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We obtain an explicit, and (up to squaring) complete, classification of Euler sys-
tems for Gm over Q. This classification shows that the cyclotomic system generates
a very small proportion of all Euler systems in this setting. It also has a range of
concrete consequences, including the proof of a long-standing distribution-theoretic
conjecture of Robert Coleman and restrictions on the Galois structures of Selmer
groups for Gm, and hence of ideal class groups, for real abelian fields.

1 Introduction and statement of main results

We study Euler systems for the multiplicative group Gm over Q. To state our main results
we write Qab for the maximal abelian extension of Q in C, and then set Qab,+ := Qab ∩ R,
Γ := Gal(Qab/Q) and Γ+ := Gal(Qab,+/Q). We write Ω and Ω+ for the set of finite extensions
of Q in Qab and Qab,+, and set Ω◦ := Ω \ {Q} and Ω◦

+ := Ω+ \ {Q}. For K in Ω we set
ΓK := Gal(K/Q) and, for a commutative ring Λ, we consider the inverse limit rings

ΛJΓK := lim←−
K∈Ω

Λ[ΓK ] and ΛJΓ+K := lim←−
K∈Ω+

Λ[ΓK ], (1)

where the transition morphisms are the natural restriction maps πL/K,Λ : Λ[ΓL] → Λ[ΓK ] for
K ⊆ L. (In the sequel we abbreviate πL/K,Z to πL/K).
An ‘Euler system for Gm over Q’ is then a collection

u = (uE)E ∈
∏
E∈Ω◦

E×

that, for every K and L in Ω◦ with K ⊆ L, satisfies the ‘distribution relation’

NL/K(uL) =
(∏

ℓ

(1− Frob−1
ℓ )

)
· uK . (2)

Here NL/K is the field-theoretic norm map L× → K×, the product runs over prime numbers
ℓ that ramify in L but not K, Frobℓ is the arithmetic Frobenius automorphism of ℓ on the
maximal subfield of Qab in which ℓ is unramified (which acts on K× in the obvious way), and
we use additive notation for unit groups.
The validity of (2) for every L/K is a strong restriction on a family u. For example, writing
m(K) for the finite part of the conductor of a field K in Ω, it implies a containment

uK ∈ UK :=

{
O×
K , if m(K) is divisible by two distinct primes,

OK [1/m(K)]×, if m(K) is a prime-power,
(3)

where we write OK for the ring of algebraic integers in K (cf. [Seo01, Lem. 2.2]).
Taking account of the Kronecker–Weber Theorem, the ‘cyclotomic Euler system’ is defined by

c :=
(
NQ(m(K))/K(1− e2πi/m(K))

)
K∈Ω◦ , (4)

where for any natural number n we set

Q(n) := Q(e2πi/n).

Aside from this example, however, the only other Euler systems that have hitherto been iden-
tified in this case arise as follows: If Π is any set of odd prime numbers, then the family

uΠ := (NQ(m(K))/K(−1)nΠ,K )K∈Ω◦ (5)
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satisfies (2) for all extensions L/K, where nΠ,K is defined to be 1 if m(K) is divisible only by
primes in Π and to be 0 otherwise.
The collection E of all Euler systems for Gm over Q is an abelian group under multiplication
of systems (so that the component of u1u2 at K is u1,Ku2,K and the identity element is the
system u∅ with value 1 on every field in Ω◦), and this group has a natural action of the (non-
noetherian) ring ZJΓK. For u ∈ E and r = (rK)K ∈ ZJΓK we write either r · u or r(u) for the
family (rK(uK))K ∈ E .
The relations (2) imply that for any Euler system u and prime p the elements uL form a norm
compatible family as L ranges over fields for which m(L) is a power of p and hence that the
valuation Ordp(u) of uL at the unique p-adic place of L is independent of L. In this way,
writing P for the set of all prime numbers, one obtains a homomorphism of ZJΓK-modules

OrdQ : E →
∏
ℓ∈P

Z, u 7→ (Ordℓ(u))ℓ.

We write ϖ for the diagonal map Z→
∏
ℓ∈P Z and define a subgroup of

∏
ℓ∈P Z that contains

ϖ(Z) by setting

Θ :=
{
(mℓ)ℓ ∈

∏
ℓ∈P

Z
∣∣ mp ≡ mq modulo pordp((q−1)/2) for all primes p < q

}
. (6)

We also write C and T for the ZJΓK-submodules of E that are respectively generated by the
cyclotomic system c in (4) and by all systems uΠ as in (5), and C0 for the ZJΓK-submodule of
C comprising systems of the form r(c) with r an element of the kernel of the projection map
ZJΓK→ Z. We can now state our main result concerning the map OrdQ.

(1.1) Theorem. One has 2·Θ ⊆ im(OrdQ) ⊆ Θ, ker(Θ) = T + C0 and

{u ∈ E | OrdQ(u) ∈ ϖ(Z)} = T + C.

Our proof of this result incorporates an inductive construction of a pre-image under OrdQ of
every element of 2 ·Θ and so gives an explicit description, up to squaring, of the full module
of Euler systems for Gm over Q (and see also Remark (3.7) (ii) for a cleaner statement in this
direction). This is the first complete classification of Euler systems in any natural setting and
has some interesting consequences. For instance, the result directly implies that any u in E for
which Ordp(u) is independent of p belongs to T + C, and hence settles a conjecture formulated
in [Bul+23], and also that the quotient E/(T + C) is torsion-free and cannot be generated
over ZJΓK by finitely many elements (see Theorem (3.1)(iii)). This shows that, despite the
previously apparent scarcity of Euler systems, cyclotomic systems account for a remarkably
small proportion of all Euler systems for Gm over Q.
To describe a consequence of Theorem (1.1) that is less direct, we recall that, in 1989, Coleman
conjectured a global distribution-theoretic analogue of the fact that norm-compatible families
of units in towers of local cyclotomic fields arise by evaluating a power series at roots of unity,
as had been proved in [Col79]. Coleman’s conjecture concerns a classical notion of ‘circular
distribution’ and, hitherto, its resolution has seemed out of reach, with comparatively little
supporting evidence and no proof strategy apparent (see [Seo01] or [BS21] for a discussion of
the history). However, it is possible to interpret Coleman’s conjecture in terms of the ZJΓK-
submodule Econg of E comprising systems u with the following congruence property introduced
by Thaine in [Tha88]: For every natural number n > 1 and every odd prime number ℓ that
does not divide n one has

uQ(ℓn) ≡ uQ(n) modulo all ℓ-adic primes of Q(ℓn). (7)

(These congruences are well-defined since (3) combines with the fact ℓ is prime to n to imply
that uQ(ℓn) and uQ(n) are both units at all ℓ-adic places.) Given such an interpretation of
Coleman’s conjecture, Theorem (1.1) now allows us to prove the following result. In this result
we write uodd for the system uΠ defined in (5) with Π the set of all odd primes.
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(1.2) Theorem. In E there is a direct sum decomposition of ZJΓK-submodules

Econg = {u∅, uodd} ⊕ C. (8)

In particular, Coleman’s conjecture on circular distributions is valid.

We will give more information about Coleman’s conjecture, and how it follows from the above
description of Econg, in § 2.4. For the moment, we briefly mention some consequences of its
validity. Firstly, Theorem (1.2) implies an affirmative answer to the ‘Guess’ formulated by the
third author in [Seo06, § 3], thereby providing a distribution-theoretic analogue of the main
result of Coleman in [Col85]. Secondly, if K is equal to R ∩ Q(n) for any natural number n,
then the discussion of the third author in [Seo08, § 1] implies Theorem (1.2) combines with
results of Sinnott [Sin80] on cyclotomic units to imply the cardinality of the graded module
of ‘truncated Euler systems’ over K defined in [Seo08] is equal to the class number of K, as
is conjectured in loc. cit. Finally, we note that, for each odd p, Theorem (1.2) implies that
the pro-p completion of Econg is generated over the pro-p completion ZpJΓK of ZJΓK by c, and
hence answers the question of whether the ZpJΓK-module of p-adic Euler systems for Zp(1) is
cyclic, as asked by Mazur and Rubin in [MR04, § 5.3].
To state another consequence of Theorem (1.1), we recall that the ‘integral dual Selmer group’
S(Gm/K) of Gm over a number field K is a classically defined object that is related to the ideal
class group Cl(OK) of K by means of a canonical short exact sequence

0 HomZ(Cl(OK),Q/Z) S(Gm/K) HomZ(O×
K ,Z) 0 (9)

(for more details see § 4). Our approach now enables us to prove the following result about the
Galois structure of these modules as K varies over fields in Ω+.
We say that a subset X of Ω+ is ‘dense’ if, for every K in Ω◦

+, there exists a field E in X such
that K ⊆ E and m(E) and m(K) have the same prime divisors. For K in Ω+ and an ideal I
of Z[ΓK ] we write I−1 for the ‘inverse’ {x ∈ Q[ΓK ] | x · I ⊆ Z[ΓK ]}.

(1.3) Theorem. For any dense subset X of Ω+ one has( ∏
K∈X

Fitt1Z[ΓK ](S(Gm/K))
)
∩QJΓ+K=0 and

( ∏
K∈X

Fitt1Z[ΓK ](S(Gm/K))−1
)
∩QJΓ+K=ZJΓ+K.

Whilst the proof of the first equality here relies on Kummer theory and class field theory, the
proof of the second lies deeper and depends crucially on Theorem (1.1). In addition, these
equalities control the Galois structure of Selmer groups and hence, via (9), of class groups and
unit groups in a fashion that is both non-trivial and independent of the properties of L-series
(see § 4.3). In particular, this last observation implies such restrictions are not implicit in the
formalism of leading term conjectures such as the (equivariant) Tamagawa number conjecture.
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2 Congruence Euler systems and the proof of Theorem (1.2)

2.1 p-adic considerations

In this section we fix a prime p and prove some key results about certain auxiliary modules of
p-adically valued Euler systems. To do this, we set

p∗ :=

{
p, if p is odd

4, if p = 2,

and write Ω(p) for the subset of Ω comprising fields K with the property that m(K) is divisible
by p. We then consider the following notions of Euler system.

(2.1) Definition.

(i) For a commutative algebra A the group EA of ‘A-valued Euler systems for Gm over Q’ is
the subset of

∏
E∈Ω◦(A ⊗Z UE) comprising elements that satisfy the distribution relation

(2) for all L and K. In the case A = Zp for a prime p, we abbreviate EA to Ep and refer
to it as the group of ‘p-adic Euler systems for Gm over Q’.

(ii) The group E(p) of ‘Euler systems for Zp(1) over Q’ is the set comprising elements of∏
E∈Ω(p)(Zp ⊗Z OE [1/p]×) that satisfy (2) for all L and K.

