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Abstract. We conjecture that special elements associated with rank-one motives are

obtained p-adically from Rubin-Stark elements by means of a precise higher-rank Soulé

twist construction. We show this conjecture incorporates a variety of known results and

existing predictions and also gives rise to a concrete strategy for proving the equivariant

Tamagawa Number Conjecture for rank-one motives. We then use this approach to obtain

new evidence in support of the equivariant Tamagawa Number Conjecture in the setting

of CM abelian varieties.
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1. Introduction

Let M be a (pure) motive defined over a number field K and endowed with an action of a

finite dimensional commutative semisimple Q-algebra R. For a prime p set Rp := Qp ⊗Q R
and write V ∗(1) for the Kummer dual of the p-adic realization V of M .

In [BSS19b] Sakamoto and the second and third of the present authors defined a canoni-

cal Bloch-Kato element ηM that lies in Cp ⊗Qp
∧r
Rp
H1(K,V ∗(1)) for an appropriate non-

negative integer r (that depends on M and R). These elements simultaneously generalize

several well-known families of special elements, including the Rubin-Stark elements defined

by Rubin [Rub96] for the multiplicative group and the zeta elements constructed by Kato

[Kat04] for elliptic curves over Q.

In this note we restrict attention to motives that are of rank one in the sense of Deligne

[Del79], and predict a precise family of relations between ηM and ηM ′ for differing such

motives M and M ′.

The source of these relations is a natural higher-rank generalization of the notion of Soulé

twists (in the terminology used by Loeffler and Zerbes, see [LZ, §1.4c]) that uses the theory

of exterior power biduals to overcome technical problems that arise when dealing with

torsion coefficients. For a rank-one motive we shall then define the Soulé-Stark element

to be an appropriate higher-rank Soulé twist of Rubin-Stark elements (see Definition 3.16)

and predict that this element coincides with the corresponding Bloch-Kato element. This

prediction will be referred to as the Soulé-Stark Conjecture (see Conjecture 3.18) and entails

precise, and explicit, relations between Bloch-Kato elements and Rubin-Stark elements.

We will see, for example, that for motives arising from the multiplicative group Gm the

Soulé-Stark Conjecture predicts explicit relations between the generalized Stark elements

introduced in [BKS20] that are essentially different from the relations that are investigated

in [BS19a] via a study of ‘functional equations for Euler systems’, whilst for motives arising

from CM abelian varieties the Soulé-Stark Conjecture extends, and refines, the ‘explicit

reciprocity conjecture’ that is formulated by Büyükboduk and Lei in [BL15].

However, aside from any intrinsic interest that the Soulé-Stark Conjecture might have in

particular cases, we show that its validity would also establish a precise connection between

the main conjecture of higher-rank equivariant Iwasawa theory for Gm, as formulated ex-

plicitly by Kurihara et al. in [BKS17, Conj. 3.1], and the equivariant Tamagawa Number

Conjecture for a general rank-one motive. This result is stated precisely as Theorem 3.22

and establishes a natural refinement and generalization to the setting of rank-one motives

with coefficients of the main strategy that was used by Huber and Kings [HK03] to prove the

Tamagawa Number Conjecture for Tate motives over abelian extensions of Q. We remark

that this approach is thus essentially different from that used by Greither and the second

author [BG03] and, more generally, by Kurihara et al. [BKS17] which relies on a study of

the Mazur-Rubin-Sano Conjecture (see Remark 3.23).
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For this approach to be of any practical use, one must of course understand both the main

conjecture of higher-rank equivariant Iwasawa theory for Gm and the relevant special cases

of the Soulé-Stark Conjecture.

The first of these issues is addressed in §4 where we use the recently developed ‘higher-

rank Kolyvagin-derivative’ techniques of Sakamoto et al. [BSS19a] to obtain concrete new

evidence in support of [BKS17, Conj. 3.1]. Our main result in this regard is stated as

Theorem 4.2 and refines earlier results of Büyükboduk in [Büy09] and [Büy14] and of

Büyükboduk and Lei in [BL15].

Then, in §5, we establish explicit relations between important cases of Conjecture 3.18 and

results and conjectures already existing in the literature, thereby deriving concrete evidence

in support of the Soulé-Stark Conjecture in these cases.

In §5.1 we show firstly that the Soulé-Stark Conjecture incorporates a wide variety of

known facts and existing predictions relating to invariants of Gm, ranging from the in-

terpolation properties of Deligne-Ribet p-adic L-functions to the results of Beilinson and

Huber-Wildeshaus on the cyclotomic elements of Deligne-Soulé, the p-adic Beilinson con-

jecture of Besser-Buckingham-de Jeu-Roblot [Bes+09] and the explicit reciprocity law for

Rubin-Stark elements conjectured by Solomon [Sol10].

In §5.2, we shall then show that, in the setting of motives arising from CM abelian varieties,

the Soulé-Stark Conjecture both extends and refines the explicit reciprocity conjecture

studied in [BL15] and [BL17]. Upon combining this observation with the result of Theorem

4.2 we are then able to derive concrete new evidence in support of the equivariant Tamagawa

Number Conjecture in this case (see Theorem 5.10) and thereby also refine some of the main

results of [BL15].

Finally, we note that the approach developed here will also allow us to clarify other aspects

of the results and conjectures in [BL15] and [BL17] (for details of which see §5.2.1 and

§5.2.2).

Acknowledgements. Some of the material presented in §2 and §3 below is an updated

version of results in the (unpublished) arXiv-version of the article [BKS20] of Masato Kuri-

hara and the second and third authors. We are very grateful to Kurihara for permission to

include that material in this article and, more generally, for many interesting discussions,

encouragement and advice. We are also grateful to Kazim Büyükboduk for helpful corre-

spondence concerning results in the articles [BL15] and [BL17].

The first author wishes to acknowledge the financial support of the Engineering and Phys-

ical Sciences Research Council [EP/L015234/1], the EPSRC Centre for Doctoral Training

in Geometry and Number Theory (The London School of Geometry and Number Theory),

University College London and King’s College London.
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2. Bloch-Kato and Stark elements

In this section, we quickly review relevant aspects of the theory of Bloch-Kato elements

from [BSS19b] and also recall some basic facts concerning étale cohomology that will be

useful in the sequel.

2.1. Bloch-Kato elements. The motive M discussed in the Introduction has the following

realizations.

• For each prime number p, the p-adic étale realization Vp(M): a finitely generated

Rp-module endowed with a continuous Rp-linear action of GK := Gal(Q/K).

• For each embedding σ : K ↪→ C, the Hodge σ-realization Hσ(M): a finitely gener-

ated R-module.

• The Betti realization HB(M) :=
⊕

σ:K↪→CHσ(M): a finitely generated R-module

endowed with an action of complex conjugation.

Definition 2.1. The R-rank r(M/K,R) of HB(M)+ is called the basic rank of the motive

(M/K,R). (This rank is, in general, a function SpecR → Z, but we shall only consider

examples in which it is constant.)

We write S∞(K) for the set of infinite places of K and SC(K) for the subset of S∞(K) of

complex places.

Example 2.2.

(i) For any number field K and integer j, we have

r(h0(K)(j)/K,Q) =

{
|S∞(K)| if j is even,

|SC(K)| if j is odd.

(ii) Let L/K be a finite abelian extension with Galois group G. Assume K is totally

real and L is CM and write c for the complex conjugation in G. For an integer j set

e±j :=
1± (−1)jc

2
∈ Q[G].

Then one has

r(h0(L)(j)/K,Q[G]ε) =

{
[K : Q] if ε = e+

j ,

0 if ε = e−j .

Fix an odd prime number p, a Gorenstein Z-order R in R and a GK-stable lattice T :=

Tp(M) of V := Vp(M), which is free as an Rp := Zp ⊗Z R-module.

Now we assume the following.

Hypothesis 2.3. The Rp-module YK(T ) :=
⊕

v∈S∞(K)H
0(Kv, T ) is free.

Remark 2.4. Since the Rp-modules Qp ⊗Zp YK(T ) and Qp ⊗Q HB(M)+ are isomorphic,

the rank of YK(T ) is equal to r(M/K,R).
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We now set r := r(M/K,R) and fix a finite set S of places of K such that

S∞(K) ∪ Sp(K) ∪ Sram(T ) ⊂ S,

where Sp(K) denotes the set of p-adic places of K and Sram(T ) the set of places of K at

which T is ramified.

Then, for each ordered Rp-basis b = {b1, . . . , br} of YK(T ), one can use the leading term of

the L-function of M at s = 0 to define a canonical Bloch-Kato element

ηbS(T ) ∈ Cp ⊗Zp
∧r

Rp
H1(OK,S , T ∗(1)).

(See [BSS19b, Def. 4.10] for the precise definition.) Here T ∗(1) := HomZp(T,Zp(1)) is the

Kummer dual of T .

In order to study the integrality properties of Bloch-Kato elements we first recall that if

A is a commutative noetherian ring, then for any non-negative integer a the a-th exterior

power bidual of a finitely generated A-module X is defined by⋂a

A
X := HomA

(∧a

A
HomA(X,A), A

)
.

We further recall that the canonical homomorphism of A-modules

ξaX :
∧a

A
X →

⋂a

A
X, x 7→ (Φ 7→ Φ(x)),

is bijective if X is projective or if both a = 1 and X is reflexive, but is in general neither

injective nor surjective.

In addition, if A = Rp, then [BS19b, Prop. A.7] implies ξaX induces an isomorphism

(1)
{
x ∈ Qp ⊗Zp

∧a

Rp
X
∣∣∣ Φ(x) ∈ Rp for all Φ ∈

∧a

Rp
HomRp(X,Rp)

}
∼−→
⋂a

Rp
X.

In the sequel we use this map to regard
⋂a
RpX as a submodule of Qp ⊗Zp

∧a
RpX.

We now consider the following hypothesis.

Hypothesis 2.5.

(i) H0(K,T ∗(1)) = 0.

(ii) H1(OK,S , T ∗(1)) is Zp-free.

Conjecture 2.6 (Integrality Conjecture, [BSS19b, Conj. 4.15]). If Hypotheses 2.3 and 2.5

are both valid, then one has

ηbS(T ) ∈
⋂r

Rp
H1(OK,S , T ∗(1)).
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2.2. Stark elements. To discuss an important special case of the above conjecture we fix

a finite abelian extension of number fields L/K with Galois group G.

For each ZpJGKK-module X we set

XL/K := IndGKGL (X),

regarded as endowed with the natural action of G×GK .

We consider the Tate motive (h0(L)/K,Q[G]). As an order of Q[G] we take Z[G]. Then

the p-adic étale realization of this motive is Qp,L/K and contains the natural lattice Zp,L/K .

Suppose that all places in S∞(K) split completely in L. Then r := r(h0(L)/K,Q[G]) is

equal to |S∞(K)| and Hypothesis 2.3 is satisfied. Choosing an ordered basis b of YK(Zp,L/K)

is equivalent to choosing a labeling v1, . . . , vr of the infinite places of K and a place wi of

L lying above each vi. If we write

ηbL/K,S ∈ Cp ⊗Zp
∧r

Zp[G]
H1(OL,S ,Zp(1))

for the Rubin-Stark element defined by this choice (see [BKS17, §2A], for example), then

(2) ηbS(Zp,L/K) = ηbL/K,S .

