
The equivariant Tamagawa Number Conjecture
for abelian extensions of imaginary quadratic fields

Dominik Bullach Martin Hofer

We prove the Iwasawa-theoretic version of a Conjecture of Mazur–Rubin and Sano
in the case of elliptic units. This allows us to derive the p-part of the equivariant
Tamagawa number conjecture at s = 0 for abelian extensions of imaginary quadratic
fields in the semi-simple case and, provided that a standard µ-vanishing hypothesis
is satisfied, also in the general case.

1 Introduction

The equivariant Tamagawa Number Conjecture (eTNC for short) as formulated by Burns and
Flach [BF01] (building on earlier work of Kato [Kat93a], [Kat93b] and, independently, Fon-
taine and Perrin-Riou [FPR94]) is an equivariant refinement of the seminal Tamagawa Number
Conjecture of Bloch and Kato [BK90]. It both unifies and refines a great variety of conjec-
tures related to special values of motivic L-functions such as Stark’s conjectures, the Birch and
Swinnerton-Dyer conjecture, and the central conjectures of classical Galois module theory (see
[Bur07], [Kin11], [Bur01] for more details).
The idea of deducing cases of the eTNC from a variant of the Iwasawa Main Conjecture already
appears in the original article of Bloch and Kato [BK90]. However, the necessary descent cal-
culations are particularly involved in cases where the associated p-adic L-function posseses
so-called trivial zeroes. To handle such cases, Burns and Greither [BG03] developed a descent
machinery in their proof of the eTNC for the Tate motive (h0(SpecK),Z[1

2 ][Gal(K/Q)]), where
K denotes an absolutely abelian field (the 2-part was later resolved by Flach [Fla11]). This
formalism uses the vanishing of certain Iwasawa µ-invariants, the known validity of the Gross–
Kuz’min conjecture in this setting, and a result of Solomon [Sol92] as crucial ingredients. Bley
[Ble06] later proved partial results for K an abelian extension of an imaginary quadratic field
using the same strategy and an analogue [Ble04] for elliptic units of Solomon’s result.
In [BKS17] Burns, Kurihara and Sano showed that an Iwasawa-theoretic version of a conjecture
proposed by Mazur–Rubin [MR16] and, independently, Sano [San14] constitutes an appropri-
ate conjectural generalisation of the aforementioned result of Solomon’s and therefore allows
one to extend the Burns–Greither descent formalism to provide a general strategy for proving
eTNC(h0(SpecK),Z[Gal(K/k)]), where K/k is a finite abelian extension of number fields.

In the present article, we prove the following result (see Theorem (6.1) for the precise state-
ment).

Theorem A. The Iwasawa-theoretic Mazur–Rubin–Sano Conjecture (4.10) holds for elliptic
units.

It is perhaps worth noting that Theorem A also includes the often technically difficult cases
p = 2 and p being non-split in the imaginary quadratic base field. This was not possible
only using techniques previously employed for the absolute abelian situation but is achieved
by building on new results from [BH20].
We will then use Theorem A and the formalism of Burns, Kurihara and Sano [BKS17] to deduce
new cases of the p-part of the eTNC from the relevant equivariant Iwasawa Main Conjecture.
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Theorem B. Let p be a prime number, k an imaginary quadratic field, and K/k a finite
abelian extension.

(a) If p is split in k, then eTNC(h0(SpecK),Zp[Gal(K/k)]) holds.

(b) If p is not split in k, then eTNC(h0(SpecK),Zp[Gal(K/k)]) holds if p - [K : k] or the
classical Iwasawa µ-invariant vanishes (see Theorem (6.9) for a more precise statement).

In particular, eTNC(h0(Spec(K)),Z[Gal(K/k)]) holds if [K : k] is a prime power or every
prime factor of [K : k] is split in k (see Corollary (6.10)).

The first part of Theorem B generalises work of Bley [Ble06] which only covers prime numbers
p > 2 that do not divide the class number of k. The second part of Theorem B grew out of
the second presently named author’s thesis [Hof18] and not only settles the descent problem in
this previously widely open case but also provides for a large supply of new examples in which
the eTNC is valid unconditionally. More precisely, the condition on the class number imposed
in [Ble06] meant that the unconditional validity of the eTNC was previously only known in
certain cases where k is one of only nine imaginary quadratic fields of class number one. In
contrast, Theorem B is devoid of any such restrictive hypotheses on the field k. In this regard,
Theorem B also improves on a recent result of Burns, Daoud, Seo, and the first author [Bul+21]
which does not establish the unconditional validity of eTNC in any cases, in fact not even of
certain p-parts thereof.

The proof of Theorem B (b) also requires the validity of an appropriate analogue of the Gross–
Kuz’min conjecture which is labelled condition ‘(F)’ in [BKS17]. To this end, we prove the
following general result which seems to not have previously appeared in the literature (see
Theorems (5.11) and (5.13) for the full statements). We remark that Theorem C (a) is a
generalisation of Gross’s classical result on the minus part of the aforementioned conjecture in
the setting of CM extensions of totally real fields (cf. Remark (5.7)).

Theorem C. Let K/k be an abelian extension of number fields and let p be a prime number.
If p = 2, assume that k is totally imaginary.

(a) Let χ be a non-trivial character on Gal(K/k) and let k∞/k be a Zp-extension in which
no finite place splits completely.
If p splits completely in k/Q and there is at most one finite place v of k that both ramifies
in k∞/k and is such that χ(v) = 1, then the validity of condition (F) for the Zp-extension
K · k∞ of K is implied by the validity of condition (F) for the Zp-extension k∞ of k.

(b) If k is imaginary quadratic and p does not split in k/Q, then there are infinitely many
Zp-extensions k∞ of k such that condition (F) holds for the Zp-extension K · k∞ of K

The main contents of this article are as follows. In § 2 we recall the definition of Rubin–Stark
elements and the Rubin–Stark Conjecture. In § 3 we introduce the objects and notations in
Iwasawa theory that will be used throughout most of the article, and collect useful prelim-
inary results on Iwasawa cohomology complexes and universal norms. In § 4 we recall the
Iwasawa-theoretic Mazur–Rubin–Sano Conjecture and give a more explicit reformulation of
the conjecture. In § 5 we study the Gross–Kuz’min Conjecture and condition (F), and prove
Theorem C. In § 6 we finally specialise to imaginary quadratic base fields and prove Theorems A
and B.
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An earlier version of this manuscript was circulated under the title ‘On trivial zeroes of Euler
systems for Gm’, various ideas of which have subsequently been moved to an article of Burns,
Daoud, Seo and the first author [Bul+21].

Notation Arithmetic. For any number field E we write S∞(E) for the set of archimedean places
of E, and Sp(E) for the set of places of E lying above a rational prime p. Given an extension
F/E we write Sram(F/E) for the places of E that ramify in F . If S is a set of places of E, we
denote by SF the set of places of F that lie above those contained in S. We will however omit
the explicit reference to the field in case it is clear from the context. For example, OF,S shall
denote the ring of SF -integers of F , and UF,S = Zp ⊗Z O×F,S the p-completion of its units. We
also define YF,S to be the free abelian group on SF and set

XF,S =
{ ∑
w∈SF

aww ∈ YF,S |
∑
w∈SF

aw = 0
}
.

Furthermore, if T is a finite set of finite places disjoint from S, then we let AS,T (F ) be the
p-part of the SF -ray class group mod TF , i.e. the p-Sylow subgroup of the quotient of the
group of fractional ideals of OF,S coprime to TF by the subgroup of principal ideals with a
generator congruent to 1 modulo all w ∈ TF . If S = S∞(E) or T = ∅, then we will suppress
the respective set in the notation.
For any place w of F we write ordw : F× → Z for the normalised valuation at w. In case of
a finite extension H of Qp we also write ordH for the normalised valuation on H. If F/E is
abelian and v unramified in F/E, then we let Frobv ∈ Gal(F/E) be the arithmetic Frobenius
at v. If v is a finite place of E, then we denote by Nv = |OE/v| the norm of v.

Algebra. For an abelian group A we denote by Ator its torsion-subgroup and by Atf = A/Ator

its torsion-free part. If there is no confusion possible, we often shorten the functor (−)⊗ZA to
just (−) ·A (or even (−)A) and, if A is also a Zp-module, similarly for the functor (−)⊗Zp A.

If A is finite, we denote by Â = HomZ(A,C×) its character group, and for any χ ∈ Â we let

eχ =
1

|A|
∑
σ∈A

χ(σ)σ−1 ∈ C[A]

be the usual primitive orthogonal idempotent associated to χ. Furthermore, NA =
∑

σ∈A σ ∈
Z[A] denotes the norm element of A.

If R is a commutative Noetherian ring, then for any R-module M we write M∗ = HomR(M,R)
for its dual and Fitt0

R(M) for its (initial) Fitting ideal. Let r ≥ 0 be an integer, then the r-th
exterior bidual of M is defined as ⋂r

R
M =

(∧r

R
M∗
)∗
.

If R = Z[A] for a finite abelian group A, then the exterior bidual coincides with the lattice first
introduced by Rubin in [Rub96, § 2], see [BS21, Rk. A.9] for the relation between these two
definitions. The theory of exterior biduals has since seen great development and the reader is
invited to consult, for example, [BS21, App. A] or [BD21, § 2] for an overview. At this point
we only remark that for r ≥ 1 any f ∈M∗ induces a map⋂r

R
M →

⋂r−1

R
M

which, by abuse of notation, will also be denoted by f , and is defined as the dual of∧r−1

R
M∗ →

∧r

R
M∗, g 7→ f ∧ g.

Iterating this construction gives, for any s ≤ r, a homomorphism∧s

R
M∗ → HomR

(⋂r

R
M,

⋂r−s

R
M
)
, f1 ∧ · · · ∧ fs 7→ fs ◦ · · · ◦ f1. (1)

Finally, we write Q(R) for the total ring of fractions of R.
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2 Rubin–Stark elements

Let K/k be a finite abelian extension of number fields with Galois group G := Gal(K/k) and fix
a finite set S of places of k which contains S∞(k)∪ Sram(K/k). Suppose to be given a propert
subset V ⊆ S of places which split completely in K/k and choose an ordering S = {v0, . . . , vt}
such that V = {v1, . . . , vr}. For every i ∈ {0, . . . , t} fix a place vi of the algebraic closure Q of
Q that extends vi and write wi = wK,i for the place of K induced by vi.

The Dirichlet regulator map

λK,S : O×K,S → RXK,S , a 7→ −
∑
w∈SK

log |a|w · w (2)

then induces an isomorphism

R
∧r

Z[G]
O×K,S

'−→ R
∧r

Z[G]
XK,S (3)

that will also be denoted as λK,S . If χ ∈ Ĝ and T is a finite set of places of k disjoint from S,
we moreover define the S-truncated T -modified Artin L-function as

LK/k,S,T (χ, s) =
∏
v∈T

(1− χ(Frobv)Nv
1−s) ·

∏
v 6∈S

(1− χ(Frobv)Nv
−s)−1,

where s is a complex number of real part strictly greater than 1. It is well-known that this
defines a function on the complex plane by meromorphic continuation. By [Tat84, Ch. I, Prop.
3.4], the existence of the set V ( S then implies that the order of vanishing of LK/k,S,T (χ, s)
at s = 0 is at least r. This allows us to define the r-th order Stickelberger element as

θ
(r)
K/k,S,T (0) =

∑
χ∈Ĝ

eχ · lim
s→0

s−rLK/k,S,T (χ, s) ∈ R[G].

(2.1) Definition. The r-th order Rubin–Stark element εVK/k,S,T ∈ R
∧r
Z[G]O

×
K,S is defined to

be the preimage of the element θ
(r)
K/k,S,T (0) ·

∧
1≤i≤r(wi−w0) under the isomorphism (3) induced

by the Dirichlet regulator map λK,S.

To state the p-part of the Rubin–Stark Conjecture for a prime number p we now fix an iso-
morphism C ∼= Cp that allows us to regard εVK/k,S,T as an element of Cp

∧r
Zp[G] UK,S . We also

write UK,S,T := Zp ⊗Z O×K,S,T for the p-completion of the group of (SK , TK)-units which are
defined as

O×K,S,T = ker
{
O×K,S →

⊕
w∈TK

(OK�w)×}
and will often assume that T is chosen in a way such that UK,S,T is Zp-torsion free (which is
automatically satisfied if T is non-empty)

(2.2) Conjecture. If UK,S,T is Zp-torsion free, then εVK/k,S,T belongs to
⋂r
Zp[G] UK,S,T .

(2.3) Examples. (a) (cyclotomic units) Take k = Q, S = S∞(Q) ∪ Sram(K/k), K a finite
real abelian extension of Q, and V = S∞(Q) = {v1}. If we set δT :=

∏
v∈T (1−NvFrob−1

v ),
then one has

εVK/Q,S,T = δT ·
(1

2
⊗NQ(ξm)/K(1− ξm)

)
∈ O×K,S,T ,

where m = mK is the conductor of K and ξm = ι−1(e2πi/m) for the embedding ι : Q ↪→ C

corresponding to the choice of place v1 fixed at the beginning of the section (see [Tat84,
Ch. IV, § 5] for a proof). In particular, the p-adic Rubin–Stark Conjecture (2.2) holds
for all primes p.
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(b) (Stickelberger elements) Let k be a totally real field, S = S∞(k) ∪ Sram(K/k), K a finite
abelian CM extension of k, and V = ∅. In this setting Conjecture (2.2) hold true for all
primes p due to the work of Deligne–Ribet [DR80] and the Rubin–Stark element is given
by

εVK/k,S,T = θK/k,S,T (0).

