
Frobv for the arithmetic Frobenius of v in Gal(F/E). We recall that an archimedean place of
E is said to ‘ramify’ in F if its decomposition group is non-trivial (and hence has order two);
for each archimedean place v of E that is unramified (that is, does not ramify) in F , we will
therefore write Frobv for the trivial element of Gal(F/E).

2.1. Multi-rank Euler systems

2.1.1. Abelian extensions

We fix an algebraic closure Q of Q and refer to finite extensions of Q in Q as ‘number fields’.
We then fix a number field k and for any Galois extension K of k in Q set

GK := Gal(K/k) and S(K) := Sram(K/k).

We also write K for the maximal abelian extension of k in Q and

Ω = Ω(k)

for the set of finite extensions of k in K that are ramified at at least one finite place (so that
S(K) ̸⊆ S∞(k)).
A ‘modulus’ of k is a formal product m of places of k and gives rise to an associated ray class
field extension k(m) of k of conductor m. The extension k(m)/k is finite, abelian and such that
S(k(m)) is contained in the set of places that divide m. In particular, the ray classfield k(1) of
conductor equal to the empty product of places is the Hilbert classfield of k.
For a number field E, we write µE for the Z-torsion subgroup of E×. For a natural number
M we write

µM := {x ∈ Q×
: xM = 1}

for the group of roots of unity in Q of order dividing M .
The following result records an observation of Rubin concerning ray classfields that will be
useful in the sequel.

(2.1) Lemma. Fix a natural number M and a finite place q of k that does not divide M . Then
the ray class field k(q) has the following properties.

(i) S(k(q)) ⊆ {q} and so S(k(q)) ∩ S∞(k) = ∅.

(ii) The inertia degree of q in k(q) is equal to [k(q) : k(1)] and is divisible by M if and only
if q splits completely in k(µM , (O×

k )
1/M ).

Proof. Claim (i) and the first assertion in claim (ii) are clear. The second assertion in claim
(ii) is proved by Rubin in [Rub00, Lem. 4.1.2] but, for completeness, we give the argument.
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Class field theory identifies the inertia subgroup Gal(k(q)/k(1)) of q in Gk(q) with the cokernel

of the natural map θq : O×
k → (Ok/q)×. Hence, if M divides [k(q) : k(1)], then M divides

|(O×
k /q)

×| = Nq− 1 and so q splits completely in k(µM ).
In addition, any such q splits completely in k(µM , (O×

k )
1/M ) if and only if every element of O×

k

is an M -th power in the completion kq of k at q. Then, since q does not divide M , Hensel’s
Lemma implies that this last condition is satisfied if and only if every element of im(θq) is an
M -th power in the cyclic group (Ok/q)×, or equivalently the order of cok(θq) is divisible by
M . This proves claim (ii).

2.1.2. Euler systems

For each field K in Ω we write VK for the set S∞(k) \ S(K) of archimedean places of k that
split completely in K and set

rK :=

{
|VK |, if K ̸= k,

|S∞(k)| − 1, if K = k.

We write P(S∞(k)) for the power set of S∞(k) and N0 for the set of non-negative integers.

(2.2) Definition. A rank function (or simply a rank) for k is a function r : Ω → N0 that
factors through the function Ω → P(S∞(k)) sending each K to VK (so that r(K) = r(K ′) if
VK = VK′). The maximal rank function rmax for k is the function K 7→ rK .

The motivation for the terminology ‘maximal’ used above will become apparent in Lemma
(2.6) (b) below. In addition, for any given field k, we will usually identify a non-negative
integer r with the (constant) rank function that sends each K in Ω to r.
Finally, for any pair of fields E,F ∈ Ω with E ⊆ F , any non-negative integer s, and any field
Q, we write

NsF/E : Q ·
∧s

Z[GF ]
O×
F,S(F ) → Q ·

∧s

Z[GE ]
O×
E,S(F )

for the homomorphism of Q[GF ]-modules induced by the field-theoretic norm NF/E : F× → E×.

(2.3) Definition. Let r be a rank function for k and Q a field. A Q-rational Euler system
for k of rank r is a collection of elements

(cE)E ∈
∏
E∈Ω
Q ·

∧r(E)

Z[GE ]
O×
E,S(E)

that satisfy the following ‘Euler system distribution relations’: for every pair of fields E and F
in Ω with E ⊆ F , there is, in the graded module

⊕∞
i=0

(
Q
∧i
Z[GE ]O

×
E,S(F )

)
, an equality

N
r(F )
F/E (cF ) =

( ∏
v∈S(F )\S(E)

(1− Frob−1
v )

)
cE . (1)

We write ESrk(Q) for the QJGKK-module of Q-rational Euler systems for k of rank r. If r is
the maximal rank function rmax, then we abbreviate ESrk(Q) to ESk(Q).

(2.4) Remark. If any place v in S(F ) \ S(E) is archimedean, then v splits completely in E
and so the corresponding Euler factor 1−Frob−1

v in the equality (1) is 0. In this case, therefore,

one has N
r(F )
F/E (cF ) = 0.

In the sequel it will often be useful to consider certain ‘projections’ of an Euler system to
suitable subsets of Ω. More precisely, for any subset X ⊆ Ω, we write ESr,Xk (Q) for the image
of ESrk(Q) under the natural projection map

ϱX :
∏
E∈Ω
Q ·

∧r(E)

Z[GE ]
O×
E,S(E) →

∏
E∈X
Q ·

∧r(E)

Z[GE ]
O×
E,S(E).
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(2.5) Remark. For a subset V of P(S∞(k)), we write ΩV(k) for the subset of Ω(k) comprising
all fields K such that VK ∈ V. If V = {V } for some subset V ⊆ S∞(k), then we abbreviate
ΩV(k) to ΩV (k) and, for the set X = ΩV (k), we shorten all adornments X (as, for example,
for the map ϱX defined above) to V .

To end this subsection, we record an important first consequence of the Euler system relations.
For any field K ∈ Ω(k), we abbreviate the trivial character 1GK

of GK to 1K . For any finite
set of places Π of k we set

rΠ(χ) := dimC(eχCO×
K,Π) =

{
|{v ∈ (Π ∪ S∞(k)) | χ(GK,v) = 1}| if χ ̸= 1K ,

|Π ∪ S∞(k)| − 1 if χ = 1K ,
(2)

where GK,v ⊆ GK denotes the decomposition group at the place v. We then define ΥK to be

the subset of ĜK comprising all characters χ for which one has rS(K)(χ) = rK . In particular,

since ΥK is a union of orbits of the natural action of Aut(C) on ĜK , we obtain an idempotent
of Q[GK ] by setting

eK :=
∑
χ∈ΥK

eχ, (3)

where, for each χ, we write eχ for the primitive idempotent |GK |−1
∑

g∈GK
χ(g−1)g of C[GK ].

(2.6) Lemma. If c = (cE)E ∈ ESrk(Q) is an Euler system for k with coefficients in a subfield
Q of C, then for all fields E ∈ Ω the following claims are valid.

(a) (1− eE) · cE = 0.

(b) If r(E) > rE, then cE = 0.

Proof. Let χ ∈ ĜE and write Eχ for the subfield of E cut out by χ. Consider the injective map

νE/Eχ
: Q

∧rE

Z[GEχ ]
O×
Eχ,S(E) → Q

∧rE

Z[GE ]
O×
E,S(E), a 7→

{
[E : Eχ]

1−rEa if rE ≥ 1,

NGal(E/Eχ)a if rE = 0.

We also remark that N0
E/Eχ

agrees with the natural restriction map Q[GE ]→ Q[GEχ ]. We then
have

[E : Eχ] · eχ · cE = eχ ·NGal(E/Eχ) · cE = eχ(νE/Eχ
◦Nr(E)

E/Eχ
)(cE)

and so it suffices to prove that eχN
r(E)
E/Eχ

(cE) = 0 whenever χ ̸∈ ΥE .

To do this, we first consider the case that χ ̸= 1E . Let l be a large-enough odd prime number
such that E ∩ k(µl) = k. By Cebotarev’s Density Theorem we may then choose a p ∈ Sfin(k) \
S(E) that has full decomposition group in Eχ and splits completely in k(µl, (Ok)1/l). By
Lemma (2.1) the ray class field F := k(p) is then a non-trivial extension of the Hilbert class
field of k. It follows that F , and hence also EχF , is a ramified extenison of k, which implies
that the value cEχF is well-defined. We also note that r(E) = r(EF ). The Euler systems
distribution relations now imply that

(1− Frob−1
p ) ·Nr(E)

E/Eχ
(cE) = N

r(E)
EF/Eχ

(cEF ) =
( ∏
v∈S(E)\S(Eχ)

(1− Frob−1
v )

)
·Nr(E)

EχF/Eχ
(cEχF ).

If χ ̸∈ ΥE , then there exists a place v ∈ S(E) \ S(Eχ) such that χ(Frob−1
v ) = 1, hence eχ

annihilates the above Euler product. On the other hand, 1 − χ(Frob−1
p ) ̸= 0 because χ ̸= 1E

and Frobp generates GEχ , so we conclude that eχN
r(E)
E/Eχ

(cE) = 0, as required to prove claim (a)

for non-trivial characters.
To deal with the trivial character, we note that 1E ∈ ΥE if and only if |S(E)∪S∞(k)| = rE+1
or, equivalently (since rE ≤ |S∞(k)|), |S(E)| = 1. Assume this condition is not satisfied. Then
we may factor the conductor of E as pm, where m is a non-trivial modulus and p is a (finite or

archimedean) place. It is enough to prove N
r(E)
k(mp)/k(ck(mp)) = 0 and this follows from

N
r(E)
k(mp)/k(ck(mp)) = N

r(E)
k(m)/k

(
(1− Frob−1

p )ck(m)

)
= 0.
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Turning now to the proof of claim (b), we observe that by (2) we have

eχcE ∈
∧r(E)

eχC[GE ]
eχCO×

E,S(E) = 0

whenever χ is contained in ΥE and r(E) > rE . Since eEcE = cE by claim (a), this shows that
cE = 0, as desired.

2.2. Special families

For the purpose of arithmetic applications an Euler system must be ‘integral’ in a suitable sense.
However, defining a precise notion of integrality for higher-rank systems is a delicate task. In
this subsection we use exterior biduals and T -modification, pioneered by Rubin [Rub96] and
Gross [Gro88], respectively, to address this question. We then introduce certain special families
of such systems that will play an important role in our theory.
If R is a commutative Noetherian ring, then for any R-moduleM we writeM∗ = HomR(M,R)
for its dual. We recall that, for each non-negative integer s, the s-th exterior power bidual of
M is defined to be the module ⋂s

R
M :=

(∧s

R
M∗

)∗
.

We note that if R = Z[A] for a finite abelian group A, then
⋂s
RM coincides with the lattice

first introduced by Rubin in [Rub96, § 2] (cf. [BS21a, Rk. A.9]).

2.2.1. Rubin lattices

For a finite abelian extension K of k we write Pad
K for the collection of non-empty finite sets

of places of k that are disjoint from S(K)∪ S∞(k) and contain no place that divides |µK |. We
refer to elements of Pad

K as ‘admissible sets for K’. For any such T in Pad
K it is easy to check

that the group

O×
K,S(K),T = {u ∈ O×

K,S(K) | u ≡ 1 mod TK}

of ‘T -modified S(K)-units’ of K is a finite index subgroup of O×
K,S(K) that is Z-torsion free.

For T in Pad
K we set

δT = δT,K :=
∏
v∈T

(1−Nv · Frob−1
v ) ∈ Z[GK ],

and then, for any integer s ≥ 0, define a GK-submodule of Q
∧s
Z[GK ]O

×
K,S(K) by setting

LsK :=
{
a ∈ Q

∧s

Z[GK ]
O×
K,S(K)

∣∣ δT,K(a) ∈⋂s

Z[GK ]
O×
K,S(K),T for all T ∈Pad

K

}
.

If s = rK , then we will suppress the superscript rK in the notation.

The argument of [Tat84, Ch. IV, Lem. 1.1] implies that AnnZ[GK ](µK) is generated over Z by

the set {δT,K | T ∈Pad
K }. By combining this fact together with the defining conditions of LsK ,

one deduces that

AnnZ[GK ](µK) · LsK ⊆
⋂s

Z[GK ]
O×
K,S(K). (4)

In particular, since
⋂s
Z[GK ]OK,S(K) is finitely generated and AnnZ[GK ](µK) contains |µK |, it

follows that LsK is finitely generated as a Z[GK ]-module.

(2.7) Remark. If s ≤ 1, then the result of [Tat84, Ch. IV, Prop. 1.2] implies that the inclusion
(4) uniquely characterises LsK . In other words, in this case, an element a of Q

∧s
Z[GK ]O

×
K,S(K)

belongs to LsK if and only if AnnZ[GK ](µK) · a ⊆
⋂s
Z[GK ]O

×
K,S(K). Similarly, if p is a prime such

that µK ⊗Z Zp is GK-cohomologically trivial, then the arguments of Popescu in [Pop02, Thm.
5.5.1 (3)] show that, for any s ≥ 0, an element a of Qp

∧s
Z[GK ]O

×
K,S(K) belongs to ZpL

s
K if and

only if AnnZp[GK ](µK ⊗Z Zp) · a ⊆
⋂s
Zp[GK ](ZpO

×
K,S(K)).
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In general, the inclusion (4) allows one to explicitly relate LsK to the lattices defined by Popescu
in [Pop02, Def. 2.1.1]. To be more precise, setting

Uab
K,S(K) :=

{
u ∈ O×

K,S(K)

∣∣ K(
u1/|µK |)/k is abelian

}
,

one finds that an element a of Q
∧s
Z[GK ]O

×
K,S(K) satisfies AnnZ[GK ](µK) · a ⊆

⋂s
Z[GK ]O

×
K,S(K)

if and only if one has |µK | · f(a) ∈ (Uab
K,S(K))

∗∗ for all f ∈
∧s−1
Z[GK ](O

×
K,S(K))

∗.

(2.8) Remark. The explicit description of the modules AnnZ[GK ](µK) that is given above has
the following useful consequence: for any finite abelian extensions K and K ′ of k with K ⊆ K ′,
the homomorphism AnnZ[GK′ ](µK′) → AnnZ[GK ](µK) that is induced by the restriction map
Z[GK′ ]→ Z[GK ] is surjective (cf. [Bur+23, Lem. 3.9]).

The following result establishes several useful properties of the lattices LsK .

(2.9) Lemma. Fix a finite abelian extension E of k with K ⊆ E and consider the injection

νE/K : Q
∧s

Z[GK ]
O×
K,S(E) → Q

∧s

Z[GE ]
O×
E,S(E), a 7→

{
[E : K]1−sa if s > 0,

NGal(E/K)a if s = 0.

Then the following claims are valid.

(a) νE/K restricts to an injection of GK-modules from LsK to (LsE)
Gal(E/K),

(b) the composite νE/K ◦NsE/K coincides with multiplication by NGal(E/K),

(c) for every non-zero element a ∈ LsK there exists a finite set N of integers, depending only
on a, such that νE/K(a) is not divisible in LsE by any integer outside N ,

(d) νE/k induces an isomorphism |µk|−1
∧s
Z(O

×
k,S(E))

∗∗ ∼= (LsE)
GE .

Proof. To prove claim (a) we must show that for each a in LsK and each T in Pad
E one has

δT νE/K(a) ∈
⋂s
Z[GE ]O

×
E,S(E),T . Since S(K) ⊆ S(E) and µK ⊆ µE , one has Pad

E ⊆ Pad
K . In

addition, for each T in Pad
E one has that O×

E,S(K),T is Z-torsion free and hence reflexive. By

Lemma (2.10) below we therefore have that

νE/K(δK,Ta) = δE,T νE/K(a) ∈
⋂s

Z[GE ]
O×
E,S(E),T ,

as required to prove claim (a).

Claim (b) is straightforward to check from the definitions (see also [BKS16, Rk. 4.14]).

To prove claim (c), let a ∈ LsK be an element with the property that νE/K(a) = N · x for some

x ∈ LsE . Then b := ν−1
E/K(x) is an element of Q

∧s
Z[GK ]O

×
K,S(K) and we now claim that δT b

belongs to
⋂s
Z[GK ]O

×
K,S(K),T for every set T in Pad

E .

If T belongs to Pad
E , then δT,Ex ∈

(⋂s
Z[GE ]O

×
E,S(E),T

)Gal(E/K)
and so Lemma (2.10) implies

that δT,Kb ∈
⋂s
Z[GK ]O

×
K,S(E),T . Moreover, since the cokernel of the inclusion O×

K,S(K),T →
O×
K,S(E),T is torsion-free, the natural restriction map (O×

K,S(E),T )
∗ → (O×

K,S(K),T )
∗ is surjective

and so one has⋂s

Z[GK ]
O×
K,S(K),T =

(
Q
∧s

Z[GK ]
O×
K,S(K)

)
∩
(⋂s

Z[GK ]
O×
K,S(E),T

)
by the argument of [BKS16, Lem. 4.7 (ii)]. Thus, b is contained in

⋂s
Z[GK ]O

×
K,S(K),T and hence

satisfies the defining condition of LsK at all sets T in Pad
E . Since AnnZ[GK ](µK) is generated

by δT,K with T ranging over Pad
E , we deduce that b belongs to the lattice

L̃sK :=
{
c ∈ Q

∧s

Z[GK ]
O×
K,S(K) | AnnZ[GK ](µK) · c ∈

⋂s

Z[GK ]
O×
K,S(K)

}
.

The equation a = N · b therefore shows that a is divisible by N in L̃sK . Now, L̃sK is a finitely
generated Z-module and so the claim follows by taking N to be the finite set of integers that
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a is divisible by in L̃sK .

To prove claim (d) we take a ∈ (LsE)
GE and set b := ν−1

E/k(a), which is a well-defined element of

Q
∧s
ZO

×
k,S(E) because νE/k defines an isomorphism Q

∧s
ZO

×
k,S(E)

∼=
(
Q
∧s
Z[GE ]O

×
E,S(E)

)GE .

Given any T ∈Pad
E , one has that δT,Ea belongs to

(⋂s
Z[GE ]O

×
E,S(E),T

)GE and hence, by Lemma

(2.10), the element δT,kb is contained in
∧s
ZO

×
k,S(E),T . In particular, |µk|a ∈

∧s
Z(O

×
k,S(E))

∗∗.

Conversely, if |µk|a ∈
∧s
Z(O

×
k,S(E))

∗∗, then the argument of [Pop02, Thm. 5.5.1 (3)] shows that

δTa ∈
∧s
ZO

×
k,S(E),T for all T ∈ Pad

k . As in the proof of (a), we then conclude that νE/k(a)

belongs to (LsE)
GE , as required.

The following algebraic result is an analogue of [BS21a, Prop. A.4].

(2.10) Lemma. Let G be a finite abelian group andM a finitely generated Z[G]-module. Then,
for each subgroup H ⊆ G, there exists an isomorphism of Z[G/H]-modules⋂s

Z[G/H]
(M∗∗)H

≃−→
(⋂s

Z[G]
M

)H
that is induced by the assignment NsHa 7→ NHa on Q

∧s
Z[G/H]M

H → Q
∧s
Z[G]M .

Proof. We may assume that s > 0. Choose a free presentation F1 → F0 → M∗ → 0 of the
linear dual M∗ of M , where F0 and F1 are finitely generated free Z[G]-modules. Dualising this
presentation then gives an exact sequence

0 M∗∗ F ∗
0 F ∗

1 .

Upon applying the general result of Sakamoto [Sak20, Lem. B.12] to both this sequence and
its H-invariants, we therefore obtain a composite isomorphism of the required form⋂s

Z[G/H]
(M∗∗)H ∼= ker

{∧s

Z[G/H]
(F ∗

0 )
H → (F ∗

0 )
H ⊗Z[G/H]

∧s−1

Z[G/H]
(F ∗

1 )
H
}

∼= ker
{(∧s

Z[G]
F ∗
0

)H
→

(
F ∗
0 ⊗Z[G]

∧s−1

Z[G]
F ∗
1

)H}
∼=

(⋂s

Z[G]
M

)H
,

where the second isomorphism is induced by the isomorphism
∧s
Z[G/H](F

∗
0 )
H ∼=

(∧s
Z[G] F

∗
0

)H
that sends each NsHa to NHa.

(2.11) Remark. Let S be a finite set of prime numbers. Then the proof of Lemma (2.9)
shows that all of the stated claims remain valid for the ZS [GK ]-lattices ZSL

s
K if in claim (c)

one restricts to integers outside N that are coprime to S.

2.2.2. Integrality restrictions

Let R be a subring of R and X a subset of Ω(k). We now introduce several RJGKK-submodules
of ESr,Xk (R) that play an important role in our theory (and are in part motivated by the
properties of the ‘Rubin-Stark Euler system’ discussed in the next section).
We start by specifying the notion of ‘integrality’ that is central to our approach.

(2.12) Definition. A system c in ESr,Xk (R) is said to be R-integral if one has

cE ∈ R · Lr(E)
E for all E ∈ X . (5)

We write ESr,Xk (R) for the RJGKK-submodule of ESr,Xk (Q) comprising R-integral systems.
(If X = Ω(k), then we suppress explicit reference to X in the notation.)
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In most cases, the module ESrk(R) contains a non-zero submodule that is elementary in nature.
To describe the submodule, we let p be a place of k of residue characteristic p and E a field in
Ω(k) with S(E) = {p}. In this setting, Lemma (2.9) (d) implies that the map νE/k induces an
isomorphism

|µk|−1 ·
∧r(E)

Z
(O×

k,{p})
∗∗ ≃−→ (L

r(E)
E )GE .

Set k(p∞) :=
⋃
n∈N k(p

n) and write tp for the cardinality of (Gk(p∞))tor. For each E ∈ Ω(k)

and each element a of the lattice |µk|−1 ·
∧r(E)

R (RO×
k,{p})

∗∗, we set

cp(a)E :=

{
[E : k]−1 · tp · νE/k(a) if E ⊆ k(p∞),

0 otherwise.

Then, if either p is a unit in R or the extension k(p∞)/k is finite, the family

cp(a) := (cp(a)E)E∈Ω(k)

belongs to ESrk(R). In this way one obtains a canonical homomorphism of RJGKK-modules∏
p

|µk|−1
∧r(k(p))

R
(RO×

k,{p})
∗∗ → ESrk(R), (ap)p 7→

(∏
p

cp(ap)
)
, (6)

where the product is over all p in Sfin(k) that divide a prime p ∈ R× or are such that k(p∞)/k
is finite. For any system in the image of this map, the components are trivial except possibly
on fields of prime-power conductor and there are no non-trivial distribution relations between
components at fields of coprime conductors. This fact motivates the following definition.

(2.13) Definition. The image ESrk(R)iso of the map (6) is the RJGKK-module of isolated
(R-integral) Euler systems.

A conceptual description of the module ESrk(R)iso will be given in Lemma (5.4) below. For the
moment, we note only that ESrk(R)iso is non-trivial if r(E) ≤ |S∞(k)| for all E ∈ ΩS∞(k)(k)
and there exists a prime number p ∈ R× or a place p in Sfin(k) for which k(p

∞)/k(1) is finite
and non-trivial.

(2.14) Remark. The subset of Sfin(k) comprising those p for which k(p∞)/k(1) is a finite
non-trivial extension is empty if and only if k is either Q or imaginary quadratic. To explain
this, we fix a prime number p that splits completely in k and let p denote a place of k above p.
Global class field theory then identifies Gal(k(p∞)/k(1)) with the quotient of Z×

p by the image
of the global units of k×. If k is not Q or an imaginary quadratic field, then the global units are
infinite and so said quotient must be finite. This combines with Lemma (2.1) (b) to imply that
k(p∞)/k(1) is finite and non-trivial if p lies above a prime number p that splits completely in
k(µℓ, (O×

k )
1/ℓ) for some prime number ℓ ̸= p. On the other hand, if k is either Q or imaginary

quadratic, then every extension k(p∞)/k is infinite.

The following submodule of ESk(R) = ESrmax
k (R) will also play an important role in our theory.

(2.15) Definition. An (R-integral) symmetric Euler system is a family c in ESk(R)
that has the following property: there exists an element ck ∈ R

∧rk
Z O

×
k (the ‘initial value’ of c)

such that for all E ∈ Ω(k) and p ∈ Sfin(k)∩S(E) there is, in
⊕∞

i=0

(
R

∧i
ZO

×
k,S(E)

)
, an equality

NrEE/k(cE) =
( ∏
v∈S(E)\{p}

(1− Frob−1
v )

)
·Ord−1

p (ck),

where

Ordp : R
∧rk+1

Z
O×
k,{p} → R

∧rk

Z
O×
k

is the isomorphism induced by the normalised valuation ordp : O×
k,{p} → Z at p. The collection

ESk(R)sym of such systems is an RJGKK-submodule of ESk(R).
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(2.16) Remark. Fix c in ESk(R), a finite place p of k and a field E ∈ Ω with E ⊆ k(p∞). Then
the element NrEE/k(cE) of R

∧rk+1
Z O×

k,{p} is independent of the choice of E, and c is symmetric

(in the above sense) if and only if Ordp(N
rE
E/k(cE)) is independent of p .

The following consequence of the Cebotarev’s Density Theorem for symmetric systems is im-
portant in the sequel.

(2.17) Lemma. If R denotes either ZS for a finite set of prime numbers S or Zp for a prime
number p, then ESk(R)iso ∩ ESk(R)sym = {0}.

Proof. It is enough to show that for every system c in ESk(R)iso ∩ESk(R)sym the initial value
ck vanishes. Indeed, if p is any place of k and E ⊆ k(p∞) is a finite ramified extension of k, then
the assumption ck = 0 implies NrEE/k(cE) = 0 and hence that cE = 0 because, by construction,
cE is fixed by GE .
Now, if we suppose there exists a finite place p of k that neither divides a prime in S nor is such
that k(p∞)/k is finite, then by definition ck(p) = 0 and so the initial value condition implies
that ck = 0. We may therefore assume that all but finitely many places of k are such that
k(p∞)/k is a finite extension.
Then, since c is isolated, the element ck(p) is fixed by Gk(p) for every such p and so the element

(νk(p)/k ◦Ord−1
p )(ck) = (−1)rk · (νk(p)/k ◦Nrk+1

k(p)/k)(ck(p)) = (−1)rk · [k(p) : k]ck(p)

is divisible by [k(p) : k] in Lk(p). It now follows from Lemma (2.9) (d) that Ord−1
p (ck) is di-

visible by [k(p) : k] in |µk|−1
∧rk+1
ZS

ZSO×
k,{p}, and hence that ck is divisible by [k(p) : k] in

|µk|−1
∧rk
ZS
ZSO×

k . Let p be a prime number that is not invertible in R. It then suffices to
show the degrees [k(p) : k] are divisible by an unbounded power of p (as p varies).
To do this, we fix a natural number n and consider the finite Galois extension L of k obtained
by adjoining pn-th roots of all elements in O×

k . Then it is enough to note that, by Cebotarev’s
Density Theorem, there exist infinitely many places p of k, not lying above p, that are com-
pletely split in L and, for any such place, the degree of k(p)/k(1) is divisible by pn (by Lemma
(2.1)). This concludes the proof of the Lemma.

To describe another distinguished family of Euler systems, we fix finite extensions L and K
of k in K with K ⊆ L and VL = VK , and set H := Gal(L/K) ⊆ GL. We also fix a place v
in S(L) \ S∞(k) that splits completely in K and is tamely ramified in L and a place w = wK
of K above v. We write recv : K

× → H for the composite of the canonical embedding of K
into its completion Kw at w and the local reciprocity map K×

w → Hw ⊆ H, where Hw denotes
the decomposition group of w inside H. Writing I(H) for the kernel of the projection map
Z[GL]→ Z[GK ], we thereby obtain a canonical homomorphism of Z[GK ]-modules

Rec′v : O×
K,S(K) → I(H)⧸I(H)2, a 7→

∑
σ∈GK

(recv(σa)− 1)σ−1 (7)

and hence also an induced composite homomorphism

Recv :
⋂rK+1

Z[GK ]
O×
K,S(L),T

Rec′v−−−→
(⋂rK

Z[GK ]
O×
K,S(L),T

)
⊗Z[GK ] (I(H)/I(H)2)

νL/K−−−→
(⋂rK

Z[GL]
O×
L,S(L),T )⊗Z[GL] (Z[GL]/I(H)2)

in which νL/K is induced by the isomorphism
⋂rK
Z[GK ]O

×
K,S(L),T

≃→
(⋂rK

Z[GL]
O×
L,S(L),T

)H
from

Lemma (2.10) and the inclusion I(H) ⊂ Z[GL].
We further recall from [Rub96, Lem. 5.1 (iii)] that the map

Ordv : K
× → Z[GK ], a 7→

∑
σ∈GK

ordw(σa)σ
−1
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induces an isomorphism (which we denote by the same symbol)

Ordv : eKQ
∧rK+1

Z[GK ]
O×
K,S(L)

≃→ eKQ
∧rK

Z[GK ]
O×
K,S(K).

We finally write PL/K,{v} for the Euler factor
∏
v′∈S(L)\(S(K)∪{v})(1− Frob−1

v′ ).

(2.18) Definition. Fix a finite set of prime numbers S. Then a (ZS-integral) congruence
Euler system is a family c in ESk(ZS) that has the following property: for all data L/K, T
and v as above and every prime p ̸∈ S that divides 2dk (with dk the absolute discriminant of
k), the element Ord−1

v (δK,T cK) belongs to
⋂rK+1
Zp[GK ]ZpO

×
K,S(L),T and is such that

δL,T
∑
σ∈H

σcL ⊗ σ−1 = (−1)rK · (Recv ◦Ord−1
v )

(
PL/K,{v} · δK,T cK

)
in

(⋂rK

Z[GL]
O×
L,S(L),T

)
⊗Z[GL] (Z[GL]/I(H)2)⊗Z Zp.

The collection ESk(ZS)
con of all such systems is a ZSJGKK-submodule of ESk(ZS).

(2.19) Remark. Whilst congruence relations play an important role in early articles concern-
ing (rank one) Euler systems, such as Thaine [Tha88], it was subsequently shown by Rubin
[Rub00, Ch. IV, § 8] that a weaker Iwasawa-theoretic form of these congruences can be directly
deduced from Euler distribution relations. However, distribution relations on their own are not
sufficient for our theory (see, for example, Remark (2.25) (d)) and the congruences described
above provide an appropriate replacement in higher rank for the congruences used by Thaine.
The precise form of these congruences is motivated by conjectures of Mazur–Rubin and Sano
(see Lemma (2.22) (iii) and Remark (2.23)) and the role that they play in our approach is
described in Proposition (5.5).

2.3. The Scarcity Conjecture

2.3.1. The Rubin–Stark Euler system

Let S denote the set S∞(k) ∪ Sfin(k) of all places of k. Then, by fixing a bijection S ∼= N

we may regard S as a totally ordered set (S ,⪯) = { vi }i∈N so that vi ⪯ vj if and only if
i ≤ j. We choose this bijection in such a way that the first |S∞(k)| places in S are the places
in S∞(k). Throughout this article all exterior powers

∧
v∈Σ indexed over a given finite set of

places Σ of k will be arranged with respect to the ordering ⪯. We also fix, for each place
v ∈ S , an extension v of v to our fixed choice of algebraic closure Q of Q. For any subfield
K ⊆ k we write vK for the restriction of v to K, and also set

S∗(K) := S(K) ∪ S∞(k).

Let K be a finite abelian extension of k and assume to be given disjoint finite sets of places
Σ and T of k such that Σ contains S∗(K). Then, for any character χ ∈ ĜK , the T -modified
Σ-imprimitive Dirichlet L-series for K/k and χ is defined by setting

Lk,Σ,T (χ, s) =
∏
v∈T

(1− χ(Frobv)Nv1−s) ·
∏
v ̸∈Σ

(1− χ(Frobv)Nv−s)−1,

where s is a complex variable of real part Re(s) > 1. It is well-known that Lk,Σ,T (χ, s) admits
a meromorphic continuation to C. We recall from [Tat84, Ch. I, Prop. 3.4] that the order of
vanishing of Lk,Σ,T (χ, s) at s = 0 is given by the number rΣ(χ) defined in (2).
We moreover define the leading term of the T -modified Σ-imprimitive equivariant L-series of
K/k to be

θ∗K/k,Σ,T (0) =
∑
χ∈ĜK

(
lim
s→0

s−rΣ(χ)Lk,Σ,T (χ, s)
)
eχ−1
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and note θ∗K/k,Σ,T (0) belongs to R[GK ]×. Finally, we recall that the Dirichlet regulator map

λK,Σ : O×
K,Σ → R⊗Z XK,Σ, a 7→ −

∑
w∈ΣK

log |a|w · w

induces an isomorphism of R[GK ]-modules

λ
(r)
K,Σ : R⊗Z

∧r

Z[GK ]
O×
K,Σ

≃−→ R⊗Z
∧r

Z[GK ]
XK,Σ, (8)

that will often also be abbreviated to λK,Σ (if no confusion is possible).

(2.20) Definition.

(a) Let K be any finite abelian extension of k, V ⊊ Σ a finite set of places that split completely
in K/k, set r := |V | and fix a place p ∈ Σ \ V . The r-th order Rubin–Stark element
for the data K/k,Σ, T and V is the unique element εVK/k,Σ,T of R ⊗Z

∧r
Z[GK ]O

×
K,Σ such

that

λK,Σ(ε
V
K/k,Σ,T ) = eK,Σ,rθ

∗
K/k,Σ,T (0) ·

∧
v∈V

(vK − pK),

where eK,Σ,r denotes the sum of eχ over all characters χ ∈ ĜK with rΣ(χ) = r. (This
element εVK/k,Σ,T does not depend on the choice of place p ∈ Σ\V – see [San15, Prop. 3.3].)

(b) The Rubin–Stark system for k is the family

εk = (εK/k)K ∈
∏

K∈Ω(k)

R⊗Z
∧rK

Z[GK ]
O×
K,S(K),

where we set εK/k := εVKK/k,S∗(K),∅.

(2.21) Examples. In several cases, the above definition can be made more explicit for r := rK .

(a) (Cyclotomic units) Take k to be Q, K to be a finite real abelian extension of Q, and V
to be S∞(Q) = {v0}. Then one has

εK/Q =
1

2
⊗NQ(ξm)/K(1− ξm) ∈ Q⊗Z O×

K,S(K),

Here m = mK is the conductor of K and ξm = ι−1(e2πi/m) where ι : Q ↪→ C is the
embedding corresponding to the choice of place v1 fixed at the beginning of the section.
(See [Tat84, Ch. III, § 5] for a proof of this fact.)

(b) (Stickelberger elements) Let k be a totally real field, K a finite abelian CM extension of
k, and V = ∅. In this setting the Rubin–Stark element is given by

εK/k = θK/k,S∗(K),∅(0) :=
∑
χ∈ĜK

Lk,Σ,T (χ, 0)eχ−1 .

(c) (Elliptic units) Let k be an imaginary quadratic field andK ∈ Ω(k). Fix a place p ∈ S(K)
and write f = pn for a power of p large enough so that the natural map O×

k → (Ok/f)×
is injective. Write m for the conductor of K and let a ⊊ Ok be an auxiliary prime ideal
coprime to 6fm. Then the Rubin–Stark Conjecture holds for E (see, for example, [Tat84,
Ch. IV, Prop. 3.9]) with the elliptic unit

εK/k = (Froba −Na)−1 ·Nk(fm)/K(ψ(1; fm, a)) ∈ Q⊗Z O×
K,S(K).

(This follows from Kronecker’s second limit formula; see, for instance, [Fla09, Lem. 2.2 e)]).

In the next result we record several key properties of the Rubin–Stark system. In claim (ii) of
this result we refer to the central conjecture formulated by Rubin in [Rub96] and in claim (iii)
to the ‘refined class number formula’ that was conjectured independently by Mazur and Rubin
in [MR16] and by Sano in [San14].
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(2.22) Lemma. (i) The system εk is symmetric and its initial value εk,k ∈ R
∧rk
Z O

×
k is

such that

λk,S∞(k)(εk,k) = −ζ∗k(0) ·
∧

v∈S∞(k)\{v1}

(v − v1) ∈ R
∧rk

Z
Xk,S∞(k),

with ζ∗k(0) = θ∗k/k,S∞(k)(0) the leading term of the Dedekind ζ-function of k.

(ii) The system εk is Z-integral if the Rubin–Stark Conjecture [Rub96, Conj. B′] for L/k is
valid for all L in Ω.

(iii) The system εk is a congruence system if the Mazur–Rubin–Sano Conjecture [BKS16,
Conj. 5.4] for L/k is valid for all L in Ω.

Proof. The fact that εk validates the distribution relations in Definition (2.3), and hence belongs
to ESk(R), is proved by Rubin in [Rub96, Prop. 6.1] (see also [San14, Prop. 3.5]). To prove
claim (i), it therefore suffices to show that, for every field E ∈ Ω(k) and any choice of place
p ∈ Sfin(k) ∩ S(E), one has

NrEE/k(εE/k) =
( ∏
v∈S(E)\{p}

(1− Frob−1
v )

)
·Ord−1

p (εk,k)

in
⊕∞

i=0

(
R
∧i
ZO

×
k,S(E)

)
. We also note that this condition is satisfied trivially except in the

case that the conductor of E is a power of a prime p and VE = S∞(k).
It is therefore enough to show that the specified element εk,k has the required property in
the case that the only finite place contained in S∗(E) is p and VE = S∞(k). If we write
v∗ : RYk,S∗(E) → R for the dual map of a place v ∈ S∗(E) (considered as an element of
Yk,S∗(E)), then the map

∧
v∈S∞(k)\{v1} v

∗ defines an isomorphism R
∧rk
Z Xk,S∞(k)

∼= R with the
property that (∧

v∈S∞(k)\{v1}
v∗
)(
ζ∗k(0) ·

∧
v∈S∞(k)\{v1}

(v − v1)
)
= ζ∗k(0).

It therefore suffices to show that((∧
v∈S∞(k)\{v1}

v∗
)
◦ λ(rk)k,S∞(k) ◦Ordp ◦NrEE/k

)
(εE/k) = −ζ∗k(0)

To do this, we first note that, by [Rub96, Prop. 6.1], one has NrEE/k(ε
VE
E/k,S∗(E),∅) = εVEk/k,S∗(E),∅,

which is the unique element of R
∧rE
Z O

×
k,S∗(E) such that

λ
(rE)
k,S∗(E)(ε

VE
k/k,S∗(E),∅) = ζ∗k,S∗(E)(0) ·

∧
v∈S∞(k)

(v − p)

= −ζ∗k,S∗(E)(0) · (p− v1) ∧ (v2 − v1) ∧ · · · ∧ (vrk+1 − v1).
Moreover, it is easy to see that (logNp) · ordp = p∗ ◦ λk,S∗(E). In addition, for any subset

M ⊆ S∗(E) \ {v1} one has (
∧
v∈M v∗) ◦ λ(|M |)

k,M∪{v1} =
∧
v∈M (v∗ ◦ λk,M∪{v1}) and, for any M ′

containing M , the restriction of λk,M ′ to RO×
k,M is equal to λk,M∪{v1}. It follows that

(
∧

v∈S∞(k)\{v1}
v∗) ◦ λ(rk)k,S∞(k) ◦Ordp = ordp ∧

( ∧
v∈S∞(k)\{v1}

(v∗ ◦ λk,S∗(E))
)

= (logNp)−1 · (p∗ ◦ λk,S∗(E)) ∧
( ∧
v∈S∞(k)\{v1}

(v∗ ◦ λk,S∗(E))
)

= (−1)rk · (logNp)−1 ·
∧

v∈S∗(E)\{v1}

(v∗ ◦ λk,S∗(E))

= (−1)rk · (logNp)−1 ·
( ∧
v∈S∗(E)\{v1}

v∗
)
◦ λ(rE)

k,S∗(E).
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We may thus calculate that((∧
v∈S∞(k)\{v1}

v∗
)
◦ λ(rk)k,S∞(k) ◦Ordp ◦NrEE/k

)
(εE/k)

= (−1)rk · (logNp)−1 ·
( ∧
v∈S∗(E)\{v1}

v∗
)(
− ζ∗k,S∗(E)(0) · (p− v1) ∧ (v2 − v1) ∧ · · · ∧ (vrk+1 − v1)

)
= (−1)rk · (−1)rk · (−1) · (logNp)−1 · ζ∗k,S∗(E)(0)

= −ζ∗k(0),
as required to prove claim (i).
Claims (ii) and (iii) follow directly from the statements of the respective conjectures.