The groups Ep and E(p) are both modules over ZpJΓK. In addition, E(p) fits into the framework
of Euler systems for p-adic representations as defined by Rubin in [Rub00, Def. 2.1.1]. These
groups are also related by a composite ‘restriction’ morphism of ZJΓK-modules

ιp : E → Ep → E(p), (cK)K∈Ωo 7→ (1⊗ cK)K∈Ω 7→ (1⊗ cK)K∈Ω(p),

where 1⊗ cK is the image of cK under the natural map UK → Zp⊗ZUK . In the sequel we also
use ‘ιp’ to denote the homomorphism of ZpJΓK-modules Ep → E(p) given by the second map in
this composite (with the precise meaning always being clear from context).
We write τ for the element of Γ induced by complex conjugation, and set Tτ := 1 + τ ∈ ZJΓK.

(2.2) Proposition. The ZpJΓK-module Tτ (E(p)) is cyclic, with generator ιp(Tτ (c)).

Proof. Setting Rp := ZpJΓK, it is clear that Rp · ιp(c) ⊆ E(p). It is therefore enough to fix v in
E(p) and show that Tτ (v) is an Rp-multiple of ιp(Tτ (c)). To do this, we will rely on two results
from [BS21]. Firstly, for any such v the argument of [BS21, Th. 3.1] implies that vL ∈ Rp · cL
for all L in Ω(p). This containment implies that the family Tτ (v) belongs to the Rp-module Vdp
defined in [BS21, § 5.3.1] and so it is enough to recall [BS21, Prop. 5.3 (i)] asserts that Vdp is a
free Rp-module of rank one, with generator ιp(Tτ (c)).

For K in Ω and x in UK we write xp for the image of x in Zp ⊗Z UK .

(2.3) Proposition. The following claims are valid.

(i) If v = (vK)K ∈ Tτ (Ep) belongs to ker(ιp), then for all K ∈ Ω◦ the element vK belongs to
the submodule Zp ⊗Z (UK)ΓK of Zp ⊗Z UK .

(ii) If v = (vK)K ∈ Tτ (E) satisfies the congruences (7), then there exists an element rp of
ZpJΓK such that, for every K ∈ Ω◦, one has Tτ (vK)p = rp · Tτ (cK)p in Zp ⊗Z Tτ (UK).

Proof. Fix v in Ep that belongs to ker(ιp). Then vK is trivial for every K in Ω(p) and, in
particular, belongs to (Zp ⊗Z UK)ΓK = Zp ⊗Z (UK)ΓK for such K. To prove claim (i) it is
therefore enough to fix a field K in Ω \ Ω(p) and show vK is fixed by the action of ΓK .
To do this we fix a natural number n > 1 and define an auxiliary field by setting

k(p, n) :=

{
Q(pn) if p is odd,

Q(ξ2n+1 , 4
√
2) if p = 2.
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This field is disjoint from K. Indeed, if not, then K ∩ k(p, n) would be a ramified extension of
Q and this is impossible since K is unramified at p whilst k(p, n) is unramified outside p.
In particular, since K and k(p, n) are disjoint, the theory of embedding problems implies (via,
for example, [Bul+23, Prop. 4.14]) that, for each σ in ΓK , there exists a real cyclic p-extension
E = E(p, n, σ) of Q with the following three properties:

(P1) p is unramified in E and the order of Frobp on E is at least pn,

(P2) at most two prime numbers ramify in E, and each of these is unramified in K,

(P3) if ℓ is a prime number that ramifies in E, then the restriction of Frobℓ to K is equal to σ.

To proceed, we set L := Q(p · m(K)) and F := E · L. Note that L and F both belong to
Ω(p), and hence that vL and vF both vanish. By (P1) we know that E, and hence also EK, is
unramified at p and so (2) implies that

0 = NF/EK(0) = NF/EK(vF ) = (1− Frob−1
p )(vEK).

This shows that vEK is fixed by Frobp, and hence also by every element in the subgroup H of

Gal(EK/K) generated by Frob
[K:Q]
p . Note that |H| ≥ pn−ordp([K:Q]) as a consequence of (P2).

The relation (2) now combines with (P2) and (P3) to yield that there is i ∈ {1, 2} such that

(1− σ)i(vK) = NEK/K(vEK) = NEKH/K(NEK/EKH (vEK)) = |H| ·NEKH/K(vEK)

is divisible by |H| in the finitely generated Zp-module UK . Since ordp(|H|) is unbounded as n
increases, it follows that (1− σ)2(vK) vanishes.
Write e1 for the idempotent |⟨σ⟩|−1

∑
h∈⟨σ⟩ h of Q[⟨σ⟩] and note 1−e1 belongs to the augment-

ation ideal of Q[⟨σ⟩]. Since the latter ideal is generated by 1−σ, it follows that 1−e1 = x(1−σ)
for some x ∈ Q[⟨σ⟩], and hence also

x(1− σ)2 = (1− σ)
(
x(1− σ)

)
= (1− σ)(1− e1) = (1− σ).

Thus, if we now fix a natural number z such that z ·x ∈ Z[⟨σ⟩], then this computation combines
with the previous discussion to imply that the element

z · (1− σ)(vK) = z · x · (1− σ)2(vK)

is divisible by |H|. Taking n to be large, we deduce z(1 − σ)(vK) vanishes and hence that
(1−σ)(vK) vanishes since vK belongs to the Z-torsion free group Tτ (UK). This shows that vK
is fixed by every element of ΓK , as required to prove claim (i).
To prove claim (ii), we fix an Euler system v in ker(ιp) that satisfies the congruences (7). Then,
by Proposition (2.2) there exists rp = (rp,K)K in Rp such that ιp(Tτ (v))−rp(ιp(Tτ (c))) is trivial,
and hence v′ := Tτ (v− rp(c)) ∈ ker(ιp). It follows from claim (i) that v′K := Tτ (vK − rp,K(cK))
belongs to Zp ⊗Z Q× for every K ∈ Ω. We now claim that this implies v′K vanishes if m(K)
is composite. To prove this, it suffices to show v′

Q(m(K)) vanishes if m(K) = ℓtn with ℓ prime,

t ∈ N and n ∈ N \ {1} prime to ℓ. Then, since v′
Q(m(K)) is Γ-invariant and belongs to the

Z-torsion free group Zp ⊗Z Tτ (UQ(m(K))) one has

[Q(m(K)) : Q] · v′Q(m(K)) = NQ(m(K))/Q(v
′
Q(m(K))) = NQ(m(K))/Q(n)

(
(1− Frob−1

ℓ ) · v′Q(n)
)
= 0,

and so v′
Q(m(K)) vanishes.

Write the element rp,K as a family (rp,K,n)n∈N in Zp[ΓK ] = lim←−n∈N((Z/p
nZ)[ΓK ]). Then, since

v′K vanishes, for every n the element Tτ (vK − rp,K,n(cK)) is divisible by pn in the (torsion-free)
group Tτ (UK). This in turn implies that the family v′n := Tτ (vK − rp,K,n(cK))K∈Ω◦ is an Euler
system that satisfies (7) and is such that 2v′n,K is a 2pn-th power in UK whenever m(K) is
composite.
We claim this implies 2v′n,K is a pn-th power in UK for every K in Ω◦. To prove this, it suffices
to show 2v′n,Q(q) is a p

n-th power for every prime power q. By [NSW08, Th. 9.1.1 (ii)], it is then

enough to show 2vn,Q(q) is a 2pn-th power in the completion of Q(q) at every non-archimedean
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place ℘ that is prime to 2pq. We fix such a place ℘ of Q(q) and write F℘ for the residue field of
OQ(q) at ℘. Then, since v′n,Q(q) is a q-unit (and so integral at ℘) and ℘ is prime to 2p, Hensel’s

Lemma reduces us to showing 2v′n,Q(q) is a 2pn-th power in F×
℘ . To do this we write ℓ for the

characteristic of ℘ and fix a place ℘′ of Q(ℓq) above ℘. Then 2v′n,Q(ℓq) is a 2pn-th power in

Q(ℓq) and so the congruence (7) implies 2v′n,Q(q) is a 2pn-th power in the residue field F℘′ of

OQ(ℓq) at ℘′. In addition, since ℘ is totally ramified in the extension Q(ℓq)/Q(q), the inclusion
map F℘ → F℘′ is an isomorphism of fields and so 2c′n,Q(q) is a 2pn-th power in F℘, as we wished

to show. We have therefore proved that 2v′K = (2v′n,K)n∈N vanishes in Zp ⊗Z UK . Hence, as
v′K belongs to the Z-torsion-free subgroup Zp ⊗Z Tτ (UK), we can conclude v′K = 0.
From the equality v′K = 0 we can therefore conclude that Tτ (vK)p = rp · Tτ (cK)p for every K
in Ω◦, as required to complete the proof of claim (ii).

2.2 Annihilators of cyclotomic units

In this section we prove some useful technical results concerning the Galois structure of modules
generated by Euler systems.
We write ∆∗ for the character group Hom(∆,C×) of a finite abelian group ∆. For each
χ ∈ ∆∗ we write eχ for the idempotent |∆|−1

∑
δ∈∆ χ(δ

−1)δ of Qab[∆] and, if χ is the trivial
homomorphism, we often write e∆ in place of eχ.
For K in Ω we set K+ := R ∩K and Γ+

K := ΓK+ , and define an ideal of Z[Γ+
K ] by setting

IK := {r ∈ Z[Γ+
K ] | r(Tτ (cK)) = 0}.

In the next result we describe explicitly this annihilator ideal in terms of the idempotent of
Q[Γ+

K ] that is obtained by setting

eK :=

{
1, if m(K) is a prime power,∏
ℓ|m(K)(1− eDK,ℓ), otherwise,

(10)

where ℓ runs over prime divisors of m(K) and DK,ℓ is the decomposition subgroup of ℓ in Γ+
K .

(2.4) Proposition. For every field K in Ω the following claims are valid.

(i) IK is equal to the set {x ∈ Z[Γ+
K ] | eK · x = 0}.

(ii) If ψ ∈ Γ+,∗
K is such that eψeK = 0, then m(K) is not a prime power and ψ is trivial on

the decomposition group in Γ+
K of a prime divisor of m(K).

(iii) If u belongs to Tτ (E), then the image of uK in Q⊗Z UK belongs to Q[Γ+
K ] · Tτ (cK).