(c) (elliptic units) Let k be an imaginary quadratic field and f ⊆ Ok a non-zero ideal such
that O×k → (Ok/f)× is injective. Take S = S∞(k) ∪ Sram(K/k) ∪ {q | f}, K a finite
abelian extension of k, and V = S∞(k) = {v1}. Then the Rubin–Stark Conjecture holds
for all fields E ∈ Ω(K/k) satisfying |S| > 1 (which we may assume always to be true
after possibly enlarging f), see, for example, [Tat84, Ch. IV, Prop. 3.9]. To describe the
Rubin–Stark element in this setting, we write m = mK for the conductor of K. Let k(fm)
be the ray class field of k modulo fm and choose an auxiliary prime ideal a ( Ok coprime
to 6fm. Using the elliptic function ψ introduced by Robert [Rob92] we set

ψfm,a = ι−1(ψ(1; fm, a)) ∈ O×k(fm),S

for the embedding ι : Q ↪→ C corresponding to v1, where ψ(1; fm, a) is a common short
hand for what would be ψ(1; fm, a−1fm) in Robert’s original notation. It then follows
from Kronecker’s second limit formula, e.g. [Fla09, Lem. 2.2 e)], that

εVK/k,S,{a} = Nk(fm)/E(ψ(1; fm, a)) ∈ O×E,S,{a}.

3 Preparations in Iwasawa theory

Throughout this section we fix a number field K and a rational prime p. We suppose to be
given a finite abelian extension K/k and a Zp-extension k∞/k in which all infinite places split
completely (this is automatic if p is odd). We define K∞ := Kk∞ and write Kn for the n-
th layer of the Zp-extension K∞/K (here K0 means K). We further set Γn := Gal(Kn/K),
Γn := Gal(K∞/Kn), Gn := Gal(K/k), and

V
:= ZpJGal(K∞/k)K. In case n = 0 we suppress

any reference to n in the notation.

Moreover, we introduce the following notations and assumptions:

• S a finite set of places of k which contains S∞(k)∪Sram(K/k) and is such that not finite
place in S splits completely in k∞/k,

• Σ := S ∪ Sram(k∞/k),

• V ( Σ the subset of places which split completely in K∞/k (by our assumptions this is
a subset of S∞(k)), and r its cardinality,

• V ′ ( Σ a set of places which contains V and consists of places that split completely in
K/k and has cardinality r′,

• T a finite set of places of k which is disjoint from Σ, contains only places that do not split
completely in k∞/k, and is such that UKn,Σ,T is Zp-torsion free for all integers n ≥ 0.

We fix a labelling Σ = {v0, . . . , vt} such that V = {v1, . . . , vr} and V ′ = {v1, . . . , vr′}.

(3.1) Lemma. For any topological generator γ ∈ Γ the element γ − 1 ∈
V

is a non-zero
divisor.

Proof. Fix a splitting Gal(K∞/k) ∼= Γ′×∆ with Γ′ ∼= Zp and ∆ finite. Set L := KΓ′
∞ and write

Ln for the n-th layer of the Zp-extension K∞/L. By definition we have K∞ =
⋃
n≥0 Ln, hence

there is n such that K ⊆ Ln. That is, Ln is an intermediate field of the Zp-extension K∞/K
and therefore must agree with Km for some m. To prove the Lemma we fix a topological
generator γL ∈ Γ′. Then there is a unit a ∈ Z×p such that γap

n

L = γp
m

. The element γap
n

L − 1 is
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clearly a non-zero divisor in
V

= ZpJΓ′K[∆]. It then follows from

γap
n

L − 1 = γp
m − 1 = (γ − 1) · (1 + γ + · · ·+ γp

m−1)

that γ − 1 must be a non-zero divisor as well.

3.1 Modified Iwasawa cohomology complexes

For any finite abelian extension E/k and finite set of places M ⊇ S∞∪Sram(E/k) that is disjoint
from a second finite set of places Z, Burns-Kurihara-Sano have constructed [BKS16, Prop. 2.4] a
canonical Z-modified, compactly supported Weil-étale cohomology complex RΓc,Z((OE,M )W ,Z)
of the constant sheaf Z on the étale site of SpecOE,M . In the sequel we shall need the complex

C•E,M,Z = R HomZ(RΓc,Z((OE,M )W ,Z),Z)[−2]

as well as its p-completion D•E,M,Z := Zp⊗LZC•E,M,Z . The essential properties of these complexes

are listed in [Bur+19, Prop. 3.1]. In particular, there is a canonical isomorphism H0(D•E,M,Z) ∼=
UE,M,Z and an exact sequence

0 AM,Z(E) H1(D•E,M,Z) XM,U 0.
πE (4)

Furthermore, there are natural mapsD•Kn+1,Σ,T
→ DKn,Σ,T in the derived categoryD(Zp[Gn+1])

of Zp[Gn+1]-modules, which allow us to define the complex

D•K∞,Σ,T = R lim←−
n

D•Kn,Σ,T . (5)

(3.2) Proposition. The following claims are valid.

(a) The complex D•K∞,Σ,T is perfect as an element of the derived category D(
V

) and acyclic
outside degrees zero and one.

(b) There is a canonical isomorphism H0(D•K∞,Σ,T ) ∼= UK∞,Σ,T and an exact sequence

0 AΣ,T (K∞) H1(D•K∞,Σ,T ) XK∞,Σ 0,π (6)

where AΣ,T (K∞) := lim←−nAΣ,T (Kn) and XK∞,Σ := lim←−nXKn,Σ.

(c) There exists a finitely generated free
V

-module Π∞, a basis {b1, . . . , bd} of Π∞, and an
endomorphism φ : Π∞ → Π∞ with the following properties:

(i) The complex Π∞
φ→ Π∞ represents the class of D•K∞,Σ,T in D(

V
).

(ii) If we set Πn := Π∞⊗VZp[Gn] and write φn for the endomorphism of Πn induced by

φ, then the complex Πn
φn→ Πn represents the class of D•Kn,Σ,T in D(Zp[Gn]).

(iii) If we fix an ordering Σ = {v0, . . . , vt}, then, for any i ∈ {1, . . . , t}, the composite
map Π∞ → H1(D•K∞,Σ,T )

π→ XK∞,Σ sends bi to (wKn,i − wKn,0)n≥0.

Proof. Each complex D•Kn,Σ,T is a complex of compact Hausdorff spaces, hence the inverse
limit functor commutes with taking cohomology and so claim (b), and the second part of claim
(a), follow by taking the limit of the respective statements for the complexes D•Kn,Σ,T .
Choose a surjection

pr∞ : Π∞ � H1(D•K∞,Σ,T ),

where Π∞ is a finitely generated free
V
K-module of large enough rank d with basis {b1, . . . , bd},

such that condition (iii) of claim (c) is satisfied. If we write prn : Πn → H1(D•Kn,Σ,T ) for the
surjection induced vy pr∞, then the method of [BKS16, § 5.4] (see also [BS21, Prop. A.11 (i)])
allows us to choose a representative of D•Kn,Σ,T that is of the form [Qn → Πn] with Qn a Zp[Gn]-
projective (hence free) module. By a standard argument in representation theory, the Dirichlet
regulator (3) induces a rational isomorphism QpH

0(D•Kn,Σ,T ) ∼= QpH
1(DKn,Σ,T ), therefore we
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may identify Qn ∼= Πn by Swan’s theorem [CR81, Thm. (32.1)].
We shall now give an explicit description of the transition maps used in (5) in terms of these

fixed representatives [Πn
φn−→ Πn]. This will give rise to a representative of D•K∞,Σ,T that is

key to our study. For this purpose, we set D•n := D•Kn,Σ,T for simplicity and write γn for the

isomorphism D•n+1 ⊗LZp[Gn+1] Zp[Gn] ∼= D•n in the derived category D(Zp[Gn]). As a morphism
between perfect complexes, this map can be represented by a commutative diagram of the form

0 H0(D•n+1 ⊗L Zp[Gn]) Πn Πn H1(D•n+1 ⊗L Zp[Gn]) 0

0 H0(D•n) Πn Πn H1(D•n) 0.

H0(γn)'

φn+1

γ0
n γ1

n

prn+1

H1(γn)'

φn prn

(7)

Here φn+1 and prn+1 denote the maps induced by φn+1 and prn+1, respectively. By con-
struction, prn = H1(γn) ◦ prn+1 and so exactness of the bottom line in (7) yields that the
image of γ1

n − idΠn is contained in the image of φn. Choose a map h : Πn → Πn such that
φn ◦h = γ1

n− idΠn and set f = γ0
n−h◦φn+1, then h defines a chain homotopy between (γ0

n, γ
1
n)

and (f, id). We may therefore assume that γ1
n is the identity map. Given this, we can appeal

to the Five Lemma to deduce from (7) that γ0
n is an isomorphism as well. Finally, we may now

pass to the limit to obtain a representative [Π∞
φ−→ Π∞] of the complex D•K∞,Σ,T , as required

to prove part (i) of claim (c). In particular, the latter complex is perfect as an element of the
derived category D(

V
) and, for each n ≥ 0, the complex D•Kn,Σ,T = D•K∞,Σ,T ⊗

LV Zp[Gn] is

represented by [Πn
φn−→ Πn].

This concludes the proof of Proposition (3.2).

In summary, the complexes D•K∞,Σ,T and D•Kn,Σ,T are represented by exact sequences

0 UK∞,Σ,T Π∞ Π∞ H1(D•K∞,Σ,T ) 0
φ

(8)

and

0 UKn,Σ,T Πn Πn H1(D•Kn,Σ,T ) 0,
φn

(9)

respectively.

3.2 Universal norms

Let i ≥ 1 be an integer. We recall that in [BD21] the module of universal norms of rank i and
level n was defined as

UNi
n =

⋂
m≥n

Nt
Km/Kn

(⋂i

Zp[Gm]
UKm,Σ,T

)
⊆

⋂i

Zp[Gn]
UKn,Σ,T .

Let v be a finite place of k and fix a place w of K lying above v. Consider the map

Ordv : UKn,Σ,T → Zp[Gn], a 7→
∑
σ∈Gn

ordw(σa)σ−1. (10)

(3.3) Lemma. Let i ≥ 1 and n ≥ 0 be integers.

(a) If q denotes a prime of k that is unramified but not completely split in K∞/K, then UNi
n

is contained in the kernel of

Ordq :
⋂i

Zp[Gn]
UKn,Σ,T →

⋂i−1

Zp[Gn]
UKn,Σ,T .

(b) The natural map
⋂iV UK∞,Σ,T →

⋂i
Zp[Gn] UKn,Σ,T induces an isomorphism(⋂i

V UK∞,Σ,T
)
⊗V Zp[Gn] ∼= UNi

n.
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(c) Let χ ∈ Ĝn be a character and Qp(χ) = Qp(imχ). Then

dimQp(χ) eχQp(χ)UNi
n =

(
|Vχ|
i

)
,

where Vχ = {v ∈ S∞(k) | χ(Gn,v) = 1} and Gn,v ⊆ Gn denotes the decomposition group at
v.

Proof. By [BD21, Theorem 3.8 (c)] the module UNi
n naturally identifies with a submodule of⋂i

Zp[Gn] UN1
n, therefore it suffices to check that UN1

n is contained in the kernel of Ordq.

Let x0 ∈ UN1
n and take (xm)m≥n ∈ lim←−m UKm,Σ,T to be a norm-coherent sequence with xn as

its bottom value. Fix a place Qn of Kn lying above q. Since q is unramified and not completely
split in K∞/Kn, we can take N to be an integer big enough such that σ−1Qn is inert in
K∞/KN , where σ ∈ Gn is fixed. For every m ≥ n, let Qm be a place of Km above σ−1Qn

and denote by ordQm : UKm,Σ,T → Zp the map obtained from valuation at Qm by Zp-linear
extension. Then for any m ≥ N we have

ordQN (xN ) = ordQm(NKm/KN (xm)) = pm−N · ordQm(xm).

This shows that the valuation of xN at QN is infinitely divisible by p and so it follows that
ordQN (xN ) = 0. Hence ordQn(σxn) = 0 as well.

Assertion (b) is proved in the same way as [BD21, Thm. 3.8 (b)] by using Lemma (3.1) (b) for
the analysis of the spectral sequence (15) in loc. cit.

For part (c) we define a height-one prime ideal by p = ker{
V χ−→ Qp(χ)} and note that p 6∈ p,

hence
V

p is a discrete valuation ring (see [BKS17, § 3C1] for more details). Moreover, there is
an isomorphism

V
p�p
V

p
∼= Qp(χ)

of Zp[G]-modules. This implies, by (b), that we have an isomorphism

eχ(Qp(χ)⊗Zp UNi
n) = Qp(χ)⊗Zp[Gn] UNi

n
∼= Qp(χ)⊗V

⋂i
V UK∞,Σ,T

∼= Qp(χ)⊗Vp (
⋂t
V UK∞,Σ,T )p. (11)

It is therefore sufficient to compute the
V

p-rank of the free module (
⋂iV UK∞,Σ,T )p =

∧iV
p
(UK∞,Σ,T )p.

