
Annihilating class groups in p-elementary abelian extensions

Dominik Bullach Daniel Maćıas Castillo

We derive new cases of conjectures of Rubin and of Burns–Kurihara–Sano con-
cerning derivatives of Dirichlet L-series at s = 0 in p-elementary abelian extensions
of number fields for arbitrary prime numbers p. In naturally arising examples of
such extensions one therefore obtains annihilators of class groups from S-truncated
Dirichlet L-series for ‘large-enough’ sets of places S.

1 Introduction

1.1 Dirichlet L-series at s = 0 and annihilation of class groups

Stark’s conjecture predicts a description for the leading term of a general Artin L-series at
s = 0 up to an unspecified rational factor. Formulating an integral refinement of this conjec-
ture turned out to be a delicate task that Stark himself, in [Sta80], only found a solution to in
the case that the order of vanishing of the L-series at s = 0 is one. Initial generalisations to
higher orders of vanishing, for example the ‘question’ of Stark in [Tan97; Gra99] or a conjecture
of Sands [San87, Conj. 2.0], were subsequently shown to not hold in general by Rubin [Rub96,
§ 4] and Popescu [Pop07]. Instead, Rubin proposed in loc. cit. what is now commonly referred
to as the ‘Rubin–Stark conjecture’.
Going beyond mere integrality, it is expected that this unspecified factor encodes important
arithmetic information and, in particular, is linked to the Galois module structure of class
groups. The primordial example of this phenomenon is Stickelberger’s theorem from the 19th
century, which asserts that the ideal class group of a cyclotomic field is annihilated by a certain
element valued in the group ring over the relevant Galois group and constructed from values
of Dirichlet L-series at s = 0. The analogous annihilation statement for class groups of finite
abelian CM extensions of totally real fields is known as the ‘Brumer–Stark conjecture’ and
has very recently been settled by Dasgupta and Kakde [DK23] with additional arguments by
Dasgupta, Kakde, Silliman, and Wang [Das+23]. In certain situations, these results can even
be extended to non-abelian CM extensions, see [EN22; BJ11; JN19].
However, outside the setting of totally imaginary extensions of totally real fields the values of
the associated Dirichlet L-series at s = 0 usually vanish (the only exception being the case
considered by Nomura in [Nom18]) and so naive generalisations of Stickelberger’s theorem be-
come trivial. This led Burns to formulate the question whether in such cases one can instead
use higher derivatives of Dirichlet L-series to produce annihilators of class groups (see [MC12,
Question 1.1]) and similar aspects have also been considered by Buckingham [Buc08; Buc11].
In this note, we prove new results on the Rubin–Stark conjecture and, moreover, on the an-
nihilation of class groups, in cases of higher orders of vanishing. Indeed, in Theorem (1.1) we
extend annihilation results concerning multi-quadratic extensions by Sands [San12] and the
second author [MC12] to general p-elementary abelian extensions K/k of number fields, for
arbitrary prime numbers p. This result is conditional on the collection of subextensions L/k of
K/k that have degree p validating a conjecture of Burns, Kurihara, and Sano (which we recall
as Conjecture (1.10)). Since we are then also able, in Theorem (1.3), to prove new cases of the
Burns–Kurihara–Sano conjecture, we derive a method of systematically producing examples in
which the annihilation claim of Theorem (1.1) is valid unconditionally (see Corollary (1.8)).
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1.2 Statements of the main results

To describe our results in more detail, we fix a finite abelian extension of number fields K/k
with Galois group G := Gal(K/k) and, following Rubin [Rub96, Hyp. 2.1], a triple (S, V, T ) of
finite sets of places of k with the following properties:

(H1) S contains both the set S∞ of infinite places of k and the places that ramify in K,

(H2) V ⊊ S is a proper subset comprising places which split completely in K/k,

(H3) T is disjoint from S and such that the group O×
K,S,T := {a ∈ K× | ordw(a) = 0 if w ̸∈

SK , ordw(a − 1) > 0 if w ∈ TK} is Z-torsion free. (Here SK and TK denote the sets of
places of K that lie above those in S and T , respectively, and ordw is the normalised
valuation attached to w.)

We refer to such a triple (S, V, T ) as a ‘Rubin datum’ for K/k. For any Rubin datum and
character χ in Ĝ := HomZ(G,C

×), the (S-truncated, T -modified) Dirichlet L-series

Lk,S,T (χ, s) :=
∏
v∈T

(1− χ(Frobv)Nv
1−s) ·

∏
v ̸∈S

(1− χ(Frobv)Nv
−s)−1 if Re(s) > 1

is known to admit a meromorphic continuation to C that is holomorphic and of order of
vanishing at least |V | at s = 0 (cf. [Tat84, Ch. I, Prop. 3.4]). We may therefore define the
(|V |-th order) ‘Stickelberger element’

θ
(|V |)
K/k,S,T (0) :=

∑
χ∈Ĝ

(
lim
s→0

s−|V |Lk,S,T (χ
−1, s)

)
· eχ,

with eχ := |G|−1
∑

σ∈G χ(σ)
−1σ the usual primitive orthogonal idempotent in C[G] associated

with χ. In addition, we define XK,S ⊆ YK,S :=
⊕

w∈SK
Zw to be the Z[G]-submodule of

elements whose coefficients sum to zero, and denote the Dirichlet regulator isomorphism by

λK,S : R⊗Z O×
K,S

≃−→ R⊗Z XK,S , x⊗ a 7→ −x
∑
w∈SK

log |a|w · w. (1)

The Rubin–Stark conjecture [Rub96, Conj. B’] now predicts, via the reinterpretation given in
Lemma (2.2) below, that for every homomorphism of Z[G]-modules f : O×

K,S,T → XK,S one has

θ
(|V |)
K/k,S,T (0) · detR[G](fR ◦ λ−1

K,S) ∈ Z[G] (2)

with fR the scalar extension R ⊗Z f : R ⊗Z O×
K,S = R ⊗Z O×

K,S,T −→ R ⊗Z XK,S of f .
In addition, it is expected that the element in (2) annihilates the SK-class group of K (cf.
[Bur11b, Conj. 2.4.1] or [MC12, Qu. 1.1]). Here we study a refinement of this question that
instead considers the SK-ray class group ClK,S,T of K mod TK (defined as the quotient of the
group of fractional ideals of OK,S coprime to TK , by the subgroup of principal ideals with a
generator congruent to 1 modulo all w ∈ TK).
To state our first main result in this direction we fix a prime number p, consider a p-elementary
abelian extension K/k and write Ω for the set of degree-p subextensions L/k of K/k.

(1.1) Theorem. Let K/k be a p-elementary abelian extension of number fields of degree pm

and fix a Rubin datum (S, V, T ) for K/k that satisfies

|S| ≥ max{|V |+ 2, |V | − sp + (p− 1)(m− 1) + 3},
where sp := dimFp(Clk,S,T ⊗ZFp) denotes the p-rank of the S-ray class group mod T of k.
If for all subextensions L/k in Ω the Burns–Kurihara–Sano conjecture [BKS16, Conj. 7.3] is
valid for (L/k, S, V, T ), then{

θ
(|V |)
K/k,S,T (0) · detR[G](fR ◦ λ−1

K,S) | f ∈ HomZ[G](O×
K,S,T , XK,S)

}
⊆ AnnZ[G](ClK,S,T ).

In particular, the Rubin–Stark conjecture is valid for (K/k, S, V, T ).
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(1.2) Remark. If p = 2, then each subextension in Ω is quadratic and Theorem (1.1) is
unconditional (see Remark (1.11) (d)) and recovers results of Sands [San04, Thm. 2.2] on the
Rubin–Stark conjecture and of Sands [San12, Main Thm.] and the second author [MC12,
Thm. 1.4] on the annihilation of class groups.

To prove Theorem (1.1) (in § 4) we first deduce in Lemma (4.3) the validity of the Rubin–
Stark conjecture for K/k from the assumed validity of conjecture [BKS16, Conj. 7.3] for all
subextensions in Ω. The annihilation statement in Theorem (1.1) is then deduced from this by
varying the Rubin datum in combination with Cebotarev’s density theorem, as in the theory
of ‘Stark systems’ (see, for example, [BSS19, § 4]). Although this latter aspect of the argument
is of a general nature, we prefer to focus on the concrete situation of Theorem (1.1) in this
note and to discuss the general formalism elsewhere.
As our second main result, we prove new cases of the Burns–Kurihara–Sano conjecture.

