On Euler systems and a conjecture of Coleman
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We obtain an explicit, and (up to squaring) complete, classification of Euler sys-
tems for G,, over Q. This classification shows that the cyclotomic system generates
a very small proportion of all Euler systems in this setting. It also has a range of
concrete consequences, including the proof of a long-standing distribution-theoretic
conjecture of Robert Coleman and restrictions on the Galois structures of Selmer
groups for G,,, and hence of ideal class groups, for real abelian fields.

1 Introduction and statement of main results

We study Euler systems for the multiplicative group G,, over Q. To state our main results
we write Q* for the maximal abelian extension of @ in C, and then set Q*»*+ = Q*» N R,
I == Gal(Q**/Q) and I'" := Gal(Q*/Q). We write Q and Q, for the set of finite extensions
of Q in Q* and Q*™7, and set Q° == Q\ {Q} and Q3 = QF \ {Q}. For K in Q we set
I'x = Gal(K/Q) and, for a commutative ring A, we consider the inverse limit rings

A[L] = lim A[Tk] and A[P]:= lim A[lx], (1)
KeQ KeQy

where the transition morphisms are the natural restriction maps 7,/ a: A[l'L] — A[l’x] for
K C L. (In the sequel we abbreviate T K,z to ﬂ'L/K).
An ‘Euler system for G,, over Q’ is then a collection

u:(uE)EE H E*

EeQe
that, for every K and L in Q° with K C L, satisfies the ‘distribution relation’
Npyr(ur) = (JJ(1 = Frob, 1)) - uk. (2)

14

Here Ny /¢ is the field-theoretic norm map L* — K>, the product runs over prime numbers
£ that ramify in L but not K, Frob, is the arithmetic Frobenius automorphism of ¢ on the
maximal subfield of Q*" in which ¢ is unramified (which acts on K> in the obvious way), and
we use additive notation for unit groups.

The validity of (2) for every L/K is a strong restriction on a family u. For example, writing
m(K) for the finite part of the conductor of a field K in €, it implies a containment
O, if m(K) is divisible by two distinct primes,

i € U = { 3)

Ok[1/m(K)]*, if m(K) is a prime-power,
where we write O for the ring of algebraic integers in K (cf. [Seo01, Lem. 2.2]).
Taking account of the Kronecker—Weber Theorem, the ‘cyclotomic Euler system’ is defined by

1 eQm’/m(K)))

¢ = (Ngm(x)/x Keqo (4)

where for any natural number n we set
Q(n) — Q(e27ri/n).

Aside from this example, however, the only other Euler systems that have hitherto been iden-
tified in this case arise as follows: If II is any set of odd prime numbers, then the family

urt = (No(m(x))/x (—1)"") keqe (5)
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satisfies (2) for all extensions L/K, where ny k is defined to be 1 if m(K) is divisible only by
primes in IT and to be 0 otherwise.

The collection &€ of all Euler systems for G,, over @ is an abelian group under multiplication
of systems (so that the component of ujuy at K is uy gug x and the identity element is the
system ug with value 1 on every field in Q°), and this group has a natural action of the (non-
noetherian) ring Z[I']. For v € £ and r = (rx)x € Z[I'] we write either r - u or r(u) for the
family (rx(ur))x € €.

The relations (2) imply that for any Euler system « and prime p the elements uy, form a norm
compatible family as L ranges over fields for which m(L) is a power of p and hence that the
valuation Ordp(u) of ur at the unique p-adic place of L is independent of L. In this way,
writing & for the set of all prime numbers, one obtains a homomorphism of Z[I']-modules

Ordg: € — H Z, ur (Ordg(u))e.
ez
We write @ for the diagonal map Z — [],c» Z and define a subgroup of [[,. » Z that contains
w(Z) by setting

0= {(mg)g € H Z | m, = my modulo por e (@=1/2) for all primes p < q}. (6)
e
We also write C and T for the Z[I']-submodules of £ that are respectively generated by the
cyclotomic system c in (4) and by all systems u as in (5), and C° for the Z[I']-submodule of
C comprising systems of the form r(c) with r an element of the kernel of the projection map
Z[I'] = 7. We can now state our main result concerning the map Ordg.

(1.1) Theorem. One has 2-© C im(Ordg) C O, ker(©) = T +CY and
{ue&|Ordg(u) e w(Z)} =T +C.

Our proof of this result incorporates an inductive construction of a pre-image under Ordg of
every element of 2-© and so gives an explicit description, up to squaring, of the full module
of Euler systems for G,, over Q (and see also Remark (3.7) (ii) for a cleaner statement in this
direction). This is the first complete classification of Euler systems in any natural setting and
has some interesting consequences. For instance, the result directly implies that any « in & for
which Ord,(u) is independent of p belongs to 7 +C, and hence settles a conjecture formulated
in [Bul423], and also that the quotient £/(7 + C) is torsion-free and cannot be generated
over Z[I'] by finitely many elements (see Theorem (3.1)(iii)). This shows that, despite the
previously apparent scarcity of Euler systems, cyclotomic systems account for a remarkably
small proportion of all Euler systems for G,, over Q.

To describe a consequence of Theorem (1.1) that is less direct, we recall that, in 1989, Coleman
conjectured a global distribution-theoretic analogue of the fact that norm-compatible families
of units in towers of local cyclotomic fields arise by evaluating a power series at roots of unity,
as had been proved in [Col79]. Coleman’s conjecture concerns a classical notion of ‘circular
distribution’ and, hitherto, its resolution has seemed out of reach, with comparatively little
supporting evidence and no proof strategy apparent (see [Seo01] or [BS21] for a discussion of
the history). However, it is possible to interpret Coleman’s conjecture in terms of the Z[I']-
submodule £°°"¢ of £ comprising systems u with the following congruence property introduced
by Thaine in [Tha88]: For every natural number n > 1 and every odd prime number ¢ that
does not divide n one has

uQ(tn) = UQ(n) modulo all f-adic primes of Q(¢n). (7)

(These congruences are well-defined since (3) combines with the fact ¢ is prime to n to imply
that uqem) and ug,) are both units at all (-adic places.) Given such an interpretation of
Coleman’s conjecture, Theorem (1.1) now allows us to prove the following result. In this result
we write uoqq for the system wuyr defined in (5) with IT the set of all odd primes.



(1.2) Theorem. In & there is a direct sum decomposition of Z[I']-submodules
geong _ {ug, uodd} ®C. (8)

In particular, Coleman’s conjecture on circular distributions is valid.

We will give more information about Coleman’s conjecture, and how it follows from the above
description of £°°"8  in §2.4. For the moment, we briefly mention some consequences of its
validity. Firstly, Theorem (1.2) implies an affirmative answer to the ‘Guess’ formulated by the
third author in [Seo06, §3], thereby providing a distribution-theoretic analogue of the main
result of Coleman in [Col85]. Secondly, if K is equal to R N Q(n) for any natural number n,
then the discussion of the third author in [Seo08, §1] implies Theorem (1.2) combines with
results of Sinnott [Sin80] on cyclotomic units to imply the cardinality of the graded module
of ‘truncated Euler systems’ over K defined in [Seo08] is equal to the class number of K, as
is conjectured in loc. cit. Finally, we note that, for each odd p, Theorem (1.2) implies that
the pro-p completion of £°"¢ is generated over the pro-p completion Z,[I'] of Z[I'] by ¢, and
hence answers the question of whether the Z,[I']-module of p-adic Euler systems for Z,(1) is
cyclic, as asked by Mazur and Rubin in [MR04, §5.3].

To state another consequence of Theorem (1.1), we recall that the ‘integral dual Selmer group’
S(Gyy i) of Gy, over a number field K is a classically defined object that is related to the ideal
class group Cl(Ok) of K by means of a canonical short exact sequence

0 —— Homz(Cl(Ok),Q/Z) —— S(Gyyyx) —— Homgz (O, 2Z) —— 0 (9)

(for more details see §4). Our approach now enables us to prove the following result about the
Galois structure of these modules as K varies over fields in €2 .

We say that a subset X of {2y is ‘dense’ if, for every K in QS , there exists a field £ in X such
that K C E and m(FE) and m(K) have the same prime divisors. For K in Q and an ideal
of Z[T'k] we write ™! for the ‘inverse’ {x € Q[Ix] | z- I C Z[['k]}.

(1.3) Theorem. For any dense subset X of Q. one has
(11 Fittzp (S(Gmyx )N QITTT=0 and (][] Fittyr(S(Gmx)) ") N QITT]=Z[T"].

KeX Kex

Whilst the proof of the first equality here relies on Kummer theory and class field theory, the
proof of the second lies deeper and depends crucially on Theorem (1.1). In addition, these
equalities control the Galois structure of Selmer groups and hence, via (9), of class groups and
unit groups in a fashion that is both non-trivial and independent of the properties of L-series
(see §4.3). In particular, this last observation implies such restrictions are not implicit in the
formalism of leading term conjectures such as the (equivariant) Tamagawa number conjecture.
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2 Congruence Euler systems and the proof of Theorem (1.2)

2.1 p-adic considerations

In this section we fix a prime p and prove some key results about certain auxiliary modules of
p-adically valued Euler systems. To do this, we set

«._ Jp, ifpisodd
T4, ifp=2,
and write Q(p) for the subset of Q comprising fields K with the property that m(K) is divisible
by p. We then consider the following notions of Euler system.

(2.1) Definition.