Since we assume that no finite place contained in Σ splits completely in k∞/k, the module
XK∞,Σ\Vχ is

V
p-torsion. Note that we also have an exact sequence

0 XK∞,Σ\Vχ XK∞,Σ YK∞,Vχ 0,

hence Q(
V

p)⊗VXK∞,Σ = Q(
V

p)⊗V YK∞,Vχ . Further, it is well-known that lim←−nAΣ,T (Kn) is
V

-torsion. Let Q(
V

p) be the total ring of fractions of
V

p, then the exact sequence (6) therefore
gives that

Q(
V

p)⊗V H1(D•K∞,Σ,T ) = Q(
V

p)⊗V YK∞,Vχ .
This combines with the exact sequence (8) to imply that

rkQ(
V

p)(Q(
V

p)⊗V UK∞,Σ,T ) = rkQ(
V

p)(Q(
V

p)⊗V H1(D•K∞,Σ,T ))

= rkQ(
V

p)(Q(
V

p)⊗V YK∞,Vχ)

= |Vχ|.
From this we deduce that

rkVp

∧i
V

p

(UK∞,Σ,T )p = rkQ(
V

p)

∧i

Q(
V

p)

(
Q(
V

p)⊗V UK∞,Σ,T
)

=

(
|Vχ|
i

)
,

as claimed.
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4 Iwasawa-theoretic congruences for Rubin–Stark elements

In addition to the notation introduced at the beginning of § 3 we also define

I(Γn) := ker
{
Zp[Γn]→ Zp

}
and IΓn := ker

{
Zp[Gn]→ Zp[G]

}
.

Note that IΓn = I(Γn) · Zp[Gn] and hence for any Zp[Gn]-module M and i ∈ N we have an
isomorphism

M ⊗Zp[Gn]
IiΓn�Ii+1

Γn

∼= M ⊗Zp I(Γn)i�I(Γn)i+1. (12)

Moreover, we have an isomorphism I(Γ) := ker{ZpJΓK → Zp} ∼= lim←−n I(Γn). In particular,
the latter ideal is generated by γ − 1 for any topological generator γ ∈ Γ, and there is an
isomorphism

I(Γ)i�I(Γ)i+1
'−→ Γ, (γ − 1)i 7→ γ.

4.1 Darmon derivatives

Suppose the p-part of the Rubin–Stark Conjecture (2.2) holds true for all extensions Kn/k and
the data (V,Σ, T ). Then [Rub96, Prop. 6.1] (see also [San14, Prop. 3.5]) implies that the family
εK∞/k,Σ,T := (εVKn/k,Σ,T )n≥0 defines an element of lim←−n∈N0

⋂r
Zp[Gn] UKn,Σ,T =

⋂rV UK∞,Σ,T .

Let W := V ′ \ V and e := |W |.

(4.1) Conjecture. One has εK∞/k,Σ,T ∈ IeΓ ·
⋂rV UK∞,Σ,T .

(4.2) Remark. (a) Variants of Conjecture (4.1) have previously appeared in the literature
in many places, with its archetypical relative being the ‘guess’ formulated by Gross for
the Euler system of Stickelberger elements [Gro88, top of p. 195]. A version for arbitrary
rank was then formulated in [Bur07], see also [San14, Conj. 4].

(b) We will see below that Conjecture (4.1) is implied by a (relevant variant of a) Iwasawa
Main Conjecture and this is indeed already well-known (see Remark (4.5) for more de-
tails). A direct proof by analytic means for the Euler system of Stickelberger elements is
given in [DS18].

(c) A containment as in the statement of Conjecture (4.1) should be thought of as an order
of vanishing statement. In fact, it can be directly linked to the order of vanishing of a
p-adic L-function in many cases.

Recall that any element a ∈
⋂rV UK∞,Σ,T is by definition a morphism a :

∧rV(UL∞,Σ,T )∗ →
V

.
In particular, im(a) is a well-defined ideal of

V
.

(4.3) Proposition. Assume that, for every n ≥ 0, the p-part of the Rubin–Stark Conjecture
holds for the extension Kn/k and the data (V, S, T ).

(a) Conjecture (4.1) holds true if one has im(εVK∞/k,Σ,T ) ⊆ Fitt0V(YK∞,W ).

(b) If W contains at most one place which ramifies in k∞/k, then Conjecture (4.1) holds
true.

Proof. Observe that we have a surjection YK∞,W � YK,W =
⊕

v∈W Zp, hence Fitt0V(YK∞,W ) ⊆
Fitt0V

(⊕
v∈W Zp

)
= IeΓ. We have an inclusion (see the proof of [BD21, Lem. 2.7 (c)]){

f(ηK∞) | f ∈
∧r
V Π∗∞

}
⊆ im(ηK∞),

therefore (
∧
i∈I b

∗
i )(ε

V
K∞/k,Σ,T

) ∈ IeΓ for any index set I ⊆ {1, . . . , d}. Since the elements of the

form
∧
i∈I bi form a

V
-basis of

∧rV Π∞, we deduce that εVK∞/k,Σ,T ∈ I
e
Γ ·
∧rV Π∞. The validity

of Conjecture (4.1) now follows from Lemma (4.4) below.

To prove (b) it now suffices to verify the inclusion assumed in (a) under the stated condition.
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The proof of [Bul+21, Lem. 6.3 (b)] shows that im(εVK∞/k,Σ,T ) is contained in Fitt0V(XK∞,Σ\V )

and so this follows from the inclusion Fitt0V(XK∞,Σ\V ) ⊆ Fitt0V(YK∞,W ) induced by the surjec-
tion XK∞,Σ\V � YK∞,W .

(4.4) Lemma. Let u ∈
⋂rV UK∞,Σ,T be a norm-coherent sequence. Then

u ∈ IeΓ ·
⋂r
V UK∞,Σ,T ⇔ u ∈ IeΓ ·

∧r
V Π∞.

Proof. By [Sak20, Lem. B.12], the exact sequence (8) induces an exact sequence

0
⋂r
V UK∞,Σ,T

∧r
V Π∞ Π∞ ⊗V

∧r−1
V Π∞,

φ
(13)

whence the implication ‘⇒’ is clear. If we now fix a topological generator γ ∈ Γ, then u =
(γ − 1)eκ for some κ ∈

∧rV Π∞ implies that

0 = φ(u) = φ((γ − 1)eκ) = (γ − 1)e · φ(κ),

hence φ(κ) = 0 since (γ − 1)e ∈
V

is not a zero divisor by Lemma (3.1) and Π∞ ⊗V
∧r−1V Π∞

is torsion-free. The exact sequence (13) thus reveals that κ ∈
⋂rV UK∞,Σ,T .

(4.5) Remark. It is expected that the family of Rubin–Stark elements εK∞/k,Σ,T gives rise to
the following higher-rank ‘Iwasawa Main Conjecture’-type ‘divisibility’ of reflexive hulls

im(εK∞/k,Σ,T )∗∗ ⊆ Fitt0V(H2
T,Iw(OK,Σ,Zp(1)))∗∗, (14)

where the T -modified Iwasawa-cohomology group H2
T,Iw(OK,Σ,Zp(1)) (see, for example, [BD21,

§ 3.1] for a definition) sits in a short exact sequence

0 lim←−
n

AΣ,T (Kn) H2
T,Iw(OK,Σ,Zp(1)) XK∞,Σ\V 0. (15)

Our assumption V ′ ( Σ therefore implies that we have a surjection H2
T,Iw(OK,Σ,Zp(1)) �

YK∞,W and so it follows from (14) that im(ηK∞)∗∗ ⊆ Fitt0V(YK∞,W )∗∗ = Fitt0V(YK∞,W ). This
shows that the inclusion assumed in Proposition (4.3) (a) would be a consequence of one divis-
ibility in a relevant Iwasawa Main Conjecture.

(4.6) Definition. Assume Conjecture (4.1) holds. The (Iwasawa-theoretic) Darmon deriv-
ative of εK∞/k,Σ,T with respect to a topological generator γ ∈ Γ is the bottom value κ0 of the
unique norm-coherent sequence κ = (κn)n with the property (γ − 1)e · κ = εK∞/k,Σ,T .

(4.7) Remark. (a) If k = Q (in which case the appearing Rubin–Stark elements are cyc-
lotomic units, see Example (2.3) (a)), the notion of Darmon derivative recovers the
element considered by Solomon in [Sol92] (cf. the proof of Proposition (4.12) below).
Lemma (3.3) (a) moreover provides an easy proof for the analogue of [Sol92, Prop. 2.2 (i)],
namely that the valuation of κ0 at a prime coprime to p is almost always trivial. In con-
trast, we will see later that, as first observed by Solomon, the valuation of κ0 at a prime
above p can encode important arithmetic information.

(b) The question if the Darmon derivative κ0 vanishes is related to information about class
groups. To explain this in a little more detail, we assume ‘the higher-rank Iwasawa Main
Conjecture’ formulated by Burns, Kurihara, and Sano in [BKS17, Conj. 3.1] holds true.
One can then show that

er′Qp[G]⊗Zp[G] (AΣ,T (K∞))Γ = 0 ⇔ κ0 6= 0,

where er′ :=
∑

χ eχ is the sum over all primitive orthogonal idempotents eχ associated

with characters χ ∈ Ĝ for which one has eχε
V ′

K/k,Σ,T 6= 0. That is, under condition (F)

(see (5.3)) the containment in Conjecture (4.1) is ‘optimal’.
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(c) Our terminology follows [BKS19] where an element defined via a closely related construc-
tion is referred to as the Iwasawa-Darmon derivative (see [BKS19, Def. 4.6]). This points
to Darmon [Dar95] who first interpreted this construction as a derivative process (see
also the discussion in [San14, Rk. 4.8]).

4.2 The conjecture of Mazur–Rubin and Sano

Recall that by [Bul+21, Lem. 2.7] (see also [San14, Lem. 2.11]) for every n ∈ N there is an
isomorphism ⋂r

Zp[G]
UK,Σ,T

'−→
(⋂r

Zp[Gn]
UKn,Σ,T

)Γn
⊆
⋂r

Zp[Gn]
UKn,Σ,T

which gives rise to an injection

νn :
(⋂r

Zp[G]
UK,Σ,T

)
⊗Zp I(Γn)e�I(Γn)e+1 ↪→

(⋂r

Zp[Gn]
UKn,Σ,T

)
⊗Zp Zp[Γn]�I(Γn)e+1.

We note that this injection satisfies

νn(Nr
Gal(Kn/K)a⊗ x) = (NGal(Kn/K)a)⊗ x (16)

for any a ∈
⋂r
Zp[Gn] UKn,Σ,T and x ∈ I(Γn)e/I(Γn)e+1, see [San14, Rk. 2.12]. Finally, we define

Darmon’s twisted norm operator

Nn :
⋂r

Zp[G]
UKn,Σ,T →

(⋂r

Zp[G]
UK,Σ,T

)
⊗Zp Zp[Γn]�I(Γn)e+1, a 7→

∑
σ∈Γn

σa⊗ σ−1.

(4.8) Lemma. Fix a topological generator γ ∈ Γ and let u, κ ∈
⋂rV UK∞,Σ,T be norm-coherent

sequences satisfying u = (γ − 1)eκ. Then we have

Nn(un) = νn(κ0 ⊗ (γ − 1)e) for all n ∈ N.

Proof. We calculate:

Nn(un) = Nn((γ − 1)eκn)

=
∑
σ∈Γn

σ(γ − 1)eκn ⊗ σ−1

=
∑
σ∈Γn

σκn ⊗ σ−1(γ − 1)e

=
∑
σ∈Γn

σκn ⊗ (γ − 1)e

= (NGal(Kn/K)κn)⊗ (γ − 1)e.

Here the third equality from the bottom is obtained by reparametrising the sum and the
penultimate equality follows from

σ−1(γ − 1)e − (γ − 1)e = (σ−1 − 1)(γ − 1)e ≡ 0 mod I(Γn)e+1.

The property (16) then yields

νn(κ0 ⊗ (γ − 1)e) = νn(Nr
Kn/K

(κn)⊗ (γ − 1)e) = (NGal(Kn/K)κn)⊗ (γ − 1)e.

and this finishes the proof of the Lemma.

(4.9) Remark. Lemma (4.8) implies that, in particular, the element κ0⊗(γ−1)e ∈
⋂r
Zp[G] UK,Σ,T⊗Zp

I(Γ)e/I(Γ)e+1 does not depend on the choice of topological generator γ if u is fixed.

Let v ∈ W and recall that we have fixed a place w of K above v. Denote by Γw the decom-
position group of w inside Γ and write

recw : K× ↪→ K×w → Γw ⊆ Γ
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for the local reciprocity map at w, where Kw denotes the completion of K at w. Consider the
map

Recv : K× → IΓ�I2
Γ
, a 7→

∑
σ∈G

(recw(σa)− 1)σ−1,

which by [San14, Prop. 2.7] and (12) induces the map

RecW =
∧
v∈W

Recv :
⋂r′

Zp[G]
UK,Σ,T →

(⋂r

Zp[G]
UK,Σ,T

)
⊗Zp I(Γ)e�I(Γ)e+1. (17)

In addition, we define an idempotent er ∈ Qp[G] as the sum of all primitive orthogonal idem-

potents eχ for characters χ ∈ Ĝ such that eχQp(χ)UK,Σ\W,T has Qp(χ)-dimension r.
With this notation in place, there is an isomorphism

OrdW =
∧
v∈W

Ordv : erQp
⋂r′

Zp[G]
UK,Σ,T

'−→ erQp
⋂r

Zp[G]
UK,Σ\W,T ,

where Ordv is the map defined in (10), see [Rub96, Lem. 5.1].

