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On universal norms for p-adic representations in
higher-rank Iwasawa theory

by

Dominik Bullach and Alexandre Daoud (London)

1. Introduction. The investigation of the deep connection between L-
functions and arithmetic is at the heart of modern number theory. By now
we have a number of partial results on this matter, many of which due
to celebrated results obtained via the Euler system method that has been
developed by Thaine, Kolyvagin, Rubin and Mazur.

However, all of these (unconditional) results are restricted to cases where
the order of vanishing of the L-function is at most one. Although a notion
of higher-rank Euler system was already established by Perrin-Riou more
than 20 years ago, technical issues arising from the use of exterior pow-
ers hindered the theory surrounding higher-rank Euler systems from being
fully operational. These technical obstructions have only recently been over-
come by Burns, Sakamoto and Sano in a series of articles ([BS21], [BSS19a],
[BSS19b] and [BSS19c]). Key to their approach is the consistent use of exte-
rior biduals instead of exterior powers, a notion that is based on the lattice
introduced by Rubin [Rub96, §1.2] and provides better functorial properties
in many aspects.

Since Euler systems are, by their very definition, universal norms on Zp-
extensions, we feel that the study of higher-rank universal norms undertaken
in this article naturally fits into the chain of developments described above.
As in the aforementioned works, the use of exterior biduals allows us to
develop a theory that naturally extends the classical theory of universal
norms to both the higher-rank and equivariant settings.

Overview of results. To explain our results in a little more detail,
we first introduce some notation. Let L|K be a finite abelian extension of
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number fields in which every archimedean place splits completely, let p be an
odd prime and take L∞ =

⋃
n≥0 Ln to be a Zp-extension of L that is abelian

over K and in which no finite place of K splits completely. Denote by Λ =
ZpJGal(L∞|L)K and

V
= ZpJGal(L∞|K)K the relevant Iwasawa algebras.

For a p-adic representation T of K we shall define natural modules UNrn(T )
and NSr(T ) of universal norms and norm-coherent sequences, respectively,
of rank r and level n along the Zp-extension L∞|L.

Our first step in extending the classical theory of universal norms as
established by, for example, Kuz’min [Kuz72] and Greither [Gre94] (see Re-
mark 3.9(a) for more details on the existing literature) is then the following
theorem.

Theorem (Thm. 3.8). Fix an integer 1 ≤ r ≤ rT where rT denotes the
basic rank of T (see 3.1(2)). Then, under certain mild conditions, the natural
codescent map induces an isomorphism of Zp[Gal(Ln|K)]-modules

NSr ⊗V Zp[Gal(Ln|K)] ∼= UNrn(T ).

Moreover, NSr (resp. UNrn) is a free module of rank [L : K] ·
(
rT
r

)
over Λ

(resp. Zp[Gal(Ln|L)]).
While this result shows that non-trivial higher-rank universal norms ex-

ist, its proof is inherently non-constructive. We shall, however, give an ele-
mentary construction of a large

V
-submodule NSb of NSrT that is of arith-

metic significance, as the following result shows.

Theorem (Thm. 3.16). There exists a free rank 1
V
-submodule NSb

of NSrT together with a perfect pairing of
V
-modules

(NSrT /NSb)× (
V
/FittV(H2

Σ,Iw(OL,S , T ))∗∗)→ Q(
V
)/
V
,

where Q(
V
) denotes the total ring of quotients of

V
and H2

Σ,Iw(OL,S , T ) is a
modified Iwasawa cohomology group.

This pairing combines with the cyclotomic equivariant Iwasawa Main
Conjecture proved by Burns and Greither [BG03] to give in Theorem 4.1 an
explicit refinement of the classical cyclotomic Iwasawa Main Conjecture as
follows (see Remark 4.2 for more details of the precise nature of the relation
to the Main Conjecture).

Theorem (Thm. 4.1). Let K = Q and let L be the maximal totally
real subfield of the cyclotomic field Q(ξpf ) for an integer f coprime to p. If
p - [L : Q], then for every character χ of Gal(L|K) there is an isomorphism
of Λχ := Zp(im(χ))JΓ K-modules

U∞,χ/Cyc∞,χ ∼= α(Λχ/charΛχ(A
∞,χ)),

where (−)χ is the functor taking χ-isotypic parts, U∞ := lim←−nO
×
Ln
⊗Z Zp,

Cyc∞ is the inverse limit of the groups of p-completed cyclotomic units of
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the field Ln, A∞ is the inverse limit of p-parts of the class groups of the
fields Ln, and α(−) = Ext1Λχ(−, Λχ) denotes the Iwasawa adjoint.