Proof. Claim (i) is proved in [BS21, Lem. 2.4] and relies on the link between cyclotomic elements
and first derivatives of Dirichlet L-series (as discussed, for example, in [Tat84, Ch. 3, § 5]).
Claim (ii) follows directly from the explicit description (10) of eK and the fact that for each
subgroup H of Γ+

K one has eψ(1− eH) = 0 if ψ is trivial on H and eψ(1− eH) = eψ otherwise.
To prove claim (iii) we use the fact that the natural map ι : K× → Qab ⊗Z K× is injective on
the torsion-free subgroup Tτ (K

×) of K×. We write u = Tτ (w) with w ∈ E and claim first that
the image of uK = Tτ (wK) under ι is stable under multiplication by eK . In view of claim (ii),
to show this it is enough to prove for every ψ in Γ+,∗

K that if eψ · ι(uK) ̸= 0, then ψ cannot be
trivial on the decomposition group of any prime that ramifies in K (and so eψeK = eψ).
To see this, we write π for the restriction map ΓK → Γ+

K and note, for each ψ in Γ+,∗
K , that

eψ · ι(uK) = eψ◦π · Tτ ι(wK)

= 2 · eψ◦π · ι(wK)

= 2 ·
( ∏
ℓ∈Pψ

(1− ψ(Frob−1
ℓ ))

)
· eψ◦π · ι(wKψ)

=
( ∏
ℓ∈Pψ

(1− ψ(Frob−1
ℓ ))

)
· eψ · ι(uKψ).
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Here Kψ denotes the subfield of K fixed by ker(ψ ◦π) (or equivalently, the subfield of K+ fixed
by ker(ψ)) and Pψ is the set of primes that ramify in K but not in Kψ. In addition, the first
of the equalities is clear, the second and fourth are true since the image of τ in ΓK is contained
in ker(ψ ◦ π), and the third equality is true since the system w validates (2).
From the above equalities it is clear that, if eψ · ι(uK) ̸= 0, then ker(ψ) cannot contain Frobℓ
for any ℓ in Pψ. On the other hand, any prime ℓ that ramifies in K but does not belong
to Pψ is ramified in Kψ and so its inertia group in Γ+

K is not contained in ker(ψ). Hence, if
eψ · ι(uK) ̸= 0, then ψ cannot be trivial on the decomposition group in Γ+

K of any prime that
ramifies in K, as required.
Now, since wK ∈ UK (by (3)), the above argument implies ι(uK) ∈ eK(Q⊗ZTτ (UK)). To prove
claim (iii) it is thus enough to show that the Q[G+K ]-module eK(Q⊗Z Tτ (UK)) is generated by

Tτ (cK). But this is true since if ψ ∈ Γ+,∗
K is such that eψeK ̸= 0, then claim (i) combines with

the fact cK ∈ UK to imply eψ(ι(Tτ (cK))) ∈ eψ(Qab ⊗Z (Tτ (UK)) \ {0}, whilst one also has

dimQab

(
eψ(Q

ab ⊗Z Tτ (UK))
)
= dimQab

(
eψ◦π(Q

ab ⊗Z XK)) = 1.

Here we write XK for the subgroup of the free abelian group on the set of archimedean places
of K if m(K) is divisible by two distinct primes, respectively the set of places of K that are
either archimedean or p-adic if m(K) is a power of p, comprising elements whose coefficients
sum to zero. The first equality is therefore true since the Dirichlet Regulator map induces an
isomorphism of C[ΓK ]-modules C⊗Z UK ∼= C⊗Z XK (cf. [Tat84, Ch. I, § 4.2]) and the second
follows by a straightforward computation from the definition of XK .

2.3 The characterisation of Econg

In this section we prove the explicit description of Econg claimed in (8).
At the outset we recall that, as proved by the third author in [Seo06, Th. 2.5], the abelian group
C is torsion-free and thereby disjoint from T . It is also straightforward to check explicitly that
u∅ and uodd are the only systems in T that satisfy the congruences (7). To prove (8) it is
therefore enough to show that Econg is contained in T +C and our proof of this fact will occupy
the remainder of this section.
We first make several useful deductions from results of [BS21]. To do this we set

R := ZJΓK, R+ := ZJΓ+K and R̂+ := lim←−
K∈Ω

Ẑ[ΓK+ ],

where Ẑ denotes the profinite completion of Z. We also fix u in Econg and define R+-modules

C+ := Tτ (C), Y = Yu := R+ · Tτ (u) and X = Xu := (C+ + Y )/C+.
Then, in view of the observations made above, the following result reduces the proof of (8) to
showing that (for every u) the module X vanishes.

(2.5) Lemma. For every v in E, there exists an exact sequence of R-modules

0→ T + C ⊆−→ T + C +R · v z 7→Tτ (z)−−−−−→ Xv → 0 (11)

Proof. Since Tτ (y) = 0 for every y ∈ T one has Tτ (z) ∈ C+ + Y for each z ∈ T + C +R · v and
so the assignment z 7→ Tτ (z) induces a well-defined surjective homomorphism of R-modules t
from T + C +R · v to X.
Now, with this definition of t, it is clear T + C is contained in ker(t) and hence enough to show
that if t(z) = 0, then z belongs to T + C. Moreover, if t(z) = 0, then there exists an element
r of R such that Tτ (z) = r · Tτ (c). It follows that Tτ · (z − r(c)) = 0 and hence, by [BS21,
Th. 4.1 (i)], that z − r(c) belongs to Etor + R(1 − τ)(c). Since this implies that z belongs to
Etor + C, it is therefore enough to recall that Etor = T (by [Seo04, Th. B]).
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To show that X = Xu vanishes we note that the restriction map

π : R→ R+, (rK)K 7→ (πK(rK))K+

is surjective, where we set πK := πK/K+ . This is true since each πK is surjective with kernel

(1− τ)Z[ΓK ] and the derived limit lim←−
1
K∈Ω((1− τ)Z[ΓK ]) with respect to the transition maps

induced by πL/K for K ⊂ L vanishes as a consequence of the Mittag–Leffler condition.
It follows that C+ = R+ · Tτ (c) and so it suffices, by Lemma (2.5), to show the existence of an
element r = ru of R+ such that Tτ (u) = r(Tτ (c)).
We note first that, as a consequence of Proposition (2.3) (b), for every prime number p there
exists an element rp = rp,u of R+

p such that Tτ (u) = rp(Tτ (c)) in Ep.
After identifying Ẑ with the direct product

∏
p∈P Zp (via the Chinese Remainder Theorem),

we may regard the family

r := (rp)p

as an element of R̂+. It is then enough for us to show that this element r belongs to the

subgroup R+ of R̂+. Indeed, if true, then there is an equality Tτ (u) = r(Tτ (c)) in Ep for every
p, and hence an equality Tτ (u)K,p = rK(Tτ (c)K)p in U ′

K,p for every p and every K ∈ Ω◦. It
follows that, for every K, the elements Tτ (u)K and rK(Tτ (c)K) of U ′

K have the same image

under the injective map U ′
K → Ẑ ⊗Z U ′

K and hence that Tτ (u)K = rK(Tτ (c)K). Since this is
true for every K, it then follows that Tτ (u) = r(Tτ (c)), as required.
Now, to show that r belongs to R+, we note first that, for every field K ∈ Ω◦, Proposition
(2.4) (iii) implies the existence of an element qK of Q[Γ+

K ] such that Tτ (uK) = qK(Tτ (cK)) in
Q ⊗Z U ′

K . The resulting equalities rp,K(Tτ (cK)p) = qK(Tτ (cK)p) in Qp ⊗Z U ′
K then combine

with Proposition (2.4) to imply that, for every p, the element qK − rp,K of Qp[Γ
+
K ] annihilates

Tτ (cK)p. In particular, if we write Q̂ for the direct product
∏
p∈P Qp and ÎK for the annihilator

Q̂⊗Z IK of Tτ (cK) in the group ring Q̂[Γ+
K ], then it follows that, for every K in Ω◦, one has

rK ∈ Q[Γ+
K ] + ÎK .

Given this fact, the required containment r ∈ R+ follows directly from the result of Lemma
(2.6) below (with ϵ = 1 so R+(ϵ) = R+). This completes the proof of the equality (8).
In the sequel we regard both Ẑ =

∏
p∈P Zp and Q as subgroups of Q̂ in the natural way

(2.6) Lemma. Fix an idempotent ϵ = (ϵK)K∈Ω+ of QJΓ+K and define inverse limits

R+(ϵ) := lim←−
K∈Ω+

Z[ΓK ]ϵK , R̂+(ϵ) := lim←−
K∈Ω+

Ẑ[ΓK ]ϵK and Q · R̂+(ϵ) := lim←−
K∈Ω+

Q̂[ΓK ]ϵK ,

all with respect to the natural projection maps. Then in Q · R̂+(ϵ) one has

R̂+(ϵ) ∩
∏

K∈Ω+

(Q[ΓK ] + ÎK) = R+(ϵ).

Proof. For each field K ∈ Ω+ the Z-submodule Z[ΓK ]ϵK of Q[ΓK ] is free and of finite rank.
Since Z = Q ∩ Ẑ in Q̂, one therefore has

Ẑ[ΓK ]ϵK ∩Q[ΓK ] = Ẑ[ΓK ]ϵK ∩Q[ΓK ]ϵK = Z[ΓK ]ϵK .

in Q̂[ΓK ]. To prove the claimed equality, it is therefore enough to show that if λ = (λK)K is

any element of R̂+(ϵ) such that λK ∈ Q[ΓK ] + ÎK for all K in Ω+, then one has λK ∈ Q[Γ+
K ]

for all K. To prove this we argue by induction on the number of prime factors of m(K).
If, firstly, m(K) is a prime power, then the idempotent eK is (by definition) equal to 1 and

so Proposition (2.4) (i) implies that IK , and hence also ÎK , vanishes. In the case therefore the
given assumptions imply directly that λK belongs to Q[ΓK ], as required.
Now assume to be given a natural number n and suppose that for every field K in Ω+ such
that m(K) is divisible by at most n primes, one has λK ∈ Q[ΓK ]. We fix a field F in Ω+ such
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that m(F ) is divisible by n + 1 primes and, for ψ in Γ∗
F , we write Fψ for the fixed field of F

under ker(ψ). Then, for each subfield E of F the subset Ξ(E) of Γ∗
F comprising ψ for which

Fψ = E is a (possibly empty) conjugacy class for the action of Γ on Γ∗
F and so the associated

idempotent εE :=
∑

ψ∈Ξ(E) eψ belongs to Q[ΓF ].
To investigate λF we use the decomposition

λF = 1 · λF =
(∑
ψ∈Ξ

eψ
)
· λF =

∑
ψ∈Ξ

eψλF =
∑
ψ∈Ξ

eψλFψ =
∑
E

( ∑
ψ∈Ξ(E)

eψλE
)
=

∑
E

εEλE , (12)

where the fourth equality is valid as λ ∈ R̂+(ϵ), and in the sum E runs over all subfields of F .
Fix a subfield E of F . If m(E) is divisible by fewer primes than m(F ) then, by hypothesis,
one has λE ∈ Q[ΓE ]. On the other hand, if m(E) is divisible by the same number of primes as

m(F ), and rF ∈ Q[ΓF ] and iF ∈ ÎF are such that λF = rF + iF , then one has

εEλE =
∑

ψ∈Ξ(E)

eψλE =
∑

ψ∈Ξ(E)

eψλF =
∑

ψ∈Ξ(E)

eψ(rF + iF ) =
∑

ψ∈Ξ(E)

eψrF = εErF .

Here the fourth equality is valid since, under the present hypothesis, each ψ in Ξ(E) cannot
be trivial on the decomposition group of any prime divisor of m(F ) so that one has eψ = eψeF
(by Proposition (2.4) (ii)) and hence also eψ(iF ) = 0 as a consequence of Proposition (2.4) (i).
These observations imply that the element εEλE belongs to Q[ΓE ] for every subfield E of F
and hence, via the decomposition (12), that λF belongs to Q[ΓF ].