(4.10) Conjecture (Iwasawa-theoretic Mazur–Rubin–Sano). Assume that, for all n ≥ 0, the
p-part of the Rubin–Stark Conjecture (2.2) holds for the extension Kn/k and the data (V,Σ, T ).
Then, there exists an element

k = (kn)n∈N0 ∈
(⋂r

Zp[G]
UK,Σ,T

)
⊗Zp I(Γ)e�I(Γ)e+1

=

(⋂r

Zp[G]
UK,Σ,T

)
⊗Zp lim←−

n

I(Γn)e�I(Γn)e+1

such that νn(kn) = Nn(εVKn/k,Σ,T ) for all n, and

k = (−1)re · RecW (εV
′

K/k,Σ,T ),

where the equality takes place in Qp

(⋂r
Zp[G] UK,Σ,T

)
⊗Zp I(Γ)e/I(Γ)e+1.

(4.11) Remark. (a) The above conjecture is taken from [BKS17, Conj. 4.2] and is an
Iwasawa-theoretic version of a conjecture that was independently proposed by Mazur–
Rubin [MR16] and Sano [San14]. The latter of which, in turn, unify the central conjec-
tures in [Bur07] and [Dar95].

(b) Conjecture (4.10) is known in the following cases:

• k = Q and K is totally real, in this case the conjecture follows from a classical result
of Solomon [Sol92] (see [BKS17, Thm. 4.10]),

• k is totally real and K is CM, in this case the conjecture follows from the validity of
the Gross–Stark conjecture that has been settled by Dasgupta, Kakde and Ventullo
in [DKV18] (see [BKS17, Thm. 4.9]).

In the remainder of this section we will give a more explicit version of Conjecture (4.10) in
cases where Conjecture (4.1) holds true.

(4.12) Proposition. The following assertions are equivalent:

(i) Conjecture (4.10) is valid for the data (k∞/k,K, S, T, V
′),

(ii) Conjecture (4.1) holds for (k∞/k,K, S, T, V
′) and we have an equality

κ0 ⊗ (γ − 1)e = (−1)re · RecW (εV
′

K/k,Σ,T ), (18)

where κ0 denotes the Darmon derivative of εK∞/k,Σ,T with respect to a fixed topological
generator γ ∈ Γ.
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Proof. Let us first assume that statement (ii) holds. In light of Lemma (4.8), the element
k = (kn)n given by kn = νn(κ0 ⊗ (γ − 1)e) ∈

(⋂r
Zp[Gn] UKn,Σ,T

)
⊗Zp I(Γn)e/I(Γn)e+1 satisfies

the requirements of Conjecture (4.10).

Conversely, suppose that Conjecture (4.10) holds true for η. By assumption νn(kn) = Nn(ηKn)
for all n, so it follows from [BKS16, Prop. 4.17] that εVKn/k,Σ,T ∈ I

e
Γn
·
∧r
Zp[Gn] Πn. Thus, we can

write εVKn/k,Σ,T = (γ − 1)exn for some xn ∈
∧r
Zp[Gn] Πn. The element xn defines a unique class

modulo
(∧r

Zp[Gn] Πn

)Γn , hence (xn)n is a norm-compatible sequence modulo these modules.
Observe that in the commutative diagram of transition maps

0
∧r

Zp[G]
Π0

∧r

Zp[Gn+1]
Πn+1

(∧r

Zp[Gn+1]
Πn+1

)
�
(∧r

Zp[Gn+1]
Πn+1

)Γn+1 0

0
∧r

Zp[G]
Π0

∧r

Zp[Gn]
Πn

(∧r

Zp[Gn]
Πn

)
�
(∧r

Zp[Gn]
Πn

)Γn 0

NKn+1/Kn

the vertical map on the left is multiplication by p. Taking inverse limits (these are all finitely
generated Zp-modules, so compact and therefore taking limits is exact), we get an isomorphism

lim←−
n≥0

∧r

Zp[Gn]
Πn
∼= lim←−

n≥0

(∧r
Zp[Gn] Πn

)
�(∧r

Zp[Gn] Πn

)Γn .
Consequently, the family (xn)n≥0 can be regarded as an element of lim←−n≥0

∧r
Zp[Gn] Πn =

∧rV Π.

By construction, we have

(γ − 1)e · (xn)n = (ηK∞,n)n ∈
⋂r
V UK∞,Σ,T .

and Lemma (4.4) gives (xn)n ∈
⋂rV UK∞,Σ,T .

For the second part of (ii) it suffices to note that Lemma (4.8) now implies that for n big
enough we have

νn(x0 ⊗ (γ − 1)e) = Nn(εVKn/k,Σ,T ) = νn(kn),

so x0 ⊗ (γ − 1)e = kn by the injectivity of νn.

The appearance of Ord−1
W in (18) suggests the application of the map OrdW to said equation.

This is possible in cases where r ≥ e and we summarise this observation in the following
Lemma.

(4.13) Lemma. Assume that r ≥ e. The equality (18) holds if and only if the equality

OrdW (κ0)⊗ (γ − 1) = (−1)e · RecW (εVK,Σ\W,T ), (19)

holds in Qp

(⋂r−1
Zp[G] UK,Σ\W,T

)
⊗Zp I(Γ)/I(Γ)2.

Proof. Let us first show that each side of the conjectural equality (18) can be considered as an
element of the module

eS∞,rCpUNr
0 ⊗Zp I(Γ)�I(Γ)2,

where eS∞,r :=
∑

χ eχ with χ ranging over all characters such that |Vχ| = r for the set Vχ defined
in Lemma (3.3) (c). As of the left hand side of (18), it suffices to prove that κ0 is contained
in eS∞,rQpUNr

0 and this will follow (by means of the isomorphism (11)) if we can show that

κ = (κn)n is not supported at any height-one prime ideal p of
V

of the form ker{
V χ→ Qp(χ)}

for a character χ such that |Vχ| > r. To this end, we recall that, by Lemma (3.1), γ − 1 is a
non-zero divisor in

V
and, also, that one has

V
p · εK∞/k,Σ,T =

V
p · (NKn/Kχ,n(εVKn/k,Σ,T ))n =

V
p · (εVKχ,n/k,Σ,T )n = 0,
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where Kχ,n := Kχkn with Kχ the kernel field of χ and the last equality holds because by
assumption more than r places split completely in Kχ,n/k. This shows the claim for the left
hand side of (18).
If erRecW is the zero map, then, since εVK,Σ\W,T belongs to the er-component, this is also clear

for the right hand side of (18). If eχRecW is not the zero map for some primitive orthogonal
idempotent eχ appearing as a summand of er, then [BKS16, Lem. 4.2] shows that the map

Recp,χ : eχQp(χ)UK,Σ,T → Qp(χ)⊗Zp I(Γ)�I(Γ)2, a 7→
∑
σ∈G

χ(σ)⊗ (recp(σ
−1a)− 1)

is surjective. Now, eχQp(χ)UN1
0 is contained in ker Recp,χ and comparing dimensions (using

Lemma (3.3) (c)) gives eχQp(χ)UN1
0 = ker Recp,χ. By [BKS16, Lem. 4.2] we then have

im
{
eχQp(χ)

∧r′

Zp[G]
UK,Σ,T

RecW−→ eχQp(χ)
∧r

Zp[G]
UK,Σ,T ⊗Zp I(Γ)�I(Γ)2

}
= eχQp(χ)

∧r

Zp[G]
UN1

0 ⊗Zp I(Γ)�I(Γ)2 = eχQp(χ)UNr
0 ⊗Zp I(Γ)�I(Γ)2,

where the second equality is by [BD21, Thm. 3.8 (c)]. This finishes the proof of the claim for
right hand side of (18).

By scalar extension, the map OrdW induces a map(
Cp
∧r

Zp[G]
UN1

0

)
⊗Zp I(Γ)�I(Γ)2 →

(
Cp
∧r−1

Zp[G]
UN1

0

)
⊗Zp I(Γ)�I(Γ)2 (20)

which we also denote by OrdW . Since OrdW is injective on eS∞,rCpUNr
0 by Lemma (4.14) below

and I(Γ)/I(Γ)2 ∼= Γ is isomorphic to Zp, the map (20) is injective on the eS∞,r-component as
well. Thus, the equation (18) holds if and only if

OrdW (κ0)⊗ (γ − 1) = (OrdW ◦ RecW )(εV
′

K/k,Σ,T )

holds. Now, by virtue of (1) being a homomorphism, we have

OrdW ◦ RecW = (−1)e
2 · (RecW ◦OrdW ) = (−1)e · (RecW ◦OrdW )

and so the Lemma follows by combining this with the fact that

OrdW (εV
′

K/k,Σ,T ) = (−1)er · εVE/k,Σ\W,T , (21)

which holds by [San14, Prop. 3.6].

(4.14) Lemma. Assume r ≥ e. The map OrdW restricts to an injection

OrdW : eS∞,rCpUNr
0 ↪→ Cp

∧r−1

Zp[G]
UK,Σ\W,T .

Proof. Let χ ∈ Ĝ be a character such that eχ is a summand of eS∞,r which, by Lemma (3.3) (c),
implies that eχQp(χ)UN1

0 has Qp(χ)-dimension r. Thus,

eχ(
⊕
p∈W

Ordp) : eχQp(χ)UN1
0 → eχQp(χ)YK,W ∼=

⊕
p∈W

Qp(χ)

is a map of r-dimensional Qp(χ)-vector spaces. Now, by [BD21, Thm. 3.8 (c)], we have
CpUNr

0 = Cp
∧r
Zp[G] UN1

0 and this combines with the previous discussion and [BKS16, Lem.

4.2] to imply that the Lemma will follows if we can prove that the map eχ(
⊕

p∈W Ordp) is
surjective.
Let p be a place in W and choose an integer n such that p is totally ramified in K∞/Kn. Fix
a prime Pn of Kn lying above p and, for m ≥ n, write Pm for the unique prime of Km lying
above Pn. If h denotes the class number of Kn, then Ph

n is a principal ideal generated by x,
say. We then have NKm/Kn(Pm) = Pn for all m ≥ n, hence NKn/K(x) ∈ NKm/K(O×Km,Σ) for
all integers m ≥ 0. By a standard compactness argument (see, for example, [BD21, Lem. 3.10])
we therefore have NKn/K(x) ∈ QpUN1

0.
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By construction, NKn/K(x) is a generator of the ideal (Pn∩OK)hf , where f is the residual de-
gree of p inKn/K. From this we see that the image of NKn/K(x) under the map eχ(

⊕
p∈W Ordp)

generates the copy of Qp(χ) for p. Since p was chosen to be an arbitrary place in W , this proves
the Lemma.

5 The Gross–Kuz’min conjecture and condition (F)

In this section we will investigate a conjecture due to Gross [Gro81] and, independently,
Kuz’min [Kuz72].

5.1 Coinvariants of class groups

We resume the notation of § 3. In particular, k∞/k denotes a Zp-extension in which no finite
place contained in Σ splits completely, K∞ = Kk∞ and

AM,T (K∞) = lim←−
n≥0

AM,T (Kn) for any M ⊇ S∞(k).

If M = S∞(k) or T = ∅, we will suppress the respective set in the notation.

(5.1) Conjecture (Gross–Kuz’min). If Kcyc
∞ /K is the cyclotomic Zp-extension, then the mod-

ule of Γ-coinvariants (AΣ(Kcyc
∞ ))Γ is finite.

(5.2) Remark. (a) It is necessary to work with Σ-class groups in this context because in
general it is not true that the Γ-coinvariants of A(Kcyc

∞ ) are finite (see [Kol91, Prop. 1.17]
and [Gre73, Prop. 2] for examples). However, it is known to be true if there is only one
prime above p in K or K is totally real and Leopoldt’s conjecture holds for K.

(b) We remind the reader that for any finitely generated ZpJΓK-module M the module MΓ

is finite if and only if MΓ is finite (see, for example, [CS06, App. A.2, Prop. 2]). Conjec-
ture (5.1) can therefore also formulated as the statement that (AΣ(Kcyc

∞ ))Γ is finite.

We follow Burns, Kurihara and Sano in considering the following condition which is motivated
by the above Conjecture of Gross–Kuz’min and plays a crucial role in their descent formalism
(see [BKS17, Thm. 5.2]).

(5.3) Condition (F). The Zp-extension K∞/K is such that the module of Γ-coinvariants
(AΣ(K∞))Γ is finite.

(5.4) Remark. The validity of condition (F) is known in the following important cases (see
also [HK21, § 2] for an overview of further results):

(a) If k = Q, then Conjecture (5.1) is (implicitly) proved by Greenberg [Gre73].

(b) If there is exactly one prime of K that ramifies in K∞/K, then condition (F) is a con-
sequence of Chevalley’s ambiguous class number formula (cf. [Kle19, Ex. 2.7]).