More generally, for an integer j and an idempotent ε ∈ Zp[G], let

ηεL/K,S(j) ∈ Cp ⊗Zp
∧r

Zp[G]
H1(OL,S ,Zp(1− j))

be the generalized Stark element defined in [BKS20, Def. 2.9], where r := rεj is as in [BKS20,

§2.1]. Then we have

ηbS(ε ·Zp(j)L/K) = ηεL/K,S(j),

where we take b to be the dual of the basis in [BKS20, Lem. 2.1].

Remark 2.7. Assume that T = ε ·Zp(j)L/K for some integer j. Then Hypothesis 2.5 (i) is

satisfied unless j = 1, in which case it is satisfied if and only if ε belongs to the augmentation

ideal of Zp[G]. Hypothesis 2.5 (ii) need not be satisfied in this case (even if j 6= 1) but this

issue is easily avoided by choosing an auxiliary set Σ of places of K and using a notion of

Σ-modified cohomology as in [BKS20] (where Σ is denoted by T ). In particular, when we

consider examples in the sequel for which T = ε · Zp(j)L/K and Hypothesis 2.5 (ii) is not

satisfied, it should be understood that a set Σ is implicitly used.

Remark 2.8. If T is as in Remark 2.7, then Conjecture 2.6 with Rp = Zp[G]ε is known to

be valid in each of the following cases:

• L is an abelian extension of Q (this is due to Kurihara and the second and third

authors [BKS20, Thm. 4.1]);

• K is totally real, L is CM, j ≤ 0, ε is the idempotent e−j in Example 2.2 (ii) (this is

due to Deligne and Ribet (cf. [BKS20, Ex. 3.10 (i)])).
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Remark 2.9. After taking account of the final comment in Remark 2.7, the equality (2)

combines with the identification (1) to imply that if Rp = Zp[G] and T = Zp,L/K , then

Conjecture 2.6 coincides with the p-component of the Rubin-Stark Conjecture for L/K, as

formulated by Rubin in [Rub96].

2.3. Galois cohomology. In this section we recall some basic facts about compactly sup-

ported étale cohomology that will be useful in the sequel.

For a commutative noetherian ring A we write D(A) for the derived category of A-modules.

Let N be a continuous ZpJGKK-module that has a commuting action of A. Then, if S is any

finite set of places of K that contains S∞(K), Sp(K) and all places at which N is ramified

one can regard N as an étale pro-sheaf of A-modules on Spec(OK,S) and hence define its

compactly supported étale cohomology complex RΓc(OK,S , N) (as discussed, for example,

in [BS19b, §1.4]). This complex defines an object of D(A) that is well-defined up to unique

isomorphism and so its shifted linear dual

CA(N) := R HomA(RΓc(OK,S , N),A[−3])

is also an object of D(A) that is well-defined up to unique isomorphism.

In the following result we record some useful facts about this construction.

Lemma 2.10. Let A be a Gorenstein Zp-order and N a finitely generated free A-module

that has a commuting continuous action of GK that is unramified outside a finite set of

places S of K that contains both S∞(K) and Sp(K). Then the following claims are valid.

(i) CA(N) is a perfect complex of A-modules, acyclic outside degrees 0, 1 and 2 and its

Euler characteristic in K0(A) vanishes.

(ii) Set N∗(1) = HomA(N,A ⊗Zp Zp(1)). There are canonical isomorphisms of A-

modules

H0(CA(N)) ∼= H0(K,N∗(1)) and H1(CA(N)) ∼= H1(OK,S , N∗(1))

and a canonical exact sequence of A-modules

0→ H2(OK,S , N∗(1))→ H2(CA(N))→ YK(N)→ 0.

(iii) If Hypothesis 2.5 is satisfied, then CA(N) is isomorphic in D(A) to a complex of

the form P → P , where P is a finitely generated free A-module and the first term

is placed in degree one.

(iv) Let B be a ring that is either finite or a free Zp-module of finite rank. For any

homomorphism of rings A → B, there exists a canonical isomorphism in D(B) of

the form B ⊗LA CA(N) ∼= CB(B ⊗A N).

Proof. Claims (i), (ii) and (iii) are proved in [BS19b, Prop. 2.21] and we recall only that

claims (i) and (iii) depend crucially on the fact that N is free over the Gorenstein algebra

A, whilst the isomorphisms in claim (ii) follow directly from the Artin-Verdier Duality
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Theorem. The isomorphism in claim (iv) is obtained by combining the natural isomorphism

in D(B)

B ⊗LA R HomA(RΓc(OK,S , N),A[−3]) ∼= R HomB(B ⊗LA RΓc(OK,S , N),B[−3])

together with the canonical isomorphism

B ⊗LA RΓc(OK,S , N) ∼= RΓc(OK,S ,B ⊗A N)

(as described, for example, in [Fla00, Prop. 4.2]). �

3. Congruence conjectures

3.1. Rank-one motives. Following Deligne [Del79, §2.4], we give the following definition.

Definition 3.1. A motive M (or rather (M/K,R)) is of rank one if rankR(Hσ(M)) = 1

for any σ : K ↪→ C (or equivalently, rankRp(Vp(M)) = 1 for any prime number p).

Example 3.2.

(i) The motive (h0(L)(j)/K, e±j Q[G]) in Example 2.2 (ii) is of rank one.

(ii) Let K be an imaginary quadratic field (of class number one) and E/K an elliptic

curve with complex multiplication by OK . Then the motive (h1(E)(1)/K,K) is

of rank one. More generally, for any algebraic Hecke character ϕ of K, one can

consider the Hecke motive (h(ϕ)/K,K), which is of rank one.

(iii) Let A/K be an abelian variety with complex multiplication by an order of a CM

field F . Then the motive (h1(A)(1)/K,F ) is of rank one.

Remark 3.3. Deligne conjectured in [Del79, Conj. 8.1 (iii)] that every rank-one motive

arises from an algebraic Hecke character.

Definition 3.4. Let M be a rank-one motive and T := Tp(M) be a stable lattice of Vp(M).

We define the character associated with T by the composition

χT : GK → AutRp(T ) ∼= R×p ,

where the last isomorphism follows from the fact that rankRp(T ) = 1. For each natural

number n we similarly define a character

χT,n : GK → AutR/pn(T/pn) ∼= (R/pn)×.

Example 3.5. If M = h0(K)(1) and T = Zp(1), then χT coincides with the cyclotomic

character χcyc : GK → Z×p .

3.2. Congruences. Let (M/K,R) be a rank-one motive. Fix p, R, T := Tp(M) ⊂ Vp(M),

and S as in §2.1. We also fix a finite abelian extension L/K unramified outside S with

Galois group G and a natural number n. In what follows, we always assume Hypothesis

2.3. Let r = r(M/K,R) be the basic rank and fix an Rp-basis b = {b1, . . . , br} of YK(T ).
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Hypothesis 3.6.

(i) L contains Q
ker(χT,n)

, (or equivalently, the character χT,n : GK → (R/pn)× factors

through the restriction map GK → G).

(ii) There exists an idempotent ε ∈ Zp[G] such that

(a) the ring homomorphism Zp[G]→ R/pn induced by χT,n sends ε to the identity

element of R/pn;

(b) the Zp[G]ε-module YK(ε ·Zp,L/K) is free of rank r;

(c) H1(OK,S , ε ·Zp(1)L/K) is Zp-free.

(iii) There exists a Zp[G]ε-basis w = {w1, . . . , wr} of YK(ε ·Zp,L/K) such that the map

YK(ε ·Zp,L/K)→ YK(T/pn)

induced by twT,n in Lemma 3.7 below sends w to the image of b.

Lemma 3.7. Assume Hypothesis 3.6(i) and (ii)(a). Then each choice of an Rp-basis of T

gives rise to an isomorphism

(3) ε ·Zp,L/K ⊗Zp[G],χ−1
T,n
R/pn ∼= T/pn

of Rp[GK ]-modules, and hence also to a homomorphism

twT,n : ε ·Zp,L/K → T/pn

of Zp[GK ]-modules.

Proof. The given hypotheses imply that the tensor product ε ·Zp,L/K ⊗Zp[G],χ−1
T,n
R/pn is a

free R/pn-module of rank one upon which GK acts via the character χT,n. Since T/pn is

also a free R/pn-module of rank one upon which GK acts via χT,n, any choice of an Rp-basis

of T induces an isomorphism ε · Zp,L/K ⊗Zp[G],χ−1
T,n
R/pn ∼= T/pn of Rp[GK ]-modules and

hence also a composite homomorphism of Zp[GK ]-modules

ε ·Zp,L/K → ε ·Zp,L/K ⊗Zp[G],χ−1
T,n
R/pn ∼= T/pn

of the required sort. �

Example 3.8. For the motive (h0(L)/K, e±j Q[G]) considered in Example 2.2(ii), Hypothesis

3.6(i) is satisfied if µpn := {ζ ∈ Q× | ζpn = 1} ⊂ L, and one can take ε in Hypothesis 3.6(ii)

to be 1±c
2 . Hypothesis 3.6(iii) is automatically satisfied in this case.

Lemma 3.9. Assume Hypothesis 3.6. Then each choice of Rp-basis of T gives rise to a

canonical homomorphism of Zp[G]-modules

twr
T,n :

⋂r

Zp[G]ε
H1(OK,S , ε ·Zp(1)L/K)→

⋂r

R/pn
H1(OK,S , T ∗(1)/pn),

where G acts on the right hand module via χT,n.
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Proof. We set A := Zp[G]ε, Rn := R/pn and Tn := T/pn and abbreviate the complexes

CA(ε ·Zp,L/K) and CRn(Tn) defined in §2.3 to Cε and C(Tn) respectively. Then by applying

the general result of Lemma 2.10 (iv) to the homomorphism A → Rn induced by χ−1
T,n, we

find that the isomorphism of Rp[GK ]-modules (3) (which depends on a choice of Rp-basis

of T ) induces a composite morphism

Cε → Cε ⊗LA,χ−1
T,n
Rn ∼= C(Tn)

in D(A) (in which the first arrow denotes the natural map).

In addition, since H0(K,Zp(1)L/K) vanishes, the assumed validity of Hypothesis 3.6(ii)(c)

implies that the GK-representation ε·Zp,L/K satisfies Hypothesis 2.5. From Lemma 2.10(iii)

it therefore follows that the above displayed morphism is represented by a commutative

diagram of the form

(4)

P
θ−−−−→ P

πn

y yπn
Pn

θn−−−−→ Pn

in which P is a finitely generated free A-module, Pn := P ⊗A,χ−1
T,n
Rn, θn := θ ⊗ id and πn

is the natural projection.

We now set X := H1(OK,S , ε ·Zp(1)L/K) and Xn := H1(OK,S , T ∗(1)/pn). Then, by Lemma

2.10 (ii), we can identify X and Xn with ker(θ) and ker(θn) respectively. In particular, since

Rn is self-injective, the general result of [BSS19a, Prop. 2.4] implies that the inclusion

Xn ⊂ Pn identifies
⋂r
RnXn with the submodule of

⋂r
RnPn =

∧r
RnPn comprising elements

y with the property that Φ(y) ∈ ker(θn) for all Φ in
∧r−1
Rn HomRn(Pn,Rn).