2.4 The proof of Coleman’s Conjecture

In this section we prove Coleman’s conjecture on circular distributions and thereby complete
the proof of Theorem (1.2). In this regard, we recall that the theory of distributions plays a
prominent role in number theory and is strongly influenced by the theory of circular numbers in
abelian fields (cf. the discussion in the Introduction to [KL81]). To state Coleman’s conjecture,
we write µ∗ for the set of non-trivial roots of unity in Qab, and recall that a circular distribution
is a Γ-equivariant function f : µ∗ → Qab,× such that, for all natural numbers n, one has∏

ξn=η

f(ξ) = f(η) for all η ∈ µ∗ (13)

and, in addition, for all primes ℓ that do not divide n, the values f(e2πi/ℓn) and f(e2πi/n) are
congruent modulo all ℓ-adic primes of Q(ℓn) (this last condition makes sense since (13) implies
that f satisfies an analogue of the condition (3)).
Explicit examples include the ‘cyclotomic distribution’ Φcyc and the ‘parity distribution’ Φpar

that respectively send each e2πi/n with n > 1 to 1−e2πi/n and to (−1)π(n), where π(n) is defined
to be 1 if n is even and −1 if it is odd. Further, the collection Fcd of circular distributions
is a group under (pointwise) multiplication and has a natural action of ZJΓK (which we write
additively), and Coleman has conjectured that

Fcd = ZJΓK · {Φcyc,Φpar}. (14)

This striking conjecture was motivated by the archimedean characterization of circular units
that Coleman had obtained in [Col85] and was therefore related to attempts to understand a
globalised version of the Coleman power series introduced in [Col79].
The next result implies that the equality (14) is valid if the ZJΓK-module Econg is generated by
the systems c and uodd. This shows that Coleman’s conjecture follows from the equation (8)
proved in the last section, and hence completes the proof of Theorem (1.2).

(2.7) Lemma. There exists an isomorphism of ZJΓK-modules κ : Frmcd → Econg with the
property that κ(Φcyc) = c and κ(Φpar) = uodd.

Proof. For f in Fcd, one obtains an element uf = (uf,K)K of
∏
K∈Ω◦ K× by setting

uf,K := NQ(m(K))/K(f(e2πi/m(K)))
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for all K in Ω◦. We also note that, for each u in E , there exists a unique Γ-equivariant function
fu : µ

∗ → Qab,× that, at each n > 1, satisfies

fu(e
2πi/n) :=


uQ(n), if n ̸≡ 2 (mod 4),

(1− Frob2)(uQ(n/2)), if n ≡ 2 (mod 4) and n > 2,

1, if n = 2.

Then, by explicit computation, one verifies that every family uf belongs to Econg, that the
function fu belongs to Fcd if u belongs to Econg, that the assignments f 7→ uf and u 7→ fu
respect the actions of ZJΓK and that, for every f and u, there is an equality of functions f = fuf
and an equality of families u = ufu .
The required isomorphism κ is therefore obtained by setting κ(f) := uf for each f in Fcd.

3 Non-cyclotomic Euler systems and the proof of Theorem (1.1)

In this section we introduce an explicit, inductive construction of Euler systems and, by com-
bining this with results from § 2, are able to prove the following result.

(3.1) Theorem. The following claims are valid.

(i) For every u ∈ E and every K ∈ Ω◦ one has uK ∈ Z[ΓK ] · cK .

(ii) One has im(OrdQ) ⊆ Θ and there exists an exact sequence of ZJΓK-modules

0 T + C E Θ/ϖ(Z) cok(Ord′Q) 0
⊆ Ord′Q

in which Ord′Q is the map induced by OrdQ and the exponent of cok(Ord′Q) divides 2.

(iii) The ZJΓK-module E/(T + C) cannot be generated by finitely many elements.

This result implies that, whilst every system in E is ‘cyclotomic-valued’ (by claim (i)), the
cyclotomic systems themselves account for a very small proportion of the full module of Euler
systems in this setting (by claim (iii)). It also has the following specific consequence.

(3.2) Corollary. Theorem (1.1) is valid.

Proof. Theorem (3.1)(ii) implies the existence of an exact commutative diagram of R-modules

0 T + C E E/(T + C) 0

0 Z Θ Θ/ϖ(Z) 0.

OrdQ

ϖ

Here both rows are tautological, the right hand vertical map is injective (and induced by Ord′Q)
and the left hand vertical map is surjective since for all t ∈ T and r = (rK)K∈Ω ∈ R one has
OrdQ(t+ r(c)) = rQ ·Ord(c) = ϖ(rQ) ∈ ϖ(Z).
This diagram implies that the cokernel of OrdQ is isomorphic to the cokernel of Ord′Q (and hence
has exponent dividing 2), that T +C is the full pre-image of Z under OrdQ and that ker(OrdQ) =
T + C0, with C0 the submodule of C comprising all systems r(c) for which OrdQ(r(c)) =
rQ ·OrdQ(c) = ϖ(rQ), and hence also rQ, vanishes.
This verifies all assertions of Theorem (1.1).

The proof of Theorem (3.1) will occupy the remainder of this section.
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3.1 Preliminary steps

In the sequel we use the idempotent e1 :=
(
1 − e1K

)
K∈Ω+

of QJΓ+K, where 1K denotes the

trivial character of ΓK , and write

R+
1 := R+(e1) and R̂+

1 := R̂+(e1)

for the associated rings defined in Lemma (2.6). For each K in Ω we also set

TK :=
∑
γ∈ΓK

γ ∈ Z[ΓK ].

(3.3) Lemma. For any system u in E there exists a unique element

qu := (qu,K)K∈Ω+

of R+
1 that has both of the following properties:

(i) For every K ∈ Ω one has (1− e1K ) · Tτ (uK) = qu,K · Tτ (cK) in Q⊗Z Tτ (UK).

(ii) Fix a prime p and, for each natural number n, set Kn = Kp,n := Q(pn)+. Then there
exists an element

ru,p = (ru,p,n)n ∈ lim←−
n∈N

Z[ΓKn ]

such that, for every n, one has both

qu,Kn = ru,p,n · (1− e1Kn ) ∈ Q[ΓKn ] and uKn = ru,p,n(cKn) ∈ UKn .

Proof. At the outset we note Propositions (2.2) and (2.3) (a) combine to imply that, for every
prime p, there exists an element xu,p = (xu,p,K)K∈Ω+ of R+

p such that Tτ (u − xu,p(c)) is a
Γ-invariant system in Ep. Setting u′ := e1(u) ∈ EQ, the element

qu,p := e1 · xu,p ∈ R+
p,1

is therefore such that qu,p ·Tτ (c) = Tτ (u
′) in Tτ (EQp). We claim that qu,p is the unique element

of QpJΓ+K with this property. To see this, we note that if q′ = (q′K)K is any other such element,
then (qu,p − q′) · Tτ (c) vanishes in EQp . Hence, we must show this equality implies qu,p,K = q′K
for every K ∈ Ω+. For each such K it is thus enough to prove that, for every non-trivial χ
in Γ∗

K , one has eχ · (qu,p,K − q′K) = 0, or equivalently eχ · (qu,p,Kχ − q′Kχ) = 0 where Kχ is the

fixed field of K by ker(χ). However, the latter equality is true since (qu,p,Kχ − q′Kχ) · Tτ (cKχ)
vanishes, whilst Proposition (2.4) (i) implies that eχ(Tτ (cKχ)) is non-zero.

We next use the identifications Ẑ[ΓK ](1− e1K ) =
∏
p∈P Zp[ΓK ](1− e1K ) for each K ∈ Ω+, to

deduce the existence of an element

qu = (qu,K)K∈Ω+ ∈ R̂+
1

with qu,K = (qu,p,K)p∈P for all K. In addition, for each such K, Proposition (2.4) (iii) implies
the existence of an element yK of Q[ΓK ] with Tτ (uK) = yK · Tτ (cK) in Q⊗Z Tτ (UK) and so

(qu,K − (1− e1K )yK) · Tτ (cK) = Tτ (u
′
K)− (1− e1K )yK · Tτ (cK) = 0

in Q̂⊗Z Tτ (UK). This equality implies that qu,K belongs to Q[ΓK ] + ÎK , where the module ÎK
is defined in the proof of Lemma (2.5). In particular, since this containment is true for every

K, we may apply Lemma (2.6) (with ϵ = e1) to deduce qu belongs to the subgroup R+
1 of R̂+

1 .
In addition, for every K ∈ Ω+ one has

(1− e1K ) · Tτ (uK) = Tτ (u
′
K) = qu,K · Tτ (cK),

and so this element qu has the property described in claim (i).
We must now show that qu has the property described in claim (ii). To do this we fix a prime p, a
natural number n such that Kn ̸= Q and an element q̃u,n of Z[ΓKn ] with q̃u,n(1−e1Kn ) = qu,Kn .
Then, since the element vn := q̃u,n(cKn)−uKn belongs to the torsion-free group Tτ (UQ(pn)) and
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is annihilated by 1 − e1Kn (when regarded as an element of Q ⊗Z Tτ (UQ(pn))), it is fixed by
every element of ΓKn and so belongs to the subgroup Q× ∩ Tτ (UQ(pn)) of Q×. Since the latter
subgroup is generated by p, one therefore has vn = yu,p,n · p for some yu,p,n ∈ Z and hence also

q̃u,n(cKn)− uKn = yu,p,n · p = yu,p,n ·NKn/Q(cKn).
The element ru,p,n := q̃u,n − yu,p,n · TKn of Z[ΓKn ] is therefore such that uKn = ru,p,n(cKn) and
ru,p,n(1− e1Kn ) = qu,Kn . Hence, to prove claim (ii), it is enough to show that the family

ru,p := (ru,p,n)n ∈
∏
n∈N

Z[ΓKn ]

belongs to lim←−nZ[ΓKn ]. To do this, we note that, by Proposition (2.4) (i), the element cKn
generates a free Z[ΓKn ]-module of rank one, and hence that it suffices to show that the element
ru,p,n − πKn+1/Kn(ru,p,n+1) of Z[ΓKn ] annihilates cKn . This in turn follows directly from the
distribution relations

ru,p,n(cKn) = uKn = NKn+1/Kn(uKn+1) = NKn+1/Kn(ru,p,n+1(cKn+1))

= πKn+1/Kn(ru,p,n+1)(NKn+1/Kn(cKn+1)) = πKn+1/Kn(ru,p,n+1)(cKn).

The key to our investigation of the elements qu that are provided by Lemma (3.3) is provided
by the following exact commutative diagram

0 R+ R+
1 lim←−

1

K∈Ω+

(Z · TK) 0

0
∏
p∈P

R+(p)
∏
p∈P

R+
1 (p)

∏
p∈P

lim←−
1

n

(Z · TQ(pn)+) 0,

·e1 δ

ω

·e1 (δ(p))p

(15)

where for each p we set

R+(p) := lim←−
n∈N

Z[Γ+
Q(pn)] and R+

1 (p) := lim←−
n∈N

Z[Γ+
Q(pn)](1− e1Q(pn)+

).