(i) For a commutative algebra A the group E4 of ‘A-valued Euler systems for G, over Q’ is
the subset of [[peqo (A ®z Ug) comprising elements that satisfy the distribution relation
(2) for all L and K. In the case A = Z, for a prime p, we abbreviate E4 to &, and refer
to it as the group of ‘p-adic Euler systems for G, over Q’.

(it) The group E(p) of ‘Euler systems for Zy(1) over Q’ is the set comprising elements of
[ecop)(Zp ®z Op[1/p]*) that satisfy (2) for all L and K.

The groups &, and €(p) are both modules over Z,[I']. In addition, £(p) fits into the framework
of Euler systems for p-adic representations as defined by Rubin in [Rub00, Def. 2.1.1]. These
groups are also related by a composite ‘restriction” morphism of Z[I']-modules

b€ =& = EM), (cx)rear = (1®ck)ren = (1® cx)keam)

where 1 ® ck is the image of cx under the natural map Ux — Z, ®z Uk . In the sequel we also
use ‘4" to denote the homomorphism of Z,[I']-modules &, — £(p) given by the second map in
this composite (with the precise meaning always being clear from context).

We write 7 for the element of I' induced by complex conjugation, and set T := 1+ 7 € Z[I].

(2.2) Proposition. The Zy[I']-module T-(E(p)) is cyclic, with generator v,(T-(c)).

Proof. Setting R), := Zy[I'], it is clear that R, - 1,(c) C E(p). It is therefore enough to fix v in
&(p) and show that T (v) is an R,-multiple of ¢,(T(c)). To do this, we will rely on two results
from [BS21]. Firstly, for any such v the argument of [BS21, Th. 3.1] implies that v;, € R, - ¢,
for all L in Q(p). This containment implies that the family 7 (v) belongs to the R,-module V;f
defined in [BS21, § 5.3.1] and so it is enough to recall [BS21, Prop. 5.3 (i)] asserts that Vg is a
free R,-module of rank one, with generator ¢,(T5(c)). O

For K in Q and z in Ug we write x,, for the image of x in Z, ®z Uk.

(2.3) Proposition. The following claims are valid.
(i) If v = (vi )k € T-(Ep) belongs to ker(vy), then for all K € Q° the element vy belongs to
the submodule Z, ®z, (Ug)'™® of Z, Rz Uk.

(i) If v = (vik)x € T-(E) satisfies the congruences (7), then there exists an element r, of
Z,[I'] such that, for every K € Q°, one has Tr(vk)p = rp - Tr(cK)p in Zp @7 Tr(Uk).

Proof. Fix v in &, that belongs to ker(,). Then vk is trivial for every K in Q(p) and, in
particular, belongs to (Z, ®z Ux)'* = Z, ®z (Ug)'s for such K. To prove claim (i) it is
therefore enough to fix a field K in 2\ Q(p) and show v is fixed by the action of I'x.

To do this we fix a natural number n > 1 and define an auxiliary field by setting

Q) if p is odd,
Ho) = {Q<52n+1, V2) itp=2



This field is disjoint from K. Indeed, if not, then K N k(p,n) would be a ramified extension of
Q and this is impossible since K is unramified at p whilst k(p,n) is unramified outside p.

In particular, since K and k(p,n) are disjoint, the theory of embedding problems implies (via,
for example, [Bul4-23, Prop. 4.14]) that, for each o in I'x, there exists a real cyclic p-extension
E = E(p,n,o) of Q with the following three properties:

(P1) pis unramified in E and the order of Frob, on E is at least p",
(P2) at most two prime numbers ramify in F, and each of these is unramified in K,
(P3) if £ is a prime number that ramifies in E, then the restriction of Frob, to K is equal to o.

To proceed, we set L := Q(p-m(K)) and F := E - L. Note that L and F' both belong to
Q(p), and hence that vy, and vp both vanish. By (P1) we know that F, and hence also FK, is
unramified at p and so (2) implies that

0=Np/pr(0) = Np/px(vr) = (1 — Frob, ") (vek).
This shows that vgk is fixed by Frob,, and hence also by every element in the subgroup H of

Gal(EK/K) generated by FrobLK:Q]. Note that |[H| > p"~°de((KQ] a5 a consequence of (Py).
The relation (2) now combines with (P2) and (P3) to yield that there is i € {1,2} such that

(1-0)(vk) = NEK/K(UEK) = NEKH/K(NEK/EKH(UEK>) = |H| 'NEKH/K(’UEK)
is divisible by |H| in the finitely generated Z,-module Ug. Since ord,(|H|) is unbounded as n
increases, it follows that (1 — o)?(vg) vanishes.
Write e; for the idempotent |(o)|~* >he(o) b of Q[(c)] and note 1 —eq belongs to the augment-
ation ideal of Q[(c)]. Since the latter ideal is generated by 1—o, it follows that 1—e; = z(1—0)
for some x € Q[(c)], and hence also

z(l-0)?=(1-0)(z(1-0))=(1-0)(l—e1)=(1-0).

Thus, if we now fix a natural number z such that z-z € Z[(0)], then this computation combines
with the previous discussion to imply that the element

z-(1—0)(vg) =z -z (1 —0)*(vg)
is divisible by |H|. Taking n to be large, we deduce z(1 — o)(vk) vanishes and hence that
(1 —0)(vk) vanishes since vk belongs to the Z-torsion free group T (Ug ). This shows that vg
is fixed by every element of 'k, as required to prove claim (i).
To prove claim (ii), we fix an Euler system v in ker(¢,) that satisfies the congruences (7). Then,
by Proposition (2.2) there exists 1, = (rp,x )k in Ry such that ¢,(T7(v)) —rp(p(Tr(c))) is trivial,
and hence v' := T (v —rp(c)) € ker(ep). It follows from claim (i) that v} == Tr(vKg —rp K (cK))
belongs to Z, ®z Q* for every K € Q. We now claim that this implies v vanishes if m(K)
is composite. To prove this, it suffices to show v(’Q(m( K) vanishes if m(K) = ¢'n with £ prime,
t € Nand n € IN\ {1} prime to ¢. Then, since U{Q(m(K)) is I-invariant and belongs to the
Z-torsion free group Z, @7z Tr(Ug(m(k))) one has

[Q(m(K)) = Q- vy = Nawm(#))/QVaumx)) = Nawm(x)/qm) (1 = Frob 1) - vg,) =0,
and so UfQ(m( K vanishes.

Write the element 7, x as a family (rp x5 )nen in Zp[I'x] = T&lnem((Z/p”Z)[FK]). Then, since
v vanishes, for every n the element T (vix — 1 g n(Cx)) is divisible by p™ in the (torsion-free)
group T (Uk). This in turn implies that the family v}, := T;(viK — 7p k.n(cK))Keqe is an Euler
system that satisfies (7) and is such that 2v, j is a 2p"-th power in Ux whenever m(K) is
composite.

We claim this implies 20/ ;- is a p™-th power in Ug for every K in Q°. To prove this, it suffices
to show 21};’@((]) is a p"—tﬁ power for every prime power ¢. By [NSWO08, Th. 9.1.1 (ii)], it is then
enough to show 2v,, q(,) is a 2p"-th power in the completion of Q(q) at every non-archimedean



place p that is prime to 2pg. We fix such a place p of Q(¢) and write IF, for the residue field of
Oq(q) at g. Then, since v;’Q(q) is a g-unit (and so integral at o) and p is prime to 2p, Hensel’s
Lemma reduces us to showing 2v/, Q@) is a 2p"-th power in IF;. To do this we write ¢ for the
characteristic of o and fix a place g’ of Q(¢q) above p. Then 2v/, Qg) IS A 2p"-th power in
Q(¢q) and so the congruence (7) implies 2v/, Q) is a 2p"-th power in the residue field IF; of
Oq(eg) at @'. In addition, since g is totally ramified in the extension Q(¢q)/Q(q), the inclusion
map F, — IF, is an isomorphism of fields and so 2¢/, Q@) is a 2p"-th power in IF,, as we wished
to show. We have therefore proved that QU’K = (21);17 K )nen vanishes in Z, ®z Uk. Hence, as
v belongs to the Z-torsion-free subgroup Z, ®z T-(Uk ), we can conclude v} = 0.

From the equality v} = 0 we can therefore conclude that T (vk), = rp - Tr(ck)p for every K
in Q°, as required to complete the proof of claim (ii). O

2.2 Annihilators of cyclotomic units

In this section we prove some useful technical results concerning the Galois structure of modules
generated by Euler systems.

We write A* for the character group Hom(A,C*) of a finite abelian group A. For each
X € A* we write e, for the idempotent [A[72 ;.4 X(671)8 of Q*P[A] and, if x is the trivial
homomorphism, we often write ea in place of e,.

For K in Q we set K™ := RN K and T} := I'x+, and define an ideal of Z[I'}] by setting

Ix = {r e ZIT}] | r(T-(ck)) = 0}.
In the next result we describe explicitly this annihilator ideal in terms of the idempotent of
Q[I}] that is obtained by setting

o= {1 if m(K) is a prime power, 10)

[epnr)(1 — €py,), otherwise,
where ¢ runs over prime divisors of m(K) and Dy 4 is the decomposition subgroup of ¢ in T}
(2.4) Proposition. For every field K in § the following claims are valid.
(i) I is equal to the set {x € Z[T}] | ex -« = 0}.
(ii) If ¢ € T3 is such that eperc = 0, then m(K) is not a prime power and v is trivial on
the decomposition group in F; of a prime divisor of m(K).