(c) If |Sp(K)| ≤ 2 and K∞ is the cyclotomic Zp-extension of K, then the validity of Conjec-
ture (5.1) follows from (b) and a result of Kleine [Kle19, Thm. B].
Said result of Kleine hinges upon the following fact (see the proof of [Kle19, Lem. 3.5]):
Let N/Q be a normal extension and suppose that x ∈ ON,Sp(N) is such that we have
logp NNp/Qp(x) = 0 for all p ∈ Sp(N). Then the valuation ordp(x) is the same for all
p ∈ Sp(N).
However, the proof of this assertion given in loc. cit. contains an inaccuracy and we there-
fore take the opportunity to provide a better argument. Let p0 ∈ Sp(N) be such that
n := ordp0(x) is minimal among {ordp(x) | p ∈ Sp(N)}. Write ep for the ramification
degree of N/Q at p, then xepp−n is a unit at p0 and integral at any other finite place of
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N . By assumption logp NNp0/Qp
(x) = 0, hence also logp NNp0/Qp

(xepp−n) = 0 and we can

find an integer m ≥ 0 such that NNp0/Qp
(xepp−n)m = 1. Let Gp0 ⊆ Gal(N/Q) be the

decomposition group at p0 and set M = NGp0 . Then we have

NNp0/Qp
(xmepp−mn) = NN/M (xmepp−mn) = 1,

so xmepp−mn is a unit in ON and it follows that

ordp(x
mepp−mn) = 0 ⇔ ordp(x) = n

for all p ∈ Sp(N). This finishes the proof of the claim.

(d) Suppose that condition (F) holds for a fixed Zp-extension K∞ of K. Kleine has proved
[Kle17, Cor. 3.6] that there exists an integer n0 ≥ 1 such that condition (F) also holds
for all Zp-extensions K ′∞ of K with the following property: The n-th layers K ′n and Kn

agree for all n ≥ n0, and Sram(K ′∞/K) ⊆ Sram(K∞/K).

In § 5.3 we will prove condition (F) in new instances.

(5.5) Lemma. The following hold:

(a) (AΣ,T (K∞))Γ is finite if and only if (AΣ(K∞))Γ is finite.

(b) If Σ′ is a finite set of places of k which contains S∞(k) ∪ Sram(K∞/K) and is such that
Σ′ ⊆ Σ, then (AΣ,T (K∞))Γ is finite as soon as (AΣ′,T (K∞))Γ is. If no place in Σ \ Σ′

splits completely in K∞/K, then the converse is true as well.

Proof. The exact sequence

F×TKn
:=

⊕
w∈TKn

(OKn�w)× AΣ,T (Kn) AΣ(Kn) 0

implies that it is sufficient to show that the module lim←−nF
×
TKn

has finite ΓK-coinvariants

in order to prove (a). Now taking the limit of the exact sequences (which are obtained as
representatives of the complexes

⊕
v∈T RΓf (Kv, IndGkGKn

(Zp(1))), see [BF01, (19)])

0
⊕
v∈T

Zp[GKn ]
⊕
v∈T

Zp[GKn ] F×TKn
0

(1−Nv−1·Frobv)v
(22)

gives an exact sequence

0
⊕
v∈T

V ⊕
v∈T

V
lim←−
n

F×TKn
0. (23)

By taking Γ-coinvariants of (23) we obtain the exact sequence⊕
v∈T

Zp[G]
⊕
v∈T

Zp[G]
(

lim←−
n

F×TKn

)
Γ

0.
1−Nv−1·Frobv

Comparing with (22), we deduce that
(

lim←−nF
×
TKn

)
Γ

= F×TK . In particular, said module is
finite.

The first part of (b) is clear since AΣ,T (K∞) is a quotient of AΣ′,T (K∞). For the second part
we note that the assumption implies that any place v ∈ Σ \ Σ′ is inert in Km/Kn for big
enough integers n,m ≥ 0. It follows that the norm map AΣ′,T (Km) → AΣ′,T (Kn) induces
multiplication by pm−n on the class [v]. Thus, we must have AΣ′,T (K∞) = AΣ,T (K∞) and this
proves the claim.

In the sequel, for any finite set M of places of k, we set

rM (χ) =

{
|{v ∈M | χ(Gv) = 1}| if χ 6= 1,

|M | − 1 if χ = 1.
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Here Gv ⊆ G denotes the decomposition group at v.

We are now in a position to state the main result of this subsection.

(5.6) Theorem. For any character χ ∈ Ĝ such that rΣ(χ) = r′ the following assertions are
equivalent.

(i) The module eχQp(χ)AΣ,T (K∞)Γ vanishes.

(ii) The map ⊕
v∈W

Recv,χ : eχQp(χ)UK,Σ,T → eχQp(χ)YK,W ⊗Zp I(Γ)�I(Γ)2,

a 7→ eχ
∑
v∈W

∑
σ∈G

χ(σ)w ⊗
(
recw(σ−1a)− 1

)
is surjective.

(iii) The map

RecW : eχQp(χ)
∧r′

Zp[G]
UK,Σ,T → eχQp(χ)

∧r

Zp[G]
UK,Σ,T ⊗Zp I(Γ)e�I(Γ)e+1

defined in (17) is non-zero (equivalently, injective).

The proof of this result will be given in § 5.2.

(5.7) Remark. If K∞/K is the cyclotomic Zp-extension, then the equivalence (i) ⇔ (ii) in
Theorem (5.6) is already known due to [Kol91, Thm. 1.14]. In general, the implication (i) ⇒
(iii) is proved in [BKS17, § 5B].
If K is a CM extension of a totally real field k and χ is totally odd, then (iii) is equivalent to the
non-vanishing of the Gross regulator. In this setting, Gross has proved in [Gro81, Prop. 1.16]
that condition (iii) holds if there is at most one prime p of k above p such that χ(p) = 1.

We end this subsection by recording the following technical observation that will prove useful
in applications of Theorem (5.6).

(5.8) Lemma. Let χ ∈ Ĝ be a character and write Kχ for the subfield of K cut out by the
character χ. The following assertions are equivalent:

(i) eχQp(χ)AΣ,T (K∞)Γ = 0,

(ii) eχQp(χ)AΣ,T (Kχ,∞)Γχ = 0.

Here Γχ = Gal(Kχ,∞/Kχ) denotes the Galois group of the Zp-extension Kχ,∞ of Kχ.

Proof. Let m be such that K ∩ Kχ,∞ = Kχ,m and write H for Gal(K/Kχ,m), which we can
identify with Gal(K∞/Kχ,∞) and therefore view as a subgroup of Gal(Kχ,∞/k). Observe that
the norm maps NKn/Kχ,n+m

: AΣ,T (Kn)→ AΣ,T (Kχ,n+m) induce a map

NK∞/Kχ,∞ : AΣ,T (K∞)→ AΣ,T (Kχ,∞)

which factors as

AΣ,T (K∞) AΣ,T (K∞)H

AΣ,T (Kχ,∞)

·NH

NK∞/Kχ,∞
i

where i is the natural map induced by the inclusions Kχ,n ⊆ Kn. Define a height-one prime

ideal of
V

as p = ker{
V χ−→ Zp[imχ]}.

We have χ(NH) = |H| 6= 0, hence NH ∈
V×

p and so multiplication by NH (which is the same
as i ◦ NK∞/Kχ,∞) becomes an isomorphism. Moreover, the composite NK∞/Kχ,∞ ◦ i coincides
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with multiplication by |H| and is therefore also bijective after localisation at p. It follows that
NK∞/Kχ,∞ induces an isomorphism(

AΣ,T (K∞)
)
p

'−→
(
AΣ,T (Kχ,∞)

)
p
.

Now, we have an isomorphism of
V

-modules
V

p/p
V

p
∼= eχQp(χ) and thus obtain

eχQp(χ)⊗Zp[G] AΣ,T (K∞)Γ
∼=
V

p�p
V

p ⊗
V AΣ,T (K∞)

∼=
V

p�p
V

p ⊗
V AΣ,T (Kχ,∞)

∼=
V

p�p
V

p ⊗Zp[Gχ]

(
Zp[Gχ]⊗V AΣ,T (Kχ,∞)

)
∼= eχQp(χ)⊗Zp[Gχ] AΣ,T (Kχ,∞)Γχ ,

thereby proving the Lemma.

5.2 Computation of Bockstein homomorphisms

To prove Theorem (5.6) we will perform a computation of Bockstein maps as in [BKS17, § 5B]
(see also [Bur07, § 10]). The Bockstein homomorphism at level n is defined as the map

βn : UK,Σ,T → H1(D•Kn,Σ,T )⊗Zp I(Γn)→ H1(D•K,Σ,T )⊗Zp I(Γn)�I(Γn)2,

where the first arrow is the connecting homomorphism arising from the exact triangle

D•Kn,Σ,T ⊗Zp[Gn] IΓn D•Kn,Σ,T D•Kn,Σ,T ⊗Zp[Gn] Zp[G] .

By taking the limit over n, we obtain a map

β∞ : UK,Σ,T → H1(D•K,Σ,T )⊗Zp lim←−
n

I(Γn)�I(Γn)2 ∼= H1(D•K,Σ,T )⊗Zp I(Γ)�I(Γ)2 (24)

that is identified with the map

UK,Σ,T
δ′→ H1(D•K∞,Σ,T )⊗Zp I(Γ)→ H1(D•K,Σ,T )⊗Zp I(Γ)�I(Γ)2,

where the map δ′ is the connecting homomorphism induced by the triangle

D•K∞,Σ,T ⊗V IΓ D•K∞,Σ,T D•K∞,Σ,T ⊗V Zp[G] .

To make the definition of β∞ more explicit we now fix a topological generator γ ∈ Γ and note
that this choice gives rise to an identification of the above triangle with the triangle induced
by multiplication by γ − 1. In particular, it allows to view δ′ as the boundary homomorphism
δ arising from an application of the snake lemma to the following commutative diagram:

0

H0(D•Kn,Σ,T )

0 Π∞ Π∞ Π0 0

0 Π∞ Π∞ Π0 0

H1(D•K∞,Σ,T )

0

φ

·(γ−1)

φ φ0
·(γ−1)

Using that (UK∞,Σ,T )Γ
∼= UN1

0, the snake lemma also shows that this boundary map δ fits into
the exact sequence

0 UN1
0 UK,Σ,T H1(D•K∞,Σ,T )Γ 0.δ (25)
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Our fixed choice of topological generator γ ∈ Γ also induces an isomorphism I(Γ)/I(Γ)2 ∼= Zp,
hence β∞ can be identified with the composite map

UK,Σ,T
δ−→ H1(D•K∞,Σ,T )Γ ⊆ H1(D•K∞,Σ,T )→ H1(D•K∞,Σ,T )Γ

∼= H1(D•K,Σ,T ). (26)

(5.9) Lemma. Let v ∈ Σ and recall that we have previously fixed a place w of K lying above
v. The composite map

βw : UK,Σ,T
β∞−→ H1(D•K,Σ,T )⊗Zp I(Γ)�I(Γ)2

πK→ XK,Σ ⊗Zp I(Γ)�I(Γ)2

w∗−→ Zp[G]⊗Zp I(Γ)�I(Γ)2

is zero if v ∈ V , and coincides with Recv if v ∈ W . Here we have used the map πK appearing
in (4) and the notation w∗ for the Zp[G]-linear dual of w considered as an element of YK,Σ.

Proof. This follows immediately from the corresponding results on βn, see [BKS16, Lem. 5.20
and Lem. 5.21].

Proof (of Theorem (5.6)): The assumption rΣ(χ) = r′ implies that, if χ is non-trivial, we have
χ(v0) 6= 1. We therefore have an isomorphism

eχQpYK,V ′ → eχQpXK,Σ, eχ ·
∑
v∈V ′

avw 7→ eχ ·
∑
v∈V ′

av(w − w0).

Write α for the natural map H1(D•K∞,Σ,T ) → H1(D•K∞,Σ,T )Γ
∼= H1(D•K,Σ,T ). By (26) and

Lemma (5.9), the map in (ii) then coincides with the composite

eχβ∞ : eχQp(χ)UK,Σ,T
δ−→ eχQp(χ)H1(D•K∞,Σ,T )Γ

α−→ eχQp(χ)H1(D•K,Σ,T )
πK∼= eχQp(χ)YK,V ′ ,

and actually has image inside eχQp(χ)YK,W . The first map δ is already surjective in any case
by the exact sequence (25), so the above composite map surjects onto eχQp(χ)YK,W if and only
if α does.
Now, we have a commutative diagram

eχQp(χ)H1(D•K∞,Σ,T )Γ eχQp(χ)H1(D•K,Σ,T )

eχQp(χ)Y Γ
K∞,V ′ eχQp(χ)YK,V ′

α

πK,∞ πK'

f
(27)

where the map f is induced by

Y Γ
K∞,V ′ → YK,V ′ ,

r′∑
i=1

(an,i · wKn,i)n 7→
r′∑
i=1

a0,i · wK,i (28)

via extension of scalars. Observe that YK∞,V is a ZpJΓK-projective direct summand of YK∞,V ′ .
Given this, we have Y Γ

K∞,V ′
= Y Γ

K∞,W
. We now claim that the map in (28) embeds Y Γ

K∞,W

with finite index into YK,W .
To do this, we write li for the index of the decomposition group of wi inside Γ. For 1 ≤ i ≤ r′,
each wi splits completely in K/k and hence Kli coincides with the decomposition field of wi
inside the extension K∞/k. It follows that

Y Γ
K∞,W

∼=
( r′⊕
i=r+1

Zp[Gli ]
)Γ

=
r′⊕

i=r+1

Zp[Gli ]
Γ =

r′⊕
i=r+1

Zp[Gli ]
Γli
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As a consequence, the map (28) is given by

Y Γ
K∞,W

∼=
r′⊕

i=r+1

Zp[Gli ]
Γli −→

r′⊕
i=r+1

Zp[Gli ]Γli
∼=

r′⊕
i=r+1

Zp[G] ∼= YK,W ,

where the middle arrow is the natural projection map. Since, for each i, the cokernel of the
map Zp[Gli ]

Γli → Zp[Gli ]Γli is annihilated by pli = |Γli |, this shows the claim. It follows that

the map f in (27) maps eχQp(χ)Y Γ
K∞,W

isomorphically onto eχQp(χ)Y Γ
K,W and, because the

image of πK ◦α is contained in eχQp(χ)YK,W , we are therefore reduced to the question of when
the map labelled πK,∞ in the diagram (27) is surjective. From the exact sequence (6) we obtain
the exact sequence

0 (AΣ,T (K∞))Γ H1(D•K∞,Σ,T )Γ (XK∞,Σ)Γ,
πK,∞

(29)

hence πK,∞ is surjective (in fact, an isomorphism) after extending scalars to eχQp(χ) if and
only if eχQp(χ)(AΣ,T (K∞))Γ = 0. This establishes (i) ⇔ (ii).