(1.3) Theorem. Let K/k be an extension of number fields of one of the following forms:

(i) There exists a prime-power q and a subfield κ of k such that K/κ is a Galois extension
with Galois group isomorphic to the group Aff(q) of affine transformations of the field Fq
with q elements, and G = Gal(K/k) is the unique subgroup of order q of Gal(K/κ).

(ii) K/k is a biquadratic extension.

Then, given any Rubin datum (S, V, T ) for K/k that satisfies |S| > |V |+1, the Burns–Kurihara–
Sano conjecture is valid for (K/k, S, V, T ). In particular, the Rubin–Stark conjecture is also
valid for (K/k, S, V, T ).

(1.4) Remark. The condition |S| > |V | + 1 often already follows from (H1) and (H2). For
example, if k has odd class number, then class field theory implies that there can only be finitely
many biquadratic extensions K of k that admit a Rubin datum (S, V, T ) with |S| = |V |+ 1.

(1.5) Example. Fix a prime number p and let ζp be a primitive p-th root of unity in an
algebraic closure of Q. Let κ be a number field with the property that κ ∩ Q(ζp) = Q. If we
pick any element a ∈ κ× that is not a p-th power in κ, then it is also not a p-th power in
k := κ(ζp) and K := k( p

√
a) is an extension of the form (i) with q = p.

(1.6) Remark. The Burns–Kurihara–Sano conjecture (for arbitrary Rubin datum) is known
to be a consequence of the ‘equivariant Tamagawa Number Conjecture’ (eTNC) for K/k by
[BKS16, Thm. 7.5]. (Note that the eTNC is referred to as the ‘Leading Term Conjecture’
LTC(K/k) in the cited result, cf. Prop. 3.4 and Rk. 3.2 in loc. cit.) For the extensions K/k con-
sidered in Theorem (1.3) and any prime ℓ not dividing [K : k], the ‘ℓ-component’ of eTNC(K/k)
can easily be seen to follow from the analytic class number formula (via Tate’s proof [Tat84,
Ch. II, Thm. 6.8] of the ‘strong Stark conjecture’ in this setting) and Johnston and Nickel
have proved in [JN16, Thm. 4.6] that in certain instances of case (i) one can even deduce the
ℓ-component of eTNC(K/κ). Of most interest, therefore, is the component of eTNC(K/k) at
the unique prime dividing [K : k].
However, a proof of this component seems to be out of reach at present since even in the case
(ii) of biquadratic extensions it amounts to a difficult, yet explicit, question regarding signs
(see Remark (3.2) for more details). The perhaps surprising insight behind the proof of The-
orem (1.3) is that the information provided by the analytic class number formula is nevertheless
sufficient to allow for the deduction of the Burns–Kurihara–Sano conjecture, subject only to
the restriction that |S| > |V | + 1. In fact, the direct argument given in § 3.1 is uniform and
does not require a distinction between ℓ ∤ [K : k] and ℓ | [K : k].

(1.7) Remark. Johnston and Nickel [JN16, Thm. 7.6] have also proved a conjecture of Burns
(from [Bur11b]) regarding the annihilation of class groups in extensions K/κ as in case (i) for
which k/Q is abelian.
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Results on the Rubin–Stark conjecture in the literature outside the classical cases where at
most one archimedean place of k splits in K or the degree [K : k] is at most two are sparse
(see Remark (1.11) for a list of known cases). By combining Theorems (1.3) and (1.1) with
Example (1.5), we now obtain the following method to systematically produce new examples
in which the conjecture is valid.

(1.8) Corollary. Let p be a prime number, let ζp be a primitive p-th root of unity, and let κ
be a number field with the property that κ ∩ Q(µp) = Q. Let a1, . . . , am be elements of κ that
are Fp-linearly independent in κ×/(κ×)p, and set k := κ(µp) and K := k( p

√
a1, . . . , p

√
am).

If (S, V, T ) is a Rubin datum for K/k with

|S| ≥ max{|V |+ 2, |V | − sp + (p− 1)(m− 1) + 3},
then{

θ
(|V |)
K/k,S,T (0) · detR[G](fR ◦ λ−1

K,S) | f ∈ HomZ[G](O×
K,S,T , XK,S)

}
⊆ AnnZ[G](ClK,S,T ).

In particular, the Rubin–Stark conjecture is valid for (K/k, S, V, T ).

Proof. The kernel of the natural map κ×/(κ×)p → k×/(k×)p identifies with H1(Gal(k/κ), µp),
and hence vanishes. It follows that a1, . . . , am generate an Fp-subvectorspace of k×/(k×)p of
dimension m. By Kummer theory, one therefore has that [K : k] = pm and so, noting that
Gal(k( p

√
ai)/κ) ∼= Aff(p) for every i ∈ {1, . . . ,m} because κ ∩Q(µp) = Q, the result follows by

combining Theorems (1.3) and (1.1).

1.3 The conjectures of Rubin–Stark and Burns–Kurihara–Sano

In this section we state the Rubin–Stark conjecture and the conjecture [BKS16, Conj. 7.3]
of Burns, Kurihara and Sano, and we discuss the list of cases in which either conjecture is
known to be valid. The formulations given here, in terms of the products of the form (2), are
equivalent to the original versions of the conjectures by Lemma (2.2) below.
We fix a finite abelian extension of number fields K/k with Galois group G := Gal(K/k) and
Rubin datum (S, V, T ).

(1.9) Conjecture (Rubin–Stark, [Rub96, Conj. B’]). One has{
θ
(|V |)
K/k,S,T (0) · detR[G](fR ◦ λ−1

K,S) | f ∈ HomZ[G](O×
K,S,T , XK,S)

}
⊆ Z[G].

We set K×
T := {a ∈ K× | ordw(a − 1) > 0 if w ∈ TK}. Then the ‘integral dual Selmer group’

SelK,S,T is defined by Burns–Kurihara–Sano [BKS16, Def. 2.1] as the cokernel of the map∏
w ̸∈SK∪TK

Z→ HomZ(K
×
T ,Z), (xw)w 7→

{
a 7→

∑
w

xw ordw(a)
}
.

It fits into a canonical exact sequence of G-modules

0 HomZ(ClK,S,T ,Q/Z) SelK,S,T HomZ(O×
K,S,T ,Z) 0,

with all duals endowed with the contragredient G-action.
In the sequel, for n ≥ 0, we write FittnZ[G](M) for the n-th Fitting ideal in Z[G] of a finitely

presented Z[G]-module M (see, for example, [Nor76, § 3.1] or [Nic20]). Given a subset I of
C[G], we denote by I# the image of I under the involution of C[G] that inverts elements of G.
Burns–Kurihara–Sano use the Selmer group to refine Conjecture (1.9) as follows.

(1.10) Conjecture (Burns–Kurihara–Sano, [BKS16, Conj. 7.3]). One has{
θ
(|V |)
K/k,S,T (0) · detR[G](fR ◦ λ−1

K,S) | f ∈ HomZ[G](O×
K,S,T , XK,S)

}
= Fitt

|V |
Z[G](SelK,S,T )

#. (3)

(1.11) Remark. To the best of the authors’ knowledge, the following is a complete list of
cases in which the Rubin–Stark conjecture is known at present.
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(a) One can directly verify the conjecture for the following general classes of extensions K/k:

• If [K : k] ≤ 2, then it follows from the analytic class number formula (see [Rub96,
Cor. 3.2 and Thm. 3.5]).

• If k = Q and V = S∞ is the singleton comprising the unique infinite place of Q,
then it follows by means of a direct computation that shows that the relevant Rubin–
Stark element (as defined in § 2.1) can be expressed in terms of a cyclotomic unit
(cf. [Tat84, Ch. III, § 5]).

• If k is an imaginary quadratic field and V = S∞ is the singleton comprising the
unique infinite place of k, then it follows from Kronecker’s Second Limit Formula
for elliptic units (cf. [Tat84, Ch. IV, Prop. 3.9]).