(2.23) Remark. The strong restrictions imposed on v and p in Definition (2.18), and the fact
that only a single place in S(L) \ S∞(k) is considered, means that the conditions required to
ensure εk belongs to ESk(Z)

con are much weaker than are the general properties predicted by
Mazur–Rubin and Sano. This fact plays a key role in later sections.

2.3.2. Statement of the Scarcity Conjecture

For any subset X of Ω(k) and any finite set S of prime numbers, we consider the ZSJGKK-
submodules of ESXk (ZS) that are obtained by setting

ESXk (ZS)
sym := ϱX (ESk(ZS)

sym) and ESXk (ZS)
con := ϱX (ESk(ZS)

con).

In particular, we note that Lemma (2.22) implies, modulo conjectures of Rubin and of Mazur-
Rubin-Sano, that the ‘X -restricted Rubin–Stark system’

εXk := ϱX (εk) = (εE/k)E∈X

belongs to both ESXk (ZS)
sym and ESXk (ZS)

con.
We now state the central conjecture of this article. This conjecture simultaneously continues
ideas of Coleman, of Rubin and of Sano and three of the current authors (for more details see
Remarks (3.3) (b) and (3.11) below).

(2.24) Conjecture (The ‘Scarcity Conjecture’). For each finite set of prime numbers S, and
each subset X of Ω(k) that is disjoint from Ω∅(k), one has

ESXk (ZS)
sym ∩ ESXk (ZS)

con = ZSJGKK · εXk .

(2.25) Remark.

(a) The requirement that X is disjoint from Ω∅(k) (and hence that X contains no field K
with rK = 0) is forced by the fact Euler systems of rank zero and of positive rank are
seemingly of an essentially different nature. In particular, the recent work of Sakamoto
in [Sak22] suggests many Euler systems of rank zero do not belong to the submodule
generated by the system of Stickelberger elements discussed in Example (2.21)(b).

(b) If X ∩ ΩS∞(k)(k) = ∅, then (as a direct consequence of the definition of symmetric
systems) one has ESXk (ZS)

sym = ESXk (ZS) and so Conjecture (2.24) predicts that the
ZSJGKK-module ESXk (ZS)

con is generated by εXk .

(c) If S contains all prime numbers that divide 2dk, then ESk(ZS)
con = ESk(ZS) and so

Conjecture (2.24) predicts that the ZSJGKK-module ESXk (ZS)
sym is generated by εXk .

(d) If k = Q,S = ∅ and X = S∞(Q) = {∞}, then (as a special case of (c)) Conjecture (2.24)

predicts ES
{∞}
Q (Z)sym is generated over ZJGKK by the cyclotomic system ε

{∞}
Q described

in Example (2.21)(a). In Theorem (6.12) this prediction is proved after replacing Z by
Z [1/2]. In addition, in the supplementary article [Bul+23], we resolve the remaining 2-

primary difficulties in order to fully verify the prediction, show that a system in ES
{∞}
Q (Z)
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belongs to ZJGKK · ε{∞}
Q if and only if it verifies the classical congruences considered by

Thaine in [Tha88] and prove that the set ES
{∞}
Q (Z) \ZJGKK · ε{∞}

Q is non-empty.

(e) The theory developed below will in fact suggest the possibility of formulating a stronger
version of Conjecture (2.24) (see Remark (5.3)).

The interest of Conjecture (2.24) will be explained, at least partly, by the main result of the next
section. Then, in the remainder of the article, we shall develop, and apply, a general strategy
for the proof of the conjecture (and hence of the results discussed in the Introduction).

3. Scarcity and Tamagawa numbers

3.1. Statement of the main result

For a finite group ∆ we write e∆ for the idempotent |∆|−1
∑

δ∈∆ δ of the group ring Q[∆]. For
each subset V of S∞(k), and any finite abelian extension K of k, we then define an idempotent
of Q[GK ] by setting

ϵK,V :=
∏

v∈(S∞\V )

(1− eGK,v
) ·

∏
v∈V

eGK,v
. (9)

For any subset V of the power set P(S∞(k)) of S∞(k) we then define

ϵK,V :=
∑
V ∈V

ϵK,V .

For convenience, in the case V = {VK} we also use the abbreviation

ϵK := ϵK,{VK} =
∏

v∈S∞
|GK,v |≠1

(1− eGK,v
) (10)

(and we note that, in general, this element differs from the idempotent eK defined in (3)).

(3.1) Remark. We record several useful properties of the above elements.

(a) For each V one can check that ϵK,V =
∑

χ eχ, where χ runs over all characters in ĜK
with the property that, for each v ∈ S∞, one has χ(GK,v) = 1 if and only if v ∈ V . This
description implies that ϵK,V is orthogonal to ϵK,V ′ for any other subset V ′ of S∞(k) and
hence that, for each set V, the element ϵK,V is an idempotent.

(b) If VK = S∞ (as is the case, for example, if k is totally imaginary or K is totally real),
then ϵK = 1. If k is totally real and K is CM, then VK = ∅ and ϵK = (1− τ)/2, where
τ denotes the element of GK induced by complex conjugation. In general, it is clear that
ϵK belongs to 2−|S∞|+rK ·Z[GK ].

(c) If K ′ is any finite abelian extension of k that contains K, then, for each set V, the
projection map Q[GK′ ]→ Q[GK ] sends ϵK′,V to ϵK,V .

In the sequel we write TNC(h0(SpecK), ϵK,VZS [GK ]) to refer to Kato’s ‘equivariant Tamagawa
Number Conjecture’ for the pair (h0(SpecK), ϵK,VZS [GK ]).
In this section we shall prove the following result.

(3.2) Theorem. Let K be a finite abelian extension of k and fix a subset V of P(S∞(k))
that does not contain the empty set. Then Conjecture (2.24) for the pair (ΩV(k),S) implies
TNC(h0(SpecK), ϵK,VZS [GK ]).

(3.3) Remark. (a) The conjecture TNC(h0(SpecK), ϵK,VZS [GK ]) was formulated (up to an
ambiguity of signs) by Kato in [Kat93a; Kat93b] and is stated precisely in, for example,
[BKS16, Conj. 3.1].
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(b) The phrase ‘eTNC(Gm) for K/k’ that is used in the Introduction refers to the conjecture
TNC(h0(SpecK),Z[GK ]). The validity of this conjecture has been shown to imply a wide
range of more explicit conjectures including the Rubin–Stark Conjecture, the ‘refined class
number formula’ conjectured by Mazur and Rubin and Sano, the ‘integral Gross–Stark
conjecture’ (from [Gro88]), the ‘Lifted Root Number Conjecture’ of Gruenberg, Ritter
and Weiss [GRW99], and the central conjecture of Chinburg in [Chi83]. Details of these,
and other similar, deductions can be found, for example, in [BF98] and [BKS16].

3.2. The analytic class number formula

As a first step in the proof of Theorem (3.2), we will establish, in Proposition (3.6) below, a
useful reinterpretation of the analytic class number formula in our setting. Before doing so,
however, it is convenient to review the properties of an important family of complexes.
For any finite abelian extension E/k, finite set of places Σ ⊇ S∗(E), and finite set T of
places of k that is disjoint from Σ, we use the T -modified ‘Weil-ètale cohomology’ complex
RΓc,T ((OE,Σ)W ,Z) of the constant sheaf Z that is constructed in [BKS16, Prop. 2.4], and
consider its linear dual

C•
E,Σ,T = RHomZ(RΓc,T ((OE,Σ)W ,Z),Z)[−2].

Whenever T = ∅ we will suppress the respective subscript in the notation. Lemma (3.4) below
is taken from [Bur+23, Prop. 3.1] and sets out the essential properties of the complex C•

E,Σ,T .
For a commutative noetherian ring R we write D(R) for the derived category of R-modules and
Dperf(R) for the full triangulated subcategory of D(R) comprising complexes that are ‘perfect’
(that is, isomorphic in D(R) to a bounded complex of finitely generated projective R-modules).

(3.4) Lemma. For any data E/k, Σ and T as above, the complex C•
E,Σ,T belongs to Dperf(Z[GE ])

and has all of the following properties.

(a) The complex C•
E,Σ,T is acyclic outside degrees zero and one, and there are canonical

identifications of Z[GE ]-modules

H0(C•
E,Σ,T ) = O×

E,Σ,T , H1(C•
E,Σ,T )tor = ClE,Σ,T and H1(C•

E,Σ,T )tf = XE,Σ.

Here we write ClE,Σ,T for the quotient of the group of fractional ideals of OE,Σ that are
prime to TE by the subgroup of principal ideals with a generator congruent to 1 modulo
all places in TE (so ClE,Σ,T is the ‘ΣE-ray class group mod TE’ of E).

(b) Let T ′ be a finite set of places of k that contains T and is disjoint from Σ, and write
F×
E,T ′\T for the GE-module

⊕
w∈(T ′\T )E (OE/pw)

×, where pw is the prime ideal of OE cor-

responding with the place w. Then there exists a canonical exact triangle in Dperf(Z[GE ])

C•
E,Σ,T ′ C•

E,Σ,T F×
E,T ′\T [0] .

(c) Let Σ′ be a finite set of places of k that contains Σ and is disjoint from T . Then there
exists a canonical exact triangle in Dperf(Z[GE ])

C•
E,Σ,T C•

E,Σ′,T

⊕
v∈Σ′\Σ

[
Z[GE ]

1−Frob−1
v−−−−−−→ Z[GE ]

]
, (11)

where each complex that occurs in the direct sum is concentrated in degrees zero and one.

(d) If F is a finite abelian extension of k with E ⊆ F and S(F ) ⊆ Σ, then there exists a
natural isomorphism C•

F,Σ,T ⊗LZ[GF ] Z[GE ] ∼= C•
E,Σ,T in Dperf(Z[GE ]).

(3.5) Remark. For any set T ∈Pad
E , the Z[GE ]-module F×

E,T that occurs in Lemma (3.4) (b)
lies in an exact sequence of Z[GE ]-modules of the form

0
⊕
v∈T

Z[GE ]
⊕
v∈T

Z[GE ] F×
E,T 0,

(x 7→x·δ{v})v
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(cf. [Chi85, (4.16)]). This sequence implies that Fitt0Z[GE ](F
×
E,T ) = Z[GE ] · δT,E .

Fix an integer r ≥ 0. As before, we write eE,Σ,r for the idempotent of Q[GE ] which is defined
as the sum of all primitive orthogonal idempotents eχ associated to characters χ ∈ GE such
that rΣ(χ) = r. For any primitive summand eχ of eE,Σ,r we then have that

eχCXE,Σ
∼= eχCYE,Vχ

∼= eχC[GE ]r,
where (with p a fixed finite place as in Definition (2.20))

Vχ =


{v ∈ Σ | χ(v) = 1} if χ ̸= 1E ,

Σ \ {p} if χ = 1E and S∞(k) ∪ { p } ⊆ Σ,

Σ \ {v1} if χ = 1E and S∞(k) = Σ.

In particular, eE,Σ,rQXE,Σ is a free eE,Σ,rQ[GE ]-module of rank r (for which we have fixed a
basis by virtue of our fixed choice of extension to E for every place of k at the beginning of
§ 2.3.1 and, in the case of the trivial character, also of the places v0 and v1). Given this, we
consider the following composite ‘projection’ map

Θr
E/k,Σ,T : DetZ[GE ](C

•
E,Σ,T ) ↪→ DetQ[GE ](QC

•
E,Σ,T )

≃−→ DetQ[GE ](QH
0(C•

E,Σ,T ))⊗Q[GE ] Det−1
Q[GE ](QH

1(C•
E,Σ,T ))

·eE,Σ,r−→
(
eE,Σ,rQ

∧r

Z[GE ]
O×
E,Σ

)
⊗Q[GE ]

(
eE,Σ,rQ

∧r

Z[GE ]
X∗
E,Σ

)
≃−→ eE,Σ,rQ

∧r

Z[GE ]
O×
E,Σ, (12)

where the second map is the passage-to-cohomology map, the third arrow is multiplication
by the idempotent eE,Σ,r, and the last map is induced by our fixed choice of basis for the
eE,Σ,rQ[GE ]-free module eE,Σ,rQXE,Σ.
In the sequel we fix, for each prime p, an algebraic closure Qp of Qp and write Cp for its
completion.

(3.6) Proposition. Fix a finite abelian extension K of k and a subset V ⊊ Σ of cardinality r
that comprises places splitting completely in K. Then, for each prime p, the following assertions
are equivalent:

(a) Zp · im(Θr
K/k,Σ,T ) = Zp[GK ] · εVK/k,Σ,T ,

(b) Zp · im(Θr
K/k,Σ,T ) ⊆ Zp[GK ] · εVK/k,Σ,T ,

(c) Zp · im(Θr
K/k,Σ,T ) ⊇ Zp[GK ] · εVK/k,Σ,T .

Proof. We shall show that condition (b) implies (a). The converse is clear, and the proof that
(c) implies (a) is analogous.
We first note that if T ′ is a finite set of places which is both disjoint from Σ and such that
T ′′ := T ∪T ′ is admissible, then δT ′ = δT ′,K is a non-zero divisor. Since εVK/k,Σ,T ′′ = δT ′εVK/k,Σ,T
and im(Θr

K/k,Σ,T ′′) = δT ′ · im(Θr
K/k,Σ,T ) (the latter as a consequence of the exact triangle in

Lemma (3.4) (b) and Remark (3.5)) we may therefore assume that T is admissible. In this case,
it is known that the complex Zp ⊗LZ C•

K,Σ,T admits a representative of the form [P → P ] with
P a free Zp[GK ]-module of finite rank (cf. [BKS16, § 5.4]). Moreover, Zp · DetZ[GK ](C

•
K,Σ,T ) is

a free Zp[GK ]-module of rank one. We fix a basis zK of the latter and set zbK := Θr
K/k,Σ,T (zK).

By assumption, we may write zbK = qK · εVK/k,Σ,T for some qK ∈ Zp[GK ]. By construction of

the map Θr
K/k,Σ,T , the element zbK is annihilated by the idempotent 1− eK,Σ,r. Since the same

is true for the Rubin–Stark element εVK/k,Σ,T , it suffices to prove that qKeK,Σ,r is a unit in

Zp[GK ]eK,Σ,r.
As before we write λK,Σ for the Σ-Dirichlet regulator map of K. Let ϖ = ϖK/k,Σ,T be the
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unique element of CpDetZ[GK ](C
•
K,Σ,T ) that corresponds with the leading term θ∗K/k,Σ,T (0)

under the isomorphism ϑCp[GK ],λK,Σ
defined in Lemma (3.7) below. In particular, one has an

equality (Cp ⊗Z Θr
K/k,Σ,T )(ϖ) = εVK/k,Σ,T .

Let x ∈ Cp[GK ] be the unique element such that ϖ = xzK . By construction, (qK − x)zK is
contained in the kernel of Θr

K/k,Σ,T and so the injectivity of Θr
K/k,Σ,T on the eK,Σ,r-part implies

that qKeK,Σ,r = xeK,Σ,r. It therefore suffices to show that xeK,Σ,r is a unit in Zp[GK ]eK,Σ,r.

To do this, we shall show that the norm NZp[GK ]eK,Σ,r/Zp
(xeK,Σ,r) is a unit in Zp. Given this,

Lemma (3.7) (a) then implies the claim.

Note that the set ΥK,Σ,r of all characters χ ∈ ĜK with the property that rΣ(χ) = r is stable
under the action of the absolute Galois group GQ, whence

∑
χ∈ΥK,Σ,r

χ is a rational valued

character. By the Artin induction theorem (see [Tat84, Ch. II, Thm. 1.2]) there thus exists a
natural number m and for each subgroup H of GE an integer mH such that

m ·
∑

χ∈ΥK,Σ,r

χ =
∑
H

mH · IndGK
H (1H) =

∑
H

mH ·
( ∑
χ(H)=1

χ
)
.

Writing πK/KH : Zp[GK ]→ Zp[GKH ] for the natural restriction map, we then deduce that

NZp[GK ]eK,Σ,r/Zp
(xeK,Σ,r)

m =
( ∏
χ∈ΥK,Σ,r

χ(x)
)m

=
∏
H

NZp[GKH ]/Zp
(πK/KH (x))mH

and it therefore suffices to show that each factor NZp[GKH ]/Zp
(πK/KH (x)) is a unit in Zp.

By construction, πKH/K(x)zKH is the unique element of CpDetZ[G
KH ](C

•
KH ,Σ,T

) that corres-

ponds with the leading term θ∗
KH/k,Σ,T

via the map ϑC•
KH,Σ,T

,λ
KH,Σ

defined in Lemma (3.7)

below. It then follows from Lemma (3.7) that

FCp[GKH ]/Cp
(πKH/K(x)zKH ,T ) = NCp[GKH ]/Cp

(πKH/K(x)) · FZp[GKH ]/Zp
(zKH ,T ) (13)

corresponds, by [Tat84, Ch. IV, § 1, Prop. 1.8], under ϑC̃•
KH,Σ,T

,λ
KH,Σ

with

NCp[GKH ]/Cp
(θ∗KH/k,Σ,T (0)) = θ∗KH/KH ,Σ,T (0) = ζ∗KH ,Σ,T (0),

where ζ∗
KH ,Σ,T

(0) denotes the leading term of the Σ-truncated and T -modified Dedekind ζ-

function of KH at s = 0. The analytic class number formula therefore implies that the
element in (13) is a basis of ZpDetZ(C

•
KH ,Σ,T

). On the other hand, since zKH ,T is a basis

of ZpDetZ[G
KH ](C

•
KH ,Σ,T

), the element FZp[GKH ]/Zp
(zKH ,T ) is a Zp-basis as well (by Lemma

(3.7) (b)). We therefore deduce that NZp[GKH ]/Zp
(πKH/K(x)) is a unit in Zp, as claimed.

In the following general algebraic result we fix a commutative Noetherian ring R and a finitely
generated free R-algebra A. We write NA/R : A → R for the ‘norm’ map that sends each a in
A to the determinant of the R-linear endomorphism x 7→ ax of A.

(3.7) Lemma. Suppose to be given a perfect complex C• of A-modules of the form P0 −→ P1,
where P0 and P1 are finitely generated free A-modules, and P0 is placed in degree 0. Then the
following claims are valid.

(a) An element a ∈ A is a unit if and only if NA/R(a) is a unit in R.

(b) There is an NA/R-semilinear map FA/R : DetA(C
•)→ DetR(C̃

•), where in the last term

C̃• indicates C•, regarded as a complex of R-modules. The map FA/R sends each A-basis

of DetA(C
•) to an R-basis of DetR(C̃

•).

(c) Assume that R and A are semi-simple algebras and that λ : H0(C•) ∼= H1(C•) is an
isomorphism of A-modules. Define the isomorphism

ϑC•,λ : DetA(C
•) ∼= DetA(H

0(C•))⊗A DetA(H
1(C•))−1 ∼= A,
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where the first map is the canonical ‘passage-to-cohomology’ isomorphism and the second
the composite of DetA(λ) ⊗A 1 and the evaluation map on DetA(H

1(C•)). Then there
exists a commutative diagram

DetA(C
•) A

DetR(C̃
•) R.

ϑC•,λ

FA/R NA/R

ϑ
C̃•,λ

Proof. The first claim is a restatement of [Bou74, Ch. III, § 9.6, Prop. 3]. The second and third
claims are both derived via an explicit computation from the general result of [Bou74, Ch. III,
§ 9.6, Prop. 6].

3.3. The proof of Theorem (3.2)

3.3.1. Commutative diagrams in Galois cohomology

We now suppose to be given finite sets of places U ⊆ U ′ of k that each contain the set
S∗(E) = S∞(k) ∪ S(E/k). We then define an isomorphism of Z[GE ]-modules

∆E,U ′,U : DetZ[GE ](C
•
E,U ′,T )

∼−→ DetZ[GE ](C
•
E,U,T )⊗Z[GE ]

⊗
v∈U ′\U

DetZ[GE ]

[
Z[GE ]

1−Frob−1
v−→ Z[GE ]

]
∼−→ DetZ[GE ](C

•
E,U,T ),

where the first map is induced by the exact triangle in Proposition (3.4) (c) and the second by
trivialising the latter determinant with respect to the identity.
Given a further finite abelian extension F of k with E ⊆ F , we then write

iF/E : DetZ[GF ](C
•
F,S∗(F ),T )→ DetZ[GE ](C

•
E,S∗(E),T ) (14)

for the composite homomorphism of Z[GF ]-modules

DetZ[GF ](C
•
F,S∗(F ),T ) −→ DetZ[GF ](C

•
F,S∗(F ),T )⊗Z[GF ] Z[GE ] (15)

≃−→ DetZ[GE ](C
•
F,S∗(F ),T ⊗

L
Z[GF ] Z[GE ]) (16)

≃−→ DetZ[GE ](C
•
E,S∗(F ),T ) (17)

≃−→ DetZ[GE ](C
•
E,S∗(E),T ).

Here the first map is the canonical projection, the second is induced by the base change property
of the determinant functor, the third is the isomorphism in Proposition (3.4) (d) and the final
map is ∆E,S∗(F ),S∗(E).

In the sequel a key role will be played by the functoriality of the projections ΘrE
E/k,S∗(E),T with

respect to the various maps that occur in the descent homomorphisms iF/E . This behaviour is
explicitly described in the following result.

(3.8) Lemma. Let E and F be finite abelian extensions of k such that E ⊆ F . Let V ′ ⊆ S∗(F )
be the set of places which split completely in E/k and write r′ = |V ′| for its cardinality. For
simplicity, we also put V = VE, r = rE, and W = V ′ \ V .

(a) The following diagram commutes:

DetZ[GF ](C
•
F,S∗(F ),T ) Q

∧r′

Z[GF ]
O×
F,S∗(F ),T

DetZ[GE ](C
•
E,S∗(F ),T ) Q

∧r′

Z[GE ]
O×
E,S∗(F ),T ,

Θr′
F,S∗(F ),T

Nr′
F/E

Θr′
E,S∗(F ),T

where the left-hand vertical map is the composition of (15), (16), and (17).
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(b) Assume F ∈ Ω(k) and E ∈ Ω(k) ∪ {k}, and put ω∗
F/E = (−1)r|W | if E ∈ Ω(k) and

ω∗
F/k = −1. The following diagram commutes:

DetZ[GE ](C
•
E,S∗(F ),T ) Q

∧r′

Z[GE ]
O×
E,S∗(F ),T

DetZ[GE ](C
•
E,W ′,T ) Q

∧r

Z[GE ]
O×
E,S∗(F )\W,T ,

Θr′
E,S∗(F ),T

∆E,S∗(F ),W ′

∼ ω∗
F/E

·OrdE,W

Θr
E,W ′,T

where W ′ := S∗(F ) \W and OrdE,W denotes the exterior product over v in W of the
maps

OrdE,v : O×
E,S∗(F ),T → Z[GE ], a 7→

∑
σ∈GE

ordvE (σa)σ
−1.

(c) Suppose that E ̸= k and that U ⊆ U ′ are finite sets of places of k containing S∗(E).
Then the following diagram commutes:

DetZ[GE ](C
•
E,U ′,T ) Q

∧r

Z[GE ]
O×
E,U ′,T

DetZ[GE ](C
•
E,U,T ) Q

∧r

Z[GE ]
O×
E,U,T ,

Θr
E/k,U′,T

∆E,U′,U

∼

Θr
E/k,U,T

∏
(1−Frob−1

v )

where the product on the right hand side ranges over all places in U ′ \ U .

(d) Suppose that U ⊆ U ′ are finite sets of places of k containing S∗(F ). Then the following
diagram commutes:

DetZ[GF ](C
•
F,U ′,T ) DetZ[GF ](C

•
F,U,T )

DetZ[GE ](C
•
E,U ′,T ) DetZ[GE ](C

•
E,U,T ),

∆F,U′,U

∆E,U′,U

where the vertical arrows are the composition of the relevant instances of (15), (16), and
(17).

Proof. For parts (a) and (c) see the proof of [Bur+23, Thm. 3.8].
To prove part (b), we recall that the left hand vertical map in the given square is induced by the
exact triangle (11) in Proposition (3.4) (c) applied with the sets Σ′ = S∗(F ) and Σ = S∗(F )\W .
To prove commutativity, we may first base change to Q[GE ]. Then, by the definition of the
projection maps Θr′

E/k,S∗(F ),T and Θr
E/k,S∗(F )\W,T (which involves passing to cohomology and

trivialising the top degree cohomology), it suffices to show that the composite homomorphism

eEQ
∧r′

Z[GE ]
O×
E,S∗(F ),T = eE DetQ[GE ](QH

0(C•
E,S∗(F ),T ))

−→ eE DetQ[GE ](QH
0(C•

E,S∗(F )\W,T )) = eEQ
∧r

Z[GE ]
O×
E,S∗(F )\W,T ,

that is induced by the exact triangle (11) along with the trivialisation

DetZ[GE ]

([
Z[GE ]

0−→ Z[GE ]
]) ∼= Z[GE ]

for all v ∈W , coincides with the map ω∗
F/E ·OrdW that is defined in the statement of part (b).

To do this, we note that the Artin–Verdier duality theorem identifies C•
E,S with the complex

that is denoted by ΨS in [BF98, §3.2]. In particular, the argument of [BF98, Prop. 3.2] implies
the long exact sequence in cohomology of the triangle (11) splits into the two short exact
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sequences

0 QO×
E,S∗(F )\W,T QO×

E,S∗(F ),T QYE,W 0

0 QXE,S∗(F )\W QXE,S∗(F ) QYE,W 0,

f

in which the map f is given by

f : O×
E,S∗(F ),T → YE,W ∼=

⊕
v∈W

Z[GE ], a 7→
∑
v∈W

ordw(σa)σ
−1.

Given this description, the required claim follows by a straightforward, and explicit, calculation
(just as in the argument of [BKS16, Lem. 4.2, 4.3]).
The commutativity of the diagram in (d) follows from a standard functoriality property of
the determinant functor and the fact that the triangles (11) and isomorphisms in Proposition
(3.4) (d) combine into a canonical commutative diagram

C•
F,U,T C•

F,U ′,T

⊕
v∈U ′\U

[
Z[GF ]

1−Frob−1
v−→ Z[GF ]

]

C•
E,U,T C•

E,U ′,T

⊕
v∈U ′\U

[
Z[GE ]

1−Frob−1
v−→ Z[GE ]

]
.

This proves the claimed result.

3.3.2. Completion of the proof

The link between the constructions in § 3.3.1 and the theory of integral Euler systems is provided
by the following result.

(3.9) Proposition. The collection of morphisms (ΘrE
E/k,S∗(E))E∈Ω(k) induces a homomorphism

of ZJGKK-modules

Θk : lim←−
E∈Ω(k)

DetZ[GE ](C
•
E,S∗(E))→ ESk(Z)

sym ∩ ESk(Z)
con,

where the transitions morphisms in the limit are the maps iF/E defined in (14) for E ⊆ F .

Proof. Existing results in the literature imply im(Θk) is contained in ESk(Z)
con. More precisely,

the argument of [Bur+23, Thm. 3.8 (i)] shows that every c in im(Θk) satisfies the Euler system
distribution relations; any such c also satisfies the integrality condition (5) with R = Z because
the proof of Theorem 3.8 (ii) of loc. cit. implies im(ΘrE

E/k,S∗(E)) ⊆ LE for every E in Ω(k); finally,

the argument of [BKS16, Thm. 5.16] shows that any such c validates all of the congruences
that occur in the Mazur–Rubin–Sano Conjecture.
It therefore suffices for us to fix a system c in im(Θk) and show that it is symmetric. To do
this, we fix a field E ∈ Ω(k). We note first that if either VE ̸= S∞(k) or |S(E)| > 1, then
NrEE/k(cE) = 0 by Lemma (2.6) (a) and so the explicit condition in Definition (2.15) is satisfied

trivially in this case. We may therefore assume in the sequel that both VE = S∞(k) and
S(E) = {p} for some finite place p.
By definition, there exists a system z = (zE)E ∈ lim←−E∈Ω(k)

DetZ[GE ](C
•
E,S∗(E)) such that one has

ΘrE
E/k,S∗(E)(zE) = cE . Observe that z also uniquely specifies an element zk of DetZ(C

•
k,S∞(k)).
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Now, we have a commutative diagram

DetZ[GE ](C
•
E,S∗(E))

⋂rE

Z[GE ]
O×
E,S(E)

DetZ(C
•
k,S∗(E))

∧rE

Z
O×
k,{p}

DetZ(C
•
k,S∞(k))

∧rE−1

Z
O×
k ,

Θ
rE
E/k,S∗(E)

N
rE
E/k

Θ
rE
k/k,S∗(E)

∆k,S∗(E),S∞(k)
−Ordp

Θ
rE
k/k,S∞(k)

in which the upper and lower squares are the relevant instances of the diagrams in Lemma
(3.8) (a) and Lemma (3.8) (b). From the commutativity of this diagram, it then follows that c
satisfies the condition in Definition (2.15) with its initial value ck equal to Θrk

k/k,S∞(k)(zk).

If we now assume Conjecture (2.24) to be valid for the pair (X ,S), then every system c in
ϱX (im(Θk)) can be written in the form c = q · εXk for some q ∈ ZSJGKK. This shows that
Conjecture (2.24) gives rise to an inclusion ϱX (im(Θk)) ⊆ ZSJGKKεXk . Theorem (3.2) therefore
now follows immediately upon applying the following result with X taken to be the set ΩV(k)
(which is easily seen to satisfy the hypotheses required by the result) for every prime number
p outside S.

(3.10) Proposition. Let K/k be a finite abelian extension, p a prime number and V a subset of
P(S∞(k)). Let X be a subset of Ω(k) that satisfies the following condition: for each intermediate
field L of K/k such that VL ∈ V, one has

• L ∈ X if L/k is ramified,

• k(p)L ∈ X for almost all p ∈ Sfin(k) if L/k is unramified.

Then, if ϱX (im(Θk)) ⊆ ZpJGKKεXk , the conjecture TNC(h0(SpecK), ϵK,VZp[GK ]) is valid.

Proof. For each χ in ĜK , we denote the subfield Kker(χ) of K by K(χ). We also write Υ⋄
K,V

for the subset of ĜK comprising characters χ with χ(ϵK,V) ̸= 0.
Then for each χ ∈ Υ⋄

K,V , the properties in Remark (3.1) (a) and (c) combine to imply VK(χ)

belongs to V. In particular, if K(χ)/k is unramified, then we can fix a (finite) prime pχ of k
that is inert in the (cyclic) extension K(χ) and is such that the compositum of K(χ) and k(pχ)
belongs to X . Then, for each χ in Υ⋄

K,V , the extension of k that is defined by setting

Kχ :=

{
K(χ) if χ is ramified,

K(χ)k(pχ) otherwise,

belongs to X .
We now write N for the compositum of K and the fields Kχ for each χ in Υ⋄

K,V , set Γ := GN
and regard ϵK,V as an idempotent of Q[Γ] in the obvious way (this idempotent does not usually
identify with ϵN,V but this fact is not important in the sequel).
Then, by the known functoriality properties of the equivariant Tamagawa Number Conjecture
(cf. [BF01, Prop. 4.1]), it is sufficient to show that the inclusion ϱX (im(Θk)) ⊆ ZpJGKKεXk
implies the validity of TNC(h0(SpecN), ϵK,VZp[Γ]).
Then, since the Z[Γ]-module DetZ[Γ](C

•
N,S∗(N)) is locally free, Roiter’s Lemma [CR81, (31.6)]

allows us to choose an element zN of DetZ[Γ](C
•
N,S∗(N)) that generates a (free, rank one) Z[Γ]-

submodule of finite prime-to-p index. In particular, if we set D•
N,S∗(N)

:= Zp⊗ZC•
N,S∗(N), then

the image 1⊗ zN of zN in the free Zp[Γ]-module Zp⊗ZDetZ[Γ](C
•
N,S∗(N))

∼= DetZp[Γ](D
•
N,S∗(N))

is a basis.
Now, since the transition maps iF/E are surjective (by construction), we can lift zN to an
element a of the corresponding inverse limit lim←−E∈Ω(k)

DetZ[GE ](C
•
E,S∗(E)). This element a then
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gives rise, by Proposition (3.9), to an Euler system zb := Θk(a). In particular, if we assume that
ϱX (im(Θk)) is contained in ZpJGKKεXk , then there exists an element q = (qE)E of ZpJGal(K/k)K
such that ϱX (zb) = q · εXk . More concretely, therefore, this element q would satisfy

zbE = qE · εE/k for every E ∈ X . (18)

We claim that these equalities imply that the element ϵK,V · qN is a unit of ϵK,VZp[Γ]. To show
this, we recall that for each χ in Υ⋄

K,V the field Kχ is a subfield of N .

This implies that the element 1 ⊗ zbKχ
is equal to the image of the Zp[Γ]-basis 1 ⊗ zN of

DetZp[Γ](D
•
N,S∗(N)) under the composite homomorphism

DetZp[Γ](D
•
N,S∗(N)) DetZp[GKχ ]

(D•
Kχ,S∗(Kχ)

) ZpLKχ .
iN/Kχ

Θ
rKχ
Kχ/k,S∗(Kχ)

It therefore follows from the equality (18) (with E = Kχ) that one has

(Θ
rKχ

Kχ/k,S∗(Kχ)
◦ iN/Kχ

)(zN ) = zbKχ
= qKχ · εKχ/k. (19)

This combines with the implication (b)⇒ (a) of Proposition (3.6) (with K replaced by Kχ and
V by VKχ) to imply that the elements zbKχ

and εKχ/k generate the same Zp[GKχ ]-submodule

of ZpLKχ . In particular, since this submodule is free as an eKχZp[GKχ ]-module, we deduce
that the element eKχ · qKχ is a unit in eKχZp[GKχ ]. In addition, since rS∗(Kχ)(χ) = rKχ , the
orthogonality relations of characters imply that χ(eKχ) = 1 and so the element χ(qN ) = χ(qKχ)
is a unit in Zp[imχ].
We have, by now, shown that χ(qN ) is a unit in Zp[im(χ)] for every χ in Υ⋄

K,V . Since the set

Υ⋄
K,V is stable under the action of GQ on Γ̂, we can therefore deduce that the element

NϵK,VZp[Γ]/Zp
(ϵK,V · qN ) =

∏
χ∈Υ⋄

K,V

χ(qN ) =
∏

χ∈Υ⋄
K,V/∼

NZp[im(χ)]/Zp
(χ(qN ))

is a unit in Zp. By Lemma (3.7) (a) this in turn proves that ϵK,V · qN is a unit in ϵK,VZp[Γ] as
claimed above.
This fact implies that ϵK,Vq

−1
N zN is an ϵK,VZp[Γ]-basis of ϵK,V ·DetZp[Γ](D

•
N,S∗(N)). To prove the

Proposition it therefore suffices, by [BKS17, Prop. 2.5], to verify for every character χ ∈ Υ⋄
K,V

that the composite homomorphism

eχCpDetZp[Γ](D
•
N,S∗(N))

fN/K(χ)−−−−−→ eχCpDetZp[GK(χ)](D
•
K(χ),S∗(N))

Θ
rχ
K(χ)/k,S∗(N)−−−−−−−−−→ eχCp

∧rχ

Zp[GK(χ)]
UK(χ),S∗(N)

sends eχq
−1
N zN to eχε

Vχ
K(χ)/k,S∗(N). Here Vχ is any choice of subset of S∗(N) of cardinality

rχ := rS∗(N)(χ) that only contains places that split completely in K(χ), and the map fN/K(χ)

appearing above is induced by the composite of (15), (16), and (17).

To verify this we set W := Vχ \ VKχ and m := |W |, and claim that it suffices to demonstrate
the equality

(OrdK(χ),W ◦Θ
rχ
K(χ)/k,S∗(N) ◦ fN/K(χ))(eχq

−1
N zN ) = (−1)mrχ · eχε

VKχ

K(χ)/k,S∗(N)\W,∅. (20)

Indeed, by the result of [San14, Prop. 3.6] one knows that

OrdK(χ),W (ε
Vχ
K(χ)/k,S∗(N),∅) = (−1)mrχ · εVKχ

K(χ)/k,S∗(N)\W,∅.

In particular, the injectivity of the map OrdK(χ),W on the eK(χ)/k,S∗(N),∅-isotypic component

of
⋂rχ
Zp[GK(χ)]

UK(χ),S∗(N) (as is proved in [Rub96, Lem. 5.1 (i)]) then combines with the previous

two equalities to imply the claim.
Turning now to the verification of (20), we first note (19) implies that one has

(Θ
rKχ

Kχ/k,S∗(Kχ)
◦ iN/Kχ

)(q−1
N zN ) = εKχ/k. (21)
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Using Lemma (3.8), we may therefore calculate that

(Θ
rKχ

K(χ),Π(K(χ)) ◦∆K(χ),S∗(N),S∗(Kχ) ◦ fN/K(χ))(eχq
−1
N zN )

= (Θ
rKχ

K(χ),S∗(Kχ)
◦∆K(χ),S∗(N),S∗(Kχ) ◦ fKχ/K(χ) ◦ fN/Kχ

)(eχq
−1
N zN )

= (Θ
rKχ

K(χ),S∗(Kχ)
◦ fKχ/K(χ) ◦∆Kχ,S∗(N),S∗(Kχ) ◦ fN/Kχ

)(eχq
−1
N zN )

= (N
rKχ

Kχ/K(χ) ◦Θ
rχ
Kχ,S∗(Kχ)

◦ iN/Kχ
)(eχq

−1
N zN )

=N
rKχ

Kχ/K(χ)(eχεKχ/k)

= eχε
VKχ

K(χ)/k,S∗(Kχ),∅. (22)

Here the first equality follows from the fact that fN/K(χ) = fKχ/K(χ) ◦ fN/Kχ
, the second from

Lemma (3.8) (d), the third from Lemma (3.8) (a) and the definition of the map iN/Kχ
, the

fourth from (21),and the last from the properties of Rubin–Stark elements.
To proceed, we set W ′ = S∗(N) \W and calculate

(−1)mrχ · (OrdK(χ),W ◦Θ
rχ
K(χ)/k,S∗(N) ◦ fN/K(χ))(eχq

−1
N zN )

= (Θ
rKχ

K(χ),W ′ ◦∆K(χ),S∗(N),W ′ ◦ fN/K(χ))(eχq
−1
N zN )

= (Θ
rKχ

K(χ),W ′ ◦∆K(χ),S∗(Kχ),W ′ ◦∆K(χ),S∗(N),S∗(Kχ) ◦ fN/K(χ))(eχq
−1
N zN )

=
( ∏
v∈W ′\S∗(Kχ)

(1− χ(Frobv)−1)
)
· (ΘrKχ

K(χ),S∗(Kχ)
◦∆K(χ),S∗(N),S∗(Kχ) ◦ fN/K(χ))(eχq

−1
N zN )

=
( ∏
v∈W ′\S∗(Kχ)

(1− χ(Frobv)−1)
)
· eχε

VKχ

K(χ)/k,S∗(Kχ),∅

= eχε
VKχ

K(χ)/k,W ′,∅.

