Dirichlet L-series at s = 0 and the scarcity of Euler systems
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We study Euler systems for G,,, over a number field k. Motivated by a distribution-
theoretic idea of Coleman, we formulate a conjecture regarding the existence of such
systems that is elementary to state and yet strictly finer than Kato’s equivariant
Tamagawa number conjecture for Dirichlet L-series at s = 0. To investigate the
conjecture, we develop an abstract theory of ‘Euler limits’ and, in particular, prove
the existence of canonical ‘restriction’” and ‘localisation’ sequences in this theory.
By using this approach we obtain a variety of new results, ranging from a proof,
modulo standard p-vanishing hypotheses, of our central conjecture in the case k
is Q or imaginary quadratic to a proof of the ‘minus part’ of Kato’s conjecture in
the case k is totally real. In proving these results, we also show that higher-rank
Euler systems for a wide class of p-adic representations control the structure of
Iwasawa-theoretic Selmer groups in the manner predicted by ‘main conjectures’.
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1. Introduction

The mysterious link between L-series and arithmetic, manifestations of which include the ana-
lytic class number formula and the Conjecture of Birch and Swinnerton-Dyer, is a key theme
in modern arithmetic geometry. The theory of Euler systems has, since the 1980s, been crucial
to investigations of this link, though finding concrete examples of such systems has proved to
be a difficult problem. In the present article, we consider in detail the apparent scarcity of
Euler systems in the setting of the multiplicative group G,, over number fields, and find that
this scarcity itself, when made precise, has important consequences regarding the formulation
and study of special value conjectures.

To help motivate our approach we recall that, in 1989, Coleman conjectured a striking, and
intrinsically global, distribution-theoretic analogue of the fact that norm-compatible families
of units in towers of local cyclotomic fields arise by evaluating a power series at roots of unity,
as had been proved in [Col79]. Hitherto, however, a resolution of this conjecture has seemed
out of reach, with comparatively little supporting evidence and no proof strategy apparent (see
[Seo01] or [BS21b] for a discussion of the history).

To generalise Coleman’s idea, we note that, after suitable reinterpretation, his conjecture im-
plies that every Euler system (of rank one) for G,, over Q should, modulo certain torsion
considerations, arise as a product of Galois-conjugates of the system of cyclotomic units. We
then further note that, for any number field k, the collection of Euler systems of any given
rank for Gy, over k is a module over the algebra Ry, = lim . Z|Gal(E/k)], where E runs over
all finite abelian extensions of k (and the transition maps in the inverse limit are the natural
projection maps). Then, roughly speaking, our central conjecture will assert that every Euler
system over k that satisfies certain natural, and explicit, auxiliary conditions should be an
Ri-multiple of the ‘Rubin-Stark system’ ci° that is defined in [Rub96]. This straightforward
prediction (which, in the sequel, we refer to as the ‘Scarcity Conjecture’) is stated precisely as
Conjecture (2.24) and lies at the centre of our approach.

At this point, it is important to note Ry is neither Noetherian nor compact and hence that
various standard algebraic techniques cannot be applied to the study of these questions. To
overcome such difficulties, we develop an abstract theory of ‘Euler limits’ that simultaneously
incorporates, amongst other things, the theories of inverse limits, Euler systems and Perrin-
Riou functionals. This general theory is then the main theoretical advance that we make in this
article and can be expected to have applications beyond those that we discuss here. In particu-
lar, the theory concerns systems that are defined integrally (that is, over Z) rather than either
p-adically (for a fixed prime p) or adelically, and hence crucially incorporates techniques from
both classical, and (what one might call) ‘horizontal’, Iwasawa theory. For instance, these dif-
fering techniques can be combined with a detailed analysis of the classical embedding problem
for number fields to prove the existence of canonical p-adic ‘restriction’ and global ‘localisation’
exact sequences for modules arising from Euler limits, and also to carefully analyse completion
functors in this setting.

These general results can then be used to reduce the classification of Euler systems to a family
of p-primary problems (for all p) and thereby to prove, under natural hypotheses, that the
Scarcity Conjecture is implied by the sort of divisibilities in ‘Iwasawa Main Conjecture’-type
statements that Euler systems are already expected to satisfy (and can often be verified using
existing techniques). This approach therefore provides both a conceptual underpinning of the
Scarcity Conjecture and also an effective means of obtaining strong supporting evidence, such
as the following result concerning Fuler systems of rank one.

Theorem A. After inverting 2 and all primes that ramify in k, and assuming standard p-
vanishing hypotheses, the Scarcity Conjecture is valid if k is either Q or imaginary quadratic.

This result is later stated precisely as Theorem (6.12), whilst concrete evidence in support of
the Scarcity Conjecture for Euler systems of rank greater than one can be found, for example,



in Theorems (5.9) and (6.16).

With some additional effort, the methods developed here will allow one to prove the result of
Theorem A without inverting any rational primes. We also stress that, whilst its proof relies
on key properties of cyclotomic and elliptic units, for the reasons given above the content of
Theorem A goes far beyond what has previously been shown in these classical settings. For
example, the argument used to prove it also leads to a proof of Coleman’s original distribution-
theoretic conjecture and, beyond that, to an explicit characterisation of all of the distributions
that are considered by Coleman (many of which are not cyclotomic in nature). For brevity,
however, the treatment of these important issues concerning Theorem A is deferred to the
supplementary article [Bul+23].

In the present article, we instead choose to focus on the link between our study of Euler systems
and the ‘equivariant’ strengthening of the Tamagawa Number Conjecture of Bloch and Kato
[BK90] that is formulated by Kato in [Kat93a; Kat93b] (where the conjecture is referred to as
the ‘generalised Iwasawa Main Conjecture’). More precisely, our approach is related to Kato’s
conjecture in the case of leading terms at zero of Dirichlet L-series and, for ease, we refer to
this as ‘eTNC(G,,,)’. We recall, in particular, that eTNC(G,,) is known to imply a wide range
of previously formulated refinements of Stark’s Conjecture (cf. Remark (3.3)).

To explain this link, we recall that, aside from the analytically-defined system cgs, there
also exists (unconditionally) a family of Galois-cohomological Euler systems ci"h for G, over
k (as constructed by Sano and the second author in [BS2la]). Then, roughly speaking, a

special case of the Scarcity Conjecture implies that c,‘;‘)h = A C?S for an element A of Ry,
the analytic class number formula implies that any such element A belongs to R, and the

resulting relation between CES and cz"h implies eTNC(Gy,) over all abelian extensions of k.

In this way, then, eTNC(G,,) is seen to be a direct consequence of the analytic class number
formula and the scarcity of Euler systems, thereby providing a straightforward philosophy to
underpin eTNC(G,,,). To the best of the authors’ knowledge, excluding the basic analogy to
Deligne’s proof of the Weil Conjectures for varieties over function fields, no heuristic of any
sort has previously been available for Kato’s conjecture.

In fact, it turns out that the Scarcity Conjecture is strictly finer than eTNC(G,,) and also
encodes precise information about the structure of the Selmer module of G, over the abelian
closure of k (for details see [Bul+23]). Fortunately, however, the theory of Euler limits is flexible
enough to provide an effective strategy for proving eTNC(G,,,) without requiring one to first
prove the Scarcity Conjecture. The resulting approach then has a significant advantage over
previous strategies in this context since it avoids delicate issues relating to Iwasawa-theoretic
descent that have been key obstacles to progress on eTNC(Gy,).

The point here is that, for any given prime p, the methods of p-adic Iwasawa theory involve
passing to the limit over Z,-power extensions of k and therefore primarily concern extensions
that ramify at p-adic places. Hence, when considering extensions of k that are unramified at
any such places, this approach can introduce undesired Euler factors that are not invertible (in
the presence of ‘trivial zeroes’) and so cannot easily be removed. Whilst previous strategies
to deal with this issue have relied on the deep conjectures of Gross—Kuz’'min, of Leopoldt and
of Mazur-Rubin and Sano, the validity of which remain restricted to a small number of well-
known cases, our theory completely avoids any reliance on the first two of these conjectures
and only depends on the third conjecture in the (much easier) setting of tamely ramified cyclic
extensions since the Euler systems we study are essentially characterised by their values on
extensions that ramify at all p-adic places.

In this way we can therefore directly leverage existing techniques to obtain concrete new evid-
ence for Kato’s conjecture such as in the following result. Before stating this result, we recall
that eTNC(G,,) predicts, for each finite abelian extension of number fields K/k, an equality
of graded invertible Z[Gal(K/k)]-modules (cf. Remark (3.3) (a)).



Theorem B. Fiz a finite abelian extension of number fields K/k and set G = Gal(K/k).
Then eTNC(Gy,) for K/k is valid in both of the following cases:

(a) k is totally real, K is CM and one extends scalars from Z|G] to Z[1/2][G](1 — T), where
T denotes the element of G corresponding with complex conjugation;

(b) k is imaginary quadratic and such that for every finite abelian extension (and every prime)
a certain Iwasawa p-invariant vanishes, and one inverts all prime divisors of the number
of roots of unity in k.

Claim (a) of this result verifies what is often referred to as the ‘minus part’ eTNC(G,,)
of eTNC(G,,), and our approach reduces its proof to a statement in Iwasawa theory that
is easily seen to follow from the ‘Strong Brumer—Stark Conjecture’ recently proved (outside
2) by Dasgupta and Kakde in [DK23|. In particular, in this setting the horizontal Iwasawa
theory of Euler limits allows us, via Theorem (4.10), to avoid technical hypotheses used in
other attempts to derive eTNC(G,,)~ from the seminal results of [DK23], either directly as in
Nickel [Nic21] (though the deduction in loc. cit. of the p-part of eTNC(G,,)~ for extensions
that are tamely ramified at p does play a role in our argument) or by strengthening relevant
aspects of the arguments in [DK23] as in Atsuta and Kataoka [AK21b], whilst at the same
time avoiding difficult hypotheses related to the Gross—Kuz’min Conjecture that arose in earlier
attempts to use Iwasawa theory in this context. The result of claim (a) also itself has interesting
consequences: for example, it implies the validity, after inverting 2, of the ‘integral Gross—Stark
Conjecture’ from [Gro88] (cf. Remark (3.3) (b)) and this fact has recently been used by Honnor
to remove, up to 2-power torsion, the ‘root of unity ambiguity’ in the p-adic analytic formula
for Brumer—Stark units that is proved by Dasgupta and Kakde in [DK21, Th. 1.6] (for details
see [Hon22]). In addition, claim (a) also combines with work of Atsuta and Kataoka [AK21a]
to imply an explicit description for the Fitting ideals of the minus parts of class groups in the
relevant cases.

Claim (b) of Theorem B will be made precise in §6.3.1 and strongly improves upon previous
results towards eTNC(G,,,) over imaginary quadratic fields. In addition, in recent work of Hofer
and the first author [BH21], it is shown that the hypothesis on p-invariants that occurs in this
result, and which Iwasawa has conjectured to always hold, can sometimes be avoided. However,
this observation relies on techniques that seem to be restricted to the setting of imaginary
quadratic fields, whilst the approach used here appears, in principle, to be completely general
and thereby applicable to many different contexts.

The arguments proving Theorem B also lead us, at the same time, to a new proof of e TNC(G,,,)
for K/k in the case that k = Q and one extends scalars from Z[G] to Z[1/2][G]. This result
was first proved as the main result of Greither and the second author in [BG03], but the proof
obtained here is much simpler since it avoids the extensive, and delicate, descent calculations
in Iwasawa theory that are key to the argument of loc. cit.

Going beyond special cases, our approach provides an effective strategy for deriving the validity
of the Scarcity Conjecture over an arbitrary number field &, and hence also of eTNC(G,,) and
the numerous conjectures it implies, from a single, explicit, ‘integrality’ prediction of Rubin
[Rub96] concerning the system CES (that is usually referred to as the ‘Rubin-Stark Conjecture’).
In addition, at this stage, the theory of higher-rank Euler, Kolyvagin and Stark systems de-
veloped by Sakamoto, Sano and the second author in [BSS19a] already allows us to partially
achieve this goal, and thereby to obtain strong evidence for the Scarcity Conjecture over any k.
In particular, as a key aspect of these arguments we prove (in an appendix) that higher-rank
Euler systems for a wide class of p-adic representations control the structure of Selmer groups
in precisely the manner predicted by ‘Main Conjectures’ in this setting. In fact, to complete
the deduction of the Scarcity Conjecture from the Rubin—Stark Conjecture, it would suffice
to extend the latter result to an ‘equivariant’ setting in just the same degree of generality as
has already been established for Euler systems of rank one in [Rub00], and we will discuss this
problem elsewhere. We note, however, that the Rubin—Stark Conjecture itself is of a differ-



ent nature and that its verification may well require both an explicit construction of CES by
geometric means and the proof of an appropriate explicit reciprocity law, as has already been
achieved in the case kK = Q by Urban in [Urb20].

In brief, the main contents of this article are as follows. In §2 we define, for each non-negative
rank, several special families of Euler systems over k, prove some important preliminary results
and then formulate the Scarcity Conjecture. In §3 we establish the precise link between the
Scarcity Conjecture and eTNC(G,,). In §4 we introduce an abstract theory of ‘Euler limits’
and prove key results in this theory. In §5 we prove a ‘Uniformisation Theorem’ for Euler
systems over k that are valued in a field, combine this with general results concerning Euler
limits to derive explicit criteria for the validity of the Scarcity Conjecture and of eTNC(G,,)
and finally use higher-rank Kolyvagin systems to provide evidence for these criteria. In §6
we combine criteria established in §5 with several existing results to obtain further evidence
in support of the Scarcity Conjecture and also prove precise versions of Theorems A and B.
Finally, in an appendix we prove new results concerning the ‘Iwasawa Main Conjecture’ for
p-adic representations over arbitrary number fields.

For the reader’s convenience, we end this section by specifying some general notation that
will be used throughout the article. Given a commutative ring R, an R-module M and an
integer r > 0, we write /\'; M for the rth_exterior power over R of M. Given a homomorphism
f: M — N of R-modules we write f(") for the induced map ANr M — ANr N. Except in cases
of ambiguity we will often abuse notation and simply refer to this map as f.

We write M* := Homp(M, R) for the R-linear dual of M and, if p denotes a prime ideal of R,
then we let M, be the localisation of M at p.

For an abelian group A we denote by Ay, its torsion-subgroup and by Ay = A/ At its torsion-
free quotient. The Pontryagin dual of A will be denoted by AY = Homy(A, Q/Z). If there is
no confusion possible, we often shorten the functor (—) ®z A to just (=) - A (or even (—)A)
and, if A is also a Zj,-module, similarly for the functor (—) ®z, A. If A is finite, we denote

by A= Homy(A, C*) its character group and write 14 for the trivial character, and for any
X € A we write ey for the primitive idempotent [A|™'Y" _, x(c)o™" of C[A]. Furthermore,
N4 =D ,ca0 € Z[A] denotes the norm element of A.

The duals M* and MV of a Z[A]-module M will in general be endowed with the contragredient
A-action.

Finally, for any finite set S of prime numbers, we often use the subring of Q defined by

Zs = Z[l/p |pe S]
(so that Zg = Z).
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2. Euler systems for G,,

For any number field E we write Soo(E) and Spn(E) for the sets of archimedean and finite
(non-archimedean) places of E respectively, and S,(E) for the subset of S, (E) comprising all
places that lie above a rational prime p. Given an extension F'/E we write Syam (F/E) for the
places of E that ramify in F.

If S is a set of places of E, we denote by SF the set of places of F' that lie above those contained
in S. We will however omit the explicit reference to the field in case it is clear from the context.
For example, Op s will denote the ring of (Sp N San(F'))-integers of F. We also define Yr g to
be the free abelian group on Sr and write Xr g for the subgroup thereof comprising elements
whose coefficients sum to zero.

For any finite place v of E we write ord,: E* — Z for the normalised valuation at v and Nv
for its absolute norm |Og/p,|, where p, is the ideal of O corresponding to v. We also write
E(m) for the (narrow) ray class field of a given modulus m of E.

If F/E is a Galois extension and v is a finite place of E that is unramified in F', then we write
Frob, for the arithmetic Frobenius of v in Gal(F'/E). We recall that an archimedean place of
E is said to ‘ramify’ in F' if its decomposition group is non-trivial (and hence has order two);
for each archimedean place v of E that is unramified (that is, does not ramify) in F', we will
therefore write Frob, for the trivial element of Gal(F'/E).

2.1. Multi-rank Euler systems
2.1.1. Abelian extensions

We fix an algebraic closure Q of Q and refer to finite extensions of Q in Q as ‘number fields’.
We then fix a number field k and for any Galois extension K of k in Q set

Gk = Gal(K/k) and S(K) := Siam(K/E).
We also write K for the maximal abelian extension of k in Q and
Q= Q(k)

for the set of finite extensions of k in K that are ramified at at least one finite place (so that
S(K) € Suol(k):

A ‘modulus’ of k is a formal product m of places of k and gives rise to an associated ray class
field extension k(m) of k of conductor m. The extension k(m)/k is finite, abelian and such that
S(k(m)) is contained in the set of places that divide m. In particular, the ray classfield k(1) of
conductor equal to the empty product of places is the Hilbert classfield of k.

For a number field F, we write ug for the Z-torsion subgroup of E*. For a natural number
M we write

par = {z € Q" ™ =1}
for the group of roots of unity in Q of order dividing M.

The following result records an observation of Rubin concerning ray classfields that will be
useful in the sequel.

(2.1) Lemma. Fiz a natural number M and a finite place q of k that does not divide M. Then
the ray class field k(q) has the following properties.

(i) S(k(a)) € {a} and so S(k(q)) N S (k) = 2.

(i) The inertia degree of q in k(q) is equal to [k(q) : k(1)] and is divisible by M if and only
if q splits completely in k(unr, (O;)YM).

Proof. Claim (i) and the first assertion in claim (ii) are clear. The second assertion in claim
(ii) is proved by Rubin in [Rub00, Lem. 4.1.2] but, for completeness, we give the argument.



Class field theory identifies the inertia subgroup Gal(k(q)/k(1)) of q in Gy q) with the cokernel
of the natural map 6 : O — (O/q)*. Hence, if M divides [k(q) : k(1)], then M divides
[(O; /9)*| = Ng — 1 and so q splits completely in k(gar).

In addition, any such q splits completely in k(uar, ((’);)1/ MY if and only if every element of O}
is an M-th power in the completion kq of k at q. Then, since q does not divide M, Hensel’s
Lemma implies that this last condition is satisfied if and only if every element of im(6,) is an
M-th power in the cyclic group (O/q)*, or equivalently the order of cok(fy) is divisible by
M. This proves claim (ii). O

2.1.2. Euler systems

For each field K in © we write Vi for the set S (k) \ S(K) of archimedean places of k that
split completely in K and set

v, if K # k,
T 8(B) — 1, it K = k.

We write P(Sx(k)) for the power set of So (k) and INg for the set of non-negative integers.

(2.2) Definition. A rank function (or simply a rank) for k is a function r: Q — Ny that
factors through the function Q — P(Sx(k)) sending each K to Vi (so that v(K) = r(K') if
Vi = Vi ). The maximal rank function ry.y for k is the function K — rk.

The motivation for the terminology ‘maximal’ used above will become apparent in Lemma
(2.6) (b) below. In addition, for any given field k, we will usually identify a non-negative
integer r with the (constant) rank function that sends each K in ) to r.

Finally, for any pair of fields E, F' € Q) with F C F, any non-negative integer s, and any field
Q, we write

s .o.N° X CA° x
Npyp: Q /\Z[gp] OF,S(F) =9 Az[gE] OE’,S(F)
for the homomorphism of Q[Gr|-modules induced by the field-theoretic norm Ng/p: F* — E*.

(2.3) Definition. Let r be a rank function for k and Q a field. A Q-rational Euler system
for k of rank r is a collection of elements

r(E)
CALE | AV AVSC/ )
EeQ
that satisfy the following ‘Euler system distribution relations’: for every pair of fields E and F
in Q with E C F, there is, in the graded module @3 (Q /\ZZ[QE] O S(F)), an equality
r(F _
N (er) = ( I « —Frobvl)>cE. (1)
veS(F)\S(E)
We write EST(Q) for the Q[Gk]-module of Q-rational Euler systems for k of rank v. If v is
the mazimal rank function Tmax, then we abbreviate ES}(Q) to ES,(Q).

(2.4) Remark. If any place v in S(F) \ S(F) is archimedean, then v splits completely in E
and so the corresponding Euler factor 1 —Frob,, Lin the equality (1) is 0. In this case, therefore,
one has NTF(/? (cr) =0.

In the sequel it will often be useful to consider certain ‘projections’ of an Euler system to
suitable subsets of ). More precisely, for any subset X C 2, we write ESZ’X(Q) for the image
of ES}(Q) under the natural projection map

X . r(E) X r(E) %
o - H Q- Az[gE} OE:S(E) - H Q- /\Z[QE] OE,S(E)'
EcQ EeXx



(2.5) Remark. For a subset V of P(Sx(k)), we write QY (k) for the subset of (k) comprising
all fields K such that Vi € V. If V = {V} for some subset V' C S, (k), then we abbreviate
QY (k) to QV (k) and, for the set X = QY (k), we shorten all adornments X (as, for example,
for the map o% defined above) to V.

To end this subsection, we record an important first consequence of the Euler system relations.

For any field K € Q(k), we abbreviate the trivial character 1g, of Gx to 1x. For any finite
set of places II of k we set

. v € (ITUSx(k)) | x(Gro) =1 if ¥ # 1k,

TH(X) — dlmc(eXCOIx(H) — H ( OO( )) ‘ ( ,U) }| ‘ (2)

W0 S () — 1 if X = 1,

where G, C G denotes the decomposition group at the place v. We then define Tx to be

the subset of G comprising all characters x for which one has rg)(x) = rk. In particular,

since Tk is a union of orbits of the natural action of Aut(C) on é;;, we obtain an idempotent

of Q[Gk] by setting
eK = Z €y (3)

X€T K
where, for each x, we write e, for the primitive idempotent |Gy |~ degK x(g71)g of C[Gk].

(2.6) Lemma. If c = (cg)r € ESL(Q) is an Euler system for k with coefficients in a subfield
Q of C, then for all fields E € Q) the following claims are valid.

(a) (1 —eg)-cg=0.
(b) If r(E) > rg, then cg = 0.

Proof. Let x € Q/E and write E for the subfield of £ cut out by x. Consider the injective map

CatE B [E:E]' a0 ifrg > 1,
VE/E, Q/\z[gExl O stm) 7 @ N\gigy Orsimy @+ {

NGal(E/EX)a if e = 0.
We also remark that N9, /, agrees with the natural restriction map Q[Gg] — Q[FE,]. We then
have

[E : EX] "ExCE = €x- NGal(E/Ex) "CE = eX(VE/EX © N;(;EE)X)(CE)

and so it suffices to prove that eXNgﬁE)X (cg) = 0 whenever x & Yg.

To do this, we first consider the case that x # 1g. Let [ be a large-enough odd prime number
such that £ Nk(y;) = k. By Cebotarev’s Density Theorem we may then choose a p € Sgy (k) \
S(E) that has full decomposition group in FE, and splits completely in k(gy, (0. By
Lemma (2.1) the ray class field F' := k(p) is then a non-trivial extension of the Hilbert class
field of k. It follows that F', and hence also E, F', is a ramified extenison of k, which implies
that the value cg, r is well-defined. We also note that () = r(EF). The Euler systems

distribution relations now imply that

_ E E _ E
(1 — Frob, ') - N’“E(/gx(c;;) = N’“E(F/)EX(CEF) = ( I (1 —Frob, 1)) 'NE(X}/EX(CEXF)-
veS(E)\S(Ey)

If x ¢ Tg, then there exists a place v € S(FE) \ S(Fy) such that y(Frob,') = 1, hence e,
annihilates the above Euler product. On the other hand, 1 — x(Frob, 1) #£ 0 because y # 1g
and Froby, generates Gg, , so we conclude that eXNE(ﬁE)X (cg) = 0, as required to prove claim (a)
for non-trivial characters.

To deal with the trivial character, we note that 1z € Y if and only if |S(E)U S« (k)| =rg+1
or, equivalently (since rg < |Sx(k)|), |S(E)| = 1. Assume this condition is not satisfied. Then
we may factor the conductor of E as pm, where m is a non-trivial modulus and p is a (finite or
archimedean) place. It is enough to prove Nzgﬂ) /k(ck(mp)) = 0 and this follows from

r(E) _ NT(E) -1 _
Nk(mp)/k(ck(mp)) = NZ(m)/k((l — Frob, ey (m)) = 0.



Turning now to the proof of claim (b), we observe that by (2) we have

exCE € /\ €G] eXC(’)ES(E) =0

whenever y is contained in Y g and r(E) > rg. Since egcg = cg by claim (a), this shows that
cg = 0, as desired. ]

2.2. Special families

For the purpose of arithmetic applications an Euler system must be ‘integral’ in a suitable sense.
However, defining a precise notion of integrality for higher-rank systems is a delicate task. In
this subsection we use exterior biduals and T-modification, pioneered by Rubin [Rub96] and
Gross [Gro88], respectively, to address this question. We then introduce certain special families
of such systems that will play an important role in our theory.

If R is a commutative Noetherian ring, then for any R-module M we write M* = Hompg(M, R)
for its dual. We recall that, for each non-negative integer s, the s-th exterior power bidual of

M is defined to be the module
MM = (A7)

We note that if R = Z[A] for a finite abelian group A, then () M coincides with the lattice
first introduced by Rubin in [Rub96, § 2] (cf. [BS21a, Rk. A.9]).

2.2.1. Rubin lattices

For a finite abelian extension K of k we write t@%d for the collection of non-empty finite sets
of places of k that are disjoint from S(K)U Sx (k) and contain no place that divides |ux|. We
refer to elements of 33%1 as ‘admissible sets for K’. For any such T in @?g it is easy to check

that the group
OIX(,S(K),T
of ‘T-modified S(K)-units’ of K is a finite index subgroup of O S(K) that is Z-torsion free.

For T in ,@%d we set

={ue (’);((’S(K) |lu=1 mod Tk}

5T = 5T,K = H(l —Nv - FI‘Ob;l) S Z[QK],
veT
and then, for any integer s > 0, define a Gg-submodule of Q /\S’Z[gK] OIX{ S(K) by setting

{a € Q/\ Z0x] KS { ot (a) € ﬂ;[gld 027S(K)7T for all T € sz}d}

If s = rg, then we will suppress the superscript rx in the notation.
The argument of [Tat84, Ch. IV, Lem. 1.1] implies that Anngg,j(px) is generated over Z by
the set {07k | T € 2%}, By combining this fact together with the defining conditions of £5,
one deduces that
S
Anngg(nk) - L% C ﬂZ[gK] Ok s(x)- (4)

In particular, since ﬂSZ[gK] Ok, s(x) is finitely generated and Anngg,(tx) contains |ugl, it
follows that £7 is finitely generated as a Z[Gx]-module.

(2.7) Remark. If s < 1, then the result of [Tat84, Ch. IV, Prop. 1.2] implies that the inclusion
(4) uniquely characterises £3-. In other words, in this case, an element a of Q /\SZ[QK} (’)[X(, S(K)

belongs to £3 if and only if Anng g, ((uk)-a C ﬂSZ[gK} O S(K)" Similarly, if p is a prime such
that px ®z Z, is Gi-cohomologically trivial, then the arguments of Popescu in [Pop02, Thm.
5.5.1(3)] show that, for any s > 0, an element a of Q, /\SZ[QK] Ox () belongs to Z,L%, if and

only if Anng, g, (ux ®z Zyp) - a C HSZP[QK (2,0% S(K))



In general, the inclusion (4) allows one to explicitly relate £3 to the lattices defined by Popescu
in [Pop02, Def. 2.1.1]. To be more precise, setting

U?(bs ={ue 0} K) ‘ K(ul/“”(‘)/k is abelian },
one finds that an element a of Q A7g, OK s(x) satisfies Anngg, (1K) - a € Nz, (@)t ()
if and only if one has |ux|- f(a) € (U?(bS(K))** for all f € /\Z[QK](OIX(,S(K))*‘

(2.8) Remark. The explicit description of the modules Anngg, (k) that is given above has
the following useful consequence: for any finite abelian extensions K and K’ of k with K C K’,
the homomorphism Anngg, ,(1k') — Anngg,(px) that is induced by the restriction map
Z[Gk'| — Z[GKk] is surjective (cf. [Bur+23, Lem. 3.9]).

The following result establishes several useful properties of the lattices £%.

(2.9) Lemma. Fiz a finite abelian extension E of k with K C E and consider the injection

_ s s [E: K]'"%a if s > 0,
VE/K* Q/\Z[QK] O;(,S(E) - Q/\Z[g (E) ar {

Neae/K)a if s =0.
Then the following claims are valid.
(a) vg/i restricts to an injection of Gi-modules from £ to (£3,)GallE/K),
(b) the composite VE/K © N}*’E/K coincides with multiplication by Nga(g/ k)
c) for every non-zero element a € £35. there exists a finite set N of integers, depending only
K
on a, such that vg, K (a) is not divisible in £3, by any integer outside N,

(d) vk induces an isomorphism || " /\SZ(OkX,S(E))** >~ (£5)97

Proof. To prove claim (a) we must show that for each a in £ and each T in 22! one has
orve/k(a) € Nzg, Ok s(p) T Since S(K) C S(E) and pg C pug, one has 23 C 23, In

addition, for each T in @%d one has that O

E,S(K),T is Z-torsion free and hence reflexive. By

Lemma (2.10) below we therefore have that
S
ve/k(0xT0) = 0pTvE K (0) € ﬂZ[gE] O% ey
as required to prove claim (a).

Claim (b) is straightforward to check from the definitions (see also [BKS16, Rk. 4.14]).

To prove claim (c), let a € £ be an element with the property that vy x(a) = N - x for some
z € £5. Then b := I/E/K( z) is an element of Q Az g, O s(x) and we now claim that o7b

belongs to mZ[gK] OK,S(K), for every set T in &7

Gal(E/K)

If T belongs to 23, then dr pr € (ﬂSZ[gE ES(E) ) and so Lemma (2.10) implies

that o7 xb € mZ[gK] OK S(E)T Moreover, since the cokernel of the inclusion OK s

OX7 S(E).T is torsion-free, the natural restriction map (O OIX< S, r)* is surjective

and so one has

ﬂ;[gfd Olkestor = <Q /\SZ[QK] Ofxﬂs(m) n (ﬂsz[gK] OIXQS(E),T)

by the argument of [BKS16, Lem. 4.7 (ii)]. Thus, b is contained in (g, O s(x),r and hence
satisfies the defining condition of £, at all sets T" in @%d. Since Annz[gK](,uK) is generated

K,S(E),T) (

by o7,k with T ranging over y%d, we deduce that b belongs to the lattice

S = {ee Qg Oksuo | Annzigy (uxe) - € ﬂZ[g | Orsto )

The equation a = N - b therefore shows that a is divisible by N in 2%. Now, Ej( is a finitely
generated Z-module and so the claim follows by taking A to be the finite set of integers that
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a is divisible by in E%

To prove claim (d) we take a € (£5)9% and set b := yg/lk (a), which is a well-defined element of

QA7 OkX’S(E) because v, defines an isomorphism Q A7, (’),:S(E) >~ (Q /\S‘Z[gE} OES(E))QE

Given any T € @%d, one has that 7 gpa belongs to (ﬂSZ[gE] OgyS(E%T)gE and hence, by Lemma
(2.10), the element 07 b is contained in A7, (’)kXS(E) o In particular, |ula € /\SZ(O]:S(E))**
Conversely, if |ux|a € /\SZ(OkX,s(E))**v then the argument of [Pop02, Thm. 5.5.1 (3)] shows that
dra € Ny, OkX’S(E),T for all T € 284, As in the proof of (a), we then conclude that vy (a)

belongs to (£5)9%, as required. O
The following algebraic result is an analogue of [BS21a, Prop. A.4].

(2.10) Lemma. Let G be a finite abelian group and M a finitely generated Z|G)-module. Then,
for each subgroup H C G, there exists an isomorphism of Z|G/H|-modules

S ~ S H
sx\H =
et = (Mg ™)
that is induced by the assignment N%.a — Nya on Q /\SZ[G/H] MHE - Q /\SZ[G] M.

Proof. We may assume that s > 0. Choose a free presentation Fy — Fy — M* — 0 of the
linear dual M* of M, where Fyy and F) are finitely generated free Z[G]-modules. Dualising this
presentation then gives an exact sequence

0 M** F Fy.

Upon applying the general result of Sakamoto [Sak20, Lem. B.12] to both this sequence and
its H-invariants, we therefore obtain a composite isomorphism of the required form

ﬂSZ[CT‘/H]UW<)H = ker { /\Sz[c/m (F" = (F5)" @zi/m AZI;/H] (P}
= ker { ( /\SZ[G] FS)H - (FS ©z(a) /\z_[;] FI)H}
s H
= (mZ[G] M) ’

where the second isomorphism is induced by the isomorphism Az, (£5 =" (/\SZ[G] FS)H
that sends each N%;a to Nya. ]

(2.11) Remark. Let S be a finite set of prime numbers. Then the proof of Lemma (2.9)
shows that all of the stated claims remain valid for the Zs[Gx|-lattices Zs£j if in claim (c)
one restricts to integers outside A/ that are coprime to S.

2.2.2. Integrality restrictions

Let R be a subring of R and X a subset of (k). We now introduce several R[Gx]-submodules
of ESZ’X(R) that play an important role in our theory (and are in part motivated by the
properties of the ‘Rubin-Stark Euler system’ discussed in the next section).

We start by specifying the notion of ‘integrality’ that is central to our approach.

(2.12) Definition. A system c in ESZ’X(]R) is said to be R-integral if one has
e €R-ENF forall Ee X, (5)

We write ESZ’X(R) for the R[Gx]-submodule of ESZ’X(Q) comprising R-integral systems.
(If X = Q(k), then we suppress explicit reference to X in the notation.)

11



In most cases, the module ES](R) contains a non-zero submodule that is elementary in nature.
To describe the submodule, we let p be a place of k of residue characteristic p and F a field in
Q(k) with S(E) = {p}. In this setting, Lemma (2.9) (d) implies that the map vg; induces an
isomorphism
r(E ~
’Nkrl ) /\Z( )(O;{p})** — ('SE(E))QE.
Set k(p>) = Upew k(p") and write ¢, for the cardinality of (Gy(ye))tor- For each E € Q(k)

and each element a of the lattice ||~ - /\%(E) (RO} {p})**, we set

( ) [E:k]_l'tP'VE/k(a) legk(poo)7
cpla)g =
PE 0 otherwise.

Then, if either p is a unit in R or the extension k(p>°)/k is finite, the family

cp(a) = (cp(@)B) Beq(r)
belongs to ES;(R). In this way one obtains a canonical homomorphism of R[Gk]-modules

T AL (ROZ ) = BSER), (ap)y e (T colan), (6)
p p

where the product is over all p in Sk, (k) that divide a prime p € R* or are such that k(p>)/k
is finite. For any system in the image of this map, the components are trivial except possibly
on fields of prime-power conductor and there are no non-trivial distribution relations between
components at fields of coprime conductors. This fact motivates the following definition.

(2.13) Definition. The image ES}(R)™° of the map (6) is the R[Gx]-module of isolated
(R-integral) FEuler systems.

A conceptual description of the module ES}(R)*° will be given in Lemma (5.4) below. For the
moment, we note only that EST(R)®° is non-trivial if 7(E) < |Sao(k)| for all E € Q5=F)(k)
and there exists a prime number p € R* or a place p in Sg,(k) for which k(p*>°)/k(1) is finite
and non-trivial.

(2.14) Remark. The subset of Sg, (k) comprising those p for which k(p>)/k(1) is a finite
non-trivial extension is empty if and only if k is either @ or imaginary quadratic. To explain
this, we fix a prime number p that splits completely in k and let p denote a place of k above p.
Global class field theory then identifies Gal(k(p>°)/k(1)) with the quotient of Z, by the image
of the global units of £*. If k is not Q or an imaginary quadratic field, then the global units are
infinite and so said quotient must be finite. This combines with Lemma (2.1) (b) to imply that
k(p>)/k(1) is finite and non-trivial if p lies above a prime number p that splits completely in
k(pe, (O;)Y*?) for some prime number ¢ # p. On the other hand, if k is either @ or imaginary
quadratic, then every extension k(p>)/k is infinite.