• If V = ∅, then it is a consequence of work of Cassou-Noguès [CN79] and, independ-
ently, Deligne and Ribet [DR80] (cf. [Gro88, Prop. 3.7]).

(b) In addition, the conjecture has been directly verified in the following particular cases.

• Grant [Gra99] has verified it for k = Q(ζ5) and K = k( 5
√
ϵ) with ζ a primitive 5-th

root of unity and ϵ := −ζ2 − ζ3.

• If K/k is multi-quadratic, then Dummit, Sands, and Tangedal [DST03], Sands
[San04], and the second author [MC12] have verified it in special cases.

• McGown, Sands, and Vallières [MSV19] have numerically verified it for V = S∞ in
the 19197 examples of k a real quadratic field and K a totally real cubic extensions
of k of discriminant less than 1012 and V = S∞

(c) It holds if S \ V contains a place that splits completely in K (cf. [Rub96, Prop. 3.1]).

(d) The examples listed in (a) are by now sufficiently well understood to allow for a proof
of eTNC(K/k) [BKS16, Conj. 3.6]. By [BKS16, Thm. 7.5], for any given Rubin datum
for K/k, the conjecture [BKS16, Conj. 7.3], and hence also the Rubin–Stark conjecture,
is a consequence of eTNC(K/k). Using functoriality properties of the eTNC, one thus
obtains the validity of both the Burns–Kurihara–Sano and Rubin–Stark conjectures for
any K/k (and Rubin datum) such that F ⊆ k ⊆ K ⊆ H, with H/F a finite Galois
extension for which eTNC(H/F ) holds. The same conclusion is true if the ‘minus part’
eTNC−(H/F ) of eTNC(H/F ) holds and k is totally real and K is totally imaginary.
In this direction, the following is currently known:

• eTNC(H/F ) holds if [H : F ] = 2; this case is proved by Kim [Kim03, § 2.4].
• eTNC(H/F ) holds if F = Q; this is work of Burns and Greither [BG03] with addi-
tional arguments for the 2-component by Flach [Fla11].

• eTNC(H/F ) holds if F an imaginary quadratic field such that all prime divisors of
[H : F ] split in k or validate Iwasawa’s µ-vanishing conjecture; this case is proved
by Hofer and the first author [BH23, Thm. B] and extends previous work of Bley
[Ble06; Ble04; Ble98].

• eTNC(H/F )− holds if F is a totally real field and H is CM; this is work of the
first author, Burns, Daoud and Seo [Bul+21] with additional arguments for the
2-component by Dasgupta, Kakde, and Silliman [DKS23]. Earlier work in this dir-
ection includes [Nic11; Nic16; Nic24; AK23]. (The results in [Bul+21] crucially
rely on work of Dasgupta and Kakde [DK23] on the Strong Brumer–Stark conjec-
ture, and we remark that the Rubin–Stark conjecture can alternatively be directly
deduced from the Strong Brumer–Stark conjecture, see [DK23, Thm. 1.6]).

Further examples of, not necessarily abelian, extensions H/F for which eTNC(H/F ) is
known at present include the following:

• H is a totally real Galois extension of F = Q such that either Gal(K/Q) ∼= S3 and
H has discriminant less than 1020 or Gal(H/Q) ∼= D12 and H has discriminant less
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than 1030; by Hofmann, Johnston, and Nickel [JN20, Cor. A.3].

• A particular family of Quaternionic extensions H of F = Q; by Burns and Flach
[BF03, Thm. 4.1].

• One example of a Galois extension H of F = Q with Gal(H/Q) ∼= A4; numerical
verification by Navilarekallu [Nav06].

• When a number of standard conjectures are known to be valid, further results can
be deduced from the examples above, see [JN16, § 4] and [JN20, § 10].

2 Preliminaries

In this preliminary section we review various constructions that will be useful in the sequel.

2.1 Rubin–Stark elements

Let K/k be a finite abelian extension of number fields with Galois group G := Gal(K/k) and
let (S, V, T ) be a Rubin datum for K/k. We fix a labelling S = {v0, . . . , v|S|−1} such that
V = {v1, . . . , v|V |} along with an extension wi to K of each place vi in S. The ‘Rubin–Stark

element’ εVK/k,S,T for (S, V, T ) is then the unique element of R⊗Z
∧|V |
Z[G]O

×
K,S with the property

that (∧|V |
λK,S

)
(εVK/k,S,T ) = θ

(|V |)
K/k,S,T (0) ·

∧
1≤i≤|V |

(wi − w0)

with
∧|V | λK,S : R⊗Z

∧|V |
Z[G]O

×
K,S

≃−→ R⊗Z
∧|V |
Z[G]XK,S the isomorphism induced by (1).

(2.1) Definition. We define a Z[G]-submodule of R[G] by setting

im(εVK/k,S,T ) :=
{
F (εVK/k,S,T ) | F ∈

∧|V |

Z[G]
HomZ[G](O×

K,S,T ,Z[G])
}
,

where F (εVK/k,S,T ) denotes the image of (εVK/k,S,T , F ) under the determinant pairing(
R⊗Z

∧|V |

Z[G]
O×
K,S

)
×
(
R⊗Z

∧|V |

Z[G]
HomZ[G](O×

K,S,T ,Z[G])
)
→ R[G],

(a1 ∧ · · · ∧ a|V |, f1 ∧ · · · ∧ f|V |) 7→ det(fi(aj))1≤i,j≤|V |.

The following result was used in §1.3 to reformulate both the Rubin–Stark conjecture and the
Burns–Kurihara–Sano conjecture in terms of the more explicit products of the form (2).

(2.2) Lemma. For any Rubin datum (S, V, T ) for K/k, one has an equality

im(εVK/k,S,T ) = {θ|V |
K/k,S,T (0) · detR[G](fR ◦ λ−1

K,S) | f ∈ HomZ[G](O×
K,S,T , XK,S)}.

Proof. This is an immediate consequence of [MC12, Lem. 2.2].

2.2 Weil-étale cohomology complexes

We briefly recall key properties of a useful family of complexes constructed by Burns, Kurihara,
and Sano in [BKS16]. To do so, we let K/F be an arbitrary finite Galois extension of number
fields with Galois group ∆F := Gal(K/F ).
We writeD(Z[∆F ]) for the derived category of Z[∆F ]-modules andDp(Z[∆F ]) for its full trian-
gulated subcategory comprising complexes that are ‘perfect’, that is, isomorphic (in D(Z[∆F ]))
to a bounded complex of finitely generated projective Z[∆F ]-modules.

(2.3) Lemma. Fix sets S and T of places of F that satisfy the conditions (H1) and (H3) in
§ 1 with k replaced by F . Then the ‘Weil-ètale cohomology complex’

C•
K,S,T := RHomZ(RΓc,T ((OK,S)W ,Z),Z)[−2]

constructed in [BKS16, Prop. 2.4] is an object of Dp(Z[∆F ]) that has the following properties.
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(i) C•
K,S,T is acyclic outside degrees zero and one, with H0(C•

K,S,T ) = O×
K,S,T , and the ‘trans-

pose Selmer group’ SeltrK,S,T := H1(C•
K,S,T ) lies in a short exact sequence of ∆F -modules

0 ClK,S,T SeltrK,S,T XK,S 0.

(ii) C•
K,S,T is isomorphic in D(Z[∆F ]) to a complex [P0

ϕ→ P1] in which P0 is finitely generated
projective (and placed in degree 0) while P1 is free of finite rank.

(iii) For any normal subgroup Γ of ∆F there is, in Dp(Z[∆F /Γ]), a canonical isomorphism

Z[∆F /Γ]⊗LZ[∆F ] C
•
K,S,T

∼= C•
KΓ,S,T .

Proof. C•
K,S,T is an object of Dp(Z[∆F ]) by choice of S and by [BKS16, Prop. 2.4 (iv)]. Claim

(i) is Remark 2.7 in loc. cit. Claim (ii) is proved in § 5.4 of loc. cit. Claim (iii) follows from the
diagram in Prop. 2.4 (i) of loc. cit. and the functoriality properties of étale cohomology.