Here the first equality follows via an application of Lemma (3.8) (b), the second by the definition
of the respective ∆ homomorphisms, the third by appealing to Lemma (3.8) (c), the fourth by
(22), and the last by properties of Rubin–Stark elements.
This concludes the proof of (20), and hence of Proposition (3.10).

(3.11) Remark. The results of this section show that the conjecture formulated by Sano and
three of the present authors in [Bur+23] cannot be valid. To discuss this we write ks for the
maximal abelian extension of k in which all places in S∞ = S∞(k) split completely, Ω for
the collection ΩS∞(k) of finite ramified extensions of k in ks, Rs for the algebra ZJGal(ks/k)K
and As for the ideal lim←−E∈ΩAnnZ[GE ](µE) of Rs, where the limit is taken with respect to the

natural projection maps Z[GE′ ] → Z[GE ] for fields E ⊆ E′ in Ω. Then the central conjecture
(Conjecture 2.5) of loc. cit. predicts the Rs-module ESk of Euler systems defined in [Bur+23,
Def. 2.3] is such that As · ESk ⊆ As · ϱS∞(im(Θk)). However, the validity of this prediction
is not consistent with the result of Proposition (3.9) for two reasons: firstly, the intersection
As · (ESk ∩ ESS∞

k (Z)iso) is in general non-zero (and, in this regard, recall Lemma (2.17)) and,
secondly, the final observation in Remark (2.25)(d) implies that, in general, there are systems
in As · ESk that are not symmetric.

4. The theory of Euler limits

In this section we develop a general theory of ‘Euler limits’ that is vital for our approach to
the analysis of Euler systems.
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4.1. Definitions and examples

Throughout this section, we fix a number field k and, for convenience, write Ω instead of Ω(k)
for the set of finite abelian extensions of k that are ramified at (at least) one finite place.
Similarly, we abbreviate S∞(k) and Sp(k) to S∞ and Sp respectively. We also fix a subring R
of C with field of fractions Q.

(4.1) Definition. Given a subset X of Ω, we define a triangular system on X to consist of
the following data for every pair of fields E and F in X with E ⊆ F :

• an R[GF ]-module MF,E;

• maps of R[GF ]-modules ρF/E : MF,F →MF,E and jF/E : ME,E →MF,E.

In the case E = F , we usually abbreviate MF,E to ME and refer to it as a diagonal term of
the system.

(4.2) Examples. Triangular systems arise naturally in several ways.

(a) (Projective systems) Each projective system (M̃F , ρ̃F/E)F∈X of R[GF ]-modules gives rise

to a triangular system by setting MF,E := M̃E for each E ⊆ F and taking ρF/E to be

ρ̃F/E and jF/E to be the identity map on M̃E .

(b) (Biduals of units) For any rank function r one obtains a triangular system on X by
setting, for each E and F in X with E ⊆ F ,

MF,E :=

{
RLr(E)

E if E = F,⊕∞
i=0Q

∧i
Z[GE ]O

×
E,S(F ) if E ̸= F,

and by taking ρF/E to be the map induced by the norm O×
F,S(F ) → O

×
E,S(F ) and jF/E to

be the (injective) map induced by the inclusion O×
E,S(E) ⊆ O

×
E,S(F ).

(c) (Exterior powers of duals) For any non-negative integer t, and any pair of fields E,F ∈ X
with E ⊆ F , the composite homomorphism

(O×
F,S(F ))

∗ → HomZ[GF ](O×
E,S(E),Z[GF ]

Gal(F/E))→ (O×
E,S(E))

∗,

where the first map is restriction and the second is induced by sending NGal(F/E) to 1, in-

duces a homomorphism of Z[GF ]-modules ΦtF/E :
∧t
Z[GF ](O

×
F,S(F ))

∗ →
∧t
Z[GE ](O

×
E,S(E))

∗.
Given a rank function t, we therefore obtain a triangular system by setting

MF,E :=

{∧t(E)
R[GE ](RO

×
E,S(E))

∗ if E = F,⊕∞
i=0

∧i
R[GE ](RO

×
E,S(E))

∗ if E ̸= F,

and by taking ρF/E to be Φ
t(E)
F/E and jF/E to be the natural inclusion map.

We next associate to each triangular system a natural notion of limit.

(4.3) Definition. Fix a finite set Π of places of k and, for each field E in Ω, set

Π(E) := Π ∪ S(E) = Π ∪ Sram(E/k).
(Note, in particular, that Π(E) = S(E) if Π = ∅ and Π(E) = S∗(E) if Π = S∞(k).)

(a) The Π-relative Euler factor for an extension F/E of fields in Ω is the element

PF/E,Π :=
∏

v∈S(F )\Π(E)

(1− Frob−1
v ) ∈ Z[GE ].

(In particular, if Π = ∅, then PF/E,Π is the standard factor
∏
v∈S(F )\S(E)(1 − Frob−1

v )
that also occurs in the definition of an Euler system.)
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(b) Let T := {(MF,E , ρF/E , jF/E)}E,F∈X be a triangular system on a subset X of Ω. Then
the Π-relative Euler limit of T is the RJGKK-submodule{

(aF )F ∈
∏
F∈X

MF

∣∣ ρF/E(aF ) = PF/E,Π · jF/E(aE) for all E,F ∈ X with E ⊆ F
}

of the direct product
∏
F∈X MF . We denote this submodule by elim←−−

ΠT or, more simply

(when data defining the system T is clear from context), by elim←−−
Π

F∈X
MF .

In the rest of this section we fix a set of places Π as above. In addition, for a (not necessarily
finite) extension of fields E ⊆ F that are abelian over k, we write

πF/E : CJGF K→ CJGEK

for the natural restriction map (and we use the same notation to denote the restriction of πF/E
to RJGF K for any subring R of C).

(4.4) Examples. The concept of Euler limit incorporates several natural constructions.

(a) (Euler systems) If we take X = Ω and Π = ∅, then elements of the Euler limit associated
to the triangular system on X described in Example (4.2) (b) are Euler systems of rank
r that are R-integral in the sense of Definition (2.12).

(b) (Perrin-Riou functionals) Take X = Ω and Π = ∅. If we define the module of Perrin-Riou
functionals PRt

k(R) to be the Euler limit of the triangular system defined in Example

(4.2) (c) with transition maps ρF/E := PF/E,∅ ·Φ
t(E)
F/E , then, for any pair of rank functions

t and s with s(E) ≥ t(E) for all E ∈ Ω(k), and any subring R of C, the argument
of Perrin-Riou in [PR98, Lem. 1.2.3] (see also [Rub96, § 6]) shows that the assignment
((fE)E , (cE)E) 7→ (fE(cE))E induces a homomorphism of RJGKK-modules

PRt
k(R)⊗RJGKK ES

s
k(R)→ ESs−t

k (R).
This method of ‘rank-reduction’ has been used in the literature to obtain useful classical
(rank-one) Euler systems from higher-rank Euler systems.

(c) (Inverse limits) Each projective system (MF , ρF/E)F∈X of R[GF ]-modules gives rise
to an associated projective system (M ′

F , ρ
′
F/E)F∈X in which one has M ′

F := MF and

ρ′F/E := PF/E,Π · ρF/E for all E ⊆ F . The identity map on
∏
F∈X MF restricts to induce

an embedding of the inverse limit lim←−F∈X MF into the Euler limit elim←−−
Π

F∈X
M ′
F of the

triangular system associated to (M ′
F , ρ

′
F/E)F∈X by Example (4.2) (a).

(d) (Idempotent projections) Let (MF , ρF/E)F∈X be a projective system of Z-torsion-free
R[GF ]-modules and recall the idempotents

eF,Π := eF,S∞(k)∪Π(F ),rF

from Definition (2.20). (We note, in particular, that if Π = ∅, then eF,Π is equal to the
idempotent eF defined in (3).) We define a triangular system (M ′

F,E , ρ
′
F/E , jF/E)F∈X by

setting

M ′
F,E :=

{
eF,ΠMF if F = E,

Q⊗R ME if F ̸= E,

and ρ′F/E := PF/E,Π · ρF/E , and taking jF/E to be the natural inclusion of eF,ΠMF into

Q ⊗R MF . We then write elim←−−
Π

F∈X
eF,SMF for the Euler limit of the triangular system

(M ′
F,E , ρ

′
F/E , jF/E)F∈X . A straightforward calculation shows that for fields E and F in

Ω with E ⊆ F one has PF/E,Π · (πF/E(eF,Π) − eE,Π) = 0. This fact implies that the
assignment

lim←−
F∈X

MF → elim←−−
Π

F∈X
eF,ΠMF , (mF )F 7→ (eF,ΠmF )F

is a well-defined map of RJGKK-modules.
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In the next two sections we shall prove the existence of natural exact sequences relating re-
spectively to ‘restriction’ and ‘localisation’ functors that are associated to the Euler limits of
triangular systems.

4.2. The p-adic restriction exact sequence

4.2.1. Statement of the p-adic restriction sequence

In the sequel we will consider subsets X of Ω that are ‘large’ in the sense that they satisfy the
following hypothesis.

(4.5) Hypothesis (Closure Hypothesis). Fix a subset V of P(S∞(k)) and let X be a subset
of ΩV(k) that has the following two closure properties:

(i) (Composita) If K ∈ X and E ∈ ΩS∞(k)(k), then KE ∈ X .
(ii) (Subfields) If K ∈ X , then for every intermediate field L of K/k with VL ∈ V, one has

• L ∈ X if L/k is ramified,

• k(p)L ∈ X for almost all p ∈ Sfin(k) if L/k is unramified.

(4.6) Examples. The following two families of extensions satisfy Hypothesis (4.5) (for suitable
sets V) and will play an important role in the sequel.

(a) Let V be any subset of P(S∞(k)). Then the set X = ΩV(k) satisfies Hypothesis (4.5)
with respect to V.

(b) Let k be a totally real field. Then the set X of all finite abelian CM extensions of k that
are ramified at some finite prime satisfies Hypothesis (4.5) with respect to V = {∅}.

For each finite set of places Σ of k, we write XΣ for the subset of X comprising fields that are
ramified at every place in Σ. We then have a natural ‘restriction’ map on Euler limits

resΠΣ : elim←−−
Π

F∈X
MF → elim←−−

Π

F∈XΣ

MF . (23)

(4.7) Remark. For E ∈ X and F ∈ XΣ with E ⊆ F (if such F exists), the defining relation
of the Euler limit relative to Π ∪Σ has no Euler factor for the extension E/F . In many cases,
therefore, the limit elim←−−

Π

F∈XΣ
MF can be regarded as a submodule of elim←−−

Π∪Σ
F∈X

MF .

In the next result we shall establish an important property of the maps resΠΣ for triangular
systems that satisfy the following natural hypothesis.

(4.8) Hypothesis. Let p be a prime number. The data {(MF,E , ρF/E , jF/E)}E,F∈X constitutes
a triangular system in which the transition maps jF/E are injective (and will be suppressed in
the notation) and, for all pairs of fields E ⊆ F contained in Ω, there exists an injective homo-

morphism of GE-modules ιF/E : ME →M
Gal(F/E)
F , that has both of the following properties:

(i) the restriction of the composite ιF/E ◦ ρF/E to the full pre-image M ′
F in MF of ME under

ρF/E factors through multiplication by NGal(F/E),

(ii) there exists an integer N , depending only on ME , such that for every m in ME and every
integer t, one has m ∈ pt ·ME if ιF/E(m) ∈ pt+N ·MF .

(4.9) Examples. Hypothesis (4.8) is satisfied in several natural cases with R a Dedekind
domain and p a prime number that is not a unit in R. For example, one may take R to be Zp
or ZS with a finite set of prime numbers S that does not contain p.

30



(a) Hypothesis (4.8) (ii) is satisfied in this case if, for each E, the module ME is a Z-torsion-
free and there exists a natural number N , depending only on E, such that, for every F ,
the p-part of the order of coker(ιF/E)tor divides pN . To justify this, set ι := ιF/E and
note that if ι(m) = pt · y for some integer t ≥ 0 and y ∈ MF , then the image of y in
coker(ι) is annihilated by pt, and hence also, by assumption, by cpN for some natural
number c that is coprime with p. If z is the (unique) element of ME with ι(z) = cpN · y,
then cpN ·m = pt · z ∈ ptME . Thus, because ME is Z-torsion-free and c is a unit modulo
pt−N , we conclude that m belongs to pt−NME , as required.

(b) The triangular system associated (via Example (4.2) (a)) to the canonical projective sys-
tem (R[GE ], πF/E) satisfies Hypothesis (4.8) with ιF/E induced by the map R[GE ] →
R[GF ] sending each a to NGal(F/E) · ã for any (and therefore every) ã ∈ R[GF ] with
πF/E(ã) = a. For this choice, the validity of (i) is clear and the validity of (ii) follows
from Example (4.9) (a) and the fact that coker(ιF/E) vanishes.

(c) Lemma (2.9) (c) (see also Remark (2.11)) shows that the triangular system of biduals in
Example (4.2) (b) satisfies Hypothesis (4.8) with ιF/E taken to be the map νF/E from
Lemma (2.9).

In the sequel we shall use the field

k⟨p⟩ := k(µps+1 , (O×
k )

1/pmin{s,1}
). (24)

The following is the main result of this subsection.

(4.10) Theorem (The p-adic restriction sequence). We assume to be given the following data:

• an odd prime number p,

• a subset X of Ω that satisfies Hypothesis (4.5),

• a triangular system {(MF,E , ρF/E , jF/E)}E,F∈X that satisfies Hypothesis (4.8) with respect
to p and is such that each diagonal term ME is a Zp[GE ]-lattice,

• finite subsets Π and Σ of Sfin(k).

For each field F in X write kΠ(F ) for the composite of all extensions of k in k⟨p⟩ in which at
least one place of Sp(k) \Π(F ) splits completely. Then the sequence of ZpJGKK-modules

0 elim←−−
Π

F∈X
M

Gal(F/F∩kΠ(F ))
F elim←−−

Π

F∈X
MF elim←−−

Π

F∈XΣ

(
MF /M

Gal(F/F∩kΠ(F ))
F

)
,

⊆ resΠΣ

in which resΠΣ denotes the map induced by resΠΣ, is exact.

(4.11) Remark. The result of Theorem (4.10) is equivalent to asserting that the kernel of
resΠΣ is independent of the choice of Σ. In the stated generality, however, it seems more difficult
to obtain concrete information about the cokernel of resΠΣ.

(4.12) Remark. Our methods also prove a variant of Theorem (4.10) for p = 2, see Proposition
(4.21) and Remark (4.24) for more details.

The proof of Theorem (4.10) will be given in § 4.2.5 after we first establish several necessary
preliminary results. We end this section by recording an important consequence of Theorem
(4.10) that will be derived in § 4.2.6.

(4.13) Corollary (The global restriction sequence). We assume to be given the following data:

• a finite set of prime numbers S,

• a subset X of Ω that satisfies Hypothesis (4.5),
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• a triangular system {(MF,E , ρF/E , jF/E)}E,F∈X for which each diagonal term ME is a
ZS [GE ]-lattice and Hypothesis (4.8) is satisfied for all but finitely many p,

• finite subsets Π and Σ of Sfin(k).

Then the sequence of ZSJGKK-modules

0 elim←−−
Π

F∈X
MGF
F elim←−−

Π

F∈X
MF elim←−−

Π

F∈XΣ

(
MF /M

GF
F

)
,

⊆ resΠΣ

in which resΠΣ denotes the map induced by resΠΣ, is exact.

4.2.2. Constructing extensions with prescribed local behaviour

A key step in the proof of Theorem (4.10) is provided by the following technical result concern-
ing the existence of cyclic extensions of number fields with certain prescribed local behaviour.

(4.14) Proposition. Assume to be given data of the following form:

• a prime number p,

• a finite abelian extension K of k,

• a finite set T of places of k that contains Sp(k) and is such that the T -classgroup of k is
trivial.

Write s for the greatest integer such that k contains a primitive ps-th root of unity, fix a natural
number n with n > s, define a finite Galois extension of k by

k(p, T , n) :=

{
k(µps+n , (O×

k,T )
1/ps) if p is odd,

k(µps+n+1 , (O×
k,T )

1/ps+1
) if p = 2,

and set

L = L(p, T , n) := K ∩ k(p, T , n).
Then, for any element σ of GK whose restriction to L is trivial, there exists a Galois extension
E = E(p, n, T , σ) of k that has all of the following properties:

(i) GE is a cyclic p-group,

(ii) every place v ∈ T is unramified in E and the order of Frobv on E is at least pn,

(iii) S(E) contains no infinite place and at most two finite places,

(iv) for each v ∈ S(E) the following claims are valid:

(a) the inertia subgroup of v in GE has order at least pn,

(b) v is unramified in K and the restriction of Frobv to K is equal to σ.

To prove this result, we shall use several important results in the theory of embedding problems
that are obtained by Neukirch in [Neu73, § 7 and § 8]. For the convenience of the reader, we
shall therefore begin by fixing a natural number n, setting

q := pn

and reviewing Neukirch’s approach to the problem of determining whether there exists a cyclic
Galois extension of k of degree q that realises a given family of local extensions.
We write Gk for the absolute Galois group of k and Gkv for the decomposition subgroup in Gk of
each place v of k. Then, for a given collection of places v and a morphism φv : Gkv → Z/qZ for
each such v, we ask whether there exists a surjective morphism Gk → Z/qZ whose restriction
to Gkv agrees with φv for all v in the given set.
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To be more precise, we fix a set of places M of k that contains both S∞(k) and Sp(k) and a
finite subset T ofM. We then define

Λ(M, T ) :=
∏
v∈T
{0} ×

∏
v∈M\T

′

Hom(Gkv ,Z⧸qZ)×
∏
v ̸∈M

Homnr(Gkv ,Z⧸qZ)

where Homnr(Gkv ,Z/qZ) is the subset of Hom(Gkv ,Z/qZ) comprising all morphisms that are
‘non-ramified’ at v (that is, vanish on the inertia subgroup) and

∏′ is the restricted product
(that is, the subset of the cartesian product comprising all elements (φv)v with the property
that φv is non-ramified for all but finitely many v). We then consider

∆(k,Z⧸qZ)MT := coker
(
Hom(Gk,Z⧸qZ)→

(∏
v

′
Hom(Gkv ,Z⧸qZ)

)
/Λ(M, T )

)
where in the restricted product v runs over all places of k.
We now assume to be given a morphism ϕ0 : Gk → Z/qZ that is unramified outside M and,
for each v ∈ T , a morphism φv : Gkv → Z/qZ. We then write ϕ0,v for the restriction of ϕ0
to Gkv and define η to be the class in ∆(k,Z/qZ)MT of the collection (ηv)v that is defined by
setting

ηv =

{
ϕ0,v − φv if v ∈ T ,
ϕ0,v if v ̸∈ T .

(25)

(4.15) Remark. The class η is a natural ‘obstruction’ to solving the problem at hand since
it vanishes if and only if there exists a morphism ϕ : Gk → Z/qZ that is unramified outsideM
and, for all v ∈ T , coincides with φv when restricted to Gkv .

To investigate the vanishing of η, we introduce the following group of units:

UM
T (q) := {a ∈ k× | ∀v ̸∈ M : ordv(a) ≡ 0 mod q, ∀v ∈M \ T : a ∈ (k×v )

q}.

(4.16) Lemma ([Neu73, Satz (7.1)]). There is a canonical isomorphism

∆(k,Z⧸qZ)MT
≃→ Hom(UM

T (q)/(k×)q,Z⧸qZ)

that can be explicitly described as follows. Let f be an element of ∆(k,Z/qZ)MT represented by
a family (fv)v of morphisms fv : Gkv → Z/qZ. Then the above isomorphism sends f to

UM
T (q)/(k×)q → Z⧸qZ, a 7→

∑
v

fv(recv(a)),

where recv : k
×
v → Gab

kv
is the local reciprocity map and Gab

kv
is the abelianisation of Gkv .

We next use Kummer theory to give a convenient Galois-theoretic description of ∆(k,Z/qZ)MT .
To do this, we set

k1 := k(µq) and k2 = kM2,T := k1(
q
√
a | a ∈ UM

T (q)).

(4.17) Remark. The Galois extension k2/k1 is referred to as the ‘obstruction extension’ by
Neukirch and has the following functorial behaviour. Let M′ be a set of places of k that
is disjoint from M ∪ T , and write HM′ for the subgroup of Gal(kM2,T /k1) generated by the

collection {Frobv | v ∈M′
k1
}. Then, since every place inM′

k1
splits completely in kM∪M′

2,T , one

has kM∪M′
2,T ⊆ (kM2,T )

HM′ and Gal(kM∪M′
2,T /k1) is a quotient of Gal(kM2,T /k1)/HM′ . (In fact, one

has equality in both instances if p is odd, cf. [Neu73, Satz (7.3)].)

The following result is a straightforward extension of [Neu73, Thm. 7.4] that incorporates the
case p = 2.

(4.18) Lemma. The canonical map

Gal(k2/k1)→ HomZ(U
M
T (q)/(k×)q, µq), σ 7→ {a 7→ σ( q

√
a)/ q
√
a}

is injective. Its cokernel is of order dividing two and vanishes if p is odd.
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Proof. We write Q for the quotient module (UM
T (a) ∩ (k×1 )

q)/(k×)q , and consider the tauto-
logical exact sequence

0 Q UM
T (q)⧸(k×)q UM

T (q)⧸(UM
T (q) ∩ (k×1 )

q) 0.

Then, since Kummer theory identifies Gal(k2/k1) with HomZ(U
M
T (q)/(UM

T (a) ∩ (k×1 )
q), µq),

we can take Kummer duals of the above sequence to obtain an exact sequence

0 Gal(k2/k1) HomZ
(
UM
T (q)⧸(k×)q,Z⧸qZ

)
HomZ

(
Q,Z⧸qZ

)
0.

This sequence directly proves the first claim and also shows that the order of the cokernel of
the given map is equal to the order of Q.
To bound this order, we observe that Q identifies with a subgroup of the kernel

ker
(
k×⧸(k×)q → k×1⧸(k×1 )q

) ∼= H1(Gal(k1/k), µq),

and that, by [Neu73, Satz (4.8)], the latter cohomology group vanishes if either q is odd or if
k ∩Q(µ2n) is complex.
It therefore only remains to consider the case that q = 2n and

√
−1 /∈ k. In this case, the

inflation-restriction sequence combines with the aforementioned vanishing result to give an
isomorphism

H1(Gal(k(
√
−1)/k), µ4) ∼= H1(Gal(k1/k), µq).

In addition, since Gal(k(
√
−1)/k) is cyclic, a Herbrand quotient argument implies that

|H1(Gal(k(
√
−1)/k), µ4)| = |Ĥ0(Gal(k(

√
−1)/k), µ4)| = |{±1}| = 2,

as required to conclude the proof of the second claim.

The following observation regarding the field k2 defined above will also be useful later on.

(4.19) Lemma. Let q := pn with n a natural number as before, and set

k3 = k3,T := k(µq, (O×
k,T )

1/q).

Then the following claims are valid.

(a) One has k2 ⊆ k3, with equality if every place inM\ T splits completely in k3.

(b) Write s for the greatest integer such that k contains a primitive ps-th root of unity and as-
sume n > s. Then the maximal abelian extension of k in k3 is equal to k(µpn+s , (O×

k,T )
1/ps)

if p is odd or
√
−1 ∈ k, and is otherwise contained in k(µ2n+s+1 , (O×

k,T )
1/2s+1

).

Proof. To prove the first part of claim (a) it is sufficient, by Kummer theory, to show that the
class of any element of UM

T (q) in k×/(k×)q is represented by an element of O×
k,T . To do this, we

fix a in UM
T (q) and write Z(a) for the (finite) set of places v of k that are outside T and satisfy

ordv(a) ̸= 0. Then, since the T -classgroup of k is assumed to be trivial, for each v ∈ Z(a), one
has that the ideal v is equal to an ideal that is only supported at T times an element πv of k×.
It follows that πv belongs to O×

k,T ∪{v} and satisfies ordv(πv) = 1. By definition of UM
T (q), one

has ordv(a) ≡ 0 mod q for all v ∈ Z(a) and so πa :=
∏
v∈Z(a) π

− ordv(a)
v belongs to (k×)q. The

element a ·πa can then be checked to belong to O×
k,T and have the same class as a in k×/(k×)q.

This proves that k2 is contained in k3, as claimed in (a).
If, in addition, every place inM\ T splits completely in k3, then the definition of k3 implies
that every element of O×

k,T must belong to (k×v )
q for every such place v ∈ M \ T . We deduce

that O×
k,T is contained in UM

T (q) in this case, and hence that k3 is contained in k2. This proves
the second part of claim (a).
To prove claim (b), we write L′ for the maximal abelian extension of k in k3. Then L

′ contains
k1 = k(µq) and so, by Kummer theory, there exists a subgroup U of (O×

k,T · (k
×
1 )

q)/(k×1 )
q such

that Gal(L′/k1) ∼= Hom(U, µq).
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Since L′ is abelian over k, the conjugation action of Gk1 on Gal(L′/k1) is trivial. To make this
condition explicit, we fix elements τ ∈ Gal(L′/k1) and ρ ∈ Gk1 , a lift ρ̃ of ρ to Gal(L′/k) and
an element a of O×

k,T that represents a class in U . Then, for a suitable integer n(a, ρ̃), one has

ρ̃( q
√
a) = ζn(a,ρ̃)q

q
√
ρ(a) = ζn(a,ρ̃)q

q
√
a.

In particular, since ρ̃ ◦ τ = τ ◦ ρ̃ in Gal(L′/k1), one therefore has

ρ̃(τ( q
√
a)) = τ(ρ̃( q

√
a)) = τ(ζn(a,ρ̃)q

q
√
a) = ζn(a,ρ̃)q (τ( q

√
a)/ q
√
a) q
√
a = (τ( q

√
a)/ q
√
a)ρ̃( q
√
a),

and so the element τ( q
√
a)/ q
√
a of µq ⊂ k1 is fixed by ρ̃. Since this is true for every element ρ

of Gk1 , it follows that τ( q
√
a)/ q
√
a belongs to k× and hence must be a ps-th root of unity.

We next write ⟨a⟩ for the subgroup of k×1 /(k
×
1 )

q that is generated by a, and note that Kummer
theory gives a natural isomorphism

Gal(k1(
q
√
a)/k1)

≃→ Hom(⟨a⟩, µq), τ 7→ τ( q
√
a)/ q
√
a.

In particular, since the above argument shows that the order of every element in the image of
this isomorphism is at most ps, the order of ⟨a⟩ is at most ps, and so the element ap

s
belongs

to the kernel of the natural map

θ : k×/(k×)q → k×1 /(k
×
1 )

q.

In addition, θ is injective if either p is odd or
√
−1 ∈ k, and in all other cases the order of

ker(θ) divides two (cf. the proof of Lemma (4.18)).
For simplicity, we now assume that we are in the first of these cases (and merely note that the
second case can be dealt with in the same fashion).
In this case, the above argument shows that ap

s
belongs to (k×)q and hence that

ap
s
= bq

for some element b of O×
k,T . One therefore has q

√
a = ζ · ps

√
b for a root of unity ζ of order

dividing qps = ps+n (so that ζ ∈ k(µps+n)), and hence that

k1(
q
√
a) ⊂ k(µps+n , (O×

k,T )
1/ps).

Since the field L′ is generated by all such fields k1( q
√
a), it must therefore be contained in

k3 ∩ k(µps+n , (O×
k,T )

1/ps) = k(µpn+s , (O×
k,T )

1/ps), as required to complete the proof.

Proof of Proposition (4.14): We are now ready to prove Proposition (4.14), the notation and
hypotheses of which we henceforth assume. In addition, in this argument we take

q :=

{
ps+n if p is odd,

ps+n+1 if p = 2,

and use the fields

k1 := k(µq), k3 := k1((O×
k,T )

1/q) and F := K · k3.
It is clear that L ⊆ k3, and Lemma (4.19) (b) implies K ∩ k3 ⊆ L. Thus, since the restriction
to L of the element σ fixed in the statement of Proposition (4.14) is trivial, we can use the
canonical isomorphism

Gal(F/L) ∼= Gal(K/L)×Gal(k3/L)

to choose an element σ of Gal(F/L) whose restrictions to K and k3 are respectively equal to
σ and the identity automorphism. By Cebotarev’s Density Theorem, applied to the Galois
extension F/k, we can then choose a place q of k with the property that σ is equal to FrobQ for
some place Q of F lying above q. This condition ensures that q splits completely in k3 and that
the restriction of Frobq to K is equal to σ. In particular, by Lemma (2.1) (and the definition
of k3), it follows that the degree of k(q)/k(1) is divisible by q. Now, since Gal(k(q)/k(1)) is
isomorphic to a quotient of the unit group (Ok/q)×, it is cyclic and so this argument implies

35



Gk(q) contains an element of order q. This fact in turn implies k(q) contains a subfield E0 that
is a cyclic degree q extension of k and so gives rise to a surjective homomorphism

ϕ0 : Gk → Gal(E0/k) ∼= Z⧸qZ.
For each place v we denote the restriction of ϕ0 to Gkv by ϕ0,v.
We next write T ′ for the subset of T comprising all places v whose decomposition group
Dv(E0/k) in GE0 has order less than p

n (and so is identified, under the isomorphism Gal(E0/k) ∼=
Z/qZ fixed above, with a subgroup of (qp−n+1Z)/(qZ) ). We note, in particular, that for each
v ∈ T ′ the restricted morphism ϕ0,v is a composite of the form

ϕ0,v : Gkv → Dv(E0/k) ↪→ (qp−n+1Z)⧸qZ ⊆ Z⧸qZ.
For each place v in T we now define a morphism φv in the following way:

• if v ∈ T \ T ′, then we set φv := ϕ0,v;

• if v ∈ T ′, then we take φv to be the composite

Gkv → Gal(knr,nv /kv) ∼= (qp−nZ)⧸qZ ⊆ Z⧸qZ,
where knr,nv denotes the unique non-ramified extension of kv of degree pn and the first
arrow is the canonical projection.

This data gives rise to an obstruction class η = (ηv)v in the sense of (25) for which one has

ηv =


ϕ0,v − φv, if v ∈ T ′

0, if v ∈ T \ T ′

ϕ0,v, if v /∈ T .
(26)

To analyse this class we setM := T ∪{q}. We also note that, for the fixed choice of q, one has
that the field k2 = kM2,T := k1(U

M
T (q)1/q) defined earlier coincides with k3 by Lemma (4.19)(a).

Now, since the explicit definition of each of the morphisms ϕ0,v and φv implies η is divisible by
2 in ∆(k,Z/qZ)MT , it belongs to the image of the injective map

Gal(k3/k1) = Gal(k2/k1)→ ∆(k,Z⧸qZ)MT
defined in Lemma (4.18). Writing τ for the pre-image of η under this map, we claim next that
τ acts as the identity on L.
To verify this, we first show that every element of Gal(k3/k1) of order dividing p

n acts as the
identity on L. To do this, we fix σ ∈ Gal(k3/k1) with σ

pn trivial and a ∈ O×
k,T . Then, since L

is contained in the field k(p, T , n) that is generated over k1 by elements of the form t
√
a with

t := qp−n, it suffices to show σ( t
√
a) = t

√
a. Let ξa be the unique q-th root of unity with the

property that σ( q
√
a) = ξa q

√
a. Then, since ξa ∈ k1, one has σ(ξa) = ξa and so σm( q

√
a) = ζma

q
√
a

for all integers m. In particular, since σp
n
is trivial, the order of ξa divides p

n and so we obtain
the required equality via the computation

σ( t
√
a) = (σ( q

√
a))p

n
= (ξa

q
√
a)p

n
= t
√
a.

To prove τ acts as the identity on L, it is therefore enough to show that τp
n
is trivial. Note

also that, if p is odd, this will be true if η is divisible by ps in ∆(k,Z/qZ)MT , whilst if p = 2
then the cokernel of Gal(k′′/k′) → ∆(k,Z/qZ)MT has order at most 2 and so it will be true if
η is divisible by 2s+1. However, since for each v ∈ T ′ the morphisms ϕ0,v and φv are, by their
construction, divisible by ps (resp. ps+1 if p = 2), it is clear that this condition is satisfied.
Next, we observe that Lemma (4.19)(b) implies K ∩ k3 = L, and so the canonical isomorphism

Gal(Kk3/L) ∼= Gal(k3/L)×Gal(K/L)

implies the existence of a unique element g of Gal(Kk3/L) that restricts to k3 and K to
respectively give τ and the element σ fixed in Proposition (4.14).
Now, since g belongs to the abelian subgroup Gal(Kk3/Lk1) of Gal(Kk3/L), we can use Ce-
botarev’s Density Theorem to fix a place A of Lk1 with all of the following properties:
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• A has absolute degree one;

• the rational prime lying beneath A is unramified in Kk3;

• the restriction of FrobA to Kk3 is equal to g.

The place a of k lying beneath such a place A is then unramified in Kk3 and such that the
restrictions to K and k3 of Froba are respectively equal to σ and τ .
Thus, if we setM′ = T ∪ {q, a}, then it follows from Remark (4.17) that the obstruction class
η vanishes in ∆(k,Z/qZ)M

′
T . As a consequence of Remark (4.15) and the explicit specification

(26) of η, we can therefore deduce the existence of a field E1 that has all of the properties (i),
(ii), (iii) and (iv)(b) that are stated in Proposition (4.14). To complete the proof, it therefore
suffices to show there exists such a field E1 that also has the property (iv)(a).
To do this, we set h := ordp(| clk |) and repeat the above argument with n replaced by n′ :=
h+2n in order to obtain a cyclic extension E1 of k that has properties (i), (ii), (iii) and (iv)(b)
with respect to n′ (rather than n). In particular, for this field there exists a place v1 in S(E1)
such that the inertia subgroup of v1 in GE1 has order at least p2n. If S(E1) = {v1}, then this
field E1 already has all of the required properties.
We can therefore assume that S(E1) = {v1, v2} for some place v2 ̸= v1. If the inertia subgroup
I(v2) of v2 in GE1 has order at least pn, then the field E1 again has all required properties. On
the other hand, if the order of I(v2) is less than p

n, then we need only consider its fixed field

E := E
I(v2)
1 in order to obtain a cyclic extension of k that is unramified outside v1, in which

v1 has inertia subgroup of order at least pn, and each place in T has decomposition group of
order at least pn. In this case, therefore, the field E has all of the required properties (i), (ii),
(iii) and (iv).
This concludes the proof of Proposition (4.14).

4.2.3. Consequences of the Cebotarev Density Theorem

Our proof of Theorem (4.10) will also rely on the technical consequence of Cebotarev’s Density
Theorem that is described in the following result. In this result we use the fields k(p, T , n) that
are defined in the statement of Proposition (4.14).

(4.20) Lemma. Fix a prime p and a finite place p of k. Set T := Sp(k) ∪ {p} and, for any
extension L of k define the field

L(p) := L ∩ k(p, T ) with k(p, T ) :=
⋃
n∈N

k(p, T , n).

Let X be a subset of Ω that satisfies Hypothesis (4.5) and {(MF,E , ρF/E , jF/E)}E,F∈X a tri-
angular system that satisfies Hypothesis (4.8) and is such that each diagonal term ME is a
Zp[GE ]-lattice. Fix an element (aL)L of elim←−−

Π

L∈X
ML and assume F is a field in X that has the

following property:

• for any field L ∈ X with F ⊆ L the element aL is fixed by Gal(L/L(p)).

Then, for any field K ∈ X , the element aK is fixed by Gal(K/K(p)) provided that all of the
following conditions are satisfied:

(i) k ⊆ K ⊆ F .

(ii) S(F ) \Π(K) = {p}.

(iii) VK = VF .
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Proof. Fix a field K as above and an element σ of Gal(K/K(p)) and write P (σ) for the subset
of Sfin(k) \ (Π(K)∪ Sp(k)) comprising places v for which the restriction of Frob−1

v to K agrees
with σ. Then, for any natural number t, Proposition (4.14) implies the existence of a finite
cyclic p-extension E of k that belongs to ΩS∞(k)(k), is unramified outside P (σ) and is such
that the order of the decomposition subgroup of p in GE is at least pt.
We note that, since all archimedean places split in E/k, Hypothesis (4.5) (i) guarantees that
both of the composite fields

F ′ := EF and K ′ := EK

belong to X .
Now, by assumption, one has aF ′ ∈ M

Gal(F ′/F ′(p))
F ′ and so the Euler limit relations combine

with the stated conditions (ii) and (iii) to imply that the element

(1− Frob−1
p ) · aK′ = PF ′/K′,Π · aK′ = ρF ′/K′(aF ′)

is fixed by the image Gal(K ′/K ′(p)) of Gal(F ′/F ′(p)) in GK′ .
Let us now write H for the intersection of Gal(K ′/K ′(p)) and the subgroup of GK′ generated
by Frobp. Then any element τ of H is a power of Frobp and so (1 − τ) · aK′ is fixed by H.
However, the element (1− τ) · aK′ is also annihilated by the norm NH and hence, since MF ′ is
Z-torsion free, must vanish. It follows that aK′ is fixed by H.
Write M ′

K′ for the full pre-image in MK′ of MK under ρK′/K . Then, since (aL)L belongs to

elim←−−
Π

L∈X
ML, one has aK′ ∈M ′

K′ and so Hypothesis (4.8) (i) implies that

(ιK′/K ◦ ρK′/K)(aK′) = NGal(K′/K) · f(aK′)

for a suitable endomorphism f of M ′
K′ . Setting

n := |S(K ′) \Π(K)|,
we can therefore deduce that the element

ιK′/K

(
(1− σ)n · aK

)
= ιK′/K

(
PK′/K,Π · aK

)
= (ιK′/K ◦ ρK′/K)(aK′)

= NGal(K′/K) · f(aK′)

= NGal(K′/K)/H ·NH · f(aK′)

= NGal(K′/K)/H · |H| · f(aK′)

is divisible by |H| in MK′ . Note that restriction to E induces an isomorphism

Gal(K ′/K ′(p)K) = Gal(K ′/K) ∩Gal(K ′/K ′(p)) ∼= Gal(E/E ∩K) ∩Gal(E/E(p))

= Gal(E/E(p)(E ∩K)).

Now, as E is unramified at p, the field E(p) is contained in the maximal unramified extension
of k in k(p, T ). That is, we can find an integer s that only depends on K, k, p and p and
is such that, for any value of t ≥ s the group Gal(E/E(p)(E ∩K)) must be contained in the
unique subgroup of the (cyclic) group GE that has index ps. However, by construction, the
decomposition group of p in GE has order at least pt and so the order of its intersection with
Gal(E/E(p)(E ∩K)) must be at least pt−s. This implies, in particular, that |H| ≥ pt−s.
We now write e1 for the idempotent in Q[⟨σ⟩] that is associated to the trivial character of ⟨σ⟩.
Then 1−e1 is contained in the augmentation ideal of Q[⟨σ⟩]. Since the latter ideal is generated
by 1− σ, it follows that 1− e1 = x(1− σ) for some x ∈ Q[⟨σ⟩], and hence also

xn−1(1− σ)n = (1− σ)
(
x(1− σ)

)n−1
= (1− σ)(1− e1)n−1

= (1− σ)(1− e1) = (1− σ).
Thus, if we now fix a natural number z such that z ·x ∈ Z[⟨σ⟩], then this computation combines
with the previous discussion to imply that the element

ιK′/K

(
zn−1 · (1− σ) · aK

)
= zn−1 · xn−1 · ιK′/K((1− σ)n · aK)
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is divisible by pt−s in MK′ .
Now, since n ≤ |S(K ′)\S(K)| ≤ |S(E)|, property (iii) in Proposition (4.14) implies that n ≤ 2.
By taking t large, Hypothesis (4.8) (ii) therefore implies that z · (1− σ) · aK = 0 and hence, as
MK is torsion free, that (1 − σ) · aK = 0. Since σ was an arbitrary element of Gal(K/K(p)),
we have therefore shown that aK is fixed by Gal(K/K(p)), as required.