To obtain a homomorphism twr
T,n of the required sort it is thus enough to show that the

latter condition is satisfied by any element in the image of the composite homomorphism

(5)
⋂r

A
X

ι−→
⋂r

A
P =

∧r

A
P →

(∧r

A
P
)
⊗A,χ−1

T,n
Rn ∼=

∧r

Rn
Pn

in which ι is induced by the inclusion X ⊂ P and the second arrow is the natural projection.

Hence, given the commutativity of (4), and the fact that
∧r−1
Rn HomRn(Pn,Rn) is generated

over Rn by the image of the natural map∧r−1

A
HomA(P,A)→

(∧r−1

A
HomA(P,A)

)
⊗A,χ−1

T,n
Rn =

∧r−1

Rn
HomRn(Pn,Rn),

it is enough to prove θ(Θ(ι(x))) = 0 for all x ∈
⋂r
AX and Θ ∈

∧r−1
A HomA(P,A). But this

is true since Θ(ι(x)) = Θ′(x) for an element Θ′ of
∧r−1
A HomA(X,A) and any element of

the latter group maps
⋂r
AX to

⋂1
AX = X = ker(θ).

This shows (5) induces a map
⋂r
AX →

⋂r
RnXn and it is straightforward to show that this

construction is independent of the representative complex P
θ−→ P fixed above. �
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Next we note that, since H1(OK,S , T ∗(1)) is Zp-free (under Hypothesis 2.5) and Rp is

Gorenstein, the argument of [BSS19a, (11)] implies the existence of a natural homomorphism⋂r

Rp
H1(OK,S , T ∗(1))→

⋂r

R/pn
H1(OK,S , T ∗(1)/pn); a 7→ a.

We can now formulate a precise congruence conjecture concerning Bloch-Kato elements.

Conjecture 3.10 (Congruence Conjecture, CC(M/K,R,L, n)). Assume Hypotheses 2.3,

2.5 and 3.6 and the validity of the Integrality Conjecture (Conjecture 2.6) for both ε ·Zp,L/K
and T . Then in the finite module

⋂r
R/pnH

1(OK,S , T ∗(1)/pn) one has

twr
T,n(ηwS (ε ·Zp,L/K)) = ηbS(T ).

Remark 3.11. Conjecture 3.18 is formulated for the data (M/K,R, p,R, T, S, b, L, n).

Since the data (p,R, T, S, b) is often fixed when (M/K,R) is given, we indicate the conjec-

ture by the symbol CC(M/K,R,L, n).

Remark 3.12. Since ηwS (ε · Zp,L/K) is the ε-component of the Rubin-Stark element (see

§2.2), Conjecture CC(M/K,R,L, n) predicts a precise congruence relation between Rubin-

Stark elements and the Bloch-Kato elements for M . More generally, for another motive M ′,

it is possible to formulate a congruence between Bloch-Kato elements for M ′ and M ⊗M ′.

3.3. Soulé-Stark elements. To formulate a ‘limit version’ of the Congruence Conjecture

we fix a rank-one motive (M/K,R) and data p,R, T, S, r, b be as in §3.2. (We do not fix L

and n in this subsection.) We also define fields

Ln := Q
ker(χT,n)

and L∞ :=
⋃
n

Ln = Q
ker(χT )

,

and use the associated algebras

Λn := Zp[Gal(Ln/K)] and Λ := ZpJGal(L∞/K)K.

For each ZpJGKK-module X we write XL∞/K for the inverse limit lim←−nXLn/K , where the

transition morphisms are the natural projection maps

XLn+1/K
∼= Λn+1 ⊗Zp X → Λn ⊗Zp X ∼= XLn/K .

Hypothesis 3.13.

(i) There exists an idempotent ε ∈ Λ such that

(a) the ring homomorphism Λ→Rp induced by χT sends ε to the identity element

of Rp,
(b) the Λε-module YK(ε ·Zp,L∞/K) is free of rank r,

(c) H1(OK,S , ε ·Zp(1)Ln/K) is Zp-free for every n.

(ii) There exists a Λε-basis w = {w1, . . . , wr} of YK(ε ·Zp,L∞/K) such that the map

YK(ε ·Zp,L∞/K)→ YK(T )

induced by twT in Lemma 3.14 below sends w to b.
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Lemma 3.14. Assume Hypothesis 3.13 (i) (a). Then there is an isomorphism

ε ·Zp,L∞/K ⊗Λ,χ−1
T
Rp ∼= T.

In particular, there is a natural map twT : ε ·Zp,L∞/K → T.

Proof. This is proved in the same way as Lemma 3.7. �

Remark 3.15. Hypothesis 3.13 implies Hypothesis 3.6 for L = Ln for every n.

Definition 3.16. Assume Hypotheses 2.3, 2.5 and 3.13 and that the Integrality Conjecture

(Conjecture 2.6) is valid for ε · Zp,Ln/K for every n. We define a rank r Soulé twist to be

the map

twr
T := lim←−

n

twr
T,n : lim←−

n

ε ·
⋂r

Λn
H1(OK,S ,Zp(1)Ln/K) −→ lim←−

n

⋂r

R/pn
H1(OK,S , T ∗(1)/pn)

∼=
⋂r

Rp
H1(OK,S , T ∗(1)),

where the isomorphism is by [Tso19, Lem. 2.4]. We define the Soulé-Stark element for

(M/K,R) by setting

βbS(T ) := twr
T

(
lim←−
n

ηwS (ε ·Zp,Ln/K)

)
∈
⋂r

Rp
H1(OK,S , T ∗(1)).

One checks that this element is independent of the choice of w in Hypothesis 3.13 (ii).

Example 3.17.

(i) Let f be a positive integer divisible by p and write ζf for a primitive f -th root

of unity. We set G := Gal(Q(ζf )/Q). The Soulé-Stark element for the motive

(h0(Q(ζf ))(j)/Q, e+
j Q[G]) is the Deligne-Soulé cyclotomic element

e+
j c1−j(ζf ) ∈ H1(Q(ζf ),Zp(1− j))

(see [HK03, Def. 3.1.2]).

(ii) Let L/K be a finite abelian extension with Galois group G, and assume that K is

totally real and L is CM. Then for any integer j 6= 1 the Soulé-Stark element for the

motive (h0(L)(j)/K, e−j Q[G]) is the image of the Stickelberger element θL∞/K,S(0)

(see [BKS17, §4B]) under the map

Λ = ZpJGal(L∞/K)K→ Zp[G]; σ 7→ χcyc(σ)jσ,

where σ ∈ G denotes the image of σ ∈ Gal(L∞/K). (Here we implicitly choose Σ

in Remark 2.7 so that θL∞/K,S(0) lies in Λ.)

We conjecture that the Soulé-Stark element coincides with the Bloch-Kato element.

Conjecture 3.18 (Soulé-Stark Conjecture, SS(M/K,R)).

ηbS(T ) = βbS(T ).
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Remark 3.19. Conjecture 3.18 is formulated for the data (M/K,R, p,R, T, S, b). We omit

the data (p,R, T, S, b) for the same reason as Remark 3.11.

Remark 3.20. Conjecture SS(M/K,R) implies Conjecture CC(M/K,R,Ln, n) for all n.

3.4. Connection to the eTNC. In this section we first review the main conjecture of

higher-rank Iwasawa theory for Gm that is formulated by Kurihara and the first and third

authors in [BKS17]. We then explain how this conjecture can be combined with the Soulé-

Stark Conjecture to give a precise generalization to rank-one motives of the main strategy

used by Huber and Kings in [HK03] to prove the Tamagawa Number Conjecture for Tate

motives over abelian extensions of Q.

3.4.1. The higher-rank main conjecture. We assume for the moment that L∞ is any Galois

extension of K for which Gal(L∞/K) is isomorphic to Zdp ×∆ for some natural number d

and finite abelian group ∆ and, in addition, no finite place of K splits completely in L∞.

We write Ω(L∞) for the set of finite extensions of K in L∞. We set Λ := ZpJGal(L∞/K)K
and ΛF := Zp[Gal(F/K)] for each F in Ω(L∞). We also fix an idempotent ε of Λ that

validates the conditions (i) (b) and (i) (c) in Hypothesis 3.13. We write Q(Λ) for the total

quotient ring of Λ.

Now, since no finite place of K splits completely in L∞, the Λ-module H2(OK,S ,Zp(1)L∞/K)

is torsion. This fact combines with the results of Lemma 2.10 (i) and (ii) (with A = ΛF ε

and N = ε ·Zp,F/K for each F in Ω(L∞)) and the assumed validity of Hypothesis 3.13 (i) (b)

to imply that the complex Q(Λ)ε⊗Λ RΓ(OK,S ,Zp(1)L∞/K) is acyclic outside degree one and

that its cohomology in degree one is free of rank r. Hence, under the present hypotheses,

there exists a canonical isomorphism of Q(Λ)-modules

Q(Λ)ε⊗Λ det−1
Λ (RΓ(OK,S ,Zp(1)L∞/K)) ∼= Q(Λ)ε⊗Λ

∧r

Λ
H1(OK,S ,Zp(1)L∞/K).

We further note that, by the argument in [BKS17, Thm. 3.4 (1) and Lem. 3.5], for any

Λε-order A in Q(Λ)ε, the above isomorphism restricts to give an injective homomorphism

of A-modules of the form

π∞ : A ⊗Λ det−1
Λ (RΓ(OK,S ,Zp(1)L∞/K)) → A ⊗Λ lim←−

F∈Ω(L∞)

⋂r

ΛF
H1(OK,S ,Zp(1)F/K).

Setting

ηwL∞/K,S := (ηwS (ε ·Zp,F/K))F∈Ω(L∞) ∈ lim←−
F∈Ω(L∞)

Cp ⊗Zp ε ·
∧r

ΛF
H1(OK,S ,Zp(1)F/K),

we can now recall the formulation of the ε-component of the Iwasawa Main Conjecture for

Gm for (L∞/K, S). (In fact, since we do not assume that d = 1, the formulation we give

here is actually slightly more general than in loc. cit.)
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Conjecture 3.21 (Kurihara et al. [BKS17, Conj. 3.1]). Assume the above hypotheses and

fix a Λε-order A in Q(Λ)ε. Then there exists an A-basis

zwL∞/K,S ∈ A⊗Λ det−1
Λ (RΓ(OK,S ,Zp(1)L∞/K))

for which one has

π∞(zwL∞/K,S) = ηwL∞/K,S .

3.4.2. The strategy of Huber and Kings. We shall now prove the following result.

Theorem 3.22. Fix a field L∞ =
⋃
n Ln as in §3.3. Assume that Gal(L∞/K) is isomorphic

to Zdp × ∆ for some natural number d and finite abelian group ∆ and that no finite place

in S splits completely in L∞. Assume also that Hypotheses 2.3, 2.5 and 3.13 are valid and

that, for every n, the Integrality Conjecture (Conjecture 2.6) is valid for the data ε·Zp,Ln/K .

Then the equivariant Tamagawa Number Conjecture for the pair (M,Rp) is valid whenever

the following three conditions are satisfied:

(a) The higher-rank Iwasawa Main Conjecture for Gm (Conjecture 3.21) is valid with

A = Λε;

(b) The Soulé-Stark Conjecture SS(M/K,R) is valid;

(c) H2(OK,S , V ∗(1)) vanishes.