3 The proof of Theorem (1.3)

3.1 The proof in case (i)

In this subsection we assume the hypotheses of Theorem (1.3) (i). In particular, ∆ := Gal(K/κ)
is isomorphic to Aff(q), and (S, V, T ) is a Rubin datum for K/k with |S| > |V |+ 1. We recall
that Aff(q) is isomorphic to the semidirect product Fq ⋊ F×

q with the natural action (see for
instance [JN16, Ex. 2.16]).
Since G = Gal(K/k) is abelian, the complex C•

K,S,T in Dp(Z[G]) admits a well-defined de-
terminant DetZ[G](C

•
K,S,T ) (in the sense of Knudsen–Mumford). We then also use the ‘zeta

element’ zK/k,S,T ∈ R ⊗Z DetZ[G](C
•
K,S,T ), the definition of which can be found in [BKS16,

Def. 3.5] and will be recalled in the course of the proof of Lemma (3.1) below. For the moment
we only note that zK/k,S,T is by construction an R[G]-basis of the free rank-one R[G]-module
R⊗Z DetZ[G](C

•
K,S,T ).

(3.1) Lemma. The following claims are valid.

(a) The zeta element zK/k,S,T belongs to Q ⊗Z DetZ[G](C
•
K,S,T ). In particular, zK/k,S,T is a

Q[G]-basis of the free rank-one Q[G]-module Q⊗Z DetZ[G](C
•
K,S,T ).

(b) For every prime number ℓ, there exists an element z
(ℓ)
K/k,S,T of DetZ[G](C

•
K,S,T ) with the

following properties:

(i) The Z[G]-submodule of DetZ[G](C
•
K,S,T ) generated by z

(ℓ)
K/k,S,T has prime-to-ℓ index.

(ii) The unique element λ(ℓ) ∈ Q[G] defined by zK/k,S,T = λ(ℓ) · z(ℓ)K/k,S,T belongs to the
image of the map

ρ∆/G : ζ(C[∆]) → C[G], x 7→
∑
χ∈Ĝ

( ∏
ψ∈∆̂

ψ(x)⟨ψ,Ind
∆
G(χ)⟩) · eχ,

where ∆̂ is the set of irreducible characters of ∆, ⟨·, ·⟩ denotes the inner product of
characters, ζ(C[∆]) ∼=

∏
ψ∈∆̂C denotes the centre of C[∆], and we have written ψ

for the map ζ(C[∆]) → C induced by ψ.

Proof. Claim (a) is equivalent to Stark’s conjecture for K/k (cf. [Fla04, Thm. 7.1 b)]). Since
any non-trivial (irreducible) character of G induces a rational-valued character of ∆ (see, for
example, [Mot07, Thm. 5]), the validity of Stark’s conjecture follows from Tate’s proof of
Stark’s conjecture for rational-valued characters in [Tat84, Ch. II, Thm. 6.8].
To prove claim (b), we may enlarge S and T since, if S′ and T ′ are respective disjoint finite
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oversets of S and T , then the exact triangles in [BKS16, Prop. 2.4, (ii) and right hand column
of (6) in (i)] induce an isomorphism

DetZ[G](C
•
K,S′,T ′)

≃−→ DetZ[G](C
•
K,S,T )

that maps zK/k,S′,T ′ to zK/k,S,T . We therefore may and will assume that S contains all places
that are ramified in K/κ and that both S and T are stable under the action of ∆.
Since the complex C•

K,S,T depends only on K, SK and TK , we may then regard it also as
an object of Dp(Z[∆]). We fix a representative of C•

K,S,T in D(Z[∆]) as in Lemma (2.3) (ii)
(applied to F = κ). We note that (1) combines with the Noether–Deuring Theorem to imply
that Q⊗ZP0

∼= Q⊗ZP1. For every prime number ℓ, Roiter’s Lemma [CR81, (31.6)] then gives
the existence of an injection i(ℓ) : P1 ↪→ P0 with finite cokernel of order prime to ℓ.
We fix a set {σ1, . . . , σ(∆:G)} of representatives for ∆/G and choose an ordered Z[∆]-basis
B = {b1, . . . , bd} of P1. Then P1 is also a free Z[G]-module, with (ordered) Z[G]-basis

B′ := {σ1b1, . . . σ(∆:G)b1, . . . , σ1bd, . . . σ(∆:G)bd}.

We also define ordered sets C(ℓ) := {i(ℓ)(b) | b ∈ B} and C′(ℓ) = {i(ℓ)(b) | b ∈ B′}. Setting
P ∗
1 := HomZ[G](P1,Z[G]), we now define

z
(ℓ)
K/k,S,T

:=
( ∧
c∈C′(ℓ)

c
)
⊗
( ∧
b∈B′

b∗
)

∈
(∧(∆:G)d

Z[G]
P0

)
⊗Z[G]

(∧(∆:G)d

Z[G]
P ∗
1

)
= DetZ[G](C

•
K,S,T ),

where b∗ : P1 → Z[G] denotes the Z[G]-linear dual of b ∈ P1. By construction, the element

z
(ℓ)
K/k,S,T then has property (i).

To justify claim (ii), we first recall the definition of the zeta element zK/k,S,T . Our fixed choice

of representative for C•
K,S,T gives rise to exact sequences 0 → O×

K,S,T → P0 → ϕ(P0) → 0 and

ϕ(P0) → P1 → SeltrK,S,T → 0 of Z[∆]-modules for which we may choose R[∆]-splittings

ι1 : R⊗Z P0
∼= (R⊗Z O×

K,S,T )⊕ (R⊗Z ϕ(P0)), ι2 : R⊗Z P1
∼= (R⊗Z XK,S)⊕ (R⊗Z ϕ(P0)).

Given this, we define the composite isomorphism of R[∆]-modules

α := (ι−1
2 ◦ (λK,S ⊕ id) ◦ ι1) : P0 → P1,

where λK,S denotes the Dirichlet regulator map defined in (1). We write A(ℓ) for the matrix in

GL(∆:G)d(R[G]) that represents α with respect to the bases C′(ℓ) and B′.
We consider the ‘leading term’

θ∗K/κ,S,T (0) :=
∑
ψ∈∆̂

L∗
κ,S,T (ψ̌, 0)eψ ∈ ζ(R[∆])×,

where ψ̌ denotes the contragredient of ψ and L∗
κ,S,T (ψ̌, 0) is the leading term of Lκ,S,T (ψ̌, s)

at s = 0. Similarly, we set θ∗K/k,S,T (0) :=
∑

χ∈Ĝ L
∗
k,S,T (χ̌, 0)eχ ∈ R[G]×. One then has that

zK/k,S,T = λ(ℓ) · z(ℓ)K/k,S,T with λ(ℓ) ∈ R[G]× the unique element such that λ(ℓ) · detR[G](A
(ℓ)) =

θ∗K/k,S,T (0). The reduced norm of the matrix B(ℓ) ∈ GLd(R[∆]) that represents α with respect

to the bases C(ℓ) and B belongs to ζ(R[∆])×, and we define a scalar µ(ℓ) ∈ ζ(R[∆])× by

µ(ℓ) ·NrdR[∆](B
(ℓ)) = θ∗K/κ,S,T (0).

By the functoriality of reduced norms under restriction to subgroups (see, for example, [Bre04a,
bottom of p. 291]) one has ρ∆/G(NrdR[∆](B

(ℓ))) = detR[G](A
(ℓ)) and thus also

ρ∆/G(µ
(ℓ)) · detR[G](A

(ℓ)) = ρ∆/G(θ
∗
K/κ,S,T (0)) = θ∗K/k,S,T (0),

from which we deduce that ρ∆/G(µ
(ℓ)) = λ(ℓ). This concludes the proof of claim (b).

We now give the proof of Theorem (1.3) in case (i). Since ∆ ∼= Aff(q), one has that ∆̂ consists
of the linear characters of ∆/G and the unique irreducible character of degree q − 1 that is
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obtained as ψnl := Ind∆G(χ) for any non-trivial (irreducible) character χ of G (see, for example,
[Mot07, Thm. 5]). As a consequence, one has

⟨ψ, Ind∆G(χ)⟩ =


1 if χ ̸= 1G, ψ = ψnl,

1 if χ = 1G, ψ = 1∆,

0 otherwise.