4.2.4. Reduction steps

The following result provides a key reduction step in the proof of Theorem (4.10).

(4.21) Proposition. Fix a prime number p and a subset X of Ω that satisfies Hypothesis (4.5).
Let {(MF,E , ρF/E , jF/E)}E,F∈X be a triangular system that satisfies Hypothesis (4.8) and is such
that each diagonal term ME is both Z-torsion-free and satisfies

⋂
i∈N(p

iME) = {0}. Let Π and
Σ be finite subsets of Sfin(k) and let T be a finite set of places of k that contains Σ∪Sp(k) and
is such that the T -class group of k vanishes. For each extension L of k set

L(p) := L ∩ k(p, T ),
where the field k(p, T ) is as defined in Lemma (4.20). Then the following sequence is exact

0 −→
(
elim←−−

Π

F∈X
MF

)Gal(K/k(p,T )) ⊆−→ elim←−−
Π

F∈X
MF −→ elim←−−

Π

F∈XΣ

(
MF /M

Gal(F/F (p))
F

)
,

where the third arrow is induced by the restriction map resΠΣ.

Proof. We need to show that if a = (aK)K is any element of elim←−−
Π

K∈X
MK for which aK′ belongs

to M
Gal(K′/K′(p))
K′ for every K ′ in XΣ, then one has aK ∈MGal(K/K(p))

K for every K in X .
To do this, we fix such an element a and argue by induction on the quantity

n(K) := |Σ \ S(K)|.
If n(K) = 0, then K/k is ramified at every place in Σ and so belongs to XΣ. In this case,

therefore, the given hypothesis on a directly implies that aK belongs to M
Gal(K/K(p))
K , as

required.
We therefore now assume n(K) > 0 and that the assertion holds true for all fields L ∈ X for
which one has n(L) < n(K). Then, since n(K) > 0, we may fix a (finite) place p in Σ \ S(K).
We now apply the result of Lemma (4.22) below, with Σ′ = {p} to obtain a chain of fields in Ω

k = L0 ⊂ L1 ⊂ · · · ⊂ Lt ⊂ L
with |S(Li) \ S(Li−1)| = 1 for 1 ≤ i ≤ t, S(L) \ S(Lt) = {p} and S(L) ∩ S∞(k) = ∅. We set
F := LK and Fi := LiK for each i with 1 ≤ i ≤ t and thereby obtain a chain of fields in X

K = F0 ⊆ L1 ⊆ · · · ⊆ Ft ⊆ F
with |S(Fi) \ S(Fi−1)| ≤ 1 for 1 ≤ i ≤ t, S(F ) \ S(Ft) = {p} and VK = VF .
We shall now argue by a downwards induction on i (for 0 ≤ i ≤ t) that for any field E in

X containing Fi the element aE belongs to M
Gal(E/E(p))
E . We note in particular that, since

F0 = K, this result for i = 0 implies the claimed result.
For the inductive argument we first take a field Et in X that contains Ft and write E for the
field EtF = EtL. Then E belongs to X and n(E) < n(K) since p ∈ S(F ) ⊆ S(E), and so the

inductive hypothesis implies aE belongs to M
Gal(E/E(p))
E .

In addition, if either S(Et) = S(E) or p ∈ Π, then the Euler factor PΠ,E/Et
is trivial and so the

Euler limit relations directly imply that aEt = ρE/Et
(aE) is contained in M

Gal(Et/Et(p))
Et

. On
the other hand, if S(E)\Π(Et) = {p} then, as VEt = VE , we may apply Lemma (4.20) (with F
and K taken to be E and Et) to deduce that aEt is again fixed by Gal(Et/Et(p)), as required.
This verifies the inductive base and then the inductive step is established by the same argument
with the roles of F , Ft and p played by Fi, Fi−1 and the unique place in S(Fi) \ S(Fi−1) (if
such a place exists). This proves the claimed result.
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(4.22) Lemma. Let Σ′ be a finite subset of Sfin(k). Then there exists a non-negative integer
t and a chain of fields in Ω

k = L0 ⊂ L1 ⊂ · · · ⊂ Lt ⊂ L
such that |S(Li) \ S(Li−1)| = 1 for 1 ≤ i ≤ t, S(L) \ S(Lt) = Σ′ and S(L) ∩ S∞(k) = ∅.

Proof. For each finite place v of k and natural number n, write U
(n)
v for the group of units in the

ring of integers Ov of the completion kv that are congruent to 1 modulo (vOv)n. Then Hensel’s
Lemma implies that for any integer ℓ there exists a natural number nv with the property that

(U
(nv)
v )ℓ = U

(nv+ordv(ℓ))
v (for details see [Neu11, Ch. II, Lem. 3.5]).

We define a conductor m :=
∏
v′ v

′∏
v v

nv+ordv(2) of k, where v′ runs over all real archimedean
places of k and v over places in S2(k) that are not in Σ′, and write k(m) for the ray class field
of k of conductor m. We fix an odd prime ℓ that does not ramify in k, set k[ℓ] := k(µℓ, (O×

k )
1/ℓ)

and consider the diagram

k(m) · k[ℓ]

k(m) k[ℓ]

k.

Then ℓ is prime to |µk| so that the maximal abelian extension of k in k[ℓ] is k(µℓ) (see the
argument of Lemma (4.19)(b)) and so is totally ramified at all places in Sℓ(k). One therefore
has k(m)∩ k[ℓ] = k. In particular, for each element σ of Gk(m) we can use Cebotarev’s Density
Theorem to fix a place pσ of k that is outside Σ′, splits completely in k[ℓ] and has Frobenius
on k(m) equal to σ. We note that the degree of k(pσ)/k(1) is divisible by ℓ (by Lemma (2.1))
and hence that k(pσ)/k is ramified at pσ (but not at any archimedean place).
Write km,1 for the subgroup of k× comprising elements x with |x|v > 0 for all real places of k
and x ≡ 1 (mod vnv+ordv(2)Ov) for all v in S2(k), and recall that the m-ray class group clk,∅,m
of k is defined as the group of fractionals ideals that are coprime to m modulo its subgroup of
principal ideals with a generator in km,1. Since the set Υ := {pσ | σ ∈ Gk(m)} generates clk,∅,m,
we find that the ideal

∏
v∈Σ′ p is equal to an ideal only supported on places in Υ times an

element x of km,1. This element x therefore is integral outside Σ′ ∪Υ and, moreover, has all of
the following properties:

• ordp(x) = 1 if p ∈ Σ′,

• x ≡ 1 (mod vnv+ordv(2)) if v is 2-adic and v ̸∈ Υ,

• |x|v > 0 if v is a real archimedean place of k.

For any such x the quadratic extension L′ := k(
√
x)/k is unramified outside S2(k) ∪ Σ′ ∪ Υ.

Further, since (by construction and the earlier observation concerning principal units) x is a
square in k×v for all 2-adic places v outside Σ′, any such v splits completely in L′ and so L′/k is
unramified outside Σ′ ∪Υ. Finally we note that L′/k is ramified at each place p in Σ′ because
x is a uniformiser in kp for all such p. The field L′ is therefore such that Σ′ ⊆ S(L) ⊆ Σ′ ∪Υ.
We now set t := |Gk(m)| and fix an ordering {pj : 1 ≤ j ≤ t} of the places {pσ : σ ∈ Gk(m)}. We
define L to be the compositum of L′ and the fields {k(pj) : 1 ≤ j ≤ t} and for each integer
i with 1 ≤ i ≤ t we write Li for the maximal extension of k in L that is unramified outside
{pj : 1 ≤ j ≤ i}. This gives a chain of fields of the required sort since S(Li) = {pj : 1 ≤ j ≤ i}
for 1 ≤ i ≤ t (since each extension k(pj)/k is ramified at precisely pj) and hence both S(L) =
Υ ∪ Σ′ and S(L) \ S(Lt) = Σ′.

In the remainder of the argument we use the field k⟨p⟩ defined in (24).

(4.23) Lemma. Assume to be given data of the following sort:

• an odd prime number p,
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• a subset X of Ω that satisfies Hypothesis (4.5),

• a triangular system {(MF,E , ρF/E , jF/E)}E,F∈X that satisfies Hypothesis (4.8) with respect
to p and is such that each diagonal term ME is a Zp[GE ]-lattice,

• finite subsets Π and Σ of Sfin(k).

Then the sequence of ZpJGKK-modules

0 elim←−−
Π

F∈X
M

Gal(F/F∩k⟨p⟩)
F elim←−−

Π

F∈X
MF elim←−−

Π

F∈XΣ

(
MF /M

Gal(F/F (p))
F

)⊆ resΠΣ

is exact, where the fields F (p) are as defined in Proposition (4.21).

Proof. Fix a family (aF ′)F ′ in ker(resΠΣ) and a field F in X . Then, by Proposition (4.21), aF
is fixed by Gal(F/F (p)) where, we recall, F (p) denotes F ∩ k(µp∞ , (O×

k,T )
1/ps) for a suitable

finite set of places T of k that contains Σ∪ Sp(k), and so it suffices to prove aF is fixed by the
group Gal(F (p)/F ∩ k⟨p⟩). To do this, we note that Lemma (4.19) (b) implies that

F (p) ∩ k(µp, (O×
k )

1/p) = F ∩ k(µp∞ , (O×
k,T )

1/ps) ∩ k(µp, (O×
k )

1/p) = F ∩ k⟨p⟩
and hence that there is an isomorphism of Galois groups

Gal(F (p)(µp, (O×
k )

1/p)/(F ∩ k⟨p⟩)) ∼= Gal(F (p)/F ∩ k⟨p⟩)×Gal(k(µp, (O×
k )

1/p)/(F ∩ k⟨p⟩)).
For any σ in Gal(F (p)/F ∩ k⟨p⟩) and natural number d, we can therefore use Cebotarev’s
Density Theorem to fix a set Σ′ = Σ′(d, σ) = {qi}1≤i≤d of d places of k that do not belong to
Π ∪ T and are such that every qi has the following properties: qi is unramified in F and such
that the restriction of Frobqi to F (p) is equal to σ−1, qi is totally split in k(µp, (O×

k )
1/p) and

hence, by Lemma (2.1), such that the ramification degree ei of qi in k(qi) is divisible by p.
Write F ′

d for the compositum of F and the fields k(qi) for 1 ≤ i ≤ d, and I for the subgroup
of Gal(F ′

d/F ) generated by the inertia subgroups in GF ′
d
of each of the places qi. Then, since

F ′
d(p)/k is unramified at every place in Σ′, I is contained in Gal(F ′

d/F
′
d(p)) and so aF ′

d
is fixed

by I. In particular, since S(F ′
d) \ Π(F ) = Σ′, the Euler distribution relations combine with

Hypothesis (4.8) (a) to imply that the element

ιF ′
d/F

(
(1− σ)d · aF

)
= ιF ′

d/F

((∏
v∈Σ′

(1− Frob−1
v )

)
· aF

)
= ιF ′

d/F
(PF ′

d/F,Π
· aF )

= (ιF ′
d/F
◦ ρF ′

d/F,Π
)(aF ′

d
)

= pd · (ιF ′
d/F
◦ ρ(F ′

d)
I/F,Π)(aF ′

d
)

is divisible by pd in MF ′
d
. It then follows from Hypothesis (4.8) (ii) that (1 − σ)d · aF belongs

to pd−N ·MF for a natural number N that is independent of d.
Now, since MF is Z-torsion-free, the morphism

MF
∼= Z[⟨σ⟩]⊗Z[⟨σ⟩] MF −→

⊕
χ

(Zp[χ]⊗Z[⟨σ⟩] MF )tf , σ ⊗m 7→ (χ(σ)⊗m)χ

is injective, where the sum ranges over all characters of ⟨σ⟩, we set Zp[χ] := Zp[im(χ)] and
write Ntf for the quotient of a finitely generated Zp[χ]-module by its torsion subgroup. It is
therefore enough for us to prove that (1 − χ(σ)) ⊗ aF vanishes in (Zp[χ] ⊗Z[⟨σ⟩] MF )tf for all
such non-trivial characters χ. To do this, we note that, because χ is a p-power order character,
the field Qp(χ) := Qp(im(χ)) is a totally ramified extension of Qp with valuation ring Zp[χ]

and uniformiser πχ := 1 − χ(σ). In particular, one has p = u · π[Qp(χ):Qp]
χ for some unit u of

Zp[χ]. It then follows from (1− σ)daF ∈ pd−N ·MF and [Qp(χ) : Qp] ≥ p− 1 that

(χ(σ)− 1)⊗ aF ∈ π
(d−N)[Qp(χ):Qp]−(d−1)
χ (Zp[χ]⊗Z[⟨σ⟩] MF )tf

⊆ πd(p−2)−N(p−1)+1
χ (Zp[χ]⊗Z[⟨σ⟩] MF )tf .
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Since, if p is odd, the exponent d(p − 2) − N(p − 1) + 1 is unbounded as d increases, this
shows that (χ(σ)− 1)⊗ aF is divisible by an arbitrarily large power of πχ in the Zp[χ]-lattice
(Zp[χ]⊗Z[⟨σ⟩]MF )tf. It follows that the element (χ(σ)−1)⊗aF of (Zp[χ]⊗Z[⟨σ⟩]MF )tf vanishes,
as required.

(4.24) Remark. If p = 2, then the above argument proves the following variant of Lemma
(4.23): for every element a = (aF )F∈X of ker(resΠΣ) and every field F in Ω one has aF = σ2(aF )
for all σ in Gal(F/F ∩ k(µ2s+1 , (O×

k )
1/2)).

4.2.5. The proof of Theorem (4.10)

To complete the proof of Theorem (4.10) we will need the following two lemmas.

(4.25) Lemma. Let X be a subset of Ω that satisfies Hypothesis (4.5) and fix a triangular
system {(MF,E , ρF/E , jF/E)}E,F∈X that satisfies Hypothesis (4.8) with respect to the prime
number p. Suppose we have

⋂
i∈N p

iME = {0} for every E ∈ X . Fix finite subsets Π and Σ of
Sfin(k). Let H be an open subgroup of GK.
If a = (aE)E is an element of elim←−−

Π

E∈X
ME with the property that aE is fixed by H whenever E

belongs to XΣ, then aF vanishes whenever Π(F ) contains Sp(k).

Proof. Fix a F in X with Sp(k) ⊆ Π(F ) and for every natural number n write Fn for the n-th
layer of the cyclotomic Zp-extension F∞ of F .
Then, by Lemma (4.22) (with Σ′ = Σ), there exists an extension L of k such that Σ ⊆ S(L)
and S(L) ∩ S∞(k) = ∅. In particular, for every n ∈ N the field Ln := L · Fn belongs to XΣ

and so, by assumption, the element aLn is fixed by H. Since S(Ln) \ Π(Fn) = S(L) \ Π(F ),
the Euler limit relations then show that, for every n, the element( ∏

v∈S(L)\Π(F )

(1− Frobv)
)
· aFn = ρLn/Fn

(aLn) ∈MFn

is fixed by H.
Now, since Fn+1/Fn is unramified outside Sp(k), one has PFn+1/Fn,Π = 1 and so the Euler limit
relations imply the family aF∞ := (aFn)n∈N defines an element of lim←−n∈N(Zp ⊗ZMFn), where
the limit is taken with respect to the maps ρFn+1/Fn

.
In addition, if we fix any non-trivial element γ of the open subgroup Gal(F∞/F ) ∩ H of
Gal(F∞/k), then the last displayed equation implies that aF∞ is annihilated by the element
(γ − 1) ·

∏
v∈S(L)\Π(F )(1− Frobv) of ZpJGF∞K. In particular, since each of the elements γ and

Frobv for v ∈ S(L) \ Π(F ) generates an open subgroup of GF∞ , we may apply Lemma (4.26)
below to deduce that (aFn)n∈N vanishes, and hence that aF vanishes, as claimed.

(4.26) Lemma. Fix a field K ∈ X and set K∞ := Kk∞, where k∞ is any Zp-extension of k
in which no finite place splits completely. Let {(MKm , φKm/Kn

)}n≥0 be a projective system of
Zp[GKn ]-modules (where Kn denotes the n-th layer of K∞/K) that satisfies Hypothesis (4.8)
with respect to p and

⋂
i∈N p

iMKn = {0} for every n ∈ N. Then, for any generator γ of an
open subgroup of GK∞, the element γ − 1 acts injectively on lim←−nMKn.

Proof. Fix an element a = (an)n of this limit such that (γ − 1)a = 0. Then each an is fixed by
the restriction of γ to Kn.

Now fix an integer N ≥ 0. By assumption, L := K
⟨γ⟩
∞ is a finite extension of K and so KNL is

a finite extension of k as well, hence KNL = Kn for some n. In addition, the discussion above
implies that, for any m ≥ n, the element am is invariant under the action of γ, hence contained

in M
Gal(Km/Kn)
Km

. Hypothesis (4.8) (i) therefore implies that

ιKm/Kn
(an) = (ιKm/Kn

◦ φKm/Kn
)(am) = NGal(Km/Kn) · f(am) = [Km : Kn] · f(am)
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for a suitable endomorphism f of MKm . This shows ιKm/Kn
(an) is divisible by [Km : Kn] =

pm−n in M
Gal(Km/Kn)
Km

. Since pm−n is unbounded as m tends to infinity, this fact combines
with Hypothesis (4.8) (ii) to imply an is divisible by an unbounded power of p in the Zp[GKn ]-
lattice MKn , and hence that an must vanish. In particular, aN = 0 and, since N was chosen
arbitrarily, it follows that a = 0, as claimed.

Proof of Theorem (4.10): In the setting of Theorem (4.10), we fix a family a = (aF ′)F ′ that
belongs to ker(resΠΣ). It then follows from Lemma (4.23) that a is fixed by Gal(K/k⟨p⟩). Since
the latter is an open subgroup of GK, Lemma (4.25) implies that aF vanishes for every F in Ω
for which Π(F ) contains Sp(k).
To proceed, we now fix a field F in Ω and write

ks := ksΠ(F ) and knr := knrΠ (F )

for the composites of all extensions of k in k⟨p⟩ in which at least one place of Sp(k) \ Π(F )
splits completely, respectively is non-ramified. We note, in particular, that

k(F ) := kΠ(F ) ⊆ ks ⊆ knr.
We have already observed that aF vanishes if F is ramified at every place in Sp(k)\Π, so for the
remainder of this argument we may assume that at least one place in Sp(k)\Π is unramified in
F . It follows that F ∩k⟨p⟩ is contained in knr(F ) and hence that aF is fixed by Gal(F/F ∩knr).
To prove that aF is fixed by Gal(F/F ∩ ks) it is enough to choose an arbitrary element σ of
Gal(F/F ∩ ks) and show that (σ − 1)aF vanishes, or equivalently (by the above observation)
that eχ(σ − 1)aF vanishes for every character χ of GF that factors through GF∩knr but not
through GF∩ks .
We fix such a χ and claim that there can exist no place v ∈ Sp(k)\Π of k that is both unramified
in F and such that χ(Frobv) = 1. Indeed, since any such place v splits completely in the fixed
field Fχ of ker(χ) in F , one would have Fχ ∩ knr(F ) ⊂ F ∩ ks which contradicts the fact that
χ does not factor through GF∩ks . We may therefore assume that χ(Frobv) ̸= 1 for every v in
Sp(k) \Π(F ).
Fix an integer n that is large enough to ensure the n-th layer Fn in the cyclotomic Zp-extension
of F is such that S(Fn) = Sp(k). Then the Π-relative Euler system relations imply that

χ(PFn/F,Π) · eχ · aF = eχ · PFn/F,Π · aF = eχ · ρFn/F (aFn) = 0.

In particular, since the element

χ(PFn/F,Π) =
∏

v∈Sp(k)\Π(F )

(1− χ(Frobv)−1)

is non-zero, the above equality implies that the element eχaF vanishes, as required.

This completes the proof of Theorem (4.10).

4.2.6. The proof of Corollary (4.13)

In the setting of Corollary (4.13), we suppose to be given an element a = (aF )F of elim←−−
Π

F∈X
MF

with the property that aF is fixed by GF whenever F belongs to XΣ.
Then, by assumption, we may choose a large enough odd prime number p such that all of the
following hold: p does not belong to S, p does not ramify in k and Hypothesis (4.8) holds for the
triangular system {(MF,E , ρF/E , jF/E)}E,F∈X . In particular, {(Zp⊗ZMF,E , ρF/E , jF/E)}E,F∈X
is then a triangular system that satisfies Hypothesis (4.8) and is such that each diagonal term
ME is a Zp[GE ]-lattice.
In addition, Lemma (4.25) implies that the element aF is fixed by GF whenever F belongs to
XSp(k) and so a belongs to the kernel of the map resΠSp(k)

that occurs in Theorem (4.10) for the
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triangular system {(Zp⊗ZMF,E , ρF/E , jF/E)}E,F∈X . We may therefore apply the latter result
to deduce that each element aF is fixed by the group Gal(F/F ∩ kΠ(F )).
Now, the assumption that p does not ramify in k implies that the extension k(µp)/k is totally
ramified at all p-adic places of k and hence that kΠ(F ) = k whenever Sp(k)\Π(F ) is non-empty.
For any such F , the element aF is therefore fixed by GF . On the other hand, if Sp(k) ⊆ Π(F ),
then we have already seen above that aF is fixed by GF .
We have therefore proved that the element aF is fixed by GF for every F in X , as required to
prove Corollary (4.13).

4.3. The localisation exact sequence

In this section we consider the case that the subset Π of Sfin(k) that is fixed above is empty.
We assume to be given both a projective system {(MF , φF/E)}F∈X and a triangular system
{(NF,E , ρF/E , jF/E)}E,F∈X of R[GF ]-modules. With eF the idempotent of Q[GF ] defined in (3),
we also assume to be given a family of injective R[GF ]-module homomorphisms βF : eFMF →
NF that gives rise to an (injective) homomorphism of RJGKK-modules of the form

β = (βF )F : elim←−−
∅

F∈X
eFMF → elim←−−

∅

F∈X
NF , (27)

where the left hand Euler limit is as defined in Example (4.4) (d).
Our aim is then to investigate the composite homomorphism

β∗ : lim←−
F∈X

ϵFMF → elim←−−
∅

F∈X
eFMF

β−→ elim←−−
∅

F∈X
NF , (mF )F 7→ (eFmF )F 7→ β((eFmF )F ) (28)

under the assumption that (MF , φF/E)F∈X satisfies the following technical hypothesis.

(4.27) Hypothesis. For each E ⊆ F , there exist injective maps ιF/E : ME → MF such
that (MF , ιF/E)F∈X is an inductive system of R[GK]-modules for which both of the following
conditions are satisfied: There exists a natural number s (independent of F/E) such that one
has both

ιF/E ◦ φF/E = NsGal(F/E) and φF/E ◦ ιF/E = [F : E]s.

(4.28) Example. For any Dedekind domain R, the discussion of Example (4.9) (b) shows that
the canonical projective system (R[GE ], πF/E) satisfies Hypothesis (4.27) with s = 1.

We recall the idempotents ϵK defined in (10) and write Υ⋄
K for the set of all characters χ in ĜK

for which χ(ϵK) ̸= 0. In other words, Υ⋄
K is the set of all characters χ such that for every place

v ∈ S∞(k) one has χ(v) = 1 if and only if v ∈ VK . We note, in particular, that the set ΥK

defined in §2.1 is contained in Υ⋄
K , and hence that the idempotent eK is such that eKϵK = eK .

We can now state the main result of this section.

(4.29) Theorem. We assume to be given data of the following sort:

• a finite set of prime numbers S,

• a subset V of S∞(k),

• a subset X of Ω that satisfies Hypothesis (4.5) with V = {V },

• a projective system of ZS [GF ]-lattices {(MF , φF/E)}F∈X that satisfies Hypothesis (4.27),

• a triangular system {(NF,E , ρF/E , jF E)}F,E∈X such that each diagonal term is a ZS [GE ]-
lattice,

• a homomorphism β of RJGKK-modules of the form (27).
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Then, for any such collection of data, the following sequence is exact:

0 lim←−
F∈X

ϵFMF elim←−−
∅

F∈X
N ′
F

∏
p̸∈S

(elim←−−∅
F∈X

(Zp ⊗Z NF )

β
(p)
∗ (ker θp)

)
.

β∗ ∆

Here, by abuse of notation, we write β∗ for the homomorphism that is induced by the map in
(28) (and the equalities eF ϵF = eF ) and we set N ′

F := NF ∩ (Q⊗Z βF,∗(ϵFMF )). We also write
∆ for the map induced by the diagonal map∏

F∈X
NF −→

∏
F∈X

(∏
p/∈S

(Zp ⊗Z NF )
)

(where the internal direct product is over all rational primes p outside S), θp for the canonical
boundary map

lim←−
F∈X

(Zp ⊗Z ϵFMF )→ lim←−
n∈N

(
lim←−

1
F
(ϵFMF )

)
[pn],

and β
(p)
∗ for the map

lim←−
F∈X

(Zp ⊗Z ϵFME)→ elim←−−
∅

F∈X
(Zp ⊗Z NF )

that is defined by Zp-linearly extending each map β∗,F : ϵFMF → NF induced by βF .

An application of this result will play a key role in the proof of Theorem A from the introduction.
Its proof will be completed in the last paragraph of this section after we have first established
several necessary auxiliary results.

4.3.1. Generic Euler limits

In this paragraph we investigate Euler limits that arise from systems of Q[GF ]-modules.

(4.30) Proposition. Let X ⊆ Ω be a subset that satisfies Hypothesis (4.5) with V = {V } for
some V ⊆ S∞(k). Suppose to be given a projective system {(MF , φF/E)}F∈X of Q[GF ]-modules
that satisfies Hypothesis (4.27), and take Π = ∅. Then the following claims are valid.

(a) Write ∆ for the map lim←−F∈X ϵFMF →
∏
F∈X e1eFMF sending (mF )F to (e1eFmF )F .

Then the following sequence of RJGKK-modules

0 lim←−
F∈X

ϵFMF elim←−−
∅

F∈X
eFMF

( ∏
F∈X

e1eFMF

)
⧸im(∆),

(aF )F 7→(eF aF )F (bF )F 7→(e1bF )F

is exact, where the Euler limit is as defined in Example (4.4) (d).

(b) Let R → R′ be an injective morphism of subrings of C and set M ′
F := R′ ⊗R MF for

each F ∈ X . Then the following sequence is exact

0
( ∏
F∈X

ϵFMF

)
∩
(
lim←−
F∈X

ϵFM
′
F

)
lim←−
F∈X

ϵFM
′
F elim←−−

∅

F∈X

(
(eFM

′
F )⧸(eFMF )

)
,

⊆ (aF )F 7→(eF aF )F

where the Euler limit is as defined in Example (4.4) (d).

Proof. To prove part (a) we recall (from Example (4.4) (d)) that the second arrow is indeed a
well-defined homomorphism of RJGKK-modules. It is also clear that the image of the second
map is contained in the kernel of the third map. To prove part (a) it is therefore enough to
show that the canonical map

lim←−
F∈X

ϵF (1− e1)MF → elim←−−
∅

F∈X
(1− e1)eFMF , (aF )F 7→ (eFaF )F (29)

is an isomorphism. To do this, we introduce the following notation: let H be the Hilbert class
field of k and write ĜH/ ∼ for the set of conjugacy classes of the natural action of GQ on
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ĜH . For each non-trivial χ in ĜH/ ∼, we fix a place pχ in Sfin(k) such that χ(pχ) ̸= 1 and

[k(pχ) : H] > 1. If now F ∈ X is a field and χ ∈ ĜF an unramified character, then we set
Fχ := k(pχ)F

ker(χ). For any ramified character χ of GF we let Fχ := F ker(χ). Then, in all cases,
the field Fχ belongs to X as a consequence of Hypothesis (4.5) (ii).

We shall now prove that the assignment

(aF )F 7→ (ãF )F :=
(
aF +

∑
χ∈Υ⋄

F \(ΥF∪{1F })

[FFχ : Fχ]
−seχ(φFFχ/F ◦ ιFFχ/Fχ

)(aFχ)
)
F
,

defines an inverse to the map (29). To do this, we first claim that

(1− e1)aF =
∑

χ∈ΥF \{1F }

[FFχ : Fχ]
−seχ(φFFχ/F ◦ ιFFχ/Fχ

)(aFχ) (30)

for every field F ∈ X . Let χ ∈ ΥF be a non-trivial character and note that

eχaF = eχφFFχ/F (aFFχ)

because the Euler factor PFFχ/F,∅ is either 1 or 1 − Frob−1
pχ . Similarly, since χ ∈ ΥF , we also

have χ(PFFχ/Fχ,∅) ̸= 0 and this implies that

eχaFχ = eχφFFχ/Fχ
(aFFχ).

We may thus calculate

eχaF = eχφFFχ/F (aFFχ)

= [FFχ : Fχ]
−seχφFFχ/F (N

s
Gal(FFχ/Fχ)

aFFχ)

= [FFχ : Fχ]
−seχ(φFFχ/F ◦ ιFFχ/Fχ

◦ φFFχ/Fχ
)(aFFχ))

= [FFχ : Fχ]
−seχ(φFFχ/F ◦ ιFFχ/Fχ

)(aFχ), (31)

where the third equality is a consequence of Hypothesis (4.27) (i). We have hence shown that
ãF is equal to the sum

∑
χ∈Υ⋄

F \{1F }[FFχ : Fχ]
−seχ(φFFχ/F ◦ ιFFχ/Fχ

)(aFχ).

It is clear by construction that eF ãF = aF and also, given any element b of lim←−F∈X (1−e1)ϵFMF ,

that one has ( ˜(eF bF )F )F = bF . It therefore remains to show that (ãF )F defines an element in
lim←−F∈X (1 − e1)ϵFMF , and to do this we suppose to be given a pair of fields E,F ∈ X such
that E ⊆ F . One then has

φF/E(ãF ) = φF/E

( ∑
χ∈Υ⋄

F \{1F }

[FFχ : Fχ]
−seχ(φFFχ/F ◦ ιFFχ/Fχ

)(aFχ)
)

=
∑

χ∈Υ⋄
F \{1F }

[FFχ : Fχ]
−sπF/E(eχ)(φFFχ/E ◦ ιFFχ/Fχ

)(aFχ)

=
∑

χ∈Υ⋄
F \{1F }

[FFχ : Fχ]
−s[FFχ : EFχ]

sπF/E(eχ)(φEFχ/E ◦ ιEFχ/Fχ
)(aFχ)

=
∑

χ∈Υ⋄
E\{1E}

[EEχ : Eχ]
−seχ(φEEχ/E ◦ ιEEχ/Eχ

)(aEχ),

where the third equality is a consequence of Hypothesis (4.27) (i) and the last line uses the fact
that πF/E(ϵF ) = ϵE since E and F are both contained in X .

Turning to part (b), it is enough to prove that( ∏
F∈X

(ϵFMF + (1− eF )ϵFM ′
F )

)
∩ lim←−
F∈X

ϵFM
′
F ⊆

∏
F∈X

ϵFMF . (32)

To verify this, we fix a field F ∈ X and introduce the following notation. For any field E ∈ Ω
we let Ξ(E) ⊆ ĜF be the (possibly empty) subset comprising all characters χ such that Fχ = E.
Note that by construction each field Fχ depends only on the class of χ in Υ⋄

F / ∼ and hence
that Ξ(E) is stable under the action of GQ. This implies that the associated idempotent
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eΞ(E) =
∑

χ∈Ξ(E) eχ belongs to Q[GF ].
To investigate the F -component mF of an element m = (mE)E of the left hand side of (32) we
use the decomposition

mF = 1 ·mF =
( ∑
χ∈ĜF

eχ

)
·mF =

∑
χ∈ĜF

eχmF

=
∑
χ∈Υ⋄

F

[FFχ : Fχ]
−seχ(φFFχ/F ◦ ιFFχ/Fχ

)(mFχ)

=
∑
E∈X

( ∑
χ∈Ξ(E)

[FE : E]−seχ(φFE/F ◦ ιFE/E)(mE)
)

=
∑
E∈X

[FE : E]−seΞ(E)(φFE/F ◦ ιFE/E)(mE), (33)

where the fourth equality follows from (31) and the fifth from the fact that each field Fχ belongs
to X .

We shall now use an induction on the number n(F ) of (non-archimedean) prime divisors of the
conductor of F to show that mF ∈ ϵFMF for all F .
Let us first assume that F has prime-power conductor. From (33) we see that it is enough to
show that eΞ(E)mE ∈ ϵEME for all fields E which are of the form F = Eχ for some character
χ ∈ Υ⋄

F . Fix such a field E. Now, χ ∈ ΥE by the construction of E = Fχ (which in the case
that χ is unramified involves the choice of a prime ideal with full decomposition group in the
kernel field of χ) and so eχ(1−eE)ϵE = 0. By assumptionmE belongs to ϵEME+(1−eE)ϵEM ′

E

and so we obtain eΞ(E)mE ∈ ϵEME , as claimed.

Now assume to be given a natural number n and suppose that for every field E in X such
that n(E) ≤ n one has that mE ∈ ϵEME . Fix a field F in X such that n(F ) = n + 1. Let E
be of the form Fχ for some χ ∈ Υ⋄

F . If χ is ramified, then Fχ is the kernel field of χ and, in
particular, a subfield of F . Clearly, we therefore have n(E) ≤ n(F ). If χ is unramified, on the
other hand, then Fχ is defined to be a prime-power conductor field and so n(E) = 1 < n(F ).
In both cases therefore n(E) ≤ n(F ).
If n(E) < n(F ), then, by the induction hypothesis, one has that mE ∈ ϵEME . On the other
hand, if n(E) = n(F ), and yF ∈ ϵFMF and iF ∈ (1 − eF )ϵFM ′

F are such that mF = yF + iF ,
then, by reversing the calculation in (31), one has

[FE : E]−seΞ(E)(φFE/F ◦ ιFE/E)(mE) =
∑

χ∈Ξ(E)

eχ ·mF =
∑

χ∈Ξ(E)

eχ(yF + iF )

=
∑

χ∈Ξ(E)

eχyF = eΞ(E)yF ,

where the third equality is valid since, under the present hypothesis, each χ in Ξ(E) is not
trivial on the decomposition group of any prime divisor of the conductor of F so that one has
eχ = eχeF and hence also eχ(iF ) = 0.
These observations imply that the element eΞ(E)(φFE/F ◦ ιFE/E)(mE) belongs to ϵEME for
every subfield E of L that is of the form Fχ for some χ ∈ ΥF and hence, via the decomposition
(33), that mF belongs to ϵFMF , as required to complete the proof of part (b).

4.3.2. Profinite completions

In the setting of Theorem (4.29), we now assume to be given an element a of the Euler limit
elim←−−

∅
F∈X

N ′
F and consider the modules

M := lim←−
F∈X

ϵFMF , M(a) := elim←−−
∅

F∈X
(β∗,F (ϵFMF ) +ZS [GF ]aF ), X = X(a) :=M(a)/β∗(M).
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Then, to prove Theorem (4.29), we must show that X vanishes if, for all primes p ̸∈ S and all
fields F ∈ X , the element aF belongs to a suitable submodule of Zp ⊗Z NF .

In this paragraph we use completion functors to study the vanishing of X.
To be more precise, for any Z-algebra H and H-module A, we shall use the modules

Â := lim←−
n∈N

A/(nA) and Âp := lim←−
n∈N

A/(pnA).

Observe that the assignment A 7→ Â (resp. A 7→ Âp) defines a functor from the category of
H-modules to the category of Ĥ-modules (resp. Ĥp-modules). For the reader’s convenience,
we recall some useful properties of these functors in the following result.

(4.31) Lemma. For an H-module A and prime p the following claims are valid.

(a) If A is finitely generated as an abelian group, then the natural maps A ⊗Z Ẑ → Â and
Zp ⊗Z A→ Âp are bijective.

(b) (̂−)
p
is an idempotent functor.

(c) If A is Z-torsion-free, then every short exact sequence 0 → A1 → A2 → A → 0 of H-

modules induces an exact sequence 0 → Â1 → Â2 → Â → 0 of Ĥ-modules and similarly

for the functor (̂−)
p
,

(d) If A is Z-torsion-free, then so too are the groups Â and Âp.

Proof. Claim (a) is well-known. In addition, claim (b) is both straightforward to prove directly
and also follows immediately from the general result [Mat78, Th. 15] of Matlis (since Âp is
equal to the completion of the Z-module A at the ideal generated by p).
For both claims (c) and (d), it it enough to consider the functor A → Â. To prove claim (c)
in this case we note first that, since A is torsion-free, for each natural number n the Snake
Lemma applies to the following exact commutative diagram

0 A1 A2 A 0

0 A1 A2 A 0

ψ

n

ϕ

n n

ψ ϕ

to give an exact sequence 0 → A1/nA1
ψ/n−−→ A2/nA2

ϕ/n−−→ A/nA → 0. It is then enough to
note that the latter sequences are compatible (with respect to the natural projection maps)
as n varies and that, by the Mittag–Leffler criterion, exactness of the sequences is preserved
when one passes to the inverse limit over n since, for each multiple m of n, the projection map
A1/mA1 → A1/nA1 is surjective.
Finally, to prove claim (d) we must show that if x = (xn)n is an element of Â with the property
that px = 0 for some prime p, then x = 0. But, since A is torsion-free, for each n the element
xnp is the image in A/(npA) of an element x̂np of nA. Since xn is equal to the image of x̂np in
A/(nA) one therefore has xn = 0, as required.

We can now state the main result of this paragraph.

(4.32) Proposition. The natural composite homomorphism of R-modules

X → X̂ →
∏
p̸∈S

X̂p,

where the product runs over all rational primes, is injective.

Before proving this result, we establish a preliminary result.

(4.33) Lemma. If, for all primes p ̸∈ S, one has a ∈ β∗(ker θp), then the module X is
Z-torsion-free.
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Proof. We fix a prime p ̸∈ S and shall then demonstrate that X has no element of order p.

By assumption, there exists an element x(p) = (x
(p)
E )E∈X of ker θp ⊆ lim←−E∈X (Zp ⊗Z ϵEME)

such that β
(p)
∗ (x(p)) agrees with a inside elim←−−

∅
E∈X

(Zp ⊗Z NE). In particular, one has that

β∗,E(ϵEME) + ZS [GE ]aE is a submodule of Zp ⊗Z β∗,E(ϵEME) = β
(p)
∗,E(Zp ⊗Z ϵEME). One

therefore has an injective map

X =M(a)⧸β∗(M) ↪→
(
lim←−E∈X (Zp ⊗Z β∗,E(ϵEME)

))
⧸β∗(M)

and it is now to prove that the quotient on the right hand side is p-torsion-free. To do this,

we write M (p) for the limit lim←−E∈X (Zp ⊗Z ϵEME) and first claim that one has β
(p)
∗ (M (p)) =

lim←−E∈X (Zp⊗Z β∗,E(ϵEME)). Indeed, since the kernel of β
(p)
∗,E is a finitely generated Zp-module

and hence a compact Hausdorff space, one has that lim←−
1
E∈X (kerβ

(p)
∗,E) vanishes. Passing to the

limit (over E ∈ X ) of the exact sequences

0 kerβ
(p)
∗,E Zp ⊗Z ϵEME β

(p)
∗,E(Zp ⊗Z ϵEME) 0

β
(p)
∗,E

then gives an exact sequence

0 lim←−
E∈X

(kerβ
(p)
∗,E) M (p) lim←−

E∈X
(Zp ⊗Z β∗,E(ϵEME)) 0

β
(p)
∗ (34)

and hence the claimed identfication. To prove that the quotient of β
(p)
∗ (M (p)) by β∗(M) is

Z-torsion-free, it is enough to prove that the outer terms in the exact sequence

0 ( lim←−
F∈X

β∗,F (ϵFMF ))⧸β∗(M)
(
β
(p)
∗ (M (p))

)
⧸β∗(M)

(
β
(p)
∗ (M (p))

)
⧸( lim←−

F∈X
β∗,F (ϵFMF )) 0

(35)
are each p-torsion-free. As for the module on the left, we first note that passing to the limit
(over F in X ) of the exact sequences

0 kerβ∗,F ϵFMF β∗,F (ϵFMF ) 0
β∗,F

combines with the injectivity of β∗ to imply the exactness of the sequence

0 M lim←−
F∈X

β∗,F (ϵFMF ) lim←−
1
F∈X (kerβ∗,F ).