The following submodule of ES,(R) = ES;™*(R) will also play an important role in our theory.

(2.15) Definition. An (R-integral) symmetric Euler system is a family ¢ in ESE(R)
that has the following property: there exists an element ¢, € R \f OF (the ‘initial value’ of c)
such that for all E € Q(k) and p € Sin(k)NS(E) there is, in @;°, (R Ny, (’);S(E)), an equality
Ny, (cp) = ( [ «- Frobgl)) . Ordy (),
veS(E)\{p}
where

) re+1 % Tk %
Ordy: RN OFy = RA O
is the 1somorphism induced by the normalised valuation ordy : O;{p} — 7 at p. The collection

ESk(R)™™ of such systems is an R[Gx]-submodule of ESk(R).
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(2.16) Remark. Fix cin ES;(R), a finite place p of k and a field E € Q with E C k(p>°). Then
the element NE/k:(CE) of IR/\T’“H OX{ y i independent of the choice of E, and ¢ is symmetric

(in the above sense) if and only if Ord, (NEE/k(cE)) is independent of p .

The following consequence of the Cebotarev’s Density Theorem for symmetric systems is im-
portant in the sequel.

(2.17) Lemma. If R denotes either Zs for a finite set of prime numbers S or Z.,, for a prime
number p, then ESE(R)™° NESL(R)™ = {0}.

Proof. Tt is enough to show that for every system c in ES;(R)®° N ESy(R)%¥™ the initial value
¢k, vanishes. Indeed, if p is any place of k and E C k(p°) is a finite ramified extension of k, then
the assumption ¢, = 0 implies N7” Tk (cg) = 0 and hence that cg = 0 because, by construction,
cg is fixed by Gp.

Now, if we suppose there exists a finite place p of k that neither divides a prime in S nor is such
that k(p>)/k is finite, then by definition ¢,y = 0 and so the initial value condition implies
that ¢ = 0. We may therefore assume that all but finitely many places of k are such that
k(p>)/k is a finite extension.

Then, since c is isolated, the element cy ) is fixed by Gy ;) for every such p and so the element

(i) /k © Ordy M) (er) = (=1)™ - (i(py /i © Npih i) (i) = (= 1) - [k(p) : Kleygp)
is divisible by [k(p) : k] in £4(). It now follows from Lemma (2.9) (d) that Ordfl(ck) is di-
visible by [k(p) : k] in |ux|™ 1/\T’CHZ oy b and hence that ¢ is divisible by [k(p) : k] in

] 1 /\%S ZsOj . Let p be a prime number that is not invertible in R. It then suffices to
show the degrees [k(p) : k] are divisible by an unbounded power of p (as p varies).

To do this, we fix a natural number n and consider the finite Galois extension L of k obtained
by adjoining p”-th roots of all elements in O;’. Then it is enough to note that, by Cebotarev’s
Density Theorem, there exist infinitely many places p of k, not lying above p, that are com-
pletely split in L and, for any such place, the degree of k(p)/k(1) is divisible by p" (by Lemma
(2.1)). This concludes the proof of the Lemma. O

To describe another distinguished family of Euler systems, we fix finite extensions L and K
of kin K with K C L and V;, = Vg, and set H := Gal(L/K) C Gr. We also fix a place v
in S(L) \ S (k) that splits completely in K and is tamely ramified in L and a place w = wg
of K above v. We write rec,: K* — H for the composite of the canonical embedding of K
into its completion K, at w and the local reciprocity map K, — H,, C H, where H,, denotes
the decomposition group of w inside H. Writing I(H) for the kernel of the projection map
Z[G1] — Z|Gk]|, we thereby obtain a canonical homomorphism of Z[Gx]-modules

Rec)) : (’)[X(,S(K) — I(H)/[(H)2, a— Z (recy(oa) —1)o™? (7)
o€lk

and hence also an induced composite homomorphism

rrg+1 Rec), TK
Reey : [ 1,51 Ok s — (g, Creswyr) Szige) LH)/I(H)?)

M)(QZQL]OESU 7) ®zi6,) (ZIGL)/1(H)?)

in which vy /k is induced by the isomorphism ﬂg[(g (’)[X( S(L)T (ﬂZ[gL] )T)H from
Lemma (2.10) and the inclusion I(H) C Z[Gy].
We further recall from [Rub96, Lem. 5.1 (iii)] that the map

Ord,: K* — Z|Gk], a»—>Zord oa)o

0€0K
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induces an isomorphism (which we denote by the same symbol)
'I’K+1

OI"d GKQ/\Z[Q ] KS KQ/\ Z(Gx] KS(K)
We finally write Pp/ ) for the Euler factor Hv resn Ut (1 = Frobv,l).

(2.18) Definition. Fiz a finite set of prime numbers S. Then a (Zs-integral) congruence
Euler system is a family c¢ in ESk(Zs) that has the following property: for all data L/K,T
and v as above and every prime p € S that divides 2dy (with dj, the absolute discriminant of
k), the element Ord, ' (6x.rcx) belongs to ﬂ%K[El 1 Zip O sy and is such that
K
5L,T Z ocr, X ol = (—1)”( . (Rer o Ord;l)(PL/IQ{U} . (SK,TCK)
occeH

in (Vg Ok swr) o) (2L I(H)) €0 2,

The collection ESy(Zs)*™ of all such systems is a Zs[Gx]-submodule of ESi(Zs).

(2.19) Remark. Whilst congruence relations play an important role in early articles concern-
ing (rank one) Euler systems, such as Thaine [Tha88], it was subsequently shown by Rubin
[Rub00, Ch. IV, § 8] that a weaker Iwasawa-theoretic form of these congruences can be directly
deduced from Euler distribution relations. However, distribution relations on their own are not
sufficient for our theory (see, for example, Remark (2.25) (d)) and the congruences described
above provide an appropriate replacement in higher rank for the congruences used by Thaine.
The precise form of these congruences is motivated by conjectures of Mazur—-Rubin and Sano
(see Lemma (2.22) (iii) and Remark (2.23)) and the role that they play in our approach is
described in Proposition (5.5).

2.3. The Scarcity Conjecture
2.3.1. The Rubin—Stark Euler system

Let .7 denote the set S (k) U Shn (k) of all places of k. Then, by fixing a bijection . = IN
we may regard . as a totally ordered set (&, =) = {v; },c so that v; < v; if and only if
i < j. We choose this bijection in such a way that the first |So (k)| places in . are the places
in Seo(k). Throughout this article all exterior powers A\ .y, indexed over a given finite set of
places ¥ of k will be arranged with respect to the ordering <. We also fix, for each place
v € ., an extension T of v to our fixed choice of algebraic closure @ of Q. For any subfield
K C k we write vg for the restriction of ¥ to K, and also set

S*(K) == S(K) U Swo (k).

Let K be a finite abelian extension of k£ and assume to be given disjoint finite sets of places
Y and T of k such that ¥ contains S*(K). Then, for any character x € Gg, the T-modified
Y-itmprimitive Dirichlet L-series for K/k and x is defined by setting

Lisr(x,s) = H(l — X(Frobv)Nvl_S) . H(l — X(Frobv)Nv_S)_l,
veT vgE

where s is a complex variable of real part Re(s) > 1. It is well-known that Ly », 7(x, s) admits
a meromorphic continuation to C. We recall from [Tat84, Ch. I, Prop. 3.4] that the order of
vanishing of Ly »; 7(x, s) at s = 0 is given by the number rx(x) defined in (2).

We moreover define the leading term of the T-modified >-imprimitive equivariant L-series of
K/k to be

O /s r(0) = Y (lims 0L 5 7(x, 5))e

—~ 50
XE0K
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and note 6., 5, 7(0) belongs to R[Gk]*. Finally, we recall that the Dirichlet regulator map

AR OIX(,Z - R®z Xky, ar— — Z log |aly, - w
WEX i

induces an isomorphism of R[Gx]-modules

AL IR®Z/\ (’)[X(E—HR@Z /\Z[g Xk, (8)

that will often also be abbreviated to )\ k., (if no confusion is possible).

(2.20) Definition.

(a) Let K be any finite abelian extension of k, V. C X a finite set of places that split completely

in K/k, set r .= |V| and fiz a place p € ¥\ V. The r-th order Rubin—Stark element
for the data K/k, %, T and V is the unique element Equ,z,T of R ®z /\TZ[QK] OIX(,E such
that

Aes(Expnr) = ezl sr(0) - /\UGV(UK —PK),;

where ey, denotes the sum of ey over all characters x € QAK with re(x) = r. (This
element 5}/(/,{72’11 does not depend on the choice of place p € X\V - see [San15, Prop. 3.3].)

(b) The Rubin—Stark system for k is the family

ex = (Ex/m)K € H R®Z/\Z[Q] K,S(K)’
KeQ(k)

— VK
where we set €y, = €Kk, 5% (K),0

(2.21) Examples. In several cases, the above definition can be made more explicit for r := rg.

(a)

(Cyclotomic units) Take k to be Q, K to be a finite real abelian extension of Q, and V'
to be Soo(Q) = {vo}. Then one has

1
ek/Q = 5 ® Nou/k(1=&n) € Q®z O g,

Here m = my is the conductor of K and &, = ¢~*(e*™/™) where 1: Q — C is the
embedding corresponding to the choice of place o7 fixed at the beginning of the section.
(See [Tat84, Ch. III, § 5] for a proof of this fact.)

(Stickelberger elements) Let k be a totally real field, K a finite abelian CM extension of
k, and V = @. In this setting the Rubin—Stark element is given by

ex/k = Ok k5% (1),2(0 Z Lisr(x,0)ey 1.
X€Gxk
(Elliptic units) Let k be an imaginary quadratic field and K € Q(k). Fix a place p € S(K)
and write f = p” for a power of p large enough so that the natural map O — (O /f)*
is injective. Write m for the conductor of K and let a C Oy, be an auxiliary prime ideal
coprime to 6fm. Then the Rubin—Stark Conjecture holds for E (see, for example, [Tat84,
Ch. IV, Prop. 3.9]) with the elliptic unit

exc/i = (Frobg — Na) ™' - Ny (¥(1; fm, 0)) € Q @7 Ok (k)"

(This follows from Kronecker’s second limit formula; see, for instance, [F1a09, Lem. 2.2 ¢)]).

In the next result we record several key properties of the Rubin—Stark system. In claim (ii) of
this result we refer to the central conjecture formulated by Rubin in [Rub96] and in claim (iii)
to the ‘refined class number formula’ that was conjectured independently by Mazur and Rubin
in [MR16] and by Sano in [Sanl4].
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(2.22) Lemma. (i) The system ey is symmetric and its initial value e € R \J OF is
such that

AMe,Soo (k) (Ekk) = —C(0) - N w-w) € R/\Zk Xk, Soo (k)
VESo (k)\{v1}

with ¢ (0) = QZ/k Soo(k)(o) the leading term of the Dedekind (-function of k.

(i) The system ey, is Z-integral if the Rubin—Stark Conjecture [Rub96, Conj. B'] for L/k is
valid for all L in €.

(i1i) The system e is a congruence system if the Mazur—Rubin—-Sano Conjecture [BKS16,
Conyj. 5.4] for L/k is valid for all L in .

Proof. The fact that e validates the distribution relations in Definition (2.3), and hence belongs
to ESk(R), is proved by Rubin in [Rub96, Prop. 6.1] (see also [Sanl4, Prop. 3.5]). To prove
claim (i), it therefore suffices to show that, for every field E € Q(k) and any choice of place
p € San(k) NS(E), one has

Ngw(Epm) = ( II «a- Fmb;l» Ondy ™ (k)
veS(E)\{p}

in @2, (IR /\ZZ ka,s( E)). We also note that this condition is satisfied trivially except in the
case that the conductor of E is a power of a prime p and Vi = S (k).

It is therefore enough to show that the specified element e has the required property in
the case that the only finite place contained in S*(E) is p and Vg = Sx(k). If we write
v*: RY) g«(g) — R for the dual map of a place v € S*(E) (considered as an element of
Yy, s+(E)), then the map A (k)\ {0y} V" defines an isomorphism RAZ Xi,s. (k) = R with the
property that

UGSOO

(A v)(GO) A w=w) =G0
vESoo (k)\{v1}

VESoo (k)\{v1}
It therefore suffices to show that

((Avcsinon 27 © M8t © Ordy o N ) o) = —GE00)
Ve

To do this, we first note that, by [Rub96, Prop. 6.1], one has NEE/k(sg‘jkvs*(E)’@) = €4/k.5* ()0

which is the unique element of R A ” (’)Ij 5+() such that
(re) Vi %
)‘k,g*(E) (%fk,s*(E),@) = Go.5(r)(0) - /\ (v—p)
VESso (k)

= —Cros+(g)(0) - (p —v1) A (v2 —v1) Av e A (Vg1 — 11).

Moreover, it is easy to see that (logNp) - ord, = p* o Ay g (). In addition, for any subset

M C S*(E) \ {v1} one has (A,cp;v*) 0 )\Sf\]‘//[[%{vl} = Nverr(v* © Mg arugeyy) and, for any M’

containing M, the restriction of A\; v to RO;,, is equal to Ak, MU{v,}- 1t follows that

(/\vesw(k)\{vl} v*)o )‘qulo(k) oOrdy =ordy A( N\ (0" 0 Nps(m))
vESoo (k)\{v1}
= (logNp) ™"+ (p* 0 A g5+ (m)) A ( /\ (v* 0 A 5+(k)))
VESoo (k)\{v1}
= (=1)™ - (logNp)~" - /\ (0" 0 Ap.5+(E))
veS*(E)\{v1}
= (1% (ogNp) ™ (A w) oA,
veS*(E)\{v1}
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We may thus calculate that

(( /\uesoo(k)\{m} o) 0 MKy © Ordy o NiE ) (e0)

= (=)™ (ogNp) ™ (A ) (=G (0) - (p—v1) A vz —v1) Ao A (g1 —v1))
veS*(E)\{v1}

= (=)™ (=1)™ - (=1) - (log Np) ™" - ¢ 5+ (5(0)

= _CI:(O)’

as required to prove claim (i).

Claims (ii) and (iii) follow directly from the statements of the respective conjectures. O

(2.23) Remark. The strong restrictions imposed on v and p in Definition (2.18), and the fact
that only a single place in S(L) \ S (k) is considered, means that the conditions required to
ensure ¢ belongs to ESi(Z)" are much weaker than are the general properties predicted by
Mazur-Rubin and Sano. This fact plays a key role in later sections.

2.3.2. Statement of the Scarcity Conjecture

For any subset X of Q(k) and any finite set S of prime numbers, we consider the Zs[Gx]-
submodules of ESY (Zs) that are obtained by setting

ES{Y (Zs)™™ == 0¥ (ESk(Zs)¥™) and ESY(Zs)®™" := o (ESk(Zs)™™).

In particular, we note that Lemma (2.22) implies, modulo conjectures of Rubin and of Mazur-
Rubin-Sano, that the ‘X-restricted Rubin—Stark system’

en = 0" (ex) = (Ep/r)Bex

belongs to both ES{Y (Zs)»™ and ES;¥ (Zs)<".
We now state the central conjecture of this article. This conjecture simultaneously continues

ideas of Coleman, of Rubin and of Sano and three of the current authors (for more details see
Remarks (3.3) (b) and (3.11) below).

(2.24) Conjecture (The ‘Scarcity Conjecture’). For each finite set of prime numbers S, and
each subset X of Q(k) that is disjoint from Q7 (k), one has

ES} (Zs)™™ NES} (Zs)*" = Zs[Gx] - <. -

(2.25) Remark.

(a) The requirement that X is disjoint from Q9(k) (and hence that X contains no field K
with rx = 0) is forced by the fact Euler systems of rank zero and of positive rank are
seemingly of an essentially different nature. In particular, the recent work of Sakamoto
in [Sak22] suggests many Euler systems of rank zero do not belong to the submodule
generated by the system of Stickelberger elements discussed in Example (2.21)(b).

(b) If X N Q%K) (k) = @, then (as a direct consequence of the definition of symmetric
systems) one has ESY¥ (Zs)®™ = ES{(Zs) and so Conjecture (2.24) predicts that the
Zs[Gx]-module ESY¥ (Zs)®" is generated by &7t .

(c) If S contains all prime numbers that divide 2dj, then ES;(Zs)®" = ESi(Zs) and so
Conjecture (2.24) predicts that the Zs[Gx]-module ESY (Zs)™™ is generated by &7\ .

(d) If k =Q,S = @ and X = S(Q) = {0}, then (as a special case of (c)) Conjecture (2.24)
predicts ES(]{QOO}(Z)Sy ™ is generated over Z[Gx] by the cyclotomic system 66{50} described

in Example (2.21)(a). In Theorem (6.12) this prediction is proved after replacing Z by
Z.[1/2]. In addition, in the supplementary article [Bul+23], we resolve the remaining 2-

primary difficulties in order to fully verify the prediction, show that a system in ES(B)O} (Z)
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belongs to Z[Gk] - 5;]{50} if and only if it verifies the classical congruences considered by
Thaine in [Tha88] and prove that the set ES&{QOO}(Z) \ Z[Gk] - 550} is non-empty.

(e) The theory developed below will in fact suggest the possibility of formulating a stronger
version of Conjecture (2.24) (see Remark (5.3)).

The interest of Conjecture (2.24) will be explained, at least partly, by the main result of the next
section. Then, in the remainder of the article, we shall develop, and apply, a general strategy
for the proof of the conjecture (and hence of the results discussed in the Introduction).

3. Scarcity and Tamagawa numbers

3.1. Statement of the main result

For a finite group A we write ea for the idempotent |A[~1Y sea 0 of the group ring Q[A]. For
each subset V of Sy (k), and any finite abelian extension K of k, we then define an idempotent
of Q[Gk] by setting

exvi= I (—ege,)- ] eox. (9)

VE(Soe\V) VeV
For any subset V of the power set P(Sx(k)) of Soo(k) we then define
€KY = Z €K,V -
Vey
For convenience, in the case V = {Vx} we also use the abbreviation
ek =exvy = |1 (1—egy,) (10)

VESoco
ISk vl#1

(and we note that, in general, this element differs from the idempotent ex defined in (3)).

(3.1) Remark. We record several useful properties of the above elements.

(a) For each V' one can check that ek = >, ey, where x runs over all characters in Gx
with the property that, for each v € S, one has x(Gk ) = 1 if and only if v € V. This
description implies that ey is orthogonal to ex 1+ for any other subset V' of So (k) and
hence that, for each set V), the element ex y is an idempotent.

(b) If Vg = Sy (as is the case, for example, if k is totally imaginary or K is totally real),
then ex = 1. If k is totally real and K is CM, then Vx = & and ex = (1 — 7)/2, where
7 denotes the element of G induced by complex conjugation. In general, it is clear that
ex belongs to 2*|S°°|+TK~Z[QK].

(c¢) If K’ is any finite abelian extension of k that contains K, then, for each set V), the
projection map Q[Gr/] — Q[Gk] sends ek to ek p.

In the sequel we write TNC(h°(Spec K), ex 1 Zs[GK]) to refer to Kato’s ‘equivariant Tamagawa
Number Conjecture’ for the pair (h°(Spec K), ex vZs[Gxk])-
In this section we shall prove the following result.

(3.2) Theorem. Let K be a finite abelian extension of k and fix a subset V of P(Sec(k))
that does not contain the empty set. Then Conjecture (2.24) for the pair (Y (k),S) implies
TNC(hO(SpeCK),EK’VZS[QK]).

(3.3) Remark. (a) The conjecture TNC(h?(Spec K), ek vZs[GK]) was formulated (up to an
ambiguity of signs) by Kato in [Kat93a; Kat93b] and is stated precisely in, for example,
[BKS16, Conj. 3.1].
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(b) The phrase ‘€TNC(G,,) for K/k’ that is used in the Introduction refers to the conjecture
TNC(h°(Spec K), Z[Gk]). The validity of this conjecture has been shown to imply a wide
range of more explicit conjectures including the Rubin—Stark Conjecture, the ‘refined class
number formula’ conjectured by Mazur and Rubin and Sano, the ‘integral Gross—Stark
conjecture’ (from [Gro88]), the ‘Lifted Root Number Conjecture’ of Gruenberg, Ritter
and Weiss [GRW99], and the central conjecture of Chinburg in [Chi83]. Details of these,
and other similar, deductions can be found, for example, in [BF98] and [BKS16].

3.2. The analytic class number formula

As a first step in the proof of Theorem (3.2), we will establish, in Proposition (3.6) below, a
useful reinterpretation of the analytic class number formula in our setting. Before doing so,
however, it is convenient to review the properties of an important family of complexes.

For any finite abelian extension FE/k, finite set of places ¥ O S*(E), and finite set T of
places of k that is disjoint from 3, we use the T-modified ‘Weil-étale cohomology’ complex
RI.7((Ors)w,Z) of the constant sheaf Z that is constructed in [BKS16, Prop. 2.4], and
consider its linear dual

Chsr=RHomz(RL.7((Ops)w, Z), Z)[—2].

Whenever T' = & we will suppress the respective subscript in the notation. Lemma (3.4) below
is taken from [Bur+23, Prop. 3.1] and sets out the essential properties of the complex C;;’E’T.
For a commutative noetherian ring R we write D(R) for the derived category of R-modules and

DPer(R) for the full triangulated subcategory of D(R) comprising complexes that are ‘perfect’
(that is, isomorphic in D(R) to a bounded complex of finitely generated projective R-modules).

(3.4) Lemma. For any data E/k, ¥ andT' as above, the complex C, y. 1 belongs to DP Y (Z[GE])
and has all of the following properties.
(a) The complex Ch s is acyclic outside degrees zero and one, and there are canonical
identifications of Z|Gg|-modules
H(Chsp) = Op s H' (Chsr)ior=Clesr and H'(Chsr)u = Xps.
Here we write Clg x T for the quotient of the group of fractional ideals of Op s, that are

prime to Ty by the subgroup of principal ideals with a generator congruent to 1 modulo
all places in Ty (so Clg s, 1s the Tg-ray class group mod Tk’ of E).

(b) Let T be a finite set of places of k that contains T and is disjoint from X, and write
IFE,T,\T for the Gg-module @MG(T,\T (Or/pw)™, where p,, is the prime ideal of O cor-

responding with the place w. Then there exists a canonical exact triangle in DP*(Z[GE])

ET’\T
(c) Let X' be a finite set of places of k that contains X and is disjoint from T. Then there

exists a canonical exact triangle in DP*™(Z[GE])

Chor — Chyr — @ [2gs =25 2005 — . (1)

vEXN\E
where each complex that occurs in the direct sum is concentrated in degrees zero and one.
(d) If F is a finite abelian extension of k with E C F and S(F) C X, then there exists a
natural isomorphism Chy ®Z ZIGp| = Chsr in DPe™(Z[GE]).

(3.5) Remark. For any set T' € @%d, the Z[Gg|-module IF j, . that occurs in Lemma (3.4) (b)
lies in an exact sequence of Z[G E]-modules of the form

(x> 205,
OH@ZQE S L @ZgE Fyp — 0,
veT veT
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(cf. [Chi85, (4.16)]). This sequence implies that FittDZ[gE] (Fgr)=2Z[GE] - o1k

Fix an integer r > 0. As before, we write eg 5, for the idempotent of Q[Gg| which is defined
as the sum of all primitive orthogonal idempotents e, associated to characters xy € Gg such
that rx(x) = r. For any primitive summand e, of eg 5, we then have that

exCXpy = e, CYgy, =e,C[GE]",
where (with p a fixed finite place as in Definition (2.20))
{veX|x(v) =1} ifx#1g,
Vi=<¢Z\ {p} if x=1p and Seo(k)U{p} C X,
Y\ {vi} if x =1g and S (k) = X.

In particular, egy ,QXgy is a free eg 5 ,Q[Gr]-module of rank r (for which we have fixed a
basis by virtue of our fixed choice of extension to E for every place of k£ at the beginning of
§2.3.1 and, in the case of the trivial character, also of the places vy and v1). Given this, we
consider the following composite ‘projection’ map

@E/k,E,T: DetZ[gE](C;E,E,T) — DetQ[gE](QCZ?,E,T)
i) DetQ[Q’E](QHO(CE,E,T)) ®Q[QE} Deté[lgE](Q-Hl (CE,E,T))

(0@ Ny, O x) Baten (8200 Ny, Xiin)
= epn,Q /\;[QE] Of s (12)

where the second map is the passage-to-cohomology map, the third arrow is multiplication
by the idempotent egy ., and the last map is induced by our fixed choice of basis for the
ersrQ[GE|-free module epy, ,QXpg x. o

In the sequel we fix, for each prime p, an algebraic closure Q, of Q, and write C, for its
completion.

(3.6) Proposition. Fix a finite abelian extension K of k and a subset V- C ¥ of cardinality r
that comprises places splitting completely in K. Then, for each prime p, the following assertions
are equivalent:

(a) Zy - im(@;(/k’zj) =

(b) Zy - im(e?{/k,Z,T)

(¢) Zp-im(O% ) 1)
Proof. We shall show that condition (b) implies (a). The converse is clear, and the proof that
(c) implies (a) is analogous.

We first note that if 7" is a finite set of places which is both disjoint from ¥ and such that
T" .= TUT" is admissible, then d7» = d77  is a non-zero divisor. Since 6}/(/,672’7“,, = 5T/€Y(/k’27T

(K] 51‘?/&2,@

N

Zy

Z,G ]-5V
plYK] " CK/knT?
Ly

I

[Gk] - 5¥</k,2,T'

and im(@%/k,z,T”) = O - im(@%/k’E’T) (the latter as a consequence of the exact triangle in
Lemma (3.4) (b) and Remark (3.5)) we may therefore assume that 7" is admissible. In this case,
it is known that the complex Z, ®% C% s, 7 admits a representative of the form [P — P] with
P a free Z,|Gk|-module of finite rank (cf [BKS16, §5.4]). Moreover, Zj, - Detzg,(Ck s r) is

a free Z,[Gk|-module of rank one. We fix a basis 3 of the latter and set z?{ = 6}"(/k s (35)-

By assumption, we may write z}){ = qK - 5}/(/,672’11 for some qx € Zpy[Gk]. By construction of
the map ©7% ST the element z?{ is annihilated by the idempotent 1 — e 5. Since the same
is true for the Rubin—Stark element 5% e it suffices to prove that gxerx s, is a unit in

Zpl:gK]eK7E7’r‘-
As before we write Ag» for the 3-Dirichlet regulator map of K. Let @ = wg v be the
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unique element of C, Detzg,|(Ck 5 r) that corresponds with the leading term 67 /kET(O)
under the isomorphism J¢, (g, A, 5 defined in Lemma (3.7) below. In particular, one has an
equality (C, ®z @;(/k727T)(w) = 51‘2/1672;[.

Let x € Cp[Gk] be the unique element such that @w = x3x. By construction, (¢x — )3k is
contained in the kernel of ©. ST and so the injectivity of O ks, 0N the e x -part implies
that gxek s, = zeg s, It therefore suffices to show that zex ., is a unit in Z,[Grlex s r-

To do this, we shall show that the norm Nz g,
Lemma (3.7) (a) then implies the claim.

excn.r/Zp(TEK ¥ r) I8 @ unit in Z,. Given this,

Note that the set Tg 5, of all characters x € 51\( with the property that rs(x) = r is stable
under the action of the absolute Galois group G, whence ZXETKE _ X 1s a rational valued
character. By the Artin induction theorem (see [Tat84, Ch. II, Thm. 71.2]) there thus exists a
natural number m and for each subgroup H of Gg an integer my such that

X e S = S (X )
XETK,»,r x(H)=1
Writing 7y gen © Zip|G| — Zyp[Gcn] for the natural restriction map, we then deduce that
NZp[GK]eK,z,r/Zp (xefﬂzﬁ“)m = ( H X(x))m = H NZP[gKH]/ZP (WK/KH ()™
XET K, H

and it therefore suffices to show that each factor Nz, g .1z, (T Ku () is a unit in Z.

By construction, mm (2)35cm is the unique element of €, Detyg ,1(C5 that corres-

KH,E,T)

ponds with the leading term OKH/kET via the map 19(;;(}[ o ARH s defined in Lemma (3.7)
below. It then follows from Lemma (3.7) that B
Fep6,n)/Cp (TrH k()30 1) = Neyig, /0, (Trw k(@) - Fz, 6, 11/2, G4 ) (13)
corresponds, by [Tat84, Ch. IV, §1, Prop. 1.8], under 9. A with
KH,Z,T7 KH,E

NCP[QKH]/CP(Q}H/k,z,T( )) HKH/KH ET( ) - C;(HVE,T(O)y
where (7.p 5, (0) denotes the leading term of the ¥-truncated and T-modified Dedekind (-

function of K at s = 0. The analytic class number formula therefore implies that the
element in (13) is a basis of Zj, Detz(C}.y ZT) On the other hand, since jxu r is a basis
of ZyDetzg ,1(Chu 5 1), the element ]:Z,,[ G,.n)/2, (351 1) 18 & Zy-basis as well (by Lemma

(3.7) (b)). We therefore deduce that Nz, g ,/z, (Tx# /x (¥)) is a unit in Z,, as claimed. O

In the following general algebraic result we fix a commutative Noetherian ring R and a finitely
generated free R-algebra A. We write Ny,p: A — R for the ‘norm’ map that sends each a in
A to the determinant of the R-linear endomorphism = — ax of A.

(3.7) Lemma. Suppose to be given a perfect complex C* of A-modules of the form Py — Py,
where Py and Py are finitely generated free A-modules, and Py is placed in degree 0. Then the
following claims are valid.

(a) An element a € A is a unit if and only if N a/r(a) is a unit in R.

(b) There is an N 4/ p-semilinear map F4/r: Det4(C®) — Det(C*®), where in the last term
C* indicates C*, regarded as a complez of R-modules. The map F 4 g sends each A-basis
of Det 4(C*®) to an R-basis of Detr(C*®).

(c) Assume that R and A are semi-simple algebras and that \: H°(C®) = HY(C®) is an
isomorphism of A-modules. Define the isomorphism

Do n: Deta(C®) = Deta(H(C®)) @4 Deta(H(C®)) ™! =2 A,
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where the first map is the canonical ‘passage-to-cohomology’ isomorphism and the second
the composite of Deta(A) ®4 1 and the evaluation map on Deta(H'(C®)). Then there
exists a commutative diagram

Yoo x

DetA<C.) — 5 A

]‘—A/Rl lNA/R

~ Ve
Detr(C*) -3 R.

Proof. The first claim is a restatement of [Bou74, Ch. ITI, § 9.6, Prop. 3]. The second and third
claims are both derived via an explicit computation from the general result of [Bou74, Ch. III,
§9.6, Prop. 6]. d

3.3. The proof of Theorem (3.2)
3.3.1. Commutative diagrams in Galois cohomology

We now suppose to be given finite sets of places U C U’ of k that each contain the set
S*(F) = Soo(k) U S(E/k). We then define an isomorphism of Z[Gg|-modules

—1
Apuu : Detzig, (Ch i) = Detzig) (Chur) 716, Q) Detzigy) [Z[QE] I 2065
veU\U
= Detzig,)(Ch ),
where the first map is induced by the exact triangle in Proposition (3.4) (¢) and the second by
trivialising the latter determinant with respect to the identity.
Given a further finite abelian extension F' of k with E C F', we then write

ir/p: Detzig(Cr g« (p),r) = Detzig) (C g+ (p),1) (14)
for the composite homomorphism of Z[Gr]-modules
DetZ[gF}(C},s*(F),T) - Detz[gp](cz'r,s*(F),T) Qz(Gr] Z[Gg] (15)
= Detz (g, (Crs+(p), 1 ®[i[gF] Z[GE)) (16)
= Detygy, (CE.s+(p)1) (17)

— Detzg,, (CE.s+().1)-
Here the first map is the canonical projection, the second is induced by the base change property
of the determinant functor, the third is the isomorphism in Proposition (3.4) (d) and the final
map is AE,S*(F),S*(E)~
In the sequel a key role will be played by the functoriality of the projections GEI?k, S*(B),T with
respect to the various maps that occur in the descent homomorphisms iz/p. This behaviour is

explicitly described in the following result.

(3.8) Lemma. Let E and F be finite abelian extensions of k such that E C F. Let V' C S*(F)
be the set of places which split completely in E/k and write v’ = |V'| for its cardinality. For
simplicity, we also put V.=Vg, r=rg, and W =V'\ V.

(a) The following diagram commutes:

’
T /
@F,S*(F),T T

Detzg,) (CFs+(p),1) Q /\Z[QF] O;,S*(F),T

J [N
. eg,s*(F),T r
DetZ[QE](CE,S*(F),T) E— Q/\Z{gE} OE,S*(F),T ’

where the left-hand vertical map is the composition of (15), (16), and (17).

22



(b) Assume F € Q(k) and E € Q(k) U {k}, and put Wip = (-1l if B € Q(k) and

w}/k = —1. The following diagram commutes:
o, _Pestmr
Detzi6,(Cpg«(pyr) ——— Q /\ O 5+(F
{AE,S*(F) w! l""F/E'OrdE,W
Detzg,)(Cewip) ——— o — 2 Q /\Z[g .5 (F\W.T >

where W' :== S*(F) \ W and Ordgw denotes the exterior product over v in W of the
maps
Ordp,y: O g pyp = ZIGE], a— Y ordy,(oa)o,
o€GE
(c) Suppose that E # k and that U C U’ are finite sets of places of k containing S*(E).
Then the following diagram commutes:

. E/k u',r
Detzig,|(Chyrr) ———— Q /\Z[g 5 U'T

ZJAE,U’,U THU*F‘TObEI)
(€]

. E/k,U,T T
Detzg,|(Cpur) ——— Q/\Z[QE] Opur
where the product on the right hand side ranges over all places in U\ U.

(d) Suppose that U C U’ are finite sets of places of k containing S*(F). Then the following
diagram commutes:

. Apyru .
Detzg,|(Cryr 7)) ——— Detgg.|(Crur)

| |

° E, U, U °
Detzg,|(Ch 1) ——— Detzg,1(Chur)

where the vertical arrows are the composition of the relevant instances of (15), (16), and
(17).

Proof. For parts (a) and (c) see the proof of [Bur+23, Thm. 3.8].

To prove part (b), we recall that the left hand vertical map in the given square is induced by the
exact triangle (11) in Proposition (3.4) (¢) applied with the sets ¥’ = §*(F) and X = S*(F)\W.
To prove commutativity, we may first base change to Q[Gg]. Then, by the definition of the
projection maps @TE/ Jk,S* (F),T and O, Ik, 8% (F)\W,T (which involves passing to cohomology and
trivialising the top degree cohomology), it suffices to show that the composite homomorphism

erQ /\ Op s+ = €& Detqigy) (QH"(C}, 5e(ry 7))

— €eR DetQ[gE](QH (CE,S*(F)\WJ—’)) = @EQ /\Z[gE} 0275*(F)\W7T,
that is induced by the exact triangle (11) along with the trivialisation
0 Il
Detzigy) ([Z[QE] — Z[QE]}) ~ 7Gx

for all v € W, coincides with the map w7, /B Ordy that is defined in the statement of part (b).
To do this, we note that the Artin—Verdier duality theorem identifies C, ¢ with the complex
that is denoted by WUg in [BF98, §3.2]. In particular, the argument of [BF98, Prop. 3.2] implies
the long exact sequence in cohomology of the triangle (11) splits into the two short exact
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sequences

0 » QO S (F)\W,T

0 — QXps:ry\w — QXps«(r) —— QYgw —— 0,

in which the map f is given by

f: (’)ES*( mr = YW = @ Z[Gg), aw Z ordy (ca)o™?
veW veW
Given this description, the required claim follows by a straightforward, and explicit, calculation
(just as in the argument of [BKS16, Lem. 4.2, 4.3]).
The commutativity of the diagram in (d) follows from a standard functoriality property of
the determinant functor and the fact that the triangles (11) and isomorphisms in Proposition
(3.4) (d) combine into a canonical commutative diagram

1— F‘rob
Crur — Chyry —— @ [ [GF] [gF]] —
veU\U
I ¢
1— F‘rob 1
Ceuvr — Cppp — @ [ [GE] [gEﬂ —
veU\U
This proves the claimed result. O

3.3.2. Completion of the proof

The link between the constructions in § 3.3.1 and the theory of integral Euler systems is provided
by the following result.