For every prime number ℓ, the element λ(ℓ) provided by Lemma (3.1) (b) (ii) is hence of the
form λ(ℓ) = ae1 + b(1− e1) for suitable a, b ∈ Q.
Now, the isomorphism Z ⊗L

Z[G] C
•
K,S,T

∼= C•
k,S,T in Lemma (2.3) (iii) induces an isomorphism

Z ⊗Z[G] (Q ⊗Z DetZ[G](C
•
K,S,T ))

∼= Q ⊗Z DetZ(C
•
k,S,T ) that sends 1 ⊗ zK/k,S,T to zk/k,S,T . In

addition, the analytic class number formula for k asserts that zk/k,S,T is a Z-basis of the free
rank-one Z-module DetZ(C

•
k,S,T ) (cf. [Kat93, § 2.2.2] or [Bur11a, Ex. 2.6]).

For each prime number ℓ, we write Z(ℓ) for the localisation of Z at the prime ideal ℓZ. The

definition of z
(ℓ)
K/k,S,T then implies that both 1⊗z

(ℓ)
K/k,S,T and a·(1⊗z

(ℓ)
K/k,S,T ) = 1⊗(λ(ℓ)z

(ℓ)
K/k,S,T ) =

1 ⊗ zK/k,S,T are Z(ℓ)-bases of Z ⊗Z[G] (Z(ℓ) ⊗Z DetZ[G](C
•
K,S,T )). We conclude that a belongs

to Z×
(ℓ).

We next write N = NQ[G]/Q : Q[G] → Q for the ring-theoretic norm map and note that the
construction of [Bul+21, Lem. 3.7 (c)] gives the existence of an N-semilinear map F : Q ⊗Z
DetZ[G](C

•
K,S,T ) → Q⊗Z DetZ(C

•
K,S,T ) that sends zK/k,S,T to zK/K,S,T . Since zK/K,S,T is a Z-

basis of DetZ(C
•
K,S,T ) by the analytic class number formula for K, we see that for each prime

ℓ, both F(z
(ℓ)
K/k,S,T ) and zK/k,S,T = F(zK/k,S,T ) = F(λ(ℓ)z

(ℓ)
K/k,S,T ) = N(λ(ℓ)) · F(z

(ℓ)
K/k,S,T ) are

Z(ℓ)-bases of Z(ℓ) ⊗Z DetZ(C
•
K,S,T ). It follows that N(λ(ℓ)) = abq−1 must also belong to Z×

(ℓ).

Upon recalling that a ∈ Z×
(ℓ) by the above discussion, we conclude that bq−1 ∈ Z×

(ℓ). Since b is

rational, we deduce that b belongs to Z×
(ℓ).

Define an idempotent eK,S,V of Q[G] as the sum
∑

χ eχ of all primitive orthogonal idempotents
eχ associated with characters χ of G such that eχ annihilates C⊗Z XK,S\V .

We then define a ‘projection map’ ΘV
K/k,S as the composite map

Q⊗Z DetZ[G](C
•
K,S) −−−−→ DetQ[G](Q⊗Z O×

K,S)⊗Q[G] DetQ[G](Q⊗Z XK,S)
−1

·eK,S,V−−−−→ eK,S,V ·
(
(Q⊗Z

∧|V |

Z[G]
O×
K,S,T )⊗Q[G] (Q⊗Z

∧|V |

Z[G]
YK,V )

−1
)

≃−−−−→ eK,S,V · (Q⊗Z
∧|V |

Z[G]
O×
K,S,T ), (4)

where the first arrow is the natural ‘passage-to-cohomology’ map, the second map is induced

by multiplication by eK,S,V , and the last arrow by the trivialisation
∧|V |
Z[G] YK,V

∼= Z[G] that is
afforded by sending

∧
1≤i≤|V |wi to 1.

Note that our hypothesis |S| > |V |+1 combines with the short exact sequence 0 → XK,S\V →
XK,S → YK,V → 0 to imply that e1 · eK,S,V = 0. In particular, we have λ(ℓ) · eK,S,V =
(ae1 + b(1 − e1)) · eK,S,V = beK,S,V . Since it is proved in [BKS16, Thm. 5.14] that one has
ΘV
K/k,S(zK/k,S,T ) = εVK/k,S,T , we therefore deduce that

εVK/k,S,T = ΘV
K/k,S,T (zK/k,S,T ) = λ(ℓ) ·ΘV

K/k,S,T (z
(ℓ)
K/k,S,T ) = b ·ΘV

K/k,S,T (z
(ℓ)
K/k,S,T )

for each prime ℓ. Now, the equality Z(ℓ)⊗Zim(ΘV
K/k,S,T (z

(ℓ)
K/k,S,T )) = Z(ℓ)⊗ZFitt

|V |
Z[G](SelK,S,T )

#

that is established via the argument of [BKS16, Thm. 7.5] combines with the last displayed
equation and the fact that b is invertible to imply that

Z(ℓ) ⊗Z im(εVK/k,S,T ) = Z(ℓ) ⊗Z
(
b · im(ΘV

K/k,S,T (z
(ℓ)
K/k,S,T ))

)
= Z(ℓ) ⊗Z Fitt

|V |
Z[G](SelK,S,T )

#.

The claim in Theorem (1.3) (i) now follows upon recalling that ℓ is an arbitrary prime number.
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3.2 The proof in case (ii)

To prove Theorem (1.3) in case (ii), we let K/k be a biquadratic extension of number fields
and note that, by the known validity of Stark’s conjecture for K/k, the zeta element zK/k,S,T
is a Q[G]-basis of the free rank-one Q[G]-module Q ⊗Z DetZ[G](C

•
K,S,T ) (cf. the argument of

Lemma (3.1) (a)). We then let ℓ be an arbitrary prime number and choose, using Roiter’s

Lemma, an element z
(ℓ)
K/k,S,T that generates a Z[G]-submodule of DetZ[G](C

•
K,S,T ) of finite,

prime-to-ℓ index. Label the proper intermediate fields of K/k as K1 := k,K2,K3, and K4,

and, using Lemma (2.3)(iii), denote the image of z
(ℓ)
K/k,S,T under the natural map

DetZ[G](C
•
K,S,T ) → Z[Gal(Ki/k)]⊗Z[G] DetZ[G](C

•
K,S,T )

∼= DetZ[Gal(Ki/k)](C
•
Ki,S,T )

as z
(ℓ)
Ki/k,S,T

for every i ∈ {1, . . . , 4}. Write χi for the trivial character if i = 1 and the non-trivial

character of Gal(Ki/k) otherwise. The discussion above (in case (i)) then shows that we have

eχi · z
(ℓ)
Ki/k,S,T

= ai · eχi · zKi/k,S,T

for some ai in Z
×
(ℓ). It follows that

z
(ℓ)
K/k,S,T = (

4∑
i=1

aieχi) · zK/k,S,T .

If ℓ ̸= 2, then it is clear that λ(ℓ) :=
∑4

i=1 aieχi belongs to Z(ℓ)[G]
×. For ℓ = 2, the scalar λ(2)

belongs to Z(2)[G]
× if and only if it belongs to Z(2)[G] because NQ[G]/Q(λ

(2)) =
∏4
i=1 ai is a

unit in Z(2). Now, λ
(2) is in Z(2)[G] if and only if, for every σ ∈ G we have that

4∑
i=1

aiχi(σ) ≡ 0 mod 4.

Note that χi(σ) = ±1 and ai ≡ ±1 mod 4 for all i ∈ {1, . . . , 4}. One can then check ex-
plicitly that the above congruence holds if and only if

∏4
i=1 ai ≡ 1 mod 4 (cf. also [Buc14,

Lem. 6.3 (v)]). In particular, if we let b ∈ {±1} be defined by b ≡
∏4
i=1 ai mod 4, then

λ′ := ba1e1 +
∑3

i=1 aieχi belongs to Z(2)[G]
×.

As in case (i), we define eK,S,V as the sum of all eχ that annihilate C⊗ZXK,S\V . The assump-

tion |S| > |V |+ 1 then ensures that e1 · eK,S,V = 0 and thus that λ(2)eK,S,V = λ′eK,S,V . Using
the map ΘV

K/k,S defined in (4), we obtain the equality

Z(2) ⊗Z im(εVK/k,S,T ) = Z(2) ⊗Z λ′ · im(ΘV
K/k,S,T (z

(2)
K/k,S,T )) = Z(2) ⊗Z Fitt

|V |
Z[G](SelK,S,T )

#,

where the final equality follows from the argument of [BKS16, Thm. 7.5] as in case (i). Since the
corresponding identity also holds for each odd ℓ, this completes the proof of Theorem (1.3).