Remark 3.23. Condition (c) in Theorem 3.22 is predicted to be satisfied in all but a few

exceptional cases (see Jannsen [Jan89, Conj. 1]). However, if T = ε̃ · Zp,F/K for a finite

abelian extension F of K and an idempotent ε̃ of Zp[Gal(F/K)], then class field theory

implies that (c) is satisfied only if ε̃ annihilates the submodule X of the free Zp-module on

the places of F above S \S∞(K) comprising elements whose coefficients sum to zero. In the

case T = ε̃·Zp,F/K and ε̃·X 6= 0 the result of [BKS17, Thm. 5.2] gives an alternative strategy

for proving the equivariant Tamagawa Number Conjecture for (h0(F ),Zp[Gal(F/K)]ε̃) that

involves the Mazur-Rubin-Sano Conjecture.

Remark 3.24. The field L∞ =
⋃
n Ln in Theorem 3.22 is determined by T . However, the

argument given below will show that the same result is valid if in the statement of Theorem

3.22 one replaces L∞, respectively Ln, by any abelian extension L′∞ =
⋃
n L
′
n, respectively

L′n, of K with the property that Ln ⊆ L′n for each n and Gal(L′∞/K) is isomorphic to

Zdp ×∆ for some natural number d and finite abelian group ∆.

The proof of Theorem 3.22 will now occupy the remainder of this section. We start by

making the following technical observation.

Lemma 3.25. Assume Hypotheses 2.3 and 2.5 and that H2(OK,S , V ∗(1)) vanishes. Then

we have a canonical isomorphism

πT : Qp ⊗Zp det−1
Rp(RΓ(OK,S , T ∗(1))) ∼= Qp ⊗Zp

∧r

Rp
H1(OK,S , T ∗(1))
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and the equivariant Tamagawa Number Conjecture for (M,Rp) holds if and only if there

exists an Rp-basis

zbS(T ) ∈ det−1
Rp(RΓ(OK,S , T ∗(1)))

such that

πT (zbS(T )) = ηbS(T ).

Proof. The vanishing of H2(OK,S , V ∗(1)) implies that RΓ(OK,S , V ∗(1)) is acyclic outside

degree one and also combines with Hypothesis 2.3 and the result of Lemma 2.10 (i) and (ii)

to imply H1(OK,S , V ∗(1)) is a free (Qp ⊗Zp Rp)-module of rank r. The first claim follows

directly from this. The second claim then follows from the definition of Bloch-Kato elements

and the precise formulation of the equivariant Tamagawa Number Conjecture. �

We note that the vanishing of H2(OK,S , V ∗(1)) plays an essential role in the construction

of the isomorphism πT in Lemma 3.25. We will also later use the fact (that is verified by

the argument of [BS19b, Prop. 2.21]) that this map πT restricts to give a homomorphism

of Rp-modules (that we denote by the same symbol) of the form

πT : det−1
Rp(RΓ(OK,S , T ∗(1)))→

⋂r

Rp
H1(OK,S , T ∗(1)).

In addition, just as in Lemma 3.14, there exists an isomorphism

ε ·Zp(1)L∞/K ⊗Λ,χT Rp ∼= T ∗(1),

which induces a map

twdet
T : ε · det−1

Λ (RΓ(OK,S ,Zp(1)L∞/K))→ det−1
Rp(RΓ(OK,S , T ∗(1))).

The relation between the maps πT , tw
det
T and twr

T is described by the following result.

Lemma 3.26. Under the hypotheses of Theorem 3.22, the following diagram commutes:

ε · det−1
Λ (RΓ(OK,S ,Zp(1)L∞/K))

twdet
T //

π∞

��

det−1
Rp(RΓ(OK,S , T ∗(1)))

πT

��

lim←−
n

ε ·
⋂r

Λn
H1(OK,S ,Zp(1)Ln/K)

twrT

//
⋂r

Rp
H1(OK,S , T ∗(1)).

Proof. This is proved by a standard argument. See, for example, the argument of Tsoi

[Tso19, Cor. 4.9]. �

We can now give a proof of Theorem 3.22. To do this we note, firstly, that the assumed

validity of Conjecture 3.21 with A = Λε implies the existence of a Λε-basis

zwL∞/K,S ∈ ε · det−1
Λ (RΓ(OK,S ,Zp(1)L∞/K))

such that π∞(zwL∞/K,S) = ηwL∞/K,S . The element

zbS(T ) := twdet
T (zwL∞/K,S)
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is therefore an Rp-basis of det−1
Rp(RΓ(OK,S , T ∗(1))).

In addition, since the very definition of βbS(T ) implies that it is equal to

βbS(T ) = twr
T (ηwL∞/K,S) ∈

⋂r

Rp
H1(OK,S , T ∗(1)),

the commutative diagram in Lemma 3.26 implies that

πT (zbS(T )) = βbS(T ).

From Conjecture SS(M/K,R), we can therefore deduce that

πT (zbS(T )) = ηbS(T )

and, by Lemma 3.25, this equality is equivalent to the validity of the equivariant Tamagawa

Number Conjecture for the pair (M,Rp).

This completes the proof of Theorem 3.22. �

4. Iwasawa Main Conjectures for Gm

In this section we provide new evidence for higher-rank Iwasawa Main Conjectures for Gm
including, in particular, Conjecture 3.21.

4.1. Statement of the main result. Let L∞/K be an abelian extension in which no finite

place splits completely and which is such that Gal(L∞/K) ∼= Γ×G for a finite abelian group

G and Γ ∼= Zdp with d > 0. Put L = LΓ
∞. Let P ⊆ G be the p-Sylow subgroup of G and

set ∆ = G/P . We fix a character χ : ∆→ Qp
×

and, following [BSS19c, Hyp. 2.9 and Hyp.

3.1], we consider the following hypothesis on this character.

Hypothesis 4.1. The character χ satisfies each of the following conditions:

(i) χ 6∈ {1, ω}, where ω is the Teichmüller character of K;

(ii) χ2 6= ω if p = 3;

(iii) χ(v) 6= 1 for every v ∈ Sram(L/K) ∪ Sp(K);

(iv) r := |{v ∈ S∞(K) | χ(v) = 1}| > 0.

Let Lχ be the subfield of L cut out by the character χ and, for any subfield F of L∞/K,

denote Gal(F/K) by GF .

We write S for the finite set of places S∞(K) ∪ Sram(L/K) ∪ Sp(K) and set

UL∞ := lim←−
F

(Zp ⊗Z O×F,S) and Cl(L∞) := lim←−
F

Cl(F ),

where in both limits F ranges over all finite subfields of L∞/L and Cl(F ) denotes the p-

part of the ideal class group of F . We take Λ = Zp[imχ]JΓK[P ] to be the relevant Iwasawa

algebra.

As before we fix a basis b of YK(Zp,L∞/K) and, by abuse of notation, we will denote the

induced basis of YK(Zp,F/K) for a subfield F of L∞/K by b as well. We denote the Rubin-

Stark element relative to this choice of data by ηbF/K,S (cf. §2.2).
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Finally, in the sequel, we will also use the following general notation: the χ-component of

a ∆-module X is defined to be

Xχ := X ⊗Z[∆] Zp[imχ]

with ∆ acting on Zp[imχ] as σ ·x = χ(σ) ·x and for any element a ∈ X we set aχ := a⊗1 ∈
Xχ. For any Λ-module X and natural number i we moreover set

EiΛ(X) := ExtiΛ(X,Λ).

We can now state the main result of this section.

Theorem 4.2. Assume the Rubin-Stark Conjecture is valid for all abelian extensions of K

and that χ validates Hypothesis 4.1. Then the following claims are also valid.

(i) The norm-coherent family (ηbF/K,S)F of Rubin-Stark elements, where F ranges over

all finite extensions of L in L∞, defines a canonical element ηb,χL∞/K,S of
⋂r

Λ UL∞,χ.

For this element one has an inclusion

Fitt0
Λ

(
Cl(L∞)χ

)
⊆ im

(
ηb,χL∞/K,S

)
with pseudo-null cokernel.

(ii) For the canonical functorial homomorphism

κ : E1
Λ

((⋂r

Λ
UL∞,χ

)
/(Λ · ηb,χL∞/K,S)

)
→ E1

Λ

(⋂r

Λ
UL∞,χ

)
one has

Fitt0
Λ(ker(κ)) = im

(
ηb,χL∞/K,S

)∗∗
.

In particular, if ℘ is any prime ideal of Λ of height at most one, then one has

(6) Fitt0
Λ

(
E1

Λ

((⋂r

Λ
UL∞,χ

)
/(Λ · ηb,χL∞/K,S)

))
℘

= Fitt0
Λ

(
Cl(L∞)χ

)
℘
.

Remark 4.3. In certain natural situations, the equality (6) has a more explicit interpre-

tation. For example, if we assume that G contains no element of order p, then (since

characteristic ideals over power series rings are determined by their localisations at height

one prime ideals), (6) implies that

charΛ

((⋂r

Λ
UL∞,χ

)
/(Λ · ηb,χL∞/K,S)

)
= charΛ

(
Cl(L∞)χ

)
.

In regard of the latter equality, we recall that main conjectures in this more classical style

have been proved (under certain additional hypotheses that include the assumed validity of

Leopoldt’s Conjecture) by Büyükboduk and by Büyükboduk and Lei in [Büy09], [Büy14]

and [BL15, Thm. 7.7].
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4.2. The proof of Theorem 4.2. At the outset we note that, since χ validates Hypothesis

4.1, the representation Zp,F/K(1)(χ−1) satisfies Hypothesis 2.5 for all finite intermediate

extensions of L∞/K. Passing to the limit over F in Lemma 2.10 (iii) we therefore have that

the complex

C∞,χ := RΓ(OK,S ,Zp,L∞/K(1)(χ−1))⊕ YK(Zp,L∞/K)χ[−2]

is isomorphic in D(Λ) to a complex of the form

(7) P
θ−→ P,

where P is a free Λ-module of finite rank and the first term is placed in degree one. In

addition, Lemma 2.10 (ii) combines with Kummer theory and class field theory to give a

canonical isomorphism of Λ-modules

(8) ker(θ) ∼= H1(C∞,χ) ∼= UL∞,χ

and a canonical split-exact sequence

(9) 0 −→ Cl(L∞)χ −→ coker(θ) −→ YK(Zp,L∞/K)χ −→ 0,

respectively. Next, we note that for any finite abelian extension F of L contained in L∞,

the complex

CF,χ := RΓ(OK,S ,Zp,F/K(1)(χ−1))⊕ YK(Zp,F/K)χ

is naturally isomorphic to C∞,χ ⊗LΛ Zp[GF ] and hence isomorphic in D(Zp[GF ]χ) to the

complex

(10) PF
θF−→ PF ,

where PF denotes the Zp[GF ]χ-free module P ⊗Λ Zp[GF ], the first term is placed in degree

one and θF denotes the endomorphism of PF induced by θ.