3.9) Proposition. e collection of morphisms . Ecq(k) tnduces a homomorphism
P The coll f hi GE/kS() eQ(k) nd h h
of Z[Gx]-modules

Or: lim Detzg,(Ch g (g)) = ESk(Z)Y™ NES(Z)™",
Ee(k)

where the transitions morphisms in the limit are the maps ip/p defined in (14) for E C F.

Proof. Existing results in the literature imply im(©y) is contained in ESy(Z)°". More precisely,
the argument of [Bur+23, Thm. 3.8 (i)] shows that every c in im(©y) satisfies the Euler system
distribution relations; any such ¢ also satisfies the integrality condition (5) with R = Z because
the proof of Theorem 3.8 (ii) of loc. cit. implies 1m(®E/k S*(E)) C £ for every E in Q(k); finally,
the argument of [BKS16, Thm. 5.16] shows that any such ¢ validates all of the congruences
that occur in the Mazur-Rubin—Sano Conjecture.

It therefore suffices for us to fix a system ¢ in im(Og) and show that it is symmetric. To do
this, we fix a field E € Q(k). We note first that if either Vg # Soo(k) or |[S(E)| > 1, then
NCEE/k (cg) = 0 by Lemma (2.6) (a) and so the explicit condition in Definition (2.15) is satisfied
trivially in this case. We may therefore assume in the sequel that both Vg = S (k) and
S(E) = {p} for some finite place p.

By definition, there exists a system 3 = (3g)p € @Eeﬂ( ” Detyzg,)(Cy, S*(E)) such that one has
@T

B /15 (B) (32) = ce. Observe that 3 also uniquely specifies an element 35 of Detz(Cp Soo(k))‘
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Now, we have a commutative diagram

e'E
. E/k,S*(E) TE %
Detzg,(Ch s+ (p) — ﬂz[gE] OFk.s(e)

[Nz

. @Z‘/Ek,s*m) TE %
DetZ(Ck,S*(E)) - /\Z Ok,{p}
A, 5%(B), 500 (k) l_ord‘“
. Ok, Soa () N

in which the upper and lower squares are the relevant instances of the diagrams in Lemma
(3.8) (a) and Lemma (3.8) (b). From the commutativity of this diagram, it then follows that ¢
satisfies the condition in Definition (2.15) with its initial value ¢ equal to @;’;k S () (3x). O

If we now assume Conjecture (2.24) to be valid for the pair (X,S), then every system c in
0" (im(©4)) can be written in the form ¢ = ¢ - & for some ¢ € Zs[Gx]. This shows that
Conjecture (2.24) gives rise to an inclusion o™ (im(0y)) C Zs[Gx]ey. Theorem (3.2) therefore
now follows immediately upon applying the following result with X taken to be the set QY (k)
(which is easily seen to satisfy the hypotheses required by the result) for every prime number
p outside S.

(3.10) Proposition. Let K/k be a finite abelian extension, p a prime number and V a subset of
P(Soc(k)). Let X be a subset of Q(k) that satisfies the following condition: for each intermediate
field L of K/k such that Vi, € V, one has

o L € X if L/k is ramified,
e k(p)L € X for almost all p € Sgn(k) if L/k is unramified.
Then, if o® (im(Oy)) C Z,[Gr]ey¥, the conjecture TNC(h®(Spec K), €xvZy[Gk]) is valid.

Proof. For each x in g/;\(, we denote the subfield K**(X) of K by K(x). We also write Tky

for the subset of é[\( comprising characters x with x(ex ) # 0.

Then for each x € T ), the properties in Remark (3.1) (a) and (c) combine to imply Vi (y)
belongs to V. In particular, if K(x)/k is unramified, then we can fix a (finite) prime p, of k
that is inert in the (cyclic) extension K(x) and is such that the compositum of K(x) and k(py)
belongs to X'. Then, for each x in Y% ,,, the extension of k that is defined by setting

Ko — K(x) if x is ramified,
Xl K(Ok(py)  otherwise,

belongs to X.

We now write N for the compositum of K and the fields K, for each x in T}y, set I' = Gn
and regard €k y as an idempotent of Q[I'] in the obvious way (this idempotent does not usually
identify with ey y but this fact is not important in the sequel).

Then, by the known functoriality properties of the equivariant Tamagawa Number Conjecture
(cf. [BFO1, Prop. 4.1]), it is sufficient to show that the inclusion o (im(©y)) C Z,[Gr]e¥
implies the validity of TNC(h°(Spec N), ex vZy[T]).

Then, since the Z[I']-module DetZ[p](C]’\LS*(N)) is locally free, Roiter’s Lemma [CR81, (31.6)]
allows us to choose an element 3 of Detzr)(CR 5%( N)) that generates a (free, rank one) Z[I']-
submodule of finite prime-to-p index. In particular, if we set DZ.V, S N) T Zy®7y, C;V, S+(N) then
the image 1® 3 of 3 in the free Z,[I'-module Z;, ®z Detzr (CJ.V,S*(N)) = Detz,[r) (DJ.V,S*(N))
is a basis.

Now, since the transition maps ip/p are surjective (by construction), we can lift 35 to an
element a of the corresponding inverse limit 1£1 Eeah) Detzg,] (C’;J 5+( E)). This element a then
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gives rise, by Proposition (3.9), to an Euler system 2P := O (a). In particular, if we assume that
0% (im(6y)) is contained in Zy[Gx]e;t, then there exists an element ¢ = (qg) g of Z,[Gal(K/k)]
such that o% (z )=gq- 5k More concretely, therefore, this element ¢ would satisfy

22 = qp - ep,  forevery B € X. (18)
We claim that these equalities imply that the element ek y - ¢y is a unit of ex yZy[I']. To show
this, we recall that for each x in Y% v the field K, is a subfield of V.
This implies that the element 1 ® ZKX is equal to the image of the Z,[I']-basis 1 ® 3n of
Detz, (DY 5% ( N)) under the composite homomorphism

) TRy
. in/K . O kx5 (1)
Detz,r) (D s+(x)) — Deth[gKX}(DKX,S*(KX)) - > Zpli,
It therefore follows from the equality (18) (with E = K, ) that one has
T .
(@Ig(X/k,S*(KX) °in/i, )(3N) = Z})(X = 4Ky " EK /k- (19)

This combines with the implication (b) = (a) of Proposition (3.6) (with K replaced by K, and
V by Vk,) to imply that the elements z}’(x and €g s, generate the same Z,[Gr, J-submodule
of Z,Lk,. In particular, since this submodule is free as an eKXZp[gKX]—module, we deduce
that the element eg, - qx, is a unit in ex, Z,[Gk, |. In addition, since TS*(KX)(X) = rg,, the
orthogonality relations of characters imply that x(ex, ) = 1 and so the element x(qn) = Xx(qx, )
is a unit in Z,[im x].

We have, by now, shown that x(gn) is a unit in Z,[im(x)] for every x in T§,,. Since the set

T% y is stable under the action of Gq on f, we can therefore deduce that the element

Nevzomyz,(exv-av) = [ xav)= [ Nzpmeoyz, x(av)
XEYTS v GT%’V/N

is a unit in Z,. By Lemma (3.7) (a) this in turn proves that exy - ¢n is a unit in ex yZ,[I'] as
claimed above.

This fact implies that eK’VqK,lg,N is an € pZp[l']-basis of ek y-Dety, (D;V7S*(N)). To prove the
Proposition it therefore suffices, by [BKS17, Prop. 2.5], to verify for every character x € T}}y
that the composite homomorphism

Iy
€X®p Deth[p]( NS'*(N)) —X> BXC Detzp[gK( >]( K(x),5*(N ))

rx

ex
K(X)/k S*(N)
0\,

Zp[Gk (x )] X),5*(N)

sends eyqy 3N to eXE;X(X) Jk,s=(n)-  Here Vy is any choice of subset of S*(N) of cardinality
Ty = Tg+(n)(X) that only contains places that split completely in K(x), and the map fy/x(y)
appearing above is induced by the composite of (15), (16), and (17).

To verify this we set W =V, \ Vi, and m := [W|, and claim that it suffices to demonstrate
the equality

T -1 mr Vi
(Ordg (w0 O R (x)/k,5%(N) © Inyroo)(exaysn) = (=1) ex’fK( )/k,S* (N)\W, 2" (20)
Indeed, by the result of [Sanl4, Prop. 3.6] one knows that

Vi mr Vi
OrdK(xLW(Ezcx(x)/k,S*(N),g) = (=)™ "ER () kS (N\W, 2"

In particular, the injectivity of the map Ordg(y)w on the eg )/ s+(n) z-iSotypic component
of ﬂTZXp[gK( ] Uk (x),s+(~) (as is proved in [Rub96, Lem. 5.1 (i)]) then combines with the previous
X

two equalities to imply the claim.
Turning now to the verification of (20), we first note (19) implies that one has

(@ZX/k,S*(KX) © iN/KX)(QJTrléN) = €Ky /k- (21)
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Using Lemma (3.8), we may therefore calculate that
(OK o) © AR08 (N),5(56y) © Fv/i0) (Exdi'3n)
Z(@TK(X) 5+ (Ky) © DK (x),8%(N),8* (k) © FR, /K (0 o fn/ic,)(exdy'3N)
= (GTI{(X) se(1c) © TH K () © DK ,8%(N),8% (k) © I, ) (exay'sn)
= (Ni 0 © O, (1) © /i) (exay o)

=Ng K00 (EXER k)
Vi
= OXC K b5 (). (22)
Here the first equality follows from the fact that fn, () = [k, /Kk(x) © [N/K,» the second from
Lemma (3.8) (d), the third from Lemma (3.8) (a) and the deﬁmtlon of the map iy, the
fourth from (21),and the last from the properties of Rubin—Stark elements.

To proceed, we set W' = S*(N) \ W and calculate
(_ )mrx : (OrdK( ),W © ®K(X)/k S*(N O fN/K(x))(equflﬁN)

= (O w7 © Ak s+ (W) w7 © fN/K<x>)(€qu 3N)
(9;?0() W © DK (0,5 (KW © Di(30),8+(N),8* (5,) © SN/ K () (Ex N 3N)

=( JI @@—=x(Frob,)™h)- (@Z((X),S*(KX) 0 A (x),5+(N),5%(Ky) © SN/K () (Exdn 3N
VEW\S* (Ky)
v
= JI = x®ob)™) - exeiiy s
VEW\S*(Ky)
Vi
eng( )/ kW' @
Here the first equality follows via an application of Lemma (3.8) (b), the second by the definition
of the respective A homomorphisms, the third by appealing to Lemma (3.8) (c), the fourth by
(22), and the last by properties of Rubin—Stark elements.
This concludes the proof of (20), and hence of Proposition (3.10). O

(3.11) Remark. The results of this section show that the conjecture formulated by Sano and
three of the present authors in [Bur+23] cannot be valid. To discuss this we write k° for the
maximal abelian extension of k in which all places in S = Soo(k) split completely,  for
the collection 2= (k) of finite ramified extensions of k in k%, R® for the algebra Z[Gal(k®/k)]
and A® for the ideal Jim ;. _o Anngg,1(ur) of R®, where the limit is taken with respect to the
natural projection maps Z[Gg/| — Z[Gg]| for fields E C E’ in Q. Then the central conjecture
(Conjecture 2.5) of loc. cit. predicts the R*-module ESj, of Euler systems defined in [Bur+23,
Def. 2.3] is such that AS - ESy C A% - 0%<(im(0})). However, the validity of this prediction
is not consistent with the result of Proposition (3.9) for two reasons: firstly, the intersection
A® - (ESk N ESf” (7)) is in general non-zero (and, in this regard, recall Lemma (2.17)) and,
secondly, the final observation in Remark (2.25)(d) implies that, in general, there are systems
in A% - ES;, that are not symmetric.

4. The theory of Euler limits

In this section we develop a general theory of ‘Euler limits’ that is vital for our approach to
the analysis of Euler systems.
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4.1. Definitions and examples

Throughout this section, we fix a number field k£ and, for convenience, write €2 instead of (k)
for the set of finite abelian extensions of k that are ramified at (at least) one finite place.
Similarly, we abbreviate So (k) and Sp(k) to Sw and S, respectively. We also fix a subring R
of C with field of fractions Q.

(4.1) Definition. Given a subset X of ), we define a triangular system on X to consist of
the following data for every pair of fields E and F in X with E C F':

e an R[Gr|-module Mp g;
e maps of R[Gr|-modules pp/p: Mpr — Mpg and jrjg: Mg p — MrE.

In the case E = F, we usually abbreviate Mg to Mg and refer to it as a diagonal term of
the system.

(4.2) Examples. Triangular systems arise naturally in several ways.

(a) (Projective systems) Each projective system (MF, pr/E)Fex of R[Gr]-modules gives rise
to a triangular system by setting Mg g = ME for each £ C F' and taking pp/p to be
pr/E and jp/p to be the identity map on ME

(b) (Biduals of units) For any rank function r one obtains a triangular system on X by
setting, for each F and F' in X with £ C F,

RLp if E=F,
D20 Q Az OE,S(F) if &#F,

and by taking pp/p to be the map induced by the norm O} sy (@) s(r) and jr/p to

Mg =

)

be the (injective) map induced by the inclusion O sm) © o5, S(F)-

(¢c) (Exterior powers of duals) For any non-negative integer ¢, and any pair of fields F, F' € X
with £ C F, the composite homomorphism

(O;’S(F) §7S(E)7 Z[QF]Gal(F/E)) — (OE,S(E))*7

where the first map is restriction and the second is induced by sending Nga(r/g) to 1, in-

>* — HomZ[gF] (O

duces a homomorphism of Z[Gr]-modules @}/E: /\tZ[gF](O;,S(F))* — A%[QE]<OE,S(E))*'
Given a rank function t, we therefore obtain a triangular system by setting

E * .
Mpp = {/\%[Q)E] (ROJXE,s(E)) if B =F,
| D20 Arigs)(ROE 5()" if £+ F,

and by taking pr/p to be @gﬁ% and jp/g to be the natural inclusion map.
We next associate to each triangular system a natural notion of limit.

(4.3) Definition. Fiz a finite set 11 of places of k and, for each field E in Q, set
II(E) =TTUS(E) =11U Siam(E/k).
(Note, in particular, that II(E) = S(E) if Il = @ and II(E) = S*(F) if Il = Sx(k).)
(a) The ll-relative Euler factor for an extension F/E of fields in Q is the element
Prpn= ] (1—Frob,') € Z[Gg).
veS(F\TI(E)

(In particular, if Il = @, then Pp gy is the standard factor HveS(F)\S(E)(l — Frob, 1)
that also occurs in the definition of an Euler system.)
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(b)

Let T = {(MF,E, pr/B: jr/E) } E,Fex be a triangular system on a subset X of Q. Then
the I1-relative Euler limit of T is the R[Gx]-submodule

{(GF)F € H Mp | pp/plar) = Pripn - jrye(ap) for all E,F € X with E C F}
Fex
of the direct product [[pcr Mp. We denote this submodule by @HT or, more simply
(when data defining the system T is clear from context), by ME’GXMF'

In the rest of this section we fix a set of places IT as above. In addition, for a (not necessarily
finite) extension of fields £ C F that are abelian over k, we write

mr/e: ClGr] — C[gE]

for the natural restriction map (and we use the same notation to denote the restriction of 75/g
to R[GF] for any subring R of C).

(4.4) Examples. The concept of Euler limit incorporates several natural constructions.

(a)

(b)

(d)

(Euler systems) If we take X = 2 and II = &, then elements of the Euler limit associated
to the triangular system on X described in Example (4.2) (b) are Euler systems of rank
r that are R-integral in the sense of Definition (2.12).

(Perrin-Riou functionals) Take X = ) and Il = &. If we define the module of Perrin-Riou

functionals PRE(R) to be the Euler limit of the triangular system defined in Example

t(E

(4.2) (c) with transition maps prp/p == Pr/pg - @é/g, then, for any pair of rank functions

t and s with s(F) > t(E) for all E € Q(k), and any subring R of C, the argument
of Perrin-Riou in [PR98, Lem. 1.2.3] (see also [Rub96, §6]) shows that the assignment
((fe)E, (cE)E) = (fE(cE))E induces a homomorphism of R[Gk]-modules

PR (R) ®rige) ESE(R) — ES; H(R).
This method of ‘rank-reduction’ has been used in the literature to obtain useful classical
(rank-one) Euler systems from higher-rank Euler systems.
(Inverse limits) Each projective system (Mp,pp/p)rex of R[Gr|-modules gives rise
to an associated projective system (ME:,P/F/E)FEX in which one has M}, := Mp and
p’F/E = Pp/pn - pr/p for all E C F. The identity map on [1recx MF restricts to induce
an embedding of the inverse limit @Fe +Mp into the Euler limit G&DE’GXM = of the
triangular system associated to (M, P/F/E)FGX by Example (4.2) (a).

(Idempotent projections) Let (Mp, pr/g)rex be a projective system of Z-torsion-free
R[Gr|-modules and recall the idempotents

EFII = €F,So (k)UIL(F),rp
from Definition (2.20). (We note, in particular, that if IT = @, then epy is equal to the
idempotent er defined in (3).) We define a triangular system (Mp, g, pIF/Ev.jF/E)FEX by
setting
, L eF,HMF if FF= E,
EET )\ Qer My i F#£E
and p%/E = Pr/pn - pPr/E, and taking jp/p to be the natural inclusion of epnMp into
Q ®r Mp. We then write glimgeXe r,sMp for the Euler limit of the triangular system
(Mp g Py 11 JF) E)Fex. A straightforward calculation shows that for fields E and F in
Q with B C F one has Pp/py - (mp/p(ern) — egn) = 0. This fact implies that the
assignment
@ MF — glimn eF,HMFy (mp)p — (eRHmF)F
Fex FeXx
is a well-defined map of R[Gx]-modules.
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In the next two sections we shall prove the existence of natural exact sequences relating re-
spectively to ‘restriction’ and ‘localisation’ functors that are associated to the Euler limits of
triangular systems.

4.2. The p-adic restriction exact sequence
4.2.1. Statement of the p-adic restriction sequence

In the sequel we will consider subsets X of 2 that are ‘large’ in the sense that they satisfy the
following hypothesis.

(4.5) Hypothesis (Closure Hypothesis). Fix a subset V of P(Sx(k)) and let X be a subset
of QY(k) that has the following two closure properties:

(i) (Composita) If K € X and E € Q%<(*)(k), then KE € X.

(ii) (Subfields) If K € X, then for every intermediate field L of K/k with Vi, € V, one has
o L € X if L/k is ramified,
e k(p)L € X for almost all p € Sg, (k) if L/k is unramified.

(4.6) Examples. The following two families of extensions satisfy Hypothesis (4.5) (for suitable
sets V) and will play an important role in the sequel.

(a) Let V be any subset of P(Sx(k)). Then the set X = QV(k) satisfies Hypothesis (4.5)
with respect to V.

(b) Let k be a totally real field. Then the set X of all finite abelian CM extensions of k that
are ramified at some finite prime satisfies Hypothesis (4.5) with respect to V = {@}.

For each finite set of places X of k, we write Xy, for the subset of X comprising fields that are
ramified at every place in ¥. We then have a natural ‘restriction’ map on Euler limits

resy : @IHMF—)MHMF. (23)
Fex FeXs

(4.7) Remark. For £ € X and F € Xy with E C F (if such F exists), the defining relation
of the Euler limit relative to ITU 3 has no Euler factor for the extension E/F. In many cases,
therefore, the limit ih—@gexz Mp can be regarded as a submodule of @@gziM F.

In the next result we shall establish an important property of the maps resg for triangular
systems that satisfy the following natural hypothesis.

(4.8) Hypothesis. Let p be a prime number. The data {(MF g, pr/g, jr/E)} E,Fex constitutes

a triangular system in which the transition maps jp g are injective (and will be suppressed in

the notation) and, for all pairs of fields E C F' contained in €2, there exists an injective homo-

morphism of Gg-modules tp/p: Mp — Mgal(F/ E), that has both of the following properties:

(i) the restriction of the composite ¢p/g 0 pp/p to the full pre-image My in Mg of Mg under
pr/E factors through multiplication by Nqa(r/E),

(ii) there exists an integer N, depending only on Mg, such that for every m in Mg and every
integer ¢, one has m € p' - Mg, if tpye(m) € p N Mp.

(4.9) Examples. Hypothesis (4.8) is satisfied in several natural cases with R a Dedekind
domain and p a prime number that is not a unit in R. For example, one may take R to be Z,
or Zs with a finite set of prime numbers S that does not contain p.
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(a) Hypothesis (4.8) (ii) is satisfied in this case if, for each E, the module Mg is a Z-torsion-
free and there exists a natural number N, depending only on FE, such that, for every F,
the p-part of the order of coker(tp/g)ior divides pV. To justify this, set ¢ == tp/p and
note that if «(m) = p' - y for some integer t > 0 and y € Mp, then the image of y in
coker(¢) is annihilated by p’, and hence also, by assumption, by epN for some natural
number c that is coprime with p. If z is the (unique) element of Mg with 1(2) = cp™ -y,

then cp -m = p' - 2z € p! M. Thus, because M is Z-torsion-free and ¢ is a unit modulo

pt~N, we conclude that m belongs to p'~N Mg, as required.

(b) The triangular system associated (via Example (4.2) (a)) to the canonical projective sys-
tem (R[Gg|,mp/p) satisfies Hypothesis (4.8) with tr g induced by the map R[Gr| —
RI[Gr| sending each a to Ngap/p) - @ for any (and therefore every) a € R[Gr] with
7p/p(@) = a. For this choice, the validity of (i) is clear and the validity of (ii) follows
from Example (4.9) (a) and the fact that coker(tx,/ ) vanishes.

(c) Lemma (2.9) (c) (see also Remark (2.11)) shows that the triangular system of biduals in
Example (4.2) (b) satisfies Hypothesis (4.8) with ¢p/p taken to be the map vp g from
Lemma (2.9).

In the sequel we shall use the field
k(p) = k(pyees, (0P, (24)
The following is the main result of this subsection.
(4.10) Theorem (The p-adic restriction sequence). We assume to be given the following data:
e an odd prime number p,

e a subset X of Q that satisfies Hypothesis (4.5),

e a triangular system {(MFpg, pr/E: Jr/E) Y B,Fex that satisfies Hypothesis (4{.8) with respect
to p and is such that each diagonal term Mg is a Zy|Gg]-lattice,

o finite subsets Il and ¥ of Sgy (k).

For each field F in X write ki (F) for the composite of all extensions of k in k(p) in which at
least one place of Sp(k) \ IL(F) splits completely. Then the sequence of Z,[Gx]-modules

e

0 i Mgal(F/Fﬂkn(F)) S olim™ Mp 2y eliml (Mp/ MSal(F/Fﬁkn(F)))7
Fex Fex FeXs

in which ﬁg denotes the map induced by resg, s exact.

(4.11) Remark. The result of Theorem (4.10) is equivalent to asserting that the kernel of
ﬁg is independent of the choice of . In the stated generality, however, it seems more difficult
to obtain concrete information about the cokernel of ﬁg.

(4.12) Remark. Our methods also prove a variant of Theorem (4.10) for p = 2, see Proposition
(4.21) and Remark (4.24) for more details.

The proof of Theorem (4.10) will be given in §4.2.5 after we first establish several necessary
preliminary results. We end this section by recording an important consequence of Theorem
(4.10) that will be derived in §4.2.6.

(4.13) Corollary (The global restriction sequence). We assume to be given the following data:
e a finite set of prime numbers S,

o a subset X of Q that satisfies Hypothesis (4.5),
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e a triangular system {(MF,EapF/Eij/E)}E,FGX for which each diagonal term Mg is a
7Z.5|Gg|-lattice and Hypothesis (4.8) is satisfied for all but finitely many p,

o finite subsets Il and ¥ of Sgn (k).

Then the sequence of Zs[[Gx]-modules
T aGe S n T TSy L Gr
Oﬂghm Mp" —— elim Mpﬂghm (MF/MF ),
Fex Fex FeXs
i which ﬁg denotes the map induced by resg, is exact.

4.2.2. Constructing extensions with prescribed local behaviour

A key step in the proof of Theorem (4.10) is provided by the following technical result concern-
ing the existence of cyclic extensions of number fields with certain prescribed local behaviour.

(4.14) Proposition. Assume to be given data of the following form:
e a prime number p,
e a finite abelian extension K of k,

e a finite set T of places of k that contains Sp(k) and is such that the T -classgroup of k is
trivial.

Write s for the greatest integer such that k contains a primitive p°-th root of unity, fix a natural
number n with n > s, define a finite Galois extension of k by

k(p,T,n) = {k(ups+n’ (O;7T)1/p8)s+1 pr s odd:
F(ppsinn, (OF 2)VP70)ifp=2,
and set
L=L(p,T,n)=Knk(p,T,n).

Then, for any element o of G whose restriction to L is trivial, there exists a Galois extension
E = E(p,n,T,o) of k that has all of the following properties:

(i) Gg is a cyclic p-group,

(ii) every place v € T is unramified in E and the order of Frob, on E is at least p,
(i1i) S(E) contains no infinite place and at most two finite places,

(iv) for each v € S(E) the following claims are valid:
(a) the inertia subgroup of v in Gg has order at least p",

(b) v is unramified in K and the restriction of Frob, to K is equal to o.

To prove this result, we shall use several important results in the theory of embedding problems
that are obtained by Neukirch in [Neu73, §7 and §8]. For the convenience of the reader, we
shall therefore begin by fixing a natural number n, setting

q:=p"
and reviewing Neukirch’s approach to the problem of determining whether there exists a cyclic
Galois extension of k of degree g that realises a given family of local extensions.
We write G}, for the absolute Galois group of k and Gy, for the decomposition subgroup in Gy, of
each place v of k. Then, for a given collection of places v and a morphism ¢, : Gx, — Z/qZ for

each such v, we ask whether there exists a surjective morphism Gy — Z/qZ whose restriction
to Gk, agrees with ¢, for all v in the given set.

32



To be more precise, we fix a set of places M of k that contains both So. (k) and S,(k) and a
finite subset 7 of M. We then define

AM,T) = [J{0} x [] Hom(Gk,,Z/4z) x |] Homu(Gr, Z/4z)
veT veM\T vgM
where Homy, (G, , Z/qZ) is the subset of Hom(Gy, , Z/qZ) comprising all morphisms that are
‘non-ramified’ at v (that is, vanish on the inertia subgroup) and []" is the restricted product
(that is, the subset of the cartesian product comprising all elements (i, ), with the property
that ¢, is non-ramified for all but finitely many v). We then consider

A(k, Z/qZ) = coker (Hom(Gk, Z/qZ H Hom(GY,, Z/qZ))/A(M T))

where in the restricted product v runs over all places of k.

We now assume to be given a morphism ¢g: Gy — Z/qZ that is unramified outside M and,
for each v € T, a morphism ¢,: G, — Z/qZ. We then write ¢g, for the restriction of ¢
to Gx, and define 7 to be the class in A(k,Z/qZ)} of the collection (n,), that is defined by
setting

: (25)
¢0,v lf v Q T

(4.15) Remark. The class 7 is a natural ‘obstruction’ to solving the problem at hand since

it vanishes if and only if there exists a morphism ¢: Gy — Z/qZ that is unramified outside M

and, for all v € T, coincides with ¢, when restricted to Gy, .

; _{gbo,v—% ifveT,

To investigate the vanishing of 7, we introduce the following group of units:
UM(q) = {a € k* |Yo g M :ord,(a) =0 mod ¢, Vo € M\ T :a € (k})}.
(4.16) Lemma ([Neu73, Satz (7.1)]). There is a canonical isomorphism

Ak, Z/gz)7" = Hom(Us' (9)/(K*)", Z/4z.)
that can be explicitly described as follows. Let f be an element of A(k, Z/qZ)/TVl represented by
a family (fv)y of morphisms f,: Gy, — Z./qZ.. Then the above isomorphism sends f to

U%(q)/(kx)q N Z/an a va(recv(a)),

where rec,: k) — GZ‘S 18 the local reciprocity map and GZEJ’ is the abelianisation of Gy, .

We next use Kummer theory to give a convenient Galois-theoretic description of A(k,Z/ qZ)é\—’l
To do this, we set

k= k(ﬂq) and ko = kQ'AflT = kl(% ‘ a € U7M(Q))

(4.17) Remark. The Galois extension ky/k; is referred to as the ‘obstruction extension’ by
Neukirch and has the following functorial behaviour. Let M’ be a set of places of k that
is disjoint from M U T, and write Hay for the subgroup of Gal(k 7/k1) generated by the

collection {Frob,, | v € M%l} Then, since every place in M}, , splits completely in kMUM , one

has k:MUM C (kﬁ”T)HM’ and Gal(k%wvl’/kl) is a quotient of Gal(k 2,7-/k1)/H/\4/. (In fact, one
has equahty in both instances if p is odd, cf. [Neu73, Satz (7.3)].)

The following result is a straightforward extension of [Neu73, Thm. 7.4] that incorporates the
case p = 2.

(4.18) Lemma. The canonical map

Gal(kz/k1) — Homz (U7 (¢)/ (k)% pig), 0 = {a = o(¥/a)/¥/a}

is injective. Its cokernel is of order dividing two and vanishes if p is odd.
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Proof. We write Q for the quotient module (U (a) N (k{)7)/(k*)? , and consider the tauto-
logical exact sequence

00— Q@ — U%(Q)/(k%)q — U7M(Q)/(U7f‘_/l(q) N (k7 — 0.

Then, since Kummer theory identifies Gal(ks/k1) with Homz (U (q)/ (U (a) N (k{)9), pg),
we can take Kummer duals of the above sequence to obtain an exact sequence

0 —— Gal(ko/k1) —— Homg (Uﬁ(q)/@qq,z/qz) —— Homgz (Q,Z/47) — 0.

This sequence directly proves the first claim and also shows that the order of the cokernel of
the given map is equal to the order of Q.
To bound this order, we observe that ) identifies with a subgroup of the kernel

ker (K gy = BTy ye) = B (Gal(ki k), 1g),

and that, by [Neu73, Satz (4.8)], the latter cohomology group vanishes if either ¢ is odd or if
kN Q(pu2n) is complex.

It therefore only remains to consider the case that ¢ = 2" and /—1 ¢ k. In this case, the
inflation-restriction sequence combines with the aforementioned vanishing result to give an
isomorphism

HY(Gal(k(v/=T) /), ) = H(Gal(ka /K), 1)
In addition, since Gal(k(v/—1)/k) is cyclic, a Herbrand quotient argument implies that

[H (Gal(k(V=1)/k), pa)| = [H(Gal(k(V=1)/k), pa)| = [{£1}] = 2,

as required to conclude the proof of the second claim. O
The following observation regarding the field ko defined above will also be useful later on.

(4.19) Lemma. Let ¢ == p" with n a natural number as before, and set
ks = ks = k(uq, (01:77’)1/(]»
Then the following claims are valid.
(a) One has ko C k3, with equality if every place in M\ T splits completely in ks.

(b) Write s for the greatest integer such that k contains a primitive p®-th root of unity and as-
sumen > s. Then the maximal abelian extension of k in k3 is equal to k(fiyn+s, (O;T)l/ps)

if p is odd or \/—1 € k, and is otherwise contained in k(pgn+s+1, ((’),CXT)I/QSH).

Proof. To prove the first part of claim (a) it is sufficient, by Kummer theory, to show that the
class of any element of U (¢) in k* /(k*)? is represented by an element of O} 7 To do this, we

fix a in U'(g) and write Z(a) for the (finite) set of places v of k that are outside 7 and satisfy
ordy(a) # 0. Then, since the T-classgroup of k is assumed to be trivial, for each v € Z(a), one
has that the ideal v is equal to an ideal that is only supported at 7 times an element 7, of k*.
It follows that m, belongs to Ol:,Tu (v) and satisfies ord,(m,) = 1. By definition of U (q), one

has ord,(a) =0 mod ¢ for all v € Z(a) and so mq = [[,cz(q) Tv ordv(a) belongs to (k*)?. The

element a - m, can then be checked to belong to O and have the same class as a in k> /(k)?.
This proves that ks is contained in k3, as claimed in (a).

If, in addition, every place in M \ T splits completely in ks, then the definition of ks implies
that every element of O,jj must belong to (k,X)? for every such place v € M\ T. We deduce
that (’);’7— is contained in U/r\/‘(q) in this case, and hence that k3 is contained in ko. This proves
the second part of claim (a).

To prove claim (b), we write L’ for the maximal abelian extension of k in k3. Then L’ contains
k1 = k(uq) and so, by Kummer theory, there exists a subgroup U of (O}’ - (k;)?)/(k;")? such
that Gal(L'/k1) = Hom(U, pq).
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Since L’ is abelian over k, the conjugation action of G, on Gal(L'/k1) is trivial. To make this
condition explicit, we fix elements 7 € Gal(L'/k1) and p € Gy,, a lift p of p to Gal(L'/k) and
an element a of O;T that represents a class in U. Then, for a suitable integer n(a, p), one has

p¥/a) = 7/ pla) = P Y.

In particular, since po7 = 70 p in Gal(L'/k1), one therefore has

p(r(Va)) = 7(p(/a) = 7(¢ P Ya) = P (r(Va) | Ya)¥a = (r(a) | Ya) p(V/a),
and so the element 7(¥a)/¢/a of pg C ky is fixed by p. Since this is true for every element p
of Gy, it follows that 7(/a)//a belongs to k* and hence must be a p*-th root of unity.
We next write (a) for the subgroup of k;/(k;*)? that is generated by a, and note that Kummer
theory gives a natural isomorphism

Gal(k1(¥/a)/k1) = Hom((a), ug), 7+ 7(¥a)/Va.
In particular, since the above argument shows that the order of every element in the image of
this isomorphism is at most p®, the order of (a) is at most p®, and so the element a?” belongs
to the kernel of the natural map
0 1K) — k()"

In addition, 6 is injective if either p is odd or v/—1 € k, and in all other cases the order of
ker(#) divides two (cf. the proof of Lemma (4.18)).

For simplicity, we now assume that we are in the first of these cases (and merely note that the
second case can be dealt with in the same fashion).

In this case, the above argument shows that a?” belongs to (k*)? and hence that

S
a? =01

for some element b of OI:T' One therefore has a = ( - n/b for a root of unity ¢ of order
dividing gp® = p**" (so that ¢ € k(jps+n)), and hence that

B1(/a) C kljagen, (OF)7).

Since the field L’ is generated by all such fields ki(+/a), it must therefore be contained in
k3 O k(ppstn, (kaT)Ups) = k(ppn+s, ((’)kXT)l/ps), as required to complete the proof. O

Proof of Proposition (4.14): We are now ready to prove Proposition (4.14), the notation and
hypotheses of which we henceforth assume. In addition, in this argument we take
)t if p is odd,
Tl itp=2,
and use the fields
k= k(ug), ks =k (O )9 and F =K - ks.

It is clear that L C k3, and Lemma (4.19) (b) implies K N k3 C L. Thus, since the restriction
to L of the element o fixed in the statement of Proposition (4.14) is trivial, we can use the
canonical isomorphism
Gal(F/L) =2 Gal(K/L) x Gal(ks/L)

to choose an element & of Gal(F/L) whose restrictions to K and k3 are respectively equal to
o and the identity automorphism. By Cebotarev’s Density Theorem, applied to the Galois
extension F'/k, we can then choose a place q of k£ with the property that & is equal to Frobg for
some place 9 of F' lying above q. This condition ensures that g splits completely in k3 and that
the restriction of Froby to K is equal to ¢. In particular, by Lemma (2.1) (and the definition
of k3), it follows that the degree of k(q)/k(1) is divisible by ¢. Now, since Gal(k(q)/k(1)) is
isomorphic to a quotient of the unit group (O/q)*, it is cyclic and so this argument implies
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Gi(q) contains an element of order ¢g. This fact in turn implies k(q) contains a subfield £y that
is a cyclic degree g extension of k£ and so gives rise to a surjective homomorphism
do: G — Gal(Eo/k‘) = Z/qZ.