β∗

It is therefore enough to prove that lim←−
1
F∈X (kerβ∗,F ) is p-torsion-free. To this end, we re-

call that each βF : eFMF → NF is assumed to be injective, which implies that also the

induced map β
(p)
F : (Zp ⊗Z eFMF ) → (Zp ⊗Z NF ) is injective. The injectivity of the map

β(p) : lim←−F∈X (Zp⊗Z eFMF )→ elim←−−
∅
F∈X

(Zp⊗ZNF ) then combines with Proposition (4.30) (a)

to imply that β
(p)
∗ : lim←−F∈X (Zp⊗Z ϵFMF )→ elim←−−

∅
F∈X

(Zp⊗ZNF ) is injective. This proves that

lim←−F∈X (kerβ
(p)
∗,F ), being the kernel of β

(p)
∗ by the exact sequence (34), vanishes. Upon noting

that kerβ
(p)
∗,F identifies with Zp ⊗Z kerβ∗,F (as Zp is a flat Z-module) and that, as already

observed before, lim←−
1
F∈X (kerβ

(p)
∗,F ) vanishes, passing to the limit (over F in X ) of the exact

sequences

0 kerβ∗,F Zp ⊗Z kerβ∗,F (Zp/Z)⊗Z kerβ∗,F 0

therefore gives an isomorphism

lim←−
F∈X

(
(Zp⧸Z)⊗Z kerβ∗,F

) ≃−→ lim←−
1
F∈X (kerβ∗,F ).
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Since (Zp/Z) ⊗Z kerβ∗,F is p-torsion-free for every F , this shows that lim←−
1
F∈X kerβ∗,F is p-

torsion-free, as required to conclude that the module on the left in (35) is p-torsion-free.
Turning now to the module on the right in (35), we pass to the limit (over F in X ) of the exact
sequences

0 β∗,F (ϵFMF ) Zp ⊗Z β∗,F (ϵFMF )
(
Zp/Z

)
⊗Z β∗,F (ϵFMF ) 0

to deduce that the quotient
(
β
(p)
∗ (M (p))

)
/(lim←−F∈X β∗,F (ϵFMF )) identifies with a submodule of

the projective limit lim←−F ((Zp/Z) ⊗Z β∗,F (ϵFMF )). Since each group (Zp/Z) ⊗Z β∗,F (ϵFMF )
is p-torsion-free, said quotient is therefore p-torsion-free as well, as required.
This concludes the proof of the lemma.

We now prove Proposition (4.32). At the outset we note that the natural map X̂ →
∏
p ̸∈S X̂

p

is injective by virtue of the Chinese Remainder Theorem, and so it suffices to show that the
same is true of the homomorphism i : X → X̂.

Given that X is Z-torsion-free (by Lemma (4.33)), we may appeal to Lemma (4.31) to obtain
a commutative diagram with exact rows

0 M M(a) X 0

0 M̂ M(a)∧ X̂ 0.

β∗

i2 i1 i

β̂∗

To proceed, we first note that the map i1, and therefore also i2, is injective. Indeed, the kernel
of ι1 is equal to the intersection

⋂
n∈N(n ·M(a)) and so for any element x ∈ ker(i1) one has

that, for each field E ∈ ΩV , the value xE is divisible by every natural number. Since xE is
contained in NE , which is a finitely generated ZS-module by assumption, it then follows that
xE = 0.
By using the maps i1 and i2 we may, and will, identifyM andM(a) with their images inside M̂
and M(a)∧, respectively. These identifications then combine with the Snake Lemma to induce

an isomorphism ker(i) ∼= (M(a)∩ β̂∗(M̂))/β∗(M), with the intersection taking place in M(a)∧.

We are therefore reduced to verifying the equality β̂∗(M̂) ∩M(a) = β∗(M).

For this purpose let m = (mn)n be an element of M̂ = lim←−nM/(nM) such that β̂∗(m) =
(β∗(mn))n belongs to M(a). If we set ME(a) = ZS [GE ]aE + βE,∗(ϵEME), then by assumption

the image β̂∗(m)E = (βE(eEmn,E))n of β̂∗(m) under the natural map M(a)∧ → ME(a)
∧ be-

longs to ME(a) ⊆ Q⊗Z βE,∗(ϵEME). We may therefore find a natural number that annihilates

the image of β̂∗(m)E inside the quotient

βE,∗(ϵEME)
∧/βE,∗(ϵEME) ∼= βE,∗(ϵEME)⊗Z (Ẑ/Z).

The latter module is however Z-torsion-free and so we deduce that β̂∗(m)E is contained in
βE,∗(ϵEME). By the injectivity of β, we have therefore proved that eEmE is contained in

eEME , which is to say that mE ∈ ϵEME + (1− eE)ϵEM̂E . It now remains to prove that

M̂ ∩
(∏
E

(ϵEME + (1− eE)ϵEM̂E)
)
=M.

To do this, it is enough to show that any element m of the above intersection belongs to M .
For any such m we write (mE)E for its image under the natural map M̂ → lim←−E(ϵEME)

∧.

Then, by applying Proposition (4.30) (b) to the ring extension Z → Ẑ and projective system

(Q⊗Z ϵEME , φF/E), we deduce that the element (mE)E of the limit lim←−E(Q⊗Z ϵEM̂E) belongs
to lim←−E(Q ⊗Z ϵEME). By Lemma (4.34) below, this then implies that m belongs to M , as
required.
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(4.34) Lemma. Let {(QE , ρF/E)}E∈ΩV be a projective system of finitely generated ZS [GE ]-
lattices and set Q := lim←−E QE. Then the following sequence is exact:

0 Q Q̂
∏
E

Q⊗Z Q̂E
Q⊗Z QE

.

Here the rightmost arrow is induced by the natural map Q̂→ lim←−E Q̂E.

Proof. The map Q→ Q̂ is injective because each QE is a finitely generated abelian group. To
prove exactness of the sequence we therefore fix an element m = (mn)n ∈ Q̂ = lim←−nQ/(nQ)

with the property that for each E the image mE of m under the natural map Q̂ → Q̂E is
contained in Q⊗Z QE and then show that m is in fact contained in Q.
To do this we note that Q̂E ∩ (Q ⊗Z QE) = QE (because Ẑ ∩ Q = Z) and so the assumption
implies that, for every field E, there exists an element xE ∈ QE such that the sequence mE

agrees with xE in Q̂E . This is to say that, if mE is given by the family (mE,n)n, then we have
mE,n−xE ∈ nQE for all natural numbers n. Since QE is Z-torsion-free, we can therefore write
mE,n − xE = nzE,n for some unique element zE,n ∈ QE .
We first claim that the elements (xE)E define an element of Q. For each n ∈ N we have that

ρF/E(xF )− xE = ρF/E(mF,n − nzF,n)− xE
= mE,n − xE − nρF/E(zF,n)
= n(ρF/E(zF,n)− zE,n) ∈ nQE .

However, QE , being a finitely generated ZS-module, has no non-zero divisible elements and so
we must have that ρF/E(xF ) = xE , as claimed. This shows that x := (xE)E defines an element
of Q, and uniqueness of the elements zn,E implies that the same is true for (zn,E)E . We have

therefore proved that x−mn ∈ nQ for all n, which is to say that x = m in Q̂, as desired. This
completes the proof of the claimed result.

4.3.3. The proof of Theorem (4.29)

Before turning to the proof of Theorem (4.29), we provide the following auxilliary result re-
garding the compatibility of Euler limits with p-adic completions.

(4.35) Lemma. Let X be a subset of Ω and {(CE,F , ρF/E , jF/E)}F,E∈X a triangular system
with the property that each map jF/E is injective and each diagonal term CE is p-torsion-free.
Then, for any finite subset Π of Sfin(k), the natural map

(elim←−−
Π

E∈X
CE)

∧,p → elim←−−
Π

E∈X
ĈE

p
,

(
(mE,n)E∈X

)
n∈N 7→

(
(mE,n)n∈N

)
E∈X .

is both well-defined and injective.

Proof. Since the maps jF/E are injective, as shall for brevity omit explicit reference to them.

We set C := elim←−−
Π

E∈X
CE and, for every E ∈ X , we take the limit (over n ∈ N) of the natural

maps C/pn → CE/p
n to obtain a map

C∧,p → ĈE
p
. (36)

By taking the product of these maps over E ∈ X we then obtain the further homomorphism

C∧,p →
∏
E

ĈE
p
,

which we claim has image inside elim←−−
Π

E∈X
ĈE

p
. To show this we suppose to be given an element

m = ([mn])n of C∧,p and, for every E ∈ X , write mE for the image of m under the map (36).
For every n and F ∈ X containing E, we have that

[ρF/E(mF )] = [ρF/E(mn,F )] = [PF/E,Π ·mn,E ] = [PF/E,Π ·mE ] in CE/p
n
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(here mn,F denotes the image of mn ∈ C in CE). Since the above equality holds for all n, this
shows that ρF/E(mF ) = PF/E,Π ·mE , as required.

To prove injectivity, let us now assume that the system (mE)E is trivial in elim←−−
Π

E∈X
ĈE

p
. That

is to say that, for every E ∈ X , one has that mE = 0, and hence that for each n the element
mn,E is divisible by pn in CE . We can therefore find zn,E such that mn,E = pnzn,E . We now
fix a natural number n and claim that the collection zn := (zn,E)E is an element of C. Indeed,
for every F ∈ X containing E, one has that

pn · ρF/E(zn,F ) = ρF/E(p
nzn,F ) = ρF/E(mn,F ) = PF/E,Π ·mn,E = pn · (PF/E,Π · zn,E).

Since CE is assumed to be p-torsion-free, we deduce that ρF/E(zn,F ) = zn,E , as required.
We have therefore proved that one has mn = pnzn in C, and this shows that each m is
trivial.

We are finally in a position to carry out the proof of Theorem (4.29).

Proof (of Theorem (4.29)): At the outset we note that the map β∗ is injective as a consequence
of Proposition (4.30) (a), and that the image of β∗ is clearly contained in the kernel of ∆. In
order to establish Theorem (4.29), we therefore need to prove that any element a of the kernel
of ∆ belongs to the image of β∗ or, equivalently, that the class of such an element a in the
quotient X vanishes. By Proposition (4.32) it is enough for this purpose to verify that the class
of a in X̂p vanishes for every p ̸∈ S. To do this, we first clarify the nature of the map θp that
appears in the statement of Theorem (4.29).
Fix a prime number p ̸∈ S and let n be a natural number. Then, by passing to the limit over
E ∈ X of the tautological short exact sequences

0→ ϵEME
·pn−−→ ϵEME → (ϵEME)/p

n → 0

one obtains a canonical short exact sequence

0→ ϵEM/pn → lim←−E∈X

(
ϵEME/p

n
) θp,n−−→

(
lim←−

1
E∈X (ϵEME)

)
[pn]→ 0. (37)

We define the map θp in Theorem (4.29) (a) to be the composite homomorphism

lim←−
E∈X

(Zp ⊗Z ϵEME) ∼= lim←−
E∈X

(
lim←−
n

((ϵEME)/p
n)
)

∼= lim←−
n

(
lim←−
E∈X

((ϵEME)/p
n)
)

−→ lim←−
n

(
lim←−

1
E∈X (ϵEME)

)
[pn]

in which the two isomorphisms are the canonical identifications and the unlabelled arrow is the
limit (over n) of the maps θp,n in (37).

Having defined θp, we are now ready to complete the proof of Theorem (4.29). As a is assumed

to belong to the kernel of ∆, there exists an element u(p) = (u
(p)
E )E∈X of ker θp such that a

is equal to β
(p)
∗ (u(p)) in elim←−−

∅
F∈X

(Zp ⊗Z NF ). In particular, one has that aE belongs to the

image of β
(p)
∗,E for all E ∈ X , and hence that β

(p)
∗,E(Zp ⊗ ϵEME) + Zp[GE ]aE coincides with

β
(p)
∗,E(Zp ⊗Z ϵEME). Lemma (4.35) therefore gives an injective map

i2 : M(a)∧,p ↪→ elim←−−
∅

E∈X
(β

(p)
∗,E(Zp ⊗Z ϵEME)).

We then obtain a commutative diagram

0 M̂p M(a)∧,p X̂p 0

0 lim←−
E∈X

(Zp ⊗Z ϵEME) elim←−−
∅

E∈X
(β

(p)
∗,E(Zp ⊗Z ϵEME)),

i1

β̂p
∗

i2

β
(p)
∗

(38)
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where the top line is exact as a consequence of Lemma (4.31) (c) (this uses that X is Z-torsion-
free by Lemma (4.33)). To prove that the class of a in X̂p vanishes it is now enough, by the
exactness of the top line in (38), that a coincides, in M(a)∧,p, with an element in the image of
β̂p∗ .
The explicit definition of θp and the exactness of the sequence (37) combine to imply the

existence of a pre-image x(p) =
(
(x

(p)
E )E∈X

)
)n∈N of u(p) under the natural map i1 : M̂

p →
lim←−E∈XSp

(Zp ⊗Z ϵEME) that sends x(p) to
(
(x

(p)
E )n∈N

)
)E∈X . By the commutativity of the

square in (38) we then have that

(i2 ◦ β̂p∗)(x(p)) = (β
(p)
∗ ◦ i1)(x(p)) = β

(p)
∗ (u(p)) = i2(a).

The injectivity of i2 then implies that a is equal to β̂p∗(x
(p)), as required.

This concludes the proof of Theorem (4.29).

4.3.4. p-adic Euler limits

In this final paragraph we provide a useful result on p-adic Euler limits. To state this result
we fix a prime p and an isomorphism C ∼= Cp, which we use to regard Qp as a subfield of C.
We write Sp for the set of p-adic places of k.

(4.36) Proposition. Let X be a subset of Ω that satisfies Hypothesis (4.5) with V = {V } for
some V ⊆ S∞(k), and let {(MF , φF/E)}F∈XSp

be a projective system of Zp[GF ]-lattices that
satisfies Hypothesis (4.27). If, for each element m ∈ ME \ {0}, there exists a natural number
d (that depends only on m and p) such that the element ιF/E(m) cannot be divisible in MF by
any power pt for t > d, then the following map is bijective:

α : lim←−
F∈XSp

ϵFMF → elim←−−
∅

F∈XSp

eFMF , (mF )F 7→ (eFmF )F .

Proof. Assume to be given a Zp-extension k∞ of k in which no finite place splits completely
(for example, one may take k∞ to be the cyclotomic Zp-extension of k). Since all infinite places
split completely in k∞, Hypothesis (4.5) (i) then implies that, for any field K ∈ X , every finite
extension of k contained in the composite K∞ = Kk∞ is also contained in X . We write Kn for
the n-th layer of K∞/K and let

V
K = ZpJGal(K∞/k)K be the relevant (equivariant) Iwasawa

algebra.

Fix a field E ∈ XSp and let (aF )F be an element of elim←−−
∅
F∈XSp

eFMF . Since Sp ⊆ S(E) and

E∞/E is unramified outside p, we have S(E) = S(En) for all n ≥ 0. The defining property of
the Euler limit therefore simplifies to aEn = φEm/En

(aEm) for all m ≥ n. It follows that the
family (aEn)n defines an element of lim←−n eEnMEn . Now, each term in the exact sequence

0 (ϵEnMEn)[eEn ] ϵEnMEn eEnMEn 0
·eEn

is a finitely generated Zp-module and hence endowed with the structure of a compact Hausdorff
topological group. Consequently, we obtain an exact sequence

0 lim←−
n

(
(ϵEnMEn)[eEn ]

)
lim←−
n

(ϵEnMEn) lim←−
n

(eEnMEn) 0

and now claim that the term on the left hand side vanishes.
Since no finite prime splits completely in E∞/E, we can find an integer N ≥ 0 such that, for

all n ≥ N , each character χ ∈ ĜEn \ΥEn factors through GEN
. For any σ ∈ Gal(En/EN ) and

x ∈ (ϵEnMEn)[eEn ] we therefore have σ · x = σ(1− eEn)x = (1− eEn)x = x.
This shows that lim←−n

(
(ϵEnMEn)[eEn ]

)
is contained in the submodule of lim←−n(ϵEnMEn) com-

prising all elements invariant under the action of Gal(E∞/EN ). By Lemma (4.26), we have
that (lim←−n ϵEnMEn)

Gal(E∞/EN ) vanishes. It follows that lim←−n
(
(ϵEnMEn)[eEn ]

)
vanishes as well,
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as claimed.
The discussion above shows the family (aEn)n converges to a unique element bE∞ = (bEn)n in

lim←−
n

(ϵEnMEn)
∼= lim←−

n

(eEnMEn) (39)

with the property that eEnbEn = eEnaEn for all n. We next claim that the family b = (bE)E∈XSp

defines an element of lim←−E(ϵEME). To do this, we suppose to be given a field F ∈ XSp which
contains E and first note that it is enough to prove that φF∞/E∞(bF∞) = bE∞ , where φF∞/E∞

is the map lim←−n(ϵFnMFn)→ lim←−n(ϵEnMEn) induced by the maps φFn/En
. Now, for each m ∈ N

we have

πFm/Em
(eFm) · PFm/Em,∅ · φFm/Em

(bFm) = PFm/Em,∅ · φFm/Em
(eFmbFm)

= PFm/Em,∅ · φFm/Em
(eFmaFm)

= πFm/Em
(eFm) · PFm/Em,∅ · aEm

= πFm/Em
(eFm) · PFm/Em,∅ · bEm ,

where the last equality uses that πFm/Em
(eFm) · eEm = πFm/Em

(eFm). Taking the limit as
before, we see that

PF/E,∅ · φF∞/E∞(bF∞) = PF/E,∅ · bE∞ . (40)

Since no finite place splits completely in E∞/E, for each place v ∈ S(F ) \S(E) the associated
Frobenius automorphism Frobv generates an open subgroup of Gal(E∞/k). Given this, Lemma
(4.26) asserts that 1 − Frobv, and hence also PF/E,∅, acts injectively on lim←−n(ϵEnMEn). We
conclude that φF/E(bF ) = bE , as claimed.
To establish the proposition, it now remains to prove that the assignment a 7→ b defines an
inverse ψ to the natural map α. Suppose to be given a family m = (mF ) ∈ lim←−F (ϵFMF ),
then our construction yields eEnmEn = eEn(ψ ◦ α)(m)En for all n. The isomorphism (39)
hence shows that mEn = (ψ ◦ α)(a)En for all n. In particular, mE = (ψ ◦ α)(m)E and so
m = (ψ ◦ α)(m). Conversely, α ◦ ψ = id holds by construction.

5. Euler systems and Euler limits

In this section we derive concrete arithmetic consequences of the results on Euler limits that
were established above.

5.1. The Uniformisation Theorem

If r and r′ are rank functions for k (as in Definition (2.2)), then we say that ‘r is greater
than r′’, respectively ‘r is at most r′’ (and write ‘r > r′’, respectively ‘r ≤ r′’) if one has
r(E) > r′(E), respectively r(E) ≤ r′(E), for all E ∈ Ω(k).
Before stating the next result, we also recall that if r is the maximal rank function rmax for k,
then the notation ESrk(Q) is abbreviated to ESk(Q).

(5.1) Theorem. Fix a subfield Q of C such that ESk(Q) contains the Rubin–Stark system εk.
Then the following claims are valid.

(a) For any rank r with r > rmax, the module ESrk(Q) vanishes.
(b) For any rank r with r ≤ rmax, there exists an isomorphism of QJGKK-modules

PRrmax−r
k (Q) ≃−→ ESrk(Q), (fE)E 7→ (fE(εE/k))E ,

where we use the module of Perrin-Riou functionals defined in Example (4.4) (b).

(c) In maximal rank, one has ESk(Q) = QJGKK · εk + ESk(Q)GK .

(d) The QJGKK-module generated by εk is free of rank one and equal to ESk(Q)sym.
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Proof. Claim (a) follows directly from Lemma (2.6) (b). To prove claim (b), we first note that
the Rubin–Stark system εk is an Euler system by Lemma (2.22), and that the image of the
explicit map in claim (b) is contained in ESrk(Q) (cf. Example (4.4) (b)). It therefore suffices
to show that every system c = (cE)E ∈ ESrk(Q) arises uniquely in this way.
Fix a field E in Ω(k). Then the R[GE ]-module isomorphism RO×

E,S(E)
∼= RXE,S∗(E) induced

by the Dirichlet regulator implies that there exists an (in general, non-canonical) isomorphism
of Q[GE ]-modules QO×

E,S(E)
∼= QXE,S∗(E), and hence that the eEQ[GE ]-module eEQO×

E,S(E)
∼=

eEQXE,S∗(E) = eEQYE,VE is free of rank rE . It follows that the eEQ[GE ]-module

eEQ
∧rE

Z[GE ]
O×
E,S(E) =

∧rE

eEQ[GE ]
eEQO×

E,S(E)

is free of rank one. We now first claim that the Rubin–Stark element εE/k is a basis of this
free module. To do this, we write εE/k = q · a for some q ∈ eEQ[GE ] and eEQ[GE ]-basis a. We
then have eχ · q ̸= 0 for all χ ∈ ΥE by definition of Rubin–Stark elements. Since ΥE is exactly
the set of characters on which eE is supported, this shows that q is a unit of the ring eEQ[GE ]
whence the claim.
Next we note that, by Lemma (2.6), the system c is such that cE ∈ eEQ

∧r(E)
Z[GE ]O

×
E,S(E),

and hence that the assignment εE/k 7→ cE extends linearly to give a (well-defined) map of
Q[GE ]-modules

eEQ
∧rE

Z[GE ]
O×
E,S(E) → eEQ

∧r(E)

Z[GE ]
O×
E,S(E).

By Lemma (5.2) below, this map can be regarded as an element fE of eEQ
∧rE−r(E)
Z[GE ] (O×

E,S(E))
∗

and, to complete the proof of claim (b), it suffices to show that these elements combine to
define an element

f = (fE)E ∈ elim←−−
∅

E∈Ω(k)

eEQ
∧rE−r(E)

Z[GE ]
(O×

E,S(E))
∗,

where the Euler limit is taken with respect to the transition maps ΦE/E′ defined in Example
(4.2)(c). To see this we note that, for every extension F/E, one has

PF/E,∅ · (ΦF/E(fF ))(εE/k) = (ΦF/E(fF ))
(
NrFF/E(εF/k)

)
= N

r(F )
F/E (fF (εF/k))

= N
r(F )
F/E (cF ) = PF/E,∅ · cE

= PF/E,∅ · fE(εE/k).

In particular, since εE/k is an eEQ[GE ]-basis of eEQ
∧rE
Z[GE ]O

×
E,S(E), this equality implies the

required equality of maps PF/E,∅ · (ΦF/E(fF )) = PF/E,∅ · fE .
To prove claim (c) it is enough to show that every Euler system c in ESk(Q) belongs to
QJGKK ·εk+ESk(Q)GK . To do this we fix such a c and note that claim (b) implies the existence
of a unique element q = (qE)E of elim←−−

∅
E∈Ω(k)

eEQ[GE ] with the property c = q · εk. We write

q′ for the element (e1qE)E of (elim←−−
∅
E∈Ω(k)

e1Q[GE ])GK . Then Proposition (4.30) (a) implies that

there exists an element l = (lE)E of QJGKK such that eElE = qE − q′E . This in turn implies

c = (cE)E = (qEεE/k)E = l · εk + q′ · εk ∈ QJGKK · εk + ESk(Q)GK ,

as required to prove claim (c).

To prove the first part of claim (d), we suppose to be given an element q = (qE)E ofRJGal(K/k)K
that annihilates εk, so that one has

qE · εE/k = 0 for all E ∈ Ω(k). (41)

Let E ∈ Ω(k) be such a field. For any character χ ∈ ĜE we then define a field Eχ as follows.
If χ is ramified, then we take Eχ to be the field Eker(χ) cut out by χ. If χ is unramified, then
we choose an auxiliary prime ideal p that has full decomposition group in Gal(Eker(χ)/k) and
set Eχ := Eker(χ) · k(p). Then, in order to show that qE = 0 we may assume, without loss of
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generality, that E contains Eχ for all χ ∈ ĜE .
Given any χ ∈ ĜE we have χ(qE) = χ(qEχ) in C, where, by a slight abuse of notation, we have
written χ for the C-linear extensions C[GE ]→ C and C[GEχ ]→ C of χ. Now, rS(Eχ)(χ) = rEχ

and so eχεEχ/k ̸= 0 by the definition of Rubin–Stark elements. The equality (41) for the field

Eχ therefore implies that χ(qEχ) = 0. This shows that χ(qE) = 0 for all χ ∈ ĜE , as is required
to conclude that qE = 0.
Since the system εk is symmetric (by Lemma (2.22)(a)), it therefore remains to prove that
every system c in ESk(Q)sym can be written as c = q · εk for some q ∈ QJGKK. By (a) we have
that c = q · εk for some q = (qE)E ∈ elim←−−

∅
E∈Ω(k)

eEQ[GE ] and by Proposition (4.30) (a) it is

enough to prove that the family (e1eEqE)E belongs to the image of the map

lim←−
E

Q[GE ]→
∏
E

Q[GE ], (aE)E 7→ (e1eEaE)E . (42)

To verify the latter condition, it is enough to consider fields E in Ω(k) with the property that
VE = S∞(k) and |S(E)| = rE + 1 (since, otherwise, one has e1eE = 0). We therefore fix such
a field E and write p for the unique place in S(E) ∩ Sfin(k). Then, since both c and εk are
symmetric, one has

πE/k(qE) · εk,k = πE/k(qE) · (Ordp ◦NrEE/k)(εE/k)

= (Ordp ◦NrEE/k)(e1qEεE/k)

= (Ordp ◦NrEE/k)(e1cE)

= ck.

It follows that, if F is any other such field, then πE/k(qE) · εk,k = πF/k(qF ) · εk,k, and hence
πE/k(qE) = πF/k(qF ) since the explicit characterisation of εk,k in Lemma (2.22) (a) shows that
it does not vanish. In particular, if we set qk := πE/k(qE) (which does not depend on the choice
of E by the above discussion), then the element (e1qk)E of lim←−E Q[GE ] is a preimage of the
element (e1eEqE)E under the map (42). This therefore concludes the proof of claim (d).

(5.2) Lemma. Let R be a ring and F a finitely generated free R-module of rank d. For any
integer 0 ≤ s ≤ d we have an isomorphism∧s

R
F ∗ → HomR

(∧d

R
F,

∧d−s

R
F
)
,

f1 ∧ · · · ∧ fs 7→
{
m1 ∧ · · · ∧md 7→

∑
σ

sgn(σ) det(fi(mσ(j)))1≤i,j≤smσ(s+1) ∧ · · · ∧mσ(d)

}
,

where the sum runs over all permutations σ of the set {1, 2, . . . , d} with the property that both
σ(1) < · · · < σ(s) and σ(s+ 1) < · · · < σ(d).

Proof. This is a straightforward exercise that we leave to the reader.

(5.3) Remark. In view of Theorem (5.1) (b) it is perhaps tempting to strengthen Conjecture
(2.24) by predicting that any Euler system of rank at most rmax that satisfies an appropriate
analogue of the requirement to be a symmetric congruence system should arise from the Rubin–
Stark system via rank reduction (as per Example (4.4) (b)). We do not discuss this possibility
any further here, except to mention that conjectures connecting particular examples of Euler
systems to a higher-rank Euler system have previously appeared in the literature (see, for
example, [B+̈19, Conj. 3.5.1]) and have also been verified in special cases (see [BL19]).

5.2. Consequences for integral Euler systems

In this section we show that the results of Theorems (4.10), (4.29) and (5.1) combine to reduce
the proof of Conjecture (2.24) to consideration of the individual components of Euler systems.
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This result provides us with an effective means of providing evidence in support of Conjecture
(2.24) and is proved as Theorem (5.7) in § 5.2.2. However, before discussing it we must first
prove two auxiliary results concerning the modules of isolated and congruence systems (from
Definitions (2.13) and (2.18) respectively).

5.2.1. Isolated and Congruence systems

The following result gives a useful interpretation of the module of isolated Euler systems.

(5.4) Lemma. Let R denote either ZS for a finite set of prime numbers S or Zp for a prime
p. Then, for each choice of X , one has ESXk (R)iso = ESXk (R)GK.

Proof. The explicit construction of isolated systems implies directly that ESXk (R)iso is contained
in ESXk (R)GK . It therefore suffices to show that if a system c in ESXk (R) is GK-invariant, then
it is isolated. In addition, Lemma (2.6) implies that the component cF of any such c at a field
F in X vanishes if either S(F ) contains an archimedean place or at least two finite places.
Since isolated Euler systems have the same property, we can therefore assume in the sequel
that X = ΩS∞(k)(k).
Next we note that, if F belongs to X and E is an intermediate field of F/k, then the GK-
invariance of c implies that

cF = [F : E]−1 · (νF/E ◦N
r(F )
F/E )(cF ).

We now fix a place p in Sfin(k) and suppose that F ⊆ k(p∞) is a ramified finite extension of

k. Then the element a′p := N
r(F )
F/k (cF ) is independent of F and the above displayed equality

implies that

cF = [F : k]−1νF/k(a
′
p).

Moreover, by Lemma (2.9) (d), the element a′p belongs to |µk|−1
∧r(k(p))

R (RO×
k,{p})

∗∗. In partic-

ular, since c is assumed to be fixed by GK, Lemma (2.9) (d) implies that cF is in the image of
νF/k and so one also has the equation

a′p = [F : k] · ν−1
F/k(cF ).

This shows that a′p is divisible by [F : k] in |µk|−1
∧r(k(p))

R (RO×
k,{p})

∗∗ for every such F . Writ-

ing tp for the cardinality of the finite group (Gk(p∞))tor, we thus conclude that cF = [F :

k]−1tpνF/k(ap) for some element ap of |µk|−1
∧r(k(p))

R (RO×
k,{p})

∗∗.
To complete the proof that c is isolated, it is therefore enough to show that cF = 0 whenever
S(F ) = {p} for some prime p in Sfin(k) the residue characteristic of which is not a unit in R
(so p divides no prime in S if R = ZS or p is a p-adic prime if R = Zp) and is such that the
extension k(p∞)/k is infinite.
To do this we write p for the residue characteristic of such a place p and fix a Zp-extension F∞
of F that is contained in k(p∞). Then, writing Fn for the n-th layer of F∞/F , one has

νFn/F (cF ) = (νFn/F ◦N
r(F )
Fn/F

)(cFn) = NGal(Fn/F ) · cFn = [Fn : F ] · cFn

and so νFn/F (cF ) is divisible by [Fn : F ] = pn in the lattice (RLr(F )
Fn

)GFn . Taking account of
Lemma (2.9) (c), this then implies that cF vanishes, as required.

The following result explains the significance of congruence systems to our approach and its
proof occupies the rest of this section.

(5.5) Proposition. Fix a prime number p and a system c in ESk(Zp)
con that is fixed by an

open subgroup of GK. Then, for every E in Ω(k) with rE > 0, the component cE is fixed by GE.
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Proof: At the outset we fix an open subgroup H of GK that fixes c and write N := KH for
its fixed field. We also fix a field K in Ω(k) with rK > 0 and write Zn for the set of non-
archimedean places of k that split completely in N · K(µpn , (O×

k )
1/pn). In addition, we fix a

finite set T of places of k that is admissible for K and disjoint from Z1 ∪ Sram(K/Q). Note
that T is then also admissible for all fields K · k(q) with q ∈ Z1.
Set cK,T := δT,K ·cK . Then, since δT,K is a non-zero divisor in Zp[GK ], it is enough to show that
(σ− 1)cK,T vanishes for every σ ∈ GK . For this purpose is suffices to prove that z · (σ− 1)cK,T
vanishes for some non-zero integer z because ZpL

rK
K is Z-torsion free.

To do this, it is enough to find a non-zero z such that, for every f ∈
∧rK−1
Zp[GK ] U

∗
K,S(K),T (with

UK,S(K),T := Zp ⊗Z O×
K,S(K),T ) and σ ∈ GK , the element z(σ − 1)f(cK,T ) of U∗∗

K,S(K),T
∼=

UK,S(K),T vanishes. Indeed, UK,S(K),T embeds into a free Zp[GK ]-module P of finite rank with
Z-torsion-free cokernel (cf. [BKS16, Rk. 5.11]). Every such f can thus be lifted to an element
of

∧rK−1
Zp[GK ] P

∗. The claim then implies z(σ − 1)g(cK,T ) vanishes for every g in
∧rK
Zp[GK ] P

∗,

and hence that z(σ − 1)cK,T vanishes as an element of
∧rK
Zp[GK ] P . Since the natural map⋂rK

Zp[GK ] UK,S(K),T →
∧rK
Zp[GK ] P is injective by [Sak20, Lem. C.1], we can therefore deduce that

z(σ − 1)cK,T vanishes, as required.
We now fix f ∈

∧rK−1
Zp[GK ] U

∗
K,S(K),T = lim←−n∈N

(∧rK−1
Z[GK ](O

×
K,S(K),T )

∗)/pn and write f as a family

f = (fn)n∈N of classes represented by elements fn of
∧rK−1
Z[GK ](O

×
K,S(K),T )

∗. Note that since Zp
is Z-flat, one can use [Sak20, Lem. B.12] to obtain a similar isomorphism⋂rK

Zp[GK ]
UK,S(K),T

∼= lim←−
n∈N

(⋂rK

Z[GK ]
O×
K,S(K),T

)
/pn

that allows us to regard cK,T as a family cK,T = (c
(n)
K,T )n∈N of classes represented by elements

c
(n)
K,T of

⋂rK
Z[GK ]O

×
K,S(K),T . One then has z(σ − 1)f(cK,T ) = ((σ − 1)fn(c

(n)
K,T ))n∈N and we need

to show that z(σ − 1)fn(c
(n)
K,T ), as an element of K×, is divisible by pn for each n in order to

verify that z(σ − 1)f(cK,T ) vanishes.

Let us therefore now fix n ∈ N and show that z(σ − 1)fn(c
(n)
K,T ) is divisible by pn for a natural

number z that does not depend on n. To do this we take z = 2[N : k] and apply the criterion
in the following result.

(5.6) Lemma. Fix a in O×
K,S(K) with the property that, for every q ∈ Zn and every q-adic place

Q of K, a is congruent to a pn-th power modulo Q when viewed as an element of the valuation
ring OKQ

of the completion KQ of K at Q under the canonical embedding ιQ : K ↪→ KQ. Then,
for every σ ∈ GK the element 2[N : k](σ − 1)a belongs to (K×)p

n
.

Proof. Let Q be a place of the stated kind and write a for the class of ιQ(a) in the residue
field FQ := OKQ

/QOKQ
. Then, by assumption, the polynomial Xpn − a ∈ FQ[X] has a root

in FQ. Since the characteristic of FQ and p are coprime, Hensel’s Lemma implies Xpn − a has
a root in OKQ

and hence that a is a pn-th power in KQ. Since Q was arbitrary, it follows that
a belongs to the kernel of the diagonal map

K×⧸(K×)p
n →

∏
Q∈(Zn)K

K×
Q⧸(K×

Q )p
n .

We now claim that the kernel of this map only contains classes represented by elements of K×

that are pn-th powers in Fn := NK(µpn , (O×
k )

1/pn). To justify this claim, we let b denote an
element of K× that represents such a class in the kernel of ∆. Then every place of Fn lying
above a place in Zn, and hence every place of k that splits completely in Fn, splits completely
in Fn(

pn
√
b). Since every Galois extension is uniquely determined by the set of places that split

completely in the extension, it follows that Fn(
pn
√
b) is contained in, and hence equal to, Fn.

In particular, b is a pn-th power in Fn.
At this stage, we have proved that the class of a belongs to the kernel of the natural map
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λ : K×/(K×)p
n → F×

n /(F
×
n )p

n
. To prove the claimed result, it therefore suffices to show that

elements in ker(λ) are annihilated by 2[N : k](σ − 1) for all σ ∈ GK .
To do this, we note the inflation-restriction sequence identifies ker(λ) withH1(Gal(Fn/K), µpn).
In addition, setting Kn := K(µpn), [Neu73, Satz (4.8)] implies that

H1(Gal(NKn/NK), µpn) =

{
0 if p is odd,

H1(Gal(NK2/NK), µ4) if p = 2,

is annihilated by 2. It therefore follows from the exact sequence

0 H1(Gal(NK/K), µpn ∩NK) H1(Gal(NKn/K), µpn) H1(Gal(NKn/NK), µpn)

that H1(Gal(NKn/K), µpn) is annihilated by 2[NK : K] (and hence also by 2[N : k]). Now,
we also have the exact sequence

0 H1(Gal(NKn/K), µpn) H1(Gal(Fn/K), µpn) H1(Gal(Fn/NKn), µpn)

and so it suffices to show that H1(Gal(Fn/NKn), µpn) is fixed by GK in order to prove the
lemma. To this end, we note that the perfectness of the Kummer pairing gives a Gk-equivariant
isomorphism

H1(Gal(Fn/NKn), µpn) = Hom(Gal(Fn/NKn), µpn)

∼=
(O×

k · (NK
×
n )

pn⧸(NK×
n )

pn
)

∼= O×
k⧸(O×

k ∩ (NK×
n )

pn).

Since elements in this quotient module are clearly fixed by GK , the claimed result follows.

Returning now to the proof of Proposition (5.5), we are reduced to showing that, if we fix a

place q ∈ Zn and set L = L(q) := Kk(q), then fn(c
(n)
K,T ) is a p

n-th power modulo any place of

K lying above q. Since (fm(c
(m)
K,T ))m∈N is a compatible family, it is therefore enough to show

that fm(c
(m)
K,T ) is a p

n-th power for any sufficiently large m ≥ n.
Let χ be a character of GL(q) with eχ · eL(q) ̸= 0. By construction, q splits completely in N
and so χ cannot factor through N ∩ L(q). On the other hand, by assumption cL(q) is fixed by
Gal(L(q)/L(q)∩N). We therefore must have that eχ ·cL(q) vanishes. This shows that eL(q)cL(q),
and hence also cL(q) by Lemma (2.6), vanishes.