In particular, since the module (Zp⊗ZO×F,S)χ = H1(CF,χ) identifies with ker(θF ), the above

discussion allows us to apply a general observation of Sakamoto (see [Sak20, Lem. B.15]) in

order to obtain a canonical identification

lim←−
F

⋂r

Zp[GF ]χ
(Zp ⊗Z O×F,S)χ =

⋂r

Λ
UL∞,χ.

Given this identification, the first assertion in claim (i) is therefore clear.

We next claim that, for any element a = (aF )F of
⋂r

Λ UL∞,χ, there is an inclusion of ideals

of Λ

(11) lim←−
F

im(aF ) ⊆ im(a)

with pseudo-null cokernel. To see this, we recall that

(12) im(a) ⊇
{
f(a) | f ∈

∧r

Λ
P ∗
}

and im(aF ) =
{
f(a) | f ∈

∧r

Zp[GF ]χ
P ∗F
}
,
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where the first inclusion has pseudo-null cokernel (see the proof of [BD20, Lem. 2.7 (c)]).

Note that, since the Λ-module P ∗ = lim←−F P
∗
F is free, the module

∧r
Λ P
∗ identifies with the

limit lim←−F
∧r
Zp[GF ]χ

P ∗F and so we have an equality

(13)
{
f(a) | f ∈

∧r

Λ
P ∗
}

= lim←−
F

{
f(a) | f ∈

∧r

Zp[GF ]χ
P ∗F
}
.

This combines with (12) to imply the claimed inclusion (11).

The key point now is that the compatibility in (11) allows us to deduce from the result

[BSS19c, Cor. 3.6] of Sakamoto and the second and third authors that there is an equality

(14) lim←−
F

im
(
ηb,χF/K,S

)
= lim←−

F

Fitt0
Zp[GF ](Cl(F ))χ.

To prove the second assertion in claim (i) we therefore need to show that the right hand

side of (14) agrees with Fitt0
Λ

(
Cl(L∞)χ

)
. However, as the complexes C∞,χ and CF,χ are re-

spectively isomorphic to the complexes (7) and (10), the general result of [BS19b, Lem. A.7]

applies in this case to imply the existence of an element z = (zF )F of
⋂r

Λ UL∞,χ for which

one has

(15) {f(z) | f ∈
∧r

Λ
P ∗} = FittrΛ(H2(CL∞,χ)) = Fitt0

Λ

(
Cl(L∞)χ

)
and

(16) {f(zF ) | f ∈
∧r

Zp[GF ]χ
P ∗F } = FittrZp[GF ]χ

(H2(CF,χ)) = Fitt0
Zp[GF ](Cl(F ))χ.

Upon combining these descriptions with (13), we can therefore derive the displayed equality

in Theorem 4.2 (i) as a direct consequence of (14).

To prove Theorem 4.2 (ii), we set E := Λ·ηb,χL∞/K,S and claim that E is a free Λ-module of rank

one. It is sufficient to prove that AnnΛ(ηb,χL∞/K,S) = 0, which will follow if Fitt0
Λ(Cl(L∞)χ) ⊆

im(ηb,χL∞/K,S) contains a non-zero divisor. Observe that

(17) Q(Λ) · Fitt0
Λ(Cl(L∞)χ) = Fitt0

Q(Λ)(Q(Λ) · Cl(L∞)χ) = Q(Λ),

where the first equality follows from a natural property of Fitting ideals and the second

from the fact that Cl(L∞)χ is a Λ-torsion module, and so Q(Λ) · Cl(L∞)χ = 0. Thus,

Fitt0
Λ(Cl(L∞)χ) spans Q(Λ) over Q(Λ) and, in particular, must contain a non-zero divisor.

Moreover, the representative (7) of C∞,χ can be used to compute that the Q(Λ)-module

Q(Λ) · UL∞,χ is free of rank r. It follows that
(⋂r

Λ UL∞,χ
)
/E is the quotient of two mod-

ules that each span a free module of rank one over Q(Λ) and hence must be Λ-torsion.

Consequently, dualising the tautological exact sequence

0 −→ E −→
⋂r

Λ
UL∞,χ −→

(⋂r

Λ
UL∞,χ

)
/E −→ 0

gives the exact sequence

0→
(⋂r

Λ
UL∞,χ

)∗ → E∗ → E1
Λ

((⋂r

Λ
UL∞,χ

)
/E
)

κ→ E1
Λ

(⋂r

Λ
UL∞,χ

)
→ 0.
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Then, since the Λ-module E∗ is free of rank one, the latter exact sequence can be used to

calculate that Fitt0
Λ(ker(κ)) coincides with the ideal of Λ given by

I := im
((⋂r

Λ
UL∞,χ

)∗ → E∗ ∼= Λ
)

=
{
f(ηb,χL∞/K,S) | f ∈

(⋂r

Λ
UL∞,χ

)∗}
.

The ideal I is the isomorphic image of the reflexive module
(⋂r

Λ
UL∞,χ

)∗
and therefore

reflexive as well. In particular, it is uniquely determined by its localisations at primes of

height at most one of Λ (see, for example, [Sak20, Lem. C.13]). To establish the first part

of claim (ii) it now suffices to prove that I℘ = im(ηb,χL∞/K,S)℘ for every prime ideal ℘ ⊆ Λ of

height at most one. This follows from the fact that the cokernel of the natural map∧r

Λ
U∗L∞,χ →

(∧r

Λ
U∗L∞,χ

)∗∗
=
(⋂r

Λ
UL∞,χ

)∗
identifies with E2

Λ(X) for a certain Λ-module X (see [NSW08, Prop. (5.4.9) (iii)]) and there-

fore, since Λ is Gorenstein, vanishes after localising at ℘.

Having proved the first equality in claim (ii), the final assertion will follow if we can show

that E1
Λ(
⋂r

Λ UL∞,χ) vanishes after localising at any prime ℘ ⊆ Λ of height at most two.

However, this follows from the general fact that for any finitely generated Λ-module X, and

any such prime ideal ℘, one has E1
Λ(X∗)℘ = 0. To see this one only needs to note that the

Λ-linear dual of any fixed projective presentation

Π1
f−→ Π0 −→ X −→ 0

ofX gives an exact sequence that induces an isomorphism between E1
Λ(X∗) and E3

Λ(coker f∗),

and the latter group vanishes after localisation at ℘ since Λ is Gorenstein.

This concludes the proof of Theorem 4.2. �

4.3. Reformulation in terms of determinants. In this subsection we explain how one

can deduce new evidence towards the validity of Conjecture 3.21 from Theorem 4.2. We

remark that the idempotent eχ associated to a character χ : ∆→ Qp
×

will satisfy Hypothesis

3.13 (i) (b) since p is odd and, if χ validates 4.1 (i), then it will also satisfy Hypothesis

3.13 (i) (c).

Theorem 4.4. Assume that the Rubin-Stark Conjecture holds for all finite abelian exten-

sions of K and that the character χ validates Hypothesis 4.1. If we set

A = {x ∈ Q(Λ) | x · Fitt0
Λ(Cl(L∞)χ) ⊆ Fitt0

Λ(Cl(L∞)χ)},

then all of the following claims are valid:

(i) A is a Λ-order inside Q(Λ),

(ii) A is contained in Λ[1
p ] and coincides with Λ if either G has no p-torsion or the

µ-invariant of Cl(L∞)χ vanishes,

(iii) the higher-rank equivariant Iwasawa Main Conjecture for Gm (Conjecture 3.21)

holds for the Λ-order A.
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Proof. To prove claim (i), we first recall that Fitt0
Λ(Cl(L∞)χ) spans Q(Λ) over Q(Λ), see

(17). It follows that A spans Q(Λ) and that the ideal Fitt0
Λ(Cl(L∞)χ) must contain a non-

zero divisor y, hence A ⊆ y−1 Fitt0
Λ(Cl(L∞)χ) is finitely generated over Λ.

To prove claim (ii), we note that if x belongs to A, then there is a non-zero divisor y ∈ Λ such

that f := yx is an element of Λ and we claim that f ∈ yΛ[1
p ]. The latter is an inclusion of

invertible Λ[1
p ]-modules and can therefore be checked locally at height-one primes p of Λ[1

p ]

(see [Fla04, Lemma 5.3]). Each such height-one prime p can be identified with a height-one

prime of Λ that does not contain p. The localisation Λp is then a discrete valuation ring (cf.

[BKS17, §3C1]) and so the ideal Fitt0
Λ(Cl(L∞)χ)p is principal and generated by a non-zero

divisor a, say. It follows that faΛp ⊆ yaΛp, hence fΛp ⊆ yΛp as claimed. The same proof

also shows the second assertion of claim (ii) since, assuming either of the stated conditions,

the ideal Fitt0
Λ(Cl(L∞)χ)p is also principal for every height-one prime p of Λ that contains

p, as required to prove claim (ii).

To prove claim (iii) we fix a Λ-basis z ∈ det−1
Λ (C∞,χ) and set z := π∞(z). Due to the

injectivity of π∞ it suffices to show that, over A, the elements z and ηb,χL∞/K,S generate

the same submodule of
⋂r

Λ UL∞,χ. We have already observed in the proof of Theorem 4.2

that ηb,χL∞/K,S generates a free module of rank one over Λ. Thus, both z and ηb,χL∞/K,S span⋂r
Λ UL∞,χ over Q(Λ). Consequently, there is x ∈ Q(Λ) such that z = x · ηb,χL∞/K,S and we

need to show that x ∈ A×. Notice that

{f(ηb,χL∞/K,S) | f ∈
∧r

Λ
P ∗} · x = {f(z) | f ∈

∧r

Λ
P ∗},

hence claim (iii) follows from the observations (12), (13), (15) and (14) made in the proof

of Theorem 4.2. �

5. Evidence for the Soulé-Stark Conjecture

In this section we explain the relation of the Soulé-Stark Conjecture (Conjecture 3.18) to

a variety of results and conjectures in the literature. This gives a better understanding of

Conjecture 3.18 and allows us to interpret several important existing results as supporting

evidence for both the Soulé-Stark Conjecture and the finer Congruence Conjecture (Con-

jecture 3.10). In the setting of CM abelian varieties we also find that this approach clarifies

aspects of the work of Büyükboduk and Lei in [BL15] and [BL17] and combines with the re-

sults of Theorems 3.22 and 4.4 to give new evidence in support of the equivariant Tamagawa

Number Conjecture.

5.1. Totally real and CM fields. In this section we fix a totally real field K and a finite

abelian CM extension L of K with Galois group G.

We consider the motive (h0(L)(j)/K, e±j Q[G]) from Example 2.2(ii) and take the idempotent

ε in Hypotheses 3.6 and 3.13 to be a suitable choice of e± := 1±c
2 .
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We remark that the conjecture of Solomon [Sol10] that occurs in claim (iv) of the following

result is an explicit reciprocity law for Rubin-Stark elements that extends (conjecturally)

the classical explicit reciprocity laws of Artin-Hasse and Iwasawa [Iwa68].

Proposition 5.1.

(i) When j ≤ 0, Conjecture SS(h0(L)(j)/K, e−j Q[G]) is valid.

(ii) When j > 1, Conjecture SS(h0(L)(j)/K, e−j Q[G]) is equivalent to the p-adic Beilin-

son conjecture of Besser-Buckingham-de Jeu-Roblot [Bes+09, Conj. 3.18(3)].