(iii) If u belongs to T, (E), then the image of ur in Q @z Uk belongs to Q] - Ty (ck).
Proof. Claim (i) is proved in [BS21, Lem. 2.4] and relies on the link between cyclotomic elements
and first derivatives of Dirichlet L-series (as discussed, for example, in [Tat84, Ch. 3, § 5]).
Claim (ii) follows directly from the explicit description (10) of ex and the fact that for each
subgroup H of I}t one has ey (1 —ey) = 0 if ¢ is trivial on H and ey (1 — ey) = ey otherwise.
To prove claim (iii) we use the fact that the natural map +: K* — Q* @z K* is injective on
the torsion-free subgroup T (K*) of K*. We write u = T (w) with w € £ and claim first that
the image of ux = Tr(wg) under ¢ is stable under multiplication by ex. In view of claim (ii),
to show this it is enough to prove for every % in F;’* that if ey, - ¢(uk) # 0, then 7 cannot be
trivial on the decomposition group of any prime that ramifies in K (and so eyex = ey).

To see this, we write 7 for the restriction map I'x — F;; and note, for each 9 in F;’*, that
ey - (UK) = eyor - Tri(wk)
=2 eyor - L{wk)

=2 ( ] @ —v(Frob1))) - epor - t(wi,)

Ze{')”w

=( I @ = w(Frob;"))) - ey - 1(ux,).

feﬁw



Here K denotes the subfield of K fixed by ker(¢ o) (or equivalently, the subfield of K fixed
by ker()) and & is the set of primes that ramify in K but not in K. In addition, the first
of the equalities is clear, the second and fourth are true since the image of 7 in I' is contained
in ker(¢ o ), and the third equality is true since the system w validates (2).

From the above equalities it is clear that, if ey - t(ug) # 0, then ker(¢) cannot contain Froby
for any ¢ in &;. On the other hand, any prime ¢ that ramifies in K but does not belong
to &y is ramified in Ky and so its inertia group in I‘; is not contained in ker(¢)). Hence, if
ey - t(ug) # 0, then ¢ cannot be trivial on the decomposition group in I'tt of any prime that
ramifies in K, as required.

Now, since wx € Uk (by (3)), the above argument implies ¢(ux) € ex (Q®zT-(Uk)). To prove
claim (iii) it is thus enough to show that the Q[G]-module ek (Q ®7z T (Uk)) is generated by
Ty (cx). But this is true since if ¢ € [-* is such that egef # 0, then claim (i) combines with
the fact cx € U to imply ey (t(Tr(ck))) € ey(Q* @z (T-(Uk)) \ {0}, whilst one also has

dimQab (€¢(Qab ®Z TT(UK>)) = dimQab (61[)071'(Qab ®Z XK)) =L

Here we write X for the subgroup of the free abelian group on the set of archimedean places
of K if m(K) is divisible by two distinct primes, respectively the set of places of K that are
either archimedean or p-adic if m(K) is a power of p, comprising elements whose coefficients
sum to zero. The first equality is therefore true since the Dirichlet Regulator map induces an
isomorphism of C[I'x]-modules C ®z Ux = C ®z Xk (cf. [Tat84, Ch. I, § 4.2]) and the second
follows by a straightforward computation from the definition of Xg. O

2.3 The characterisation of £°"8

In this section we prove the explicit description of £°"¢ claimed in (8).
At the outset we recall that, as proved by the third author in [Seo06, Th. 2.5], the abelian group
C is torsion-free and thereby disjoint from 7. It is also straightforward to check explicitly that
ug and uygq are the only systems in 7 that satisfy the congruences (7). To prove (8) it is
therefore enough to show that £°°" is contained in T +C and our proof of this fact will occupy
the remainder of this section.
We first make several useful deductions from results of [BS21]. To do this we set

R=7[T], Rt =2[["] and R :=lim Z[x],

KeQ

where Z denotes the profinite completion of Z. We also fix u in £ and define R*T-modules
Ct=T,C), Y=Y, =R" -T-(u) and X =X, :=(CT +Y)/C".

Then, in view of the observations made above, the following result reduces the proof of (8) to
showing that (for every u) the module X vanishes.

(2.5) Lemma. For every v in &, there exists an exact sequence of R-modules

z2—Tr(z)

05T +CST+C+Rv X, =0 (11)

Proof. Since T-(y) = 0 for every y € T one has T,(z) € CT +Y for each z € T +C + R - v and
so the assignment z — T7(z) induces a well-defined surjective homomorphism of R-modules ¢
from T +C+ R-v to X.

Now, with this definition of ¢, it is clear 7 +C is contained in ker(t¢) and hence enough to show
that if t(z) = 0, then z belongs to T + C. Moreover, if t(z) = 0, then there exists an element
r of R such that T;(z) = r - Tr(c). It follows that T} - (z — r(c)) = 0 and hence, by [BS21,
Th. 4.1 (i)], that z — r(c) belongs to &or + R(1 — 7)(c). Since this implies that z belongs to
Etor + C, it is therefore enough to recall that & = T (by [Seo04, Th. B]). O



To show that X = X, vanishes we note that the restriction map
mR—= R, (rg)k+— (7x(rk)) g+

is surjective, where we set mx = T/ g+. This is true since each mx is surjective with kernel
(1 — 7)Z[T'x] and the derived limit @}(GQ(G — 7)Z[T'k]) with respect to the transition maps
induced by 7y, for K C L vanishes as a consequence of the Mittag-Leffler condition.

It follows that C* = R™ - T;(c) and so it suffices, by Lemma (2.5), to show the existence of an
element r = 7, of R" such that T, (u) = r(T-(c)).

We note first that, as a consequence of Proposition (2.3) (b), for every prime number p there
exists an element T = Tpu of R} such that T, (u) = rp(TT(c)) in &,.

After identifying Z with the direct product II
we may regard the family

pes Lp (via the Chinese Remainder Theorem),
ri=(rp)p

as an element of jj“ It is then enough for us to show that this element r belongs to the
subgroup Rt of R*. Indeed, if true, then there is an equality T;(u) = 7(T7(c)) in &, for every
p, and hence an equality T:-(u)xp = 7x(Tr(c)K)p in Uy, for every p and every K € Q°. It
follows that, for every K, the elements T, (u)x and ri(T-(c)k) of Uj have the same image
under the injective map Uy — 7 @z, U} and hence that T (u)x = rx(Tr(c)k). Since this is
true for every K, it then follows that T (u) = r(T;(c)), as required.

Now, to show that r belongs to RT, we note first that, for every field K € Q°, Proposition
(2.4) (iii) implies the existence of an element gx of Q[I'}] such that Tr-(ux) = qx(Tr(ck)) in
Q ®z U The resulting equalities rp x (Tr(ck)p) = qx (Tr(ck)p) in Qp @z Uy then combine
with Proposition (2.4) to imply that, for every p, the element gx — 7, k of Qp[ “t] annihilates
T, (ck)p- In particular, if we write Q for the direct product [l)e» Qp and I for the annihilator

Q ®yz Ik of Tr(ck) in the group ring Q[F;], then it follows that, for every K in €2°, one has
rK € Q[FI—H + ﬁ(

Given this fact, the required containment r» € R follows directly from the result of Lemma
(2.6) below (with e = 1 so R¥(¢) = RT). This completes the proof of the equality (8).
In the sequel we regard both 7 = Hpe 2 Ly, and Q as subgroups of Q in the natural way

(2.6) Lemma. Fiz an idempotent € = (ex)ken, of QII'T] and define inverse limits

R*(0) = lim Zklexc, R¥(c):= lim Z[Txlex and Q- R¥(e):= lim Q[Iklex,
KeQy KeQy KeQy

all with respect to the natural p'rojection maps. Then in @ - éjr(e) one has

n [ @Irx] +Ix) = B* (o).
KeQy

Proof. For each field K € Q4 the Z-submodule Z[I'x]ex of Q[I'k] is free and of finite rank.
Since Z = QN Z in Q, one therefore has

Z[Tx)ex N Q[Tx] = Z[Tk)ex N Q[Tkex = Z[Tx]ex.
in @[FK] To prove the claimed equality, it is therefore enough to show that if A = (Ag)x is
any element of R+(e) such that A\x € Q[I'x]| + I for all K in €, then one has \x € QI
for all K. To prove this we argue by induction on the number of prime factors of m(K).
If, firstly, m(K) is a prime power, then the idempotent ex is (by definition) equal to 1 and
so Proposition (2.4) (i) implies that I, and hence also Ik, vanishes. In the case therefore the
given assumptions imply directly that Ax belongs to Q[I'k], as required.

Now assume to be given a natural number n and suppose that for every field K in {24 such
that m(K) is divisible by at most n primes, one has Ag € Q[I'x]. We fix a field F' in Q4 such



that m(F) is divisible by n + 1 primes and, for ¢ in I';,, we write F, for the fixed field of F'
under ker(?). Then, for each subfield E of F' the subset Z(E) of I, comprising v for which
Fy = E is a (possibly empty) conjugacy class for the action of I' on I'j; and so the associated
idempotent ep =}, c=(p) €y belongs to Q[I'r].