It is conjectured, in great generality, that H2
Iw(OL,S , T ) should be finitely

generated as a Zp-module (cf. Conjecture 4.11). The above pairing allows us
to give a reformulation of this conjecture in terms of the quotient NSrT /NSb.

Proposition (Prop. 4.14). H2
Iw(OL,S , T ) is finitely generated as a Zp-

module if and only if the same is true of NSrT /NSb.

Since the aforementioned conjecture is known to hold in several cases
one can use this equivalence to obtain several unconditional examples of the
finite generation of NSrT /NSb as a Zp-module. We give one such example in
the setting of elliptic curves in Corollary 4.15.

We also give applications towards Greenberg’s conjecture and equivariant
leading term conjectures. For the statements of these results the reader is
referred to Proposition 4.3 and Theorem 4.9, respectively.

2. Preliminaries on exterior biduals. In this section we survey the
existing theory of exterior biduals and establish the new results concerning
these objects that are needed in later sections of this article.

Let R be a commutative Noetherian ring, and for any R-module put
M∗ = HomR(M,R).

Definition 2.1. LetM be an R-module. For any integer r ≥ 0 we define
the r-th exterior bidual of M as⋂r

RM = (
∧r
RM

∗)∗.

In particular, the symbol
⋂

does not refer to an intersection in this context.

This definition is inspired by the notion of Rubin lattice introduced in
[Rub96], and first appeared in the above formalised form in [BS21]. See
[BS21, Rem. A.9] for the relation between these two definitions.

Some maps. Let us now introduce a collection of morphisms that is
ubiquitous throughout the theory of exterior biduals. For this purpose, letM
and N be R-modules. For any integer r ≥ 1 and morphism f ∈ HomR(M,N)
we define

f (r) :
∧r
RM → N ⊗R

∧r−1
R M

by

f (r)(m1 ∧ · · · ∧mr) =

r∑
i=1

(−1)i+1f(mi)⊗m1 ∧ · · · ∧ m̂i ∧ · · · ∧mr,

where we write m̂i to mean omission of this particular coefficient. By abuse
of notation, we shall simply denote f (r) by f as well.
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For any integer s ≤ r this construction (specialised at N = R) induces a
natural morphism

(1)
∧s
RM

∗ → HomR(
∧r
RM,

∧r−s
R M), f1 ∧ · · · ∧ fs 7→ fs ◦ · · · ◦ f1,

which is sometimes referred to as the rank reduction by f . If Sr is the
permutation group on r elements, then a more explicit description of the
above map is given by

(2) f1 ∧ · · · ∧ fr 7→{
m1 ∧ · · · ∧mr 7→

∑
σ∈Sr,s

sgn(σ) det(fi(mσ(j)))1≤i,j≤rmσ(s+1) ∧ · · · ∧mσ(r)

}
,

where Sr,s = {σ ∈ Sr | σ(1) < · · · < σ(s) and σ(s + 1) < · · · < σ(r)}. By
virtue of this map, we shall regard any element of

∧s
RM

∗ as an element of
HomR(

∧r
RM,

∧r−s
R M∗).

General properties. LetN andM beR-modules, and r ≥ 0 an integer.
The following properties are immediate from the properties of the functors∧r
R− and HomR(−, R):

•
⋂0
RM = R and

⋂1
RM =M∗∗.

• Every morphism ofR-modulesN→M induces a morphism
⋂r
RN→

⋂r
RM .

• There is a natural morphism

ξrM :
∧r
RM →

⋂r
RM, m 7→ {f 7→ f(m)},

which is neither injective nor surjective in general. If M is a finitely gen-
erated projective R-module, however, then the map ξrM is an isomorphism
(see [BS21, Lem. A.1]).

For any s ≤ r and f ∈
∧s
RM

∗ the morphism ξrM fits into a commutative
diagram ∧r

RM
∧r−s
R M

⋂r
RM

⋂r−s
R M

f

ξrM ξr−sM

f

where the bottom map is defined as the dual of∧r−s
R M∗ →

∧r
RM

∗, g 7→ f ∧ g.

• Let Q be the total ring of fractions of R and assume that R is reduced. It
is shown in [BS21, Prop. A.8] that the map ξrM induces an isomorphism

(3)
{
a ∈ Q⊗R

∧r
RM | f(a) ∈ R for all f ∈

∧r
RM

∗} '−→ ⋂r
RM.
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2.1. Functoriality aspects. We follow Sakamoto [Sak20, Appendix
B.3] in considering the following two conditions on the commutative Noethe-
rian ring R:

(Gn) The ring R is said to satisfy the condition (Gn) if the localisation Gp

is Gorenstein for any prime p ∈ SpecR of height ht(p) ≤ n.
(Sn) The ring R is said to satisfy Serre’s condition (Sn) if depth Rp ≥

inf(n, ht(p)) holds for any prime ideal p ∈ SpecR.