(iii) When K = Q, Conjecture SS(h0(L)(j)/K, e+
j Q[G]) is valid.

(iv) Conjecture CC(h0(L)(1)/K, e−Q[G], L, n) implies Solomon’s Congruence Conjec-

ture [Sol10, CC(L/K, S, p, n− 1)].

Proof. Much of this result is essentially known and so, for brevity, we shall omit many

details.

In this way, we simply note that claim (i) follows from Example 3.17 (ii) and the well-known

interpolation property of the Deligne-Ribet p-adic L-function, that claim (ii) follows from

the observation in [BS19a, Rem. 3.10] and that claim (iii) follows from Example 3.17 (i) and

the results of Beilinson-Huber-Wildeshaus (see [HK03, Thm. 5.2.1 and 5.2.2]) for j ≤ 0 and

Kato (see [HK03, Thm. 3.2.6]) for j > 0.

Finally, we note that claim (iv) is proved in the following way. We set r := [K : Q]. Note

that Conjecture CC(h0(L)(1)/K, e−Q[G], L, n) predicts the equality

twr
1,n(ηwS (e+ ·Zp,L/K)) = ηbS(e− ·Zp(1)L/K)(18)

in e−
⋂r
Z/pn[G]H

1(OL,S ,Z/pn), where

twr
1,n : e+

⋂r

Zp[G]
H1(OL,S ,Zp(1))→ e−

⋂r

Z/pn[G]
H1(OL,S ,Z/pn)

is induced by the cyclotomic character χcyc : G → Aut(µpn) ∼= (Z/pn)×. We set ULp :=

lim←−n(OL⊗ZZp)×/pn and let ΓL,S be the Galois group of the maximal abelian pro-p extension

of L unramified outside S. Let recp : ULp → ΓL,S be the product of local reciprocity maps

at primes above p. It induces a map

rec∗p : e−
⋂r

Zp[G]
H1(OL,S ,Zp) = e−

⋂r

Zp[G]
Homcont(ΓL,S ,Zp)→ e−

⋂r

Zp[G]
HomZp(ULp ,Zp).

The natural modulo pn version is also denoted by the same symbol. Note that we have

a canonical isomorphism HomZp(X,Zp)
∼= HomZp[G](X,Zp[G]) for any Zp[G]-module X.

Hence by the definition of exterior power biduals we have an identification

e−
⋂r

Zp[G]
HomZp(ULp ,Zp) = HomZp[G]e−

(∧r

Zp[G]e−
e−ULp , e

−Zp[G]

)
.

Solomon’s conjecture predicts an equality of homomorphisms
∧r
Zp[G]e−e

−ULp → e−Z/pn[G],

so it is an equality in HomZp[G]e−

(∧r
Zp[G]e−e

−ULp , e
−Z/pn[G]

)
. One checks that it is
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equivalent to the equality

rec∗p
(
twr

1,n(ηwS (e+ ·Zp,L/K))
)

= rec∗p

(
ηbS(e− ·Zp(1)L/K)

)
,

which is obviously implied by (18). �

Remark 5.2. The basic rank is equal to zero in the cases of Proposition 5.1 (i) and (ii)

and equal to one in the case of Proposition 5.1 (iii). In the case of Proposition 5.1(iv), the

basic rank is equal to [K : Q], and so it gives evidence for the Congruence Conjecture in

the higher basic rank case (see, for example, the extensive evidence in support of Solomon’s

Conjecture obtained by Roblot and Solomon in [RS10]).

5.2. CM abelian varieties and Hecke characters. The Soulé-Stark Conjecture for

CM elliptic curves and, more generally, for Hecke characters (as in Example 3.2 (ii)) has

essentially been studied by many authors including Coates-Wiles [CW77], Kato [Kat93],

Kings [Kin01], Tsuji [Tsu04] and Bars [Bar11]. In particular, the questions of Tsuji in

[Tsu04, §11] explicitly describe Conjecture SS(M/K,R) in this case.

In this section we shall apply our approach in the general setting of CM abelian varieties

(as outlined in Example 3.2 (iii)), and thereby shed new light on work of Büyükboduk and

Lei in [BL15] and [BL17].

In the remainder of this section we will therefore assume that K is a CM field and we set

g := 1
2 [K : Q].

5.2.1. The Perrin-Riou-Stark Conjecture. We first make an observation concerning a con-

jecture of Büyükboduk and Lei.

To state the conjecture we fix a character χ : GK → Qp
×

of the absolute Galois group GK
of K that has finite prime-to-p order, is not equal to the Teichmüller character ω and is

such that χ(p) 6= 1 for every p-adic place p of K.

We write L for the field cut out by the character χ, take L∞ to be the composite of L with

the maximal Zp-power extension of K, and set Λ := Zp[imχ]JGal(L∞/L)K. Let S be the

finite set of places S∞(K) ∪ Sram(L/K) ∪ Sp(K). As before, we use the notation

UL∞,χ := lim←−
F

(Zp · O×F,S)χ,

where F ranges over all finite extensions in L∞/L. We also fix a Λ-basis b of the module

YK(Zp,L∞/K)χ.

Conjecture 5.3 (Büyükboduk-Lei). There exists a subset {Sχ
∞,i}1≤i≤g of UL∞,χ with the

property that, for every finite extension F of L in L∞, the natural map∧g

Λ
UL∞,χ →

∧g

Zp[imχ][Gal(F/L)]
(Zp · O×F,S)χ →

⋂g

Zp[imχ][Gal(F/L)]
(Zp · O×F,S)χ

sends
∧i=g
i=1S

χ
∞,i to the χ-component ηb,χF/K,S of the relevant Rubin-Stark element.
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Remark 5.4. The above conjecture is first formulated in [BL15, Conj. 4.14], where it is

referred to as the Perrin-Riou-Stark Conjecture, and also plays an important role in the

subsequent articles of Büyükboduk and Lei [BL17] and of Büyükboduk [Büy18] (in the

latter of which the conjecture is referred to as the Strong Rubin-Stark Conjecture). The

conjecture also makes an appearance in [Büy20, §3.4.4].

In connection to the following result, we refer the reader to Remark 5.6 below.

Proposition 5.5. Assuming the hypotheses as stated above, the following claims are valid.

(i) If UL∞,χ is a free Λ-module, then the validity of Conjecture 5.3 follows directly from

the validity of the Rubin-Stark Conjecture.

(ii) If Cl(L)χ vanishes, then UL∞,χ is a free Λ-module.

(iii) If Cl(L)χ does not vanish and UL∞,χ is a free Λ-module, then the height of the

annihilator of Cl(L∞)χ in Λ is at most two.

Proof. At the outset we note χ is a faithful character of Gal(L/K) and therefore satisfies

Hypothesis 4.1 (iii) as a consequence of our assumption χ(p) 6= 1 for every p-adic place p of

K. Since moreover χ 6= ω, the construction of Theorem 4.2 (i) shows that, for every finite

extension F of L in L∞, the natural corestriction map⋂g

Λ
UL∞,χ →

⋂g

Zp[imχ][Gal(F/L)]
(Zp · O×F,S)χ

sends the element ηb,χL∞/K,S to ηb,χF/K,S . To prove claim (i) it is therefore enough to show

that, if UL∞,χ is a free Λ-module, in which case the natural map
∧g

ΛUL∞,χ →
⋂g

ΛUL∞,χ is

bijective (cf. [BS19b, Lem. A.1]), then ηb,χF/K,S has the form predicted by Conjecture 5.3.

To prove this it is in turn enough to show that Q(Λ) ⊗Λ UL∞,χ is a free Q(Λ)-module of

rank g since then UL∞,χ must (if free) be a free Λ-module of rank g and so every element

of
∧g

ΛUL∞,χ is of the form
∧i=g
i=1ui for a suitable subset {ui}1≤i≤g of UL∞,χ.

The key point now is that the Λ-Euler characteristic of the complex CL∞,χ used in the

proof of Theorem 4.2 vanishes (as follows directly from the representative (7)). Indeed,

since Cl(L∞)χ is a torsion Λ-module and Q(Λ)⊗Λ YK(Zp,L∞/K)χ is a free Q(Λ)-module of

rank g, this observation combines with the explicit descriptions of cohomology given in (8)

and (9) and the fact that Q(Λ) is a finite product of fields to imply that the Q(Λ)-module

Q(Λ)⊗Λ UL∞,χ is also free of rank g, as required.

To prove (ii) we observe that the natural projection isomorphism CL∞,χ⊗LΛZp[Gal(L/K)] ∼=
CL,χ induces an isomorphism of Zp[Gal(L/K)]-modules H2(CL∞,χ) ⊗Λ Zp[Gal(L/K)] ∼=
H2(CL,χ). Then, since the Λ-module YK(Zp,L∞/K)χ is free, the exact sequence (9) implies

that the latter isomorphism restricts to give an isomorphism Cl(L∞)χ ⊗Λ Zp[Gal(L/K)] ∼=
Cl(L)χ. Given this isomorphism, Nakayama’s Lemma implies Cl(L∞)χ vanishes if Cl(L)χ
vanishes. In this case, therefore, the cokernel of the endomorphism θ in (7) is YK(Zp,L∞/K)χ
and so, in particular, is Λ-free. By splitting up the four-term exact sequence associated to

(7) into short exact sequences, we can therefore deduce that ker(θ) ∼= UL∞,χ is Λ-projective,
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and hence free, as required.

To prove claim (iii) we assume UL∞,χ is a free Λ-module. Then, since the Λ-module

YK(Zp,L∞/K)χ is also free, the four-term exact sequence associated to (7) can in this case

be adjusted to give a projective resolution of Cl(L∞)χ which shows that the projective

dimension of the Λ-module Cl(L∞)χ is at most two. If we now assume that Cl(L)χ =

Cl(L∞)χ ⊗Λ Zp[Gal(L/K)] is non-zero, then also Cl(L∞)χ is non-zero. The assertion of

claim (iii) is therefore true because any minimal associated prime q of the non-zero module

Cl(L∞)χ belongs to Supp(Cl(L∞)χ) and satisfies

height(q) = d+ 1− dim(Λ/q) ≤ d+ 1− depth(Cl(L∞)χ) = pd(Cl(L∞)χ) ≤ 2.

Here we write d for the rank of Gal(L∞/L) so that the first equality is obvious, the first

inequality is true because dim(Λ/q) ≥ depth(Cl(L∞)χ) (cf. [Mat89, Thm. 17.2]) and the

second equality follows directly from the Auslander-Buchsbaum formula. �

Remark 5.6. The result of [BL15, Lem. 4.11] asserts that UL∞,χ is a free Λ-module.

Unfortunately, however, there is an error in the argument given in loc. cit. (and alluded to

in [Büy18, Rem. 2.16]) that is yet to be fixed. In this context, the point of Proposition 5.5 (i)

is that whenever UL∞,χ is a free Λ-module the validity of the Perrin-Riou-Stark Conjecture

follows directly from other standing assumptions that are made in each of the articles [BL15],

[BL17] and [Büy18]. In general, Proposition 5.5 (iii) shows that, if Cl(L)χ does not vanish,

then the freeness of UL∞,χ imposes a strong bound on the height of the annihilator over Λ of

Cl(L∞)χ (thereby showing that the latter module cannot be ‘too small’). For comparison,

we note that a result of Sharifi [Sha08, Cor. 4.3] implies the annihilator of the class group

Cl(Lmax
∞ ) over the Iwasawa algebra associated to the maximal Zp-power extension Lmax

∞ of

L can have arbitrarily large height.