(3.2) Remark. The only instances of (i) and (ii) in Theorem (1.3) that can neither be treated
by the argument used to prove Theorem (1.3) nor Remark (1.11) (i) are the cases in which
|S| = |V | + 1 and the unique place v ∈ S \ V has full decomposition group in K/k. In any
such situation and for large enough V , the equality (3) is in fact equivalent to eTNC(K/k)
and amounts to a subtle question about signs. To make this more explicit in case (ii) of
Theorem (1.3), we suppose that K/k is biquadratic, |S| = |V | + 1, and V is large enough
that ClK,S,T vanishes. Then O×

K,S,T is a free Z[G]-module of rank |V | and we can choose an

ordered Z[G]-basis B of O×
K,S,T . Fix an ordering G = {g1, g2, g3, g4} and consider the ordered

Z-basis B′ := {gb | g ∈ G, b ∈ B} of O×
K,S,T , ordered lexicographically. Similarly, we set

W := {gwi | g ∈ G, 1 ≤ i ≤ |V |}, ordered lexicographically. Then one can show that (3) is
equivalent to

detR(log |b|w)b∈B′,w∈W < 0.

(Cf. [Buc14, Prop. 10.5].) This question does not depend on the ordering on G and, since G is
Z/2Z⊕ Z/2Z, also not on the choice of basis B (or the ordering on it) because every unit in
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Z[G] is of the form ±g for some g ∈ G, and so has norm 1.
In the setting of case (i) of Theorem (1.3) one can similarly derive an explicit criterion by using
[Bre04b, Lem. 3.5].

4 The proof of Theorem (1.1)

We now fix a p-elementary extension K/k with Galois group G ∼= (Z/pZ)m. Write Ω∗ for the
set of subgroups H of G of index at most p. The following algebraic observation plays a key
role in the sequel.

(4.1) Lemma. Set NH =
∑

τ∈H τ for every H ∈ Ω∗. In Z[G] we then have the equality∑
H∈Ω∗

NH +
(
(pm−1 − 1)−

(m−1∑
i=0

pi
))

·NG = pm−1.

Proof. Observe that G is an Fp-vector space and the (non-trivial) H are exactly the (m− 1)-
dimensional subspaces of G. Recall that the trace pairing

Fmp × Fmp → Fp, (v, w) 7→
m∑
i=1

viwi

is perfect, hence induces a bijection between (m−1)-dimensional and 1-dimensional subspaces.
The number of 1-dimensional subspaces is exactly pm−1

p−1 , hence |Ω∗ \ {G}| is equal to pm−1
p−1 . If

we fix v ∈ Fp \ {0}, then the set of all (m − 1)-dimensional subspaces of Fmp that contain v
is in bijection with all 1-dimensional subspaces of the space {w ∈ Fmp |

∑m
i=1 viwi = 0}, the

kernel of the (1×m)-matrix v. This space is therefore of dimension m−1 and contains pm−1−1
p−1

subspaces of dimension one. That is, there are exactly pm−1−1
p−1 subgroups H ∈ Ω∗ \ {H} that

contain a given (non-trivial) element of G. It follows that there are exactly

pm − 1

p− 1
− pm−1 − 1

p− 1
=

(pm − 1)− (pm−1 − 1)

p− 1
=
pm−1(p− 1)

(p− 1)
= pm−1

such H that do not contain a given (non-trivial) element. Thus, each element of G appears in

the sum (
∑

H∈Ω∗\{G}NH

)
+pm−1(NG−1) exactly |Ω∗ \{G}| many times. From this we obtain

( ∑
H∈Ω∗\{G}

NH

)
+ pm−1(NG − 1) = |Ω∗ \ {G}| ·NG =

(pm − 1)

p− 1
·NG =

(m−1∑
i=0

pi
)
·NG.

For any integer r ≥ 0 and H ∈ Ω∗, we consider the injection

νH : C⊗Z
∧r

Z[G/H]
O×
KH ,S,T

→ C⊗Z
∧r

Z[G]
O×
K,S,T , a 7→ |H|max{0,1−r} · a

that satisfies

νH(N
r
Ha) = NHa for any a ∈ C⊗Z

∧r

Z[G]
O×
K,S,T . (5)

As a straightforward application of Lemma (4.1) we obtain the following consequence that
recovers [San04, Prop. 4.5] in the case p = 2.

(4.2) Proposition. In R⊗Z
∧r
Z[G]O

×
K,S,T we have the equality

εVK/k,S,T =
1

pm−1
·
( ∑
H∈Ω∗

νH
(
εVKH/k,S,T

)
+
(
(pm−1 − 1)−

(m−1∑
i=0

pi
))

· νG
(
εVk/k,S,T

))
.
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Proof. Using Lemma (4.1) (a), equation (5), and the norm relations for Rubin–Stark elements
[Rub96, Prop. 6.1] we calculate

pm−1 · εVK/k,S,T =
( ∑
H∈Ω∗

NH +
(
(pm−1 − 1)−

(m−1∑
i=0

pi
))

·NG
)
· εVK/k,S,T

=
( ∑
H∈Ω∗

νH
(
N

|V |
H εVK/k,S,T

))
+
(
(pm−1 − 1)−

(m−1∑
i=0

pi
))

· νG
(
N

|V |
G εVK/k,S,T

)
=

( ∑
H∈Ω∗

νH
(
εVKH/k,S,T

))
+
(
(pm−1 − 1)−

(m−1∑
i=0

pi
))

· νG
(
εVk/k,S,T

)
.

To prepare for the proof of Theorem (1.1), we now first give a preliminary result in which
we write IG := ker{Z[G] → Z} for the absolute augmentation ideal of Z[G] and, given a
Z[G]-module M and non-negative integer r, define its ‘r-th exterior bidual’ to be⋂r

Z[G]
M :=

{
a ∈ Q⊗Z

∧r

Z[G]
M | F (a) ∈ Z[G] for all F ∈

∧r

Z[G]
HomZ[G](M,Z[G])

}
.

(4.3) Lemma. Fix a Rubin datum (S, V, T ) for K/k and a non-negative integer c that satisfies

|S| ≥ max{|V |+ 2, |V | − sp + (p− 1)(m− 1) + 2 + c},
where sp := dimFp(Clk,S,T ⊗ZFp) denotes the p-rank of Clk,S,T . If the equality (3) of Conjecture

(1.10) holds for all extensions L/k in Ω, then εVK/k,S,T belongs to IcG ·
⋂|V |
Z[G]O

×
K,S,T (so, in

particular, the Rubin–Stark conjecture is valid for (K/k, S, V, T )).

Proof. At the outset we note that, for any H ∈ Ω∗, the map νH restricts to an injection⋂|V |
Z[G/H]O

×
KH ,S,T

→
⋂|V |
Z[G]O

×
K,S,T (cf. [BKS16, Rk. 4.13]). By Proposition (4.2), it is hence

sufficient to prove that εV
KH/k,S,T

belongs to pm−1IcG/H
⋂|V |
Z[G/H]O

×
KH ,S,T

for every H ∈ Ω∗. By

the assumption |S| ≥ |V |+ 2, we may and will assume KH ̸= k so that KH ∈ Ω.
We now first claim that for this purpose it is enough to prove that im(εV

KH/k,S,T
) is contained

in pm−1I1+cG/H . To justify this, we apply Lemma (2.3) (ii) to fix a representative [P0
ϕ→ P1] of the

complex C•
KH ,S,T

in Dp(Z[G/H]). From [Sak23, Lem. B.6] we then obtain an exact sequence

0
⋂|V |
Z[G/H]O

×
KH ,S,T

∧|V |
Z[G/H] P0 P1 ⊗Z[G/H]

∧|V |−1
Z[G/H] P0.