In particular, cL,T identifies with a family (c
(m)
L,T )m∈N in which each c

(m)
L,T is divisible by pm. We

can thus fix an m that is large enough to ensure NH(c(m)
L,T ) :=

∑
σ∈H σc

(m)
L,T ⊗σ−1 is trivial when

viewed in the finite p-group (
⋂rK
Z[GL]

O×
L,S(L),T ) ⊗Z[GL] (I(H)/I(H)2), where H := Gal(L/K)

and I(H) the kernel of Z[GL]→ Z[GK ]. The assumption that c is a congruence system (and so
satisfies the congruences in Definition (2.18) with v = q so PL/K,{v} = 1) then combines with
the injectivity of the map(⋂rK

Z[GK ]
O×
K,S(K),T

)
⊗Z[GK ] (I(H)/I(H)2)→

(⋂rK

Z[GL]
O×
L,S(L),T

)
⊗Z[GK ] (I(H)/I(H)2)

induced by νL/K (cf. [San14, Lem. 2.11]) to imply that the element

(Recq ◦Ord−1
q )(c

(m)
K,T ) ∈

(⋂rK

Z[GK ]
O×
K,S(K),T

)
⊗Z[GK ] (I(H)/I(H)2)

vanishes. In the quotient group I(H)/I(H)2 one therefore has

Rec′q(fn(c
(m)
K,T )) = (Rec′q ◦ fn ◦Ordq ◦Ord−1

q )(c
(m)
K,T )

= ± (Ordq ∧ fn)
(
(Recq ◦Ord−1

q )(c
(m)
K,T )

)
= 0, (43)

where the map Rec′q is as defined in (7).
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To proceed, we write IH for the augmentation ideal of Z[H]. Then the composite isomorphism

I(H)⧸I(H)2
∼= IH⧸I2H ⊗Z Z[G/H] ∼= H ⊗Z Z[G/H]

(in which the first isomorphism is described in [San14, (3)] and the second is induced by sending,
for each h ∈ H, the element h− 1 of IH to h), combines with the equality (43) and the explicit
definition of Rec′q to imply that, for some fixed place Q1 of K above q and all σ ∈ GK , the

element recQ1(σfm(c
(m)
K,T )) of H ⊗Z Zp is trivial. It follows that, for every place Q of K above

q, the element recQ(fm(c
(m)
K,T )) of H ⊗Z Zp is trivial.

Now, the local reciprocity map recQ : K×
Q → Gal(LQ′/KQ) maps O×

KQ
onto the inertia subgroup

I of Gal(LQ′/KQ) and so induces an isomorphism

O×
KQ⧸NLQ′/KQ

(O×
LQ′ )

≃→ I.

In addition, class field theory implies NLQ′/KQ
(O×

LQ′ ) contains 1+Ql for any natural number l

for which the l-th upper ramification subgroup of Gal(LQ′/KQ) vanishes. In particular, because
the quotient of 1 +Q by 1 +Qm is a q-group, where q is the residue characteristic of Q and
hence prime to p, the above isomorphism implies I ⊗Z Zp is isomorphic to a quotient of the
group F×

Q ⊗Z Zp ∼= (O×
KQ
/(1 +Q))⊗Z Zp. Since F×

Q is a cyclic group, it therefore follows that
recQ induces an isomorphism

F×
Q ⊗Z

(
Zp⧸|I|Zp

) ≃→ I ⊗Z Zp

and hence that the image of fm(c
(m)
K,T ) in F

×
Q ⊗Z

(
Zp/|I|Zp

)
must vanish.

Now, by assumption, q belongs to Zn and so Lemma (2.1) (b) implies pn divides [k(q) : k(1)]

and hence also |I|. As a consequence, the above observation implies that fm(c
(m)
K,T ) is a pn-th

power in F×
Q. Since this is true for all q in Zn and all places Q of K above q, we can therefore

conclude the proof of Proposition (5.5) by applying Lemma (5.6).

5.2.2. A reduction to the Scarcity Conjecture

In the next result we investigate the extent to which global properties of an Euler system
can be determined by analysis of its individual components. In particular, in claim (a) we
show that Euler systems are uniquely determined, up to multiplication by isolated systems, by
their components at certain sparse families of fields. Then in claim (b) we reduce the proof
of Conjecture (2.24) to the verification that the components of Euler systems have certain
explicit properties. Subsequently, in § 5.3 and § 6, we provide concrete evidence in support of
the containments that respectively occur in (b) (ii) and (iii) of this result.

(5.7) Theorem. Fix a finite set S of prime numbers and a subset X of Ω(k) that satisfies
Hypothesis (4.5). Then the following claims are valid.

(a) Fix a rank function r for k and a finite set of places M of k, and write XM(k) for
the subset of X comprising fields E which are ramified at all places in M. Then, up to
multiplication by isolated systems, each system c in ESr,Xk (ZS) is uniquely determined by
its values cE for fields E in XM(k).

(b) Assume X is contained in ΩV (k) for some non-empty subset V of S∞(k) and that εXk
belongs to ESXk (ZS)

con. Then, for every c in ESXk (ZS)
sym ∩ ESXk (ZS)

con, the following
assertions are equivalent:

(i) The system c belongs to ZSJGKKεXk .
(ii) For every field K in X one has cK ∈ ZS [GK ] · εK/k.
(iii) cK belongs to Zp[GK ] · εK/k for every prime number p ̸∈ S and every field K in XSp.

Proof. To prove claim (a) we consider the triangular system {(NF,E , ρF/E)}E,F∈X of Example

(4.2) (b) with R = ZS (so that NF,E = ZSL
r(E)
E and ρF/E is the relevant norm map for each
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extension F/E). We note that each module ZSL
r(E)
E is a ZS [GE ]-lattice and that this triangular

system validates Hypothesis (4.27) for every p ̸∈ S by Example (4.9) (c). Given these facts,
Theorem (5.7) (a) follows directly upon applying Corollary (4.13) to this triangular system.
Next we observe that the implications “(i) ⇒ (ii)” and “(ii) ⇒ (iii)” in claim (b) are clearly
valid, and hence that it suffices to prove that condition (iii) implies (i).
To do this we assume c satisfies condition (iii) and and claim first that, for each prime p ̸∈ S,
this implies the existence of an element q of ZpJGKK such that

ϱXSp (c) = ϱXSp (q · εk). (44)

To justify this we fix, for every K ∈ XSp an element q
(p)
K of Zp[GK ] with cK = q

(p)
K · εK/k, and

show that the family q̃ := (q
(p)
K eK)K∈XSp

defines an element of elim←−−
∅
K∈XSp

Zp[GK ]eK , where the

Euler limit is defined as in Example (4.4) (d). For this purpose we take fields K and L in XSp

with K ⊆ L and note that, since εL/k = eL · εL/k, one has

PL/K,∅ · πL/K(q
(p)
L eL) · εK/k = πL/K(q

(p)
L eL) ·NrLL/K(εL/k)

= NrLL/K(cL)

= PL/K,∅ · cK
= PL/K,∅ · q

(p)
K eK · εK/k.

Since εK/k generates a free Zp[GK ]eK-module of rank one, this calculation implies the element

PL/K,∅ · (πL/K(q
(p)
L eL)− q(p)K eK) vanishes and hence proves q̃ belongs to elim←−−

∅
K∈XSp

Zp[GK ]eK ,

as required. We can now apply Proposition (4.36) to deduce q̃ lifts to lim←−K∈XSp
Zp[GK ] and

hence to ZpJGKK, and any lift q of q̃ to ZpJGKK satisfies the claimed equality (44).

If we now take {(NF,E , ρF/E)}E,F∈X to be the triangular system with NF,E = ZpL
r(E)
E and

ρF/E the relevant norm map for each extension F/E, then we can reinterpret the equality (44)

as asserting that c− qεXk belongs to the kernel of the restriction map

resSp : elim←−−
∅

E∈X
NE → elim←−−

∅

E∈XSp

NE .

In particular, since the triangular system under consideration satisfies Hypothesis (4.8) for p,
we can apply Theorem (4.10) (with Π = ∅ and Σ = Sp(k)) to deduce that, if p is odd, then
c− qεXk is fixed by Gal(K/kp), where kp denotes the composite of all subextensions of the field
k⟨p⟩ (from (24)) in which at least one p-adic place splits completely.
Now if p does not divide 2dk, then k⟨p⟩ = k(µp) is totally ramified at all places in Sp(k) so
kp = k, and hence c− qεXk is fixed by GK. On the other hand, if p divides 2dk, then Theorem
(4.10) (resp., if p = 2, Proposition (4.21) combined with the observation that any subextension
of k(p, T ) that is unramified at a p-adic place is finite over k) implies c − qεXk is fixed by an
open subgroup of GK. Thus, since both c and εk, and hence also c − qεXk , are assumed to be
congruence systems, we can apply Proposition (5.5) to deduce that c− qεXk is also fixed by GK
in this case.
Having proved that c − qεXk is fixed by GK in all cases, we next observe that c − qεXk is a
symmetric system (this uses that εk is symmetric by Lemma (2.22) (i)). It therefore follows
from Lemma (2.17) and Lemma (5.4) that c = qεXk , and hence that

c ∈ ZpJGKK · εXk . (45)

To proceed, we now consider the projective system {(MF , φF/E)}F∈X defined by taking MF =
ZS [GF ] and φF/E = πF/E (which automatically satisfies Hypothesis (4.27), see Example (4.28)).
In this case, we then obtain a map β of the sort that occurs in Theorem (4.29) by means of
the assignment

elim←−−
∅

E∈X
eEZS [GE ]→ ESXk (ZS) ⊆ elim←−−

∅

E∈X
ZSLE , (qE)E 7→ (qEεE/k)E .
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We now note that Theorem (5.1) (b) implies both that this map is injective and further that
for each system c in ESXk (ZS) there exists a unique element a = (aE)E of lim←−E∈X eEQ[GE ] such
that cE = aE · εE/k for every E in X .
Given this fact, the condition in (b)(i) of Theorem (5.7) follows directly upon combining the
containments (45) with the result of Theorem (4.29) (b) and noting that, in this case, one has

β∗(ZSJGKK) = ZSJGKK · εXk and β
(p)
∗ (ker θp) = ZpJGKK · εXk . This therefore completes the proof

that (b)(iii) implies (b)(i).

(5.8) Remark. Fix a prime number p, a subset X of Ω(k) that satisfies Hypothesis (4.5) and
an Euler system c in ESk(Zp). Then the argument used to prove the implication ‘(iii) ⇒ (i)’

in Theorem (5.7) (a) also shows that ϱXSp (c) belongs to ZpJGKK · εXSp

k if and only if cK belongs
to Zp[GK ] · εK/k for every field K in XSp .

5.3. Integral Euler systems and Kolyvagin systems

We now explain how the observations made in § 3.2 can be combined with the theory of higher-
rank Kolyvagin systems recently developed by Sakamoto, Sano and the second author to provide
concrete evidence in support of the containment in Theorem (5.7) (b) (ii).

To do this, we fix a field E in Ω{S∞(k)}(k) and an odd prime number p. We write F and L for
the maximal extensions of k in E of degree a power of p and coprime to p, respectively. We set
G := GE , P := GF and H := GL and we regard P and H as subgroups of G in the obvious way.
In particular, for each character χ : H → Qp

×
, the idempotent eχ := |H|−1

∑
h∈H χ(h)h

−1 can
be viewed as an element of Zp[im(χ)][G] and hence acts on the image 1⊗m in Zp[im(χ)]⊗ZM
of an element m of a Z[G]-module M .
Finally, we write ωp for the p-adic Teichmüller character of k.

(5.9) Theorem. Fix an abelian extension E/k as above and a homomorphism χ : H → Qp
×
.

Assume the Rubin–Stark Conjecture holds for all abelian extensions of k and, in addition, that
all of the following conditions are satisfied.

(a) E contains the Hilbert p-class field of k;

(b) χ ̸= ωp and, if p = 3, also χ2 ̸= ωp;

(c) χ is not trivial on the decomposition subgroup of any place in Sram(F/k);

(d) χ is not trivial on the inertia subgroup of at least one place in Sram(E/k);

Then, for every Euler system c in ESk(Z) one has eχ(1⊗ cE) ∈ Zp[imχ][GE ] · (1⊗ εE/k).

Proof. Write Lχ for the fixed field of ker(χ) in L. Then, after taking into account the Euler
system distribution relations (for both c and εk), it is enough to prove the stated claim after
replacing L by Lχ (and hence E by the compositum LχF ). In the sequel we will therefore
assume that χ is a faithful character of H.
Then, in this case, the stated conditions imply that all of the hypotheses of [Bur+23, Thm.
4.1] are satisfied. Hence, if we set r := |S∞(k)|, then the latter result (which relies on the
theory of higher-rank Kolyvagin systems) implies that, for each system c in ESk(Z), there is a
containment

eχ(1⊗ cE) ∈ eχ
(
Zp[im(χ)]⊗Z im(Θr

E/k,S(E))
)
.

In addition, by combining this containment in the case c = εk together with the argument of
Proposition (3.6) one finds that

eχ
(
Zp[im(χ)]⊗Z im(Θr

E/k,S(E))
)
= eχ

(
Zp[imχ][GE ] · (1⊗ εE/k)

)
⊆ Zp[imχ][GE ] · (1⊗ εE/k).

The claimed result now follows directly upon combining this inclusion with the previous con-
tainment.
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6. Iwasawa theory

The key feature of condition (b) (iii) in Theorem (5.7) is that it only concerns abelian extensions
K of k that are ramified at all p-adic places. For this reason, in this section we are able to use
techniques of ‘equivariant’ Iwasawa theory to explicitly reinterpret the condition and thereby,
in several important cases, deduce its validity from existing results and conjectures. In this
way we shall, in particular, complete the proofs of all of the results that are stated in the
Introduction.

6.1. An Iwasawa-theoretic reduction

6.1.1. Statement of the main results

For each prime p we fix a subextension k∞ = kp∞ of K/k for which the set of places of k that
split completely in k∞ is equal to S∞(k) and, in addition, the group Gal(k∞/k) is topologically
isomorphic to Zdp for an integer d > 0. (For example, one can take k∞ to be the cyclotomic
Zp-extension of k.)
For any finite abelian extension E of k, we set

E∞ = Ep∞ := Ekp∞ and
V
p,E := ZpJGal(Ep∞/k)K.

For any such E, any finite set Σ of places of k and any finite subset T of Sfin(k) that is disjoint
from Σ, we also write ClE,Σ,T for the (ΣE , TE)-ray class group of E (as discussed in Lemma
(3.4) (a)). For any abelian extension L of k we then define

UL,Σ,T := lim←−
E

(Zp ⊗Z O×
E,Σ,T ), ClpL,Σ,T := lim←−

E

(Zp ⊗Z ClE,Σ,T ),

Xp
L,Σ := lim←−

E

(Zp ⊗Z XE,Σ), Y p
L,Σ := lim←−

E

(Zp ⊗Z YE,Σ).

Here each limit is taken over all finite extensions E of k in L and the respective transition
morphisms are induced in the first two cases by the norm maps NE′/E and the last two cases
by the restriction of places maps.
We note that if T is both disjoint from the set Sp = Sp(k) of p-adic places of k and also
‘admissible’ for E (in the sense of § 2.2.1), then any Euler system c in ESk(ZS) gives rise to a
norm-coherent sequence

cEp
∞,T := (δT · cF )F ∈ lim←−

F

⋂rE

Zp[GF ]
UF,S(Ep

∞),T
∼=

⋂rE
V

p,E

UEp
∞,S(Ep

∞),T ,

where the limit is taken over all fields F that belong to Ω(k) and are contained in Ep∞ and is
with respect to the norm maps NrEF ′/F (here the isomorphism is a consequence of the general

observation [Sak20, Lem. B.15] of Sakamoto). In this context we further recall that any element
η of

⋂rEV
p,E

UEp
∞,S(Ep

∞),T is by definition a map
∧rEV

p,E
U∗
Ep

∞,S(Ep
∞),T

→
V
p,E and so gives rise to

an ideal im(η) of
V
p,E .

The following result is the main observation that we shall make in § 6 and lists a variety of
explicit conditions that are sufficient to ensure either the validity of the Tamagawa Number
Conjecture or that an Euler system validates the Scarcity Conjecture. In this result we refer
to the field k⟨p⟩ defined in (24).

(6.1) Theorem. We assume to be given data of the following sort.

• A subset V of S∞(k) and a subset X of Ω(k) that satisfies Hypothesis (4.5) with V = {V }.
• A finite set S of prime numbers that contains 2 if V ̸= S∞(k).

• For every prime p /∈ S, an extension kp∞ of k as specified at the beginning of this section.

For every field K in X and every prime p /∈ S, the idempotent ϵK identifies with an element
of the algebra

V
p,K , and we assume that the above data satisfies the following two hypotheses:
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(i) The Rubin–Stark system εXk is integral outside S in the sense of Definition (2.12).

(ii) For every prime p /∈ S, every field K in XSp and every height-one prime p of
V
p,K in the

support of ϵK
V
p,K , the (

V
p,K)p-module Clp(Kp

∞)p has finite projective dimension.

Then the following claims are valid.

(a) TNC(h0(SpecE),Zp[GE ]ϵE,V ) is valid for every field E in X if, for every K and p as in
hypothesis (ii) above, there exists a set T in Pad

K such that

im(εKp
∞,T )

∗∗ ⊆ Fitt0V
p,K

(Clp
Kp

∞,S(K),T
)∗∗ · Fitt0V

p,K
(XKp

∞,S(K))
∗∗,

and, in addition, at least one of the following conditions holds:

(i) p does not divide 2dk.

(ii) V ̸= ∅ and εk is a congruence system in the sense of Definition (2.18).

(iii) p is odd and TNC(h0(SpecF ),Zp[GF ]ϵF,V ) is valid for every field F that belongs to
the subset Y of X that is defined in either of the following ways:

• Y comprises all fields k⟨p⟩L with L a tamely ramified cyclic p-extension of k
that belongs to ΩS∞(k).

• Y comprises all finite extensions of k⟨p⟩ in k⟨p⟩kp∞ that belong to X .
(b) Assume V ̸= ∅ and εk ∈ ESXk (ZS)

con. Then a system c in ESXk (ZS)
con ∩ ESXk (ZS)

sym

belongs to ZSJGKK · εXk provided that, for every K and p as in hypothesis (ii) above, there
exists a set T in Pad

K for which one has

im(cKp
∞,T )

∗∗ ⊆ Fitt0V
p,K

(Clp
Kp

∞,S(K),T
)∗∗ · Fitt0V

p,K
(Xp

Kp
∞,S(K)

)∗∗. (46)

This result will be proved in § 6.1.4, where we shall also (in Lemma (6.6)) record some useful
facts about the ideals that occur in the inclusions displayed in claims (a) and (b).

6.1.2. Preliminary observations

Before proving Theorem (6.1), it is convenient to take a slightly more general point of view
and, for this, we let E be any finite abelian extension of k.
Then, for a given prime p, the ring

V
p,E need not be regular. To take account of the difficulties

that this causes, we refer to a height-one prime p of
V
p,E as ‘regular’ if the localisation of

V
p,E

at p is a regular local ring and we label any height-one prime that is not regular as ‘singular’
(note that this terminology differs slightly from that in [BKS17, § 3C1] if p contains p). For
convenience, we record several general properties of localisation in such rings that will be useful
in later arguments.

(6.2) Lemma. For each prime p, the following claims are valid.

(a) If I and J are ideals of
V
p,E, then one has I∗∗ ⊆ J∗∗ if and only if Ip ⊆ Jp for all prime

ideals p of
V
p,E of height at most one.

(b) Write Λp,E for the subring ZpJGal(Ep∞/E)K of
V
p,E. Then each singular prime of

V
p,E

contains p and is outside the support of any finitely generated
V
p,E-module that is both

torsion, and has vanishing µ-invariant, as a Λp,E-module.

Proof. Claim (a) follows, for example, from a general result of Sakamoto in [Sak20, Lem. C.13].
The first assertion of claim (b) follows from the argument of [BG03, Lem. 6.2 (ii)]) and the
second from an application of Nakayama’s Lemma (as in [BG03, Lem. 6.3]).

(6.3) Remark. In connection with Lemma (6.2) (a) we remark that the ‘reflexive hull’ I∗∗ of
an ideal I of

V
p,E can naturally be interpreted as the ideal of

V
p,E that is obtained as the

image of I∗∗ ⊆ (
V
p,E)

∗∗ under the evaluation map (
V
p,E)

∗∗ ∼=
V
p,E .
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We now fix a prime p and, for simplicity, suppress many explicit references to it in the notation
of this section (thereby writing E∞ in place of Ep∞ etc.)
We write S(E∞) for the set of places of k that ramify in E∞ and note that, by assumption,
S(k∞) only contains finite places.
We also fix a set T in Pad

E that is disjoint from S(k∞) and consider the p-completion

D•
E,S(E∞),T := Zp ⊗LZ C•

E,S(E∞),T

of the complex C•
E,S(E∞),T introduced in § 3.2, as well as the complex

D•
E∞,T := R lim←−

F

D•
F,S(E∞),T ,

where in the limit F ranges over all number fields contained in E∞/k and the transition maps
are induced by the relevant instances of the isomorphism in Lemma (3.4) (d).
Then, since each complex D•

F,S(E∞),T can be represented by a bounded complex of finitely

generated Zp-modules, and hence of compact Hausdorff spaces, the result of Lemma (3.4) (a)
induces (upon passing to the limit over all intermediate fields of E∞/E) both an identification
H0(D•

E∞,T ) = UE∞,S(E∞),T and a natural exact sequence

0 ClpE∞,S(E∞),T H1(D•
E∞,T ) Xp

E∞,S∗(E∞) 0. (47)

In addition, since T belongs to Pad
E , for every finite subextension E′ of E∞/E, the group

UE′,S(E′),T is Zp-torsion free (cf. the general result of [NSW08, Prop. (1.6.12)]). By a well-
known argument in homological algebra (see, for example, [BH21, Prop. 3.2]), it then follows
that D•

E∞,T admits a ‘quadratic standard representative’ (in the sense of [BS21a, §A.2]) of the
form

PE∞ −→ PE∞ , (48)

where PE∞ is a free
V
E-module of finite rank and the first term occurs in degree zero.

In the next result we shall also use the homomorphism of
V
E-modules ΘE∞,T that is defined

by means of the following composite (where, for simplicity, we abbreviate
V
E to

V
)

ϵE DetV(D•
E∞,T ) ↪→ ϵEQ(

V
)⊗V DetV(D•

E∞,T )

∼=
(
ϵEQ(

V
)⊗V DetV(H0(D•

E∞,T ))
)
⊗Q(

V
)

(
ϵEQ(

V
)⊗V DetV(H1(D•

E∞,T ))
)

∼=
(
ϵEQ(

V
)⊗V

∧rE
V UK∞,S(E∞),T

)
⊗
(
ϵEQ(

V
)⊗V

∧rE
V Y p

E∞,VE

)∗

∼= ϵEQ(
V
)⊗V

∧rE
V UE∞,S(E∞),T .

Here the second isomorphism is the natural ‘passage-to-cohomology’ map and the last iso-
morphism is due to our fixed choice of extensions of places in VE to E∞ (and hence of isomorph-
ism Y p

E∞,VE
∼=
VrE
K ). We recall that this map can be explicitly described in terms of certain

‘rank reduction maps’ (see [BS21a, Lem. A.7 (i)]) and that, by using this explicit description,
it can be shown that the image of ΘE∞,T is contained in

⋂rEV
E
UE∞,S(E∞),T , and that ΘE∞,T

agrees with the limit (over all finite layers F/k of E∞/k) of the maps ϵE(Zp ⊗Z ΘrF
F,S(E∞),T )

that are defined in § 3.3.1 (see [BD21, Lem. 3.12 and Lem. 3.19] for details).

The following result will play a key role in the proof of Theorem (6.1).

(6.4) Proposition. Fix a prime p and a finite abelian extension E of k with the property that
VE = S∞(k) if p = 2.
Then, for every set T in Pad

E that is disjoint from S(kp∞), the following claims are valid.

(a) Let zEp
∞ be an ϵE

V
p,E-basis of ϵE DetV

p,E
(D•

Ep
∞,T

) and set zb
Ep

∞
:= ΘEp

∞,T (zEp
∞). Then

one has

im(zbEp
∞
)∗∗ = Fitt0V

p,E
(Clp

Ep
∞,S(Ep

∞),T
)∗∗ · Fitt0V

p,E
(Xp

Ep
∞,S(Ep

∞)
)∗∗. (49)

(b) Assume that, for every height-one prime p of
V
p,E that is contained in the support of

ϵE
V
p,E, the (

V
p,E)p-module (Clp

Ep
∞
)p has finite projective dimension.

65



(i) An element η of (
⋂rEV

p,E
UEp

∞,S(Ep
∞),T )[1− ϵE ] belongs to im(ΘEp

∞,T ) if and only if

im(η)∗∗ ⊆ Fitt0V
p,E

(Clp
Ep

∞,S(Ep
∞),T

)∗∗ · Fitt0V
p,E

(Xp
Ep

∞,S(E∞)
)∗∗. (50)

(ii) If the family of Rubin–Stark elements εEp
∞,T := (εVF

F/k,S(Ep
∞),T

)F satisfies (50), then

there exists an ϵE
V
p,E-basis LEp

∞/k,T of ϵE DetV
p,E

(D•
Ep

∞,T
) such that

ΘEp
∞,T (LEp

∞/k,T ) = εEp
∞,T .

Proof. As p is fixed during this proof, we drop all adornments p to lighten notation and we
further abbreviate

V
p,E to

V
.

We then first note that YE∞,VE and, due to our assumption that VE = S∞(k) if p = 2, also
YE∞,S∞(k)\VE are both projective

V
-modules. We can therefore find a

V
-module Z such that

the exact sequence (47) induces an isomorphism

H1(D•
E∞,T )

∼= Z ⊕ Y p
E∞,S∞(k)\VE ⊕ Y

p
E∞,VE

(51)

and, setting S(E∞)fin := S(E∞) ∩ Sfin(k), an exact sequence

0 ClpS(E∞),T (E∞) Z Xp
E∞,S(E∞)fin

0. (52)

Moreover, by choosing a section to the (surjective) composite map

PE∞ → H1(D•
E∞,T )→ Y p

E∞,VE

in which the first map is induced by the representative (48) of the complex D•
E∞,T and the

second by the isomorphism (51), we may identify Y p
E∞,VE

with a free direct summand of PE∞ .
In this way, we deduce the existence of a projective, and hence free (since

V
is semilocal),

V
-submodule P ′

E∞
of PE∞ for which there is an isomorphism of

V
-modules

PE∞
∼= P ′

E∞ ⊕ Y
p
E∞,VE

, (53)

and also an exact sequence of
V
-modules

0 UE∞,S(E∞),T PE∞ P ′
E∞ Z ⊕ Y p

E∞,S∞(k)\VE 0,

in which the third arrow is the composite of the differential of (48) and the projection P∞ → P ′
∞

induced by (53) and the fourth the restriction to P ′
E∞

of the map PE∞ → Z ⊕ Y p
E∞,S∞(k)\VE

induced by (48) and the decomposition (51).
By now applying [BD21, Lem. 2.7 (c)] to this sequence and recalling that ΘE∞,T can be expli-
citly described as a rank reduction map (see [BS21a, Lem. A.7 (i)]), we derive an equality

im(zbE∞)∗∗ = Fitt0V(Z ⊕ Y p
E∞,S∞(k)\VE )

∗∗

= Fitt0V(Z)∗∗ · Fitt0V(Y p
E∞,S∞(k)\VE )

∗∗. (54)

Next we note that if p is a regular height-one prime of
V
, then

V
p is a discrete valuation

domain. In particular, since over such a ring initial Fitting ideals are multiplicative on short
exact sequences, we may deduce from the above equality and the exact sequence (52) that

im(zbE∞)p =
(
im(zbE∞)∗∗

)
p

= Fitt0V(ClpE∞,S(E∞),T )p · Fitt
0V(Xp

E∞,S(E∞)fin
)p · Fitt0V(Y p

E∞,S∞(k)\VE )p

= Fitt0V(ClpE∞,S(E∞),T )p · Fitt
0V(Xp

E∞,S(E∞))p,

where the last equality is true because S∞(k) \ VE = S∞(k) ∩ S(E∞) and so there exists a
natural exact sequence

0 Xp
E∞,S(E∞)fin

Xp
E∞,S(E∞) Y p

E∞,S∞(k)\VE 0. (55)

Since Q(
V
) is a semi-simple ring, similar arguments also show that the above description of

im(zbE∞
)p is valid for any prime p of

V
of height zero.
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To consider singular height-one primes of
V
, we note that the

V
-module Y p

E∞,S(E∞)fin
is iso-

morphic to the direct sum
⊕

v ZpJGE∞/GE∞,vK, where v runs over S(E∞)fin and GE∞,v is the
decomposition group of v in GE∞ . In particular, since no finite place splits completely in k∞/k,
it follows that Y p

E∞,S(E∞)fin
is isomorphic to a direct sum of modules that are finitely generated

over a power series ring (over Zp) in at most d−1 variables and therefore, by Lemma (6.2) (b),
that the localisation of Y p

E∞,S(E∞)fin
at any height-one singular prime p of

V
-vanishes.

This in turn implies that, for any such p, the localisation (Xp
E∞,S(E∞)fin

)p vanishes and hence

that the exact sequence (52) induces a natural isomorphism (ClpE∞,S(E∞),T )p
∼= Zp. This iso-

morphism then combines with the equality (54) to imply that

im(zbE∞)p = Fitt0V(ClpE∞,S(E∞),T )p · Fitt
0V(Y p

E∞,S∞(k)\VE )p

= Fitt0V(ClpE∞,S(E∞),T )p · Fitt
0V(Xp

E∞,S(E∞))p,

where the second equality is true since (Xp
E∞,S(E∞)fin

)p vanishes and (55) is exact.
At this stage we have established the last displayed equality for all primes of

V
of height at

most one and so it follows from Lemma (6.2) (a) that the claimed equality (49) holds.

To proceed, we first note that the ‘only if’ part of claim (i) in (b) follows from (a). To prove the
‘if’ part, we observe that the definition of ΘE∞,T ensures that zbE∞

is a generator of the ϵEQ(
V
)-

module spanned by (
⋂rEV UE∞,S(E∞),T )[1−ϵE ]. Given an element η of (

⋂rEV UE∞,S(E∞),T )[1−ϵE ],
we can therefore fix an element q of ϵEQ(

V
) with the property that

η = q · zbE∞ . (56)

This equality then combines with (49) and the assumed inclusion (50) to imply an inclusion

q · im(zbE∞)∗∗ = im(η)∗∗ ⊆ im(zbE∞)∗∗. (57)

We next claim that, for every height-one prime ideal p of
V

that is contained in the support
of ϵE

V
, the ideal Fitt0V(Z)p is principal and generated by a non-zero divisor. Indeed, if p is

regular, this is automatically satisfied because
V

p is a discrete valuation ring. If p is singular, on
the other hand, then the exact sequence (52) implies that Zp is isomorphic to (ClpE∞,S(E∞),T )p.

In addition, since we assume that no finite place splits completely in k∞/k, Lemma (6.2) (b)
implies that the natural maps (ClpE∞,∅,T )p → (ClpE∞,S(E∞),T )p and (ClpE∞,∅,T )p → (ClpE∞

)p are

both bijective (cf. the argument of [BD21, Lem. 4.11]). Thus, the claim follows in this case from
our assumption that the projective dimension of the

V
p-module Clp(E∞)p is finite and hence

at most one (as a consequence of the Auslander–Buchsbaum formula since
V

is Gorenstein and
p has height one).
In addition, one has Fitt0V(Y p

E,S∞(k)\VE ) =
V
ϵE , and so it follows from (54) that, if p is in the

support of ϵE
V
, then the ideal im(zbE∞

)p is generated by a non-zero divisor in
V

p = (ϵE
V
)p.

We therefore deduce from (57), by cancellation, that q belongs to
V

p. Since, by construction,
q belongs to ϵEQ(

V
), the last assertion is also clear both for height-one primes p that are not

in the support of ϵE
V

and for primes of height zero, and so Lemma (6.2) (a) implies that q
belongs to (q

V
)∗∗ ⊆ (ϵE

V
)∗∗ = ϵE

V
, as required to prove claim (b) (i).

To prove claim (b) (ii) we note that, for each finite extension E′ of E in E∞ one has VE′ = VE
and hence rE′ = rE . Using this fact, we write zbE′ for the image of zbE∞

under the natural
projection map ⋂rE

V UE∞,S(E∞),T →
⋂rE′

Zp[GE′ ]
UE′,S(E∞),T .

Then, by claim (b) (i), we know that ε
VE′
E′/k,S(E∞),T belongs to Zp[GE′ ]·zbE′ = Zp ·im(Θ

rE′
E′,S(E∞),T )

and hence, by Proposition (3.6), that Zp · im(Θ
rE′
E′,S(E∞),T ) = Zp[GE′ ] · εVE′

E′/k,S(E∞),T .

By passing to the limit over all such fields E′ and recalling that ΘE∞,T agrees with the limit
of the maps Zp ⊗Z ΘrE

E′,S(E∞),T , these equalities combine to imply that the image of ΘE∞,T is
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generated as a
V
-module by εE∞,T . As a consequence, the element q that verifies (56) with η

taken to be εE∞,T must be a unit of ϵE
V
.

Given this observation, it is then easily checked that the element LE∞/k,T := q−1 · zE∞ has the
properties that are required to validate claim (b) (ii).

6.1.3. Criteria for the validity of the equivariant Tamagawa Number Conjecture

We next establish a concrete link between Theorems (5.7) and (6.1) (a).
To do this we fix a subset X of Ω(k) that satisfies Hypothesis (4.5) with respect to a (singleton)
subset V = {V } of P(S∞(k)). We also fix a prime p and, as in Proposition (3.9), define a
homomorphism of ZpJGKK-modules

Θp
k : lim←−

E∈Ω(k)

DetZp[GE ](Zp ⊗LZ C•
E,S∗(E))→ ESk(Zp),

where the limit is taken with respect to the maps iF/E defined in (14). We also use the
idempotents ϵE,V of Q[GE ] defined in (9) and the field k⟨p⟩ defined in (24).

(6.5) Lemma. Let p be odd and write kp for the composite of all subextensions of k⟨p⟩ in
which at least one p-adic place of k splits completely. Then TNC(h0(SpecK),Zp[GK ]ϵK,V ) is
valid for all K ∈ X provided that the following two conditions are satisfied:

(i) The image of Θp
k is contained in ZpJGKK · εXk + ESXk (Zp)

Gal(K/kp).

(ii) At least one of the following holds:

• TNC(h0(SpecF ), ϵK,VZp[GF ]) holds for all extensions of the form F = kp · E with
E a tamely ramified cyclic p-extension of k that belongs to ΩS∞(k)(k).

• TNC(h0(SpecF ), ϵF,VZp[GF ]) holds for all extensions of the form F = kp · kpn with
knp the n-th layer of a Zp-extension k

p
∞ of k in which no finite place splits completely.

Proof. Since im(Θk) ⊆ im(Θp
k), Proposition (3.10) implies that TNC(h0(SpecK),Zp[GK ]ϵK,V )

is valid for all K ∈ X provided that ϱX (im(Θp
k)) is contained in ZpJGKK · εXk .

To verify the latter inclusion we note that, for every field E ∈ Ω(k), the Zp[GE ]-module
DetZp[GE ](Zp⊗LZC•

E,S∗(E)) is free of rank one. Since all of the transition maps iF/E are surjective,

it follows that the ZpJGKK-module lim←−E∈Ω(k)
DetZp[GE ](Zp ⊗LZ C•

E,S∗(E)) is free of rank one

(see, for example, the argument of [Bur+23, Prop. 3.7]). We may therefore choose a basis
z = (zE)E∈Ω(k) of the latter module and write zb for the associated Euler system Θp

k(z). Then,
by condition (i), there exists an element

rp = (rp,E)E∈Ω(k) ∈ lim←−
E∈Ω(k)

(Zp[GE ]ϵE,V )

such that rp,E · εE/k − zbE is fixed by Gal(E/E ∩ kp) for all E ∈ X . It therefore suffices to show

that either of the conditions stated in (ii) implies that rp,E · εE/k − zbE vanishes for all E ∈ X ,
or equivalently that

eχ · (rp,E · εE/k − zbE) = 0 (58)

for all E ∈ X and all characters χ of GE .
Now, since rp,E · εE/k− zbE is fixed by Gal(E/E ∩ kp), the equality (58) is clear unless χ factors

through Gkp and so we may assume that χ factors through Gkp . Then, since eχ · (rp,EεE/k−zbE)
vanishes if rp,EχεEχ/k−zbEχ

vanishes (cf. the argument of Lemma (2.6)), we can further assume

that E is a subfield of kp and hence that every finite place in S(E) is p-adic.
To proceed, we write M for the subset of X comprising all extensions F of E for which
TNC(h0(SpecF ),Zp[GF ]ϵF,V ) is valid and for which one has that ϵF,V ·(rp,F εF/k−zbF ) vanishes.
Then, for any such field F in M , the preimage LVF/k of ϵF,V θ

∗
F/k,S(F ) under the isomorphism

Cp ⊗Z DetZ[GF ](C
•
F,S(F ))

∼= Cp[GF ]
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that is induced by the Dirichlet regulator λF,S(F ) (as in Lemma (3.7)(c)) is a Zp[GF ]ϵF,V -basis
of ϵF,V DetZp[GF ](Zp ⊗LZ C•

F,S∗(F )). We can therefore fix a unit qp,F in (Zp[GF ]ϵF,V)× such that

qp,F · zF/k = LVF/k and, for this unit, one has both

qp,F · zbF = ϵF,VεF/k and πF/E(qp,F ) · zbE = ϵE,VεE/k, (59)

(cf. [BKS16, Thm. 5.14]). The first of these equations combines with the assumed vanishing of
ϵF,V · (rp,F εF/k − zbF ) to imply that we have

ϵF,V · zbF = ϵF,V · rp,F εF/k = rp,F qp,F · zbK .

Since zbF generates a free eFZp[GF ]-module of rank one, we deduce that the difference q−1
p,F−rp,F

is annihilated by ϵF,VeF .
Now, if χ is a character of GF with eχϵF,V (1−eF ) ̸= 0, then χ must vanish on the decomposition
group of at least one finite place in S(F ). The element q−1

p,F − rp,F of Zp[GF ]ϵF,V is therefore
fixed by every element of the subgroup HF :=

⋂
v∈S(F )\S∞(k) GF,v of GF , where GF,v denotes

the decomposition subgroup in GF of each place v. As a consequence, the element

πF/E(q
−1
p,F )− rp,E = πF/E(q

−1
p,F − rp,F )

is divisible by the order of HF,1 := HF ∩Gal(F/E) and so the second equality in (59) implies

zbE − rp,E · ϵE,VεE/k = zbE − rp,EπF/E(qp,E) · zbE = πF/E(qp,F )(πF/E(q
−1
p,F )− rp,E) · z

b
E

is divisible by |HF,1| in the lattice LK . In particular, if we can show that, under either of the
conditions stated in (ii), the p-part of |HF,1| is unbounded as F ranges over M , then we could
deduce the required vanishing of rp,E · ϵE,VεE/k − zbE .
To do this, we let n be any natural number. Then the result of Proposition (4.14) (with
T = Sp(k), K = kp and σ = 1) provides a cyclic Galois extension Ln of k in which all
p-adic places have decomposition group of order at least pn and all places in S(Ln) are non-
archimedean, totally split in kp and have inertia subgroup of order at least pn.
In particular, if we assume the first condition in (ii), then TNC(h0(Spec kpLn),Zp[GkpLn ]ϵkpLn,V ),
and hence also TNC(h0(SpecF ),Zp[GF ]ϵF,V ) is valid for the compositum Fn := Ln ·E. In addi-
tion, Fn belongs to X by Hypothesis (4.5) (i). To prove that Fn belongs to the set M , we need
to justify the vanishing of ϵFn,V · (rp,FnεFn/k − zbFn

) in this case. To do this, it suffices to prove

that eχ · (rp,FnεFn/k − zbFn
) for any character χ of GF with eχϵF,X eF . Since (rp,FnεFn/k − zbFn

is fixed by Gal(Fn/Fn ∩ kp), the required vanishing is valid for any character of GFn that does
not factor through kp. If it a character χ of GFn factors through kp, on the other hand, then
by construction it vanishes on the decomposition group of a place in S(Ln) ⊆ S(Fn) and so
one has eχeFn = 0. This proves that Fn belongs to M , as claimed.
Moreover, in this case HFn,1 contains the unique cyclic subgroup of Gal(Fn/K) that is of order
pn (note that K/k is unramified at any place in S(En) and hence that said subgroup of order
pn, being contained in the inertia subgroup of such a place, must be contained in Gal(Fn/K))
and so the order of HFn,1 is divisible by an arbitrarily large power of p as n varies, as required.
To consider the second condition in (ii), we recall kp∞ is assumed to be a Zp-extension in which
no finite place splits completely, and hence that there exists an integer m with the property
that every p-adic place has full decomposition group in k∞p kp/k

p
mkp. Thus, if we assume the

second condition in (ii), then similar arguments show that Fn := kpn+mkp is a field in M with
the property that |HFn,1| is divisible by pn, as required.
This concludes the proof of the stated result.