To investigate Ap we use the decomposition

AF:l'AF:(Ze¢)'AF226¢AF:Ze¢AFw:Z( Z eqj;AE):ZEE)\Ea (12)
E

Pe= PEE PEE E  ¢€eE(E)

where the fourth equality is valid as \ € Rt (€), and in the sum E runs over all subfields of F.
Fix a subfield F of F. If m(FE) is divisible by fewer primes than m(F") then, by hypothesis,
one has A\g € Q[I'g]. On the other hand, if m(E) is divisible by the same number of primes as
m(F), and rp € Q[I'r] and ip € .7; are such that A\p = rp + ip, then one has

EEAE = Z erzj)AE = Z 6¢)\F = Z 6¢(7’F +iF) = Z eyTF = EETF.
YeE(E) YeE(E) YeE(E) YEE(E)
Here the fourth equality is valid since, under the present hypothesis, each 1 in Z(E) cannot
be trivial on the decomposition group of any prime divisor of m(F') so that one has ey = eyer
(by Proposition (2.4) (ii)) and hence also ey (ir) = 0 as a consequence of Proposition (2.4) (i).
These observations imply that the element egAg belongs to Q[I'g] for every subfield E of F
and hence, via the decomposition (12), that Ap belongs to Q[I'r]. O

2.4 The proof of Coleman’s Conjecture

In this section we prove Coleman’s conjecture on circular distributions and thereby complete
the proof of Theorem (1.2). In this regard, we recall that the theory of distributions plays a
prominent role in number theory and is strongly influenced by the theory of circular numbers in
abelian fields (cf. the discussion in the Introduction to [KL81]). To state Coleman’s conjecture,
we write p* for the set of non-trivial roots of unity in Q*", and recall that a circular distribution
is a ['-equivariant function f: u* — Q2> such that, for all natural numbers n, one has

Il r©=r@m) foranyeu (13)
£r=n
and, in addition, for all primes ¢ that do not divide n, the values f(e*™/*) and f(e*™/™) are
congruent modulo all ¢-adic primes of Q(¢n) (this last condition makes sense since (13) implies
that f satisfies an analogue of the condition (3)).
Explicit examples include the ‘cyclotomic distribution” ®.y. and the ‘parity distribution” ®pa,
that respectively send each e>™/™ with n > 1 to 1—e*™/™ and to (—1)"™) where 7(n) is defined
to be 1 if n is even and —1 if it is odd. Further, the collection §¢ of circular distributions
is a group under (pointwise) multiplication and has a natural action of Z[I'] (which we write
additively), and Coleman has conjectured that

SCd = Z[I'] - {®cyc, Ppar}- (14)
This striking conjecture was motivated by the archimedean characterization of circular units
that Coleman had obtained in [Col85] and was therefore related to attempts to understand a
globalised version of the Coleman power series introduced in [Col79].
The next result implies that the equality (14) is valid if the Z[I']-module £°°"¢ is generated by
the systems ¢ and uoqq. This shows that Coleman’s conjecture follows from the equation (8)
proved in the last section, and hence completes the proof of Theorem (1.2).

(2.7) Lemma. There exists an isomorphism of Z[T]-modules k: T — £°N& with the
property that k(Peyc) = ¢ and K(Ppar) = Uodd-
Proof. For f in §°, one obtains an element uf = (uf k)i of [Ixeqo K by setting

ug, i = Nogn(reyx (f(e2™/m™E))



for all K in ©2°. We also note that, for each u in &, there exists a unique I'-equivariant function
fu: p* — QP> that, at each n > 1, satisfies

UQ(n)> if n %2 (mod 4),
Fu(€®™/™) = ¢ (1 — Froby)(ugn/2)), if n =2 (mod 4) and n > 2,
1, ifn=2.

Then, by explicit computation, one verifies that every family u; belongs to £°"8, that the
function f, belongs to § if v belongs to £°"&, that the assignments f — up and u — f,
respect the actions of Z[I'] and that, for every f and u, there is an equality of functions f = f,,
and an equality of families u = uy, .

The required isomorphism & is therefore obtained by setting x(f) :== uy for each f in 4. O

3 Non-cyclotomic Euler systems and the proof of Theorem (1.1)

In this section we introduce an explicit, inductive construction of Euler systems and, by com-
bining this with results from § 2, are able to prove the following result.

(3.1) Theorem. The following claims are valid.
(i) For every u € £ and every K € Q° one has ug € Z[I'k] - ck.
(i) One has im(Ordg) C © and there exists an exact sequence of Z[I']-modules

Ord}
0 —— T+C—2 & —% 0/wm(Z) — cok(Ordy) — 0

i which OrdiQ is the map induced by Ordq and the exponent of cok(Ord(Q) divides 2.
(iii) The Z]I']-module E£/(T + C) cannot be generated by finitely many elements.

This result implies that, whilst every system in & is ‘cyclotomic-valued’ (by claim (i)), the
cyclotomic systems themselves account for a very small proportion of the full module of Euler
systems in this setting (by claim (iii)). It also has the following specific consequence.

(3.2) Corollary. Theorem (1.1) is valid.

Proof. Theorem (3.1)(ii) implies the existence of an exact commutative diagram of R-modules

0——T+4+C—E& —E/(T+C) —— 0

e~

0 Z —= 0 0/w(Z) — 0.

Here both rows are tautological, the right hand vertical map is injective (and induced by Ord{Q)
and the left hand vertical map is surjective since for all t € T and r = (rg)keq € R one has
Ordg(t+1r(c)) = rq - Ord(c) = w(rq) € w(Z).

This diagram implies that the cokernel of Ordq is isomorphic to the cokernel of Orde (and hence
has exponent dividing 2), that 7+C is the full pre-image of Z under Ordg and that ker(Ordg) =
T + C° with C° the submodule of C comprising all systems r(c) for which Ordg(r(c)) =
rq - Ordg(c) = w(rq), and hence also rq, vanishes.

This verifies all assertions of Theorem (1.1). O

The proof of Theorem (3.1) will occupy the remainder of this section.
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3.1 Preliminary steps

In the sequel we use the idempotent ey = (1 — e;lK)KEQ+ of Q[I'"], where 15 denotes the
trivial character of 'k, and write

R{ = R*(e1) and }/%} = RT (e1)
for the associated rings defined in Lemma (2.6). For each K in § we also set

T = > v€Zlk].
v€lK

(3.3) Lemma. For any system u in & there exists a unique element

Qu = (Qu,K ) Kens
of Rir that has both of the following properties:
(i) For every K € Q2 one has (1 —e1,) - Tr(uk) = qui - Tr(ck) in Q @z T (Uk).
(ii) Fiz a prime p and, for each natural number n, set K, = K,, = Q(p™)". Then there
ezrists an element

Tup = (Fupn)n € Iim Z[Ig, |
EN

3

such that, for every n, one has both
quvKn = rum,n ' (1 - elKn) € Q[FKn] (J/nd uKn = TU,IL”(CKn) € UKn

Proof. At the outset we note Propositions (2.2) and (2.3) (a) combine to imply that, for every
prime p, there exists an element x,, = (ZTup Kx)Ken, of R; such that Tr(u — x,,(c)) is a
[-invariant system in &,. Setting v’ := e7(u) € Eg, the element

Qup = €1 Tup € R;_,l
is therefore such that gy p - Tr(c) = T-(u') in T-(Eq, ). We claim that ¢, is the unique element
of Q,[I'] with this property. To see this, we note that if ¢ = (¢% )k is any other such element,
then (qup — ¢') - Tr(c) vanishes in £q,. Hence, we must show this equality implies g, p x = ¢
for every K € Q. For each such K it is thus enough to prove that, for every non-trivial x
in T, one has ey - (qup,x — q%) = 0, or equivalently ey - (qup, K, — q’KX) = 0 where K, is the
fixed field of K by ker(x). However, the latter equality is true since (qup,x, — q%x) -Tr(ck,)
vanishes, whilst Proposition (2.4) (i) implies that e, (T7(ck, )) is non-zero.
We next use the identifications Z[I'k](1 — e1,) = [ e » Zp[l'k](1 — e1,) for each K € Q, to
deduce the existence of an element

Gu = (qux ) ke, € RY
with qu x = (qup,K)pew for all K. In addition, for each such K, Proposition (2.4) (iii) implies
the existence of an element yx of Q[I'x| with Tr(ux) = yi - Tr(ck) in Q ®z T (Uk) and so
(qur — (1 —e1)yx) - Trlcx) = Tr(uk) — (1 = e1, )yx - Tr(ck) =0
in @ ®z Tr(Uk). This equality implies that ¢, x belongs to Q[T'x] + fz\{, where the module f]\{
is defined in the proof of Lemma (2.5). In particular, since this containment is true for every

K, we may apply Lemma (2.6) (with € = &7) to deduce ¢, belongs to the subgroup R of Ry .
In addition, for every K € €24 one has

(1 —e1x) Tr(uk) = TT(U,K) = qu.x - Tr(cK),

and so this element ¢, has the property described in claim (i).