For each place v we denote the restriction of ¢g to Gy, by ¢o.-
We next write 7’ for the subset of 7 comprising all places v whose decomposition group
D, (Ey/k) in G, has order less than p™ (and so is identified, under the isomorphism Gal(Ey/k) =
7./qZ. fixed above, with a subgroup of (gqp~"*17Z)/(qZ) ). We note, in particular, that for each
v € T’ the restricted morphism ¢y, is a composite of the form

$0.0: Gr, = Du(Eo/k) = (™" "'Z) /7 C Ly 7,

For each place v in T we now define a morphism ¢, in the following way:
o if v e T\ T, then we set py = @po;

e if v € 7', then we take ¢, to be the composite
Gr, — Gal(k)™" /ky) = (a0~ "2) /7, C L/ g,

where ky"" denotes the unique non-ramified extension of k, of degree p™ and the first
arrow is the canonical projection.

This data gives rise to an obstruction class n = (7, ), in the sense of (25) for which one has

o — pv, fveT
Ny =< 0, ifoeT\T' (26)

®0,0; ifodgT.
To analyse this class we set M := T U{q}. We also note that, for the fixed choice of q, one has
that the field ky = k:%— = kl(U,/r\/l (¢)"/9) defined earlier coincides with k3 by Lemma (4.19)(a).

Now, since the explicit definition of each of the morphisms ¢, and ¢, implies 7 is divisible by
2 in A(k, Z/qZ)é\f‘, it belongs to the image of the injective map

Gal(ks/k1) = Gal(ka/k1) — Ak, Z/gz)H

defined in Lemma (4.18). Writing 7 for the pre-image of n under this map, we claim next that
T acts as the identity on L.

To verify this, we first show that every element of Gal(ks/k1) of order dividing p™ acts as the
identity on L. To do this, we fix o € Gal(ks/k1) with oP" trivial and a € (9,:77-. Then, since L
is contained in the field k(p, T,n) that is generated over k; by elements of the form /a with
t := gp~ ", it suffices to show o(\/a) = /a. Let &, be the unique g-th root of unity with the
property that o(¢/a) = £,¢/a. Then, since &, € ki, one has 0(§,) = &, and so o™ (¥a) = (" Va
for all integers m. In particular, since o?" is trivial, the order of &, divides p™ and so we obtain
the required equality via the computation

a(vVa) = (o(Ya))" = (&Va)”" = Va.
To prove T acts as the identity on L, it is therefore enough to show that 77" is trivial. Note
also that, if p is odd, this will be true if n is divisible by p® in A(k, Z/qZ)*‘, whilst if p = 2
then the cokernel of Gal(k”/k’) — A(k, Z/qZ)%" has order at most 2 and so it will be true if
n is divisible by 2571, However, since for each v € T’ the morphisms ¢, and ¢, are, by their
construction, divisible by p® (resp. p**! if p = 2), it is clear that this condition is satisfied.
Next, we observe that Lemma (4.19)(b) implies K Nks = L, and so the canonical isomorphism

Gal(Kks/L) = Gal(ks/L) x Gal(K/L)
implies the existence of a unique element g of Gal(Kksz/L) that restricts to k3 and K to
respectively give 7 and the element o fixed in Proposition (4.14).

Now, since g belongs to the abelian subgroup Gal(Kks/Lk;) of Gal(Kks/L), we can use Ce-
botarev’s Density Theorem to fix a place 2 of Lk; with all of the following properties:
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e 2 has absolute degree one;
e the rational prime lying beneath 2l is unramified in Kks;
e the restriction of Frobg to Kkj is equal to g.

The place a of k lying beneath such a place 2 is then unramified in Kk3 and such that the
restrictions to K and ks of Frob, are respectively equal to o and 7.

Thus, if we set M" =T U {q, a}, then it follows from Remark (4.17) that the obstruction class
n vanishes in A(k,Z/ qZ)%l. As a consequence of Remark (4.15) and the explicit specification
(26) of n, we can therefore deduce the existence of a field E; that has all of the properties (i),
(ii), (iii) and (iv)(b) that are stated in Proposition (4.14). To complete the proof, it therefore
suffices to show there exists such a field E; that also has the property (iv)(a).

To do this, we set h := ord,(|cly |) and repeat the above argument with n replaced by n' =
h+2n in order to obtain a cyclic extension E; of k that has properties (i), (ii), (iii) and (iv)(b)
with respect to n’ (rather than n). In particular, for this field there exists a place vy in S(Ej)
such that the inertia subgroup of vy in Gg, has order at least p*>*. If S(E1) = {v1}, then this
field F; already has all of the required properties.

We can therefore assume that S(E1) = {v1,ve} for some place vy # v;. If the inertia subgroup
I(v2) of v2 in G, has order at least p™, then the field £y again has all required properties. On
the other hand, if the order of I(v2) is less than p”, then we need only consider its fixed field
E = Ell ®2) in order to obtain a cyclic extension of k that is unramified outside vy, in which
v1 has inertia subgroup of order at least p™, and each place in 7 has decomposition group of
order at least p™. In this case, therefore, the field E has all of the required properties (i), (ii),
(iii) and (iv).

This concludes the proof of Proposition (4.14). O

4.2.3. Consequences of the Cebotarev Density Theorem

Our proof of Theorem (4.10) will also rely on the technical consequence of Cebotarev’s Density
Theorem that is described in the following result. In this result we use the fields k(p, 7, n) that
are defined in the statement of Proposition (4.14).

(4.20) Lemma. Fiz a prime p and a finite place p of k. Set T = Sp(k) U{p} and, for any
extension L of k define the field

L(p) = LNk(p, T) with k(p,T):= U k(p, T,n).

nelN

Let X be a subset of ) that satisfies Hypothesis (4.5) and {(MFE, pr/e,jr/E) Y EFex o tri-
angular system that satisfies Hypothesis (4.8) and is such that each diagonal term Mg is a
Z,|Ggl-lattice. Fiz an element (ar)r, of ﬂi&ngeXML and assume F is a field in X that has the

following property:
e for any field L € X with F C L the element ay, is fized by Gal(L/L(p)).

Then, for any field K € X, the element ar is fized by Gal(K/K(p)) provided that all of the
following conditions are satisfied:

(i) kC K CF.

(i) S(F)\TI(K) = {p}.
(iii) Vi = V.
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Proof. Fix a field K as above and an element o of Gal(K /K (p)) and write P(o) for the subset
of Sgn(k) \ (TI(K) U S,(k)) comprising places v for which the restriction of Frob, ! to K agrees
with 0. Then, for any natural number ¢, Proposition (4.14) implies the existence of a finite
cyclic p-extension E of k that belongs to Q%< (k), is unramified outside P(c) and is such
that the order of the decomposition subgroup of p in Gz is at least p.

We note that, since all archimedean places split in E/k, Hypothesis (4.5) (i) guarantees that
both of the composite fields

F''=FEF and K':=FEK
belong to X.

Now, by assumption, one has ap € My, and so the Euler limit relations combine
with the stated conditions (ii) and (iii) to imply that the element

Gal(F'/F'(p))

(1 —Frob, ") -axr = Pp i - axr = pprjxc(agr)
is fixed by the image Gal(K'/K'(p)) of Gal(F'/F'(p)) in Gk.
Let us now write H for the intersection of Gal(K’'/K'(p)) and the subgroup of G+ generated
by Frob,. Then any element 7 of H is a power of Frob, and so (1 — 7) - ag- is fixed by H.
However, the element (1 —7) - ags is also annihilated by the norm Ny and hence, since Mg is
Z-torsion free, must vanish. It follows that ag- is fixed by H.
Write My, for the full pre-image in Mg+ of My under pgr . Then, since (az)r, belongs to
@EGXML, one has ax’ € M., and so Hypothesis (4.8) (i) implies that

(trr/x © prryi)(arr) = Naarr/x) - flaxr)
for a suitable endomorphism f of M/.,. Setting

n = [S(K') \ TI(K)],
we can therefore deduce that the element
v (L=0)" - ak) = gy (P ien - ak)
= (LK'/K ° PK//K)(GK’)
= Naar/k) - flax)
= Neax'/r)/a - Nu - flagr)
= Naax/ry/m - [H| - flag)
is divisible by |H| in M. Note that restriction to E induces an isomorphism
Gal(K'/K'(p)K) = Gal(K'/K) N Gal(K'/K'(p)) = Gal(E/E N K) N Gal(E/E(p))
= Gal(E/E(p)(ENK)).
Now, as E is unramified at p, the field E(p) is contained in the maximal unramified extension
of k in k(p,T). That is, we can find an integer s that only depends on K, k, p and p and
is such that, for any value of ¢ > s the group Gal(E/E(p)(E N K)) must be contained in the
unique subgroup of the (cyclic) group Gg that has index p®. However, by construction, the
decomposition group of p in Gg has order at least p' and so the order of its intersection with
Gal(E/E(p)(EN K)) must be at least p'~%. This implies, in particular, that |H| > p'~*.
We now write e for the idempotent in Q[(o)] that is associated to the trivial character of (o).

Then 1—eq is contained in the augmentation ideal of Q[(c)]. Since the latter ideal is generated
by 1 — o, it follows that 1 — eq = 2:(1 — o) for some = € Q (o], and hence also

[

xn_l(l —o)"=(1-o0) (x(l — a)) =(1-0)(1- 61)”_1
=(1-0)(1—e€1)=(1-0).

Thus, if we now fix a natural number z such that z-z € Z[(0)], then this computation combines

with the previous discussion to imply that the element

LK//K(z"_l (1-0)-ax) = 2 ognh. v (1 —=0)" - ak)
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is divisible by p'=* in Mg.

Now, since n < [S(K')\ S(K)| < |S(E)|, property (iii) in Proposition (4.14) implies that n < 2.
By taking ¢ large, Hypothesis (4.8) (ii) therefore implies that z - (1 — 0) - ag = 0 and hence, as
M is torsion free, that (1 — o) - ax = 0. Since o was an arbitrary element of Gal(K /K (p)),
we have therefore shown that ax is fixed by Gal(K/K(p)), as required. O

4.2.4. Reduction steps
The following result provides a key reduction step in the proof of Theorem (4.10).

(4.21) Proposition. Fiz a prime number p and a subset X of Q2 that satisfies Hypothesis (4.5).
Let {(MFg, pr/E, Jr/E)} E,Fex be atriangular system that satisfies Hypothesis (4.8) and is such
that each diagonal term Mp is both Z-torsion-free and satisfies ;e (p*MEg) = {0}. Let II and
Y be finite subsets of San(k) and let T be a finite set of places of k that contains XU Sy (k) and
is such that the T -class group of k vanishes. For each extension L of k set

L(p) = LNk(p,T),
where the field k(p, T) is as defined in Lemma (4.20). Then the followmg sequence is exact

Fex Fex FeXs

where the third arrow is induced by the restriction map resg.

Proof. We need to show that if a = (ax ) is any element of elim

to MGal(Kl/Kl(p)) for every K’ in Xy, then one has ax € My, for every K in X.
To do this, we fix such an element a and argue by 1nduct10n on the quantity

n(K) = |%\ S(K)|.

If n(K) = 0, then K/k is ramified at every place in ¥ and so belongs to Xx. In this case,

Gal(K/K(p)) as

K M x for which ax+ belongs
Gal(K/K( ))

therefore, the given hypothesis on a directly implies that ax belongs to My
required.

We therefore now assume n(K) > 0 and that the assertion holds true for all fields L € X" for
which one has n(L) < n(K). Then, since n(K) > 0, we may fix a (finite) place p in ¥\ S(K).
We now apply the result of Lemma (4.22) below, with ¥/ = {p} to obtain a chain of fields in

k=LyoCcLiC---CLyCL

with |S(L;) \ S(Li—1)| =1 for 1 <i <t, S(L)\ S(Lt) = {p} and S(L) N S (k) = @. We set
F =LK and F; = L;K for each ¢ with 1 < i <t and thereby obtain a chain of fields in X

K=FCIL C---CFCF

with |S(F;) \ S(Fi—1)| <1for 1 <i<t, S(F)\S(F)={p}and Vx = Vp.
We shall now argue by a downwards induction on i (for 0 < i < t) that for any field E in

Gal(B/E(P)  We note in particular that, since

X containing F; the element ag belongs to My
Fy = K, this result for ¢ = 0 implies the clalmed result.
For the inductive argument we first take a field F; in X that contains F; and write E for the

field E4+F = EyL. Then E belongs to X and n(E) < n(K) since p € S(F) C S(F), and so the

inductive hypothesis implies ar belongs to M Cal(B/B(p))

In addition, if either S(E;) = S(E) or p € 11, then the Euler factor Py g/ p, is trivial and so the
Euler limit relations directly imply that ag, = pg/g,(ag) is contained in MGal(Et/Et(p)). On
the other hand, if S(E)\II(E;) = {p} then, as Vg, = Vg, we may apply Lemma (4.20) (with F
and K taken to be E and E;) to deduce that ag, is again fixed by Gal(E:/E:(p)), as required.
This verifies the inductive base and then the inductive step is established by the same argument
with the roles of F, F; and p played by F;, F;_; and the unique place in S(F;) \ S(F;—1) (if
such a place exists). This proves the claimed result. ]
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(4.22) Lemma. Let X' be a finite subset of San(k). Then there exists a non-negative integer
t and a chain of fields in

k=LyoCcLiCc---CL;CL
such that |S(L;) \ S(Li—1)| =1 for 1 <i<t, S(L)\ S(L;) =% and S(L) N Sx(k) = @.

Proof. For each finite place v of £ and natural number n, write Uén) for the group of units in the
ring of integers O, of the completion k, that are congruent to 1 modulo (vO,)". Then Hensel’s
Lemma implies that for any integer ¢ there exists a natural number n, with the property that
UMy = gl rerde @) (gor details see [Neull, Ch. II, Lem. 3.5)).

We define a conductor m := [[,, v'[], v torde(2) of k- where v/ runs over all real archimedean
places of k and v over places in So(k) that are not in ¥, and write k(m) for the ray class field
of k of conductor m. We fix an odd prime ¢ that does not ramify in k, set &[] := k(y, (O;)'/9)
and consider the diagram

k(m) - k[(]

~ N
k(m) kle]

~,

Then ¢ is prime to |u| so that the maximal abelian extension of k in k[¢] is k(ue) (see the
argument of Lemma (4.19)(b)) and so is totally ramified at all places in Sy(k). One therefore
has k(m) N k[f] = k. In particular, for each element o of Gy () we can use Cebotarev’s Density
Theorem to fix a place p, of k that is outside X', splits completely in k[¢] and has Frobenius
on k(m) equal to 0. We note that the degree of k(p,)/k(1) is divisible by ¢ (by Lemma (2.1))
and hence that k(p,)/k is ramified at p, (but not at any archimedean place).

Write kn,1 for the subgroup of k* comprising elements « with |z|, > 0 for all real places of k
and 2 = 1 (mod v™ o420, for all v in Sa(k), and recall that the m-ray class group cly g m
of k is defined as the group of fractionals ideals that are coprime to m modulo its subgroup of
principal ideals with a generator in km 1. Since the set T = {p, | 0 € Gy(m)} generates clg g m,
we find that the ideal ], .5 p is equal to an ideal only supported on places in T times an
element z of ky, 1. This element x therefore is integral outside X’ U Y and, moreover, has all of
the following properties:

o ordy(z) =1ifp e ¥,
e z =1 (mod v™ o)) if 4 is 2-adic and v ¢ T,
e |z|, > 0 if v is a real archimedean place of k.

For any such z the quadratic extension L' := k(y/x)/k is unramified outside Sy(k) UX U T.
Further, since (by construction and the earlier observation concerning principal units) = is a
square in k) for all 2-adic places v outside ¥/, any such v splits completely in L’ and so L' /k is
unramified outside ¥’ U Y. Finally we note that L’/k is ramified at each place p in ¥/ because
x is a uniformiser in k, for all such p. The field L' is therefore such that ¥’ C S(L) C ¥’ U T.
We now set t := |G(m)| and fix an ordering {p; : 1 < j <t} of the places {p, : 0 € Gm)}. We
define L to be the compositum of L’ and the fields {k(p;) : 1 < j < t} and for each integer
1 with 1 < ¢ < ¢ we write L; for the maximal extension of k£ in L that is unramified outside
{p; : 1 < j <i}. This gives a chain of fields of the required sort since S(L;) = {p; : 1 < j < i}
for 1 <14 <t (since each extension k(p;)/k is ramified at precisely p;) and hence both S(L) =
YUX and S(L)\ S(L;) =¥ O

In the remainder of the argument we use the field k(p) defined in (24).
(4.23) Lemma. Assume to be given data of the following sort:

e an odd prime number p,
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e a subset X of Q that satisfies Hypothesis (4.5),

e a triangular system {(MF,g, pr/E, jr/E) Y E Fex that satisfies Hypothesis (4.8) with respect
to p and is such that each diagonal term Mg is a Z,|Gg]-lattice,

o finite subsets Il and ¥ of Sgy (k).

Then the sequence of Z,[Gx]-modules

11
0 glﬂln Mgal(F/Fﬁk<P>) _ S elim® Mg N @n ( M/ Mgal(F/F(p)))
Fex Fex FeXs,

is exact, where the fields F(p) are as defined in Proposition (4.21).

Proof. Fix a family (ag/)p in ker(resl) and a field F in X. Then, by Proposition (4.21), ap
is fixed by Gal(F/F(p)) where, we recall, F(p) denotes F' N k(fpoo, ((’),:T)l/ps) for a suitable
finite set of places T of k that contains ¥ U S,(k), and so it suffices to prove ap is fixed by the
group Gal(F(p)/F Nk(p)). To do this, we note that Lemma (4.19) (b) implies that

F(p) N k(s (OF)7) = F 1 k(e (OF) %) 0 Ryt (OF)VP) = F 0 kp)
and hence that there is an isomorphism of Galois groups

Gal(F (p)(p, (OF)P)/(F N k(p))) = Gal(F(p)/F N k{p)) x Gal(k(szp, (OF)'/7)/(F N k{p))).

For any o in Gal(F(p)/F N k(p)) and natural number d, we can therefore use Cebotarev’s
Density Theorem to fix a set ¥’ = ¥'(d, o) = {q;}1<i<a of d places of k that do not belong to
ITU T and are such that every q; has the following properties: q; is unramified in F' and such
that the restriction of Frobg, to F(p) is equal to o~1, g, is totally split in k(sp, (ka)l/p) and
hence, by Lemma (2.1), such that the ramification degree e; of q; in k(q;) is divisible by p.
Write F; for the compositum of F' and the fields k(g;) for 1 < i < d, and I for the subgroup
of Gal(F}/F) generated by the inertia subgroups in G F of each of the places q;. Then, since
Fy(p)/k is unramified at every place in X', I is contained in Gal(Fy/Fy(p)) and so apy is fixed
by I. In particular, since S(F)) \ II(F) = X', the Euler distribution relations combine with
Hypothesis (4.8) (a) to imply that the element

LF{;/F((l - U)d ) aF) = LF;I/F(( H (1- Fmb;l)) : GF) = LF;Z/F(PFQ/F,H -ar)
ved’

= (trr/F 0 pryyFm)(ary)
=" (pryr 0 paryy e (@)
is divisible by p? in M ;- 1t then follows from Hypothesis (4.8) (ii) that (1 — o) - ar belongs

to p@~N . Mp for a natural number N that is independent of d.
Now, since M is Z-torsion-free, the morphism

Mp = Z[(0)] @z Mp — D (Zp[x] @zi(0y) MP)it, 0 @m = (x(0) @ m)y
X
is injective, where the sum ranges over all characters of (o), we set Z,[x] = Z,[im(x)] and
write Ny for the quotient of a finitely generated Z,[x]-module by its torsion subgroup. It is
therefore enough for us to prove that (1 — x(0)) ® ar vanishes in (Z[x] ®zs)) MF )it for all
such non-trivial characters x. To do this, we note that, because x is a p-power order character,

the field Q,(x) = Qp(im(x)) is a totally ramified extension of Q, with valuation ring Z,[x]

and uniformiser m, := 1 — x(0). In particular, one has p = u - 7T>[<Q" 0O g1 some unit u of
Zy[x]. Tt then follows from (1 — o)%ap € p?~ - Mp and [Q,y(x) : Qp] > p — 1 that

C Wi(P*Q)*N(pfl)Jrl(Zp[X] ®Z[<0>] MF)tf.
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Since, if p is odd, the exponent d(p —2) — N(p — 1) + 1 is unbounded as d increases, this
shows that (x(o) — 1) ® ap is divisible by an arbitrarily large power of 7, in the Z,[x]-lattice
(Zp[X]@7[(oy) MF )t It follows that the element (x (o) —1)®@ar of (Zy[x]®z((»)) MF )it vanishes,
as required. O

(4.24) Remark. If p = 2, then the above argument proves the following variant of Lemma
(4.23): for every element a = (ap)rex of ker(resi!) and every field F in Q one has ap = o%(ar)

for all o in Gal(F/F N k(ugst1, (0)Y2)).

4.2.5. The proof of Theorem (4.10)

To complete the proof of Theorem (4.10) we will need the following two lemmas.

(4.25) Lemma. Let X be a subset of Q2 that satisfies Hypothesis (4.5) and fix a triangular
system {(MFpE, pr/E, Jr/E) Y E Fex that satisfies Hypothesis (4.8) with respect to the prime
number p. Suppose we have (Vo p"Mg = {0} for every E € X. Fix finite subsets I and ¥ of
San(k). Let H be an open subgroup of Gx.

If a = (ap)Ep is an element of el&ngeXME with the property that ag is fived by H whenever E
belongs to X, then ap vanishes whenever II(F') contains Sp(k).

Proof. Fix a F'in X with S,(k) C II(F) and for every natural number n write F;, for the n-th
layer of the cyclotomic Z,-extension Fy, of F'.

Then, by Lemma (4.22) (with ¥’ = ¥), there exists an extension L of k such that ¥ C S(L)
and S(L) N Sx(k) = @. In particular, for every n € N the field L, := L - F,, belongs to Xy
and so, by assumption, the element ar,, is fixed by H. Since S(L,) \ II(F,) = S(L) \ II(F),
the Euler limit relations then show that, for every n, the element

( H (1—Frobv)) Caf, :an/Fn(aLn) EMFn
veS(L)\II(F)

is fixed by H.

Now, since Fj,+1/F), is unramified outside S,(k), one has P, ., /p, m = 1 and so the Euler limit
relations imply the family ar_ = (ap,)nen defines an element of lglne]N(Zp ®z MF,), where
the limit is taken with respect to the maps pr, ,/F, -

In addition, if we fix any non-trivial element ~ of the open subgroup Gal(Fy/F) N H of
Gal(Fx/k), then the last displayed equation implies that ap, is annihilated by the element
(v = 1) - Ives@nnr) (1 — Froby) of Zy[Gr, ] In particular, since each of the elements v and
Frob, for v € S(L) \ II(F') generates an open subgroup of Gr_, we may apply Lemma (4.26)
below to deduce that (ag, )nen vanishes, and hence that ap vanishes, as claimed. O

(4.26) Lemma. Fiz a field K € X and set Ko = Kkoo, where koo is any Zy-extension of k
in which no finite place splits completely. Let {(Mk,,, ¢k,,/k,)n>0 be a projective system of
Z,[GK, |-modules (where K,, denotes the n-th layer of K /K ) that satisfies Hypothesis (4.8)
with respect to p and ;e p'My, = {0} for every n € N. Then, for any generator v of an
open subgroup of G, the element v — 1 acts injectively on l&nn Mg, .

Proof. Fix an element a = (ay,)y of this limit such that (v — 1)a = 0. Then each a,, is fixed by
the restriction of v to K.

Now fix an integer N > 0. By assumption, L = Ké? is a finite extension of K and so KL is
a finite extension of k£ as well, hence Ky L = K,, for some n. In addition, the discussion above
implies that, for any m > n, the element a,, is invariant under the action of 7, hence contained

in MS:(K’"/ Kn), Hypothesis (4.8) (i) therefore implies that

Ui /K (On) = (LR K © PR /K ) (@m) = Naai(kn /i) * f(am) = [Km 0 K] - flam)
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for a suitable endomorphism f of Mk,,. This shows ik, /x, (an) is divisible by [Ky, : K] =

P in Mgal(Km/ Kn)  Since P is unbounded as m tends to infinity, this fact combines

with Hypothénsis (4.8) (ii) to imply a, is divisible by an unbounded power of p in the Z,[Gk, |-
lattice M, , and hence that a, must vanish. In particular, ay = 0 and, since N was chosen
arbitrarily, it follows that a = 0, as claimed. O

m—n

Proof of Theorem (4.10): In the setting of Theorem (4.10), we fix a family a = (apr)p that
belongs to ker(resl). It then follows from Lemma (4.23) that a is fixed by Gal(K/k(p)). Since
the latter is an open subgroup of G, Lemma (4.25) implies that ap vanishes for every F in €
for which II(F") contains Sy (k).

To proceed, we now fix a field F' in € and write

E* = ky(F) and k"™ := ki (F)

for the composites of all extensions of k in k(p) in which at least one place of S,(k) \ II(F)
splits completely, respectively is non-ramified. We note, in particular, that

k(F) = kn(F) € k° C k™.

We have already observed that ap vanishes if F' is ramified at every place in Sy, (k) \I, so for the
remainder of this argument we may assume that at least one place in Sy, (k) \ II is unramified in
F. Tt follows that F'Nk(p) is contained in k™" (F') and hence that ap is fixed by Gal(F/F Nk™).
To prove that ap is fixed by Gal(F#/F N k®) it is enough to choose an arbitrary element o of
Gal(F/F N k®*) and show that (o0 — 1)ap vanishes, or equivalently (by the above observation)
that e, (0 — 1)ap vanishes for every character x of Gr that factors through Gpnger but not
through Grnps.

We fix such a x and claim that there can exist no place v € S,(k)\II of k that is both unramified
in F' and such that y(Frob,) = 1. Indeed, since any such place v splits completely in the fixed
field F, of ker(x) in F', one would have F\ N k™ (F) C F N k° which contradicts the fact that
x does not factor through Gprgs. We may therefore assume that x(Frob,) # 1 for every v in
Sp(k) \ TI(F).

Fix an integer n that is large enough to ensure the n-th layer F;, in the cyclotomic Z,-extension
of F is such that S(F;,,) = Sp(k). Then the II-relative Euler system relations imply that

X(Pr,/Fm) - ex - ar = ey - Pppn-ar = ex - pp,/r(ar,) = 0.
In particular, since the element
X(Pr em) = [[  (1—x(Frob,)™)
vESp(K)\IL(F)
is non-zero, the above equality implies that the element e,ar vanishes, as required.

This completes the proof of Theorem (4.10). O

4.2.6. The proof of Corollary (4.13)

In the setting of Corollary (4.13), we suppose to be given an element a = (ap)p of limgGXM ja
with the property that ap is fixed by Gr whenever F' belongs to Xx.

Then, by assumption, we may choose a large enough odd prime number p such that all of the
following hold: p does not belong to S, p does not ramify in k and Hypothesis (4.8) holds for the
triangular system {(Mp g, pr/E; jr/E)} B Fex. In particular, {(Z, ®z Mr g, pr/5,jr/E)} EFex
is then a triangular system that satisfies Hypothesis (4.8) and is such that each diagonal term
Mg, is a Z,[Gg|-lattice.

In addition, Lemma (4.25) implies that the element ar is fixed by Gr whenever F' belongs to
Xs,(r) and so a belongs to the kernel of the map resgp(k) that occurs in Theorem (4.10) for the
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triangular system {(Z, ®z Mrg, pr/B,jr/E)}B,Fex- We may therefore apply the latter result
to deduce that each element ap is fixed by the group Gal(F/F Nk (F)).

Now, the assumption that p does not ramify in k& implies that the extension k(u,)/k is totally
ramified at all p-adic places of k and hence that kyj(F') = k whenever Sy,(k)\II(F) is non-empty.
For any such F, the element ap is therefore fixed by Gr. On the other hand, if S,(k) C II(F),
then we have already seen above that ap is fixed by Gp.

We have therefore proved that the element ar is fixed by G for every F' in X, as required to
prove Corollary (4.13). O

4.3. The localisation exact sequence

In this section we consider the case that the subset IT of Sg,(k) that is fixed above is empty.
We assume to be given both a projective system {(Mp,9r/p)}rex and a triangular system
{(NF.E, pr/Es JF/E)} EFex of R[Gr]-modules. With ep the idempotent of Q[Gr| defined in (3),
we also assume to be given a family of injective R[Gr]-module homomorphisms fp: ep Mp —
Np that gives rise to an (injective) homomorphism of R[Gx]-modules of the form

6 = (5F)F limg eFMF — @ng NF, (27)
Fex Fex

where the left hand Euler limit is as defined in Example (4.4) (d).
Our aim is then to investigate the composite homomorphism

,8*: Lim EFMF — iliﬁlz eFMF ﬁ) gliLnZ NF, (mF)F —> (eFmF)F —> ﬁ((epmp)p) (28)

H
FeX Fex Fex
under the assumption that (Mp, ¢r/p)Fex satisfies the following technical hypothesis.

(4.27) Hypothesis. For each £ C F, there exist injective maps tp/p: Mp — Mp such
that (MF, tp/p)rex is an inductive system of R[Gx]-modules for which both of the following
conditions are satisfied: There exists a natural number s (independent of F'/E) such that one
has both

lF/E°C PF/E = Naa1(F/E) and YF/ECLlF/E = [F: E]°.
(4.28) Example. For any Dedekind domain R, the discussion of Example (4.9) (b) shows that
the canonical projective system (R[GE], Tr/g) satisfies Hypothesis (4.27) with s = 1.

We recall the idempotents ek defined in (10) and write Y% for the set of all characters x in Gx
for which x(ex) # 0. In other words, T is the set of all characters x such that for every place
v € Sxo(k) one has x(v) = 1 if and only if v € Vx. We note, in particular, that the set T
defined in §2.1 is contained in Y%, and hence that the idempotent ey is such that exex = ex.
We can now state the main result of this section.

(4.29) Theorem. We assume to be given data of the following sort:

a finite set of prime numbers S,

a subset V' of Soo(k),

a subset X of Q that satisfies Hypothesis (4.5) with V = {V'},

e a projective system of Zs|Gr|-lattices {(MF, pr/E)}rex that satisfies Hypothesis (4.27),

a triangular system {(Nr.g, pr/E, JF E)}FEex such that each diagonal term is a Zs|GE]-
lattice,

e o homomorphism  of R[Gx]-modules of the form (27).
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Then, for any such collection of data, the following sequence is exact:

lim (2, ®7 NF)
0o —— &iLneFMFLQi@QNf?#H( (zi() : )
Fex Fex pg¢S B (ker )

Here, by abuse of notation, we write By for the homomorphism that is induced by the map in
(28) (and the equalities epep = ep) and we set N .= NpN(Q®z Br«(erMp)). We also write
A for the map induced by the diagonal map

H NF — H (H(Zp KRz, NF))

rex FeX p¢S
(where the internal direct product is over all rational primes p outside S), 0, for the canonical

boundary map

lim (Zy, @z epMp) — lim (lim, (epMp)) [p"],
Fex nelN

and ﬁﬁp) for the map

@1 (7, @7, erME) — elim? (Z, @z Nr)
Fex Fex
that is defined by Zy-linearly extending each map By r: epMp — Np induced by Br.

An application of this result will play a key role in the proof of Theorem A from the introduction.
Its proof will be completed in the last paragraph of this section after we have first established
several necessary auxiliary results.

4.3.1. Generic Euler limits

In this paragraph we investigate Euler limits that arise from systems of Q[Gr]-modules.

(4.30) Proposition. Let X C Q be a subset that satisfies Hypothesis (4.5) with V = {V'} for
some V' C S (k). Suppose to be given a projective system {(MF, pr/p)}rex of QIGr]-modules
that satisfies Hypothesis (4.27), and take I1 = &. Then the following claims are valid.

(a) Write A for the map l.&nFeX erMp — [[pexererMp sending (mp)p to (exepmp)r.
Then the following sequence of R[Gx]-modules

0 —s m EFMF(GMF@Q BFMF(MF( H eleFMF)/im(A)v
Fex Fex Fex
is exact, where the Euler limit is as defined in Example (4.4) (d).

(b) Let R — R’ be an injective morphism of subrings of C and set My = R' @r Mg for
each F € X. Then the following sequence is exact

0 ( H EFMF) n ( I&H EFM;:) % %in 6FM;J(aF)F»—>(epaF sz ((eFM;:)/(eFMF))’
Fex Fex ex Fex

o

where the Euler limit is as defined in Example (4.4) (d).

Proof. To prove part (a) we recall (from Example (4.4) (d)) that the second arrow is indeed a
well-defined homomorphism of R[Gx]-modules. It is also clear that the image of the second
map is contained in the kernel of the third map. To prove part (a) it is therefore enough to
show that the canonical map

lim ep(1 — e1)Mp — elim? (1 — er)epMp, (ap)r = (erar)r (29)
Fex Fex

is an isomorphism. To do this, we introduce the following notation: let H be the Hilbert class
field of k and write Gg/ ~ for the set of conjugacy classes of the natural action of Gg on
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Gr. For each non-trivial x in é;;/ ~, we fix a place p, in Sgn(k) such that x(p,) # 1 and
[k(py) : H] > 1. If now F € X is a field and x € Gr an unramified character, then we set
Fy = k:(pX)err(X). For any ramified character x of Gr we let I = F*r() | Then, in all cases,
the field F belongs to X’ as a consequence of Hypothesis (4.5) (ii).

We shall now prove that the assignment
(ar)r = (arF)F = (aF + > [FFy : FX]ex(erp o LFFX/FX)(CLFX)>
x€TE\(YrU{1r})
defines an inverse to the map (29). To do this, we first claim that
(1—e1)ar = Z [F'Fy : F\]ex(orr Fotrr, r)(ar,) (30)
x€Yr\{1F}
for every field F' € X. Let x € T be a non-trivial character and note that

F?

exar = exprp, /r(arF,)

because the Euler factor Prr, /pg is either 1 or 1 — Frob;xl. Similarly, since x € T, we also
have x(Prr, /F, z) # 0 and this implies that

ExAF, = ExPFF, /Fy (arr,)-

We may thus calculate

exar =exprp, /r(arm,)
=[FF, : F]
]

sexSOFFX/F(NsGal(FFX/Fx)aFFX)

=[FFy: F\] °ex(¢rr /F o trry /7, © PFF R )(AFF )

=[FFy : F\]ex(orp F o trr r)(ar, ), (31)
where the third equality is a consequence of Hypothesis (4.27) (i). We have hence shown that
ar is equal to the sum ZXET%\{IF}[FFX cE] ey (rp r o trr r, ) (aR,)-
It is clear by construction that epapr = ar and also, given any element b of @Fex(l —e1)epMp,

that one has ((epbr)r)r = bp. It therefore remains to show that (ar)r defines an element in
@Fex(l —e1)epMp, and to do this we suppose to be given a pair of fields E, F € X such
that £ C F. One then has

ep/e(ar) = @F/E( Y [FF: B ey (ppp Fo LFFX/FX)(CLFX))
XETE\{1r}

= Y [FFE B mpple)(err e o trryr)(ar,)

XETE\{1r}

= Z [FEy : B\ P [FFy : ER e p(ex)(@eR /E © tEFR, /P, ) (AR, )
XETE\{1r}

= > [BE\:E] ex(¢pp 5o ter B ) 0E,),
X€ETE\{1r}

where the third equality is a consequence of Hypothesis (4.27) (i) and the last line uses the fact
that 7p/p(€r) = eg since E and F' are both contained in X'

Turning to part (b), it is enough to prove that

( H (EFMF + (1 - BF)GFMJ/;)> N m EFMJ/T - H erMp. (32)

FeXx Fex FeXx
To verify this, we fix a field F' € A and introduce the following notation. For any field £ € 2
we let Z(F) C Gr be the (possibly empty) subset comprising all characters x such that F\, = FE.
Note that by construction each field F) depends only on the class of x in Y%,/ ~ and hence
that Z(F) is stable under the action of Gq. This implies that the associated idempotent
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ex(p) = erz(E) ey, belongs to Q[GF].
To investigate the F-component mp of an element m = (mg)g of the left hand side of (32) we
use the decomposition

mpzl-mF:(Zex)-mF: Zexmp

x€Gr XEGF

= Y [FF: ] e\(prpr o trryr,) (mp,)
XETE

— Z ( Z [FE : E]” (WFE/FOLFE/E)(mE)>
Eex xeE

= Z FE : E - ea(E)(SOFE/F o LFE/E)(mE)7 (33)
EeX

where the fourth equality follows from (31) and the fifth from the fact that each field F, belongs
to X.