The upper exact sequence in this diagram is obtained by combining the long exact sequence of
R+-modules that is induced by passing to the limit over K ∈ Ω+, with respect to projection
maps induced by πL/K,Q for K ⊆ L, of the obvious exact sequences

0→ Z · TK
⊆−→ Z[ΓK ]

x 7→x(1−e1K )
−−−−−−−−→ Z[ΓK ](1− e1K )→ 0 (16)

with the following facts: the limit lim←−K∈Ω+
Z · TK vanishes since πL/K(TL) = [L :K] · TK for

K ⊆ L and the derived limit lim←−
1
K∈Ω+

Z[ΓK ] vanishes as a consequence of the Mittag–Leffler

criterion since the transition maps πL/K are surjective. In a similar way, the lower exact
sequence in the diagram is the direct product over p of the exact sequences derived by passing
to the inverse limit over n of the exact sequences (16) with K = Q(pn)+. Finally, we note that
all of the vertical maps in (15) are the natural (diagonal) projection maps.
In the next result we provide an explicit description of the connecting homomorphism δ and
projection map ω that occur in (15). For each natural number m we set

φ(m) := [Q(m)+ : Q] and Z/m := Z⧸(mZ).

(3.4) Lemma. The following claims are valid.

(i) There exists a natural isomorphism

lim←−
1

K∈Ω+

(Z · TK) ∼=
(
lim←−
m

Z/φ(m)

)
/Z

where Z is embedded diagonally in the stated limit. The induced composite map

δ′ : lim←−
K∈Ω+

Z[ΓK ](1− e1K ) lim←−
1

K∈Ω+

(Z · TK)
(
lim←−
m

Z/φ(m)

)
/Zδ ≃
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sends each element q = (qK)K of lim←−K∈Ω+
Z[ΓK ](1− e1K ) to the family

δ′(q) :=
(
πQ(m)+/Q(qm) modφ(m)

)
m∈N,

where qm is any choice of element of Z[Γ+
Q(m)] with qm · (1− e1Q(m)+

) = qQ(m)+.

(ii) For each prime p, there exists a natural isomorphism

lim←−
1

n

(Z · TQ(pn)+) ∼=
(
lim←−
n

Z/φ(pn)
)
/Z,

where Z is embedded diagonally in the stated limit.

(iii) Write ∆ for the diagonal map

lim←−
m

Z/φ(m) →
∏
p∈P

lim←−
n

Z/φ(pn), (am)m∈N 7→
(
(apn)n∈N

)
p
.

Then there exists a commutative diagram

lim←−
1

K∈Ω+

(Z · TK)
(
lim←−
m

Z/φ(m)

)
/Z

∏
p∈P

lim←−
1

n

(Z · TQ(pn)+)
∏
p∈P

((
lim←−
n

Z/φ(pn)
)
/Z

)
,

ω

≃

∆

≃

in which the horizontal maps are the isomorphisms in (i) and (ii) and ∆ is induced by ∆.

Proof. For every K in Ω+, the exact sequence (16) lies in a commutative diagram

0 Z · TK Z[ΓK ] Z[ΓK ](1− e1K ) 0

0 Z · [K : Q] Z Z/[K:Q] 0,

θ′K≃

⊆ ·e1

πK/Q θK

in which θ′K is the restriction of πL/K and so is bijective, the second vertical map is surjective
and the map θK is induced by the commutativity of the first square and the exactness of both
rows. AsK varies over Ω+, these diagrams are compatible with respect to the natural transition
maps. Upon passing to the limit over K of these diagrams, and applying the Mittag–Leffler
criterion to the second vertical maps, one therefore obtains an exact commutative diagram

0 R+ R+
1 lim←−

1

K∈Ω+

(Z · TK) 0

0 Z lim←−
K∈Ω+

Z/[K:Q] lim←−
1

K∈Ω+

(Z · [K : Q]) 0

(θK)K

δ

≃ (17)

in which the first vertical map is the natural projection map and the third is induced by the
isomorphisms (θ′K)K and so is bijective. The exactness of the diagram therefore induces an
isomorphism

lim←−
1

K∈Ω+

(Z · TK) ∼= lim←−
1

K∈Ω+

(Z · [K : Q]) ∼=
(

lim←−
K∈Ω+

Z/[K:Q]

)
/Z

of the form stated in claim (i). Given this explicit construction of the isomorphism, the re-
maining assertion of claim (i) follows immediately from the commutative diagram (17).
In just the same way, for each prime p one can verify the assertion of claim (ii), construct a ho-
momorphism θp : R

+
1 (p)→

(
lim←−nZ/φ(pn)

)
/Z and give an explicit description of the connecting

homomorhism δ(p) in (15) in terms of θp.
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By using these explicit descriptions, it is then straightforward to verify that the map ∆ de-
scribed in the statement of claim (iii) is the unique dashed arrow that renders the following
diagram commutative

0 R+ R+
1

(
lim←−
K∈Ω+

Z/[K:Q]

)
/Z 0

0
∏
p∈P

R+(p)
∏
p∈P

R+
1 (p)

∏
p∈P

((
lim←−
n

Z/φ(pn)
)
/Z

)
0.

·e1 (θK)K

·e1 (θp)p

This proves claim (iii).

Properties of the map ∆ in Lemma (3.4)(iii) will play a key role in our proof of Theorem (3.1).
Before establishing these properties, we must first make several elementary observations. To
do this we define a Ẑ-module by setting

U :=
{
(α(p))p ∈

∏
p∈P

lim←−
n

Z(φ(pn))

∣∣ α(p)
1 ≡ α

(ℓi(p))
mi(p)∗

mod ℓi(p)
mi(p) for p > 3 and 1 ≤ i ≤ t(p)

}
,

where for each p > 3 we write the prime factorisation of φ(p) = (p− 1)/2 as

φ(p) =

t(p)∏
i=1

ℓi(p)
mi(p) (18)

and set mi(p)
∗ := mi(p) + 2 if ℓi(p) = 2 (so φ(p) is even) and mi(p)

∗ := mi(p) + 1 otherwise.
For each natural number m we also write pm for the m-th prime number (in ascending order).

(3.5) Lemma. For every natural number s the following claims are valid.

(i) Fix an element λ = (λn)n of lim←−nZ(φ(n)) and a divisor t of φ(s) with t > 1 and set

t̃ :=

{
t
∏
ℓ|t ℓ, if t is divisible by an odd prime

4t, otherwise,

where ℓ runs over all prime divisors of t. Then λs ≡ λt̃ mod t. In particular, for a prime
p and any index i as in (18) one has λp ≡ λℓi(p)mi(p)∗ mod ℓi(p)

mi(p).

(ii) The image of ∆ is contained in U .
(iii) Let {µpi | 1 ≤ i ≤ s} be integers with the property that

µpi ≡ µpj mod p
ordpj (φ(pi))

j for 2 < i ≤ s and 1 ≤ j < i.

Then there exists an element α = (α(p))p of U with both of the following properties:

(a) for every i ∈ {1, . . . , s} one has α(pi) = (µpi mod φ(pni ))n∈N;

(b) for every prime p > ps, there exists an integer µp with α(p) = (µp mod φ(pn))n∈N.

Proof. The first assertion of claim (i) is valid since, for each λ = (λn)n in lim←−nZ(φ(n)), there are
congruences λs ≡ λst̃ ≡ λt̃ mod t, where the first is valid since t divides φ(s) and the second
since t divides φ(t̃). The second assertion in claim (ii) is then obtained by taking s = p and
t = ℓi(p)

mi(p).
To prove claim (ii) we fix an element λ = (λn)n as above and a prime p > 3 and use the
notation introduced in (18). It is then enough to note that for each i with 1 ≤ i ≤ t(p) one has

∆(λ)
(p)
1 ≡ λp ≡ λℓi(p)mi(p)∗ ≡ ∆(λ)

(ℓi(p))
mi(p)∗

mod ℓi(p)
mi(p).

Here the second congruence follows from claim (i) and the others from the definition of ∆.
To prove claim (iii), we first construct a suitable family of integers {µpN }N by using induction
on the natural number N . If N ≤ s, we take µpN to be the integer specified in the statement.
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For N > s we assume that suitable integers pj have been fixed for 1 ≤ j < N and then take
µpN to be any integer that solves the simultaneous congruences

µpN ≡ µpj mod p
ordpj (φ(pN ))

j for 1 ≤ j < N. (19)

It is then clear that the image α of this family (µp)p∈P under the projection from
∏
p∈P Z to∏

p∈P lim←−nZ(φ(pn)) has the stated conditions (a) and (b). To show α belongs to U we fix a
natural number N > 2 and an integer i with 1 ≤ i ≤ t(pN ) and set ℓ := ℓi(pN ), m := mi(pN )
and m∗ := mi(pN )

∗ . It is then enough to note there are congruences modulo ℓm of the form

α
(pN )
1 ≡ µpN ≡ µℓ ≡ α

(ℓ)
m∗ ,

where the first is true since ℓm divides φ(pN ), the second follows from (19) and the third is
true since the definition of m∗ implies φ(ℓm

∗
) is divisible by ℓm.

We can now establish the key properties of the map ∆ in Lemma (3.4) (iii).

(3.6) Proposition. The following claims are valid.

(i) ∆ is injective and has image equal to U .
(ii) The kernel of ∆ is isomorphic to Θ/ϖ(Z) and is non-trivial.

Proof. To show ∆ is injective we fix an element λ = (λn)n in its kernel. We also fix a natural n
and write

∏t
i=1 ℓ

mi
i for the prime factorisation of φ(n). Then, for each i, there are congruences

modulo qi := ℓmii of the form λn ≡ λq̃i ≡ 0, where the first follows from Lemma (3.5) (i) and
the second is valid since λ ∈ ker(∆) and qi divides φ(q̃i). By the Chinese Remainder Theorem,
it therefore follows that λn ≡ 0 mod φ(n) and, since n is an arbitrary natural number, this
implies λ vanishes, as required to prove injectivity of ∆.
To prove im(∆) = U it suffices, in view of Lemma (3.5) (i), to construct a pre-image under ∆
of an arbitrary element (α(p))p of U . To do this, we regard α as fixed and, for each natural
number n, define λn to be the unique solution (in Z(φ(n))) to the family of congruences

λn ≡ αℓimi+a(ℓi) mod ℓmii for all 1 ≤ i ≤ t, (20)

where
∏t
i=1 ℓ

mi
i is the prime factorisation of φ(n) and for each prime ℓ we set a(ℓ) := 2 if ℓ = 2

and a(ℓ) := 1 otherwise (so that ℓmii divides φ(ℓ
mi+a(ℓi)
i )).

We claim first that λps = α
(p)
s for every prime p and natural number s (such that φ(ps) ̸= 1).