We must now show that ¢, has the property described in claim (ii). To do this we fix a prime p, a
natural number n such that K, # Q and an element gy, of Z[I'x,, ] with gy n(1—e1, ) = qu K, -
Then, since the element vy, = qu.n(ck, ) — UK, belongs to the torsion-free group T (Ug,ny) and
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is annihilated by 1 — ey, ~(when regarded as an element of Q ®z T7(Ug(yny)), it is fixed by
every element of I'x,, and so belongs to the subgroup Q* N T, (Ugyn)) of Q. Since the latter
subgroup is generated by p, one therefore has v, = yy pr - p for some ¥y 5, € Z and hence also

auyn(cKn) — UK, = y%p,n pP= yu,P,n ) NKH/Q(cKn>
The element 7y ppn = Gun — Yupn - Ik, of Z[I'k,] is therefore such that ug, = rypn(ck,) and
Tupn(l — €1, ) = quk,- Hence, to prove claim (ii), it is enough to show that the family

Tup = (Tupn)n € H Z[Tg,]
nelN
belongs to @nZ[FKn]- To do this, we note that, by Proposition (2.4) (i), the element cg,
generates a free Z[I'k, |-module of rank one, and hence that it suffices to show that the element
Tupn = TRy /Ko (Tupnt1) Of Z[Lk, | annihilates cg,,. This in turn follows directly from the
distribution relations

ruzp’n(CKn) = uKn = NKn+1/K7L (uKn+1) = NKn+1/K7L (ruzp’n+1(CKn+1))
=TK,i1/Kn (Tu,p,n+1)(NKn+1/Kn (CKn+1)) = TKpi1/Kn (Tu,p,nJrl)(CKn)' O

The key to our investigation of the elements ¢, that are provided by Lemma (3.3) is provided
by the following exact commutative diagram

F-re ) .
0 RT a Ry » ' (Z-Tg) ———— 0

RER
| b <15>

& (5) .
0—— J[ R0 = [ Riw —> ] lim' (Z - Tony+) — 0,

peES peES pey N

where for each p we set
= lim Z[Tg,m] and R (p L m Z[TG ] (1 = €10, ).
nelN
The upper exact sequence in this diagram is obtained by combining the long exact sequence of
R*-modules that is induced by passing to the limit over K € Q. , with respect to projection
maps induced by 77,k q for K C L, of the obvious exact sequences

—a(l—e1)

0= Z- Ti = Z[Tx] — ZTk](1—e1,) = 0 (16)
with the following facts: the limit l'£1KEQ+ Z. - T vanishes since 7,/ (1;) = [L: K] - T for
K C L and the derived limit th Q. Z[T'k| vanishes as a consequence of the Mittag—Leffler

criterion since the transition maps 7y, are surjective. In a similar way, the lower exact
sequence in the diagram is the direct product over p of the exact sequences derived by passing
to the inverse limit over n of the exact sequences (16) with K = Q(p"™)". Finally, we note that
all of the vertical maps in (15) are the natural (diagonal) projection maps.

In the next result we provide an explicit description of the connecting homomorphism § and
projection map w that occur in (15). For each natural number m we set

p(m) =[Qm)": Q] and Zj, =2Z/m7).
(3.4) Lemma. The following claims are valid.

(i) There exists a natural isomorphism

lim' (Z - Ti) = (LZ/cpm))/

KeQy
where Z, is embedded diagonally in the stated limit. The induced composite map

lim Z[[k)(1—e1,) —— lim' (Z-Ti) —=— (ImZ/p(m))/Z
KeQy ReQ, m

12



sends each element ¢ = (qi )k of @K€Q+ Z[T'k](1 —e1,) to the family

8'(q) = (mqumy+/q(gm) modp(m)) .
where g, is any choice of element of Z[T'{ Q(m )] with ¢ - (1 — elQ("L)+) = qQ(m)+-

(i) For each prime p, there exists a natural isomorphism

i (2 Ty ) = (2 /2

where 7. is embedded diagonally in the stated limit.
(ii) Write A for the diagonal map
L Z/cp (m) — H L Z/ap (pn)> (am)mem — ((ap”)nelN)p'
pey N

Then there exists a commutative diagram

m! (Z - Tx)
K€Q+

(Um Z o (m) ) / Z

| s

H £— Topmy+) —— H ( 1LZ/AD(p”))/Z)v

pey M pEZ n
in which the horizontal maps are the isomorphisms in (i) and (ii) and A is induced by A.
Proof. For every K in ., the exact sequence (16) lies in a commutative diagram
0—— Z Ty —— ZTx] —2 Z[Tx](1 —e1,) — 0

ﬁi K iﬁK /Q \PK

in which 0% is the restriction of 7, /i and so is bijective, the second vertical map is surjective
and the map Ak is induced by the commutativity of the first square and the exactness of both
rows. As K varies over {24, these diagrams are compatible with respect to the natural transition
maps. Upon passing to the limit over K of these diagrams, and applying the Mittag—LefHer
criterion to the second vertical maps, one therefore obtains an exact commutative diagram

0 » RT R} s lim' (Z T) — 0
K€Q+
‘/ ‘/(QK)K J/: (17)
0 N/ LZ/[KQ]H lim" (Z - [K :Q]) —— 0
Ke + K€Q+

in which the first vertical map is the natural projection map and the third is induced by the
isomorphisms (0% )k and so is bijective. The exactness of the diagram therefore induces an
isomorphism

lim' (Z-T) = lim' (Z- [K: Q) = ( Im Z)peq))/Z

KeQy KeQy KeQy
of the form stated in claim (i). Given this explicit construction of the isomorphism, the re-
maining assertion of claim (i) follows immediately from the commutative diagram (17).
In just the same way, for each prime p one can verify the assertion of claim (ii), construct a ho-
momorphism 6,: R{ (p) — (hm Zpp ) /7. and give an explicit description of the connecting

homomorhism §) in (15) in terms of 6,,.
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By using these explicit descriptions, it is then straightforward to verify that the map A de-
scribed in the statement of claim (iii) is the unique dashed arrow that renders the following
diagram commutative

0 —— R — "t O (hm Zg)/Z s 0

| e

0— J[ R = [ Rie) 2% ] ((mZppr)/Z) — 0.

peEL peEL peEL n
This proves claim (iii). O

Properties of the map A in Lemma (3.4)(iii) will play a key role in our proof of Theorem (3.1).
Before establishing these properties, we must first make several elementary observations. To
do this we define a Z-module by setting

U= {(a(p))p € H Hm Z g (pny) | agp) = agi((i))l mod £;(p)™® forp >3 and 1 <i < t(p)},
pey N
where for each p > 3 we write the prime factorisation of ¢(p) = (p — 1)/2 as

t(p)

o(p) = [ &:(p)™® (18)
=1

and set m;(p)* == m;(p) + 2 if £;(p) = 2 (so ¢(p) is even) and m;(p)* := m;(p) + 1 otherwise.
For each natural number m we also write py, for the m-th prime number (in ascending order).

(3.5) Lemma. For every natural number s the following claims are valid.

(i) Fiz an element A = (\,)n of Wm 7)) and a divisor t of o(s) with t > 1 and set

P {t Hatﬁ, if t is divisible by an odd prime
4t, otherwise,
where £ runs over all prime divisors of t. Then A = A\; mod t. In particular, for a prime
p and any index i as in (18) one has Ay = Ay, m;(»* mod £i(p)mi®).
(ii) The image of A is contained in U.
(111) Let {pp, | 1 < i < s} be integers with the property that

dp. (p(pi
Pp; = Hp; mOdp;]r vy (#7e) for 2<i<s and 1<j<i.
Then there exists an element o = (oz(p))p of U with both of the following properties:

(a) for everyi € {1,...,s} one has a®?) = (u,, mod w(pI"))nen;
(b) for every prime p > ps, there exists an integer p, with al?) = (1p mod @(p"))nen-

Proof. The first assertion of claim (i) is valid since, for each A = (\,),, in Wm 7, (), there are
congruences As = A = A; mod ¢, where the first is valid since ¢ divides ¢(s) and the second
since t divides ((f). The second assertion in claim (ii) is then obtained by taking s = p and
t=4;(p)™i®),

To prove claim (ii) we fix an element A = (\,), as above and a prime p > 3 and use the
notation introduced in (18). It is then enough to note that for each ¢ with 1 < i < ¢(p) one has
A(/\)gp) =X = Xy, i = A(A)Sﬁi((i))l mod ¢;(p)™P).

Here the second congruence follows from claim (i) and the others from the definition of A.
To prove claim (iii), we first construct a suitable family of integers {1, }n by using induction
on the natural number N. If N < s, we take p,, to be the integer specified in the statement.

14



For N > s we assume that suitable integers p; have been fixed for 1 < j < N and then take
Ipy to be any integer that solves the simultaneous congruences

mwmm

Ppy = fip; mod p for 1 <j < N. (19)

It is then clear that the image « of this famlly (11p)pe» under the projection from [, 4 Z to
[lesr Wm 7, ny) has the stated conditions (a) and (b). To show « belongs to U we fix a
natural number N > 2 and an integer i with 1 <1i < ¢(py) and set £ = £;(pn), m = m;(pN)
and m* :== m;(py)* . It is then enough to note there are congruences modulo ¢™ of the form

l
"™ =ty = = o),
where the first is true since ¢ divides ¢(pn), the second follows from (19) and the third is
true since the definition of m* implies p(¢™") is divisible by £™. O

We can now establish the key properties of the map A in Lemma (3.4) (iii).

(3.6) Proposition. The following claims are valid.
(i) A is injective and has image equal to U.

(ii) The kernel of A is isomorphic to © /w(Z) and is non-trivial.

Proof. To show A is injective we fix an element A = (\,),, in its kernel. We also fix a natural n
and write Hﬁzl ¢" for the prime factorisation of ¢(n). Then, for each 4, there are congruences
modulo ¢; := £;" of the form A, = A;; = 0, where the first follows from Lemma (3.5) (i) and
the second is valid since A € ker(A) and ¢; divides ¢(g;). By the Chinese Remainder Theorem,
it therefore follows that A, = 0 mod ¢(n) and, since n is an arbitrary natural number, this
implies A\ vanishes, as required to prove injectivity of A.

To prove im(A) = U it suffices, in view of Lemma (3.5) (i), to construct a pre-image under A
of an arbitrary element (a(”))p of U. To do this, we regard « as fixed and, for each natural
number n, define A\, to be the unique solution (in Z(So(n))) to the family of congruences

An =« mod £ for all 1 <i<t, (20)

L;
mi+a(€i)

where [T'_, £/ is the prime factorisation of ¢(n) and for each prime £ we set a(¢) = 2 if £ = 2

and a(f) := 1 otherwise (so that ;" divides go(ﬁmﬁa(z )))

We claim first that \ps = = o) for every prime p and natural number s (such that ¢(p®) # 1).