We shall now use an induction on the number n(F) of (non-archimedean) prime divisors of the
conductor of F' to show that mp € epMp for all F.

Let us first assume that F' has prime-power conductor. From (33) we see that it is enough to
show that ez(p)MmE € € eMFg for all fields £/ which are of the form F' = F, for some character
X € T%. Fix such a field E. Now, x € T by the construction of E' = F, (which in the case
that x is unramified involves the choice of a prime ideal with full decomposition group in the
kernel field of x) and so ey (1 —eg)eg = 0. By assumption mg belongs to egMp+(1—eg)eg M
and so we obtain ez(pymp € egMp, as claimed.

Now assume to be given a natural number n and suppose that for every field £ in X such
that n(E) < n one has that mg € egMpg. Fix a field F' in X such that n(F) =n+ 1. Let E
be of the form F) for some x € Y%. If x is ramified, then F is the kernel field of x and, in
particular, a subfield of F'. Clearly, we therefore have n(E) < n(F'). If x is unramified, on the
other hand, then F, is defined to be a prime-power conductor field and so n(E) = 1 < n(F).
In both cases therefore n(FE) < n(F).

If n(E) < n(F), then, by the induction hypothesis, one has that mg € egMpg. On the other
hand, if n(E) = n(F), and yr € epMp and ip € (1 — ep)ep M} are such that mp = yr + ip,
then, by reversing the calculation in (31), one has

[FE: E]™° €=(E )(SDFE/F 0 LFE/E Z Ex " Mp = Z ex(yp +ip)
(E) XEE(E)
= Z ExYF = C=(E)YF,
XEE(E)

where the third equality is valid since, under the present hypothesis, each x in Z(FE) is not
trivial on the decomposition group of any prime divisor of the conductor of F' so that one has
ey = eyer and hence also ey (ip) = 0.

These observations imply that the element ez(py(¢rg/F © tpr/p)(me) belongs to egMp for
every subfield E of L that is of the form F) for some x € Tr and hence, via the decomposition
(33), that mp belongs to epMp, as required to complete the proof of part (b). O

4.3.2. Profinite completions

In the setting of Theorem (4.29), we now assume to be given an element a of the Euler limit
lim? cx N7 and consider the modules

M = lim egMp, M(a) = @g (Bs,r(erMFp) + Zs|Grlar), X = X(a):= M(a)/B(M).
Fex Fex
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Then, to prove Theorem (4.29), we must show that X vanishes if, for all primes p ¢ S and all
fields F' € X, the element ar belongs to a suitable submodule of Z, ®z Np.

In this paragraph we use completion functors to study the vanishing of X.
To be more precise, for any Z-algebra H and H-module A, we shall use the modules
A=1im A/(nA) and AP:=lim A/(p"A).
nelN neN
Observe that the assignment A — A (resp. A »—>/gp) defines a functor from the category of
H-modules to the category of H-modules (resp. HP-modules). For the reader’s convenience,
we recall some useful properties of these functors in the following result.

(4.31) Lemma. For an H-module A and prime p the following claims are valid.

(a) If A is finitely generated as an abelian group, then the natural maps A @g, Z — A and
Zy @7 A — AP are bijective.

(b) (/—\)p is an idempotent functor.

(c) If A is Z-torsion-free, then every short eract sequence 0—> A - A, - A—> 0 of H-
modules induces an exact sequence 0 — A1 — A2 S A0 of H-modules and similarly
for the functor (—)p,

(d) If A is Z--torsion-free, then so too are the groups A and AP.

Proof. Claim (a) is well-known. In addition, claim (b) is both straightforward to prove directly
and also follows immediately from the general result [Mat78, Th. 15] of Matlis (since AP is
equal to the completion of the Z-module A at the ideal generated by p).

For both claims (c) and (d), it it enough to consider the functor A — A. To prove claim (c)
in this case we note first that, since A is torsion-free, for each natural number n the Snake
Lemma applies to the following exact commutative diagram

0 > Ay ¢>A2 ° A 0
n n l’n
0 > Ay ¢>A2 ° A 0

to give an exact sequence 0 — A;/nA; M) Ag/nAy M A/nA — 0. It is then enough to

note that the latter sequences are compatible (with respect to the natural projection maps)
as n varies and that, by the Mittag—Leffler criterion, exactness of the sequences is preserved
when one passes to the inverse limit over n since, for each multiple m of n, the projection map
A1/mA; — Aj/nA; is surjective.

Finally, to prove claim (d) we must show that if x = (), is an element of A with the property
that px = 0 for some prime p, then x = 0. But, since A is torsion-free, for each n the element
Znp is the image in A/(npA) of an element 2, of nA. Since z,, is equal to the image of Z, in
A/(nA) one therefore has z,, = 0, as required. O

We can now state the main result of this paragraph.

(4.32) Proposition. The natural composite homomorphism of R-modules
X=X H )A(p7
pgS
where the product runs over all rational primes, is injective.

Before proving this result, we establish a preliminary result.

(4.33) Lemma. If, for all primes p ¢ S, one has a € Pi(ker),), then the module X is
Z.-torsion-free.
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Proof. We fix a prime p ¢ S and shall then demonstrate that X has no element of order p.
By assumption, there exists an element x®) = (:Ug))EeX of kerd, C @Eex(zp ®z egMEg)
such that 8% (2P)) agrees with a inside ill@g eX(ZP ®z Ng). In particular, one has that

Bsm(eeMEg) + Zs|Gglag is a submodule of Z, ®z B« r(egMg) = ﬁi{%(Zp ®z egMpg). One
therefore has an injective map
X = M(a)/ﬁ*(M) = (@EGX(ZP ®z B*’E(EEME)))/B*(M)

and it is now to prove that the quotient on the right hand side is p-torsion-free. To do this,
we write M(®) for the limit @Eex(zp ®z epMpg) and first claim that one has Bffo)(M(”)) =
@EGX(ZP ®z Bx,e(eeME)). Indeed, since the kernel of Bi{% is a finitely generated Z,-module
and hence a compact Hausdorff space, one has that mfl?e X(ker ﬁip ])5) vanishes. Passing to the
limit (over E € X') of the exact sequences

ﬁ£?)
0 — ker %) —— Z, ®z egMp % BUL(Zy @z epMp) — 0

then gives an exact sequence

(p)
0 —— lim (ker 53’}3) M®) = lim (Z, @7 B p(eeMEg)) — 0 (34)
Fex Ee

=

and hence the claimed identfication. To prove that the quotient of B,Ep ) (M®) by B,(M) is
Z-torsion-free, it is enough to prove that the outer terms in the exact sequence

. (p) (p)
0+ (hm B p(erMe)) 3, (ar) » (B OI) 75 ar) » (BN i 5, p(ep i) + 0
Fex Pex ’
(35)
are each p-torsion-free. As for the module on the left, we first note that passing to the limit
(over Fin X') of the exact sequences

0—— kerB*J: E— EFMF &) 5*,F(€FMF> — 0

combines with the injectivity of B, to imply the exactness of the sequence

0 —— M~ lim B p(erMp) — lim!_ (ker B p).
Fex

It is therefore enough to prove that l&niﬂe X(ker Bs.r) is p-torsion-free. To this end, we re-
call that each Bp: epMp — Np is assumed to be injective, which implies that also the
induced map 6}?): (Z, ®z erMFp) — (Z, ®z Nr) is injective. The injectivity of the map
B@). @FGX(ZP ®zepMp) — lim?eX(Zp ®z Np) then combines with Proposition (4.30) (a)

to imply that Bip) : l'&lFeX(Zp ®zerMp) — lim?GX(Zp ®7z NF) is injective. This proves that
@ Fe X(ker ﬁip 1);), being the kernel of B»{p ) by the exact sequence (34), vanishes. Upon noting
that ker Bip 1)? identifies with Z, ®z ker B, r (as Z, is a flat Z-module) and that, as already

observed before, l&l},e X(ker Bg’ }) vanishes, passing to the limit (over F' in X) of the exact
sequences

0—— kerﬁ*,F — Zp (7 kerﬁ*’F — (ZP/Z) Rz, kerﬁ*,p — 0
therefore gives an isomorphism

lim ((Zp,/7,) ®7, ker B ) — lgn;ex(ker BiF)-
FeX
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Since (Z,/Z) ®z, ker By r is p-torsion-free for every F', this shows that @l;ex ker B, is p-
torsion-free, as required to conclude that the module on the left in (35) is p-torsion-free.
Turning now to the module on the right in (35), we pass to the limit (over F' in &) of the exact
sequences

0 —— Bur(epMp) —— Zyp ®7z, B plerMp) —— (Zp/Z) Qg Bir(epMp) — 0

to deduce that the quotient (65?) (M(p)))/(l'&npex Bs,r(epMFp)) identifies with a submodule of
the projective limit @F((ZP/Z) ®z Py, r(erMFp)). Since each group (Z,/7Z) @z P«,r(erMF)
is p-torsion-free, said quotient is therefore p-torsion-free as well, as required.

This concludes the proof of the lemma. O

We now prove Proposition (4.32). At the outset we note that the natural map X — [Les Xr
is injective by virtue of the Chinese Remainder Theorem, and so it suffices to show that the
same is true of the homomorphism 7: X — X.

Given that X is Z-torsion-free (by Lemma (4.33)), we may appeal to Lemma (4.31) to obtain
a commutative diagram with exact rows

—
— ﬁ*

0 M

M(a)" — X —— 0.

To proceed, we first note that the map i1, and therefore also io, is injective. Indeed, the kernel
of 11 is equal to the intersection (1), cy(n - M(a)) and so for any element x € ker(i;) one has
that, for each field E € QV, the value zg is divisible by every natural number. Since zg is
contained in Ng, which is a finitely generated Zs-module by assumption, it then follows that
rp = 0.

By using the maps i; and i2 we may, and will, identify M and M (a) with their images inside M
and M (a)", respectively. These identifications then combine with the Snake Lemma to induce
an isomorphism ker (i) = (M (a) ﬂ@(ﬁ))/ﬁ* (M), with the intersection taking place in M (a)”".
We are therefore reduced to verifying the equality BA*(]\//T )N M(a) = B (M).

For this purpose let m = (my,), be an element of M = lim M/(nM) such that Bi(m) =
(B«(my,))n belongs to M (a). If we set Mg(a) = Zs|Grlar + BE«(eeME), then by assumption
the image B\*(m)E = (Be(egmn,E))n of B\*(m) under the natural map M(a)" — Mg(a)" be-
longs to Mg(a) C Q®z Be «(eeME). We may therefore find a natural number that annihilates
the image of 3,(m)g inside the quotient

BEx(eMp)"/BE.(eeMg) = Bg .. (eeMp) ©z (Z)Z).

The latter module is however Z-torsion-free and so we deduce that B:(m) E is contained in
BEx«(eeMEg). By the injectivity of 5, we have therefore proved that egpmpg is contained in
epMpg, which is to say that mg € egMp + (1 — eE)eEMAE. It now remains to prove that
]/\Zﬂ (H(EEME + (1 — eE)fE]/WE)) =M.
E

To do this, it is enough to show that any element m of the above intersection belongs to M.
For any such m we write (mg)g for its image under the natural map M — @E(eEME)A.
Then, by applying Proposition (4.30) (b) to the ring extension Z — Z and projective system
(Q®zegMEg, vr/E), we deduce that the element (mpg)g of the limit @E(Q Rz eEJ\//.-/E) belongs
to @E(Q ®yz €egMpg). By Lemma (4.34) below, this then implies that m belongs to M, as
required. O
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(4.34) Lemma. Let {(QE,pr/E)}pecqv be a projective system of finitely generated Zs|Gr]-
lattices and set () == l&nE QE. Then the following sequence is exact:

A Q®z Qr
’ @ @ 1;‘,[Q®ZQE.

Here the rightmost arrow is induced by the natural map @ — h&lE @;

Proof. The map Q — @ is injective because each Qg is a finitely generated abelian group. To
prove exactness of the sequence we therefore fix an element m = (my,), € Q = l&nn Q/(nQ)

with the property that for each E the image mpg of m under the natural map @ — Qg is
contained in Q ®z Qg and then show that m is in fact contained in Q.

To do this we note that Qr N (Q ®z Q) = Qr (because Z N Q = Z) and so the assumption
implies that, for every field E, there exists an element x5 € (Qg such that the sequence mpg
agrees with xg in Qg. This is to say that, if mp is given by the family (mg y)n, then we have
men,—oE € nQ g for all natural numbers n. Since Q) is Z-torsion-free, we can therefore write
MEn — TE = NZE,, for some unique element 2, € QF.

We first claim that the elements (zg)g define an element of Q). For each n € IN we have that

pr/E(TF) — B = pp/p(MFn — N2FR) — TE

MEn —TE — nPF/E(ZF,n)

= n(pr/E(2Fn) — 2Em) € NQE.
However, Qg, being a finitely generated Zs-module, has no non-zero divisible elements and so
we must have that pp/p(zr) = g, as claimed. This shows that x := (rg)p defines an element
of @, and uniqueness of the elements z, r implies that the same is true for (z, g)g. We have
therefore proved that z — m,, € n@ for all n, which is to say that x = m in @, as desired. This
completes the proof of the claimed result. O

4.3.3. The proof of Theorem (4.29)

Before turning to the proof of Theorem (4.29), we provide the following auxilliary result re-
garding the compatibility of Euler limits with p-adic completions.

(4.35) Lemma. Let X be a subset of Q and {(Cg,F,pr/E,jr/E)}F E€x a triangular system
with the property that each map jp/g is injective and each diagonal term Cp is p-torsion-free.
Then, for any finite subset I1 of Sgn(k), the natural map

(@H CE)™P — elim™ Cf’, ((men)Bex) o = ((MER)nEN) pe -
Eex Eex
18 both well-defined and injective.

Proof. Since the maps jr g are injective, as shall for brevity omit explicit reference to them.
We set C' = glimgeXCE and, for every E € X, we take the limit (over n € IN) of the natural
maps C'/p" — Cg/p" to obtain a map
ch P O (36)
By taking the product of these maps over £ € X we then obtain the further homomorphism
cNP H Cr
E

which we claim has image inside ghmge){@p. To show this we suppose to be given an element

m = ([my])n of CP and, for every E € X, write mg for the image of m under the map (36).
For every n and F' € X containing F, we have that

lor/e(mp)] = [pr/p(mn,F)] = [Pr/en - minel = [Pr/en-me]  in Cg/p"
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(here my, r denotes the image of m,, € C'in Cg). Since the above equality holds for all n, this
shows that pp g(mr) = Pp/p - me, as required.

To prove injectivity, let us now assume that the system (mg)g is trivial in %h_glgex(}/’;p. That
is to say that, for every E € X', one has that mg = 0, and hence that for each n the element
my,, i is divisible by p™ in Cr. We can therefore find z, g such that m, g = p"z, . We now
fix a natural number n and claim that the collection z,, := (2, g)E is an element of C. Indeed,
for every F' € X containing F, one has that

p"- pF/E(Zn,F) = PF/E(ann,F) = PF/E(mn,F) = Pp/pn - Mng = p" (PF/E,H " Zn,E)-
Since C is assumed to be p-torsion-free, we deduce that pp/g(zn,r) = 25k, as required.
We have therefore proved that one has m, = p"z, in C, and this shows that each m is
trivial. O

We are finally in a position to carry out the proof of Theorem (4.29).

Proof (of Theorem (4.29)): At the outset we note that the map S, is injective as a consequence
of Proposition (4.30) (a), and that the image of f, is clearly contained in the kernel of A. In
order to establish Theorem (4.29), we therefore need to prove that any element a of the kernel
of A belongs to the image of 8, or, equivalently, that the class of such an element a in the
quotient X vanishes. By Proposition (4.32) it is enough for this purpose to verify that the class
of a in XP vanishes for every p ¢ S. To do this, we first clarify the nature of the map 6, that
appears in the statement of Theorem (4.29).

Fix a prime number p ¢ S and let n be a natural number. Then, by passing to the limit over
E € X of the tautological short exact sequences

0— EEME p_”> GEME — (EEME)/pn —0

one obtains a canonical short exact sequence

. Opn_ (.
0= epM/p" = lim, _ (epMp/p") == (lim,_. (esMg))[p"] = 0. (37)
We define the map 6, in Theorem (4.29) (a) to be the composite homomorphism

lim (Z, ®z egMpg) = lim (lim((egMg)/p"))
EeX EeX n
= Jim (lim ((c5Mg)/p"))
n FkEeX
— lim(lim}, . (enMp))[p"]

<—FEex
n

in which the two isomorphisms are the canonical identifications and the unlabelled arrow is the
limit (over n) of the maps 6, in (37).

Having defined 6, we are now ready to complete the proof of Theorem (4.29). As a is assumed
to belong to the kernel of A, there exists an element u(?) = (u%’)) pex of ker@, such that a

is equal to @(f)) (u®)) in limiex(Zp ®z Np). In particular, one has that ap belongs to the
image of ,Bip%; for all £ € X, and hence that Bip});(Zp ® egME) + Zy|Grlag coincides with
ﬂi’%(Zp ®z egME). Lemma (4.35) therefore gives an injective map

in: M(a)" s elim? (8).(Z, ©z epMg)).

Eex
We then obtain a commutative diagram

7P pE Ap TP
M » M(a) X 0

Js [ (39)

(p)
0 — lim (Z, ®z epMp) P lim® (B2 @7, M),
EeXx EeXx

0
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where the top line is exact as a consequence of Lemma (4.31) (c) (this uses that X is Z-torsion-
free by Lemma (4.33)). To prove that the class of @ in XP vanishes it is now enough, by the
exactness of the top line in (38), that a coincides, in M (a)™P, with an element in the image of
B

The explicit definition of #, and the exactness of the sequence (37) combine to imply the

existence of a pre-image z®) = ((m%’))EGX))nE]N of ) under the natural map i;: MP —
@EEXSP (Z), ®7 eeME) that sends 2P to ((x(Ep))nE]N))EEX‘ By the commutativity of the

square in (38) we then have that
(20 B (@) = (B 0 i) (2®) = B (u”) = in(a).

The injectivity of 7o then implies that a is equal to Bf (2(P), as required.
This concludes the proof of Theorem (4.29). O

4.3.4. p-adic Euler limits

In this final paragraph we provide a useful result on p-adic Euler limits. To state this result
we fix a prime p and an isomorphism C = C,, which we use to regard Q, as a subfield of C.
We write S, for the set of p-adic places of k.

(4.36) Proposition. Let X be a subset of Q) that satisfies Hypothesis (4.5) with V = {V'} for
some V. C S(k), and let {(MF,SOF/E)}FEXSP be a projective system of Zy|Gr]-lattices that
satisfies Hypothesis (4.27). If, for each element m € Mg \ {0}, there exists a natural number
d (that depends only on m and p) such that the element 1 p(m) cannot be divisible in Mp by
any power pt for t > d, then the following map is bijective:

o @1 erMp — zlimg GFMF, (mF)F — (eFmF)F.
FEXSp FEXSP

Proof. Assume to be given a Zj,-extension k., of k in which no finite place splits completely
(for example, one may take koo to be the cyclotomic Z,-extension of k). Since all infinite places
split completely in ko, Hypothesis (4.5) (i) then implies that, for any field K € X, every finite
extension of k£ contained in the composite K, = Kk is also contained in X. We write K,, for
the n-th layer of Ko /K and let Ax = Z,[Gal(K/k)] be the relevant (equivariant) Iwasawa
algebra.

Fix a field £ € Xg, and let (ar)r be an element of Ji&n}@?eX erMp. Since S, C S(F) and
Sp

E+ /E is unramified outside p, we have S(E) = S(E,,) for all n > 0. The defining property of
the Euler limit therefore simplifies to ag, = ¢g,, /g, (aE,,) for all m > n. It follows that the
family (ag, ), defines an element of @n eg, Mg, . Now, each term in the exact sequence

0—— (EEnMEn)[eEn] E— eEnMEn ﬂ) eEnMEn — 0

is a finitely generated Z,-module and hence endowed with the structure of a compact Hausdorff
topological group. Consequently, we obtain an exact sequence
0 — lim ((eg, M, )[ep,]) — lim(ep, Mp,) — lim(eg, Mp,) —— 0
n n

n

and now claim that the term on the left hand side vanishes.

Since no finite prime splits completely in E/E, we can find an integer N > 0 such that, for
all n > N, each character x € Q/\En \ YTg, factors through G, . For any o € Gal(E,/Ex) and
x € (eg, Mg, )|er, ]| we therefore have 0 - v =0o(1 —epg,)z = (1 —eg,)r = x.

This shows that lim ((eg,Mg,)leE,]) is contained in the submodule of lim (eg,Mg,) com-
prising all elements invariant under the action of Gal(Ey/EyN). By Lemma (4.26), we have
that (l&nn g, Mg, )G (Fo/EN) vanishes. Tt follows that Hm ((eg,MEg,)leE,]) vanishes as well,
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as claimed.
The discussion above shows the family (ag, ), converges to a unique element bp_ = (bg, ), in
lim(ep, Mp,) = lim(eg, Mg, ) (39)
n n

with the property that eg, b, = eg, ap, for all n. We next claim that the family b = (bE>E€Xsp
defines an element of hén 5 (egME). To do this, we suppose to be given a field F' € Xg, which
contains F and first note that it is enough to prove that ¢r_/p_ (br,,) = bEe,,, where pp_ /g
is the map l'&nn(anMFn) — @n(eE,LMEn) induced by the maps ¢, /g, . Now, for each m € IN
we have
TE/Em (€Fm) * PEy /B PP B (OFn) = PEy jBo * PF ) B (€FmDF,)
= Pp/Bn2 P /B (CFnOF,)
= TrFm/Em (eFm) : PFm/Em,@ CAE,,
= TFpn/Em (er,) - PFm/Em,@ bp,,,
where the last equality uses that mp /g, (er,) - €g,, = 7TF, /g, (eF,). Taking the limit as
before, we see that
Pr/go 9P /B (bFs) = Pr/Eo - bEy - (40)
Since no finite place splits completely in E+,/E, for each place v € S(F)\ S(FE) the associated
Frobenius automorphism Frob,, generates an open subgroup of Gal(FE /k). Given this, Lemma
(4.26) asserts that 1 — Frob,, and hence also Pr/p o, acts injectively on yLnn(eEnMEn). We
conclude that ¢/ p(br) = b, as claimed.
To establish the proposition, it now remains to prove that the assignment a — b defines an
inverse ¥ to the natural map a. Suppose to be given a family m = (mp) € l'&lF(eFMF),
then our construction yields eg,mg, = eg, (¢ o a)(m)g, for all n. The isomorphism (39)

hence shows that mpg, = (¢ o a)(a)g, for all n. In particular, mg = (v o a)(m)g and so
m = (¢ o a)(m). Conversely, a o 1) = id holds by construction. O

5. Euler systems and Euler limits

In this section we derive concrete arithmetic consequences of the results on Euler limits that
were established above.

5.1. The Uniformisation Theorem

If r and 7’ are rank functions for k (as in Definition (2.2)), then we say that ‘r is greater
than 7", respectively ‘r is at most "’ (and write ‘r > 7", respectively ‘r < r”) if one has
r(E) > r'(E), respectively r(E) < 7/(E), for all E € Q(k).

Before stating the next result, we also recall that if = is the maximal rank function 7,y for k,
then the notation ES}(Q) is abbreviated to ES;(Q).

(5.1) Theorem. Fiz a subfield Q of C such that ESk(Q) contains the Rubin—Stark system ey,.
Then the following claims are valid.

(a) For any rank v with * > rmax, the module ES} (Q) vanishes.

(b) For any rank v with r < ry.x, there exists an isomorphism of Q[Gx]-modules

PRy 7 (Q) = ES[(Q), (fr)e — (fe(eE/m))E,
where we use the module of Perrin-Riou functionals defined in Exzample (4.4) (b).
(c) In mazimal rank, one has ES(Q) = Q[Gx] - ex + ESp(Q)%.
(d) The Q[Gx]-module generated by €, is free of rank one and equal to ES,(Q)™.
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Proof. Claim (a) follows directly from Lemma (2.6) (b). To prove claim (b), we first note that
the Rubin—Stark system e is an Euler system by Lemma (2.22), and that the image of the
explicit map in claim (b) is contained in ES;(Q) (cf. Example (4.4) (b)). It therefore suffices
to show that every system ¢ = (cg)r € ESL(Q) arises uniquely in this way.

Fix a field £ in Q(k). Then the R[Gg]-module isomorphism RO sm) = BRXp,s+(p) induced
by the Dirichlet regulator 1mphes that there exists an (in general, non-canonical) isomorphism
of Q[Gg]-modules QOE}S =~ QXg g+(E), and hence that the epQ[Gp]-module eEQ(’)E S = ~
epQXp s+(p) = eeQYE vy 1s free of rank rg. It follows that the epQ[Gg]-module

rE «
erQ Az[g s S(E) = /\GEQ[QE] e Q0% ()

is free of rank one. We now first claim that the Rubin-Stark element €p;, is a basis of this
free module. To do this, we write e/, = ¢ - a for some ¢ € epQ[Gg| and epQ[GE]-basis a. We
then have e, - ¢ # 0 for all x € Tg by definition of Rubin—Stark elements. Since Tg is exactly
the set of characters on which ep is supported, this shows that ¢ is a unit of the ring e Q[Gg]
whence the claim.

Next we note that, by Lemma (2.6), the system c is such that cp € egQ /\;([532] (9275@),
and hence that the assignment g/, — cp extends linearly to give a (well-defined) map of
Q[GE]-modules

"E) o
EEQ/\Z[Q _>6EQ/\Z[Q ] E,S(E)’
By Lemma (5.2) below, this map can be regarded as an element fg of egQ /\TZLEQT] )((’)2 S(E))*

and, to complete the proof of claim (b), it suffices to show that these elements combine to
define an element

TET ><

Z[GE) Evs(E)) ’

f=(fe)p € ¢im? epQ J\

EeQ(k)
where the Euler limit is taken with respect to the transition maps ® /g defined in Example
(4.2)(c). To see this we note that, for every extension F//E, one has

Pripo (Pr/e(fr))(Erm) = (‘I’F/E(fF))(N;F/E(ﬁF/k)) NF/E(fF(EF/k))

= NF(/I;;)(CF) PF/E,@ *Cp

= Pr/po - fE(€E/K)-
In particular, since eg;, is an epQ[Gg|-basis of epQ /\%E[g O

E,S(E)
required equality of maps Pp/g o - (®p/p(fFr)) = Pr/Eo - fE
To prove claim (c) it is enough to show that every Euler system ¢ in ES;(Q) belongs to
Q[Gx] -ex +ESi(Q)9. To do this we fix such a ¢ and note that claim (b) implies the existence
of a unique element ¢ = (¢g)g of gli_rggeﬂ(k)eEQ[gE] with the property ¢ = ¢ - ex. We write
¢’ for the element (e1qg)g of ( limgeg(k)elQ[gE])g’C. Then Proposition (4.30) (a) implies that
there exists an element | = (Ig)g of Q[Gk] such that egly = ¢g — ¢f. This in turn implies

c=(ce)p = (qeepm)e =1 ex+q - ex € Q[Gx] - ek + ESk(Q)%*

as required to prove claim (c).

this equality implies the

To prove the first part of claim (d), we suppose to be given an element ¢ = (¢g) g of R[Gal(K/k)]
that annihilates €, so that one has

qE -€gy, =0 for all £ € Q(k). (41)
Let E € Q(k) be such a field. For any character x € Q/E we then define a field F, as follows.
If x is ramified, then we take F, to be the field E*r00 cut out by y. If x is unramified, then

we choose an auxiliary prime ideal p that has full decomposition group in Gal(E*"™) /k) and
set By = E**(X) . k(p). Then, in order to show that gz = 0 we may assume, without loss of
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generality, that I/ contains F, for all x € é}

Given any x € C//E we have x(¢r) = x(¢g, ) in C, where, by a slight abuse of notation, we have
written y for the C-linear extensions C[Gg| — C and C[Gg, | — C of x. Now, rgz )(x) = g,
and so eyep, /i # 0 by the definition of Rubin-Stark elements. The equality (41) for the field
E, therefore implies that x(gg,) = 0. This shows that x(¢z) = 0 for all x € Q/E, as is required
to conclude that g = 0.

Since the system e is symmetric (by Lemma (2.22)(a)), it therefore remains to prove that
every system ¢ in ES;(Q)®™ can be written as ¢ = ¢ - € for some ¢ € Q[Gk]. By (a) we have
that ¢ = ¢ - ¢; for some ¢ = (¢g)r € @néemk)eEQ[gE] and by Proposition (4.30) (a) it is

enough to prove that the family (ejepqr)r belongs to the image of the map

im Q[Gp] — H Q|GE], (ag)r > (eregap)p. (42)
E E

To verify the latter condition, it is enough to consider fields E in (k) with the property that
VE = Seo(k) and |S(E)| = rg + 1 (since, otherwise, one has ejeg = 0). We therefore fix such
a field E' and write p for the unique place in S(E) N Sgy(k). Then, since both ¢ and ¢, are
symmetric, one has

Tek(4E) - Erk = 7g(ge) - (Ordy o N5, ) (ep/k)
= (Ordp e} NEE/;C)(€IQE€E/I€)
= (Ordp o NEE/k)(elcE)
= Ck-
It follows that, if F' is any other such field, then 75 /.(qE) - ek k. = Tp/k(qF) - €kk, and hence
7g/k(qE) = Tr/k(gr) since the explicit characterisation of ey j in Lemma (2.22) (a) shows that
it does not vanish. In particular, if we set qi == 7 /k(qE) (which does not depend on the choice

of E by the above discussion), then the element (ejqx)g of Hm . Q[Gg]| is a preimage of the
element (e1epqp)r under the map (42). This therefore concludes the proof of claim (d). O

(5.2) Lemma. Let R be a ring and F a finitely generated free R-module of rank d. For any
integer 0 < s < d we have an isomorphism

s . d d—s
/\,, F* = Homp (/\RF N, F)
fin-Nfs— {ml N Amg — ngn(a) det(fi(mo(j)))1§i7j§5ma(s+1) VANEERIVAN mg(d)},

where the sum runs over all permutations o of the set {1,2,...,d} with the property that both
ol)<---<o(s) ando(s+1) <--- < o(d).

Proof. This is a straightforward exercise that we leave to the reader. O

(5.3) Remark. In view of Theorem (5.1) (b) it is perhaps tempting to strengthen Conjecture
(2.24) by predicting that any Euler system of rank at most . that satisfies an appropriate
analogue of the requirement to be a symmetric congruence system should arise from the Rubin—
Stark system via rank reduction (as per Example (4.4) (b)). We do not discuss this possibility
any further here, except to mention that conjectures connecting particular examples of Euler
systems to a higher-rank Euler system have previously appeared in the literature (see, for
example, [B+19, Conj. 3.5.1]) and have also been verified in special cases (see [BL19]).

5.2. Consequences for integral Euler systems

In this section we show that the results of Theorems (4.10), (4.29) and (5.1) combine to reduce
the proof of Conjecture (2.24) to consideration of the individual components of Euler systems.

o6



This result provides us with an effective means of providing evidence in support of Conjecture
(2.24) and is proved as Theorem (5.7) in §5.2.2. However, before discussing it we must first
prove two auxiliary results concerning the modules of isolated and congruence systems (from
Definitions (2.13) and (2.18) respectively).

5.2.1. Isolated and Congruence systems

The following result gives a useful interpretation of the module of isolated Euler systems.

(5.4) Lemma. Let R denote either Zs for a finite set of prime numbers S or Z, for a prime
p. Then, for each choice of X, one has ESy (R)"° = ES{¥ (R)9%.

Proof. The explicit construction of isolated systems implies directly that ESkX (R)!*° is contained
in ESY (R)9%. Tt therefore suffices to show that if a system ¢ in ESy (R) is G-invariant, then
it is isolated. In addition, Lemma (2.6) implies that the component cg of any such ¢ at a field
F in X vanishes if either S(F') contains an archimedean place or at least two finite places.
Since isolated Euler systems have the same property, we can therefore assume in the sequel
that X = Q5= (k).

Next we note that, if F' belongs to X and E is an intermediate field of F/k, then the G-
invariance of ¢ implies that

_ r(F
cr = [F: E]™" (vpyp o N (cr).
We now fix a place p in Sgy(k) and suppose that F' C k(p>°) is a ramified finite extension of
k. Then the element aj := NTF(/IZ) (cr) is independent of F' and the above displayed equality
implies that
cr=[F: k]_lup/k(a;).
Moreover, by Lemma (2.9) (d), the element a), belongs to ||~ /\TR(k(p))(R(’),;{p})**. In partic-

ular, since c¢ is assumed to be fixed by Gx, Lemma (2.9) (d) implies that cp is in the image of
vr/k, and so one also has the equation

ay = [F : k] - I/;/lk(CF).

This shows that aj, is divisible by [F: k] in |p] ™! gk(p))(R(’)kX{p})** for every such F. Writ-

ing ¢, for the cardinality of the finite group (Gi(pe))tor, We thus conclude that cp = [F :
k]~ 'tyvr/k(ap) for some element ap of |p] ! /\%(k(p))(R(’);,{p})**.

To complete the proof that c is isolated, it is therefore enough to show that cp = 0 whenever
S(F) = {p} for some prime p in Sg, (k) the residue characteristic of which is not a unit in R
(so p divides no prime in S if R = Zgs or p is a p-adic prime if R = Z,) and is such that the
extension k(p>°)/k is infinite.

To do this we write p for the residue characteristic of such a place p and fix a Z)-extension F,
of F' that is contained in k(p>°). Then, writing F,, for the n-th layer of Fi,/F', one has

vr,p(cr) = Wp,p o Np L) (er,) = Naar, ) - cp, = [Fa: Fl - cp,

and so v, /p(cr) is divisible by [F, : F] = p" in the lattice (RﬂgnF))an. Taking account of
Lemma (2.9) (c), this then implies that ¢y vanishes, as required. O

The following result explains the significance of congruence systems to our approach and its
proof occupies the rest of this section.

(5.5) Proposition. Fiz a prime number p and a system c in ES;(Z,)°" that is fized by an
open subgroup of Gi.. Then, for every E in Q(k) with rg > 0, the component cg is fixed by Gg.
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Proof: At the outset we fix an open subgroup H of Gx that fixes ¢ and write N := K for
its fixed field. We also fix a field K in Q(k) with rx > 0 and write 2, for the set of non-
archimedean places of k that split completely in N - K (ppn, (O;)l/ P"). In addition, we fix a
finite set T" of places of k that is admissible for K and disjoint from 27 U Siam(K/Q). Note
that 7' is then also admissible for all fields K - k(q) with q € 27.

Set cx 1 = 07 K -ck. Then, since 7 g is a non-zero divisor in Z,[Gk], it is enough to show that
(0 —1)cg 1 vanishes for every o € G. For this purpose is suffices to prove that z - (¢ — 1)ck 1
vanishes for some non-zero integer z because Z,£7¥ is Z-torsion free.