ϕ
(6)

In particular, we may view εV
KH/k,S,T

as an element of
∧|V |
Z[G/H] P0. Now, if im(εV

KH/k,S,T
),

which equals {F (εV
KH/k,S,T

) | F ∈
∧|V |
Z[G/H]HomZ[G](P0,Z[G])}, is contained in pm−1I1+cG/H ,

then εV
KH/k,S,T

belongs to the module pm−1I1+cG/H

∧|V |
Z[G] P0 (cf. [BKS16, Prop. 4.17]). We may

therefore write εV
KH/k,S,T

= pm−1(σH − 1)1+ca with σH a generator of G/H and a an element

of
∧|V |
Z[G] P0. From the exact sequence (6) we then see that

pm−1(σH − 1)1+c · ϕ(a) = ϕ(pm−1(σH − 1)1+ca) = ϕ(εVKH/k,S,T ) = 0.

Since P ′ := P1 ⊗Z[G/H]

∧|V |−1
Z[G/H] P0 is Z-torsion free, this implies that (σH − 1)1+c · ϕ(a) van-

ishes. As (σH − 1)P ′ and (P ′)G/H = ker{P ′ ·(σH−1)−→ P ′} intersect trivially because P ′ is
G/H-cohomologically trivial, it then follows by induction on c that (σH − 1)ϕ(a) vanishes.

Exactness of (6) now shows that (σH − 1)a belongs to
⋂|V |
Z[G/H]O

×
KH ,S,T

, as required to prove

that εV
KH ,S,T

belongs to pm−1(σH − 1)c
⋂|V |
Z[G/H]O

×
KH ,S,T

.

It now remains to prove that im(εV
KH/k,S,T

) is contained in pm−1I1+cG/H . We may and will assume

that no place in S \ V splits completely in KH/k, since otherwise εV
KH/k,S,T

vanishes. Thus,

12



every place in S \ V has full decomposition group in KH/k. Since we assume (3) to hold for

KH/k it is enough to prove, in this situation, that Fitt
|V |
Z[G/H](SelKH ,S,T )

# ⊆ pm−1I1+cG/H .

To verify this inclusion, we use the ‘transpose’ Selmer group defined in Lemma (2.3) (i) and
the equality

Fitt
|V |
Z[G/H](SelKH ,S,T )

# = Fitt
|V |
Z[G/H](Sel

tr
KH ,S,T )

of [BKS16, Lem. 2.8]. It then suffices to verify that Fitt
|V |
Z[G/H](Sel

tr
KH ,S,T ) ⊆ pm−1I1+cG/H .

For this purpose, we first note that YKH ,V is a free direct summand of XKH ,S
∼= YKH ,V ⊕

XKH ,S\V , hence also of Sel
tr
KH ,S,T . We may thus find aZ[G/H]-moduleM such that SeltrKH ,S,T

∼=
M⊕YKH ,V and one has the following modified version of the exact sequence in Lemma (2.3) (i):

0 ClKH ,S,T M XKH ,S\V 0. (7)

Setting d := |S \ V |, one has XKH ,S\V
∼= Zd−1 and fixing again a generator σH of G/H,

Fitt0Z[G/H](XKH ,S\V ) = Id−1
G/H = (σH − 1)d−1Z[G/H].

In particular, Fitt0Z[G/H](XKH ,S\V ) is a principal ideal and so we may apply [JN13, Lem. 2.5 (ii)]

to the exact sequence (7) to infer that

Fitt
|V |
Z[G/H](Sel

tr
KH ,S,T ) = Fitt0Z[G/H](M) = Fitt0Z[G/H](ClKH ,S,T ) · Fitt0Z[G/H](XKH ,S\V )

= Fitt0Z[G/H](ClKH ,S,T ) · Id−1
G/H .

Fix a place v ∈ S \ V and recall that we may assume that v has full decomposition group
in KH/k. If we write HS,T (K

H) and HS,T (k) for the (S, T )-ray class fields of KH and k, re-
spectively, then HS,T (k)∩KH = k since v splits completely in HS,T (k). Thus, we may identify
Gal(HS,T (k)/k) ∼= Gal(KH ·HS,T (k)/K

H) and hence the restriction map Gal(HS,T (K
H)/KH) →

Gal(HS,T (k)/k) is surjective. By class field theory, the restriction map corresponds to the norm
map ClKH ,S,T → Clk,S,T and so, in particular, the map ClKH ,S,T → Clk,S,T ⊗ZFp ∼= (Z/pZ)sp

is surjective as well. This map is G/H-equivariant, thus we obtain an inclusion

Fitt0Z[G/H](ClKH ,S,T ) ⊆ Fitt0Z[G/H]

(
(Z/pZ)sp

)
=

sp∏
i=1

(pZ[G/H] + IG/H) ⊆
sp∑
i=0

piI
sp−i
G/H .

By the previous discussion, we therefore have an inclusion

Fitt
|V |
Z[G/H](Sel

tr
KH ,S,T ) ⊆

( sp∑
i=0

piI
sp−i
G/H

)
· Id−1
G/H =

sp∑
i=0

piI
sp−i+d−1
G/H ⊆

( sp∑
i=0

piI
sp−i+d−c−1
G/H

)
· IcG/H .

Since σH is of order p, we have (σH − 1)p ≡ σpH − 1 = 0 mod p and so (σH − 1)p is divisible by
p in Z[G/H]. Noting that the quotient Z[G/H]/IG/H ∼= Z is torsion-free, we see that (σH−1)p

is in fact divisible by p(σH − 1). From this it follows that (σH − 1)sp−i+d−c−1 is divisible by
pmax{0,⌊(sp−i+d−c−2)/(p−1)⌋}(σH − 1). As a consequence,

sp∑
i=0

piI
sp−i+d−c−1
G/H ⊆

sp∑
i=0

pi+⌊(sp−i+d−c−2)/(p−1)⌋IG/H ⊆ p⌊(sp+d−c−2)/(p−1)⌋IG/H ,

where we have used that

i+ ⌊sp − i+ d− c− 2

p− 1
⌋ = ⌊(p− 1)i+ sp − i+ d− c− 2

p− 1
⌋ ≥ ⌊sp + d− c− 2

p− 1
⌋

as a consequence of p− 1 ≥ 1. Now,

d+ sp − c− 2

p− 1
=

|S| − |V |+ sp − c− 2

p− 1
≥ m− 1 ⇔ |S| ≥ |V | − sp+ (p− 1)(m− 1)+ 2+ c

and so Fitt
|V |
Z[G/H](Sel

tr
KH ,S,T ) is contained in pm−1I1+cG/H as soon as |S| ≥ |V | − sp+ (p− 1)(m−

1)+2+c. This concludes the proof that im(εVK/k,S,T ) is contained in pm−1I1+cG/H , as required.
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We can now give the proof of Theorem (1.1).

Proof (of Theorem (1.1)): Write Hk,p and HK for the extensions of k and K that correspond
with Clk,S,T ⊗ZFp and ClK,S,T via class field theory. That is, Hk,p is the maximal p-elementary
abelian extension of k that is unramified outside T and in which all places in S split completely,
and HK is the maximal abelian extension of K that is unramified outside TK and in which
all places in SK split completely. Note that HK is Galois over k. By Cebotarev’s Density
Theorem, we may then choose a finite set W of prime ideals of k that has all of the following
properties:

(i) W is disjoint from S ∪ T ,
(ii) every place in W splits completely in K ·Hk,p,

(iii) {Frobp | p ∈W} is a generating set for Gal(HK/K ·Hk,p).