If p € {2,3}, this follows easily from the fact p is the only prime divisor of go( #). If p > 3,

then it is true since, in terms of the notation in (18), one has p(p®) = p*~! Hl ! 4 (p)™P) and
so Aps is the unique solution of the congruences

Aps = agp) mod p*~1,

Aps = agﬁiv((g)))* = agp) =a® mod E;ni(p) for all 1 <i <t(p).
Here the second of the lower congruences follows from the definition of &/ and the third is true
since alP) € L Z, . To conclude the proof of claim (i) it is thus enough to show A belongs

to lim  Zy () (smce then the above observations imply A(\) = (a!?)),). To do this we must
show that for all m € IN and all divisors n of m (with ¢(n) # 1) one has A\, = A\, mod ¢(n).
With []i_, £/ denoting the prime factorisation of p(n) (as above), it is therefore enough, by

the Chinese Remainder Theorem, to prove for each i € {1,...,t} that A, = A, mod £;". For
each i we set z; = ordy, (p(m)) and note m; < z as ¢(n) d1V1des ©(m). Then the definition

1

25
Lot mod £; and hence, since

of )\ via (20) (with n replaced by m) implies that \,, =
) € m, . 7Z , that

(&) — () — mg
A, = azﬁa(e )= ) = An mod £,

where the last congruence follows from the definition of A, via (20). This proves claim (i).
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The above argument also shows that the (injective) map A induces an isomorphism between

ker(A) and the quotient ©/w(Z). To prove claim (ii), it is therefore enough to construct a

non-zero element in ker(A). To do this we first apply Lemma (3.5) (iii) with s = 2, puo = 1 and
p3 = 3 to obtain an element o = (o), of U with the following properties

(C1) a,(f) =1 mod 2" 2 for all n > 2 and 047(13) =3 mod 3" ! for all n > 1;

(C2) For every p > 3, there exists p, € Z such that o) = pp mod p(p™) for all n > 1.

Taking account of claim (i), we define A to be the unique element of Wm  Z(ny) With AN =«

and we claim this element corresponds to a non-trivial element of ker(A). To see this we note
first that the image under A of the class of A is represented by the class of o and so is trivial
as a direct consequence of the conditions (C;) and (Cz). Then, to prove that the class of A
in (@m Z(@(m))) /7. is non-trivial we argue by contradiction and so assume the existence of
u € 7. such that A\, = p mod ¢(n) for all n > 4. Then condition (C;) implies both that

W= Agn = 047(12) =1 mod 2" 2 foralln> 2,
(so that 4 = 1) and also that
U= A2 = a§3) =0 mod 3.

Since these congruences are not compatible, this concludes the proof of Proposition (3.6). [

3.2 The proof of Theorem (3.1)

For each u in £ we use the element ¢, = (qu,x)Keq, of Ry constructed in Lemma (3.3) (i).
To prove claim (i) we assume (as we may) that K = Q(n) for a natural number n > 5. We recall
(from [BS21, Lem. 4.3]) that in this case the group Uy~ ' is generated by —e?™/" = (1—7)(ck)
and so belongs to Z[I'x| - cx. We also note that T (ux) and T (ck) belong to the torsion-free
subgroup T (Ux) of U+ and we fix a lift gx of g, + to Z[I'k].

We first consider the case n is divisible by two distinct prime numbers. In this case Proposition
(2.4) (i) implies T;(ug) and Tr(ck) are annihilated by e; (when considered as elements of
Q®z T-(Uk)). In T-(Uk) one therefore has

Tr(uk — qr(ck)) =Tr(uk) — qx (T-(ck))

=e1(Tr(uk)) — (ax - €1)(Tr(ck))

=Gy, i+ (T7(cK)) = Qu,c+ (Tr(ck)) = 0,
where the third equality follows from Lemma (3.3) (i). This implies uxg — gx(ckx) belongs to
UIQ:_I and hence, by the observation above, that ux belongs to Z[I'x] - cx.
We assume next that n = p! for a prime p and natural number t. In this case there exists an
integer m with Ng/q(ux) = p™ = Ng/q(cx)™ and so, after replacing u by u — m - ¢, we can
assume T (ug) is annihilated by e1,, . Then in T-(Uk) one has

Tr(uk) = (1 —ex1, J(ug+) = (1 —e1, Irupt(cx+) = qui+(cx+) = Tr(qr(ck)),
where the second and third equalities follow from Lemma (3.3) (ii). It follows that ux — qx (cx)
belongs to U;(:_l and, by the same argument as above, this implies ux € Z[I'x] - cx and so
completes the proof of claim (i).

To prove claim (ii), we consider the composite homomorphism

EAT + ) =T 1), o) T2, e (w) = ker(A), (21)

where w and § are the maps that occur in the diagram (15) and the isomorphism is induced by
the diagram in Lemma (3.4) (iii). Lemma (2.5) implies that the first map in this composite is
bijective. The second map is well-defined since the property of ¢, described in Lemma (3.3) (ii)
combines with a diagram chase of (15) to imply d(g,) € ker(w) for every u € £. The latter map
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is also injective since if §(¢,) vanishes, then the upper row of (15) implies the existence of an
element 7 of R™ such that, for all K € QF, one has rx (1 —e1, ) = gu,x and hence, by Lemma
(3.3) (i), Ty (ug ) —rx (Ty(cx)) belongs to T, (Ux )" and so is a strictly positive rational number:
this last fact implies T (ug ) = rg (Tr(ck)) for all K (this is clear if m(K) is not a prime power
and, if m(K) is a power of p, follows from the norm coherency of T;(ur) — r.(T-(c)) as L
varies over fields of p-power conductor) and hence that T (u) = r(T-(c)) € T-(C), as required.
We next claim that, after using Proposition (3.6) (ii) to identify ker(A) with ©/w(Z), the
map (21) sends each u to the class represented by Ordg(u) = (ordy(u)),. This follows from
an explicit computation of the connecting homomorphism § and the fact that for every p and
every natural number n one has

ord, (Nogm/q(uqer))) = ordy (Ngr)+ /q(Tr (uqpm))) = ordy (Nogny+/@(Tr (rupa(capm )
=Tup0 - ord, (NQ(pn)/Q(CQ(pn))) = Tup,0 - 0rdy(p) = Ty p.0,

with 7y p , the element of Z[F&pn)] defined in Lemma (3.3) (ii) and 7,4, its projection to Z.

To complete the proof of claim (ii), it is now enough to prove the exponent of the cokernel
of the second map in (21) divides 2. To do this we fix an element ¢ = (qx)gecq+ of Ry with
d(q) € ker(w). Then, by chasing through the diagram (15), one finds that, for each prime
p, there exists a unique element 1, of lim Z[F&pn)] with g = (1 — e1,)pp x for every
K = Q(p™)". For each K € Q we now define an element of Uk by setting

gx+(Tr(cK)) if m(K) is divisible by two distinct primes,
uR =
tp i+ (Tr(cx))  if m(K) = p"™ for some prime p.

We claim that the family v = (ug)geqe satisfies the distribution relation (2) for all K C L
and so belongs to £. This is clear if m(K) and m(L) are either both composite or both prime
powers since ¢ validates (2), 7+ /x+(qr+) = qr+ and 7o+ g+ (pp r+) = pp i+ if m(L) is a
power of p. We can thus assume m(L) is composite and K = Q(p™) for a prime p and natural
number n. In this case the set S(L/K) of primes ramifying in L but not K is non-empty and so
the element Pr e := [ e x)(1 — Frob, ') of Z[T'k] is annihilated by e1,.. One then derives
the required distribution relation via the computation

Np/x(ur) =Ng/k(qr - Tr(cr)) = qr+ - Tr(Npyx(en)) = ai+ - Pryx (Tr(ck))
= tp i+ Pryr(Tr(ck)) = Prk(uk),

where the third equality is true since ¢ validates (2) and the fourth since

Prik - o+ = Prye(l—e1y)  ppr+ = Py (L—ex, Iy r+) = Pk - Qe+

At this stage we know u € £ and hence that 2u = T-(u) € T;(E). To complete the proof of
claim (ii) it is therefore enough to note that go,, = 2¢ and so the second map in (21) sends the
class of T (u) to 20(q).

Claim (ii) reduces claim (iii) to showing the existence of infinitely many elements of 2-© whose
projections to ©/w(Z) are linearly independent over Z (and hence over Z[I']). To do this we
write b(z) for each x = (), in [],c 5 Z for the smallest prime p for which z; # 0. It is then
enough to note that the inductive argument used in Lemma (3.5) (iii) can be used to construct
a sequence (& )nen of elements of 2-© with the property that b(zy) < b(zy,) for all n < m.

(3.7) Remark. By using exactly the same approach as above, one can also prove variants of
Theorem (3.1), such as the following.

(i) Let X be a finite set of rational primes and Zs, the subring of @ generated by inverting
primes in ¥. Recall the group £z, of Zs-valued Euler systems (from Definition (2.1) (i))
and write 7y, and Cyx, for the Zy[I'|-submodules of £z, generated by (the images of) T
and C. Then one can prove an exact analogue of Theorem (3.1) in which the roles of
Z[T],E,T and C are replaced by Zs[I'], s, Tx and Cs.
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(i) Write £ for the Z[I'"]-module comprising systems (ug)g in HEGQ?,, E* that satisfy the
distributions relations (2) for all K C L and are also such that every element up is totally
positive. Then one can define a natural analogue Ord&: &t — © of the map Ordg and

the above construction shows that Orda is surjective.