As note above, we can identify the map eχβ∞ with the map
⊕

v∈W Recv,χ that appears in state-
ment (ii) of Theorem (5.6). By construction kerβ∞ contains UN1

0. Thus, eχQp(χ) kerβ∞ has di-
mension at least r by Lemma (3.3) (c). As a consequence, the exterior power eχQp(χ)

∧r
Zp[G] kerβ∞

is non-zero and so the equivalence (ii)⇔ (iii) follows upon appealing to [BKS16, Lem. 4.2].

5.3 Proof of condition (F) in special cases

In this section we shall explain how one can prove the equivalent conditions of Theorem (5.6) in
special cases. Crucial ingredient in these arguments is the following Lemma, which is a direct
consequence of Brumer’s p-adic analogue of Baker’s Theorem from transcendence theory.

(5.10) Lemma. Let v be a place of k that splits completely in K. Then there is an element
a ∈ O×K,{v} such that ∑

σ∈G
χ(σ) · logp(ιw(σ−1a)) 6= 0

for all non-trivial characters χ ∈ Ĝ.

Proof. Let a ∈ O×K,Σ be an element that is only divisible by w and no other finite prime of K.

For example, such an element is given by any generator of whK , where hK is the class number
of K. Fix a non-trivial character χ ∈ Ĝ and suppose that∑

σ∈G
χ(σ) · logp(ιw(σ−1a)) = 0. (30)

The elements χ(σ) are algebraic over Q and not zero, hence Brumer’s p-adic analogue of Baker’s
theorem [Bru67] (see also [NSW08, Thm. 10.3.14]) asserts the existence of integers nσ ∈ Z, not
all of them zero, such that

logp
(
ιw
(∑
σ∈G

nσσa
))

= 0.

After multiplying by a suitable integer if necessary we may therefore assume that
∑

σ∈G nσσa

is a power of p. In fact, this power of p needs to be pn1 ordw(a)/ew|p by choice of a. Here ew|p
denotes the ramification degree of w in K/Q. We have ew|p = eσw|p for all σ ∈ G, so it follows
that

n1 ordw(a) = ordw p
n1 ordw(a)/ew|p = ordσw p

n1 ordw(a)/ew|p = ordσw
(∑
σ∈G

nσσa
)

= nσ ordw(a)
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for all σ ∈ G. We deduce that all nσ agree, and so logp(ιw(
∑

σ∈G σa)) = 0 as well. This
combines with (30) to imply that∑

σ∈G\{1}

(χ(σ)− 1) · logp(ιw(σ−1a)) = 0.

By assumption, χ 6= 1 and so we can apply the Theorem of Brumer-Baker yet again to obtain
integers mσ, not all of them zero, such that x = ιw

(∑
σ∈G\{1}mσσa

)
lies in the kernel of the

p-adic logarithm. Now, x is integral at w and therefore we must have that x is a root of unity.
However, the set {σa | σ ∈ G} is Z-linearly independent and so this can only happen if all mσ

are zero, which is a contradiction.

(5.11) Theorem. Assume the following conditions:

(i) p splits completely in k/Q,

(ii) if p = 2, then all infinite places split completely in K∞/k,

(iii) for each non-trivial character χ ∈ Ĝ there is at most one finite place v ∈ Σ which ramifies
in k∞/k and is such that χ(Gv) = 1,

(iv) either k/Q is abelian or |Sram(k∞/k)| ≤ 2.

Then AΣ,T (K∞)Γ is finite.

(5.12) Remark. (a) The conclusion of Theorem (5.11) remains true if instead of condition
(iv) one assumes that AΣ,T (k∞)Gal(k∞/k) is finite. This corresponds with Theorem C (a)
in the introduction.

(b) We give two examples of concrete situations in which Theorem (5.11) can be applied.

(i) Suppose that k is an imaginary quadratic field in which p splits completely. If we
fix a prime ideal p of k above p, then there is a unique Zp-extension k∞ of k that is
unramified outside p. Given this, Theorem (5.11) implies that condition (F) holds
for all abelian extensions K/k with respect to the Zp-extension K∞ = K · k∞ of K.
We remark, however, that this fact is already known, see the proof of [Rub88,
Thm. 1.4] where it is deduced from the known validity of Leopoldt’s Conjecture in
this setting (the latter is of course also derived from the Theorem of Brumer-Baker,
so our proof can be considered more direct).

(ii) Suppose that K = k is a CM field but not imaginary quadratic. Assume that p
splits completely in k/Q and fix a prime p of k lying above p. We denote by p the
complex conjugate of p. By class field theory, there exists a Zp-extension k∞ of k
that is unramified outside {p, p}. Theorem (5.11) now implies that AΣ,T (k∞)Γ is
finite.

Proof. Let χ be a character of G. By Lemma (5.8) we may assume that K is the field cut out
by the character χ. Due to Lemma (5.5) (b) we may moreover assume that S = S∞(k), i.e.
Σ = S∞(k) ∪ Sram(K∞/k).
Let us first consider the case that χ 6= 1 is non-trivial. Take V ′ = {v ∈ Σ | χ(v) = 1}, then
assumption (ii) ensures that W = V ′ \V only contains finite places. It follows that W must be
contained in Sram(K∞/K). If W is empty, there is nothing to prove, so we may assume that
W = {v} for a single place v ∈ Sp(k). Given this, we have rΣ(χ) = r + 1 and so may apply
Theorem (5.6). We shall now show that statement (ii) in (5.6) holds true in this situation.
The codomain of Recv,χ is of Qp(χ)-dimension one, hence the map Recv,χ is surjective as soon
as it is non-zero.
Let Γw ⊆ Γ be the decomposition group at w and write d for the index (Γw : Iw) of the inertia
group Iw at w. Let H ′ be the unique unramified extension of Qp of degree d and write H ′∞ for
the maximal extension of H ′ that is totally ramified and abelian over Qp. This extension can
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be explicitly described using relative Lubin-Tate theory. In particular, we have an isomorphism

1 + pZp
'−→ Gal(H ′∞/H) (31)

that coincides with the composition of the inclusion Q×p ↪→ (H ′)× and the local reciprocity
map (H ′)× → Gal(H ′∞/H), see [Sha87, Ch. I, Prop. 1.8]. We deduce that Gal(H ′∞/H

′) splits
as the direct sum of Iw and a finite part. Thus, we have an isomorphism

Γdw = Iw
'−→ Zp, σ 7→ logp χell(σ),

where χell denotes the inverse map of (31). We can therefore identify the map dRecv,χ with
the map

eχQp(χ)UK,Σ,T −→ eχQp(χ)YK,W ⊗Zp Γdw
∼= eχQp(χ), a 7→ −de ·

∑
σ∈G

χ(σ) · logp(ιw(σ−1a)).

Now, Lemma (5.10) implies that this map is non-zero, as desired.
Let us finally assume that χ = 1 is the trivial character. In this case we may assume that
K = k (by Lemma (5.8)) and it is sufficient to show that AΣ,T (k∞)Γ is finite. If k/Q is abelian,
then this holds true by a result of Greenberg (see Remark (5.4) (a)), and if |Sram(k∞/k)| = 1,
then this is covered by Remark (5.4) (b). It remains to investigate the case |Sram(k∞/k)| = 2.
Fix a place v0 ∈ Sram(k∞/k) and set V ′ = Σ \ {v0}. In this situation we have W = {v} for a
single place v ∈ Sp(k) and, in particular, rΣ(1) = |V ′|. We may therefore apply Theorem (5.6)
and, by the discussion above, it is enough to prove that the map

QpUK,Σ,T → Qp, a 7→ −de logp(ιw(a))

is non-zero. This is however clear because the kernel of the p-adic logarithm is µp−1 · pZ, hence
does not contain any element of QUK,Σ,T which is integral at p.

If p does not split completely in k, the situation is much more complicated. We are however
able to prove the following result concerning the case of k being an imaginary quadratic field.

(5.13) Theorem. Assume that k is an imaginary quadratic field such that p does not split in
k/Q. There are infinitely many Zp-extensions k∞ of k such that all of the following conditions
are satisfied:

(a) AΣ,T (K∞)Γ is finite,

(b) at most two finite places of k split completely in k∞/k, neither of them contained in
S(K) ∪ Sp(k).

Proof. By Lemma (5.8) the property (a) is satisfied if, for every character χ ∈ Ĝ, the module
eχQp(χ)AΣ,T (Kχ,∞) vanishes, where Kχ,∞ = Kχ · k∞ and Kχ denotes the subfield of K cut
out by the character χ. By Remark (5.4) (b) this holds for χ = 1 because k contains only
prime above p, so it suffices to consider non-trivial characters. By Lemma (5.5) it is enough to
check if eχQp(χ)AΣχ,T (Kχ,∞) vanishes, where Σχ = Sram(Kχ,∞/k) ∪ S∞(k). In this situation
we may apply Theorem (5.6) which asserts that the aforementioned vanishing is equivalent to
the surjectivity of the map

⊕
v∈Wχ

Recv,χ defined in (ii) of Theorem (5.6) as

eχQp(χ)O×Kχ,Σχ,T → eχQp(χ)YKχ,Wχ ⊗Zp Γχ, a 7→
∑
w∈Wχ

∑
σ∈Gχ

χ(σ)w ⊗ (recw(σ−1a)− 1),

where Gχ = Gal(Kχ/k), Γχ = Gal(Kχ,∞/Kχ), and Wχ = {v ∈ Σχ\S∞(k) | χ(v) = 1}. Observe
that we must have Wχ ⊆ Sram(k∞/k) = {v} for the unique place v of k above p. If Wχ = ∅,

there is nothing to show. We may therefore assume that Wχ = {v}, and we let ĜW be the

subset of Ĝ comprising all non-trivial characters χ such that Wχ 6= ∅.
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Note that we have a commutative diagram

eχQp(χ)O×K,Σχ,T eχQp(χ)⊗Zp Γ

eχQp(χ)OKχ,Σχ,T eχQp(χ)⊗Zp Γχ,

eχRecv

NK/Kχ '
Recv,χ

where the isomorphism on the right is induced by the inclusion Γ = Gal(K∞/K) ⊆ Γχ (which
has finite index). It is therefore sufficient to check if the map eχRecv is surjective (or, equival-

ently, non-zero) for all χ ∈ ĜW .
The basic strategy of the remainder of this proof is now to show that this holds if one avoids,
if necessary, certain ’bad’ Zp-extensions. As a first step towards this, we will now first give a
more explicit description of the map eχRecv.

Let F∞ be the compositum of all Zp-extensions of k, which is a Z2
p-extension as a con-

sequence of the known validity of Leopoldt’s Conjecture for this setting. In fact, we know that
Gal(F∞/k) = Zpγcyc ⊕ Zpγanti, where γcyc, γanti ∈ Gal(F∞/k) are such that the fixed fields

F
〈γcyc〉
∞ and F

〈γanti〉
∞ are the cyclotomic and anti-cyclotomic Zp-extensions of k, respectively.

Write Gal(F∞/k)v = Gal(F∞K/K)w for a choice of decomposition group at v inside F∞/k
and w inside Gal(F∞K/K), respectively. If Iv denotes the inertia subgroup of Gal(F∞/k)v,
then explicit local class field theory [Sha87, Ch. I, Prop. 1.8] gives that the inverse of the local
reciprocity map identifies Iv with a quotient of 1 + pv, where pv is the maximal ideal of the
valuation ring Okv ⊆ kv of kv. Since 1 + pv and Iv are both of Zp-rank two, Iv must agree with
the torsion-free part of 1 + pv. We can therefore find an integer s ≥ 1 such that

Gal(F∞/k)p
sd
v ⊆ Ipsv

'−→ (1 + pv)
ps ⊆ 1 + psv

'−→ psv, (32)

where d = (Gal(F∞/k) : Iv), the first arrow is the inverse of the local reciprocity map
Artv : k×v → Gal(F∞/k)v, and the second arrow is the p-adic logarithm. The cokernel of
(32) is finite, hence, for all characters χ ∈ ĜW , it induces an isomorphism

ωχ : eχQp(χ)⊗Zp Gal(F∞ ·K/K) = eχQp(χ)⊗Zp Gal(F∞/k)
'−→ eχQp(χ)⊗Zp pv.