To do this, it is enough to find a non-zero z such that, for every f € /\%};[_g;] U;(,S(K),T (with

Uk,s)r = Zp @z O gy 7) and 0 € Gk, the element z(0 — 1)f(ckr) of Ulg ey p =
Uk s(x),r vanishes. Indeed, U g(x)r embeds into a free Zy[Gx]-module P of finite rank with
Z-torsion-free cokernel (cf. [BKS16, Rk. 5.11]). Every such f can thus be lifted to an element
of A\Jf [;,1 P, The claim then implies z(c — 1)g(ck 1) vanishes for every g in /\TZ’; ) P
and hence that z(o — 1)ckg 7 vanishes as an element of /\Z iG] - Since the natural map
ﬂZp 6x) UK S(K)T = /\Zp[gK P is injective by [Sak20, Lem. C. 1] we can therefore deduce that
z(o — 1)CKT vanishes as required

We now fix f € /\Z =lim ( %KQKI}((’)K S(K)T 7)F)/p" and write f as a family
f = (fn)nen of classes represented by elements f, of /\’"fog 1]((’);( (), +)* Note that since Z,
is Z-flat, one can use [Sak20, Lem. B.12] to obtain a similar isomorphism

rK
ﬂzp[gK} Uk,s(),r = L (ﬂz[gK] K,S(K),T )/P"

that allows us to regard cx 7 as a family cx 7 = (ng):p)nelN of classes represented by elements
cg?)T of m%@x} OIX<,S(K),T' One then has z(c — 1) f(cx,r) = ((0 — l)fn(c%)ip))nem and we need

to show that z(c — 1) f, (cg?)T), as an element of K™ is divisible by p” for each n in order to
verify that z(o — 1) f(cx ) vanishes.

Let us therefore now fix n € IN and show that z(c — 1) fn(cg?)T) is divisible by p" for a natural
number z that does not depend on n. To do this we take z = 2[N : k] and apply the criterion

in the following result.

(5.6) Lemma. Fiza in (’)IX(’S(K) with the property that, for every q € 2, and every q-adic place
9 of K, a is congruent to a p"-th power modulo Q when viewed as an element of the valuation
ring Ok, of the completion Kq of K at Q under the canonical embedding vq: K — Kq. Then,
for every o € G the element 2[N : k](o — 1)a belongs to (K*)P"

Proof. Let Q be a place of the stated kind and write @ for the class of tq(a) in the residue
field Fq = Ok, /Q0k,. Then, by assumption, the polynomial XP" — @ € Fq[X] has a root
in . Since the characteristic of IFq and p are coprime, Hensel’s Lemma implies XP" — a has
a root in O, and hence that a is a p"-th power in Kg. Since Q was arbitrary, it follows that
a belongs to the kernel of the diagonal map

x N X N
K gy = I EaAxzy
DE('%L)K

We now claim that the kernel of this map only contains classes represented by elements of K *
that are p"-th powers in F, == NK (uyn, (O;)YP"). To justify this claim, we let b denote an
element of K* that represents such a class in the kernel of A. Then every place of F,, lying
above a place in Z;,, and hence every place of k that splits completely in Fj,, splits completely
in F,(" %) Since every Galois extension is uniquely determined by the set of places that split
completely in the extension, it follows that F,(” %) is contained in, and hence equal to, F},.
In particular, b is a p™-th power in F,.

At this stage, we have proved that the class of a belongs to the kernel of the natural map
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A KX J(KX)P" — FX/(EX)P". To prove the claimed result, it therefore suffices to show that
elements in ker(\) are annihilated by 2[N : k](c — 1) for all o € Gk.

To do this, we note the inflation-restriction sequence identifies ker(\) with H(Gal(F,/K), ppn ).
In addition, setting K, = K (up»), [Neu73, Satz (4.8)] implies that

0 if p is odd,

HY (Gal(NKy/NK),py) ifp=2,

is annihilated by 2. It therefore follows from the exact sequence

HY(Gal(N K /NK), i) = {

0 — HY (Gal(NK/K), uyn N NK) — HY(Gal(NK,,/K), ) — H (Gal(NK,,/NK), i)

that H'(Gal(NK,,/K), jun) is annihilated by 2[NK : K] (and hence also by 2[N : k]). Now,
we also have the exact sequence

0 — HY(Gal(NK,/K), pn) — H (Cal(F,/K), ppn) — H' (Gal(F,/NKy), jipn)

and so it suffices to show that H'(Gal(F,,/NK,), ) is fixed by Gk in order to prove the
lemma. To this end, we note that the perfectness of the Kummer pairing gives a Gi-equivariant
isomorphism

H'(Gal(F,/NK,), pipn) = Hom(Gal(F,,/NKy), jin)
= (O - (NK;)P /(NK,i)p”)
= OiA0; (NI )

Since elements in this quotient module are clearly fixed by Gk, the claimed result follows. [

Returning now to the proof of Proposition (5.5), we are reduced to showing that, if we fix a

place q € %, and set L = L(q) := Kk(q), then fn(c%)T) is a p™-th power modulo any place of
K lying above q. Since ( fm(c%n%))mem is a compatible family, it is therefore enough to show

that fm(cKT) is a p™-th power for any sufficiently large m > n.

Let x be a character of Gr(q) with ey - er(q) # 0. By construction, q splits completely in N
and so x cannot factor through N N L(q). On the other hand, by assumption cy,q) is fixed by
Gal(L(q)/L(q)NN). We therefore must have that e, -cr(q) vanishes. This shows that erq)cr(q);
and hence also ¢y (q) by Lemma (2.6), vanishes.

In particular, cf, r identifies with a family (C(Lmr})mem in which each cgm% is divisible by p™. We

can thus fix an m that is large enough to ensure N H(C(Lmr}) = ocH Uc(LmT) ® o~ ! is trivial when

viewed in the finite p-group (mTZIfgL} (’)ES(L%T) ®zig,) (I(H)/I(H)?), where H = Gal(L/K)
and I(H) the kernel of Z[G1] — Z[Gk]. The assumption that c is a congruence system (and so
satisfies the congruences in Definition (2.18) with v = q so Pp/k 1,y = 1) then combines with
the injectivity of the map

q)

TK

TK
(Mg Orcs.r) @zig TE)/TH)) = (5 OF sy r) @zigi 1H)/IH)?)
induced by v,/ (cf. [Sanl4, Lem. 2.11]) to imply that the element

(Recg 0 Ordy ) (ei'r) € (V1 | Ortsirorr) i) (LEH)/I(H)?)
vanishes. In the quotient group I(H)/I(H)? one therefore has
Rec) (fu () = (Rec o f,, 0 Ordy o Ordy 1) (¢522)
=+ (Ordg A fu) ((Recq 0 Ord; 1) (7)) =0, (43)

where the map Recy is as defined in (7).
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To proceed, we write Iy for the augmentation ideal of Z[H]. Then the composite isomorphism
I(H),/1(fr)2 = In /12, ©7 Z[G/H) = H ®7 Z[G/H]

(in which the first isomorphism is described in [San14, (3)] and the second is induced by sending,
for each h € H, the element h — 1 of Iy to h), combines with the equality (43) and the explicit

definition of Recg to imply that, for some fixed place Q1 of K above q and all 0 € Gk, the
element recq, (o fm(c?%)) of H ®z Z, is trivial. It follows that, for every place Q of K above
q, the element reCQ(fm(cﬁ(%)) of H ®z, Z,, is trivial.

Now, the local reciprocity map recq : KS — Gal(Lg//Kq) maps (’)IX(Q onto the inertia subgroup
7 of Gal(Lg//Kgq) and so induces an isomorphism

m
)

Oka Ny, ko (05 )= T

Ly
In addition, class field theory implies N7,/ (OZD/) contains 1+ Q' for any natural number [
for which the [-th upper ramification subgroup of Gal(Lg /Kq) vanishes. In particular, because
the quotient of 1 + Q by 1 4+ Q™ is a g-group, where ¢ is the residue characteristic of Q and
hence prime to p, the above isomorphism implies Z ®7z Z, is isomorphic to a quotient of the
group F3 ®z Z, = ((’)IX{}3 /(14+9Q)) ®z Z,. Since FJ is a cyclic group, it therefore follows that
recy induces an isomorphism

¥3 @z (Zn/|1)2,) = T ®2 Zy

and hence that the image of fm(cgn%) in 3 ®z (Zy/|Z|Z,) must vanish.
Now, by assumption, q belongs to %, and so Lemma (2.1) (b) implies p" divides [k(q) : k(1)]

and hence also |Z|. As a consequence, the above observation implies that f, (c%n%) is a p"-th

power in IE‘LX1 Since this is true for all q in 2, and all places Q of K above q, we can therefore
conclude the proof of Proposition (5.5) by applying Lemma (5.6). O

5.2.2. A reduction to the Scarcity Conjecture

In the next result we investigate the extent to which global properties of an Euler system
can be determined by analysis of its individual components. In particular, in claim (a) we
show that Euler systems are uniquely determined, up to multiplication by isolated systems, by
their components at certain sparse families of fields. Then in claim (b) we reduce the proof
of Conjecture (2.24) to the verification that the components of Euler systems have certain
explicit properties. Subsequently, in §5.3 and § 6, we provide concrete evidence in support of
the containments that respectively occur in (b) (ii) and (iii) of this result.

(5.7) Theorem. Fix a finite set S of prime numbers and a subset X of Q(k) that satisfies
Hypothesis (4.5). Then the following claims are valid.

(a) Fiz a rank function v for k and a finite set of places M of k, and write Xpq(k) for
the subset of X comprising fields EE which are ramified at all places in M. Then, up to

multiplication by isolated systems, each system c in ESZ’X(ZS) 1s uniquely determined by
its values cg for fields E in Xpq(k).

(b) Assume X is contained in QV (k) for some non-empty subset V of Soo(k) and that e
belongs to ES} (Zs)®". Then, for every c in ESY (Zs)™™ NESY (Zs)™®, the following
assertions are equivalent:

(i) The system c belongs to Zs[Gr]ey -
(ii) For every field K in X one has cx € Zs|Gk] - €k i
(iii) cx belongs to Zy|Gk|- e i for every prime number p ¢ S and every field K in Xs,,.

Proof. To prove claim (a) we consider the triangular system {(Nr,g, pp/p)}E Fex of Example

(4.2) (b) with R = Zs (so that Npp = ZSSE(E) and pp/p is the relevant norm map for each
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extension F'/E). We note that each module ZSSTE(E) is a Zs[Gg|-lattice and that this triangular

system validates Hypothesis (4.27) for every p ¢ S by Example (4.9) (¢). Given these facts,
Theorem (5.7) (a) follows directly upon applying Corollary (4.13) to this triangular system.
Next we observe that the implications “(i) = (ii)” and “(ii) = (iii)” in claim (b) are clearly
valid, and hence that it suffices to prove that condition (iii) implies (i).

To do this we assume c satisfies condition (iii) and and claim first that, for each prime p ¢ S,
this implies the existence of an element g of Z,[Gx] such that

0™ (c) = 0™ (q - ep). (44)

To justify this we fix, for every K € Xg, an element qg) of Z,[Gk] with cx = qg) - €Kk, and

show that the family ¢ := (qg)e K)Ke Xs, defines an element of Mi exs, Z,|GKlek, where the

Euler limit is defined as in Example (4.4) (d). For this purpose we take fields K and L in Xg,
with K C L and note that, since €7/ = er, - €13, one has

Prio mx(aPer) -exm =mrx(aPer) - Nk (Enm)

= NZL/K(CL)

=Pr/koCKk

=Pr/ko- qﬁ?’eK “EK k-
Since ey, generates a free Z,[G|ex-module of rank one, this calculation implies the element

Priko- (WL/K(q(Lp)GL) — qg)e[() vanishes and hence proves ¢ belongs to hm?(eXsp Z,GKlek,
as required. We can now apply Proposition (4.36) to deduce ¢ lifts to @1 Kexs Z,(Gk] and
hence to Z,[Gk], and any lift ¢ of ¢ to Z,[Gx] satisfies the claimed equality (44)p.
If we now take {(NFVE,,OF/E)}E’FE;( to be the triangular system with Npp = ZI,SE(E) and
pr/E the relevant norm map for each extension F)/E, then we can reinterpret the equality (44)
as asserting that ¢ — qeﬁ belongs to the kernel of the restriction map

resg, @1@ Ng — @g Ng.

Bex E€Xs,

In particular, since the triangular system under consideration satisfies Hypothesis (4.8) for p,
we can apply Theorem (4.10) (with II = @ and ¥ = S,(k)) to deduce that, if p is odd, then
c—qey is fixed by Gal(K/k,), where k, denotes the composite of all subextensions of the field
k(p) (from (24)) in which at least one p-adic place splits completely.
Now if p does not divide 2dj, then k(p) = k(u,) is totally ramified at all places in S,(k) so
k, = k, and hence ¢ — qakX is fixed by Gx. On the other hand, if p divides 2d, then Theorem
(4.10) (resp., if p = 2, Proposition (4.21) combined with the observation that any subextension
of k(p, T) that is unramified at a p-adic place is finite over k) implies ¢ — ge;’ is fixed by an
open subgroup of Gx. Thus, since both ¢ and ¢, and hence also ¢ — qekX , are assumed to be
congruence systems, we can apply Proposition (5.5) to deduce that ¢ — qekX is also fixed by Gx
in this case.
Having proved that ¢ — qst is fixed by Gx in all cases, we next observe that ¢ — qst is a
symmetric system (this uses that ey is symmetric by Lemma (2.22) (i)). It therefore follows
from Lemma (2.17) and Lemma (5.4) that ¢ = gei¥, and hence that

¢ € Zpy[Gk] - ex . (45)
To proceed, we now consider the projective system {(Mp, ¢r/g)}rex defined by taking Mp =
Zs|Gr] and 9 /g = mp/p (Which automatically satisfies Hypothesis (4.27), see Example (4.28)).
In this case, we then obtain a map f of the sort that occurs in Theorem (4.29) by means of
the assignment

olim? epZs(Ge] — ES} (Zs) C ¢lim® ZsLp, (q)E — (apcp))E.
Eex Eex
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We now note that Theorem (5.1) (b) implies both that this map is injective and further that
for each system ¢ in ES} (Zs) there exists a unique element a = (ag)g of @Ee;\f epQ[Gp] such
that cg = ap - ey, for every F in X.

Given this fact, the condition in (b)(i) of Theorem (5.7) follows directly upon combining the
containments (45) with the result of Theorem (4.29) (b) and noting that, in this case, one has
B.(Zs[Gk]) = Zs[Gk] - ei and ﬁip) (ker 0,) = Z,[Gk] - £¥. This therefore completes the proof
that (b)(iii) implies (b)(i). O

(5.8) Remark. Fix a prime number p, a subset X’ of Q(k) that satisfies Hypothesis (4.5) and
an Euler system ¢ in ES;(Z,). Then the argument used to prove the implication ‘(iii) = (i)’

in Theorem (5.7) (a) also shows that ¢™*5r (c) belongs to Z,[Gx] -5sz3’ if and only if cx belongs
to Zp[Gk] - ex i, for every field K in Xg,.

5.3. Integral Euler systems and Kolyvagin systems

We now explain how the observations made in § 3.2 can be combined with the theory of higher-
rank Kolyvagin systems recently developed by Sakamoto, Sano and the second author to provide
concrete evidence in support of the containment in Theorem (5.7) (b) (ii).

To do this, we fix a field E in Q{Sw(k)}(k) and an odd prime number p. We write F' and L for
the maximal extensions of k in E of degree a power of p and coprime to p, respectively. We set
G :=Gg, P = Gr and H := G, and we regard P and H as subgroups of GG in the obvious way.
In particular, for each character x: H — @X, the idempotent e, = |H| ™! Y oheH x(h)h~! can
be viewed as an element of Z,[im(x)][G] and hence acts on the image 1 ®@m in Z,[im(x)] ®z M
of an element m of a Z[G]-module M.

Finally, we write w,, for the p-adic Teichmiiller character of k.

(5.9) Theorem. Fiz an abelian extension E/k as above and a homomorphism x: H — @X.
Assume the Rubin—Stark Conjecture holds for all abelian extensions of k and, in addition, that
all of the following conditions are satisfied.

(a) E contains the Hilbert p-class field of k;
(b) X # wp and, if p=3, also X # wy;
(c) x is not trivial on the decomposition subgroup of any place in Syam(F/k);
(d) x is not trivial on the inertia subgroup of at least one place in Siam(E/k);
Then, for every Euler system c in ESy(Z) one has ey (1 ® cp) € Zy[im x][GE] - (1 ® eg/p)-

Proof. Write L, for the fixed field of ker(x) in L. Then, after taking into account the Euler
system distribution relations (for both ¢ and ¢g), it is enough to prove the stated claim after
replacing L by L, (and hence E by the compositum L, F). In the sequel we will therefore
assume that x is a faithful character of H.

Then, in this case, the stated conditions imply that all of the hypotheses of [Bur+23, Thm.
4.1] are satisfied. Hence, if we set r = |So(k)|, then the latter result (which relies on the
theory of higher-rank Kolyvagin systems) implies that, for each system ¢ in ESk(Z), there is a
containment

In addition, by combining this containment in the case ¢ = ¢ together with the argument of
Proposition (3.6) one finds that

ex (Zp[im(x)] @z im(0% 1. 5(py)) = ex(Zplim x][Gr] - (1 ® i) € Zp[im X][GE] - (1 @ /1)
The claimed result now follows directly upon combining this inclusion with the previous con-
tainment. U
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6. lwasawa theory

The key feature of condition (b) (iii) in Theorem (5.7) is that it only concerns abelian extensions
K of k that are ramified at all p-adic places. For this reason, in this section we are able to use
techniques of ‘equivariant’ Iwasawa theory to explicitly reinterpret the condition and thereby,
in several important cases, deduce its validity from existing results and conjectures. In this
way we shall, in particular, complete the proofs of all of the results that are stated in the
Introduction.

6.1. An lwasawa-theoretic reduction
6.1.1. Statement of the main results

For each prime p we fix a subextension ks, = k& of K/k for which the set of places of k that
split completely in ko, is equal to So (k) and, in addition, the group Gal(ks /k) is topologically
isomorphic to ZZ for an integer d > 0. (For example, one can take ko, to be the cyclotomic
Z,-extension of k.)

For any finite abelian extension F of k, we set

Ew =Ef, =FEk;, and AN, :=7Z,[Gal(EL /k)].

For any such E, any finite set ¥ of places of k and any finite subset T" of Sg, (k) that is disjoint
from 3, we also write Clg s for the (Xg,Tg)-ray class group of E (as discussed in Lemma
(3.4) (a)). For any abelian extension L of k we then define

Ursr = @(Zp Xz OE,Z,T)’ Clgz;j = @(Zp ®z Clegs1),
E E
X7 5 = lm(Z, ®7 Xpx), Yy = lm(Z, ®7 YE5).
E E

Here each limit is taken over all finite extensions F of k£ in L and the respective transition
morphisms are induced in the first two cases by the norm maps Ng//p and the last two cases
by the restriction of places maps.
We note that if T is both disjoint from the set S, = S,(k) of p-adic places of k£ and also
‘admissible’ for F (in the sense of §2.2.1), then any Euler system ¢ in ESi(Zs) gives rise to a
norm-coherent sequence

B

. TE ~
cprp = (0r - cr)r € %UHZP[QF] Ursen)r = mAP,E Uge, 5(E2.),1

where the limit is taken over all fields F' that belong to (k) and are contained in E% and is
with respect to the norm maps NTFE, /P (here the isomorphism is a consequence of the general
observation [Sak20, Lem. B.15] of Sakamoto). In this context we further recall that any element
n of ﬂ;{i’E Ugr, s(gr,,r 18 by definition a map /\’X)E o s(eny — Dp.p and so gives rise to

an ideal im(n) of A\, k.
The following result is the main observation that we shall make in §6 and lists a variety of
explicit conditions that are sufficient to ensure either the validity of the Tamagawa Number

Conjecture or that an Euler system validates the Scarcity Conjecture. In this result we refer
to the field k(p) defined in (24).

(6.1) Theorem. We assume to be given data of the following sort.
o A subset V of Seo(k) and a subset X of Q(k) that satisfies Hypothesis (4.5) with V = {V'}.
o A finite set S of prime numbers that contains 2 if V- # Soo (k).
e For every prime p & S, an extension kb, of k as specified at the beginning of this section.

For every field K in X and every prime p ¢ S, the idempotent e identifies with an element
of the algebra I\, i, and we assume that the above data satisfies the following two hypotheses:
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(i) The Rubin-Stark system ¥ is integral outside S in the sense of Definition (2.12).
(ii) For every prime p ¢ S, every field K in Xs, and every height-one prime y of I, i in the
support of ey i, the (Lp )p-module CIP(K%,), has finite projective dimension.
Then the following claims are valid.
(a) TNC(h®(Spec E), Zy,[GEler v) is valid for every field E in X if, for every K and p as in
hypothesis (ii) above, there exists a set T in P33 such that

im(egr p)** C Fitt(}\p’K(CF;(gm saor)” Fitt)  (Xxz sr)"™
and, in addition, at least one of the following conditions holds:
(i) p does not divide 2dj,.

(i) V # @ and €y, is a congruence system in the sense of Definition (2.18).
(iii) p is odd and TNC(h®(Spec F), Z,[Grlerv) is valid for every field F that belongs to
the subset Y of X that is defined in either of the following ways:

e YV comprises all fields k{p)L with L a tamely ramified cyclic p-extension of k
that belongs to Q5= (k).

o YV comprises all finite extensions of k(p) in k{p)kbs that belong to X.

(b) Assume V # @ and e}, € ESY(Zs)". Then a system c in ESY (Zs)" N ESY (Zs)¥™
belongs to Zs[Gxk] -ekX provided that, for every K and p as in hypothesis (ii) above, there
exists a set T' in Wf(d for which one has

7 (K%T)** . Fitt?,\p’K(Xf{p

ws(K))**. (46)

This result will be proved in §6.1.4, where we shall also (in Lemma (6.6)) record some useful
facts about the ideals that occur in the inclusions displayed in claims (a) and (b).

6.1.2. Preliminary observations

Before proving Theorem (6.1), it is convenient to take a slightly more general point of view
and, for this, we let E be any finite abelian extension of k.

Then, for a given prime p, the ring /A, g need not be regular. To take account of the difficulties
that this causes, we refer to a height-one prime p of A\,  as ‘regular’ if the localisation of A, g
at p is a regular local ring and we label any height-one prime that is not regular as ‘singular’
(note that this terminology differs slightly from that in [BKS17, §3C1] if p contains p). For
convenience, we record several general properties of localisation in such rings that will be useful
in later arguments.

(6.2) Lemma. For each prime p, the following claims are valid.

(a) If I and J are ideals of Iy g, then one has I'* C J** if and only if I, C J, for all prime
ideals p of I\, g of height at most one.

(b) Write A, g for the subring Z,[|Gal(E%/E)] of I, r. Then each singular prime of by, g
contains p and is outside the support of any finitely generated I\, p-module that is both
torsion, and has vanishing p-invariant, as a A, p-module.

Proof. Claim (a) follows, for example, from a general result of Sakamoto in [Sak20, Lem. C.13].
The first assertion of claim (b) follows from the argument of [BG03, Lem. 6.2 (ii)]) and the
second from an application of Nakayama’s Lemma (as in [BG03, Lem. 6.3]). O

(6.3) Remark. In connection with Lemma (6.2) (a) we remark that the ‘reflexive hull’ I** of
an ideal I of /A, g can naturally be interpreted as the ideal of /A, g that is obtained as the
image of I** C (A, g)** under the evaluation map (A, g)** = A, .
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We now fix a prime p and, for simplicity, suppress many explicit references to it in the notation
of this section (thereby writing E, in place of EX, etc.)

We write S(E) for the set of places of k that ramify in Fo, and note that, by assumption,
S(kso) only contains finite places.

We also fix a set T" in ,@%d that is disjoint from S(ko) and consider the p-completion

. . L e
DE (o) = Lp 97 C (B0, T
of the complex C7, S(Euo)T introduced in § 3.2, as well as the complex

Dy, =R ILH D;‘,S(Eoo),T’
F

where in the limit F' ranges over all number fields contained in F« /k and the transition maps
are induced by the relevant instances of the isomorphism in Lemma (3.4) (d).

Then, since each complex D;ﬂvs( Fo)r CAn be represented by a bounded complex of finitely
generated Z,-modules, and hence of compact Hausdorff spaces, the result of Lemma (3.4) (a)
induces (upon passing to the limit over all intermediate fields of E,/E) both an identification
HO(DEWT) = Ug,.,S(E.),r and a natural exact sequence

0 —— CP

b sy — H' (Db 1) —— X}

Foo S*(Bo) — 0. (47)

In addition, since T belongs to ,@%d, for every finite subextension E’ of F«/E, the group
Uprs(ey,r 18 Zp-torsion free (cf. the general result of [NSWO08, Prop. (1.6.12)]). By a well-
known argument in homological algebra (see, for example, [BH21, Prop. 3.2]), it then follows
that D}, admits a ‘quadratic standard representative’ (in the sense of [BS21a, § A.2]) of the
form

PEoo — PEoo s (48)
where Pg__ is a free /Ap-module of finite rank and the first term occurs in degree zero.

In the next result we shall also use the homomorphism of Ag-modules O 7 that is defined
by means of the following composite (where, for simplicity, we abbreviate Ag to £\)

€E DetA(D.EOO ) — GEQ( ) Qp DetA(D.EOO,T)
= (epQ(4) @p Dety (H (D 1)) @) (e5Q(4) @4 Deta(H' (D, 1))

=] (eEQ ) @p /\ UK oo,S(Eo), ) (EEQ On /\ Y oo VE>*
~epQ(h) @ /\ UEOO,S(EOO) T-

Here the second isomorphism is the natural ‘passage-to-cohomology’ map and the last iso-
morphism is due to our fixed choice of extensions of places in Vg to E (and hence of isomorph-
ism Ygoo,VE =~ AF). We recall that this map can be explicitly described in terms of certain
‘rank reduction maps’ (see [BS21a, Lem. A.7 (i)]) and that, by using this explicit description,
it can be shown that the image of ©_ 7 is contained in ﬂrﬁ\ UEs,S(Eoo),T> and that O 7
agrees with the limit (over all finite layers F'/k of E/k) of the maps €g(Zy ®z O"F

that are defined in §3.3.1 (see [BD21, Lem. 3.12 and Lem. 3.19] for details).

F,S(Ex), T 7)

The following result will play a key role in the proof of Theorem (6.1).

(6.4) Proposition. Fiz a prime p and a finite abelian extension E of k with the property that
Ve = Seo(k) if p = 2.
Then, for every setT in @%d that is disjoint from S(kb), the following claims are valid.
(a) Let v be an eplsy p-basis of € DetAP’E(Dé&’T) and set Z]JDE& = Opr 7(3pz). Then
one has
im(zpy ) = Fitt) ,(CLy ey )™ Fitt) (X2, o )™ (49)
(b) Assume that, for every height-one prime p of I, g that is contained in the support of
eghy g, the (by p)p-module (CV, )y has finite projective dimension.
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(i) An element n of (ﬂ;{i = Ugr sz )1 — €g] belongs to im(Ogp 1) if and only if

- Fitty (X5 (50)

1m(77)** - Fittg\p,E (Cl%go,s 0075(EOO))**'

(5%).7)
(ii) If the family of Rubin—Stark elements egp 1 = (ggk,S(E’;o),
there exists an eplsp p-basis Ly ), p of eg Detp, (D

7)F satisfies (50), then

wo ) such that

Opz 7(Lpn k) = €p2, 1

Proof. As p is fixed during this proof, we drop all adornments p to lighten notation and we
further abbreviate /A, g to A\.

We then first note that Yz _ v, and, due to our assumption that Vi = S (k) if p = 2, also
YE.. S (k)\V are both projective /A-modules. We can therefore find a /A-module Z such that
the exact sequence (47) induces an isomorphism

1 ° ~
H Dy 1) 2Z8YE g apwve @Yo ve (51)
and, setting S(Ex )fn = S(Fso) N Stn(k), an exact sequence
0—— Clg(Eoo)’T(Eoo) — 7 — ng’S(Eoo)ﬁn — 0. (52)

Moreover, by choosing a section to the (surjective) composite map
Pp, = H' (Dy_ 1) = YE .

in which the first map is induced by the representative (48) of the complex D3, 1 and the
second by the isomorphism (51), we may identify Yé’WVE with a free direct summand of Pg_.
In this way, we deduce the existence of a projective, and hence free (since A is semilocal),
I-submodule Py, of Pp,, for which there is an isomorphism of A-modules

Pp, =Py &YE ., (53)

and also an exact sequence of A-modules

0—— UE'oo,S(Eoo),T — ’PEoo > PIEOO a Z@Yp

Eo,Ss0 (E)\VE 0,

in which the third arrow is the composite of the differential of (48) and the projection Ps, — P~
induced by (53) and the fourth the restriction to Py of the map P — Z @ Ygoo, S ()\Vis
induced by (48) and the decomposition (51).

By now applying [BD21, Lem. 2.7 (c)] to this sequence and recalling that ©_ 7 can be expli-
citly described as a rank reduction map (see [BS21a, Lem. A.7 (i)]), we derive an equality

= Fitty (2)™ - Fittg (Vi o wp)™ (54)

Next we note that if p is a regular height-one prime of A, then A, is a discrete valuation
domain. In particular, since over such a ring initial Fitting ideals are multiplicative on short
exact sequences, we may deduce from the above equality and the exact sequence (52) that
< b . b
im(zp_)p = (1m(ono)**)p
_ 10 (P ) <10 (vP

..,0 440
= Fitty (Cly gy e Fitta (X5 g )es

where the last equality is true because Sy (k) \ VB = Sx(k) N S(E) and so there exists a
natural exact sequence

— 5 Y?

— Xg EooSe0 (k)\V

0 — Xg Eoo,5(Eo0)

Since Q(/\) is a semi-simple ring, similar arguments also show that the above description of
im(zgoo)p is valid for any prime p of A of height zero.
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To consider singular height-one primes of A, we note that the /A-module YE S(Eo)sin is iso-
morphic to the direct sum @, Z,[Gk.. /GE.. v], where v runs over S(Ex)sn and G, is the
decomposition group of v in Gg__. In particular, since no finite place splits completely in ko /k,
it follows that YE S(Enc)in is isomorphic to a direct sum of modules that are finitely generated
over a power series ring (over Zj) in at most d — 1 variables and therefore, by Lemma (6.2) (b),
that the localisation of YE S(Eo)in at any height-one singular prime p of A-vanishes.

This in turn implies that, for any such p, the localisation (X%

Foo,S(Eoo)fin )p vanishes and hence

that the exact sequence (52) induces a natural isomorphism (CIE S(Fa), 7)o = Zy. This iso-
morphism then combines with the equality (54) to imply that
1m(zE )p = FlttA(Cl% S(Fao), T ) -Fitt%\(Yp oo(k)\vE)p

:FlttA(CI% S(Foo).T e FlttA(XE S(Eoo))P’

where the second equality is true since (X% Foo,S(Foo)s )p vanishes and (55) is exact.
At this stage we have established the last displayed equality for all primes of A of height at
most one and so it follows from Lemma (6.2) (a) that the claimed equality (49) holds.

To proceed, we first note that the ‘only if’ part of claim (i) in (b) follows from (a). To prove the
‘if” part, we observe that the definition of ©__ 7 ensures that z%oo is a generator of the egQ(£)-
module spanned by (N,* Ug__ s(p..)r)[1—€E]. Given an element 1 of (";7 Up__ s(p..)r)[1—€E],

we can therefore fix an element ¢ of egQ(/£\) with the property that

n=q-zp,. (56)
This equality then combines with (49) and the assumed inclusion (50) to imply an inclusion
g-im(zl )™ = im(n)** C im(sh_)™ (57)

We next claim that, for every height-one prime ideal p of A that is contained in the support
of ep/\, the ideal Fitt) (Z), is principal and generated by a non-zero divisor. Indeed, if p is
regular, this is automatically satisfied because 4\, is a discrete valuation ring. If p is singular, on
the other hand, then the exact sequence (52) implies that Z, is isomorphic to (CL, Foo S (Foo). T T)p-
In addition, since we assume that no finite place splits completely in ko /k, Lemma (6.2) (b)
implies that the natural maps (CI%W&T) (CIE S(Ba),T +)p and (Cl%w,g,T)P — (CI_ )y are
both bijective (cf. the argument of [BD21, Lem. 4.11]). Thus, the claim follows in this case from
our assumption that the projective dimension of the Ap-module CIP(Ey), is finite and hence
at most one (as a consequence of the Auslander-Buchsbaum formula since A is Gorenstein and
p has height one).

In addition, one has Fitt%\(YEp, Soo(k:)\VE) = Neg, and so it follows from (54) that, if p is in the

support of eg/\, then the ideal im(z%oo)p is generated by a non-zero divisor in A, = (egd\)y.
We therefore deduce from (57), by cancellation, that ¢ belongs to 4. Since, by construction,
q belongs to egQ(4\), the last assertion is also clear both for height-one primes p that are not
in the support of eg/A and for primes of height zero, and so Lemma (6.2) (a) implies that ¢
belongs to (¢\)** C (egh)* = epl\, as required to prove claim (b) (i).

To prove claim (b) (ii) we note that, for each finite extension E’ of E in E4 one has Vg = Vg
and hence rgr = rg. Using this fact, we write zg, for the image of z%oo under the natural
projection map
TE TEI
m UB.. .S(Bs) T — ﬂz G UE’,S(EOO),T

Tt

Then, by claim (b) (i), we know that €E,/k S(B..) Pelongs to Zp| G| 25 = Zpy-im (O (o) 7)

.. . / Vgt
and hence, by Proposition (3.6), that Z, - 1m(87:E’€7S(EOO)7T) =7,Gp] -5E§/k75(EN)’T
By passing to the limit over all such fields E’ and recalling that ©_ 7 agrees with the limit

of the maps Z, ®z @TE,7 S(Buo) T these equalities combine to imply that the image of O 7 is
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generated as a /A-module by eg__ 7. As a consequence, the element ¢ that verifies (56) with 7
taken to be g, 7 must be a unit of eg/\.

Given this observation, it is then easily checked that the element Lp_ /1 1 = q ! 3p. has the
properties that are required to validate claim (b) (ii). O

6.1.3. Criteria for the validity of the equivariant Tamagawa Number Conjecture

We next establish a concrete link between Theorems (5.7) and (6.1) (a).

To do this we fix a subset X’ of (k) that satisfies Hypothesis (4.5) with respect to a (singleton)
subset V = {V} of P(Sa(k)). We also fix a prime p and, as in Proposition (3.9), define a
homomorphism of Z,[Gx]-modules

or: Im  Dety,g,)(Zp Ry Ch.s+;) — ESk(Zp),
EeQ(k)

where the limit is taken with respect to the maps ip/p defined in (14). We also use the
idempotents egy of Q[Gg] defined in (9) and the field k(p) defined in (24).

(6.5) Lemma. Let p be odd and write k, for the composite of all subextensions of k(p) in
which at least one p-adic place of k splits completely. Then TNC(h®(Spec K), Zy,[Gklex.v) is
valid for all K € X provided that the following two conditions are satisfied:

(i) The image of ©F is contained in Zy[Gx] - e¥ + ES;¥ (Z,) a1 K/kv),

(ii) At least one of the following holds:

e TNC(h®(Spec F), ex v Zy,[Gr]) holds for all extensions of the form F = ky, - E with
E a tamely ramified cyclic p-extension of k that belongs to QSm(k)(k).

o TNC(h'(Spec F), epvZy|Gr)) holds for all extensions of the form F = k, - kb with
ky the n-th layer of a Zy-extension kS of k in which no finite place splits completely.