4 Selmer groups for G,, and the proof of Theorem (1.3)

In this section we use results in §3 to prove Theorem (1.3) and then derive several concrete
observations about the Galois structure of Selmer groups of G,, over real abelian fields.

4.1 Preliminary observations

Fix a number field K and a set of places ¥ of Q that contains the archimedean place co. The
‘Y-relative integral dual Selmer group’ Ss o(Gy k) of Gy, over K is the cokernel of the map

H Z — Homy(K*,Z), (zw)w > {a— Z ordy (a)zy |-
wWES K wE

This group was introduced in [BKS16, §2.1] as an analogue for G,, of the integral Selmer
groups of abelian varieties defined by Mazur and Tate in [MT87] and lies in an exact sequence

0—— HomZ(Cl((’)K,g),Q/Z) E— SE,Z(Gm/K) E— Homz(01><(7z,Z) — 0 (22)

(cf. [BKS16, Prop. 2.2]). In the sequel we set
S[% = SE,Z(Gm/K)#a
where the superscript ‘#’ indicates 'y acts on Sy, 5(Gy,, /i) via composition with the involution

of I' that inverts elements. We will also write Sk in place of S;E(OO}.

(4.1) Lemma. Fiz K and L in Q4 with K C L and a set of places ¥ as above. Then there
exists a canonical map of Z[l'k]-modules 0%/}{ 2Tk ] @z, S¥ — S3. The cokernel of OE/K
is finite of 2-power order and its kernel lies in an exact sequence of Z[I'x|-modules

0— Mp/k1— ker(@%/K) - @ Z[I'k] Qzrk ] (Z/W,L/K) — Mp/kp— 0
teP\n
in which My i1 and My o are finite modules of 2-power order, U ¢ is the decomposition

subgroup of £ in T and nyk the ramification degree in L/K of any (and therefore every)
£-adic place of K.

Proof. For L in Q4 we write (L) for the union of ¥ and the set of places that ramify in L
and for each finite set of places ¥’ of Q containing ¥ (L) we use the complex RT'.((Or s/)w, Z)
of I'z-modules constructed in [BKS16, Prop. 2.4]. In particular, the latter result implies that
the associated complex of Ry-modules

CF' = RTe((O)w, 2)*
is acyclic in degrees greater than three and such that
HY(CY)=8F and H*(CTY) = Homgz((L )ior, Q/Z)* = {£1}.

Further, since ¥’ contains all places that ramify in L, the complex C%l is perfect over Ry, and
there is a canonical isomorphism Ry ®]1L%L C%/ = C’IE{, in the derived category of Rg-modules.
The associated Hochschield-Serre spectral sequence therefore gives rise to a homomorphism
0%} i Z[T'k] Rz(ry] S%l — SI%/ whose kernel and cokernel are both finite and of 2-power order.

The map gD

LK then induces an exact commutative diagram of Rpx-modules
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Rk ®r, ( Z) — Rk ®g, SE(L) —— Rg ®gr, S —— 0

we(S(LN\D), »

o T OF i

0o—— [ = s SHE) , SY 0.
vE(S(D\D)K

Here, for E € {L, K}, the map kg is induced by the composite

(Tw)w—a—2, ordqy (a)Tw
H 7/ { EE(LN\D) g } HomZ(EX’Z)_)Sg(L)’

we(X(L\D)E

where the second arrow is the tautological projection, and the exactness of the respective
rows follows from the long exact sequence of cohomology of the exact triangle in [BKS16,
Prop. 2.4 (ii)] with S, 5" and T taken to be X, %(F) and &. Further, the map 6 is induced by
sending each element (n,), of Hwe(E(L)\Z)L Z to (Zw‘v NNy, /K Jv, With 1, 1/ the ramific-
LK
induces a well-defined map from Rx ®pg, S? to SIZ( that we denote by 9% Ik In particular,
since the cokernel of # is isomorphic as an Rx-module to the direct sum

@ R @zry ) (Z/W,L/K)’
teP\S

ation degree of v in L/K. This definition ensures that the first square commutes and so 6

the stated facts about ker(&% / 5) and COk(Q% / &) can be derived by applying the Snake Lemma

to the above commutative diagram. O

In the case ¥ = {oo}, the next result verifies the first displayed equality in Theorem (1.3). We
refer to a subset X" of Q24 as ‘cofinal’ if it contains an extension of every field in 24 and in any
such case identify Q[I'"] with lim . Q[I'g] in the obvious way.

(4.2) Proposition. For any set ¥ as above, and any cofinal subset X of Q, one has

(11 Fittzr, (S(Gryx))) N QITH]=0.

KeX
Proof. We set Z' == Z[1/2] and regard ¥ as fixed and, for each K in QF, set S} == Z/ @z S7
and R} = Z'[l'x]. Then, for every K and L in Qf with K C L, one has

TL/K,Z! (Fit}yL (81)) = Fit}%,K (Rk ®pr, S1) C Fit}a/K (Sk),
where the equality follows from a standard descent property of Fitting ideals and the inclusion
from the fact that Lemma (4.1) implies that the map Z' ®z 07, is surjective.
To prove the claimed result it is therefore enough to show that, for each field K in €, for

which m(K) is not a prime power and each natural number n, there exists an odd prime ¢ and
a field L in €4 that contains K and is such that

To do this we fix K and n and then choose an odd prime ¢ that splits completely in K, is
coprime to the order of 'y and does not belong to . We write E, for the unique cyclic
extension of @ that has degree " and is ramified only at ¢, and L for the compositum of K
and F,. Then the field L belongs to 24 and is such that a place v of K ramifies in L if and
only if it is f-adic, in which case its ramification degree is equal to the degree ¢ of L/K. In
this case, therefore, Lemma (4.1) implies the existence of an exact sequence of R--modules of
the form

0 —— Rk /(") —— R ®g, S, S 0. (23)
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In particular, since Fit? ,K( "o/ (L) = 4" - Ry, it suffices to show that (23) implies the second
equality in the display

m1yk2 (Fitty, (S1)) = Fitg, (R ®pry S) = Fitg, (Ri/((")) - Fitg, (Sk).
It is then enough to verify this after localising at each odd prime p. If p # £, then the localised
equality is obvious since FitORK,p(O) = Rk p. If p =, it follows easily from the fact that R/K,E is
a finite direct product of discrete valuation rings (since £ is prime to the order of I'x) and the

R’K/-module S}M has a direct summand that is free of rank one as a consequence of the exact
sequence (22) and the assumption m(K) is not a prime power (cf. also [Gre04, Prop. 2.2.3]). O

4.2 Euler systems, Fitting ideals, and completion of the proof of Theorem (1.3)

The next result provides a concrete link between the Selmer groups Sk defined in §4.1 and the
theory of Euler systems developed in earlier sections and is key to our deduction from Theorem
(1.1) of the final assertion of Theorem (1.3) regarding dense subsets of €.

We write Z for the ideal of Z[I'"] given by the kernel of the natural map Z[I'"] — Z/27Z.

(4.3) Proposition. The map

Q'] — J[ @QezUx), q+ (ax - Tr(ck))x
KeQe
is injective. For each dense subset X of Q0+ and each element z = (,ZK)KEQO+ of I?, this map
induces a map of Z[U't]-modules

(1 Fitth, (S)™) NQITTT = €, g (Gzprars Trler) Leas.
Kex
For any system u in the image of this map one has Ordg(u) € w(Z).

Proof. Fix an element ¢ = (qx)keqs of Q[I'"]. Then the image qq - Ord,(c) of ¢(T-(c)) under
Ord,, is independent of p since Ord,(c) is. In addition, by using the fact that m(Q(n)) =
m(Q(n)") for each n > 1 with Q(n)* # Q, one checks readily that q(7:(c)) satisfies the
distribution relations (2) since ¢ does.
We next claim that

q=0if gx(cx) =0 forall K € QF. (24)
To show this it is enough to prove the given hypotheses imply that, for each K € QfF and
X € I'y, one has eygx = 0. In addition, for each such x, one has eyqx = eyqk, with K,
the fixed field of ker(x) in K. If x # 1k, then K, € Qf whilst Proposition (2.4) (i) implies
ex(ck,) # 0 and so the assumed vanishing of qx, (cx, ) implies eyqx, = eyqx vanishes, as
required. If x = 1, then e, qx = e,qq and so it suffices to show that qq vanishes. But, if £
is any prime greater than 3, then Q(¢)* belongs to Q3 and so Proposition (2.4) (i) combines
with the assumed vanishing of ggq )+ (CQ(@+) to imply that gq¢)+, and hence also qq, vanishes,
as required to complete the proof of (24).
To prove the claimed result, we now assume gy, € Fitt}%L (Sp)~! for all L in X. In this case we
must show that, for all elements z and y of Z and every K in €29, the action of %:1: KYK(QK on
cx gives a well-defined element of Uk . Since the kernel of the natural map Ux — Q ®z Uk
is equal to (Uk)tor = {£1} and hence annihilated by z, it is thus enough to show that the
element (%quK)(CK) of Q ®z Uk belongs to the image U of Ug. Now, for every K in Q3
we can fix a field L in X such that K C L and m(L) and m(K) have the same prime divisors.
Then 77,/ x,q(yrqL) = Yxqx and, since c satisfies (2) also ¢ = Ny /i (cr), and so

(yrax)(ckx) = (Yxar) (N r(cn)) = Noyr((yrar)(cr)) € Q @z Uk.