6.1.4. The proof of Theorem (6.1)

In this section, we prove Theorem (6.1) and also establish some useful facts about the ideals
that occur in Theorem (6.1) (a) and (b).

We start by proving Theorem (6.1) and so fix data as in the statement of that result.
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It is convenient to prove claim (b) first and to do this we fix an Euler system c in ESXk (ZS).
We then also fix a prime p /∈ S, a field K in XSp(k) and an admissible set T in Pad

K with respect
to which c satisfies the condition (46). (For brevity, we shall often shorten the notations used
below by omitting adornments K or T where, we feel, no confusion is possible.)
Then, by Proposition (6.4) (a), we know that cKp

∞,T belongs to im(ΘKp
∞,T ). In addition, Pro-

position (6.4) (b) combines with the given assumption that the Rubin–Stark system satisfies
(46) to imply that im(ΘKp

∞,T ) is generated over
V
p,K by εK∞,T , and hence that there exists

an element qp,K of ϵK
V
p,K such that cKp

∞,T = qp,K · εKp
∞,T .

Taking images under the projection map
⋂rKV

p,K
UKp

∞,S(K),T →
⋂rK
Zp[GK ] UK,S(K),T , it follows

that δT,K · cK = δT,K · qp,K · εK/k and hence, since δT,K is a non-zero divisor in Zp[GK ], that

cK = qp,K · εK/k ∈ Zp[GK ] · εK/k.
In particular, since this containment is valid for all primes p outside S, we find that condition
(b) (iii) in Theorem (5.7) is satisfied in this case. The implication ‘(iii)⇒ (i)’ in Theorem (5.7)
now gives that c belongs to ZSJGKKεXk , as claimed in Theorem (6.1) (b).

Turning now to the proof of claim (a) of Theorem (6.1), we recall that, by Proposition (3.10),
it is enough to show that if c is any Euler system that belongs to the image of the map Θk

defined in Proposition (3.9), then ϱX (c) belongs to ZpJGKK · εXk . In particular, it is sufficient
to verify the latter inclusion for every system c in the image of Θp

k.
As a first step in this direction we note the exact triangle in Lemma (3.4) (b) combines with
Remark (3.5) to imply that, for any finite subextension F of Kp

∞/k, one has im(ΘF,S(K),T ) =
δT,F · im(ΘF,S(K),∅). In particular, the p-adic completion of this module contains cF,T for every
such F and, by taking the limit over such F , we deduce that the element cKp

∞,T belongs to
im(ΘKp

∞,T ).
Next we recall that, as observed earlier, the assumed validity of (46) for the Rubin–Stark sys-
tem implies that im(ΘKp

∞,T ) is equal to
V
p,K · εK∞,T , and hence, by an argument similar to

above, that cK belongs to Zp[GK ] · εK/k.
By Remark (5.8), one therefore has that c belongs to ZpJGKKεXk + ESXk (Zp)

Gal(K/k⟨p⟩).

In the remainder of this argument we now explain how this containment combines with either
of the conditions stated in Theorem (6.1) (a) to imply the inclusion c ∈ ZpJGKKεXk that is
required to complete the proof of the claim.
If p ∤ 2dk, as assumed in condition (a) (i) of Theorem (6.1), then k⟨p⟩ = k and so c belongs to
ZpJGKKεXk + ESXk (Zp)

GK . Since c is symmetric by Proposition (3.9), we deduce from Lemma
(2.17) that we must in fact have that c belongs to ZpJGKKεXk , as required.
Let us next suppose that condition (a) (ii) is valid. That is, V ̸= ∅ and εk is a congruence
system. In this case we may use Proposition (5.5) to deduce that also in this case c belongs
to ZpJGKKεXk +ESXk (Zp)

GK . Since c is assumed to be symmetric, the same argument as above
then shows that c belongs to ZpJGKKεXk . This proves the claim in the cases of conditions (i)
and (ii).
Lastly, if we assume condition (iii), then the containment imΘp

k ⊆ ZpJGKKεXk +ESXk (Zp)
Gal(K/k⟨p⟩)

directly combines with Lemma (6.5) to also imply the claim in this case, thereby concluding
the proof of Theorem (6.1).

The next result establishes some useful facts about the ideals in Theorem (6.1) (a) and (b).

(6.6) Lemma. Let E be a finite abelian extension of k, p ̸∈ S a prime number, T ∈ Pad
E an

admissible set disjoint from S(kp∞), and c an Euler system in ESk(ZS). Then the following
claims are valid.

(a) Fitt0V
p,E

(Xp
Ep

∞,S(kp∞)
)∗∗ · im(cEp

∞,T )
∗∗ ⊆ Fitt0V

p,E
(Xp

Ep
∞,S(Ep

∞)
)∗∗.

(b) If |S(kp∞)| = 1, then im(cEp
∞,T )

∗∗ ⊆ Fitt0V
p,E

(Xp
Ep

∞,S(Ep
∞)

)∗∗.
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(c) If the Zp-rank of GEp
∞ is at least two, and every place in S(kp∞) ∩ Sfin(k) is finitely

decomposed in kp∞/k, then Fitt0V
p,E

(XEp
∞,S(kp∞))

∗∗ =
V
p,E.

(d) If the Zp-rank of GEp
∞ is equal to one, and the module (Clp

Ep
∞,S(kp∞)

)Gal(Ep
∞/En) is finite

for every natural number n (here En denotes the n-th layer of Ep∞/E), then

Fitt0V
p,E

(Clp
Ep

∞,S(Ep
∞),T

)∗∗ · Fitt0V
p,E

(Xp
Ep

∞,S(Ep
∞)

)∗∗

= Fitt0V
p,E

(Clp
Ep

∞,S(Ep
∞),T

)∗∗ ∩ Fitt0V
p,E

(Xp
Ep

∞,S(Ep
∞)

)∗∗.

Proof. As p is fixed in this proof, we often suppress explicit reference to it in the notation, and
we also abbreviate

V
p,E to simply

V
.

The exact sequence

0 Xp
E∞,S(k∞) Xp

E∞,S(E∞) Y p
E∞,S(E∞)\S(k∞) 0

reduces part (a) to the claim that, for each height one prime p of
V
, one has

im(cE∞,T )p ⊆ Fitt0V(Y p
E∞,S(E∞)\S(k∞))p.

To verify this, we write ∆ for the (finite) torsion subgroup of GE∞ and fix a splitting of groups
GE∞

∼= ∆ × Γ. We note that if p belongs to the support of Y p
E∞,S(E∞)\S(k∞), then p ̸∈ p and

there exists a character χ in ∆̂ and a height-one prime ℘χ of the ring Λχ := Zp[imχ]JΓK such
that

V
p = Λχ,℘χ (cf. [BKS17, § 3C1]).

Setting Eχ := Eker(χ) and L := EΓ
∞, the elements NGal(L/Eχ) and eχ are units in

V
p and so

cE∞,T ∈
V

p ·NGal(L/Eχ)cE∞,T = Λχ,℘χ · PL/Eχ,∅ · cEχ,∞,T ,

where the Euler factor PL/Eχ,∅ is as defined in Definition (4.3) (a). This required inclusion is
therefore true since

Λχ,℘χ · PL/Eχ,∅ = eχ Fitt
0
Λχ

(Y p
Eχ,∞,S(E∞)\S(k∞))℘χ = Fitt0V(Y p

E∞,S(E∞)\S(k∞))p.

By the above discussion, it is sufficient to prove, for each χ ∈ ∆̂, that the ideal im(cEχ,∞,T )℘χ

is contained in eχ Fitt
0
Λχ

(Xp
Eχ,∞,S(k∞))℘χ in order to establish claim (b). Note that the module

eχX
p
Eχ,∞,S(k∞)\S∞

vanishes if the unique p-adic place ℘ ∈ S(k∞) \ S∞ satisfies χ(℘) ̸= 1 and

so we may therefore assume that ℘ is completely split in Eχ/k.
We now write n for the unique integer with the property that Eχ,n is the decomposition field
of ℘ in Eχ,∞/k. The ideal Fitt0Λχ

(Xp
Eχ,∞,S(k∞))℘χ is then generated by γp

n − 1, where γ is any

choice of topological generator of ΓEχ
:= Gal(Eχ,∞/Eχ). It therefore suffices to prove that

cEχ,∞,T is divisible by γp
n − 1 in

⋂rEχ

Λχ
UEχ,∞,S(Eχ,∞). To do this, we observe that

NEχ,m/Eχ,n
(cEχ,m,T ) = (1− Frob−1

℘ ) · cEχ,n = 0

for all m > n since ℘ is assumed to split completely in Eχ,n/k. This shows that cEχ,∞,T is in
the kernel of the natural codescent map⋂rEχ

Λχ

UEχ,∞,S(Eχ,∞),T →
⋂rEχ

Zp[GEχ,n]
UEχ,n,S(Eχ,∞),T

which, by the argument of [BD21, Thm. 3.8 (b)], is equal to (γp
n − 1)

⋂rEχ

Λχ
UEχ,∞,S(Kχ,p),T .

This completes the proof of (b).

To prove (c), it is enough to note that the given assumption ensures that Xp
E∞,S(k∞) is a finitely

generated Zp-module and hence pseudo-null as a
V
-module if rkZp(GE∞) > 1.

Regarding claim (d), we first observe that, by Lemma (6.2) (a), it suffices to verify the stated
equality after localisation at each height-one prime p of

V
.
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To do this we note that, since no finite place splits completely in k∞/k, the
V
-moduleXp

E∞,S(E∞)

is annihilated by an element of the form γp
n − 1, where γ denotes a choice of topological gen-

erator of Γ. From this, it follows that any prime p in the support of Xp
E∞,S(E∞) must contain

an element of the form γp
n − 1.

We fix such a prime p. Then, since the stated assumption implies that the kernel and cokernel
of multiplication by γp

n − 1 on ClpE∞,S(k∞), and hence also on ClpE∞,S(E∞),T (cf. [BH21, Lem.

4.5]), are finite, it follows that γp
n −1 acts bijectively on (ClpE∞,S(E∞),T )p. Hence, since γ

pn −1

belongs to p, the tensor product (ClpE∞,S(E∞),T )p ⊗
V

p (
V

p/(p
V

p)) vanishes. By appealing to

Nakayama’s Lemma, this in turn implies that (ClpE∞,S(E∞),T )p vanishes.

This argument shows that any height-one prime p of
V

that belongs to the support ofXp
E∞,S(E∞)

cannot also belong to the support of ClpE∞,S(E∞),T . The displayed equality in claim (d) follows
easily from this fact.

(6.7) Remark. The module (Clp
Ep

∞,S(kp∞)
)Gal(Ep

∞/E) that occurs in Lemma (6.6) (d) is known

to be finite if either E is an abelian extension of Q or if a single place of E ramifies in Ep∞, and
also in several other situations including cases in which k is imaginary quadratic (cf. [BH21,
Rks. 4.4 and 4.13] for an overview of results). Further, if kp∞ is the cyclotomic Zp-extension of
k, then the Gross–Kuz’min Conjecture predicts that this module is always finite.

6.2. Results in rank zero and the minus part of Kato’s Conjecture

In this section we focus on the case of CM extensions of totally real fields and, in particular,
prove claim (a) of Theorem B in the Introduction.
To do this we fix a (finite, abelian) CM extension K of a totally real field k. We write K+ for
the maximal totally real subfield ofK and τ for the (unique) non-trivial element of Gal(K/K+).
We then write e− for the idempotent (1 − τ)/2 and define the minus part of a Z[GK ]-module
M by setting

M− := (Z[1/2][GK ]e−)⊗Z[GK ] M.

We note that the assignment M 7→ M− gives an exact functor from the category of Z[GK ]-
modules to the category of modules over the ring Z[GK ]− = Z[1/2][GK ]e−.
In this section, for each prime p we always take the field kp∞ (as fixed in §6.1.1) to be the
cyclotomic Zp-extension of k. For each abelian extension E of k and each non-negative integer
n we write En for the unique intermediate field of Ep∞/E of degree pn.
We shall prove claim (a) of Theorem B by combining Theorem (6.1) (a) with the following
seminal result of Dasgupta and Kakde.

(6.8) Theorem (Dasgupta–Kakde). Fix an extension K/k as above, an odd prime p and a
set T in Pad

K that is disjoint from Sp(K). Then one has

θKp
∞/k,S∗(Kp

∞),T (0) ∈ Fitt0V−
K,p

(
lim←−
n

(Clp
Kp

n,∅,T
)∨,−

)#
, (60)

where the superscript # indicates that GKp
∞ acts via the involution GKp

∞ → GKp
∞ that sends

σ 7→ σ−1.

Proof. The verification of the Strong Brumer–Stark Conjecture given in [DK23, Cor. 3.8] im-
plies, for every natural number n, a containment

θKp
n/k,S∗(Kp

∞),T (0) ∈ Fitt0Zp[GK
p
n
]−((Cl

p
Kp

n,∅,T
)∨,−)#. (61)

In addition, the natural maps Clp,−
Kp

n,∅
→ Clp,−

Kp
n+1,∅

are injective (by [Was97, Prop. 13.26]) and

so the Pontryagin-dual maps (Clp
Kp

n+1,∅,T
)∨,− → (Clp

Kp
n,∅,T

)∨,− are surjective. Given this fact,

the claimed containment is obtained by simply passing to the limit over n of (61) and then
taking account of the general result of Greither and Kurihara in [GK08, Thm. 2.1].
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A key step in the deduction of Theorem B (a) will be provided by the following technical result.
This result reinterprets the containment in Theorem (6.8) in a way that is better suited to our
purposes and also, at the same time, verifies condition (ii) of Theorem (6.1) in the relevant
case.

(6.9) Proposition. Fix a finite abelian CM extension K of a totally real field k and an odd
prime p. Then the following claims are valid.

(a) For every height-one prime p of
V−
p,K , the (

V−
p,K)p-module (Clp,−

Kp
∞
)p has projective dimen-

sion one.

(b) For each set T in Pad
K that is disjoint from Sp(K) one has

θKp
∞/k,S∗(Kp

∞),T (0) ∈ Fitt0V−
p,K

(Clp,−
Kp

∞,S(Kp
∞),T

)∗∗ · Fitt0V−
p,K

(Xp,−
Kp

∞,S(Kp
∞)

)∗∗. (62)

Proof. Regarding p as clear from context, we abbreviate
V
p,K ,K

p
∞ and kp∞ to

V
K ,K∞ and k∞

respectively.
To prove claim (a), it is enough to consider a singular prime p of

V
K . To deal with this case

we fix a set T in Pad
K that is disjoint from Sp(k).

We then note first that, since no finite place splits completely in k∞/k, Lemma (6.2) (b) implies
the natural projection maps

(ClpK∞
)p ← (ClpK∞,∅,T )p and (ClpK∞,∅,T )p → (ClpK∞,S(K∞),T )p

are both bijective. For the same reason, one finds that the p-localisation of the
V−
K-module

Xp,−
K∞,S∗(K∞) = Xp,−

K∞,S(K∞)\S∞(k) vanishes. Upon taking minus parts of the exact sequence

(47), it follows that the
V−
K,p-module (Clp,−K∞,S(K∞),T )p, and hence also (Clp,−K∞

)p, is isomorphic

to H1(D•
K∞,T )

−
p .

Next we note thatH1(D•
K∞,T )

− is a
V−
K-torsion module and so, by analysing the exact sequence

0 U−
K∞,S(K∞),T P−

K∞
P−
K∞

H1(D•
K∞,T )

− 0

obtained by taking minus parts of the representative (48) of the complex D•
K∞,T , we deduce

that U−
K∞,S(K∞),T is

V−
K-torsion as well. On the other hand, U−

K∞,S(K∞),T embeds into the
V−
K-torsion free module P−

K∞
and so must in fact vanish.

One therefore obtains a short exact sequence of
V−
K-modules

0 P−
K∞

P−
K∞

H1(D•
K∞,T )

− 0. (63)

This sequence directly implies that the torsion
V−
K,p-module (Clp,−K∞

)p ∼= H1(D•
K∞,T )

−
p is of

projective dimension one, as required to prove claim (a).

To prepare for the proof of claim (b), we first consider an arbitrary finite abelian CM extension
E of k, and a set T in Pad

E that is disjoint from Sp(k), and show that, for every height-one
prime p of

V−
E one has

θE∞/k,S∗(E∞),T (0) ∈ Fitt0V−
E
(Clp,−E∞,S(E∞),T )p · Fitt

0
V−

E
(Y p,−
E∞,Sp(k)

)p. (64)

To show this we observe that, for each p, there exists a natural number n, an (n × n)-matrix
A with coefficients in

V−
E,p, and an exact sequence of

V
E,p-modules of the form

0 (
V−
E,p)

n (
V−
E,p)

n (Clp,−E∞,∅,T )p 0.v 7→A·v

Indeed, if p is regular, then the existence of such a sequence is clear since (Clp,−E∞,∅,T )p is a
finitely generated torsion module over the discrete valuation domain

V
E,p and, if p is singular,

then it follows by localising the exact sequence (63) (with K replaced by E) at p.
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Upon taking
V
E,p-linear duals of the above exact sequence one derives an isomorphism of

V
E,p-modules

α(Clp,−E∞,∅,T )p
∼= (
V−
E,p)

n,∗/(A# · (
V−
E,p)

n,∗) ∼=
(
(
V−
E,p)

n/(A · (
V−
E,p)

n)
)# ∼= (Clp,−E∞,∅,T )

#
p ,

where we write α(−) := Ext1V
E
(−,

V
E) for the Iwasawa adjoint of a

V
E-module and A# for

the matrix obtained from A by applying the involution # to each of its entries. We can then
consider the composite isomorphism of

V
E,p-modules

(Clp,−E∞,∅,T )p
∼= α(Clp,−E∞,∅,T )

#
p
∼= (lim−→

n

Clp,−En,∅,T )
∨
p
∼= (lim←−

n

(Clp,−En,∅,T )
∨)p,

where the second isomorphism follows from [Was97, Prop. 15.34] and the third is an easy
consequence of the fact that taking Pontryagin duals is an exact functor. In particular, this
isomorphism combines with Theorem (6.8) to imply that, for every height-one prime p of

V−
E ,

there is a containment

θE∞/k,S∗(E∞),T (0) ∈ Fitt0V−
E
(Clp,−E∞,∅,T )p. (65)

To derive (64) from here, we note that, since Sp(k) ⊆ S(E∞), there exists a canonical exact
sequence of

V
E-modules

UE∞,S(E∞),T Y p
E∞,Sp(k)

ClpE∞,∅,T ClpE∞,S(E∞),T 0

that induces, upon taking minus parts, a short exact sequence of
V−
E-modules

0 Y p,−
E∞,Sp(k)

Clp,−E∞,∅,T Clp,−E∞,S(E∞),T 0.

Now, since the torsion
V−
E,p-module (Clp,−E∞,S(E∞),T )p has projective dimension one (by the

above argument), its zeroth Fitting ideal contains a non-zero divisor. Given these observations,
a general property of Fitting ideals (cf. [Gre04, Prop. 2.2.3]) combines with the above short
exact sequence to imply that

Fitt0V−
E
(Clp,−E∞,∅,T )p = Fitt0V−

E
(Clp,−E∞,S(E∞),T )p · Fitt

0
V−

E
(Y p,−
E∞,Sp(k)

)p.

Given this equality, the claimed containment (64) follows directly from (65).
Turning now to the proof of claim (b), we observe that, by Lemma (6.2) (a), the containment
(62) can be verified after localisation at height-one primes of

V−
K . In addition, if p is a singular

height-one prime, then the argument in claim (a) implies that the localisation of Xp,−
K∞,S(K∞) at

p vanishes, and hence that its zeroth Fitting ideal over (
V−
K)p is equal to (

V−
K)p. In this case,

therefore, the localisation at p of the containment (62) is a direct consequence of (64) with E
taken to be K.
In the remainder of this argument we may therefore assume that p is a regular height-one prime
of
V−
K . To investigate this case, we fix a group isomorphism GK∞

∼= ∆ × Γ where ∆ is finite
and Γ isomorphic to Zp, and we set L := KΓ

∞. For each totally odd character χ of ∆, we write
Lχ for the kernel field of χ in L and

V
χ for the ring

V
Lχ . We also note that there exists such

a character χ with the property that
V−
K,p identifies with the localisation of

V−
χ at a suitable

height-one prime ideal ℘χ (cf. [BKS17, § 3C1]).
Writing PK∞/Lχ,∞ for the Euler factor PK∞/Lχ,∞,∅ in

V
χ that is defined as in Definition

(4.3) (a), we claim first that

(
V−
K)p · θK∞/k,S∗(K∞),T = (

V−
χ )℘χ · PK∞/Lχ,∞ · θLχ,∞/k,S∗(Lχ,∞),T

∈ PK∞/Lχ,∞ · Fitt
0V−

χ
(Clp,−Lχ,∞,S(Lχ,∞),T )℘χ · Fitt0V−

χ
(Y p,−
Lχ,∞,Sp(k)

)℘χ

= Fitt0V−
χ
(Clp,−Lχ,∞,S(K∞),T )℘χ · Fitt0V−

χ
(Xp,−

Lχ,∞,S(K∞))℘χ .

Here the first equality follows directly from the functorial properties of Dirichlet L-series and the
containment from (64) with E = Lχ. The second equality is valid because explicit computation
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(as in [Fla04, Lem. 5.5]) shows that

PK∞/Lχ,∞ · Fitt
0V−

χ
(Y p,−
Lχ,∞,Sp(k)

)℘χ = Fitt0V−
χ
(Y p,−
Lχ,∞,S(K∞))℘χ = Fitt0V−

χ
(Xp,−

Lχ,∞,S(K∞))℘χ

and, in addition, one has Fitt0V−
χ
(Clp,−Lχ,∞,S(Lχ,∞),T ) ⊆ Fitt0V−

χ
(Clp,−Lχ,∞,S(K∞),T ) since the natural

map ClpLχ,∞,S(Lχ,∞),T → ClpLχ,∞,S(K∞),T is surjective.

To derive the p-localisation of (62) from the above containment, it is then enough to note that
there are equalities of ideals

Fitt0V−
χ
(Clp,−Lχ,∞,S(K∞),T )℘χ · Fitt0V−

χ
(Xp,−

Lχ,∞,S(K∞))℘χ

= Fitt0V−
χ
(H1(D•

Lχ,∞,S(K∞),T )
−)℘χ

= Fitt0V−
K
(H1(D•

K∞,S(K∞),T )
−)p

= Fitt0V−
K
(Clp,−K∞,S(K∞),T )p · Fitt

0
V−

K
(Xp,−

K∞,S(K∞))p.

Here the first and third equalities follow from the relevant cases of the exact sequence (47)
(and the fact that the primes p and ℘χ are regular). To derive the second equality we note that
the result of Lemma (3.4) (d) induces (upon applying Zp ⊗Z − and then passing to the limit
over intermediate fields E of K∞/k) an isomorphism D•

K∞,S(K∞),T ⊗
LV

K

V
χ
∼= D•

Lχ,∞,S(K∞),T

in Dperf(
V
χ). This isomorphism in turn induces an isomorphism of

V
χ-modules

H1(D•
K∞,S(K∞),T )⊗VK

V
Lχ
∼= H1(D•

Lχ,∞,S(K∞),T ),

which directly implies the second equality in the above display.

This concludes the proof of claim (b).

By combining Proposition (6.9) with a particular case of the criterion of Theorem (6.1) (a), we
can now finally derive the main result of this section (which, we observe, verifies Theorem B(a)
in the Introduction).

(6.10) Theorem. Assume k is a totally real field. Then, for any finite abelian CM extension
E of k, the conjecture TNC(h0(SpecE),Z[GE ]−) is valid.

Proof. At the outset, we note that the Rubin–Stark system ε∅k is Z-integral in the sense of
Definition (2.12). Indeed, given the explicit description of ε∅k that follows, in this setting, from
Example (2.21) (b), this fact is a well-known consequence of work of Deligne and Ribet in
[DR80] (cf. [Gro88, Prop. 3.7]).
Next we fix an odd prime p and write Yp for the set of all fields of the form k⟨p⟩L, where k⟨p⟩
is as defined in (24) and L is a totally real, tamely ramified cyclic p-extension of k.
Then, since p is odd and k is totally real, the field k⟨p⟩ is by its definition contained in k(µp).
In particular, every field F in Yp is a tamely ramified abelian extension of k for which one has
ϵF,∅ = e− and so the validity of TNC(h0(SpecF ),Zp[GF ]ϵF,∅) is proved by Nickel in [Nic21,
Thm. 2].
Given this fact, the validity of TNC(h0(SpecE),Zp[GE ]ϵE,∅) follows directly upon combining
Proposition (6.9) with the criterion of Theorem (6.1) (a) (iii) with V = ∅, X the set of all finite
abelian CM extensions of k (cf. Example (4.6) (b)), S = {2}, kp∞ the cyclotomic Zp-extension
of k and Y = Yp.
Then, since TNC(h0(SpecE),Zp[GE ]ϵE,∅) is valid for every odd prime p, to deduce the validity
of TNC(h0(SpecE),Z[GE ]−) it is now enough to simply note that ϵE,∅ = e−.

(6.11) Remark. In [JN20] Johnston and Nickel use arguments similar to those in the proof
of Proposition (6.9) to deduce the ‘equivariant Iwasawa Main Conjecture’ of Ritter and Weiss
from the known validity of the Strong Brumer–Stark Conjecture.
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6.3. Results in rank one

In this section we use the classical theory of (rank-one) Euler systems to investigate the inclusion
(46) in cases where both |S∞(k)| = 1 (so that k is either Q or an imaginary quadratic field)
and V = {S∞(k)}. In this way we shall, in particular, complete the proofs of Theorems A and
B, as stated in the Introduction.

6.3.1. Statement of the main results

For a p-adic place p of k we write kp∞ for the maximal Zp-power extension of k that is unramified
outside p.
Then Theorem (6.1) enables us to prove the following unconditional result.

(6.12) Theorem. Let S be a finite set of prime numbers that contains all divisors of |µk|.
Then Conjecture (2.24) for the pair (ΩS∞(k)(k),S) is valid in the following cases:

(a) k = Q,

(b) k is an imaginary quadratic field and, for all primes p ̸∈ S, all p-adic places p of k and
all fields K in ΩSp(k)(k) either Gal(Kkp∞/k) is p-torsion free or the ZpJGal(Kkp∞/K)K-
module Clp(Kkp∞) has vanishing Iwasawa µ-invariant.

(6.13) Remark. The hypothesis on µ-invariants in Theorem (6.12) (b) is valid for (K, p) if
p splits in k. This was proven by Gillard [Gil85] if p > 3 and by Oukhaba–Viguié [OV16] if
p ∈ {2, 3}. Moreover, the Theorem of Ferrero–Washington [FW79] combines with a well-known
result of Iwasawa to imply that the relevant µ-invariant (at some prime number p) vanishes if
the degree [K : k] is a power of p (cf. [BH21, Prop. 5.6]).

(6.14) Remark. As noted in the Introduction, one can also combine Theorem (6.12) (a) with
Theorem (3.2) to obtain a simpler proof of the known validity of TNC(h0(SpecK), RK [GK ]) for
any finite abelian extension K of k = Q, with RK = Z if K is real and RK = Z[1/2] otherwise.

6.3.2. The proof of Theorem (6.12)

We begin by establishing a useful technical result.

(6.15) Lemma. Fix a number field k, an Euler system c in ESk(ZS), a prime number p outside
S and a field K in ΩSp(k)(k). Set K∞ := Kkp∞, and write Ω′ for the set of finite extensions of
K in K∞. Then the following claims are valid.

(a) For each E in Ω′, write CE for the Zp[GE ]-submodule of UE,S(E) generated by the set

{δT,E · cE : T ∈ Pad
E }. Then, for any field E′ in Ω′ that contains E, the field theoretic

norm NrEE′/E maps CE′ to CE.
(b) Set CK∞ := lim←−E∈Ω′ CE and µK∞ := lim←−E∈Ω′(Zp ⊗Z µE), where the transition maps are

induced by field-theoretic norms (and, in the first case, the result of claim (a)). Then, for
any regular height-one prime p of

V
that belongs to the support of

V
p,KcK∞,T one has

Fitt0V
p,K

(
CK∞/(

V
p,KcK∞,T )

)
p
= δT,K∞ ·AnnVp,K

(µK∞)−1
p ,

where δT,K∞ is the element of
V
p,K given by the family (δT,E)E∈Ω′.

Proof. We abbreviate
V
p,K to

V
. For each pair of fields E and E′ in Ω′ with E ⊆ E′, one has

S(E′) = S(E) and rE′ = rE . This implies that NrEE′/E(cE′) = cE . Since Pad
E′ is a subset of

Pad
E , it is therefore clear that NrEE′/E maps CE′ to CE , as required to prove claim (a).

To prove the equality claimed in (b) we recall that, for E in Ω′, the module AnnZp[GE ](Zp⊗ZµE)
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is generated over Zp by the set {δT,E | T ∈Pad
E } (cf. § 2.2.1). This fact gives rise to an exact

commutative diagram of Zp[GE ]-modules in which all vertical maps are surjective:

0 Zp[GE ]δT,E AnnZp[GE ](Zp ⊗Z µE) AnnZp[GE ](Zp ⊗Z µE)/(Zp[GE ]δT,E) 0

0 Zp[GE ]δT,EcE CE CE/(Zp[GE ]δT,EcE) 0.

x7→x·cE x 7→x·cE

By passing to the limit over E of these diagrams (which preserves exactness since all occurring
modules are compact) and then localising at p, we deduce the existence of an exact commutative
diagram of

V
p-modules in which all vertical maps are surjective:

0
V

pδT,K∞ AnnV(µK∞)p AnnV(µK∞)p/(
V
δT,K∞)p 0

0
V

pcK∞,T CK∞,p CK∞,p/(
V

pcK∞,T ) 0.

λδT 7→λ·cK∞,T x 7→x·cK∞,T

Now, since
V

p is a discrete valuation domain, if the module (
V
cK∞,T )p does not vanish, then

it is free of rank one and so the first vertical arrow in this diagram is bijective. Similarly, the
non-zero submodule AnnV(µK∞)p of

V
p is free of rank one and so the second vertical arrow is

also bijective. Applying the Snake Lemma to the diagram, we deduce that the third vertical
arrow is bijective, and hence that, for any prime p as in the statement one has

Fitt0V
(
CK∞/(

V
cK∞,T )

)
p
= Fitt0V

p

(
CK∞,p/(

V
cK∞,T )p

)
= Fitt0V

p

(
AnnV(µK∞)p/(

V
δT,K∞)p

)
= δT,K∞ ·AnnV(µK∞)−1

p ,

as claimed.

We shall now prove Theorem (6.12). To do this we fix a field k that is either Q or imaginary
quadratic.
At the outset we recall that for any such k the module of isolated systems ES◦,Xk (ZS) van-
ishes (cf. Remark (2.14)) and hence that Theorem (6.12) will follow if we can verify that the
conditions of Theorem (6.1) are satisfied in this case.
We further recall that the integrality of the Rubin–Stark system εk for such a field k follows
from the explicit descriptions recalled in Example (2.21).
Next, we fix a rational prime p ̸∈ S and, if k is imaginary quadratic, an element p of the
set Sp(k) of p-adic places of k (this involves a choice if p splits in k). As p is fixed, we also
occasionally suppress dependency on p in the notation. We take k∞ to be the cyclotomic
Zp-extension if k = Q and to be kp∞ if k is imaginary quadratic. We write ∞ for the unique

archimedean place of k and abbreviate the set of fields Ω
{∞}
Sp(k)

(k) to Ωp(k).

If k = Q, then condition (ii) in Theorem (6.1) holds by the Theorem of Ferrero–Washington
[FW79]. If k is imaginary quadratic, then condition (ii) is satisfied due to the explicit assump-
tion on kp∞ in (b). Moreover, condition (i) in (a) is satisfied by assumption on S. In this way
we are reduced to verifying the containment (46).

To do this, we fix a field K in Ωp(k) and set
V

:=
V
K . Note that if either k is Q, or

both k is imaginary quadratic and p splits in k, then Remark (6.7) implies that the modules
ClpS(k∞)(K∞)Gal(K∞/Kn) are finite for all n > 0. In these cases, therefore, an application of

claims (a) and (d) of Lemma (6.6) reduces us to verifying, for all Euler systems c ∈ ESk(ZS),
all fields K ∈ Ωp(k) and (for each K) a suitably chosen set T in Pad

K , that one has

im(cK∞,T )
∗∗ ⊆ Fitt0V(ClpS(K),T (K∞))∗∗. (66)

On the other hand, if k is imaginary quadratic and p does not split in k, then the Zp-rank of
GK∞ is two and, by claims (a) and (c) of Lemma (6.6), we are again reduced to verifying the
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inclusion (66).

To verify (66) it is in turn enough, by Lemma (6.2) (a), to argue locally at height-one primes of
V
. At the outset we remark that if

V
contains a singular height-one prime, then Gal(Kkp∞/k)

has a non-trivial element of order p. In this case, consequently, the given assumption asserts
the vanishing of the µ-invariant of Clp(Kkp∞), and hence also of that of ClpS(K),T (Kk

p
∞). Hence,

for any singular height-one prime p of
V
, Lemma (6.2) (b) implies that the localisation at p of

the right hand side of (66) is equal to (
V
)p and so the claimed inclusion is clear in this case.

We can therefore assume in the rest of the argument that p is a regular height-one prime. To
proceed in this case, we set F×,p

K∞,T := lim←−E(Zp ⊗Z F
×
E,T ) with the limit ranging over all finite

subextensions of K∞/k and the transition maps being induced by the relevant norm maps.
Then, by applying Zp ⊗Z − to the exact sequences in Remark (3.5) and then passing to the
limit over E, one computes that

Fitt0V(F×,p
K∞,T ) =

V
· δT,K∞ , (67)

where δT,K∞ denotes the element (δT,E)E of
V
. Further, by applying Zp⊗Z− to the long exact

cohomology sequence of the exact triangle in Lemma (3.4) (b) and then passing to the limit
over all such E of the resulting exact sequences, one obtains an exact sequence of

V
-modules

0 UK∞,S(K),T UK∞,S(K) F
×,p
K∞,T ClpS(K),T (K∞) ClpS(K)(K∞) 0.

Since the general result of Lemma (A.10) implies that Fitt0V(UK∞,S(K),T /(
V
cK∞,T ))p is equal

to im(cK∞,T )p, this sequence combines with the equality (67) to reduce the proof of (the p-
localisation of) (66) to the proof of an inclusion

Fitt0V
(
UK∞,S(K)/(

V
cK∞,T )

)
p
⊆ δT,K∞ · Fitt0V(Cl

p
S(K)(K∞))p.

Before applying Lemma (6.15) in this setting, we note that the
V
-module µK∞ is pseudo-null.

Indeed, µK∞ is finite if either k is Q (sinceK∞ is then totally real) or if k is imaginary quadratic
and p is split in k (since k∞/k is unramified outside the single place p), whilst if k is imaginary
quadratic and p does not split in k, then µK∞ is contained in the finitely generated Zp-module
Zp(1) and so is pseudo-null since, in this case, the Zp-rank of Gal(K∞/k) is two.
In particular, since the quotient of

V
by AnnV(µK∞) is isomorphic to µK∞ , the pseudo-nullity

of the latter module implies that AnnV(µK∞)p =
V

p. In view of this equality, the result of
Lemma (6.15) (b) implies that the above inclusion is valid provided that the

V
-module CK∞

that occurs in the latter result is such that

Fitt0V
(
UK∞,S(K)/CK∞

)
p
⊆ Fitt0V(ClpS(K)(K∞))p.

To verify this inclusion, we can assume p is in the support of CK∞ (otherwise (UK∞,S(K)/CK∞)p =
(UK∞,S(K))p is a free

V
p-module and so its Fitting ideal vanishes), and hence that the

V
p-

module CK∞,p is free of rank one. Given this, the general result of Lemma (A.10) implies

Fitt0V
(
UK∞,S(K)/CK∞

)
p
=
V
K,p · {f(x) | x ∈ CK∞ , f ∈ U∗

K∞,S(K)}. (68)

To analyse this equality we note the argument of Lemma (6.15) shows that x = λ · cK∞ for a
suitable element λ of AnnV(µK∞) and then, following Remark (2.8), we fix a pre-image λ′ of
λ under the projection map lim←−E∈Ω(k)

AnnZp[GE ](Zp ⊗Z µE)→ AnnV(µK∞).

We write L for the maximal abelian pro-p extension of k in which all archimedean places split
completely and, for each field E in Ω(k) that is contained in L, we set

c′E := λ′EK
( ∏
v∈Π(E)\S(EK)

(1− Frob−1
v )

)
· cEK ,

with Π := S∞(k) (so that Π(E) = S∗(E) = S∞(k) ∪ S(E)).
Then the family c′ := (c′E)E can be seen to belong to the module ES1Π(Ind

GK
Gk

(Zp)(1),L) of
p-adic Euler systems introduced in Definition (A.2) and is also such that c′k∞ = x. In view of
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(68), the required inclusion will therefore be true if we can show that for any p-adic system c
in ES1Π(Ind

GK
Gk

(Zp)(1),L) and any homomorphism f in U∗
K∞,S(K) one has

f(ck∞) ∈ Fitt0V(ClpK∞,S(K))p. (69)

In the rest of the argument we shall explain how this containment follows from results of Rubin.
To do this, we write ∆ for the torsion subgroup Gal(K∞/k∞) of Gal(K∞/k) and note that
there exists a character χ of ∆̂ and a height-one prime ℘χ of the ring Λχ :=

V
⊗Zp[∆] Zp[imχ]

such that
V

p = (Λχ)℘χ (cf. [BKS17, § 3C1]).
We also recall that, by the argument of Rubin in [Rub00, Prop. 6.2.1 and Cor. 6.2.2], the
canonical Selmer structure gives rise to a natural isomorphism of dual Selmer modules(
H1

F∗
can

(Ok,S(K),
V∨(1))∨

)
⊗V Λχ ∼= H1

F∗
can

(Ok,S(K),Λ
∨
χ(1)(χ

−1))∨ ∼= H1
F∗

can
(Ok,S(K), T ∨

χ,k∞)∨,

where Tχ,k∞ denotes the induction from Gk∞ to Gk of the Gk-representation Zp[imχ](1)(χ−1).
In particular, if one combines this isomorphism with the canonical isomorphism

ClpK∞,S(K)
∼= H1

F∗
can

(Ok,S(K),
V∨(1))∨ (70)

(coming, for example, from [Rub00, Prop. 1.6.1]), then one obtains an isomorphism of
V

p-
modules of the form (ClpK∞,S(K))p

∼= H1
F∗

can
(Ok,S(K), T ∨

χ,k∞
)∨℘χ

. This isomorphism in turn implies
an equality of ideals

Fitt0V(ClpK∞,S(K))p = Fitt0Λχ
(H1

F∗
can

(Ok,S(K), T ∨
χ,k∞)∨℘χ

= charΛχ(H
1
F∗

can
(Ok,S(K), T ∨

χ,k∞)∨℘χ
,

where the second equality follows from the fact that, by the structure theorem for finitely
generated modules over a discrete valuation ring R with maximal ideal m, one has Fitt0R(M) =

m
lengthR(M)

for any finitely generated torsion R-module M .
This last displayed equality reduces the proof of (69) to the verification of an inclusion

im(cχ) ⊆ charΛχ(H
1
F∗

can
(Ok,S(K), T ∨

χ,k∞)∨,

where cχ denotes the p-adic Euler system in ES1Π(Tχ,L) that is obtained from c via twisting by
χ (as in [Rub00, Prop. 2.4.2]). It is therefore enough to note that this inclusion follows directly
upon taking account of the observation of Rubin in [Rub00, Rem. 2.1.3] and then applying the
general result of [Rub00, Thm. 2.3.3].