5.2.2. The explicit reciprocity conjecture of Büyükboduk and Lei. To review this conjecture

we fix a principally polarised abelian variety A over K that has complex multiplication by

K. We assume that K contains the reflex field of A and that the index of End(A) inside the

maximal order O of K is coprime to p. We note that the latter assumption implies that the

Tate module TpA = lim←−nA[pn] of A is free of rank one over the Zp-order Op := Zp ⊗Z O
(see [ST68, Rem., p. 502]). For each finite Galois extension L of K, and each p-adic prime

p of L, we write

resp : H1(OK,S , (VpA)L/K) ∼= H1(OL,S , VpA)→ H1(Lp, VpA),

for the natural localisation map. Furthermore, we write

exp∗p : H1(Lp, VpA)→ H1
/f (Lp, VpA)

∼=−→ Fil0DdR,Lp(VpA)

for the associated dual exponential map. We shall use the associated homomorphism of

Kp[Gal(L/K)]-modules

exp∗L,p : H1(OK,S , (VpA)L/K)
(exp∗p ◦ resp)p−−−−−−−−→ Fil0DdR,Lp(VpA),
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where we have set DdR,Lp(VpA) =
⊕

p|pDdR,Lp(VpA) and in the direct sum p runs over all

p-adic places of L above p.

We also recall that, if X(A/L)[p∞] is finite, then Poitou-Tate duality implies that there is

a canonical isomorphism

(19) H2(OL,S , VpA) ∼= ker
(
Qp ⊗Z A(L)

λ−→
⊕
p|p

(Qp ⊗Zp A(Lp)
∧)
)∗
,

where in the direct sum p runs over all p-adic places of L, (−)∧ denotes p-adic completion

and λ denotes the natural diagonal localization map (see, for example, the argument in

[BSS19b, Lem. 6.1 (ii)]).

We now write Kcyc
∞ /K for the cyclotomic Zp-extension of K. For each natural number n

we write Kcyc
n for the n-th layer of Kcyc

∞ /K and set Γcyc
n := Gal(Kcyc

n /K).

Then the explicit reciprocity conjecture of Büyükboduk and Lei predicts that for every

n there exists a subset {cn,i}1≤i≤g of H1(OK,S , (TpA)Kcyc
n /K) with both of the following

properties. Each element cn,i is obtained by ‘twisting’ the element
∧

1≤i≤gS
χ
∞,i predicted

to exist by the Perrin-Riou-Stark Conjecture 5.3 (for a suitable choice of χ) by the character

GK → Op[Γn]× induced by the action of GK on (TpA)∗(1)Kcyc
n /K . In addition, if one fixes

an embedding Qp → C and uses it to identify the groups Hom(Γn,Qp
×

) and Hom(Γn,C
×),

then for every primitive character θ : Γn → Qp
×

there is an equality in Cp of the general

form

(20) det
([
eθ · exp∗Kcyc

n ,p(ci), κθ,j
]
A,n

)
1≤i,j≤g = L{p}(A, θ

−1, 1) · ΩA,n,p.

Here [−,−]A,n denotes a canonical Cp-bilinear pairing on Dieudonné modules, the ele-

ments κθ,j are obtained from a suitable choice of basis of the relevant Dieudonné mod-

ule, L{p}(A, θ
−1, s) is the p-truncated Hasse-Weil-Artin L-series attached to A and θ−1 and

ΩA,n,p is the product of the ratio of the canonical p-adic and complex periods associated

to the pair (A, θ) with a fudge factor that compensates for the precise choices of elements

{Sχ
∞,i}1≤i≤g and {κθ,j}1≤j≤g.

Full details concerning the conjecture of Büyükboduk and Lei and a precise version of the

conjectural equality (20) can be found in [BL15]. However, the partial details recalled above

are at least sufficient to prove the conjecture is of interest only in the case that the space

eθ
(
Qp ⊗Z A(Kcyc

n )
)

vanishes. This fact is shown by the following result, in which we refer

to the Deligne-Gross Conjecture for Hasse-Weil-Artin L-series (for a precise statement of

which see, for example, [Roh90, p. 127]).

Proposition 5.7. Assume that the Perrin-Riou-Stark Conjecture (Conjecture 5.3) is valid

and that the Hasse-Weil-Artin L-series L(A, θ−1, s) validates the Deligne-Gross Conjecture.

Then, if X(A/Kcyc
n )[p∞] is finite and eθ

(
Qp⊗ZA(Kcyc

n )
)

is non-zero, the explicit reciprocity

conjecture of Büyükboduk and Lei [BL15, Conj. 4.18] is valid.
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Proof. We set L := Kcyc
n , Wθ := eθ(Qp ⊗Z A(L)) and W ′θ := eθ(Qp ⊗Qp ker(λ)∗) where

the map λ is as in (19). We also write ψ for the homomorphism Γn → Q
×

obtained by

composing θ with a fixed choice of embedding Qp → C.

Then the non-vanishing of Wθ implies that eψ(Q ⊗Z A(L)) does not vanish and this fact

combines with the assumed validity of the Deligne-Gross Conjecture for L(A,ψ−1, s) to

directly imply that L(A,ψ−1, 1), and hence also L{p}(A,ψ
−1, 1), vanishes.

To prove the second assertion it is therefore enough to show that the stated assumptions

imply the determinant that occurs on the left hand side of the conjectured equality (20)

vanishes.

As a first step, we claim that

(21) dimQp
(Wθ) > dimQp

(W ′θ).

To verify this we note that the non-degeneracy of the Néron-Tate height pairing implies the

Qp[G]-modules Qp⊗ZA(L) and Qp⊗ZHomZ(A(L),Z) are (non-canonically) isomorphic and

hence that dimQp
(Wθ) = dimQp

(Wθ−1). In addition, if we set W †θ := eθ−1(Qp ⊗Qp ker(λ)),

then one has dimQp
(W ′θ) = dimQp

(W †θ ). To justify (21) it is therefore enough to show that

W †θ is a proper subspace of Wθ−1 .

To do this we write ẽ for the primitive idempotent
∑

ψ′ eψ′ of Q[G], where the sum runs

over the set of GQ-conjugates of ψ−1. Then the assumed non-vanishing of Wθ, and hence

also of Wθ−1 , implies that eψ−1

(
Q⊗ZA(L)), as well as the subspace W̃ := ẽ

(
Q⊗ZA(L)) of

Q⊗ZA(L), does not vanish. But then, for any non-zero element w of W̃ , the element λ(w)

is non-zero and so spans a free Q[G]ẽ-submodule of
⊕

p|p(Qp ⊗Zp A(Lp)
∧). The element

eψ−1(λ(w)) is therefore non-zero and so eψ−1(1 ⊗ w) is an element of Wθ−1 that does not

belong to W †θ , as required.

We now set Zθ := eθ(Qp ⊗Qp H1(OK,S , (VpA)L/K)) and write κθ for the natural (injective)

Kummer map Wθ → Zθ. Then one has

dimQp
(coker(κθ)) = dimQp

(Zθ)− dimQp
(Wθ)

<dimQp
(Zθ)− dimQp

(W ′θ)

= dimQp

(
eθ(Qp ⊗Qp YK((VpA)L/K))

)
= g

where the first and last equalities are obvious, the inequality follows from (21) and the second

equality follows upon combining the vanishing of H0(OK,S , (VpA)L/K) ∼= H0(OL,S , VpA)

with the identification (19) and the general results of Lemma 2.10 (i) and (ii).

In particular, since the image of κθ belongs to the kernel of eθ(Qp⊗Qp (exp∗p ◦ resp)) for every

p-adic place p of L, the above inequality implies that the Qp-space eθ · (Qp ⊗Qp im(exp∗L,p))

has dimension strictly less than g. The elements {eθ · exp∗L,p(ci)}1≤i≤g are therefore linearly
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dependent and so the bilinearity of the pairing [−,−]A,n implies that the determinant on

the left hand side of the conjectured equality (20) vanishes, as required. �

5.2.3. The Soulé-Stark Conjecture and explicit reciprocity. In this section we show that the

Soulé-Stark Conjecture refines (a reformulated version of) the explicit reciprocity conjecture

of Büyükboduk and Lei discussed above. We note, in particular, that whilst the formulation

of the latter conjecture assumes the validity of Conjecture 5.3, the approach used here is

independent of this conjecture.

At the outset we fix an abelian extension L of K, set G := Gal(L/K) and consider the

motive M = h1(A/L)(1) for an abelian variety A as introduced in §5.2.2, regarded as

defined over K and with coefficients in K[G]. To avoid confusion, in the sequel we write R0

instead of K if we consider its complex multiplication action on A and reserve the notation

K for when we mean the field of definition of the motive M . We also set R = R0[G] and

Rp = Qp ⊗Q R.

The p-adic étale realisation V := Vp(M) of M is then given by the rational Tate module

(VpA)∗(1)L/K = (Qp ⊗Zp TpA)∗(1)L/K of A. In addition, since p is assumed to be coprime

to the index of End(A) inside O, the module (TpA)L/K is free over Rp = Op[G] and so we

can choose T = (TpA)∗(1)L/K as a GK-stable lattice inside V .

Recall the notation introduced in §3.3. Fix anRp-basis b = {b1, . . . , bg} of YK(T ). SinceK is

totally imaginary, the hypotheses 3.13 (i) (b) and (ii) are automatically satisfied. Moreover,

we write

(22) [−,−]θ : Cp ·detRp
(
Fil0DdR,Lp(VpA)

)
×Cp ·detRp

(
DdR,Lp((VpA)∗(1))/Fil0

)
→ Cp⊗QK

for the pairing induced by the composite of the natural pairing

Fil0DdR,Lp(VpA)×DdR,Lp((VpA)∗(1))/Fil0 → Rp

in p-adic Hodge theory and the homomorphism Rp → Qp ⊗Q K induced by a character

θ : G→ Qp
×

.

With this notation in place, we can now give a concrete interpretation of Conjecture

3.18 as an explicit reciprocity conjecture closely related to the conjectural equality (20)

of Büyükboduk and Lei.

Taking account of Proposition 5.7, we restrict attention to characters θ : G → Qp
×

such

that eθ(Qp ⊗Z A(L)) vanishes. Furthermore, we write

ψ : GK → R×p

for the character afforded by the action of GK on (TpA)L/K . For all s ∈ C such that

Re (s) > 3
2 , the associated (S-truncated) L-function is then given by

LS(ψ, θ−1, s) =
∏
v 6∈S

(1− (θ−1 ◦ ψ)(v) ·Nv−s)−1 ∈ Cp ⊗Q K,
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where by θ−1 we mean the morphism Cp ⊗Q R → Cp ⊗Q K induced by θ−1, and extended

to the whole complex plane by analytic continuation.

Proposition 5.8. Assume X(A/L)[p∞] is finite and let θ : G → Qp
×

be a character for

which both eθ(Qp ⊗Z A(L)) vanishes and LS(ψ, θ−1, 1) 6= 0. Fix an Rp-basis {c1, . . . , cg} of

DdR,Lp((VpA)∗(1))/Fil0 and set c =
∧

1≤i≤g ci.