Given this, we can identify the map

eχQp(χ) · UK,W,T → eχQp(χ)⊗Zp Gal(F∞K/K), a 7→ psd
∑
σ∈G

χ(σ)⊗Artv(ιw(σ−1a)),

where ιw : K× ↪→ K×w denotes the canonical embedding, with the map

ρ̃χ : eχQp(χ)⊗Z O×K,W,T → eχQp(χ)⊗Zp pv, a 7→ −psd
∑
σ∈G

χ(σ)⊗ logp(ιw(σ−1a)).

Let γ, δ ∈ Gal(F∞/k) be a Zp-basis and write kδ = F
〈δ〉
∞ for the Zp-extension of k that is cut

out by δ. Observe that all Zp-extensions of k are of this form. We also set Kδ = K · kδ.
Recall that the map recw is the composite of ιw : K× ↪→ K×w and the local reciprocity map
K×w → Gal(Kδ/K), and note that the latter map can be described as the composition of
Artv and the restriction map on decomposition groups Gal(F∞K/K)w → Gal(Kδ/K)w. More
explicitly, if γxδy is an element of Gal(F∞K/K)w, then its restriction to Kδ coincides with γx.
Observe that it is sufficient to check the non-vanishing of the map eχRecv after multiplication by
psd. The above discussion implies that psd·eχRecv can be identified with the map ρχ = πχ,γ◦ρ̃χ,
where πχ,γ denotes the projection map

πχ,γ : eχQp(χ)⊗Zp pv → eχQp(χ), xωχ(γp
sd) + yωχ(δp

sd) 7→ x.

By Lemma (5.10) the map ρ̃χ is non-zero. It follows that the map ρχ can only be zero if the
image of ρ̃χ is contained in, and hence coincides with, the kernel of the projection map πχ,γ ,
i.e. the submodule of eχQp(χ) ⊗Zp pv generated by ωχ(δ). Thus, the map ρχ is non-zero for
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all χ 6= 1 if δ is not a Z×p -multiple of an element in the set {δχ | χ ∈ ĜW }, where δχ denotes a
topological generator of

ω−1
χ

(
ρ̃χ(eχQp(χ)UK,W,T ) ∩ ωχ(Gal(F∞/k))

)
.

We now claim that we can choose an integer N ≥ 1 such that all Zp-extensions in the set

Ω(N) = {kδ | δ = γp
n

anti · γcyc for some n ≥ N}
satisfy all of the conditions (a) – (c). Indeed, if N is big enough such that for n ≥ N none of
the elements γp

n

anti ·γcyc is a Z×p -multiple of an element in {δχ | χ ∈ ĜW }, then each Zp-extension

in Ω(N) will have property (a). Note that kδ ∩ kcyc = kcyc
n if δ = γp

n

anti · γcyc. Since no finite
place splits completely in kcyc/k, we may therefore choose N such that the second part of (b)
is satisfied for each element of Ω(N). The first part of (b), in turn, follows from a result of
Emsalem [Ems87] which, as a particular case, asserts that in any Zp-extension of k that is not
the anticyclotomic extension at most two finite primes can split completely.

6 Abelian extensions of an imaginary quadratic field

In this section we specialise to the case where the base field k is imaginary quadratic.

6.1 The conjecture of Mazur–Rubin and Sano for elliptic units

Fix an imaginary quadratic field k and a prime number p. We will often distinguish between
two cases:

• (split case) The rational prime p splits in k. In this case we fix a choice of prime ideal
p ⊆ Ok above p, i.e. we then have pOk = pp with p 6= p.

• (non-split case) The prime p is either inert in k, i.e. pOk = p is prime, or ramified, i.e.
pOk = p2.

Fix a finite abelian extension K/k and define k∞ to be

• the unique Zp-extension of k unramified outside p, in the split case,

• any Zp-extension of k in which only finitely many finite places split completely, none of
them ramified in K/k.

As in § 3 we then set K∞ = K · k∞, write Kn for the n-th layer of the Zp-extension K∞/K,
and use the notations G,Gn,Γn,Γn and

V
etc. We also note that, in the split case, no finite

place splits completely in k∞/k, see [Sha87, Ch. II, Prop. 1.9].

Fix a prime ideal a ( Ok that does not split completely in k∞/k and is coprime to 6pm, where
m = mK denotes the conductor of K. The set T = {a} then has the property that UE,Σ,T is
Zp-torsion free for every subfield E of K∞/k.

In the notation of § 3 we take V = S∞(k) and S a finite set which contains S∞(k)∪Sram(K/k).
Recall that in § 3 we have also fixed a proper subset V ′ ( Σ consisting of places that split
completely in K/k, and have set e to be the size of W = V ′ \ V .

We are now able to state the main result of this subsection.

(6.1) Theorem. Let κ0 be the Darmon derivative of εK∞/k,Σ,T with respect to some topological
generator γ of Γ. Then we have

κ0 ⊗ (γ − 1)e = (RecW ◦Ord−1
W )(εVK/k,Σ\W,T ).

In particular, Conjecture (4.10) holds for the data (k∞/k,K, S, T, V
′) fixed above.
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(6.2) Remark. In the split case our methods only allow to prove Conjecture (4.10) for the
unique Zp-extension k∞/k which is unramified outside p. However, this is sufficient to es-
tablish the relevant case of the equivariant Tamagawa Number Conjecture in this setting (see
Theorem (6.9)) and this, in turn, implies Conjecture (4.10) for any choice of Zp-extension in
which no finite place contained in Σ splits completely via [BKS17, Lem. 5.17] (cf. also [BKS16,
Thm. 5.16]).

The proof of Theorem (6.1) occupies the remainder of this subsection and we shall appeal to
relative Lubin-Tate theory [Sha87, Ch. I] during its course. In order to do this, we first need
to establish a little more notation.

Let H be a finite extension of Qp and denote the cardinality of its residue field OH/pH by q.
We fix an integer d > 0 and let H ′ be the unramified extension of H of degree d. We write
ϕ ∈ Gal(H ′/H) for the arithmetic Frobenius automorphism.
Fix an element ξ ∈ H× such that ordH(ξ) = d. For each power series f satisfying Frobenius-like
properties (for details see [Sha87, Ch. I]) there exists a unique one-dimensional commutative
formal group law Ff ∈ OH′JX,Y K satisfying Fϕf ◦f = f ◦Ff called a relative Lubin-Tate group
(relative to the extension H ′/H). We let Wn

f be the group of division points of level n of Ff and

set W̃n
f = Wn

f \W
n−1
f for every n ∈ N. Then H ′n = H ′(Wn+1

f ) is a totally ramified extension
of H ′ of degree qn(q − 1) and H ′∞ =

⋃
n∈NH

′
n is the maximal totally ramified extension of H ′

that is abelian over H.

Fix ωi ∈ W̃ i
ϕ−i(f)

such that (ϕ−if)(ωi) = ωi−1 and let u ∈ lim←−n(H ′n)× be a norm-coherent

sequence. There is a unique integer ν(u) such that unOH′n = p
ν(u)
H′n

for all n ≥ 0. By [Sha87,

Ch. I, Thm. 2.2] there is a unique power series Colu ∈ tν(u)OH′JtK× such that

(ϕ−(i+1)Colu)(ωi+1) = ui

for all i ≥ 0. This power series Colu is called the Coleman power series associated to u.

Let ρ : Gal(H ′∞/H) → Q/Z be a character of finite order. Write Hρ = (H ′∞)ker ρ for the field
cut out by ρ and choose m minimal with the property that Hρ ⊆ H ′m.
If u ∈ lim←−nO

×
H′n

is a norm-coherent sequence, then class field theory implies that NH′0/H
(u0) =

1. Hilbert’s Theorem 90 therefore ensures the existence of an element βσ,ρ ∈ H×ρ satisfying
(σ − 1) · βσ,ρ = NH′m/Hρ

(um), where σ denotes a generator of Gal(Hρ/H).

The following is proved in [BH20, Cor. 3.17].

(6.3) Proposition. Using the notation introduced above, assume that ρ(σ) = 1
[Hρ:H] +Z. Then

we have
ordHρ(βσ,ρ)

eHρ/H
= −ρ(recH(NH′/H(Colu(0)))) in Q�Z,

where we write eHρ/H for the ramification degree of the extension Hρ/H and recH denotes the
local reciprocity map H× → Gal(H ′∞/H).

Proof of Theorem (6.1): First we observe that by [BKS17, Prop. 4.4 (iv)] we may reduce to the
case W ⊆ Sram(K∞/K) = {p}. Since Conjecture (4.10) is trivial if W = ∅, we may assume
that W = {p}. In particular, p - m and hence, because V ′ is a proper subset of Σ, there must
be a finite place q ∈ Σ that is different from p. Observe that O×k → (Ok/ql)× is injective if we
choose l big enough. We may therefore take the ideal f appearing in Example (2.3) (c) to be
an appropriate power of q. Given this, we have that, for any n ∈ N0,

εVKn/k,Σ,T = Nk(fmpn+1)/Kn(ψfmpn+1,a)

is the elliptic unit defined in (2.3) (c).
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Let n = (Γ : Γp) be the index of the decomposition group at p inside Γ, i.e. n is maximal such
that p does not split at all in K∞/Kn. We shall now first demonstrate that it suffices to prove
Conjecture (4.10) for the field Kn.
By Theorem (4.3) (a) the Darmon derivatives κ0 and κ′n of εK∞/k,Σ,T with respect to topological

generators γ ∈ Γ and γp
n ∈ Γn, respectively, exist. By definition these are the bottom values

of norm-coherent sequences (κm)m and (κ′n+m)m which satisfy

(γ − 1) · κm = εVKm,Σ,T and (γp
n − 1) · κ′n+m = εVKn+m,Σ,T

for all integers m ≥ 0. It follows that we have

(γ − 1) ·NΓn · κ′n+m = (γp
n − 1) · κ′n+m = εVKn+m,Σ,T ,

hence, by uniqueness, we must have (κn+m)m = (NΓnκ
′
n+m)m and it follows that κ0 = N2

Γn
·κ′n =

pnNΓnκ
′
n. This implies that

κ0 ⊗ (γ − 1) = pnNΓnκ
′
n ⊗ (γ − 1) = (NΓnκ

′
n)⊗ (γp

n − 1) (33)

inside UK,Σ,T ⊗Zp I(Γ)/I(Γ)2. As I(Γn)/I(Γn)2 is Zp-torsion free, the inclusion UK,Σ,T ↪→
UKn,Σ,T induces an injection

UK,Σ,T ⊗Zp I(Γn)�I(Γn)2 ↪→ UKn ⊗Zp I(Γn)�I(Γn)2 (34)

that allows us to view (33) as an equality inside the right hand side of (34). Assuming the
validity of the conjecture for Kn (in the form (18)), we may therefore continue the calculation
in (33) as follows:

NΓn(κ′n ⊗ (γp
n − 1)) = NΓn(RecW ◦Ord−1

W )(εVKn,Σ\W,T )

= (RecW ◦Ord−1
W )(NΓnε

V
Kn,Σ\W,T )

= (RecW ◦Ord−1
W )(εVK,Σ\W,T ). (35)

Observe that we have a commutative diagram

UKn,Σ,T Qp · UKn,Σ,T ⊗Zp I(Γn)�I(Γn)2

UK,Σ,T Qp · UK,Σ,T ⊗Zp I(Γn)�I(Γn)2,

RecW ◦Ord−1
W

RecW ◦Ord−1
W

where the right hand vertical arrow is induced by (34). We caution the reader that the two
horizontal arrows, although both labelled RecW ◦Ord−1

W , do not coincide but that inducing the
bottom arrow from G to Gn gives the top arrow.
Given this commutative diagram, the equations (33) and (35) taken together finish the proof
of the claim. We therefore may, and will, assume without loss of generality that p has full
decomposition group in K∞/K.

Let w be a place of K above p and choose an embedding ιw : Q ↪→ Qp that restricts to w on
K. In the following, we will denote the completion of a finite abelian extension field F of k at

the place induced by ιw by F̃ . Put H = K̃ and H ′ = k̃(fm). Using that H ′n = ˜k(fmpn+1), we
can then define a norm-coherent sequence u = (un)n ∈ lim←−nOH′n by setting

un = ιw(ψfmpn+1,a) for all n > 0.

(6.4) Lemma. We have

Colu(0) = ιw(ψfm,a).

Proof. In the split case this is [Sha87, Chp. II, Sec 4.9, Prop.] combined with the evaluation of
the power series at zero and an application of the monogeneity relation of Robert’s ψ-function.
A more detailed proof of the split case is given in [OV16, Prop. 4.5] following the same strategy

26



as [Sha87].

We claim that essentially the same proof works in the non-split case. First observe that in
the proof of part (i) of the cited Proposition in [Sha87] the fact that the prime is split in k is
not used. In part (ii) the condition that p is split is used to obtain a certain generator of the
Tate module (ωn) of the underlying formal group Ê (because in this case the formal group Ê
is isomorphic to Ĝm and hence of height one). It is then shown that there exist torsion points
un which can be used to give an explicit description of the elements ωn at each level [Sha87,
Chp. II, Sec. 4.4, (12)]. In the non-split case one can now invert the strategy: Indeed, it is
easy to see that there exist torsion points un such that the explicit description given in (12) is
a generator of the Tate module of Ê. Using this as the definition of (ωn), the remaining steps
in the proof are exactly as in the split case.