If p ∈ {2, 3}, this follows easily from the fact p is the only prime divisor of φ(ps). If p > 3,

then it is true since, in terms of the notation in (18), one has φ(ps) = ps−1
∏t(p)
i=1 ℓi(p)

mi(p) and
so λps is the unique solution of the congruences

λps ≡ α(p)
s mod ps−1,

λps ≡ α(ℓi(p))
mi(p)∗

≡ α(p)
1 ≡ α

(p)
s mod ℓ

mi(p)
i for all 1 ≤ i ≤ t(p).

Here the second of the lower congruences follows from the definition of U and the third is true
since α(p) ∈ lim←−nZ(φ(pn)). To conclude the proof of claim (i) it is thus enough to show λ belongs

to lim←−nZ(φ(n)) (since then the above observations imply ∆(λ) = (α(p))p). To do this we must
show that for all m ∈ N and all divisors n of m (with φ(n) ̸= 1) one has λm ≡ λn mod φ(n).
With

∏t
i=1 ℓ

mi
i denoting the prime factorisation of φ(n) (as above), it is therefore enough, by

the Chinese Remainder Theorem, to prove for each i ∈ {1, . . . , t} that λm ≡ λn mod ℓmii . For
each i we set zi := ordℓi(φ(m)) and note mi ≤ zi as φ(n) divides φ(m). Then the definition

of λm via (20) (with n replaced by m) implies that λm ≡ α
(ℓi)
zi+a(ℓi)

mod ℓzii and hence, since

α(ℓi) ∈ lim←−b∈NZ(φ(ℓbi ))
, that

λm ≡ α(ℓi)
zi+a(ℓi)

≡ α(ℓi)
mi+a(ℓi)

≡ λn mod ℓmii ,

where the last congruence follows from the definition of λn via (20). This proves claim (i).
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The above argument also shows that the (injective) map ∆ induces an isomorphism between
ker(∆) and the quotient Θ/ϖ(Z). To prove claim (ii), it is therefore enough to construct a
non-zero element in ker(∆). To do this we first apply Lemma (3.5) (iii) with s = 2, µ2 = 1 and
µ3 = 3 to obtain an element α = (αp)p of U with the following properties

(C1) α
(2)
n ≡ 1 mod 2n−2 for all n > 2 and α

(3)
n ≡ 3 mod 3n−1 for all n > 1;

(C2) For every p > 3, there exists µp ∈ Z such that α
(p)
n ≡ µp mod φ(pn) for all n > 1.

Taking account of claim (i), we define λ to be the unique element of lim←−nZ(φ(n)) with ∆(λ) = α

and we claim this element corresponds to a non-trivial element of ker(∆). To see this we note
first that the image under ∆ of the class of λ is represented by the class of α and so is trivial
as a direct consequence of the conditions (C1) and (C2). Then, to prove that the class of λ
in

(
lim←−mZ(φ(m))

)
/Z is non-trivial we argue by contradiction and so assume the existence of

µ ∈ Z such that λn ≡ µ mod φ(n) for all n > 4. Then condition (C1) implies both that

µ ≡ λ2n ≡ α(2)
n ≡ 1 mod 2n−2 for all n > 2,

(so that µ = 1) and also that

µ ≡ λ32 ≡ α
(3)
2 ≡ 0 mod 3.

Since these congruences are not compatible, this concludes the proof of Proposition (3.6).

3.2 The proof of Theorem (3.1)

For each u in E we use the element qu = (qu,K)K∈Ω+ of R+
1 constructed in Lemma (3.3) (i).

To prove claim (i) we assume (as we may) thatK = Q(n) for a natural number n > 5. We recall
(from [BS21, Lem. 4.3]) that in this case the group U τ=−1

K is generated by −e2πi/n = (1−τ)(cK)
and so belongs to Z[ΓK ] · cK . We also note that Tτ (uK) and Tτ (cK) belong to the torsion-free
subgroup Tτ (UK) of UK+ and we fix a lift q̃K of qu,K+ to Z[ΓK ].
We first consider the case n is divisible by two distinct prime numbers. In this case Proposition
(2.4) (i) implies Tτ (uK) and Tτ (cK) are annihilated by e1 (when considered as elements of
Q⊗Z Tτ (UK)). In Tτ (UK) one therefore has

Tτ (uK − q̃K(cK)) =Tτ (uK)− q̃K(Tτ (cK))

= e1(Tτ (uK))− (q̃K · e1)(Tτ (cK))

= qu,K+(Tτ (cK))− qu,K+(Tτ (cK)) = 0,

where the third equality follows from Lemma (3.3) (i). This implies uK − q̃K(cK) belongs to
U τ=−1
K and hence, by the observation above, that uK belongs to Z[ΓK ] · cK .

We assume next that n = pt for a prime p and natural number t. In this case there exists an
integer m with NK/Q(uK) = pm = NK/Q(cK)m and so, after replacing u by u −m · c, we can
assume Tτ (uK) is annihilated by e1K+ . Then in Tτ (UK) one has

Tτ (uK) = (1− e1K+ )(uK+) = (1− e1K+ )ru,p,t(cK+) = qu,K+(cK+) = Tτ (q̃K(cK)),

where the second and third equalities follow from Lemma (3.3) (ii). It follows that uK− q̃K(cK)
belongs to U τ=−1

K and, by the same argument as above, this implies uK ∈ Z[ΓK ] · cK and so
completes the proof of claim (i).
To prove claim (ii), we consider the composite homomorphism

E⧸(T + C)
u7→Tτ (u)−−−−−→ Tτ (E)⧸Tτ (C)

Tτ (u)7→δ(qu)−−−−−−−−→ ker(ω) ∼= ker(∆), (21)

where ω and δ are the maps that occur in the diagram (15) and the isomorphism is induced by
the diagram in Lemma (3.4) (iii). Lemma (2.5) implies that the first map in this composite is
bijective. The second map is well-defined since the property of qu described in Lemma (3.3) (ii)
combines with a diagram chase of (15) to imply δ(qu) ∈ ker(ω) for every u ∈ E . The latter map
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is also injective since if δ(qu) vanishes, then the upper row of (15) implies the existence of an
element r of R+ such that, for all K ∈ Ω◦

+, one has rK(1− e1K ) = qu,K and hence, by Lemma
(3.3) (i), Tτ (uK)−rK(Tτ (cK)) belongs to Tτ (UK)ΓK and so is a strictly positive rational number:
this last fact implies Tτ (uK) = rK(Tτ (cK)) for all K (this is clear if m(K) is not a prime power
and, if m(K) is a power of p, follows from the norm coherency of Tτ (uL) − rL(Tτ (cL)) as L
varies over fields of p-power conductor) and hence that Tτ (u) = r(Tτ (c)) ∈ Tτ (C), as required.
We next claim that, after using Proposition (3.6) (ii) to identify ker(∆) with Θ/ϖ(Z), the
map (21) sends each u to the class represented by OrdQ(u) = (ordp(u))p. This follows from
an explicit computation of the connecting homomorphism δ and the fact that for every p and
every natural number n one has

ordp
(
NQ(pn)/Q(uQ(pn))

)
= ordp

(
NQ(pn)+/Q(Tτ (uQ(pn)))

)
= ordp

(
NQ(pn)+/Q(Tτ (ru,p,n(cQ(pn))))

)
= ru,p,0 · ordp

(
NQ(pn)/Q(cQ(pn))

)
= ru,p,0 · ordp(p) = ru,p,0,

with ru,p,n the element of Z[Γ+
Q(pn)] defined in Lemma (3.3) (ii) and ru,p,0 its projection to Z.

To complete the proof of claim (ii), it is now enough to prove the exponent of the cokernel
of the second map in (21) divides 2. To do this we fix an element q = (qK)K∈Ω+ of R+

1 with
δ(q) ∈ ker(ω). Then, by chasing through the diagram (15), one finds that, for each prime
p, there exists a unique element µp of lim←−n∈NZ[Γ

+
Q(pn)] with qK = (1 − e1K )µp,K for every

K = Q(pn)+. For each K ∈ Ω we now define an element of UK by setting

uK :=

{
qK+(Tτ (cK)) if m(K) is divisible by two distinct primes,

µp,K+(Tτ (cK)) if m(K) = pn for some prime p.

We claim that the family u = (uK)K∈Ω◦ satisfies the distribution relation (2) for all K ⊂ L
and so belongs to E . This is clear if m(K) and m(L) are either both composite or both prime
powers since c validates (2), πL+/K+(qL+) = qK+ and πL+/K+(µp,L+) = µp,K+ if m(L) is a
power of p. We can thus assume m(L) is composite and K = Q(pn) for a prime p and natural
number n. In this case the set S(L/K) of primes ramifying in L but not K is non-empty and so
the element PL/K :=

∏
ℓ∈S(L/K)(1− Frob−1

ℓ ) of Z[ΓK ] is annihilated by e1K . One then derives
the required distribution relation via the computation

NL/K(uL) = NL/K(qL · Tτ (cL)) = qK+ · Tτ (NL/K(cL)) = qK+ · PL/K(Tτ (cK))

= µp,K+ · PL/K(Tτ (cK)) = PL/K(uK),

where the third equality is true since c validates (2) and the fourth since

PL/K · µp,K+ = PL/K(1− e1K ) · µp,K+ = PL/K · ((1− e1K+ )µp,K+) = PL/K · qK+ .

At this stage we know u ∈ E and hence that 2u = Tτ (u) ∈ Tτ (E). To complete the proof of
claim (ii) it is therefore enough to note that q2u = 2q and so the second map in (21) sends the
class of Tτ (u) to 2δ(q).
Claim (ii) reduces claim (iii) to showing the existence of infinitely many elements of 2·Θ whose
projections to Θ/ϖ(Z) are linearly independent over Z (and hence over ZJΓK). To do this we
write b(x) for each x = (xp)p in

∏
p∈P Z for the smallest prime p for which xp ̸= 0. It is then

enough to note that the inductive argument used in Lemma (3.5) (iii) can be used to construct
a sequence (xn)n∈N of elements of 2·Θ with the property that b(xn) < b(xm) for all n < m.

(3.7) Remark. By using exactly the same approach as above, one can also prove variants of
Theorem (3.1), such as the following.

(i) Let Σ be a finite set of rational primes and ZΣ the subring of Q generated by inverting
primes in Σ. Recall the group EZΣ

of ZΣ-valued Euler systems (from Definition (2.1) (i))
and write TΣ and CΣ for the ZΣJΓK-submodules of EZΣ

generated by (the images of) T
and C. Then one can prove an exact analogue of Theorem (3.1) in which the roles of
ZJΓK, E , T and C are replaced by ZΣJΓK, EΣ, TΣ and CΣ.
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(ii) Write E+ for the ZJΓ+K-module comprising systems (uE)E in
∏
E∈Ω◦

+
E× that satisfy the

distributions relations (2) for all K ⊂ L and are also such that every element uE is totally
positive. Then one can define a natural analogue Ord+Q : E+ → Θ of the map OrdQ and

the above construction shows that Ord+Q is surjective.