This completes the proof of Theorem (6.12).

6.4. Results in higher rank

The main result of this section provides further evidence for the inclusion (46) in the case that
p is odd and |VK | > 1. This result complements the evidence for Conjecture (2.24) that is
provided by Theorem (5.9) and depends on proving a higher-rank analogue of a well-known
result in the Iwasawa theory of (rank-one) Euler systems. However, since the latter result is
best understood in terms of more general p-adic representations we have, for clarity, deferred
its treatment to Appendix A.
Throughout the section we fix an odd prime p and a finite abelian extension K/k of prime-to-p
degree for which VK ̸= ∅. We take the field k∞ = kp∞ to be the cyclotomic Zp-extension of
k, set ΓK := Gal(K∞/K) and fix a splitting of groups GK∞

∼= GK × ΓK . Via this splitting,
we regard Zp[GK ] as a subring of

V
K =

V
p,K . In this way, for each

V
K-module M , and each

character χ in ĜK , we obtain a Zp[im(χ)]⊗Zp

V
K-module by setting

Mχ :=M ⊗Zp[GK ] Zp[im(χ)].

We write ωp for the p-adic Teichmüller character of k, regarded as a C-valued character via

some fixed isomorphism Cp ∼= C. We then write ΨK for the subset of ĜK comprising all
characters χ that satisfy the following conditions:
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• χ is not totally odd;

• UχK,S(K∞) is Zp-torsion-free (which is automatic unless χ = ωp);

• if both p = 3 and χ2 = ωp, then Cl
(p),χ
K∞,S(K∞) is finite.

We note that ΨK is closed under the action of the absolute Galois group of Qp on Hom(GK ,Qp),
and hence that the sum

eΨK
:=

∑
χ∈ΨK

eχ

defines an idempotent of Zp[GK ] ⊂
V
K . In addition, the defining assumptions on characters

in ΨK imply that, for each n, the Zp-module eΨK
UKn,S(K∞) is torsion-free and hence, just as

at the beginning of § 6.1.1, there is a natural isomorphism

lim←−
n

(
eΨK

⋂rK

Zp[GKn ]
UKn,S(K∞)

) ∼= eΨK

⋂rK
V

K

UK∞,S(K∞).

Via this isomorphism, any Euler system c in ESk(ZS) gives rise to an element eΨK
cK∞ of

eΨK

⋂rKV
K
UK∞,S(K∞), and hence also to an ideal im(eΨK

cK∞) of eΨK

V
K .

(6.16) Theorem. Fix a system c in ESk(ZS). Then, for each prime p outside S, one has

im(eΨK
cK∞)∗∗ ⊆ eΨK

· Fitt0V
K
(ClpK∞,S(K∞))

∗∗.

In particular, if p > 3, ĜK contains no totally odd characters, UK,S(K∞) is Zp-torsion free, and
Clp,χK∞,S(K∞) is finite for both χ = 1K and χ = ωK,p, then one has

im(cK∞)∗∗ ⊆ Fitt0V
K
(ClpK∞,S(K∞))

∗∗.

Proof. For each character χ in ĜK we set Kχ := Kker(χ), Gχ := GKχ , Rχ := Zp[im(χ)] and
Λχ :=

Vχ
K . We also define a p-adic representation of Gk by setting Tχ := Rχ(1)(χ−1).

At the outset, we note that the second assertion of the theorem follows immediately from the
first assertion and the fact the stated hypotheses imply ΨK = ĜK so that eΨK

= 1.
Concerning the first assertion, it is enough to prove, for each χ in ΨK , that the displayed
inclusion is valid after replacing eΨK

and Fitt0V
K
(ClpK∞,S(K∞)) by eχ and Fitt0Λχ

(Clp,χK∞,S(K∞))
respectively. Indeed, this is true because we may verify the claimed inclusion after passing
from

V
K to its faithfully flat ring extension O ⊗Zp

V
K with O the Zp-algebra generated by

the values of all characters χ ∈ ΨK .
In addition, if, for any such χ, the module Clp,χK∞,S(K∞) is finite, then the required inclusion

is obvious since then Clp,χK∞,S(K∞) vanishes after localising at every height one prime of Λχ.
Hence, for the rest of the argument we can, and will, fix a character χ such that χ ̸= ωK,p and,
if p = 3, also χ2 ̸= ωp.
We write L for the maximal abelian pro-p extension of k and note that all archimedean places
split completely in L (as p is odd) and that for any finite extension E of k in L the integer rTχ
defined in Hypothesis (A.3) (i) below is equal to r := rKχ = rEKχ .
With ESr(Tχ,L) denoting the module of p-adic Euler systems specified in Definition (A.2)
(with Π = S∞(k) ∪ Sp(k)), we next define a non-zero map of ZJGKK-modules

(−)χ : ESk(ZS)→ ESr(Tχ,L), c 7→ cχ := (TwrE,χ(cEKχ))E∈Ω(L/k) (71)

in the following way. For each E in Ω(L/k), the ring homomorphism Zp[Gχ]→ Rχ induced by
χ gives rise to a map of Zp[GE ]-modules

TwrE,χ :
⋂r

Zp[GEKχ ]
UEKχ,Π(EKχ) →

(⋂r

Zp[GEKχ ]
UEKχ,Π(EKχ)

)
⊗Zp[Gχ] Rχ

≃−→
⋂r

Rχ[GE ]
H1(OEKχ,Π(EKχ),Zp(1))⊗Zp[Gχ] Rχ

≃−→
⋂r

Rχ[GE ]
H1(OEKχ,Π(EKχ), Tχ)

→
⋂r

Rχ[GE ]
H1(OE,Π(E), Tχ).
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Here the first isomorphism follows from Kummer theory, the second from the fact Rχ is a flat
Zp[Gχ]-module and the last map is induced by coresEKχ/E . As E varies over Ω(L/k), these
maps TwrE,χ combine to give a morphism of the required form (71).
The key point now is that the present hypotheses imply Tχ validates Hypothesis (A.3): the
required conditions (i)-(v) are satisfied as a consequence of [BSS19b, Lem. 5.3], whilst condition
(vi) (with t = 0) is clear in this case as k∞ is the cyclotomic Zp-extension. We may therefore
apply Theorem (A.5) to the Euler system cχ and thereby obtain an inclusion of Λχ-ideals

im(cχk∞)∗∗ ⊆ Fitt0Λχ
(H1

F∗
can

(Ok,Π, T ∨
χ,k∞(1))∨)∗∗.

Given this, the claimed inclusion follows directly from the existence of a canonical isomorphism
Clp,χK∞,S(K∞)

∼= H1
F∗

can
(Ok,Π, T ∨

χ,k∞
(1))∨ (as in (70)).

(6.17) Remark. Under the stated conditions, the second assertion of Theorem (6.16) combines

with Lemma (6.6) (d) to reduce the verification of (46) to showing, for each χ ∈ ĜK , that

im(cχK∞
)∗∗ ⊆ Fitt0Λχ

(Xχ
K∞,S(K∞))

∗∗.

This inclusion is, in effect, a lower bound on the ‘order of vanishing at χ’ of the values of an
Euler system in terms of the ramification behaviour of p-adic places in K∞ and can sometimes
be interpreted very explicitly. For example, if k is not totally-complex, ĜK contains no totally-
odd characters, p > 3 and both Clpk∞,S(K∞) and, for each n > 0, also (ClpK∞,S(K∞))

Γn
K are finite,

then the argument of Lemma (6.6) (a) implies the above inclusion is valid provided that

(γ − 1)m(χ) · im(cχK∞
)∗∗ ⊆

∏
v∈S(k∞,χ)

Λχ · (γv − 1)

for every χ ∈ ĜK , one has where m(χ) = 1 if χ = 1K and m(χ) = 0 otherwise, S(k∞, χ)
denotes the set of p-adic places of k that ramify in k∞ and are totally split in Kχ and γv is
a generator of the decomposition subgroup of v in Γk. Further, the last displayed inclusion is
easily seen to be valid if, for example, k has only one p-adic place and so one obtains a full
verification of (46) in any such case.

A. Appendix: Euler systems for p-adic representations

In this section we generalise one of the main results of Mazur and Rubin in [MR04] concerning
the Iwasawa theory of rank-one Euler systems. This result is stated as Theorem (A.5) and
shows that higher-rank Euler systems for a wide class of p-adic representations control the
structure of Selmer groups in precisely the manner predicted by ‘Main Conjectures’ in this
setting.

A.1. Statement of the main result

We fix a prime number p and a finite extension Q of Qp with ring of integers R, uniformiser
ϖ, and residue field k := R/ϖ. We also assume to be given an abelian pro-p extension L of k
that validates the following hypothesis.

(A.1) Hypothesis (Hyp(L)).
(i) for almost all primes q of k, the maximal p-power degree extension of k in the ray class

field k(q) is contained in L;
(ii) there exists a Zp-extension k∞ of k in L in which no finite place splits completely.

We write Ω(L/k) for the collection of all finite extensions of k in L, and for each field E in
Ω(L/k) we consider the algebras RL := RJGLK, Λ := RJGk∞K and

V
E := RJGEk∞K.

We fix a finitely generated free R-module T that admits a action of Gk that is continuous (with
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respect to the canonical compact topology on T ) and such that the set Sram(T ) of places of k
at which T is ramified is finite. We also fix a finite set of places Π of k containing

Smin(T ) := S∞(k) ∪ Sp(k) ∪ Sram(T ),
and for each field E in Ω(L/k) we set Π(E) := Π ∪ Sram(E/k).

(A.2) Definition. For each non-negative integer r, the RL-module ESr(T ,L) = ESrΠ(T ,L)
of (Π-imprimitive) Euler systems of rank r for T over L is the collection of families

(ηE)E ∈
∏

E∈Ω(L/k)

⋂r

R[GE ]
H1(OE,Π(E), T )

with the property that for every pair E ⊆ E′ in Ω(L/k) one has

coresE′/E(ηE′) =
( ∏
v∈Π(E′)\Π(E)

Pv(T ,Frob−1
v )

)
(ηE), (72)

where Pv(T , X) denotes the characteristic polynomial det(1− Frob−1
v X | T ∗(1)) ∈ R[X].

For a Gk-module A we write k(A) for the minimal Galois extension of k such that Gk(A) acts
trivially on A. In the sequel we assume p is odd and for each non-negative integerm we consider
the fields

kpm := k(1; p)k(µpm , (O×
k )

1/pm), kp∞ :=
⋃
m>0

kpm ,

k(T )pm := kpmk(T /pmT ), k(T )p∞ := kp∞k(T ),
where k(1; p) is the maximal p-extension inside the Hilbert class field of k and (O×

k )
1/pm the

subgroup of Q
×
comprising all elements whose pm-th powers belong to O×

k .
In terms of this notation, we assume in the sequel that T satisfies the following hypotheses.

(A.3) Hypothesis (Hyp(T )). All of the following conditions are satisfied.

(i) The R-module Yk(T ) :=
⊕

v∈S∞(k)H
0(kv, T ) is non-zero and free.

(ii) The residual representation T := T ⊗R k is an irreducible k[Gk]-module.

(iii) There exists τ ∈ G(kp∞k∞) such that T /(τ − 1)T is a free R-module of rank one.

(iv) The cohomology groups H1(k(T )p∞/k, T ) and H1(k(T )p∞/k, T
∨
(1)) vanish.

(v) If p = 3, then T and T ∨
(1) have no non-zero isomorphic R[Gk]-subquotients.

(vi) There exists a (finite) filtration {0} = Tt ⊂ Tt−1 ⊂ · · · ⊂ T0 = T of RJGkK-modules
where each module Ti/Ti+1 is free over R and such that the induced action of Gk factors
through Gal(Li/k) for some finite extension Li of k∞ that is Galois over k.

(A.4) Remark. The conditions (i)-(v) in Hypothesis (A.3) are standard in the theory of Euler
and Kolyvagin systems (following Mazur and Rubin). Condition (vi) is sufficient for our present
purposes and allows an easier approach than is possible for more general representations.

We write Tk∞ for the induction from Gk∞ to Gk of the representation T . We recall that, in
each degree m ≥ 0, the Iwasawa cohomology module of T over a field E in Ω(L/k) is then the
(finitely generated)

V
E-module obtained by setting

Hm
Iw(OE,Π(E), T ) := Hm(OE,Π(E), Tk∞) = lim←−

n∈N
Hm(OEn,Π(E), T ),

where the second equality follows from Shapiro’s Lemma (cf. [MR04, Lem 5.3.1]), the limit
taken over layers En of the Zp-extension E∞ := Ek∞ of E with respect to corestriction maps.
In the sequel we will use the fact that, if T satisfies Hyp(T ), then for each non-negative integer
r, there exists a canonical isomorphism of

V
E-modules of the form⋂r

V
E

H1
Iw(OE,Π(E), T ) ∼= lim←−

n∈N

⋂r

R[GEn ]
H1(OEn,Π(E), T ), (73)
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where the limit is with respect to the maps on exterior biduals that are induced by corestriction.
(This isomorphism is obtained by applying the general result of [Sak20, Lem. B.15] to the
complex (77) defined below).
In the sequel we will also use, without further explicit comment, the theory of Selmer structures
that is recalled in [BSS19b, § 2]. In particular, we write Fcan for the canonical Selmer structure
on Tk∞ .
Taking account of Hypothesis Hyp(T ) (i) we set

a = aT := rankR
(
Yk(T )

)
.

Then the next result extends to arbitrary values of a the (rank-one) results established by
Mazur and Rubin in [MR04, § 5.3]. Its proof will occupy the remainder of the appendix.

(A.5) Theorem. Assume that the extension L/k and representation T respectively satisfy the
hypotheses Hyp(L) and Hyp(T ). Assume also that there exists an Euler system η in ESa(T ,L)
for which the element ηk∞ that corresponds, via the isomorphism (73), to the family (ηkn)n is
non-zero. Then both of the following claims are valid.

(a) The Λ-module H2
Iw(Ok,Π, T ) is torsion.

(b) The Λ-module H1
F∗

can
(Ok,Π, T ∨

k∞
(1))∨ is both finitely generated and torsion, and there is

an inclusion of Λ-ideals im(ηk∞)∗∗ ⊆ charΛ(H
1
F∗

can
(Ok,Π, T ∨

k∞
(1))∨).

(A.6) Remark. Claim (a) of Theorem (A.5) asserts that, under the stated hypotheses, the
‘weak Leopoldt conjecture’ of Perrin-Riou [PR98, § 1.3] is valid for T over k∞. In addition,
Lemma (A.10) below implies that if ηk∞ is non-zero, then the inclusion in claim (b) is equivalent
to an inclusion of characteristic ideals

im(ηk∞)∗∗ = charΛ

((⋂a

Λ
H1

Iw(Ok,Π, T )
)
/(Ληk∞)

)
⊆ charΛ(H

1
F∗

can
(Ok,Π, T ∨

k∞(1))∨).

This observation implies that Theorem (A.5) (b) improves upon earlier results in the literature
that depend upon imposing restrictive hypotheses in order, for example, to rule out trivial
zeroes of p-adic L-functions and, at least for representations of the formR(1)(χ) with a Dirichlet
character χ, also assume the validity of Leopoldt’s conjecture (see, for example, the results of
Büyükboduk in [Büy09], [Büy10], and [Büy11], and of Mazigh in [Maz17] and [Maz19]).

A.2. Twisting representations

In this section we reduce the proof of Theorem (A.5) to consideration of a family of natural
twists of T . To describe these twisted representations, we fix a distinguished polynomial f in
R[X] that is either constant (and hence equal to ϖ) or of degree one. For each natural number
n, we then define a polynomial

fn =

{
f +ϖn if f = X + a0 (with a0 ∈ R),
Xn +ϖ if f = ϖ,

fix a root αn of fn in Q and consider the ring Rn := R[αn]. We also fix a topological generator
γ of Gal(k∞/k) ∼= Zp, define a character

ψn : Gk∞ → Rn, γ 7→ 1 + αn,

and consider the associated representation

T (ψn) := T ⊗R Rn(ψn) ∼= T ⊗R
(
Λ/(Λfn)

)
, (74)

where the isomorphism (of RJGkK-modules) sends each element t⊗ αmn to t⊗ (Xmmod (fn)).
We note that T (ψn) is free of finite rank as an R-module and endowed with a continuous action
of Gk that is unramified outside a finite set of places of k.

(A.7) Lemma. The following claims are valid:

(a) For every n the representation T (ψn) satisfies the hypotheses Hyp(T (ψn)) (i) – (v);
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(b) There exists an unbounded set of n such that, for every prime q of k outside Π, and every

non-negative integer i, the endomorphism Frobp
i

q − 1 acts injectively on T (ψn).

Proof. Since p is odd, the functor (−)⊗R (Λ/(Λfn)) commutes with the functor H0(kv,−) for
each v ∈ S∞(k), and the validity of Hyp(T (ψn)) (i) follows easily from this. In addition, since
the element τ given by Hyp(T ) (iii) acts as the identity on k∞, the element ψn(τ) acts as the
identity on T (ψn) and so τ also validates Hyp(T (ψn)) (iii).
We next note that, since f is a distinguished polynomial, one has ψn ≡ 1 (mod ϖ) and so the
residual representations T and T (ψn) coincide. The validity of Hyp(T (ψn)) (ii), (iv) and (v)
therefore follows from the assumed validity of Hyp(T ). This proves claim (a).
To prove claim (b), it is enough to verify the stated claim for the twisted base-change repres-
entation V(ψn) := (T ⊗R Cp)(ψn). By inducting on the length of the filtration of T that is
given by Hyp(T ) (vi), we can then also reduce to the case that the action of Gk factors through
GL for a finite extension L of k∞ that is Galois over k.
To deal with this case we set G := GL and fix a pre-image σ of γ under the projection map
G → Gk∞ . We write s for the order of the finite normal subgroup H := ker(π) of G and t for
the order of the automorphism h 7→ hσ := σhσ−1 of H. Then, for each element g of G one has
g = hσc for unique elements h ∈ H and c ∈ Zp, and hence, setting m := st, one has

gm = (hσc)m =
(m−1∏
i=0

hσ
ci
)
σcm =

(t−1∏
i=0

hσ
ci
)s
σcm = σcm,

where the last equality is true since
∏t−1
i=0 h

σci
belongs to H.

We now fix a prime ideal q of k outside Π and a non-negative integer i, write the image in G of
the element κ := Frobp

i

q as h0σ
c0 and assume to be given a non-zero element v of V(ψn) that

lies in the kernel of κ− 1.
Then, after fixing an isomorphism V(ψn) ∼= Cap of Cp-vector spaces that gives rise to a morph-
ism ρ : Gk → AutCp(V(ψn)) ∼= GLa(Cp) induced by the action of Gk on V(ψn), the above
computation shows that

ρ(σ)c0m · v = ρ(κ)m · v = ψ−1
n (γc0)m · v = ψ−1

n (γ)c0m · v, (75)

and so ψ−1
n (γ)c0m is an eigenvalue of ρ(σ)c0m. Hence, since ρ(σ) = ν ·A ·ν−1 for some invertible

matrix ν and a matrix A in Jordan normal form, it follows that ρ(σ) has an eigenvalue λ such

that λc0m = ψ−1
n (γ)c0m. Thus, we have λ = ξ · ψ−1

n (γ) for some root of unity ξ ∈ Q×
.

If f ̸= ϖ, then Rn = R and so both λ and ψn(γ), and hence also ξ, are contained in a finite
extension of R that only depends on the eigenvalues of ρ(σ). On the other hand, if f = ϖ and
n is prime to p, then Rn is the ring of integers of a totally ramified extension of degree n of Q
and so the order of any root of unity (such as ξ) in the extension of Q generated by Rn and λ
is bounded independently of n.
In particular, as ρ(σ) has at most a distinct eigenvalues, and the ψn(γ) are distinct as n ranges
over all natural numbers, this argument shows that there exists a natural number n0 that is
independent of q and such that the equality (75) cannot be valid for any n that is prime to p
and greater than n0.
This implies that for any such n, any i ≥ 0 and any q /∈ Π, the kernel of Frobp

i

q − 1 on V(ψn)
must vanish, thereby proving claim (b).

We obtain Theorem (A.5) by applying the theory of higher-rank Euler systems developed in
[BSS19b] to the representations T (ψn). To prepare for this, we first prove two technical results.

(A.8) Lemma. For each natural number n and each field E in Ω(L/k), there exists a natural
map of

V
E-modules

jE,n :
(⋂a

V
E

H1
Iw(OE,Π(E), T )

)
⊗V

E
Rn[GE ]→

⋂a

Rn[GE ]
H1(OE,Π(E), T (ψn)), (76)
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where the tensor product is defined using the ring homomorphism ψE,n,∗ :
V
E → Rn[GE ] that

is induced by the composite of ψn and the diagonal map GEk∞ ↪→ GE ×Gk∞. These maps have
the following properties.

(a) Each map jk,n is injective.

(b) The maps {jE,n}E∈Ω(L/k) induce a natural map (−)ψn : ESa(T ,L) → ESa(T (ψn),L) of
RL-modules.

Proof. For each E in Ω(L/k) we define a complex of R[GE ]-modules by setting

C•
E(T ) = RHomR[GE ](RΓc(OE,Π(E), T ),R[GE ]).

Under hypothesis Hyp(T ), the result of [BSS19b, Lem. 3.11] implies that H0(E, T ) vanishes
and the module H1(E, T ) is R-torsion-free. These facts combine with the general result of
[BS21a, Prop. 2.21] to imply that C•

E(T ) is isomorphic in D(R[GE ]) to a complex of the form
PE → PE , where PE is a free R[GE ]-module of finite rank and the first term is placed in degree
zero. By a standard argument of derived homological algebra (as, for example, in [BH21, Prop.
3.2]), it then follows that the derived limit complex

C•
E∞(T ) := R lim←−

n∈N
C•
En

(T ) (77)

is isomorphic in D(
V
E) to a complex P∞ → P∞, where P∞ is a free

V
E-module of finite rank

(and the first term is placed in degree zero).
Next we note that the homomorphism ψE,n,∗ combines with the general result of [FK06, Prop.
1.6.5] to induce an isomorphism in D(

V
E) of the form[

P∞ ⊗VE
Rn[GE ]→ P∞ ⊗VE

Rn[GE ]
] ∼= C•

E∞(T )⊗LV Rn[GE ] ∼= C•
E(T (ψn)),

and hence also an identification H1(C•
E∞

(T )⊗LVRn[GE ]) ∼= H1(OE,Π(E), T (ψn)). On the other
hand, the complexes (where in the first case the first term is placed in degree zero)

Ca,•E∞
(T ) :=

[∧a
V

E

P∞ → P∞ ⊗VE

∧a−1
V

E

P∞

]
Ca,•E (T (ψn)) := Ca,•E∞

(T )⊗LV
E
Rn[GE ]

are acyclic in degrees less than zero and, moreover, [Sak20, Lem. B.12] implies that there are
canonical isomorphisms

H0(Ca,•E∞
(T )) ∼=

⋂a
V

E

H1
Iw(OE,Π(E), T )

H0(Ca,•E (T (ψn))) ∼=
⋂a

Rn[GE ]
H1(OE,Π(E), T (ψn)).

These facts combine with an explicit analysis of the second page of the spectral sequence of
V
E-modules

Ei,j2 = Tor
V

E
−i (H

j(Ca,•E∞
(T )),Rn[GE ]) =⇒ H i+j(Ca,•E (T (ψn)). (78)

to imply the existence of a homomorphism jE,n of the required sort.
Moreover, if E = k then (78) degenerates on its second page (since the Λ-moduleRn ∼= Λ/(Λfn)
has projective dimension one) to yield a short exact sequence

0→
(⋂a

Λ
H1

Iw(Ok,Π(k), T )
)
⊗Λ Rn →

⋂a

Rn

H1(Ok,Π(k), T (ψn))→ H1(Ca,•k∞(T ))[fn]→ 0,

thereby proving claim (a).
To prove claim (b) we note ESa(T ,L) identifies with the RL-module comprising all elements
of

∏
E∈Ω(L/k)

⋂aV
E
H1

Iw(OE,Π, T ) that satisfy the (Iwasawa-theoretic analogue of the) relation
(72). It is therefore clear that the maps {jE,n}E combine to induce a map of RL-modules

ESa(T ,L)→
∏

E∈Ω(L/k)

⋂a

Rn[GE ]
H1(OE,Π(E), T (ψn)).
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To see that this induces a map (−)ψn of the required sort, it is enough to show its image is
contained in ESa(T (ψn),L). This is true since, for every field E in Ω(L/k), and every place v
of k outside Smin(T (ψn)) ∪ S(E), the image of Pv(T ,Frob−1

v ) in
V
E is sent by ψE,n,∗ to the

element Pv(T , ψn(Frob−1
v ) · Frob−1

v ) = Pv(T (ψn),Frob−1
v ) of Rn[GE ].

Before stating the next result we recall that the global duality theorem implies the existence
of a canonical exact sequence of Λ-modules

0 H1
F∗

can
(Ok,Π, T ∨

k∞(1))∨ H2
Iw(Ok,Π, T )

⊕
v∈Π

H2(kv, Tk∞). (79)

(Since Fcan agrees with the relaxed Selmer structure on Tk∞ (by [MR04, Lem. 5.3.1 (ii)]), this
sequence follows, for example, from the argument of Perrin-Riou in [PR98, Prop. A.3.2].)
The above exact sequence implies H1

F∗
can

(Ok,Π, T ∨
k∞

(1))∨ is a finitely generated Λ-module and
hence that its Λ-torsion submodule has a well-defined characteristic ideal.

(A.9) Lemma. For all sufficiently large n, the following claims are valid:

(a) The (injective) map jk,n constructed in Lemma (A.8) is a pseudo-isomorphism and the
order of coker(jk,n) is bounded independently of n.

(b) If η is any system as in Theorem (A.5), then the component jk,n(ηk∞) of ηψn at k is
non-zero and, in Rn, one has

im(jk,n(ηk∞)) ⊆ Fitt0Rn
(H1

F∗
can

(Ok,Π, T (ψn)∨(1))∨).
In particular, H1

F∗
can

(Ok,Π, T (ψn)∨(1))∨ is finite.

(c) The kernel and cokernel of the natural map (of Rn-modules)

sn : H
1
F∗

can
(Ok,Π, T ∨

k∞(1))∨ ⊗Λ Rn → H1
F∗

can
(Ok,Π, T (ψn)∨(1))∨

are finite and of orders bounded independently of n.

(d) The polynomial fn does not divide the characteristic polynomial of the Λ-torsion submod-
ule of H1

F∗
can

(Ok,Π, T ∨
k∞

(1))∨.

Proof. The proof of Lemma (A.8) (a) shows that the cokernel of jk,n is isomorphic to Q[fn]
with Q := H1(Ca,•k∞(T )). In particular, if n is chosen large enough so that the prime ideal Λfn
is not contained in the support of the Λ-torsion submodule of Q, then Q[fn] is pseudo-null and
so its order is at most the cardinality of the maximal finite Λ-submodule of Q. This proves
claim (a).
Next we note that, since the element ηk∞ is (by assumption) non-zero, and a non-zero element
of a unique factorisation domain can only have finitely many irreducible factors, neither of
the principal ideals that are given by im(ηk∞)∗∗ and the characteristic ideal of the Λ-torsion
submodule of H1

F∗
can

(Ok,Π, T ∨
k∞

(1))∨ can be contained in infinitely many of the ideals Λfn.
In particular, for any large enough n, the polynomial fn does not divide the characteristic
polynomial of the Λ-torsion submodule of H1

F∗
can

(Ok,Π, T ∨
k∞

(1))∨ and, in addition, the element
jk,n(ηk∞) is non-zero. The first of these properties immediately implies the property in claim
(d), whilst the second property implies that the image ηψn of η inside ESa(T (ψn),L) is non-zero.
Now Lemma (A.7) implies that the representation T (ψn) satisfies all the hypotheses (H0)
through (H4) that are listed in [BSS19b, § 3.1.3], whilst T (ψn) tautologically satisfies the hypo-
thesis (Hc

5) in loc. cit. We may therefore apply the general result of [BSS19b, Thm. 3.6 (iii) (c)]
to the non-zero Euler system ηψn to directly obtain the inclusion in claim (b).
Since jk,n(ηk∞) is non-zero, the ideal im(jk,n(ηk∞)) is not the zero ideal and hence of finite
index in Rn. The second assertion of claim (b) then follows upon noting that, since Rn is a
discrete valuation ring, a finitely generated Rn-module M is finite if and only if its Fitting
ideal is of finite index in Rn.
Finally we note that the validity of the property in claim (c) (for sufficiently large n) follows
upon taking Pontryagin dual of the result of Mazur and Rubin in [MR16, Prop. 5.3.14].
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A.3. The proof of Theorem (A.5)

To prove claim (a) of Theorem (A.5) we fix any distinguished linear polynomial f of Λ, for
example we may take f = X. We then let n be a natural number that is large enough to ensure
that all of the claims in Lemma (A.9) are valid with respect to the polynomial fn.
Then, by Lemma (A.9) (b), the Fitting ideal Fitt0Rn

(H1
F∗

can
(Ok,Π, T (ψn)∨(1))∨) contains a non-

zero element and so the (finitely generated)Rn-moduleH1
F∗

can
(Ok,Π, T (ψn)∨(1))∨ is finite. From

the result of Lemma (A.9) (c), it then follows that H1
F∗

can
(Ok,Π, T ∨

k∞
(1))∨ ⊗Λ Rn is finite and

hence, as a consequence of the structure theorem for finitely generated Λ-modules, that the
Λ-module H1

F∗
can

(Ok,Π, T ∨
k∞

(1))∨ is torsion.
This observation directly implies the first assertion of Theorem (A.5) (b) and also combines
with the exact sequence (79), and the fact that no place in Π∩Sfin(k) splits completely in k∞,
to imply that the Λ-module H2

Iw(Ok,Π, T ) is torsion, thereby proving Theorem (A.5) (a).

Before proving the rest of Theorem (A.5) (b), we record two general results that will be used
(the second of which is well-known but we include its proof for lack of a better reference).
We recall that, for any finitely generated module M over a Noetherian ring R the group
Ext1R(M,R) is naturally a module over the endomorphism ring R∗ of R.

(A.10) Lemma. Let R be a Gorenstein ring, M a finitely generated R-module and r a non-
negative integer. If a non-zero element m of

⋂r
RM generates a free R-module, then one has

im(m)∗∗ = Fitt0R∗
(
Ext1R

(
(
⋂r

R
M)/(Rm), R

))∗∗
.

Proof. Since reflexive ideals of R are uniquely determined by their localisations at primes of
height at most one, we may, and will, assume R is a Gorenstein ring of dimension at most one.
In this case the module Ext1R(

⋂r
RM,R) vanishes since the exterior bidual

⋂r
RM is reflexive.

Upon dualising the tautological exact sequence

0 Rm
⋂r

R
M (

⋂r
RM)/(Rm) 0

we therefore obtain an exact commutative diagram(⋂r

R
M

)∗
(Rm)∗ Ext1R

(
(
⋂r
RM)/(Rm), R

)
0

0 im(m) R R/ im(m) 0.

θ 7→θ(m) θ 7→θ(m)

Here the second vertical map is bijective as m generates a free module of rank one, and
the first vertical map is surjective since the present hypotheses on R imply the natural map∧r
RM

∗ → (
⋂r
RM)∗ is surjective (cf. [NSW08, Prop. (5.4.9) (iii)]). Upon applying the Snake

Lemma to the diagram, one therefore finds that the dotted vertical map (that is induced by
the commutativity of the diagram) is an isomorphism. This isomorphism leads directly to the
claimed description of im(m).

(A.11) Lemma. Let M be a finitely generated torsion Λ-module that is pseudo-isomorphic to

EM :=
s⊕
j=1

Λ/(Λg
mj

j ),

where each gj is either ϖ or an irreducible distinguished polynomial and each mj a natural
number. Then, for any irreducible element f of Λ that does not divide charΛ(M), one has

ordp (|M/(fM)|)− ordp(|Mfin|) ≤ ordp (|EM/(fEM )|) ≤ ordp (|M/(fM)|) ,
where Mfin denotes the maximal finite Λ-submodule of M .
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Proof. The existence of a map of Λ-modules from M to EM (or in the reverse direction) that
has finite kernel and cokernel combines with a calculation of Herbrand quotients to show that

|EM [f ]|/|EM/(fEM )| = |M [f ]|/|M/(fM)|.
The claimed inequalities follow from this equality, the obvious inequality |M [f ]| ≤ |Mfin| and
the fact that EM [f ] vanishes as f is coprime to each gj .

Turning now to the proof of Theorem (A.5) (b), we note that, since H2
Iw(Ok,Π, T ) is a torsion

Λ-module, the argument of [BD21, Thm. 3.8 (a)] implies
⋂a

ΛH
1
Iw(Ok,Π, T ) is a free Λ-module

of rank one. Hence, since ηk∞ generates a free Λ-module, the quotient Λ-module

Qη :=
(⋂a

Λ
H1

Iw(Ok,Π, T )
)
/(Ληk∞)

is torsion. Upon applying Lemma (A.10) with M = H1
Iw(Ok,Π, T ), r = a and m = ηk∞ , and

identifying Λ∗ with Λ# (where, as before, # indicates that the Gk∞-action has been inverted
using the involution σ 7→ σ−1), we may therefore deduce that

im(ηk∞)∗∗ = Fitt0Λ#

(
Ext1Λ

(
Qη,Λ

))∗∗
= Fitt0Λ#

(
Q#
η

)∗∗
= Fitt0Λ

(
Qη

)∗∗
= charΛ

(
Qη

)
,

where the second equality follows from [NSW08, Prop. (5.5.13)] and the last from the fact that
Fitt0Λ

(
M)∗∗ = charΛ

(
M) for any finitely generated torsion Λ-module M . The proof of claim

(b) is therefore reduced to the verification of an inclusion of characteristic ideals

charΛ
(
Qη

)
⊆ charΛ(H

1
F∗

can
(Ok,Π, T ∨

k∞(1))∨). (80)

To check this, we fix generating elements zη and zSel of the (principal) Λ-ideals charΛ(Qη) and
charΛ(H

1
F∗

can
(Ok,Π, T ∨

k∞
(1))∨), respectively. We note that zη and zSel can both be factored as

a product of irreducible distinguished polynomials and a power of the uniformiser ϖ of R. In
addition, since we are free to verify (80) after a faithfully flat base change, we may, and will,
assume that all occurring irreducible distinguished polynomials are linear.
In particular, to verify (80), it is now enough for us to fix a factor f of zSel that is equal to
either ϖ or to X + a0 (for some a0 in the maximal ideal of R) and to show that

ordf (zη) ≥ ordf (zSel). (81)

To do this, we let n be a natural number for which all the claims of Lemma (A.9) are valid
with respect to the fixed choice of f . We then choose a pseudo-isomorphism of the form

H1
F∗

can
(Ok,Π, T ∨

k∞(1))∨ →
t⊕
i=1

Λ/(Λfmi)⊕
⊕
j

Λ/(Λgj) (82)

in which t is a non-negative integer, eachmi a natural number and each gj a (possibly reducible)
distinguished polynomial that is independent of n and also, since n validates Lemma (A.9) (d),
coprime to fn.
Then, for each index j and every such n, the quotient module Λ/(Λgj + Λfn) is finite and we
claim that its cardinality is bounded independently of n. To show this, we note that, because
fn is an irreducible distinguished polynomial, the Weierstrass Preparation Theorem gives an
isomorphism Λ/(Λgj+Λfn) ∼= Rn/(Rngj(αn)). It is then enough to note that the Rn-valuation
of gj(αn) is bounded since, for all large enough n, the strong triangle inequality implies that

ordRn(gj(αn)) =

{
ordR(gj(a0)) if f = X + a0,

ordRn(α
deg(gj)
n ) = deg(gj) if f = ϖ.

This observation implies the existence of constants κ1 and κ2 that are independent of n and
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such that

ordp
(∣∣H1

F∗
can

(Ok,Π, T (ψn)∨(1))∨
∣∣) = ordp

(∣∣H1
F∗

can
(Ok,Π, T ∨

k∞(1))∨ ⊗Λ Rn
∣∣)+ κ1 (83)

≥ ordp
( t∏
i=1

|Λ/(Λfmi + Λfn)|
)
+ κ2

=

t∑
i=1

ordp
(
|Rn/(Rnf(αn)mi)|

)
+ κ2

= n ·
t∑
i=1

mi + κ2

= n · ordf (zSel) + κ2,

where the first equality follows from an application of Lemma (A.9) (c), the inequality from the
second inequality of Lemma (A.11) and the final equality from the pseudo-isomorphism (82)
and choice of element zSel.
In a similar way, after fixing a pseudo-isomorphism of the form

Qη →
t′⊕
i=1

Λ⧸(Λf li)⊕
⊕
j

Λ⧸(Λhj), (84)

in which t′ is a non-negative integer, each li a natural number and each hj a (possibly reducible)
polynomial that is both independent of n and coprime to fn, one finds that there exist constants
κ3 and κ4 that are independent of n and such that

ordp

(∣∣(⋂a

Rn

H1(Ok,Π, T (ψn))
)
/(Rnjk,n(ηk∞))

∣∣) (85)

= ordp
(∣∣Qη ⊗Λ Rn

∣∣)+ κ3

≤ ordp
( t′∑
i=1

∣∣Λ/(Λf li + Λfn)
∣∣)+ κ4

= n ·
t′∑
i=1

li + κ4

= n · ordf (zη) + κ4.

Here the first equality follows from Lemma (A.9) (a), the inequality from the first inequality of
Lemma (A.11), and the final equality from the pseudo-isomorphism (84) and choice of zη.
Now, Lemma (A.9) (b) combines with Lemma (A.10) to imply an inclusion

Fitt0Rn

((⋂a

Rn

H1(Ok,Π, T (ψn))
)
/
(
Rnjk,n(ηk∞)

))
⊆ Fitt0Rn

(H1
F∗

can
(Ok,Π, T (ψn)∨(1))∨).

SinceRn is a discrete valuation ring with finite residue field, this inclusion is therefore equivalent
to an inequality∣∣∣(⋂a

Rn

H1(Ok,Π, T (ψn))
)
/
(
Rnjk,n(ηk∞)

)∣∣∣ ≥ ∣∣∣H1
F∗

can
(Ok,Π, T (ψn)∨(1))∨

∣∣∣ .
Upon combining this inequality with those of (83) and (85), we derive an inequality

n · ordf (zη) + κ4 ≥ n · ordf (zSel) + κ2.

By taking n sufficiently large, this then implies the inequality (81) and hence completes the
proof of Theorem (A.5).
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