Proof. Since im(©y) C im(©%), Proposition (3.10) implies that TNC(h®(Spec K), Z,[Gr ek, v)
is valid for all K € X provided that o (im(©F)) is contained in Z,[Gx] - .
To verify the latter inclusion we note that, for every field E € Q(k), the Z,[Gg]-module
Detz, (g1 (Zp®%C;;75*(E)) is free of rank one. Since all of the transition maps iy/p are surjective,
it follows that the Z,[Gx]-module @Eeﬂ(k) Detyz, g, (Zp L C;LS*(E)) is free of rank one
(see, for example, the argument of [Bur+23, Prop. 3.7]). We may therefore choose a basis
3 = (38)Beqr) of the latter module and write zP for the associated Euler system ©F(3). Then,
by condition (i), there exists an element
rp = (rp.E)Eeqr) € lm (Zp[Gelepy)
EeQ(k)

such that 7, g - ep/, — 2% is fixed by Gal(E/ENk,) for all E € X. Tt therefore suffices to show
that either of the conditions stated in (ii) implies that r, g - g/ — z% vanishes for all F € X,
or equivalently that

ex (1o, gk —2p) =0 (58)
for all £ € X and all characters x of Gg.
Now, since rp, g - €, — 23, is fixed by Gal(E/E N k), the equality (58) is clear unless y factors
through Gy, and so we may assume that x factors through Gy,. Then, since e, - (1) g€k — zg)
vanishes if 7, g €p, /x — z%x vanishes (cf. the argument of Lemma (2.6)), we can further assume
that E' is a subfield of k, and hence that every finite place in S(E) is p-adic.
To proceed, we write M for the subset of X comprising all extensions F' of E for which
TNC(h"(Spec F), Zy[Grler,v) is valid and for which one has that €py - (rp re /i — 2p) vanishes.
Then, for any such field F' in M, the preimage £¥ n of ex v 07 k.S (F) under the isomorphism

Cp @z Detzg, (C;“,S(F)) = CplGr]
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that is induced by the Dirichlet regulator Ay g (as in Lemma (3.7)(c)) is a Z[Gr]erv-basis
of epy Dety, .1 (Zyp ®% Cs, S*(F)). We can therefore fix a unit ¢, p in (Zy[Grlery)™ such that
Ip,F " 3F/k = L%/k and, for this unit, one has both

G- 2p = epyepy,  and  mpp(apr) - 2p = €BVveR/L, (59)
(cf. [BKS16, Thm. 5.14]). The first of these equations combines with the assumed vanishing of
ery - (rprep, — zP) to imply that we have

b b
€RY " 2p = €FY " Tp,FEF/k = Tp,Fqp,F * 2K

Since z}’; generates a free e pZy|Gr]-module of rank one, we deduce that the difference q; }w —Tp,F
is annihilated by epyer.

Now, if x is a character of G with eyepy (1—ep) # 0, then x must vanish on the decomposition
group of at least one finite place in S(F'). The element g, + — 1pr of Zp[Grlepy is therefore
fixed by every element of the subgroup Hp = ﬂve S(F)\Swo (k) Gry of Gr, where Gp, denotes
the decomposition subgroup in Gr of each place v. As a consequence, the element

WF/E(Q;;}?) —TpE = WF/E(Q;}V —p,F)
is divisible by the order of Hp; == Hr N Gal(F/E) and so the second equality in (59) implies

2p —pE - €BveERk = 2y — rpaTr/E(Qp.n) - 2 = 7pp(ap ) (Trp(Q ) — TpE) - 2R
is divisible by |Hp 1| in the lattice £x. In particular, if we can show that, under either of the
conditions stated in (ii), the p-part of |[Hp | is unbounded as F ranges over M, then we could
deduce the required vanishing of rp g - €gveg ), — z%.
To do this, we let n be any natural number. Then the result of Proposition (4.14) (with
T = Sp(k), K = kp and 0 = 1) provides a cyclic Galois extension L, of k in which all
p-adic places have decomposition group of order at least p™ and all places in S(L,) are non-
archimedean, totally split in k, and have inertia subgroup of order at least p".
In particular, if we assume the first condition in (ii), then TNC(h®(Spec kpLn), Zp|Gr, L, €k Ln,V )
and hence also TNC(h°(Spec F), Z,[GF]er,y) is valid for the compositum F}, := L, - E. In addi-
tion, F;, belongs to X by Hypothesis (4.5) (i). To prove that F;, belongs to the set M, we need
to justify the vanishing of ex, v - (rp,F.€F, Jk— zlbyn) in this case. To do this, it suffices to prove
that ey - (rp,F.eF7, /0 — z}’;n) for any character x of Gr with eyepxep. Since (rp F,ep, /k — z}}n
is fixed by Gal(F,,/F, Nk,), the required vanishing is valid for any character of G, that does
not factor through k,. If it a character x of G, factors through k,, on the other hand, then
by construction it vanishes on the decomposition group of a place in S(L,) € S(F,) and so
one has eyep, = 0. This proves that Fj, belongs to M, as claimed.
Moreover, in this case Hf, 1 contains the unique cyclic subgroup of Gal(F;,/K) that is of order
p" (note that K/k is unramified at any place in S(F,) and hence that said subgroup of order
p", being contained in the inertia subgroup of such a place, must be contained in Gal(F,/K))
and so the order of Hp, ; is divisible by an arbitrarily large power of p as n varies, as required.
To consider the second condition in (ii), we recall k5 is assumed to be a Z,-extension in which
no finite place splits completely, and hence that there exists an integer m with the property
that every p-adic place has full decomposition group in k;okp/ khkp. Thus, if we assume the
second condition in (i), then similar arguments show that F,, := kb k, is a field in M with
the property that |Hp, 1| is divisible by p", as required.
This concludes the proof of the stated result. O

6.1.4. The proof of Theorem (6.1)

In this section, we prove Theorem (6.1) and also establish some useful facts about the ideals
that occur in Theorem (6.1) (a) and (b).

We start by proving Theorem (6.1) and so fix data as in the statement of that result.
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It is convenient to prove claim (b) first and to do this we fix an Euler system c¢ in ES} (Zs).
We then also fix a prime p ¢ S, a field K in X 5, (k) and an admissible set T in @?g with respect
to which ¢ satisfies the condition (46). (For brevity, we shall often shorten the notations used
below by omitting adornments K or T' where, we feel, no confusion is possible.)

Then, by Proposition (6.4) (a), we know that cgr 7 belongs to im(© gz r). In addition, Pro-
position (6.4) (b) combines with the given assumption that the Rubin-Stark system satisfies
(46) to imply that im(©g» 1) is generated over A\, i by ek, 7, and hence that there exists
an element g,  of exf\p i such that cxr 7 =qp K -€xp -

Taking images under the projection map ﬂX;K Uke, s(k)1 — ﬂTZIZ[gK} Uk,s(k),r it follows
that o7k - ck = 01K * Qp, i - €K1 and hence, since d7 i is a non-zero divisor in Z,[Gk|, that

CK = QoK " €Kk € Lpl9K] - Rk

In particular, since this containment is valid for all primes p outside S, we find that condition
(b) (iii) in Theorem (5.7) is satisfied in this case. The implication ‘(iii) = (i)’ in Theorem (5.7)
now gives that ¢ belongs to Zs[Gx ey, as claimed in Theorem (6.1) (b).

Turning now to the proof of claim (a) of Theorem (6.1), we recall that, by Proposition (3.10),
it is enough to show that if ¢ is any Euler system that belongs to the image of the map Oy
defined in Proposition (3.9), then o (c) belongs to Z,[Gx] - €. In particular, it is sufficient
to verify the latter inclusion for every system c in the image of @i.

As a first step in this direction we note the exact triangle in Lemma (3.4) (b) combines with
Remark (3.5) to imply that, for any finite subextension F' of K5 /k, one has im(Op k) r) =
o1, F - iM(OfF 5(k),z)- In particular, the p-adic completion of this module contains cfr for every
such F' and, by taking the limit over such F, we deduce that the element cgr 5 belongs to
im(O gz 7).

Next we recall that, as observed earlier, the assumed validity of (46) for the Rubin-Stark sys-
tem implies that im(O gz 1) is equal to Ay k - €k, 1, and hence, by an argument similar to
above, that cx belongs to Z,[Gx] - ek k-

By Remark (5.8), one therefore has that ¢ belongs to Z,[Gx]e¥ + ESY (7,) G2l C/k®)),

In the remainder of this argument we now explain how this containment combines with either
of the conditions stated in Theorem (6.1) (a) to imply the inclusion ¢ € Z,[Gx]ey that is
required to complete the proof of the claim.

If p 1 2dy, as assumed in condition (a) (i) of Theorem (6.1), then k(p) = k and so ¢ belongs to
Zp[Gxlex + ESY (Z,)9%. Since c is symmetric by Proposition (3.9), we deduce from Lemma
(2.17) that we must in fact have that ¢ belongs to Z,[Gx]ey, as required.

Let us next suppose that condition (a) (ii) is valid. That is, V # @ and ¢ is a congruence
system. In this case we may use Proposition (5.5) to deduce that also in this case ¢ belongs
to Zp[Gxler + ES; (Z,)9%. Since c is assumed to be symmetric, the same argument as above
then shows that ¢ belongs to Z,[Gx]ei¥. This proves the claim in the cases of conditions (i)
and (ii).

Lastly, if we assume condition (iii), then the containment im ©} C Z,[Gx]eft +ES; (Z,) a1 */kP)
directly combines with Lemma (6.5) to also imply the claim in this case, thereby concluding
the proof of Theorem (6.1). O

The next result establishes some useful facts about the ideals in Theorem (6.1) (a) and (b).
(6.6) Lemma. Let E be a finite abelian extension of k, p € S a prime number, T € @%d an

admissible set disjoint from S(k%), and ¢ an Euler system in ESi(Zs). Then the following
claims are valid.

(a) Fittg\p,E(ng’o,S(k&))** Sim(cgr, 7)™ C Fittg\p,E(ngo,s(Ego))**'

(b) If |S(K5)| = 1, then im(cgp 7)™ C Fitt%\p’E(ngo’S(Ego))**.
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(c) If the Zy-rank of Gpr is at least two, and every place in S(k&) N San(k) is finitely
decomposed in k5 /k, then Fitt%pyE(XEng(kgo ) =10, E.

(d) If the Ziy-rank of Ggr s equal to one, and the module (CIIJ)EEO,S(I@&)

for every natural number n (here E, denotes the n-th layer of E5/E), then

)Gal(E&/E") is finite

Fitty , (Cly, s ) - Fitth, |, (XT

)**
E%,S(E&)

:140
= FlttAP’E<Cl%go,S(Ego)’T)

(B%),T
Hok +1 40 14 *k
MFten, e (Xer se) ™
Proof. As p is fixed in this proof, we often suppress explicit reference to it in the notation, and
we also abbreviate /A, g to simply A.

The exact sequence

— 5 Y?

X} Eoo,S(Eoo)\S (koo

0 X} Foo,S(Exo)

Foo,S(koo) ) 0

reduces part (a) to the claim that, for each height one prime p of A, one has

im(cp.r)p C Fitth (Y5 gimonsiha) -

To verify this, we write A for the (finite) torsion subgroup of Gg__ and fix a splitting of groups
Gr., = A xT. We note that if p belongs to the support of YEpoo S(Ba)\S(koo)? then p € p and
there exists a character y in A and a height-one prime oy of the ring A, = Z,[im x][I'] such
that Ay = Ay o, (cf. [BKS17, §3C1]).

Setting FE\ = E*r0) and L = EL , the elements Naair/E,) and ey are units in £\, and so

CBoo, T € Dy - NGal(L/E,)CBw, T = Ay PL/By & CEy o T

where the Euler factor Pp/p o is as defined in Definition (4.3) (a). This required inclusion is
therefore true since

i 0
Avor " Prypyo = exFitty (YR smnsto))ox = FIAYE | g5 )\ 8(kao) -

By the above discussion, it is sufficient to prove, for each y € 3, that the ideal im(cg, 7)o,

is contained in e, Fitt%x (ng’om S(km))@x in order to establish claim (b). Note that the module
eXXgX .S (koo)\Soy Vamishes if the unique p-adic place p € S(kso) \ Soo satisfies x(p) # 1 and
so we may therefore assume that p is completely split in E, /k.

We now write n for the unique integer with the property that E, , is the decomposition field
of p in Fy o /k. The ideal Fitt%x (ng,oo,s(koo))px is then generated by 77" — 1, where 7 is any
choice of topological generator of I'p, = Gal(E\ /Ey). It therefore suffices to prove that

CE, T 18 divisible by AP" —1in ﬂj\i" UE, «,S(Ex.c0)- 1o do this, we observe that

NE, /En (CEy ) = (1 —Frob. ') -cp , =0

for all m > n since p is assumed to split completely in E, ,,/k. This shows that CEy 0,7 18 In
the kernel of the natural codescent map

T‘EX T‘EX
| | U —>| | U
AX EXYOOvS(EX,OO)vT Zp[gEX,n] EXynvs(EX,OO)vT

which, by the argument of [BD21, Thm. 3.8 (b)], is equal to (4*" — 1) Rix UE, o0,5(Ky.p),T"
This completes the proof of (b).

P
Eo,S(koo)

generated Z,-module and hence pseudo-null as a A-module if tkz, (Gg, ) > 1.

To prove (c), it is enough to note that the given assumption ensures that X is a finitely

Regarding claim (d), we first observe that, by Lemma (6.2) (a), it suffices to verify the stated
equality after localisation at each height-one prime p of A.
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To do this we note that, since no finite place splits completely in ko /k, the A-module X goo S(Ea)

is annihilated by an element of the form v*" — 1, where ~ denotes a choice of topological gen-

erator of I'. From this, it follows that any prime p in the support of X g S(Ew) must contain

an element of the form ~*" — 1.
We fix such a prime p. Then, since the stated assumption implies that the kernel and cokernel

of multiplication by v*" — 1 on Cl%oo,s(koo)’ and hence also on Cl%oo;»s(Eoo),T (cf. [BH21, Lem.
4.5]), are finite, it follows that v*" — 1 acts bijectively on (Cl%Oo S(En) +)p- Hence, since 47" — 1

belongs to p, the tensor product (CI%W,S(EOO),T)P ®p, (£yp/(pLyp)) vanishes. By appealing to

Nakayama’s Lemma, this in turn implies that (Cl%oo, S(Foo),T
P

This argument shows that any height-one prime p of /A that belongs to the support of X Foo,S(Ew)

cannot also belong to the support of Cl%oo’ S(Ba)T" The displayed equality in claim (d) follows

easily from this fact. O

)p vanishes.

(6.7) Remark. The module (CI%&,S(kgo)

to be finite if either E is an abelian extension of Q or if a single place of E ramifies in E%,, and
also in several other situations including cases in which k is imaginary quadratic (cf. [BH21,
Rks. 4.4 and 4.13] for an overview of results). Further, if k% is the cyclotomic Z,-extension of
k, then the Gross—Kuz’min Conjecture predicts that this module is always finite.

)Gal(E2/E) that occurs in Lemma (6.6) (d) is known

6.2. Results in rank zero and the minus part of Kato’s Conjecture

In this section we focus on the case of CM extensions of totally real fields and, in particular,
prove claim (a) of Theorem B in the Introduction.
To do this we fix a (finite, abelian) CM extension K of a totally real field k. We write K+ for
the maximal totally real subfield of K and 7 for the (unique) non-trivial element of Gal(K/K™).
We then write e~ for the idempotent (1 — 7)/2 and define the minus part of a Z[Gk|-module
M by setting

M~ = (Z[1/2][GKle”) ®zig,) M.
We note that the assignment M — M~ gives an exact functor from the category of Z[Gx]-
modules to the category of modules over the ring Z[Gx|™ = Z[1/2][Gke".
In this section, for each prime p we always take the field k5, (as fixed in §6.1.1) to be the
cyclotomic Z,-extension of k. For each abelian extension F of k and each non-negative integer
n we write F,, for the unique intermediate field of EX,/E of degree p".
We shall prove claim (a) of Theorem B by combining Theorem (6.1) (a) with the following
seminal result of Dasgupta and Kakde.

(6.8) Theorem (Dasgupta—Kakde). Fiz an extension K/k as above, an odd prime p and a
set T in 28 that is disjoint from S,(K). Then one has

Onct s~ cyr(0) € Fitty — (fm(Cliy )" 7)7, (60)

where the superscript # indicates that gKgo acts via the involution gKgo — gKgo that sends

o oL

Proof. The verification of the Strong Brumer—Stark Conjecture given in [DK23, Cor. 3.8] im-
plies, for every natural number n, a containment

Ok 1.5+ (k2 1(0) € Fitt%p[gKg],((Cl’;g’@’T)Vv*)#‘ (61)
In addition, the natural maps Cly, ~— CI%, _ are injective (by [Was97, Prop. 13.26]) and
sy n+1’

V,— p v,
er) 7 (Clg o)
the claimed containment is obtained by simply passing to the limit over n of (61) and then
taking account of the general result of Greither and Kurihara in [GKO08, Thm. 2.1]. O

so the Pontryagin-dual maps (Cl%p ~ are surjective. Given this fact,
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A key step in the deduction of Theorem B (a) will be provided by the following technical result.
This result reinterprets the containment in Theorem (6.8) in a way that is better suited to our
purposes and also, at the same time, verifies condition (ii) of Theorem (6.1) in the relevant
case.

(6.9) Proposition. Fiz a finite abelian CM extension K of a totally real field k and an odd
prime p. Then the following claims are valid.

(a) For every height-one prime p of I, ¢, the ( )p module (CI7, ) has projective dimen-
sion one.

(b) For each set T in 23 that is disjoint from Sp(K) one has

GK&/k,S*(Ké’O),T<0) € Fittg\p_ (Cle S(KE)T )** . Fittg\; (X%p S(KE. ))** (62)
Proof. Regarding p as clear from context, we abbreviate A, x, K%, and k& to Ak, Koo and koo
respectively.

To prove claim (a), it is enough to consider a singular prime p of Ag. To deal with this case
we fix a set 7 in 229 that is disjoint from S, (k).

We then note first that, since no finite place splits completely in ko, /k, Lemma (6.2) (b) implies
the natural projection maps

(Clﬁ’(m)p + (CI, _or) and (CIIID(W@’T)p — (Cl’[’(m’S(Km)j,)lJ

are both bijective. For the same reason, one finds that the p-localisation of the A -module
X?(’ S*(Koo) XKDO, S (Koo)\Soo (k)
(47), it follows that the A p-module (CII; S(Koo),T
to H' (D% 7)p -

Next we note that H' (D;{w 1) is a A -torsion module and so, by analysing the exact sequence

vanishes. Upon taking minus parts of the exact sequence

1p7

)p, and hence also (Cly_ )y, is isomorphic

0 —— Uk stroo)r

Py Pg —— H' Dy 7)” —— 0

obtained by taking minus parts of the representative (48) of the complex D%, we deduce

that UI_(OO, S(Koo),T is A\ p-torsion as well. On the other hand, UK S(Kw),

I\ p-torsion free module PI}O@ and so must in fact vanish.

T embeds into the

One therefore obtains a short exact sequence of Az-modules

0 P » Py —— H'(D}_r)” — 0. (63)
This sequence directly implies that the torsion A -module (Clg ) = H 1(D;(007T>p_ is of

projective dimension one, as required to prove claim (a).

To prepare for the proof of claim (b), we first consider an arbitrary finite abelian CM extension
FE of k, and a set T in 33%(1 that is disjoint from Sy,(k), and show that, for every height-one
prime p of Ay one has

05 /,5* (5)7(0) € FittOAE(Clgw,S(EN),T)p - Fitt!) (Yg;mS (k)b (64)

To show this we observe that, for each p, there exists a natural number n, an (n X n)-matrix
A with coefficients in A P and an exact sequence of Ap y-modules of the form

— \n v—A- — \n ,
0 —— (AE,p) = (AE,p) E— (Cl%oo,@ ) — 0.

Indeed, if p is regular, then the existence of such a sequence is clear since (Cl%; 1) 1S 2
finitely generated torsion module over the discrete valuation domain Apg and, if p is singular,
then it follows by localising the exact sequence (63) (with K replaced by E) at p.
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Upon taking Afg p-linear duals of the above exact sequence one derives an isomorphism of
A g p-modules

— — n,* — n,*\ ~v — n - n # ~ i
(B )y = (1, /(AT - (5, )™) = (5, /(A (15,)M) " = (Cl
where we write a(—) = Ext}\E(—,AE) for the Iwasawa adjoint of a Ap-module and A% for
the matrix obtained from A by applying the involution # to each of its entries. We can then

consider the composite isomorphism of A g p-modules
(Cl_ o) = @(Cl )i = (il 7)) = (i (Cl 7, 1))y,

n

»

where the second isomorphism follows from [Was97, Prop. 15.34] and the third is an easy
consequence of the fact that taking Pontryagin duals is an exact functor. In particular, this
isomorphism combines with Theorem (6.8) to imply that, for every height-one prime p of A,
there is a containment

HEoo/k,S*(Eoo)yT(O) S Flttg\;: (Cl%;7g7T)p' (65)

To derive (64) from here, we note that, since Sy,(k) C S(F«), there exists a canonical exact
sequence of A g-modules

Ube,5(Bo)r — Yp — Cl}_ 7 — CI — 0

Eso,Sp(k) Es,S(Ex),T

that induces, upon taking minus parts, a short exact sequence of A -modules

0—— Y&~ — 0.

syt~ ClEo o — Cl

20,8 (Eoo),T
Now, since the torsion A p—module (ClE S(Eo),T +)p has projective dimension one (by the
above argument), its zeroth Fitting ideal contains a non-zero divisor. Given these observations,
a general property of Fitting ideals (cf. [Gre04, Prop. 2.2.3]) combines with the above short
exact sequence to imply that

3 0 ) 3 0 D, . 1 )
FlttAE(CIE @T)P_FlttAE(CIE S(Ea) T e Fltt (YEOO,Sp(k))

Given this equality, the claimed containment (64) follows directly from (65).
Turning now to the proof of claim (b), we observe that, by Lemma (6.2) (a), the containment
(62) can be verified after localisation at height-one primes of /A, In addition, if p is a singular

height-one prime, then the argument in claim (a) implies that the localisation of X% at

Koo, S(Koo)
p vanishes, and hence that its zeroth Fitting ideal over (/) ), is equal to (A )p. In this case,
therefore, the localisation at p of the containment (62) is a direct consequence of (64) with E
taken to be K.
In the remainder of this argument we may therefore assume that p is a regular height-one prime
of Ay;. To investigate this case, we fix a group isomorphism Gr_ = A x I where A is finite
and I" isomorphic to Z,, and we set L = K L. For each totally odd character x of A, we write
L, for the kernel field of x in L and A, for the ring Ay, . We also note that there exists such
character x with the property that A Ky identifies Wlth the localisation of A} at a suitable
height-one prime ideal g, (cf. [BKS17, §3C1]).
Writing P /1, for the Euler factor Pr /Ly 00,0 I £y that is defined as in Definition
(4.3) (a), we claim first that

(g Ok o 57 (Koo) T = (B3 ) oy " Plog Lo * Oy o0 /5,S* (Lyo0) T
010 — 10 ,
€ Px_jr, .. -FlttA;(Clgxmvs(LX‘ )y - Fitt], (yp 5,

Xoov

= Fittg\; (C1e~

o S(Koo) T )X-Fitto (XP~

Ly, 00,5 (Koo))Px'

Here the first equality follows directly from the functorial propertles of Dirichlet L-series and the
containment from (64) with £ = L,.. The second equality is valid because explicit computation
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(as in [Fla04, Lem. 5.5]) shows that

P /p, .. - Fitt) (Y”’ )o, = Fitit) (va

— : O )
Ly ooy ()6 L oS (o) Jox = Fit - (X7

Ly,00,8 (KOO))@X
and, in addition, one has Flttg\_(Cl% OO,S(LX,OO),T) C Fittg\; (Clp’ .S(Ko),r) since the natural

map CI¥ — CILX o S(Koo) T is surjective.

Lix,00,5(Lyx,00),T
To derive the p-localisation of (62) from the above containment, it is then enough to note that

there are equalities of ideals

Fitt} _ (Clﬁ’st(Kw) e

: 0 D,—
: FlttA; (XLX,OO,S(KOO))@X

= Fitt) _(H' (D] _ sreyr) ox

-
—Fltto (H (D;(N75(Koo) )_)P
=

= Fitt),  (Cly gy r)p - Fitt) (X%OO,S(KOO))

Here the first and third equahtles follow from the relevant cases of the exact sequence (47)
(and the fact that the primes p and g, are regular). To derive the second equality we note that
the result of Lemma (3.4) (d) induces (upon applying Z, ®z — and then passing to the limit

over intermediate fields E of Koo/k) an isomorphism Dj. S(Ka) T ®IIL\K hy = sz o S(Koo),T

in DPerf(A\,). This isomorphism in turn induces an isomorphism of A,-modules

Hl(D;(oo’S(Koo)vT) ®AK ALX g Hl (DE/X,OO7S(KOO)»T)’
which directly implies the second equality in the above display.

This concludes the proof of claim (b). O

By combining Proposition (6.9) with a particular case of the criterion of Theorem (6.1) (a), we
can now finally derive the main result of this section (which, we observe, verifies Theorem B(a)
in the Introduction).

(6.10) Theorem. Assume k is a totally real field. Then, for any finite abelian CM extension
E of k, the conjecture TNC(h°(Spec E), Z[Gg]™) is valid.

Proof. At the outset, we note that the Rubin—Stark system ef is Z-integral in the sense of
Definition (2.12). Indeed, given the explicit description of 5? that follows, in this setting, from
Example (2.21) (b), this fact is a well-known consequence of work of Deligne and Ribet in
[DR&0] (cf. [Gro88, Prop. 3.7]).

Next we fix an odd prime p and write ), for the set of all fields of the form k(p)L, where k(p)
is as defined in (24) and L is a totally real, tamely ramified cyclic p-extension of k.

Then, since p is odd and k is totally real, the field k(p) is by its definition contained in k().
In particular, every field I in }), is a tamely ramified abelian extension of k for which one has
erz = e~ and so the validity of TNC(h°(Spec F), Z,[Grler z) is proved by Nickel in [Nic21,
Thm. 2].

Given this fact, the validity of TNC(h°(Spec E), Z,|Grleg o) follows directly upon combining
Proposition (6.9) with the criterion of Theorem (6.1) ( ) (iii) with V' = @, X the set of all finite
abelian CM extensions of k (cf. Example (4.6) (b)), S = {2}, k5 the cyclotomic Z,-extension
of kand Y = ).

Then, since TNC(h®(Spec E), Z,[Gg|eE ) is valid for every odd prime p, to deduce the validity
of TNC(h®(Spec E), Z[Gg]™) it is now enough to simply note that eg o = ™. O

(6.11) Remark. In [JN20] Johnston and Nickel use arguments similar to those in the proof
of Proposition (6.9) to deduce the ‘equivariant Iwasawa Main Conjecture’ of Ritter and Weiss
from the known validity of the Strong Brumer—Stark Conjecture.
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6.3. Results in rank one

In this section we use the classical theory of (rank-one) Euler systems to investigate the inclusion
(46) in cases where both |So (k)| = 1 (so that k is either Q or an imaginary quadratic field)
and V = {So(k)}. In this way we shall, in particular, complete the proofs of Theorems A and
B, as stated in the Introduction.

6.3.1. Statement of the main results

For a p-adic place p of k we write k% for the maximal Z,,-power extension of k that is unramified
outside p.
Then Theorem (6.1) enables us to prove the following unconditional result.

(6.12) Theorem. Let S be a finite set of prime numbers that contains all divisors of |ug|.
Then Conjecture (2.24) for the pair (Q5=®)(k),S) is valid in the following cases:

(a) k=Q,
(b) k is an imaginary quadratic field and, for all primes p € S, all p-adic places p of k and
all fields K in Qg ) (k) either Gal(Kkb,/k) is p-torsion free or the Z,[Gal(K kb ) K)]-

module CIP(Kk5) has vanishing Iwasawa p-invariant.

(6.13) Remark. The hypothesis on p-invariants in Theorem (6.12) (b) is valid for (K,p) if
p splits in k. This was proven by Gillard [Gil85] if p > 3 and by Oukhaba—Viguié [OV16] if
p € {2,3}. Moreover, the Theorem of Ferrero-Washington [FW79] combines with a well-known
result of Iwasawa to imply that the relevant p-invariant (at some prime number p) vanishes if
the degree [K : k] is a power of p (cf. [BH21, Prop. 5.6]).

(6.14) Remark. As noted in the Introduction, one can also combine Theorem (6.12) (a) with
Theorem (3.2) to obtain a simpler proof of the known validity of TNC(h°(Spec K), Rk [GK]) for
any finite abelian extension K of k = Q, with Rx = Z if K is real and Rx = Z[1/2] otherwise.

6.3.2. The proof of Theorem (6.12)

We begin by establishing a useful technical result.

(6.15) Lemma. Fiz a number field k, an Euler system c in ESi(Zs), a prime number p outside
S and a field K in Qsp(k)(k). Set Koo := Kkbo, and write ) for the set of finite extensions of
K in K. Then the following claims are valid.

(a) For each E in Y, write Cg for the Z,|Gg|-submodule of Ug g(g) generated by the set

{6rp-cp:T € 2%, Then, for any field E' in Q' that contains E, the field theoretic
norm NTEE;/E maps Cgr to Cg.

(b) Set Ck,, = hm, o, Ce and pr,, = @EGQ'(ZP ®z pE), where the transition maps are
induced by field-theoretic norms (and, in the first case, the result of claim (a)). Then, for
any regular height-one prime p of I\ that belongs to the support of I\, kck.. T one has

Flttg\pyK (CKOO/(AP’KCKOCMT))p = 6T7Koo : ADHAP,K (HKoo)p_17

where 97 k. is the element of I\, i given by the family (01 E)peq-
Proof. We abbreviate £\, i to /.. For each pair of fields E and E’ in ' with E C E’, one has
S(E') = S(F) and rg = rg. This implies that NTEE//E(CE') = cg. Since 2% is a subset of
23 it is therefore clear that N /p Maps Cgr to Cg, as required to prove claim (a).
To prove the equality claimed in (b) we recall that, for E in €, the module Anng, g,1(Z,®@z k)
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is generated over Z, by the set {07 p | T € 2%} (cf. §2.2.1). This fact gives rise to an exact
commutative diagram of Z,[Ggr]-modules in which all vertical maps are surjective:

0 — Zy[GElor e — Anng 6. (Zy @z pE) — Anng g, 1(Zy @z pr)/(Zp|GE)oTE) — 0

ia:»—mcE lxr—):v-cE l

0— Zp[gE](ST’ECE CE > CE/(ZP[QE](ST,ECE) — 0.

By passing to the limit over E of these diagrams (which preserves exactness since all occurring
modules are compact) and then localising at p, we deduce the existence of an exact commutative
diagram of Ap-modules in which all vertical maps are surjective:

0—— ApéT,Koo E— AHHA(NKOO);J E— AnnA(MKoo)p/(ﬁ\(sT,Koo)p — 0

l)‘ST'_)/\'CKoo;T lex'cKoo,T l

Now, since A\, is a discrete valuation domain, if the module (Ack_ 1), does not vanish, then
it is free of rank one and so the first vertical arrow in this diagram is bijective. Similarly, the
non-zero submodule Anny (pg. )p of Ay is free of rank one and so the second vertical arrow is
also bijective. Applying the Snake Lemma to the diagram, we deduce that the third vertical
arrow is bijective, and hence that, for any prime p as in the statement one has

Fittg\ (CKOO/(ACKOO ’T))p = Fitt%\p (CKOO ,p/(ACKOO ,T)p)

= Fitty, (AHDA(MKoo)p/ (MT,Koo)p) = 67 Ko, - Annp (1K )y

as claimed. 0

We shall now prove Theorem (6.12). To do this we fix a field k& that is either @ or imaginary
quadratic.

At the outset we recall that for any such k& the module of isolated systems ESZ’X(ZS) van-
ishes (cf. Remark (2.14)) and hence that Theorem (6.12) will follow if we can verify that the
conditions of Theorem (6.1) are satisfied in this case.

We further recall that the integrality of the Rubin—Stark system e for such a field k follows
from the explicit descriptions recalled in Example (2.21).

Next, we fix a rational prime p € S and, if k is imaginary quadratic, an element p of the
set Sp(k) of p-adic places of k (this involves a choice if p splits in k). As p is fixed, we also
occasionally suppress dependency on p in the notation. We take ko to be the cyclotomic
Z,-extension if k£ = Q and to be kR if k is imaginary quadratic. We write oo for the unique

archimedean place of k and abbreviate the set of fields Qg:zi)(k) to Q,(k).

If £ = @Q, then condition (ii) in Theorem (6.1) holds by the Theorem of Ferrero-Washington
[FWT79]. If k is imaginary quadratic, then condition (ii) is satisfied due to the explicit assump-
tion on k5 in (b). Moreover, condition (i) in (a) is satisfied by assumption on S. In this way
we are reduced to verifying the containment (46).

To do this, we fix a field K in Q,(k) and set /A := Ag. Note that if either k£ is Q, or
both k is imaginary quadratic and p splits in k, then Remark (6.7) implies that the modules
Clg(koo)(Koo)Gal(Kw/K") are finite for all n > 0. In these cases, therefore, an application of

claims (a) and (d) of Lemma (6.6) reduces us to verifying, for all Euler systems ¢ € ES;(Zs),
all fields K € (k) and (for each K) a suitably chosen set T in 2724, that one has

im(cx 7)™ C Fitt%\(Clg(KLT(KOO))**. (66)

On the other hand, if £ is imaginary quadratic and p does not split in k, then the Z,-rank of
Gk, is two and, by claims (a) and (c) of Lemma (6.6), we are again reduced to verifying the
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inclusion (66).

To verify (66) it is in turn enough, by Lemma (6.2) (a), to argue locally at height-one primes of
A\. At the outset we remark that if /A contains a singular height-one prime, then Gal(Kkb, /k)
has a non-trivial element of order p. In this case, consequently, the given assumption asserts
the vanishing of the p-invariant of C1”?( K kS,), and hence also of that of Clg( K),T(K kB.). Hence,
for any singular height-one prime p of A, Lemma (6.2) (b) implies that the localisation at p of
the right hand side of (66) is equal to (£\), and so the claimed inclusion is clear in this case.

We can therefore assume in the rest of the argument that p is a regular height-one prime. To
proceed in this case, we set IFIXQZ o= jm 2(Zp @z, IFET) with the limit ranging over all finite
subextensions of K, /k and the transition maps being induced by the relevant norm maps.
Then, by applying Z, ®z — to the exact sequences in Remark (3.5) and then passing to the
limit over E, one computes that

Fittg\(mﬁ ) =M 0r K., (67)

where 7 k. denotes the element (d7 ) of /. Further, by applying Z, ®z — to the long exact
cohomology sequence of the exact triangle in Lemma (3.4) (b) and then passing to the limit
over all such F of the resulting exact sequences, one obtains an exact sequence of A-modules

0 — Uk ,5()7 — Ukwo,s(x) — Fi2 o — Ol ey 1 (Koo) — Clg ey (Koo) — 0.

Since the general result of Lemma (A.10) implies that Fitt) (Ug__ s(k),r/(Ick, T))p is equal
to im(ck . 1)p, this sequence combines with the equality (67) to reduce the proof of (the p-
localisation of) (66) to the proof of an inclusion

Fitt) (Uk., s(x)/ (e 1)), S 07k - Fitt) (CL ) (Koo))p-

Before applying Lemma (6.15) in this setting, we note that the A-module ug_ is pseudo-null.
Indeed, ug, is finite if either k is Q (since K is then totally real) or if k is imaginary quadratic
and p is split in k (since koo /k is unramified outside the single place p), whilst if k£ is imaginary
quadratic and p does not split in k, then pg__ is contained in the finitely generated Z,-module
Z,(1) and so is pseudo-null since, in this case, the Z,-rank of Gal(K/k) is two.