4 Selmer groups for Gm and the proof of Theorem (1.3)

In this section we use results in § 3 to prove Theorem (1.3) and then derive several concrete
observations about the Galois structure of Selmer groups of Gm over real abelian fields.

4.1 Preliminary observations

Fix a number field K and a set of places Σ of Q that contains the archimedean place ∞. The
‘Σ-relative integral dual Selmer group’ SΣ,∅(Gm/K) of Gm over K is the cokernel of the map∏

w ̸∈ΣK

Z→ HomZ(K
×,Z), (xw)w 7→

{
a 7→

∑
w ̸∈ΣK

ordw(a)xw
}
.

This group was introduced in [BKS16, § 2.1] as an analogue for Gm of the integral Selmer
groups of abelian varieties defined by Mazur and Tate in [MT87] and lies in an exact sequence

0 HomZ(Cl(OK,Σ),Q/Z) SΣ,∅(Gm/K) HomZ(O×
K,Σ,Z) 0 (22)

(cf. [BKS16, Prop. 2.2]). In the sequel we set

SΣK := SΣ,∅(Gm/K)#,

where the superscript ‘#’ indicates ΓK acts on SΣ,∅(Gm/K) via composition with the involution

of ΓK that inverts elements. We will also write SK in place of S{∞}
K .

(4.1) Lemma. Fix K and L in Ω+ with K ⊆ L and a set of places Σ as above. Then there
exists a canonical map of Z[ΓK ]-modules θΣL/K : Z[ΓK ]⊗Z[ΓL] S

Σ
L → SΣK . The cokernel of θΣL/K

is finite of 2-power order and its kernel lies in an exact sequence of Z[ΓK ]-modules

0→ML/K,1 → ker(θΣL/K)→
⊕

ℓ∈P\Σ

Z[ΓK ]⊗Z[ΓK,ℓ]
(
Z/nℓ,L/K

)
→ML/K,2 → 0

in which ML/K,1 and ML/K,2 are finite modules of 2-power order, ΓK,ℓ is the decomposition
subgroup of ℓ in ΓK and nℓ,L/K the ramification degree in L/K of any (and therefore every)
ℓ-adic place of K.

Proof. For L in Ω+ we write Σ(L) for the union of Σ and the set of places that ramify in L
and for each finite set of places Σ′ of Q containing Σ(L) we use the complex RΓc((OL,Σ′)W ,Z)
of ΓL-modules constructed in [BKS16, Prop. 2.4]. In particular, the latter result implies that
the associated complex of RL-modules

CΣ′
L := RΓc((OL,Σ′)W ,Z)

#

is acyclic in degrees greater than three and such that

H2(CΣ′
L ) = SΣ′

L and H3(CΣ′
L ) = HomZ((L

×)tor,Q/Z)
# = {±1}.

Further, since Σ′ contains all places that ramify in L, the complex CΣ′
L is perfect over RL and

there is a canonical isomorphism RK ⊗LRL C
Σ′
L
∼= CΣ′

K in the derived category of RK-modules.
The associated Hochschield-Serre spectral sequence therefore gives rise to a homomorphism
θΣ

′

L/K : Z[ΓK ]⊗Z[ΓL] S
Σ′
L → SΣ

′
K whose kernel and cokernel are both finite and of 2-power order.

The map θ
Σ(L)
L/K then induces an exact commutative diagram of RK-modules
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RK ⊗RL
( ∏
w∈(Σ(L)\Σ)L

Z
)

RK ⊗RL S
Σ(L)
L RK ⊗RL S

Σ
L 0

0
∏

v∈(Σ(L)\Σ)K

Z SΣ(L)
K SΣK 0.

κL

θ
θ
Σ(L)
L/K

θΣ
L/K

κK

Here, for E ∈ {L,K}, the map κE is induced by the composite∏
w∈(Σ(L)\Σ)E

Z′ (xw)w 7→
{
a7→

∑
w∈(Σ(L)\Σ)E

ordw(a)xw
}

−−−−−−−−−−−−−−−−−−−−−−−−−−→ HomZ(E
×,Z)→ SΣ(L)

E ,

where the second arrow is the tautological projection, and the exactness of the respective
rows follows from the long exact sequence of cohomology of the exact triangle in [BKS16,
Prop. 2.4 (ii)] with S, S′ and T taken to be Σ,Σ(E) and ∅. Further, the map θ is induced by
sending each element (nw)w of

∏
w∈(Σ(L)\Σ)L

Z to (
∑

w|v nwnv,L/K)v, with nv,L/K the ramific-

ation degree of v in L/K. This definition ensures that the first square commutes and so θ
Σ(L)
L/K

induces a well-defined map from RK ⊗RL SΣL to SΣK that we denote by θΣL/K . In particular,
since the cokernel of θ is isomorphic as an RK-module to the direct sum⊕

ℓ∈P\Σ

RK ⊗Z[ΓK,ℓ]
(
Z/nℓ,L/K

)
,

the stated facts about ker(θΣL/K) and cok(θΣL/K) can be derived by applying the Snake Lemma
to the above commutative diagram.

In the case Σ = {∞}, the next result verifies the first displayed equality in Theorem (1.3). We
refer to a subset X of Ω+ as ‘cofinal’ if it contains an extension of every field in Ω+ and in any
such case identify QJΓ+K with lim←−E∈X Q[ΓE ] in the obvious way.

(4.2) Proposition. For any set Σ as above, and any cofinal subset X of Ω+, one has( ∏
K∈X

Fitt1Z[ΓK ](S(Gm/K))
)
∩QJΓ+K=0.

Proof. We set Z′ := Z[1/2] and regard Σ as fixed and, for each K in Ω+, set S ′L := Z′ ⊗Z SΣL
and R′

K = Z′[ΓK ]. Then, for every K and L in Ω◦
+ with K ⊆ L, one has

πL/K,Z′
(
Fit1R′

L
(S ′L)

)
= Fit1R′

K
(R′

K ⊗R′
L
S ′L) ⊆ Fit1R′

K
(S ′K),

where the equality follows from a standard descent property of Fitting ideals and the inclusion
from the fact that Lemma (4.1) implies that the map Z′ ⊗Z θΣL/K is surjective.
To prove the claimed result it is therefore enough to show that, for each field K in Ω+ for
which m(K) is not a prime power and each natural number n, there exists an odd prime ℓ and
a field L in Ω+ that contains K and is such that

πL/K,Z′
(
Fitt1R′

L
(S ′L)

)
⊆ ℓn · Fitt1R′

K
(S ′K).

To do this we fix K and n and then choose an odd prime ℓ that splits completely in K, is
coprime to the order of ΓK and does not belong to Σ. We write En for the unique cyclic
extension of Q that has degree ℓn and is ramified only at ℓ, and L for the compositum of K
and En. Then the field L belongs to Ω+ and is such that a place v of K ramifies in L if and
only if it is ℓ-adic, in which case its ramification degree is equal to the degree ℓn of L/K. In
this case, therefore, Lemma (4.1) implies the existence of an exact sequence of R′

K-modules of
the form

0 R′
K/(ℓ

n) R′
K ⊗R′

L
S ′L S ′K 0. (23)
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In particular, since Fit0R′
K

(
R′
K/(ℓ

n)
)
= ℓn ·R′

K , it suffices to show that (23) implies the second

equality in the display

πL/K,Z′
(
Fitt1R′

L
(S ′L)

)
= Fit1R′

K

(
R′
K ⊗R′

L
S ′L

)
= Fit0R′

K

(
R′
K/(ℓ

n)
)
· Fit1R′

K

(
S ′K

)
.

It is then enough to verify this after localising at each odd prime p. If p ̸= ℓ, then the localised
equality is obvious since Fit0RK,p(0) = RK,p. If p = ℓ, it follows easily from the fact that R′

K,ℓ is

a finite direct product of discrete valuation rings (since ℓ is prime to the order of ΓK) and the
R′
K,ℓ-module S ′K,ℓ has a direct summand that is free of rank one as a consequence of the exact

sequence (22) and the assumptionm(K) is not a prime power (cf. also [Gre04, Prop. 2.2.3]).

4.2 Euler systems, Fitting ideals, and completion of the proof of Theorem (1.3)

The next result provides a concrete link between the Selmer groups SK defined in § 4.1 and the
theory of Euler systems developed in earlier sections and is key to our deduction from Theorem
(1.1) of the final assertion of Theorem (1.3) regarding dense subsets of Ω+.
We write I for the ideal of ZJΓ+K given by the kernel of the natural map ZJΓ+K→ Z/2Z.

(4.3) Proposition. The map

QJΓ+K→
∏
K∈Ω◦

(Q⊗Z UK), q 7→ (qK · Tτ (cK))K

is injective. For each dense subset X of Ω+ and each element z = (zK)K∈Ω◦
+
of I2, this map

induces a map of ZJΓ+K-modules( ∏
K∈X

Fitt1RK (SK)−1
)
∩QJΓ+K→ E , q 7→ (12zL+qL+ · Tτ (cL))L∈Ω◦ .

For any system u in the image of this map one has OrdQ(u) ∈ ϖ(Z).

Proof. Fix an element q = (qK)K∈Ω◦
+
of QJΓ+K. Then the image qQ ·Ordp(c) of q(Tτ (c)) under

Ordp is independent of p since Ordp(c) is. In addition, by using the fact that m(Q(n)) =
m(Q(n)+) for each n > 1 with Q(n)+ ̸= Q, one checks readily that q(Tτ (c)) satisfies the
distribution relations (2) since c does.
We next claim that

q = 0 if qK(cK) = 0 for all K ∈ Ω◦
+. (24)

To show this it is enough to prove the given hypotheses imply that, for each K ∈ Ω◦
+ and

χ ∈ Γ∗
K , one has eχqK = 0. In addition, for each such χ, one has eχqK = eχqKχ with Kχ

the fixed field of ker(χ) in K. If χ ̸= 1K , then Kχ ∈ Ω◦
+ whilst Proposition (2.4) (i) implies

eχ(cKχ) ̸= 0 and so the assumed vanishing of qKχ(cKχ) implies eχqKχ = eχqK vanishes, as
required. If χ = 1K , then eχqK = eχqQ and so it suffices to show that qQ vanishes. But, if ℓ
is any prime greater than 3, then Q(ℓ)+ belongs to Ω◦

+ and so Proposition (2.4) (i) combines
with the assumed vanishing of qQ(ℓ)+(cQ(ℓ)+) to imply that qQ(ℓ)+ , and hence also qQ, vanishes,
as required to complete the proof of (24).
To prove the claimed result, we now assume qL ∈ Fitt1RL(SL)

−1 for all L in X . In this case we

must show that, for all elements x and y of I and every K in Ω◦
+, the action of 1

2xKyKqK on
cK gives a well-defined element of UK . Since the kernel of the natural map UK → Q ⊗Z UK
is equal to (UK)tor = {±1} and hence annihilated by xK , it is thus enough to show that the
element (12yKqK)(cK) of Q ⊗Z UK belongs to the image UK of UK . Now, for every K in Ω◦