This fact allows us to assume that K belongs to X. Then, since U is torsion-free, it is enough
to show that for all such yx and qx one has

0(3ykar(ck)) € Rk for every 0 in Homp, (U, Rx) = Homp, (U, Rk). (25)
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To prove this, we note that [Tat84, Ch. IV, Lem. 1.1] allows us to express yx as a finite sum

YK = Zle m;(1 — EiFrobzil) involving suitable integers myq, ..., m; and primes £1,...,¢; that

are unramified in K. Since c¢x; = (1 — &Frobzil)(c;() belongs to the subgroup Uk, of Uk

comprising elements a that satisfy a = 1 mod /;, it is then enough to prove that one has
0(3qx (ck,;)) € Rk for all 0 € Hompg, (Uk,;, Ri) and all i € {1,...,t}

in order to verify (25). To show this we write ¢4 for the Z-linear involution of R that inverts
elements of I'x and note that, with S(K) denoting the union of co and the set of rational
primes that ramify in K, the ‘“transpose’ Selmer group Sg( K) {zi}(Gm /k) defined in [BKS16,
Def. 2.6] is such that
Fitt g, (S§(s0), 0 (Cm/)) C Fitty, (S§(x) 0(Cmyx))

= 1y (Fitt g, (Ss(x).0(Cm/x)))

- L (Fitt}%K (S{oo},@(Gm/K)))

= Fittp, (S{oc},2(Cro/x)™)

= Fitty, (Sk).
Here the respective inclusions are valid since the results of [BKS16, Prop. 2.4 (i), (ii), (iii)]
combine to imply the existence of surjective maps of Rx-modules from ngr( K), {zi}(Gm /K) to
Sgr(K)’@(Gm/K) and from Sgx) (G k) t0 Siocy,z(Gryk)- In addition, the first equality
follows from [BKS16, Lem. 2.8], the second equality is clear and the third equality follows from
our definition of the module Sk.

The key point now is that, for every # € Homp, (Uk,i, Rk ), the first assertion of [BKSI16,
Th. 7.5] implies (3¢ ;) belongs to FittllqK (ngr(K) {éi}(Gm/K)) and hence, since K € X, that

0(3ar (k) = ax - 0(3¢x) € Fittg, (Sk) ™" - Fittg, (S5 ), (111 (Cmy i)
C Fitty, (Sk)~"' - Fitty, (Sk)
C RK7

as required. O

To complete the proof of Theorem (1.3), it now remains to prove the second displayed equality
in said result. For this purpose it is enough to fix a dense subset X" of ), and show that every
element ¢ of the intersection ([]ycy Fitty, (Sk)™') NQ[I'] belongs to Z[I'].

Now, upon fixing an arbitrary element z of Z2, any such ¢ gives rise, via Proposition (4.3), to
a system u. 4 = (32¢7;)(c) in €. In addition, the system zq- T} (c) = Tr(u.,4) belongs to Ty (€)
and is sent by Ordq to an element of w(Z). From the injectivity of the second map in (21) we
can therefore deduce the existence of an element r of Z[I'*] for which one has

(2qT7)(c) = Tr(uzq) = r(Tr(c)) € TH(E).
Given the injectivity of the map in Proposition (4.3), this implies that zq = 7 belongs to Z[I't],
and hence that ¢-(Z)? C Z[I'"]. To complete the proof of Theorem (1.3), it is therefore enough
to prove (and then apply twice) the equality

{ve Q] |v-T C Z[T*]} = Z[r*].

To do this, we take an element v = (vk )k and note that, for each K € QF , one has vg-Zg C Rg
with Zx == ker{ R — Z/27Z.}. Now, a direct computation shows that {a € Rk | a-Zx C Rk}
is equal to %Z -Tx + Rk, and so we may write vg = %nKTK + rg for suitable nx € Z and
rkx € Ri. Given an arbitrary field K € €29, we can then choose a quadratic extension L € Q0
of K and deduce that the element

v =7 r(vr) =7 (gnTL + 1) = 7 (nL) Tk + 7 (L)

belongs to Rk, as required. O
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(4.4) Remark. Just as in Remark (3.7) (i), the above approach can also be used to prove
‘localized’ versions of Theorem (1.3) in which Z is replaced by Zy. for a finite set of rational
primes X..

4.3 Galois structures of Selmer groups

For any odd prime /¢, there are infinitely many fields K in Q4 for which ¢ divides both [K : Q]
and |Cl(Ok)| (cf. Cornell and Washington [CW85, §2, Cor.]). This suggests that, as K ranges
over {11, the structure of the I'x-module Cl(Ok) can be complicated and, as far as we are
aware, there are no general structural results about the class groups of real abelian fields.
Nevertheless, it is straightforward to deduce concrete information about the Galois structures
of Selmer groups from Theorem (1.3), as in the following result. In claim (ii) of this result we
set Z' :=7[1/2] and M’ .= Z' ®z M for each I'g-module M.

(4.5) Corollary. Fiz a non-zero ideal I of Z[T'"] and for K in Q. write I for its image in
Z[Tk]. Let X be a cofinal subset of Qy and for each K in Qy write Xi for the subset of X
comprising extensions of K. Then the following claims are valid.

(i) For every K in Q4 there exist infinitely many E in Xk for which at least one of the
Z[Tg]-modules I - Sg and Sg/(Ig - Sg) is not cyclic.

(ii) Assume I7' == {\ € Q[I'*] : A\ C Z'[TU*]} is not equal to Z'[T'T]. Assume also that
for all fields K in some dense subset of {1y the set X contains fields whose degrees over
K are coprime. Then there are infinitely many E in X for which the Z/'[T'g]/I}-module
Si/(Iy - Sg) has no quotient that is free of rank two.

Proof. By a standard property of Fitting ideals (cf. [Nor76, §3.1, Exer. 2]), the tautological
exact sequence 0 — Ip - Sgp — Sg — Sg/(Ig - Sg) — 0 implies an inclusion

Fitt}%E (Ig - SE> . FittoRE (SE/(IE . SE)) - Fitt}%E (SE)
In addition, if Ig-Sg and Sg/(Ig - Sg) are cyclic Rg-modules, then Fitt}QE (Ig-Sg) = Rg and
Fitt%E (SE/(IE -Sg)) is equal to the annihilator of Sg/(Ig - Sg) in Rg and so contains Ig. In
any such case therefore, the above inclusion implies that Fitt}%E (Sg) contains If.
To prove claim (i) it is enough to show each set X' contains at least one field E for which the
Rpg-modules I -Sg and Sg/(Ig-Sg) are not both cyclic. To do this we argue by contradiction

and so assume K € Q is such that, for every E in Xk, the Rp-modules I -Sg and Sg/(I - Sg)
are cyclic. Then, as Xk is cofinal in {24, the above observations imply inclusions

(0)#1C lim Ip= lim IpC (] Fitth,(S)n Q]
EcQy EeXk EeXk

and these inclusions contradict the result of Proposition (4.2).

To prove claim (ii) we set R, := Z/[I'g| and again argue by contradiction. We therefore assume,
after shrinking X' if necessary, that for every E in X the R};/Ip-module Sy /() - Sp) has a
free quotient of rank two. In this case, for every such E, the ideal Fitt}%,E /1, (/I - Sg))

vanishes and so Fitt}%/E (S%) C If. One therefore has a chain of inclusions

Z'[t*] ¢ 171 € (]] Fittg, (SE)~") NnQIC,
FEeXx o

in which the first is, by assumption, strict. We now fix a dense subset X’ of 2, with the stated
property. Then it is enough to show that

(]I Fittg (Sp)~") NQII*] < ( 11 Fitty (Sp)~") N QI
Eex Eex’

since this would imply that the above inclusions contradict the second displayed equality in
Theorem (1.3) with X replaced by X’ (and taking account of Remark (4.4) (ii)). To prove this
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it suffices to fix ¢ = (¢r)peq, in Q'] with ¢p € Fitt}% (Si;) 7! for all E € X and show that
qx belongs to Fitt}%,K (S)~! for every K € X,

To do this we fix K in X’ and fields K; and K> in Xi of coprime degrees over K. Then,
for i € {1,2}, Lemma (4.1) implies that TrKZ./KZ/(Fitt}%,K (Sk,)) is a submodule of Fitt} /K(S}()
whose index is finite and divides a power of d; == [K; : K ]. For any sufficiently large integer m
one therefore has

di" -qx = di" - Tr, Kk qaK,;) € d]" - WKi/K,Q(Fitt}%g(‘ (Sk,)™h C Fitt}%,K (Sie) ™
and, since d; and dy are coprime, this implies ¢x € Fitt} 2 (8}()*1, as required. ]

(4.6) Remark. The conditions required to apply Corollary (4.5) (ii) are satisfied in a variety
of concrete situations, such as the following.

(i) An ideal I of Z[I'"] satisfies the stated condition if it is proper and invertible. In particular,
this is true if I is principal with a generator in Q[I't]* \ Z[T*]*.

(ii) A subset X of Q4 automatically satisfies the stated condition if it is itself dense. As a
concrete example, for any function f: IN — IN the set Xy = {Q(nf(™)* :n € IN} is dense.

(iii) Assume I is the principal ideal generated by an odd prime p, fix a function f as in (ii) and
for each natural number n set E,, := Q(nf(™)*. Then the stated result implies the existence of
infinitely many n for which the I'y,-module Sg, has no quotient isomorphic to (Z/(p))[l's,]*.
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