In particular, one has Clk,S′,T ⊗ZZp = Clk,S,T ⊗ZFp with S′ := S ∪W . Class field theory then
provides for a commutative diagram

ClK,S′,T Gal(Hk,pK/K)

Clk,S,T ⊗ZFp Gal(Hk,p/k),

≃

ÑK/k

≃

where the right hand vertical arrow is the natural restriction map and ÑK/k is the composite of
the ‘norm’ map ClK,S′,T → Clk,S′,T induced by the norm NK/k : K

× → k× and the projection
Clk,S′,T → Clk,S,T ⊗ZFp. As a consequence, we obtain a G-equivariant isomorphism ClK,S′,T

∼=
ÑK/k(ClK,S′,T ), and hence an exact sequence of Z[G]-modules

0 O×
K,S,T O×

K,S′,T YK,W ClK,S,T ÑK/k(ClK,S′,T ) 0
ψ δ (8)

with ψ : O×
K,S′,T → YK,W the map a 7→

∑
w∈WK

ordw(a)w and δ : YK,W → ClK,S,T sends
w ∈WK to the class of w in ClK,S,T .
Fix a labelling W = {v|S|+1, . . . , v|S′|} and, for each j ∈ {|S|+ 1, . . . , |S′|}, an extension wj of
vj to K. By condition (ii) every place of K above a fixed vj is of the form σwj for some σ ∈ G,
which allows us to define a map w∗

j : YK,W → Z[G] by sending
∑

w∈WK
aww to

∑
σ∈G aσwσ (so

w∗
j is the ‘dual’ of wj). Now, if a ∈ O×

K,Sj ,T
with Sj := S ∪ {vj}, then

ψ(a) =

|S′|∑
l=|S|+1

(w∗
l ◦ ψ)(a)wl = (w∗

j ◦ ψ)(a)wj

belongs to the kernel of δ by exactness of (8). This shows that (w∗
j ◦ ψ)(a) annihilates the

class of wj in ClK,S,T . Since A := ker{ClK,S,T → ÑK/k(ClK,S′,T )} is generated over Z[G] by
δ(w|S|+1), . . . , δ(w|S′|) by exactness of (8), we have thereby proved that

|S′|⋂
j=|S|+1

(w∗
j ◦ ψ)(O×

K,Sj ,T
) ⊆ AnnZ[G](A). (9)

We now claim that im(εVK/k,S,T ) is contained in IG times the intersection on the left hand

side of (9). To do this, we first note that s′p := dimFp(Clk,S′,T ⊗ZFp) is equal to sp because
Clk,S′,T ⊗ZFp = Clk,S,T ⊗ZFp by condition (ii). Setting V ′ := V ∪W , it then follows that

|S′| = |W |+ |S| ≥ |W |+max{|V |+ 2, |V | − sp + (p− 1)(m− 1) + 3}
≥ max{|V ′|+ 2, |V ′| − s′p + (p− 1)(m− 1) + 3}.

By Lemma (4.3), we therefore have that εV
′

K/k,S′,T belongs to IG ·
⋂|V ′|
Z[G]O

×
K,S′,T , hence can be

written as εV
′

K/k,S′,T =
∑t

i=1 xiai with a natural number t and elements x1, . . . , xt ∈ IG and

a1, . . . , at ∈
⋂|V ′|
Z[G]O

×
K,S′,T .
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At this stage, it is convenient to introduce some general notation. For a Z[G]-module M , we
denote its Z[G]-linear dual by M∗ := HomZ[G](M,Z[G]). Given f ∈M∗ and an integer r ≥ 1,
we then define a map

f (r) :
∧r

Z[G]
M →

∧r−1

Z[G]
M, c1 ∧ · · · ∧ cr 7→

r∑
i=1

(−1)i · f(ci) · c1 ∧ · · · ∧ ĉi ∧ · · · ∧ cr,

where the notation ĉi means omission of ci. Iteration then yields a morphism

ξr,s :
∧s

Z[G]
M → HomZ[G](

∧r

Z[G]
M,

∧r−s

Z[G]
M), f1 ∧ · · · ∧ fs 7→ f (r−s+1)

s ◦ · · · ◦ f (r)1

for every s ≤ r. (The special case r = s of this construction was already discussed in Defini-
tion (2.1).) By abuse of notation we will simply write f1 ∧ · · · ∧ fs in place of ξr,s(f1 ∧ · · · ∧ fs).
Returning now to the concrete setting at hand, we set ψl := w∗

l ◦ ψ and, for every f ∈∧|V |
Z[G](O

×
K,S′,T )

∗ and j ∈ {|S|+ 1, . . . , |S′|}, define the map

Φj,f :=
(
(
∧

|S|+1≤l≤|S′|
l ̸=j

ψl) ∧ f
)
: R⊗Z

∧|V ′|

Z[G]
O×
K,S′,T → R⊗Z O×

K,S′,T .

For every g ∈ (O×
K,S′,T )

∗ and i ∈ {1, . . . , t}, one then has that (g ◦ Φj,f )(ai) belongs to Z[G].
This shows that

Φj,f (ai) ∈
{
a ∈ R⊗Z O×

K,S′,T | g(a) ∈ Z[G] for all g ∈ (O×
K,S′,T )

∗} = O×
K,S′,T

because O×
K,S′,T is Z-torsion free. In addition, ψl◦Φj,f = Φj,f∧ψl = 0 for all l ̸= j so that in fact

Φj,f (ai) ∈
⋂
l ̸=j kerψl = O×

K,Sj ,T
. A similar argument also shows that

(∧
|S|+1≤l≤|S′| ψl

)
(ai)

belongs to
⋂|V |
Z[G]O

×
K,S,T .

Note that O×
K,S′,T /O

×
K,S,T is Z-torsion free (by (8)), hence that the natural restriction map

res : (O×
K,S′,T )

∗ → (O×
K,S,T )

∗ is surjective. For any f ∈
∧|V |
Z[G](O

×
K,S,T )

∗ we can therefore find

f̃ ∈
∧|V |
Z[G](O

×
K,S′,T )

∗ with (
∧|V | res)(f̃) = f . For any j ∈ {|S| + 1, . . . , |S′|}, we then obtain

that ((∧
|S|+1≤l≤|S′|

ψl
)
∧ f

)
(ai) = ±ψj((Φj,f̃ )(ai)) ⊆ ψj(O×

K,Sj ,T
).

Since this inclusion holds for every such j, we infer that in fact((∧
|S|+1≤l≤|S′|

ψl
)
∧ f

)
(ai) ⊆

⋂|S′|

j=|S|+1
ψj(O×

K,Sj ,T
).

Now, by [San14, Prop. 3.6] (see also [Rub96, Prop. 5.2]) one has(∧
|S|+1≤l≤|S′|

ψl
)
(εV

′

K/k,S′,T ) = ±εVK/k,S,T

and so, for any f ∈
∧|V |
Z[G](O

×
K,S,T )

∗, we deduce that

f(εVK/k,S,T ) = ±
((∧

|S|+1≤l≤|S′|
ψl
)
∧ f

)
(εV

′

K/k,S′,T ) = ±
t∑
i=1

xi ·
((∧

|S|+1≤l≤|S′|
ψl
)
∧ f

)
(ai)

⊆ IG ·
⋂|S′|

j=|S|+1
ψj(O×

K,Sj ,T
),

as claimed. From (9), it now follows that im(εVK/k,S,T ) is contained in IG · AnnZ[G](A). As

ÑK/k(ClK,S′,T ) (which carries the trivial G-action) is annihilated by IG, we conclude from the
tautological exact sequence

0 A ClK,S,T ÑK/k(ClK,S′,T ) 0

that any element in im(εVK/k,S,T ) annihilates ClK,S,T , as required to prove Theorem (1.1).
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Math. 51.1 (1979), pp. 29–59.

[CR81] Charles W. Curtis and Irving Reiner. Methods of representation theory. Vol. I. With applications to finite
groups and orders, Pure and Applied Mathematics, A Wiley-Interscience Publication. John Wiley & Sons,
Inc., New York, 1981, pp. xxi+819.

[DK23] Samit Dasgupta and Mahesh Kakde. On the Brumer–Stark Conjecture. Ann. of Math. (2) 197.1 (2023),
pp. 289–388.

[DKS23] Samit Dasgupta, Mahesh Kakde and Jesse Silliman. On the Equivariant Tamagawa Number Conjecture.
2023. arXiv: 2312.09849 [math.NT].

[Das+23] Samit Dasgupta, Mahesh Kakde, Jesse Silliman and Jiuya Wang. The Brumer-Stark Conjecture over Z.
2023. arXiv: 2310.16399 [math.NT].

16

https://arxiv.org/abs/2312.09849
https://arxiv.org/abs/2310.16399


[DR80] Pierre Deligne and Kenneth A. Ribet. Values of abelian L-functions at negative integers over totally real
fields. Invent. Math. 59.3 (1980), pp. 227–286.

[DST03] David S. Dummit, Jonathan W. Sands and Brett Tangedal. “Stark’s conjecture in multi-quadratic extensions,
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