+

we can fix a field L in X such that K ⊆ L and m(L) and m(K) have the same prime divisors.
Then πL/K,Q(yLqL) = yKqK and, since c satisfies (2) also cK = NL/K(cL), and so

(yKqK)(cK) = (yKqK)(NL/K(cL)) = NL/K((yLqL)(cL)) ∈ Q⊗Z UK .
This fact allows us to assume that K belongs to X . Then, since UK is torsion-free, it is enough
to show that for all such yK and qK one has

θ(12yKqK(cK)) ∈ RK for every θ in HomRK (UK , RK) = HomRK (UK , RK). (25)
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To prove this, we note that [Tat84, Ch. IV, Lem. 1.1] allows us to express yK as a finite sum
yK =

∑t
i=1mi(1 − ℓiFrob−1

ℓi
) involving suitable integers m1, . . . ,mt and primes ℓ1, . . . , ℓt that

are unramified in K. Since cK,i := (1 − ℓiFrob−1
ℓi

)(cK) belongs to the subgroup UK,i of UK
comprising elements a that satisfy a ≡ 1 mod ℓi, it is then enough to prove that one has

θ(12qK(cK,i)) ∈ RK for all θ ∈ HomRK (UK,i, RK) and all i ∈ {1, . . . , t}
in order to verify (25). To show this we write ι# for the Z-linear involution of RK that inverts
elements of ΓK and note that, with S(K) denoting the union of ∞ and the set of rational
primes that ramify in K, the ‘transpose’ Selmer group StrS(K),{ℓi}(Gm/K) defined in [BKS16,

Def. 2.6] is such that

Fitt1RK (S
tr
S(K),{ℓi}(Gm/K)) ⊆ Fitt1RK (S

tr
S(K),∅(Gm/K))

= ι#
(
Fitt1RK (SS(K),∅(Gm/K))

)
⊆ ι#

(
Fitt1RK (S{∞},∅(Gm/K))

)
= Fitt1RK (S{∞},∅(Gm/K)#)

= Fitt1RK (SK).

Here the respective inclusions are valid since the results of [BKS16, Prop. 2.4 (i), (ii), (iii)]
combine to imply the existence of surjective maps of RK-modules from StrS(K),{ℓi}(Gm/K) to

StrS(K),∅(Gm/K) and from SS(K),∅(Gm/K) to S{∞},∅(Gm/K). In addition, the first equality

follows from [BKS16, Lem. 2.8], the second equality is clear and the third equality follows from
our definition of the module SK .
The key point now is that, for every θ ∈ HomRK (UK,i, RK), the first assertion of [BKS16,
Th. 7.5] implies θ(12cK,i) belongs to Fitt1RK (S

tr
S(K),{ℓi}(Gm/K)) and hence, since K ∈ X , that

θ(12qK(cK,i)) = qK · θ(12cK,i) ∈ Fitt1RK (SK)−1 · Fitt1RK (S
tr
S(K),{ℓi}(Gm/K))

⊆ Fitt1RK (SK)−1 · Fitt1RK (SK)

⊆RK ,
as required.

To complete the proof of Theorem (1.3), it now remains to prove the second displayed equality
in said result. For this purpose it is enough to fix a dense subset X of Ω+ and show that every
element q of the intersection

(∏
K∈X Fitt1RK (SK)−1

)
∩QJΓ+K belongs to ZJΓ+K.

Now, upon fixing an arbitrary element z of I2, any such q gives rise, via Proposition (4.3), to
a system uz,q := (12zqTτ )(c) in E . In addition, the system zq ·Tτ (c) = Tτ (uz,q) belongs to Tτ (E)
and is sent by OrdQ to an element of ϖ(Z). From the injectivity of the second map in (21) we
can therefore deduce the existence of an element r of ZJΓ+K for which one has

(zqTτ )(c) = Tτ (uz,q) = r(Tτ (c)) ∈ Tτ (E).
Given the injectivity of the map in Proposition (4.3), this implies that zq = r belongs to ZJΓ+K,
and hence that q ·(I)2 ⊆ ZJΓ+K. To complete the proof of Theorem (1.3), it is therefore enough
to prove (and then apply twice) the equality

{v ∈ QJΓ+K | v · I ⊆ ZJΓ+K} = ZJΓ+K.

To do this, we take an element v = (vK)K and note that, for eachK ∈ Ω◦
+, one has vK ·IK ⊆ RK

with IK := ker{RK → Z/2Z}. Now, a direct computation shows that {a ∈ RK | a · IK ⊆ RK}
is equal to 1

2Z · TK + RK , and so we may write vK = 1
2nKTK + rK for suitable nK ∈ Z and

rK ∈ RK . Given an arbitrary field K ∈ Ω◦
+, we can then choose a quadratic extension L ∈ Ω◦

+

of K and deduce that the element

vK = πL/K(vL) = πL/K(12nLTL + rL) = πL/K(nL)TK + πL/K(rL)

belongs to RK , as required.
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(4.4) Remark. Just as in Remark (3.7) (i), the above approach can also be used to prove
‘localized’ versions of Theorem (1.3) in which Z is replaced by ZΣ for a finite set of rational
primes Σ.

4.3 Galois structures of Selmer groups

For any odd prime ℓ, there are infinitely many fields K in Ω+ for which ℓ divides both [K : Q]
and |Cl(OK)| (cf. Cornell and Washington [CW85, § 2, Cor.]). This suggests that, as K ranges
over Ω+, the structure of the ΓK-module Cl(OK) can be complicated and, as far as we are
aware, there are no general structural results about the class groups of real abelian fields.
Nevertheless, it is straightforward to deduce concrete information about the Galois structures
of Selmer groups from Theorem (1.3), as in the following result. In claim (ii) of this result we
set Z′ := Z[1/2] and M ′ := Z′ ⊗ZM for each ΓE-module M .

(4.5) Corollary. Fix a non-zero ideal I of ZJΓ+K and for K in Ω+ write IK for its image in
Z[ΓK ]. Let X be a cofinal subset of Ω+ and for each K in Ω+ write XK for the subset of X
comprising extensions of K. Then the following claims are valid.

(i) For every K in Ω+ there exist infinitely many E in XK for which at least one of the
Z[ΓE ]-modules IE · SE and SE/(IE · SE) is not cyclic.

(ii) Assume I−1 := {λ ∈ QJΓ+K : λI ⊆ Z′JΓ+K} is not equal to Z′JΓ+K. Assume also that
for all fields K in some dense subset of Ω+ the set XK contains fields whose degrees over
K are coprime. Then there are infinitely many E in X for which the Z′[ΓE ]/I

′
E-module

S ′E/(I ′E · S ′E) has no quotient that is free of rank two.

Proof. By a standard property of Fitting ideals (cf. [Nor76, § 3.1, Exer. 2]), the tautological
exact sequence 0→ IE · SE → SE → SE/(IE · SE)→ 0 implies an inclusion

Fitt1RE (IE · SE) · Fitt
0
RE

(
SE/(IE · SE)

)
⊆ Fitt1RE (SE).

In addition, if IE · SE and SE/(IE · SE) are cyclic RE-modules, then Fitt1RE (IE · SE) = RE and

Fitt0RE
(
SE/(IE · SE)) is equal to the annihilator of SE/(IE · SE) in RE and so contains IE . In

any such case therefore, the above inclusion implies that Fitt1RE (SE) contains IE .
To prove claim (i) it is enough to show each set XK contains at least one field E for which the
RE-modules IE ·SE and SE/(IE ·SE) are not both cyclic. To do this we argue by contradiction
and so assume K ∈ Ω+ is such that, for every E in XK , the RE-modules I · SE and SE/(I · SE)
are cyclic. Then, as XK is cofinal in Ω+, the above observations imply inclusions

(0) ̸= I ⊆ lim←−
E∈Ω+

IE = lim←−
E∈XK

IE ⊆
( ∏
E∈XK

Fitt1RE (SE)
)
∩QJΓ+K

and these inclusions contradict the result of Proposition (4.2).
To prove claim (ii) we set R′

E := Z′[ΓE ] and again argue by contradiction. We therefore assume,
after shrinking X if necessary, that for every E in X the R′

E/I
′
E-module S ′E/(I ′E · S ′E) has a

free quotient of rank two. In this case, for every such E, the ideal Fitt1R′
E/I

′
E

(
S ′E/(I ′E · S ′E)

)
vanishes and so Fitt1R′

E
(S ′E) ⊆ I ′E . One therefore has a chain of inclusions

Z′JΓ+K ⊊ I−1 ⊆
( ∏
E∈X

Fitt1R′
E
(S ′E)−1

)
∩QJΓ+K,

in which the first is, by assumption, strict. We now fix a dense subset X ′ of Ω+ with the stated
property. Then it is enough to show that( ∏

E∈X
Fitt1R′

E
(S ′E)−1

)
∩QJΓ+K ⊆

( ∏
E∈X ′

Fitt1R′
E
(S ′E)−1

)
∩QJΓ+K,

since this would imply that the above inclusions contradict the second displayed equality in
Theorem (1.3) with X replaced by X ′ (and taking account of Remark (4.4) (ii)). To prove this
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it suffices to fix q = (qE)E∈Ω+ in QJΓ+K with qE ∈ Fitt1R′
E
(S ′E)−1 for all E ∈ X and show that

qK belongs to Fitt1R′
K
(S ′K)−1 for every K ∈ X ′.

To do this we fix K in X ′ and fields K1 and K2 in XK of coprime degrees over K. Then,
for i ∈ {1, 2}, Lemma (4.1) implies that πKi/K,Z′(Fitt1R′

Ki

(S ′Ki)) is a submodule of Fitt1R′
K
(S ′K)

whose index is finite and divides a power of di := [Ki : K]. For any sufficiently large integer m
one therefore has

dmi · qK = dmi · πKi/K,Q(qKi) ∈ d
m
i · πKi/K,Q(Fitt

1
R′
Ki

(S ′Ki)
−1) ⊆ Fitt1R′

K
(S ′K)−1

and, since d1 and d2 are coprime, this implies qK ∈ Fitt1R′
K
(S ′K)−1, as required.

(4.6) Remark. The conditions required to apply Corollary (4.5) (ii) are satisfied in a variety
of concrete situations, such as the following.
(i) An ideal I of ZJΓ+K satisfies the stated condition if it is proper and invertible. In particular,
this is true if I is principal with a generator in QJΓ+K× \ZJΓ+K×.
(ii) A subset X of Ω+ automatically satisfies the stated condition if it is itself dense. As a
concrete example, for any function f : N→ N the set Xf = {Q(nf(n))+ : n ∈ N} is dense.
(iii) Assume I is the principal ideal generated by an odd prime p, fix a function f as in (ii) and
for each natural number n set En := Q(nf(n))+. Then the stated result implies the existence of
infinitely many n for which the ΓEn-module SEn has no quotient isomorphic to (Z/(p))[ΓEn ]

2.
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