Then the eθ-component of Conjecture SS(M/K,R) is valid if and only if in Cp ⊗Q K one

has

(23)
[
(
∧g

Rp
exp∗L,p)(β

b
S(T )), c

]
θ

= LS(ψ, θ−1, 1) · Ωp(A, θ)c,ω
Ω(A, θ)b,ω

.

Here Ωp(A, θ)c,ω and Ω(A, θ)b,ω are the canonical p-adic and complex periods of A and θ,

respectively, normalised with respect to the bases c and ω, and b and ω, for any choice of

R-basis ω of H0(A,Ω1
A/L) (and are defined precisely in the course of the proof below).

Proof. The assumed vanishing of eθ(Qp ⊗Z A(L)) combines with the identification (19)

to imply that the space eθ(Qp ⊗Qp H2(OK,S , (VpA)L/K)) vanishes and hence that eθ is a

summand of the idempotent of admissibility defined in [BSS19b, Def. 4.8]. Given this, the

eθ-component of the period-regulator isomorphism λBK
M,b,S,L in the definition of the Bloch-

Kato element for M as defined in Def. 4.10 of loc. cit. coincides with the composite map

eθ
(
Cp ·

∧g

Rp
H1(OL,S , VpA)

) ∼= eθ
(
Cp ·

∧g

Rp
Fil0DdR,Lp(VpA)

)
∼= eθ

(
Cp ·

∧g

Rp

(
DdR,Lp((VpA)∗(1))/Fil0

)∗)
∼= eθ

(
Cp ·

∧g

R
H0(A,Ω1

A/L)
)

∼= eθ
(
Cp ·

∧g

Rp
YK(V )∗

)
∼= eθ

(
Cp ⊗Q R

)
,

where the first isomorphism is induced by
∧g
Rp

exp∗L,p, the second by the duality pairing

(22), the third by the comparison isomorphism of p-adic Hodge theory, the fourth by the

period map, and the last by our fixed choice of basis b for YK(V ).

Fix an auxiliary R-basis ω1, . . . , ωg of H0(A,Ω1
A/L) and set ω :=

∧
1≤i≤g ωi. We then define

Ωp(A)c,ω to be the unique element of Rp with the property that the map∧g

Rp
DdR,Lp((VpA)∗(1))/Fil0

∼=−→ Qp ·
∧g

R
H0(A,Ω1

A/L)∗

induced by the comparison isomorphism of p-adic Hodge theory sends c to Ωp(A)c,ω · ω∗.
Similarly, we define Ω(A)b,ω as the unique element of Cp ⊗Q R such that the map

Cp ·
∧g

Rp
YK(V )

∼=−→ Cp ·
∧g

R
H0(A,Ω1

A/L)∗

sends b to Ω(A)b,ω · ω∗.
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Then, with these definitions in place, one has

eθ

(
λBK
M,b,S,L

(
(
∧g

Rp
exp∗L,p)(β

b
S(T ))

))
= eθ

([
(
∧g

Rp
exp∗L,p)(β

b
S(T )), c

]
·

Ω(A)b,ω
Ωp(A)c,ω

)
=
([
eθ((

∧g

Rp
exp∗L,p)(β

b
S(T ))), eθ(c)

]
θ
·

Ω(A, θ)b,ω
Ωp(A, θ)c,ω

)
· eθ,

where Ω(A, θ)b,ω and Ωp(A, θ)c,ω denote the elements of C×p that are defined by the respective

equalities eθ · Ω(A)b,ω = Ω(A, θ)b,ω · eθ and eθ · Ωp(A)b,ω = Ωp(A, θ)b,ω · eθ.

Given the non-degeneracy of the pairing [−,−]θ on eθ-components, the bijectivity of the map

eθ(Qp ⊗Qp
∧g
Rp

exp∗L,p) and the explicit definition of the element ηbS(T ), the last displayed

equality implies that the equality eθ · βbS(T ) = eθ · ηbS(T ) predicted by the eθ-component of

Conjecture SS(M/K,R) is valid if and only if the equality (23) is valid. �

Remark 5.9. If A is an elliptic curve and K an imaginary quadratic field (in this case

necessarily of class number one), then (23) is a consequence of the classical reciprocity law

of Wiles [Wil78] (see, for example, [Fla09, Prop. 4.2]).

5.2.4. The equivariant Tamagawa Number Conjecture for abelian varieties. We shall now

combine Proposition 5.8 with the results of Theorems 3.22 and 4.4 to obtain concrete

evidence in support of an important special case of the equivariant Tamagawa Number

Conjecture.

To do this we fix data L/K,G,A and T as at the beginning of §5.2.2. We note that the

action of the absolute Galois group GK of K on (TpA)L/K gives rise to a character

ψ : GK −→ R×p ,(24)

and we write L∞ for the abelian extension of K that corresponds to the subgroup ker(ψ)

of GK .

We note that this definition of L∞ is consistent with that given in §3.3 since the Weil pairing

implies ψ coincides with the character χT constructed in Definition 3.4. We further note

that the natural injective homomorphism

Op[G] ↪→
⊕
θ∈Ĝ

Op[im θ]; a 7→ (θ(a))
θ∈Ĝ,

implies that Gal(L∞/K) ∼= im(ψ) is isomorphic to a subgroup of
⊕

θ∈ĜOp[im θ]× and hence

has the form Zdp ×∆ with d a non-negative integer and ∆ a finite abelian group.

We write ∆′ for the maximal subgroup of ∆ of order prime-to-p and note that the subset Υ

of ∆̂′ comprising characters that satisfy Hypothesis 4.1 is stable under the natural action

of Gal(Qp/Qp) on ∆̂′ and hence that the idempotent

εL,1 :=
∑
χ∈Υ

eχ



31

belongs to Zp[∆
′] ⊂ ZpJGal(L∞/K)K.

We denote the subset of Ĝ comprising all characters θ for which both eθ(Qp ⊗Z A(L))

vanishes and LS(ψ, θ−1, 1) 6= 0 by Ĝ0,A and note that the associated idempotent

εL,0 :=
∑

θ∈Ĝ0,A

eθ

belongs to Q[G] ⊂ Qp[G]. Hence, we obtain an idempotent of Kp[G] by setting

εL := ψ(εL,1) · εL,0.

Theorem 5.10. Assume the data L/K,A and p are such that all of the following conditions

are satisfied.

(i) A(L) has no element of order p.

(ii) X(A/L)[p∞] is finite.

(iii) The explicit reciprocity conjecture (23) is valid for all characters θ in Ĝ0,A.

(iv) If ψ(GK)[p∞] is non-zero, then the Zp-module Cl(L∞) is finitely generated.

Then, if the Rubin-Stark Conjecture holds for all finite abelian extensions of K, the equi-

variant Tamagawa Number Conjecture is valid for the pair (h1(A/L)(1),Op[G]εL).

Proof. The εL,0-component M ′ := h1(A/L)(1)εL,0 of h1(A/L)(1) has a natural action of

the K-algebra R′ := K[G]εL,0. We define an Op-order R′p := Op[G]εL in (Kp⊗K R′)ψ(εL,1)

and an (R′p ×GK)-module T ′ := R′p ⊗Op[G] T .

Then, with this notation, the basic strategy in this argument is to apply Theorem 3.22 with

the data ε, Rp, R, T , M and V taken to be εL,1, R′p, R′, T ′, M ′ and V ′ := Qp ⊗Zp T ′
respectively and with the field L∞ as specified above. We must therefore verify that all of

the necessary hypotheses are satisfied by this choice of data.

For each n the kernel of the homomorphism GK → AutR/pn(T/pn) ∼= (R/pn)× induced

by ψ is contained in the kernel of the map χT ′,n from Definition 3.4 and so Remark 3.24

implies that this choice of L∞ is permissible in Theorem 3.22 for the above choice of data.

We also note that no finite place of K can split completely in L∞. Indeed, the decom-

position group in GK of any such place v must be contained in ker(ψ) and hence acts

trivially on T ∼= (TpA)L/K and this is not possible since A(Lw)[p∞] is a finitely generated

Zp-module for each place w of L above v. Since this argument also shows that the Zp-rank

of Gal(L∞/K) is at least one, it follows that the conditions in the first sentence of Theorem

3.22 are satisfied in this case.

We claim next that Hypotheses 2.3 and 2.5 are satisfied with Rp and T taken to be R′p and

T ′ respectively.

This is true for Hypotheses 2.3 as YK(T ′) is isomorphic to R′p ⊗Op YK(TpA) as an R′p-
module and is true for Hypothesis 2.5 (i) since H0(K, (T ′)∗(1)) is a submodule of the space
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H0(K, (V ′)∗(1)) = εL
(
H0(L, (VpA)∗(1))

)
and H0(L, (VpA)∗(1)) vanishes. Concerning Hy-

pothesis 2.5 (ii) we note first that the stated condition (i) implies H1(OK,S , T ∗(1)) is Zp-

torsion-free since its torsion submodule is isomorphic to

H0(OK,S , V ∗(1)/T ∗(1)) ∼= H0(OL,S , VpA/TpA) ∼= A(L)[p∞].

This fact then combines with the results of Lemma 2.10 (iii) (with Rp taken to be Op[G])

and Lemma 2.10 (iv) (for the homomorphism Op[G] → R′p) to imply that H1(K, (T ′)∗(1))

is isomorphic to the kernel of an endomorphism of a free R′p-module and so is torsion-free,

as required.

Finally, we note Hypothesis 3.13 is satisfied with Λ, ε and Rp taken to be ZpJGal(L∞/K)K,
εL,1 and R′p respectively: the validity of Hypothesis 3.13 (i) (a) in this case follows directly

from the fact that εL is the identity element of R′p, the validity of Hypothesis 3.13 (i) (b) is

clear and the validity of Hypothesis 3.13 (i) (c) follows from the fact that the Teichmüller

character does not belong to the set Υ of characters that is used to define εL,1.

Now, since the validity of the Integrality Conjecture for all extensions Ln/K follows directly

from Remark 2.9 and the assumption that the Rubin-Stark Conjecture is valid for all finite

abelian extensions of K, the above observations imply that the result of Theorem 3.22 im-

plies the equivariant Tamagawa Number Conjecture is valid for the pair (M ′,R′p) provided

that all of the conditions (a), (b) and (c) that occur in the latter result are satisfied in this

case.

In addition, the condition in Theorem 3.22 (a) is satisfied since the stated condition (iv) and

the assumed validity of the Rubin-Stark Conjecture combine with Theorem 4.4 to imply

Conjecture 3.21 is valid for (L∞/K, S) with respect to the order A = ZpJGal(L∞/K)KεL,0.

It is thus enough to note the conditions in Theorem 3.22 (b) and (c) are also satisfied since

the definition of the idempotent εL,1 combines with the stated condition (ii) and the argu-

ment of Proposition 5.8 to imply both that H2(OK,S , (V ′)∗(1)) ∼= εL ·H2(OL,S , (VpA)∗(1))

vanishes and that the equality in Conjecture 3.18 is valid for the pair (M ′, R′).

This completes the proof of Theorem 5.10. �
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