In particular, since the quotient of A by Anng (ug, ) is isomorphic to ux__, the pseudo-nullity
of the latter module implies that Anny (uk. ), = £\p. In view of this equality, the result of
Lemma (6.15) (b) implies that the above inclusion is valid provided that the A-module Cx_
that occurs in the latter result is such that

Fitt), (Uk., s(x)/Croe ), © Fittg (Clg ) (Koo))p-

To verify this inclusion, we can assume p is in the support of Crc, (otherwise (Ux_ s(x)/Cko)p =
(Ukw,s())p 18 a free Ay-module and so its Fitting ideal vanishes), and hence that the A,-
module Cx p is free of rank one. Given this, the general result of Lemma (A.10) implies

Fittg\(UKoo,S(K)/CKoo)p = AK,P . {f(a:) ‘ T E CKOO, fe U}k(oo,S(K)}' (68)

To analyse this equality we note the argument of Lemma (6.15) shows that © = A\ - ¢k for a
suitable element A of Anny (k. ) and then, following Remark (2.8), we fix a pre-image A of
A under the projection map @Eeﬂ(kz) Anng, (g (Zp @z pp) — Anng (pk.,)-

We write £ for the maximal abelian pro-p extension of k in which all archimedean places split
completely and, for each field E in Q(k) that is contained in £, we set

g = Nk ( H (1 —Frob, ")) - cpk,
vell(E)\S(EK)
with IT := Sy (k) (so that II(E) = S*(F) = S (k) U S(E)).
Then the family ¢ = (¢;)g can be seen to belong to the module ESh(Indgf (Z,)(1), L) of
p-adic Euler systems introduced in Definition (A.2) and is also such that ¢ = x. In view of
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(68), the required inclusion will therefore be true if we can show that for any p-adic system ¢
in ESL (Indgf(Zp)(l), L) and any homomorphism f in Uy s(x) one has

Flers.) € Fittg (C p))p- (69)
In the rest of the argument we shall explain how this containment follows from results of Rubin.
To do this, we write A for the torsion subgroup Gal(K/ks) of Gal(K/k) and note that
there exists a character x of A and a height-one prime oy of the ring A\ == A ®y, a) Zplim x]
such that Ay, = (Ay)g, (cf. [BKS17, §3C1}).
We also recall that, by the argument of Rubin in [Rub00, Prop. 6.2.1 and Cor. 6.2.2], the
canonical Selmer structure gives rise to a natural isomorphism of dual Selmer modules

(HE: (Opser0), 1Y (1)) @ Ay = He (Op 5050, AL (D (X)) 2 HE- (O 50,0y Tykon)” s

where T, k.. denotes the induction from Gy_ to Gy, of the Gi-representation Z,[im x](1)(x ).
In particular, if one combines this isomorphism with the canonical isomorphism

Clg . s(r) = Hi. (O s 17 (1))7 (70)

(coming, for example, from [Rub00, Prop. 1.6.1]), then one obtains an isomorphism of A,-
modules of the form (Cl%w s( K))P ~H }c*an (Ok,5(5)> Tk )y - This isomorphism in turn implies
an equality of ideals

20 -, 0 1
Fitty (Cli s(i0))p = Fitta (Hry (Ops(x), T ko)
1
= charp, (Hz: (O s(k)s Tyko ) o
where the second equality follows from the fact that, by the structure theorem for finitely
generated modules over a discrete valuation ring R with maximal ideal m, one has Fitt% (M) =

m' RO gy any finitely generated torsion R-module M.
This last displayed equality reduces the proof of (69) to the verification of an inclusion

im(cX) C Chal“AX (H}:* (Ok,S(K)a 7;(\fkoo)v7

can

where cX denotes the p-adic Euler system in ES];(7y,, £) that is obtained from c via twisting by
X (as in [Rub00, Prop. 2.4.2]). It is therefore enough to note that this inclusion follows directly
upon taking account of the observation of Rubin in [Rub00, Rem. 2.1.3] and then applying the
general result of [Rub00, Thm. 2.3.3].

This completes the proof of Theorem (6.12). O

6.4. Results in higher rank

The main result of this section provides further evidence for the inclusion (46) in the case that
p is odd and |Vx| > 1. This result complements the evidence for Conjecture (2.24) that is
provided by Theorem (5.9) and depends on proving a higher-rank analogue of a well-known
result in the Iwasawa theory of (rank-one) Euler systems. However, since the latter result is
best understood in terms of more general p-adic representations we have, for clarity, deferred
its treatment to Appendix A.

Throughout the section we fix an odd prime p and a finite abelian extension K/k of prime-to-p
degree for which Vi # @. We take the field ko = kb to be the cyclotomic Z,-extension of
k, set ' = Gal(K/K) and fix a splitting of groups Gx_ = Gk X I'x. Via this splitting,
we regard Z,[Gk]| as a subring of Ag = £\ k. In this way, for each Ag-module M, and each

—

character x in Gk, we obtain a Z,[im(x)] ®z, £\ x-module by setting
M* = M ©gz,,[g,] Zplim(x)]-

We write w, for the p-adic Teichmiiller character of k, regarded as a C-valued character via
some fixed isomorphism C, = C. We then write Vg for the subset of Gx comprising all
characters y that satisfy the following conditions:
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e Y is not totally odd;

o U IX( (K 1S Zyp-torsion-free (which is automatic unless x = wp);
e if both p =3 and x? = wp, then ClgLXS(KOO) is finite.

We note that ¥ is closed under the action of the absolute Galois group of Q, on Hom(G, @p),
and hence that the sum
EPp = Z €x

xXEV K
defines an idempotent of Z,[Gx| C Ak. In addition, the defining assumptions on characters
in Wg imply that, for each n, the Z,-module ey, Uk, s(k.) is torsion-free and hence, just as

at the beginning of §6.1.1, there is a natural isomorphism
TK

@ (E\PK mZp[gKn] UK"’S(K‘X’)) = ewg mAKK UKOO’S(KOO)'

n
Via this isomorphism, any Euler system ¢ in ES;(Zs) gives rise to an element ey, cg, of
ew, ﬂz\KK UK w,5(K»)> and hence also to an ideal im(ey, cr. ) of ey, Ik.

(6.16) Theorem. Fiz a system c in ESi(Zs). Then, for each prime p outside S, one has

im(ew cro)™ C ewy - Fittg, (CH g )™

In particular, if p > 3, Q\K contains no totally odd characters, U s(x ) 1S Zp-torsion free, and
Cl[f)%);,S(Koo) is finite for both x = 1k and x = wk p, then one has

im(cx, )™ C Fitth, (CH o)™

Proof. For each character x in é[\( we set K = Kker(x) Gy = Gk,, Ry = Zy[im(x)] and
A, = Y. We also define a p-adic representation of Gy, by setting Ty, :== R (1)(x ).

At the outset, we note that the second assertion of the theorem follows immediately from the
first assertion and the fact the stated hypotheses imply ¥y = é Kk so that ey, = 1.
Concerning the first assertion, it is enough to prove, for each x in Vg, that the displayed
inclusion is valid after replacing ey, and Fittg\K (CII;(OW s( Koo)) by e, and Fitt%X(CVX; 5 Koo))
respectively. Indeed, this is true because we may verify the claimed inclusion after passing
from Ak to its faithfully flat ring extension O ®z, Ak with O the Z,-algebra generated by
the values of all characters x € Ug.

In addition, if, for any such y, the module Cl?ém S(Ko)

is obvious since then Cl’;g:m S(Kw) vanishes after localising at every height one prime of A,.
Hence, for the rest of the argument we can, and will, fix a character x such that x # wg , and,
if p =3, also x? # wy,.

We write L for the maximal abelian pro-p extension of k£ and note that all archimedean places
split completely in £ (as p is odd) and that for any finite extension E of £ in £ the integer
defined in Hypothesis (A.3) (i) below is equal to r == rg, = rek, .

With ES"(7,, L) denoting the module of p-adic Euler systems specified in Definition (A.2)
(with IT = S (k) U Sp(k)), we next define a non-zero map of Z[Gx]-modules

(=)X: ESk(Zs) = ES'(Ty, £), ¢ = (Twg \(cek, ) Bea(z/n) (71)
in the following way. For each E in Q(L/k), the ring homomorphism 7Z,[G,| — R, induced by
X gives rise to a map of Z,[Gg]-modules

TwWe: ﬂzp[gmx] Vb = (ﬂzpwmx}
~ T 1
— me[QE} H (Opk, nExK,) Zp(l)) ®z,6,) Rx
~ T 1
— mRX[QE} H (Opk, nEx,) Tx)

e s

is finite, then the required inclusion

UEKX,H(EKX)) ®7,[0x] Rx
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Here the first isomorphism follows from Kummer theory, the second from the fact R, is a flat
Zyp|Gy]-module and the last map is induced by corespy, /p. As E varies over Q(L/k), these
maps Tw,  combine to give a morphism of the required form (71).

The key point now is that the present hypotheses imply 7, validates Hypothesis (A.3): the
required conditions (i)-(v) are satisfied as a consequence of [BSS19b, Lem. 5.3], whilst condition
(vi) (with ¢ = 0) is clear in this case as ko is the cyclotomic Zy-extension. We may therefore
apply Theorem (A.5) to the Euler system c¢X and thereby obtain an inclusion of A,-ideals

im(cfoo)** C Fitt(/]\x (H]l_-c*an (Ok,n, 7;\{]%0 (1))V)**

Given this, the claimed inclusion follows directly from the existence of a canonical isomorphism

Cl%fo,S(Koo) = Hjlfgan(ok,ﬂﬂ;\{km(l))v (as in (70)). ]

(6.17) Remark. Under the stated conditions, the second assertion of Theorem (6.16) combines
with Lemma (6.6) (d) to reduce the verification of (46) to showing, for each x € Gk, that

. )
im(ci )™ C FlttAX(X;gocnS(Koo))**'

This inclusion is, in effect, a lower bound on the ‘order of vanishing at x’ of the values of an
Euler system in terms of the ramification behaviour of p-adic places in K, and can sometimes
be interpreted very explicitly. For example, if k is not totally-complex, Gx contains no totally-
odd characters, p > 3 and both Clim,S(Koo) and, for each n > 0, also (CIIIJ(OO,S(KOO))F?{ are finite,
then the argument of Lemma (6.6) (a) implies the above inclusion is valid provided that

(v=1"¥im(ex )" S [ A=)
vES (koo,X)

for every x € Gx, one has where m(x) = 1 if x = 1x and m(x) = 0 otherwise, S(kso, X)
denotes the set of p-adic places of k that ramify in k, and are totally split in KX and -, is
a generator of the decomposition subgroup of v in I'y. Further, the last displayed inclusion is
easily seen to be valid if, for example, k has only one p-adic place and so one obtains a full
verification of (46) in any such case.

A. Appendix: Euler systems for p-adic representations

In this section we generalise one of the main results of Mazur and Rubin in [MR04] concerning
the Iwasawa theory of rank-one Euler systems. This result is stated as Theorem (A.5) and
shows that higher-rank Euler systems for a wide class of p-adic representations control the
structure of Selmer groups in precisely the manner predicted by ‘Main Conjectures’ in this
setting.

A.1l. Statement of the main result

We fix a prime number p and a finite extension Q of Q, with ring of integers R, uniformiser
w, and residue field k := R/w. We also assume to be given an abelian pro-p extension L of k
that validates the following hypothesis.

(A.1) Hypothesis (Hyp(£)).
(i) for almost all primes q of k, the maximal p-power degree extension of k in the ray class
field k(q) is contained in L;

(ii) there exists a Zy-extension ko, of k in £ in which no finite place splits completely.

We write Q(L/k) for the collection of all finite extensions of k in £, and for each field E in
Q(L/k) we consider the algebras Rp = R[G.], A == R[Gr.. ] and Ag = R[Gek.. ]
We fix a finitely generated free R-module 7 that admits a action of Gy, that is continuous (with

81



respect to the canonical compact topology on 7') and such that the set Syam(7) of places of k
at which 7 is ramified is finite. We also fix a finite set of places IT of k containing

Smin(T) = Soo (k) U Sp(k) U Sram(T),
and for each field E in Q(L/k) we set II(E) =1 U Syam (E/k).

(A.2) Definition. For each non-negative integer r, the Rp-module ES™(T, L) = ES;(T, L)
of (II-imprimitive) Euler systems of rank r for T over L is the collection of families

(ne)e € H ﬂ RIGs] H (Opnm)T)

EeQ(L/k)
with the property that for every pair E C E' in Q(L/k) one has
corespp(ne) = ([ Po(T,Frob,))(ne), (72)

vell(ENH\II(E)
where P,(T,X) denotes the characteristic polynomial det(1 — Frob, 1 X | T*(1)) € R[X].
For a Gg-module A we write k(A) for the minimal Galois extension of & such that G4y acts

trivially on A. In the sequel we assume p is odd and for each non-negative integer m we consider
the fields

R = k(L p)k(ppm, (OF)1P"), kpee = Fop,
m>0
(T = k(T /p™T), F(T)pee = ke k(T),

where k(1;p) is the maximal p-extension inside the Hilbert class field of k& and (O,:)l/ P™ the
subgroup of QX comprising all elements whose p”'-th powers belong to O;.
In terms of this notation, we assume in the sequel that T satisfies the following hypotheses.
(A.3) Hypothesis (Hyp(7)). All of the following conditions are satisfied.

(i) The R-module Yi(T) == @D,es._ ) H°(k,,T) is non-zero and free.

(ii) The residual representation 7 := T ®x k is an irreducible k[Gx]-module.

(iii) There exists T € G(, 00k, Such that 7/(7 —1)T is a free R-module of rank one.

(iv) The cohomology groups H(k(T )y~ /k, T) and Hl(k(T)poo/k,T'v(l)) vanish.

(v) If p=3, then T and ?v(l) have no non-zero isomorphic R[G]-subquotients.

(vi) There exists a (finite) filtration {0} = 7y C T4—1 C --- C To = T of R[G]-modules

where each module 7;/7;11 is free over R and such that the induced action of Gy factors
through Gal(L;/k) for some finite extension L; of ko, that is Galois over k.

(A.4) Remark. The conditions (i)-(v) in Hypothesis (A.3) are standard in the theory of Euler
and Kolyvagin systems (following Mazur and Rubin). Condition (vi) is sufficient for our present
purposes and allows an easier approach than is possible for more general representations.

We write Ty for the induction from Gj__ to Gy of the representation 7. We recall that, in
each degree m > 0, the Iwasawa cohomology module of T over a field E in Q(L/k) is then the
(finitely generated) A g-module obtained by setting
Hig(Op ), T) = H™(Op n(p): Tre) = Im H™(Op, n(r), T),
nelN

where the second equality follows from Shapiro’s Lemma (cf. [MR04, Lem 5.3.1]), the limit
taken over layers F), of the Z,-extension E, = Fko of E with respect to corestriction maps.
In the sequel we will use the fact that, if 7 satisfies Hyp(7), then for each non-negative integer
r, there exists a canonical isomorphism of Ag-modules of the form

ﬂ HIW Or e = hm ﬂ RGp. (O, e T), (73)
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where the limit is with respect to the maps on exterior biduals that are induced by corestriction.
(This isomorphism is obtained by applying the general result of [Sak20, Lem. B.15] to the
complex (77) defined below).

In the sequel we will also use, without further explicit comment, the theory of Selmer structures
that is recalled in [BSS19b, § 2]. In particular, we write Fcay for the canonical Selmer structure
on T .

Taking account of Hypothesis Hyp(7) (i) we set

a = a7 = rankg (Y(T)).

Then the next result extends to arbitrary values of a the (rank-one) results established by
Mazur and Rubin in [MRO04, §5.3]. Its proof will occupy the remainder of the appendix.

(A.5) Theorem. Assume that the extension L/k and representation T respectively satisfy the
hypotheses Hyp(L) and Hyp(T). Assume also that there exists an Euler system n in ES*(T, L)
for which the element ny_, that corresponds, via the isomorphism (73), to the family (ng, )n is
non-zero. Then both of the following claims are valid.

(a) The A-module HZ (O, T) is torsion.
(b) The A-module H}:a (Okﬂ,ﬁ\;(l))\/ is both finitely generated and torsion, and there is
an inclusion of A-ideals im(ny, )*™* C chaJrA(H}c*an (O, T (1)Y).

(A.6) Remark. Claim (a) of Theorem (A.5) asserts that, under the stated hypotheses, the
‘weak Leopoldt conjecture’ of Perrin-Riou [PR98, §1.3] is valid for 7 over k. In addition,
Lemma (A.10) below implies that if n__ is non-zero, then the inclusion in claim (b) is equivalent
to an inclusion of characteristic ideals

()" = CharA((ﬂ“A HL (Opm, ) /(Ankw)> C chara(HE, (Opm T, (1))

This observation implies that Theorem (A.5) (b) improves upon earlier results in the literature
that depend upon imposing restrictive hypotheses in order, for example, to rule out trivial
zeroes of p-adic L-functions and, at least for representations of the form R(1)(x) with a Dirichlet
character x, also assume the validity of Leopoldt’s conjecture (see, for example, the results of
Biiytikboduk in [Biiy09], [Bliy10], and [Biiyl1], and of Mazigh in [Maz17] and [Maz19]).

A.2. Twisting representations

In this section we reduce the proof of Theorem (A.5) to consideration of a family of natural
twists of 7. To describe these twisted representations, we fix a distinguished polynomial f in
R[X] that is either constant (and hence equal to @) or of degree one. For each natural number
n, we then define a polynomial

[ e =X+ ag (witha € R).
" X"+w if f=w,

fix a root ay, of f,, in Q and consider the ring R, :== R[a,]. We also fix a topological generator
v of Gal(kso/k) = Z,, define a character
Unt Gk, = Rn, v 14 ap,
and consider the associated representation
T(n) =T @R Ru(¥n) = T @ (A/(Afn)), (74)

where the isomorphism (of R[Gj]-modules) sends each element t ® o/ to ¢t ® (X™ mod (f)).
We note that 7 (¢,,) is free of finite rank as an R-module and endowed with a continuous action
of G that is unramified outside a finite set of places of k.

(A.7) Lemma. The following claims are valid:
(a) For every n the representation T (1) satisfies the hypotheses Hyp(T () (i) — (v);
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(b) There exists an unbounded set of n such that, for every prime q of k outside I, and every
non-negative integer i, the endomorphism Frobgl — 1 acts injectively on T (1y,).

Proof. Since p is odd, the functor (—) ®z (A/(Af,)) commutes with the functor H(k,, —) for
each v € Sy (k), and the validity of Hyp(7 (¢,)) (i) follows easily from this. In addition, since
the element 7 given by Hyp(7T) (iii) acts as the identity on k., the element 1, (7) acts as the
identity on T (1,,) and so 7 also validates Hyp(7 (¢,)) (iii).

We next note that, since f is a distinguished polynomial, one has 1, =1 (mod w) and so the
residual representations 7 and T (1) coincide. The validity of Hyp(T (¥,,)) (i), (iv) and (v)
therefore follows from the assumed validity of Hyp(7 ). This proves claim (a).

To prove claim (b), it is enough to verify the stated claim for the twisted base-change repres-
entation V(¢,,) = (T @r Cp)(¥n). By inducting on the length of the filtration of 7 that is
given by Hyp(7) (vi), we can then also reduce to the case that the action of G, factors through
Gy, for a finite extension L of k., that is Galois over k.

To deal with this case we set G := G, and fix a pre-image o of v under the projection map
G — Gi... We write s for the order of the finite normal subgroup H := ker(w) of G and ¢ for
the order of the automorphism h — h? := cho~! of H. Then, for each element g of G one has
g = ho* for unique elements h € H and c € Z,, and hence, setting m = st, one has

g" = (ho®)" = ("1‘__[1 h”d)acm = (ﬁ hUCi)scrcm =0,
=0 =0

where the last equality is true since Hf;(l) he”" belongs to H.

We now fix a prime ideal q of £ outside II and a non-negative integer i, write the image in G of
the element x = Frobgl as hpo® and assume to be given a non-zero element v of V(v,,) that
lies in the kernel of k — 1.

Then, after fixing an isomorphism V(¢,) = C;, of Cp-vector spaces that gives rise to a morph-
ism p: G — Autg, (V(¢n)) = GL4(Cp) induced by the action of Gy on V(iy,), the above
computation shows that

p()*™ v = p(r)™ v =1 (YO v = ()0 - v, (75)
and so 9., 1(7)€™ is an eigenvalue of p(o)®°™. Hence, since p(o) = v+ A-v~! for some invertible
matrix v and a matrix A in Jordan normal form, it follows that p(c) has an eigenvalue A such
that A%™ = ¢)~1(y)©™ Thus, we have A = £ - 11 (v) for some root of unity ¢ € Q.

If f # w, then R, = R and so both A and v, (7), and hence also £, are contained in a finite
extension of R that only depends on the eigenvalues of p(¢). On the other hand, if f = w and
n is prime to p, then R,, is the ring of integers of a totally ramified extension of degree n of Q
and so the order of any root of unity (such as £) in the extension of Q generated by R, and A
is bounded independently of n.

In particular, as p(o) has at most a distinct eigenvalues, and the 1, () are distinct as n ranges
over all natural numbers, this argument shows that there exists a natural number ng that is
independent of q and such that the equality (75) cannot be valid for any n that is prime to p
and greater than ng. '

This implies that for any such n, any ¢ > 0 and any q ¢ II, the kernel of Frobgl — 1 on V(i)
must vanish, thereby proving claim (b). O

We obtain Theorem (A.5) by applying the theory of higher-rank Euler systems developed in
[BSS19b] to the representations T (1,). To prepare for this, we first prove two technical results.

(A.8) Lemma. For each natural number n and each field E in Q(L/k), there exists a natural
map of Ig-modules

JEn: (ﬂZE Hi(Op nee), T)) ®np RulGE] — m;n[gE] H' (Opnm) T(Wn),  (76)

84



where the tensor product is defined using the ring homomorphism Vg, « : g — Ry[GE| that
15 induced by the composite of ¥y, and the diagonal map Ggi,, — Gr X Gr.. These maps have
the following properties.
(a) Each map ji,, is injective.
(b) The maps {jg.n}pea(c k) induce a natural map (—)¥r: ES*(T, L) — ES*(T (¢n), L) of
R r-modules.

Proof. For each E in Q(L/k) we define a complex of R[Gg|-modules by setting
Cy(T) = RHomgg,|(RL(Op (), T), RIGE])-

Under hypothesis Hyp(7), the result of [BSS19b, Lem. 3.11] implies that H°(E,T) vanishes
and the module H!(E,T) is R-torsion-free. These facts combine with the general result of
[BS21a, Prop. 2.21] to imply that C'3(7) is isomorphic in D(R[GEg]) to a complex of the form
Pr — Pg, where Pg is a free R[Gg|-module of finite rank and the first term is placed in degree
zero. By a standard argument of derived homological algebra (as, for example, in [BH21, Prop.
3.2]), it then follows that the derived limit complex

Ct.(T) = Rlim C}, (T) (77)
nelN

is isomorphic in D(/Afg) to a complex Py, — P, where Py is a free /Ag-module of finite rank
(and the first term is placed in degree zero).

Next we note that the homomorphism g ,, , combines with the general result of [FK06, Prop.
1.6.5] to induce an isomorphism in D(/Ag) of the form

[Poo @15 RnlGE] = Poo @1y RG] = CF_(T) % RalGr] = C(T (¢n)),
and hence also an identification H'(C,_ (T) @} Ru[Gr]) = H (Opng), T (¥n)). On the other
hand, the complexes (where in the first case the first term is placed in degree Z€ero)
a,e . a a—1
CRe(T) = | Ny Pr= Pong N\, Py|
CF* (T (n)) = Cg* (T) ®F , RulGE]

are acyclic in degrees less than zero and, moreover, [Sak20, Lem. B.12] implies that there are
canonical isomorphisms

HO(CE(T) = (), Hiw(Opnwm).T)
HOCH (T W) = (N, o B (Ore) T(wn)):

These facts combine with an explicit analysis of the second page of the spectral sequence of
I\ g-modules

By’ = Torlf (HY(C2 (T)). RalGp)) = H™ (CH(T (4n)). (78)
to imply the existence of a homomorphism jg,, of the required sort.

Moreover, if E = k then (78) degenerates on its second page (since the A-module R,, = A/(Af,)
has projective dimension one) to yield a short exact sequence

0= (N H(Oki: 1)) €4 R = (Vo H (Opniay T(Wn)) = H(CE2 (TN 1] = 0.

thereby proving claim (a).

To prove claim (b) we note ES®(T, £) identifies with the R -module comprising all elements
of [Tpea(e N H} (O, T) that satisfy the (Iwasawa-theoretic analogue of the) relation
(72). It is therefore clear that the maps {jg,}r combine to induce a map of R -modules

ESY(T.L)—~ ] ﬂn[gE1H1 p1E), T (¥n))-

EeQ(L/k)
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To see that this induces a map (—)W of the required sort, it is enough to show its image is
contained in ES*(T (¢y,), £). This is true since, for every field E in Q(L/k), and every place v
of k outside Smin(7 () U S(E), the image of P,(7,Frob,!) in Ag is sent by 1p . to the
element P, (T, 1, (Frob, 1) - Frob, ') = P,(T (¢n), Frob, ') of R,[GE]. O

Before stating the next result we recall that the global duality theorem implies the existence
of a canonical exact sequence of A-modules

0 —— Hr. (Opm, T (1) —— Hi(Op1, T) —— €D H? (ky, Trr,)- (79)
vell
(Since Fean agrees with the relaxed Selmer structure on 7 (by [MRO04, Lem. 5.3.1 (ii)]), this
sequence follows, for example, from the argument of Perrin-Riou in [PR98, Prop. A.3.2].)
The above exact sequence implies Hx. (Op11,7,’ (1))" is a finitely generated A-module and
hence that its A-torsion submodule has a well-defined characteristic ideal.

(A.9) Lemma. For all sufficiently large n, the following claims are valid:

(a) The (injective) map ji, constructed in Lemma (A.8) is a pseudo-isomorphism and the
order of coker(ji ) ts bounded independently of n.

(b) If n is any system as in Theorem (A.5), then the component jin(nk..) of n¥" at k is
non-zero and, in R, one has

M (i (ko)) € Fittr, (s (Okn, T (4a)"(1))Y).
In particular, Hléim (Or11, T (¥n)¥ (1)) is finite.
(c) The kernel and cokernel of the natural map (of Ry-modules)
st Hrs (Onm, Tel (1) @4 R = Hp (O, T (W) (1))
are finite and of orders bounded independently of n.

(d) The polynomial f,, does not divide the characteristic polynomial of the A-torsion submod-
ule of Hl:m((')k,m Tl (1)Y.

Proof. The proof of Lemma (A.8) (a) shows that the cokernel of jj , is isomorphic to Q[fy]
with Q = H I(CZ;: (T)). In particular, if n is chosen large enough so that the prime ideal Af;,
is not contained in the support of the A-torsion submodule of @, then Q|f,] is pseudo-null and
so its order is at most the cardinality of the maximal finite A-submodule of Q). This proves
claim (a).

Next we note that, since the element n__ is (by assumption) non-zero, and a non-zero element
of a unique factorisation domain can only have finitely many irreducible factors, neither of
the principal ideals that are given by im(n__)** and the characteristic ideal of the A-torsion
submodule of HL. (Ok1, T,/ (1))¥ can be contained in infinitely many of the ideals Af;.
In particular, for Cgrlly large enough n, the polynomial f, does not divide the characteristic
polynomial of the A-torsion submodule of HL:. (O, 7. (1))Y and, in addition, the element
Jkn (ko) is non-zero. The first of these propeclii%ies immediately implies the property in claim
(d), whilst the second property implies that the image n¥» of 1 inside ES*(T (¢,,), £) is non-zero.
Now Lemma (A.7) implies that the representation 7 (¢,,) satisfies all the hypotheses (Hy)
through (Hy4) that are listed in [BSS19b, §3.1.3], whilst 7 (¢,,) tautologically satisfies the hypo-
thesis (Hf) in loc. cit. We may therefore apply the general result of [BSS19b, Thm. 3.6 (iii) (c)]
to the non-zero Euler system n%" to directly obtain the inclusion in claim (b).

Since jin(Mk.,) is non-zero, the ideal im(ji n(nk. )) is not the zero ideal and hence of finite
index in R,,. The second assertion of claim (b) then follows upon noting that, since R,, is a
discrete valuation ring, a finitely generated R,-module M is finite if and only if its Fitting
ideal is of finite index in R,,.

Finally we note that the validity of the property in claim (c) (for sufficiently large n) follows
upon taking Pontryagin dual of the result of Mazur and Rubin in [MR16, Prop. 5.3.14]. O
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A.3. The proof of Theorem (A.5)

To prove claim (a) of Theorem (A.5) we fix any distinguished linear polynomial f of A, for
example we may take f = X. We then let n be a natural number that is large enough to ensure
that all of the claims in Lemma (A.9) are valid with respect to the polynomial f,.

Then, by Lemma (A.9) (b), the Fitting ideal Fitt%n(H]l_-&“(Ok’n, T ()Y (1))Y) contains a non-
zero element and so the (finitely generated) R,,-module H }C*m (Oka1, T (¥n)¥(1))Y is finite. From
the result of Lemma (A.9) (c), it then follows that HJ. (((’)k,n, Ti (1))Y ®A Ry, is finite and
hence, as a consequence of the structure theorem for finitely generated A-modules, that the
A-module H}C*an((’)kﬂ, T (1))Y is torsion.

This observation directly implies the first assertion of Theorem (A.5) (b) and also combines
with the exact sequence (79), and the fact that no place in 11N S, (k) splits completely in ko,
to imply that the A-module HZ (O 11, T) is torsion, thereby proving Theorem (A.5) (a).

Before proving the rest of Theorem (A.5) (b), we record two general results that will be used
(the second of which is well-known but we include its proof for lack of a better reference).

We recall that, for any finitely generated module M over a Noetherian ring R the group
Exth(M, R) is naturally a module over the endomorphism ring R* of R.

(A.10) Lemma. Let R be a Gorenstein ring, M a finitely generated R-module and r a non-
negative integer. If a non-zero element m of (\p M generates a free R-module, then one has

im(m)™ = Fitt%. (Ext ((ﬂ;2 M)/(Rm),R))*.

Proof. Since reflexive ideals of R are uniquely determined by their localisations at primes of
height at most one, we may, and will, assume R is a Gorenstein ring of dimension at most one.
In this case the module Ext} (N M, R) vanishes since the exterior bidual [ M is reflexive.
Upon dualising the tautological exact sequence

0 Rm ﬂ;M —— (N M)/(Rm) —— 0
we therefore obtain an exact commutative diagram
(N, M)" —— (Rm)* —— Bxth (g M)/(Bm), R) —— 0
0»—>0(m)l 9H9(m)l i

0 —— im(m) R R/im(m) —— 0.

Here the second vertical map is bijective as m generates a free module of rank one, and
the first vertical map is surjective since the present hypotheses on R imply the natural map
Ng M* — (N M)* is surjective (cf. [NSWO08, Prop. (5.4.9) (iii)]). Upon applying the Snake
Lemma to the diagram, one therefore finds that the dotted vertical map (that is induced by
the commutativity of the diagram) is an isomorphism. This isomorphism leads directly to the
claimed description of im(m). O

(A.11) Lemma. Let M be a finitely generated torsion A-module that is pseudo-isomorphic to
S
Ey = G}A/(Ag;ﬂj)7
j=1

where each g; is either w or an irreducible distinguished polynomial and each m; a natural
number. Then, for any irreducible element f of A that does not divide charp (M), one has

ordy, (|M/(fM)][) — ordp(|Msn|) < ordy (|Ea/(fEwm)l) < ordy, (|M/(fM)]),

where Mg, denotes the maximal finite A-submodule of M.
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Proof. The existence of a map of A-modules from M to Ejs (or in the reverse direction) that
has finite kernel and cokernel combines with a calculation of Herbrand quotients to show that

[Exm(f11/|Ea /(fEn)| = [MIfII/|M/(fM)]-

The claimed inequalities follow from this equality, the obvious inequality |M[f]| < |Mgy,| and
the fact that E)y/[f] vanishes as f is coprime to each g;. O

Turning now to the proof of Theorem (A.5) (b), we note that, since HZ (Og 1, T) is a torsion
A-module, the argument of [BD21, Thm. 3.8 (a)] implies ({ Hf, (O, T) is a free A-module
of rank one. Hence, since n_ generates a free A-module, the quotient A-module

Q= (N, Hiw(Orm. 7))/ (Amy..)

is torsion. Upon applying Lemma (A.10) with M = HL (Opn,T),r = a and m = n,_, and
identifying A* with A# (where, as before, # indicates that the Gy__-action has been inverted
using the involution o — ¢~ 1), we may therefore deduce that

im (g, )™ = Fitt], (Ext) (Qn, A))™ = Fittq, (QF)™ = Fitt] (@)™ = charx (Qy),
where the second equality follows from [NSWO08, Prop. (5.5.13)] and the last from the fact that

FittQ (M )** = chary (M ) for any finitely generated torsion A-module M. The proof of claim
(b) is therefore reduced to the verification of an inclusion of characteristic ideals

chary (@) C charA(Hjlr:zm (O, T (1)Y). (80)

To check this, we fix generating elements z, and zgq of the (principal) A-ideals chara(Q,) and
charp(Hz. (O, T, (1))Y), respectively. We note that z, and zse can both be factored as
a productcogf irreducible distinguished polynomials and a power of the uniformiser w of R. In
addition, since we are free to verify (80) after a faithfully flat base change, we may, and will,
assume that all occurring irreducible distinguished polynomials are linear.

In particular, to verify (80), it is now enough for us to fix a factor f of zge that is equal to
either @ or to X + ap (for some ag in the maximal ideal of R) and to show that

ords(z,) > ordf(2sel)- (81)

To do this, we let n be a natural number for which all the claims of Lemma (A.9) are valid
with respect to the fixed choice of f. We then choose a pseudo-isomorphism of the form

H. (Orm T (1) = DA/ (Af™) & DA/ (Ag)) (82)
=1 j

in which ¢ is a non-negative integer, each m; a natural number and each g; a (possibly reducible)
distinguished polynomial that is independent of n and also, since n validates Lemma (A.9) (d),
coprime to fj.

Then, for each index j and every such n, the quotient module A/(Ag; + Afy,) is finite and we
claim that its cardinality is bounded independently of n. To show this, we note that, because
fn is an irreducible distinguished polynomial, the Weierstrass Preparation Theorem gives an
isomorphism A/(Agj+Afn) = Rn/(Rngj(ay)). It is then enough to note that the R,-valuation
of gj(a) is bounded since, for all large enough n, the strong triangle inequality implies that

ordr (g;(aop)) if f=X+ao,

ordg,, (ageg(gj)) =deg(g;) if f=w.

ordg,, (gj(an)) = {

This observation implies the existence of constants k1 and k9 that are independent of n and
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such that

ordy (|Hz: (O, T(¥n)Y(1))Y]) = ordy (|HE. (Orm, T (1)) @4 Ral) + k1 (83)
t

> ord,, (J TIA/(Af™ + Afo)]) + k2

i=1

= ordy (1Ra/(Ruf(an)™)]) + k2

=1

¢
=n- E m; + K2
i=1

=n- Ordf(ZSel) + Ko,

where the first equality follows from an application of Lemma (A.9) (c), the inequality from the
second inequality of Lemma (A.11) and the final equality from the pseudo-isomorphism (82)
and choice of element zg).

In a similar way, after fixing a pseudo-isomorphism of the form

.,
Q= DA A © DM Any): (84)

i=1 j
in which ¢ is a non-negative integer, each [; a natural number and each h; a (possibly reducible)

polynomial that is both independent of n and coprime to f,,, one finds that there exist constants
k3 and k4 that are independent of n and such that

ordy (|(Vs, H* Ok, T(n)) /Rl (55)
= ord, (‘Q77 A Rn|) + K3

t/

<ord, (D [A/(AFf + Af)]) + ka

=1

tl
:n-Zli—f—m
i=1

=n-ords(z,) + Ka.

Here the first equality follows from Lemma (A.9) (a), the inequality from the first inequality of
Lemma (A.11), and the final equality from the pseudo-isomorphism (84) and choice of z,.
Now, Lemma (A.9) (b) combines with Lemma (A.10) to imply an inclusion

Fittk, (N, H Ok TWn)) )/ (Rujen(men))) € Fittle, (i, (Opn, T(6a) (1)Y).

Since R, is a discrete valuation ring with finite residue field, this inclusion is therefore equivalent
to an inequality

(M), H Onn, T(wn)) ) (Rudin(ne))| = |Hs, (Onan, T(w)* (1))
Upon combining this inequality with those of (83) and (85), we derive an inequality
n-ords(zy) + K4 > n-ords(2zse) + Ko
By taking n sufficiently large, this then implies the inequality (81) and hence completes the

proof of Theorem (A.5). O
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