Recall that we have fixed a topological generator γ of Γ above. We define the isomorphisms

sγ : Γ −→ Zp, sγ,n : Γn −→ Z�pnZ
γa 7−→ a γa 7−→ a mod pnZ

and the character

ργ,n : Gal(H ′∞/H)
πn−→ Gal(K̃n/H)

sγ,n−−→ Z�pnZ ∼=
1
pnZ�Z, (36)

where πn is the natural projection map induced by restriction. By definition, ργ,n is a character

of finite order with kernel Gal(H ′∞/K̃n), hence Proposition (6.3) combines with Lemma (6.4)
to reveal that

ord
K̃n

(βγn,ργ,n)

e
K̃n/H

≡ −
sγ,n(πn(recH(NH′/H(ψfm,a)))

pn
mod Z (37)

for all n ≥ 0. By definition the Darmon derivative κ0 of εK∞/k,Σ,T with respect to γ is the
bottom value of a norm-coherent sequence κ = (κn) ∈ lim←−n UKn,Σ that satisfies

(γ − 1)ιw(κn) = ιw(εVKn/k,Σ,T ) = NH′m/Hργ,n
(um),

thus we may take βγn,ργ,n ≡ ιw(κn) mod K̃×. We now obtain from (37) that

ordH(ιw(κ0)) = ordH(N
K̃n/H

(ιw(κn))) = pn

e
K̃n/H

· ord
K̃n

(ιw(κn))

≡ −sγ,n(πn(recH(NH′/H(ψfm,a))) mod pnZ.

Taking the limit over n then gives

ordw(κ0) = −sγ(recw(εVK,Σ\W,T )) (38)

as an equality in Zp. By repeating the argument we also obtain equation (38) for the places
σw, where σ ∈ G. Collating these equations, we find that

OrdW (κ0)⊗ (γ − 1) =
∑
σ∈Gχ

ordσw(κ0)σ ⊗ (γ − 1)

= −
∑
σ∈Gχ

sγ(recσw(εVK,Σ\W,T ))σ ⊗ (γ − 1)

= −RecW (εVK,Σ\W,T ).

By Lemma (4.13) this concludes the proof of Theorem (6.1).

6.2 The equivariant Iwasawa Main Conjecture

In this section we prove a suitable variant of the equivariant Iwasawa Main Conjecture for
abelian extensions of an imaginary quadratic field. In this setting, numerous results on the
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Iwasawa Main Conjecture have already appeared in the literature, both in classical and equivari-
ant formulations (cf. [Rub88], [Rub91], [Rub94], [Ble06], [Fla09], [JLK11], [Vig13]). However,
we require a result that is both slightly more general and of a different shape than is available
in the literature thus far.

Suppose to be given an abelian extension L∞/k such that Gal(L∞/k) ∼= Γ×∆, where ∆ is a
finite abelian group and Γ ∼= Zdp for an integer d > 0. Note that d ∈ {1, 2} as a consequence of
the known validity of Leopoldt’s Conjecture for the imaginary quadratic field k.
We also fix a finite set Σ of places of k that contains S∞(k)∪Sp(k) and a finite set T of places
of k that is disjoint from Σ. Assume that no finite place contained in Σ splits completely in
the Zdp-extension L∆

∞/k.

As before we write
V

= Zp[∆]JΓK for the relevant equivariant Iwasawa algebra and denote its
total field of fractions by Q(

V
). One can then define a perfect complex D•L∞,Σ,T as in (5) and

define a map

DetV(D•L∞,Σ,T ) ↪→ Q(
V

)⊗V DetV(D•L∞,Σ,T )

∼= DetQ(
V

)(Q(
V

)⊗LV D•L∞,Σ,T )

∼=
(
Q(
V

)⊗V UL∞,Σ,T
)
⊗Q(

V
)

(
Q(
V

)⊗V YL∞,S∞(k)

)∗
∼= Q(

V
)⊗V UL∞,Σ,T , (39)

where the first isomorphism follows from a well-known property of the determinant functor,
the second isomorphism is the natural ‘passage-to-cohomology’ map, and the last isomorphism
is due to the isomorphism YL∞,S∞(k)

∼=
V

obtained from our fixed choice of extension of the
unique infinite place of k to L∞.
The map (39) then restricts to a map

Θ1
L∞/k,Σ,T

: DetV(D•L∞,Σ,T ) ↪→ U∗∗L∞,Σ,T
∼= UL∞,Σ,T ,

see [BD21, Lem. 3.12] for more details.

We now recall the (higher-rank) equivariant Iwasawa Main Conjecture in this setting as pro-
posed in [BKS17, Conj. 3.1 and Rk. 3.3].

(6.5) Conjecture. There exists a
V

-basis LL∞/k,Σ,T of DetV(D•L∞,Σ,T ) such that

Θ1
L∞/k,Σ,T

(LL∞/k,Σ,T ) = εL∞/k,Σ,T .

Fix a prime ideal p of k above p as in § 6.1. The main result of this is subsection is as follows.

(6.6) Theorem. Let K/k be an abelian extension and put L∞ = Kl∞, where l∞ is the maximal
Zp-power extension of k unramified outside p. Assume the following condition:

(∗) Gal(L∞/k) is p-torsion free or the Iwasawa µ-invariant of AΣ(L∞) (as a ZpJΓK-module)
vanishes.

Then Conjecture (6.5) holds for (L∞/k,Σ, T ). In particular, Conjecture (6.5) holds for (K∞/k,Σ, T )
with K∞ = Kk∞ if one takes k∞/k to be any of the Zp-extensions described at the beginning
of § 6.1.

Proof. Let us first prove that it is indeed enough to prove Conjecture (6.5) for L∞/k. If p is
split in k/Q, then l∞ and k∞ agree and so the claim is clear in this case. In the non-split case,
l∞ is the maximal Zp-power extension of k and hence K∞ is contained in L∞. We then have
a commutative diagram

DetV′(D•L∞,Σ,T ) UL∞,Σ,T

DetV(D•K∞,Σ,T ) UK∞,Σ,T ,

Θ1
L∞/k,Σ,T

$L∞/K∞ NL∞/K∞
Θ1
K∞/k,Σ,T

(40)
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where the left hand vertical map $L∞/K∞ is induced by the isomorphism (cf. Proposition
(3.2) (c) (ii))

D•L∞,Σ,T ⊗
L
ZpJGal(L∞/k)K ZpJGal(K∞/k)K ∼= D•K∞,Σ,T .

The claim now follows directly from the above commutative diagram (40).

To prove Conjecture (6.5) for L∞/k, we first note that the explicit condition (∗) ensures that
AΣ(L∞) has projective dimension at most one after localising at any height-one prime p of

V
.

By [Bul+21, Lem. 6.2 (b)] it is therefore enough to show that one has an inclusion

im(εL∞/k,Σ,T )∗∗ ⊆ Fitt0V(AΣ,T (L∞))∗∗ · Fitt0V(XL∞,Σ\S∞(k))
∗∗

and this can be done using the theory of Euler systems (see the proof of [Bul+21, Thm. 6.5 (b)],
where the above inclusion, which agrees with (31) of loc. cit., is verified).

To end this subsection we clarify the nature of condition (∗).

(6.7) Proposition. Let K/k be an abelian extension and put K∞ = K · l∞, where l∞ is
the maximal Zp-power extension of k unramified outside p. The µ-invariant of AΣ(L∞) (as a
ZpJΓK-module) vanishes in each of the following cases:

(a) The prime number p splits in k/Q,

(b) the degree [K : k] is a power of p,

(c) there is a Zp-extension F∞ of K contained in L∞ in which no prime above p splits com-
pletely and which is such that the µ-invariant of A(F∞) (as a ZpJGal(F∞/K)K-module)
vanishes,

(d) ASp(K) vanishes and |Sp(K)| = 1.

(6.8) Remark. Iwasawa has conjectured that statement (c) in Proposition (6.7) is always
satisfied if one takes F∞ to be the cyclotomic Zp-extension of K.

Proof. It is well-known that the Iwasawa µ-invariants of AΣ(L∞) and A(L∞) agree because
no finite prime splits completely in L∞ (see [Sha87, Ch. II, § 1.9, Prop.]), hence it suffices to
discuss the vanishing of the latter.
In the situation of (a) the required vanishing follows from the main results of [Gil85] (for p > 3)
and [OV16] (for p ∈ {2, 3}).
Let kcyc

∞ and Kcyc
∞ be the cyclotomic Zp-extensions of k and K, respectively. From [Iwa73,

Thm. 2] we know that the vanishing of the µ-invariant of A(Kcyc
∞ ) is implied by the vanishing

of the µ-invariant of A(KP · kcyc
∞ ), where KP denotes the fixed field of the p-Sylow subgroup

P of G = Gal(K/k). This combines with the Theorem of Ferrero-Washington [FW79] to imply
the claim for (b) once we have verified that it is valid if (c) holds.
To do this, we may assume that p is not split in k/Q because we have already dealt with split
primes in (a). In this case, K∞/K is a Z2

p-extension in which all primes above p are finitely
decomposed. Given this, statement (c) implies the claim by [Cuo80, Prop. 4.1 and Cor. 4.8].
Finally, as is well-known, (d) follows from Nakayama’s Lemma using that (ASp(K∞))Γ

∼=
ASp(K) if |Sp(K)| = 1.

6.3 Proof of Theorem B

We are finally in a position to prove Theorem B from the introduction.

(6.9) Theorem. Let p be a prime number, k an imaginary quadratic field, and K/k a finite
abelian Galois extension with Galois group G.

(a) If p splits in k, then eTNC(h0(Spec(K)),Zp[G]) holds.

(b) If p does not split in k, then eTNC(h0(Spec(K)),Zp[G]) holds if the following condition
is satisfied:
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(∗) Let l∞ be the maximal Zp-power extension of k and put L∞ = K · l∞. The Iwasawa
µ-invariant of AΣ(L∞) (as a ZpJGal(L∞/K)K-module) vanishes or Gal(L∞/k) is
p-torsion free.

Proof. This will follow from the equivariant Iwasawa Main Conjecture proved in Theorem (6.6)
and the descent argument of Burns, Kurihara and Sano in [BKS17, Thm. 5.2].

To do this, we first need to introduce some notation. In the split case, we take k∞ to be the
unique Zp-extension of k that is unramified outside p. In the non-split case, we take k∞ to be
one of the Zp-extensions of k provided by Theorem (5.13).

For any character χ ∈ Ĝ we moreover introduce the following notation:

• Kχ = Kkerχ the field cut out by the character χ, and Gχ = Gal(Kχ/k) is Galois group,

• Kχ,∞ = Kχ · k∞ the composite of Kχ with k∞, and Γχ = Gal(Kχ,∞/Kχ).

In addition, we define

V ′χ =

{
Ssplit(Kχ/k) ∩ Σ if χ 6= 1,

Σ \ {p} if χ = 1,

and set Wχ = V ′χ \ V , where V = S∞(k). By enlarging S if necessary we may assume that

Sp(k) ⊆ Σ and that V ′χ is a proper subset of Σ for all χ ∈ Ĝ.

Let us now address each condition required to apply the general result [BKS17, Thm. 5.2]
separately:

• The equivariant Iwasawa Main Conjecture holds for (K∞/k,Σ, T ) by Theorem (6.6).

• The Iwasawa-theoretic Mazur–Rubin Sano Conjecture (in the formulation [BKS17, Conj.
4.2]) holds for the data (Kχ,∞/k,Kχ, S, T, V

′
χ): If χ is non-trivial, then this is proved

in Theorem (6.1). For the trivial character the set V ′χ = Σ \ {p} consists only of places
unramified in k∞/k, hence in this case the conjecture holds as a consequence of [BKS17,
Prop. 4.4 (iv)].

• Condition (F) (as stated in (5.3)) for K∞/K is valid: In the split case this is Remark
(5.12) (b), in the non-split case this is Theorem (5.13)).

This concludes the proof of Theorem (6.9).

From Theorem (6.9) and Proposition (6.7) (b) we immediately obtain the following result to-
wards the integral eTNC.

(6.10) Corollary. If all prime factors of [K : k] are split in k or [K : k] is a prime power,
then eTNC(h0(Spec(K)),Z[G]) holds.

(6.11) Remark. (a) If p - hk[K : k], where hk denotes the class number of k, then the
validity of eTNC(h0(Spec(K)),Zp[G]) also follows from unpublished work of Bley [Ble98,
Part II, Thm. 1.1] on the Strong Stark Conjecture. It should be straightforward to
strengthen said result to cover all primes p - [K : k] by taking into account the im-
provements of [Rub91, § 3] provided in [Rub94]. We remark that even this expected
strengthening is covered by Theorem (6.9).

(b) As illustrated by Corollary (6.10), the validity of the p-part of the eTNC for split primes
p | 2hk allows for a significant improvement towards the integral eTNC. Previously, one
had to restrict to cases where k is one of only nine imaginary quadratic fields of class
number one and all prime factors of [K : k] are split in k to obtain unconditional results
towards the validity of the eTNC for the pair (h0(Spec(K)),Z[G]).
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