Remark 2.2. For example, R is Cohen–Macaulay if and only if R sat-
isfies (Sn) for all n ∈ N0. In particular, Gorenstein rings satisfiy both (Gn)
and (Sn) for all n ∈ N0. Examples of Gorenstein rings include equivariant
Iwasawa algebras of the form considered in the present article (see Lemma
(B.4)) as well as finite group rings (see [CR81, p. 779]).

In what follows rings satisfying (G1) and (S2) will play an important
role. Such rings are studied for example in [Vas68] and [Vas70], where they
are referred to as quasi-normal.

Lemma 2.3. Suppose that R satisfies both (G0) and (S1). If N ↪→ M is
an injective morphism of R-modules, then for any integer r ≥ 1 the induced
map ⋂r

RN →
⋂r
RM

is injective as well.

Proof. See [Sak20, Lem. C.1].

Lemma 2.4. Suppose that R satisfies (S2) and (G1) and admits a pre-
sentation as an inverse limit R = lim←−i∈I Ri where each Ri is a Noetherian
ring satisfying (S2) and (G1). Let C• be a complex of projective R-modules
such that there is an integer n ≥ 0 satisfying Ci = 0 if i < 0 or i > n. Then
there is an isomorphism⋂r

RH
0(C•)

'−→ lim←−
i∈I

⋂r
Ri
H0(C• ⊗L

R Rn).

Proof. See [Sak20, Lem. B.15].

Lemma 2.5. Let R be a Noetherian ring, and let R → R′ be a ring
morphism that endows R′ with the structure of an R-module of projective
dimension at most one.

(a) If M is a finitely generated R-module such that Ext1R(M,R) = 0 and

0→ P2
f−→ P1 → R′ → 0

is any exact sequence of R-modules, where P1 and P2 are finitely gener-
ated projective, then there is a natural exact sequence
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0 (
⋂r
RM)⊗R R′

⋂r
R′(M ⊗R R

′)

Ext1R
(∧r

RM
∗, P2

)
Ext1R

(∧r
RM

∗, P1

)
.

f

(b) If P is a finitely generated projective R-module and M ⊆ P , then we
have a commutative diagram

(
⋂r
RM)⊗R R′

⋂r
R′(M ⊗R R

′)

(
∧r
R P )⊗R R

′ ∧r
R′(P ⊗R R

′)∼

where the vertical arrows are induced by the identification of biduals with
exterior powers for finitely generated projective modules and the bottom
arrow is the natural base-change isomorphism.

Remark 2.6. Unlike exterior powers, exterior biduals are not in general
compatible with base change (see [Sak20, Rem. B.9] for a short discussion).
Lemma 2.5 is therefore an exceptional phenomenon.

Proof of 2.5. At the outset we fix a finitely generated R-module N and
note that we have a commutative diagram

HomR(N,R)⊗R P2 HomR(N,R)⊗R P1 HomR(N,R)⊗R R′ 0

0 HomR(N,P2) HomR(N,P1) HomR(N,R
′)

' '

Now, the Snake Lemma implies that we have an exact sequence
(4)
0→ HomR(N,R)⊗R R′ → HomR(N,R

′)→ Ext1R(N,P2)→ Ext1R(N,P1).

As P2 is a direct summand of a freeR-module, the assumption Ext1R(M,R) =
0 ensures that Ext1R(M,P2) = 0. As a consequence, if we take N = M in
the above exact sequence then we deduce that the natural map

HomR(M,R)⊗R R′ → HomR(M,R′)

is an isomorphism. Taking R′-exterior powers and R′-duals, we deduce an
isomorphism

HomR′((
∧r
RM

∗)⊗R R′, R′) = HomR′(
∧r
R′M

∗ ⊗R R′, R′)
∼= HomR′(

∧r
R′ HomR(M,R′), R′).

The tensor-hom adjunction implies that

(5) HomR(M,R′) = HomR(M,HomR′(R
′, R′)) = HomR′(M ⊗R R′, R′),
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so in fact we have an isomorphism

HomR′((
∧r
RM

∗)⊗R R′, R′) ∼=
⋂r
R′(M ⊗R R

′).

Using (5) again, this time for the left hand side, we can restate this as

HomR(
∧r
RM

∗, R′) ∼=
⋂r
R′(M ⊗R R

′).

By taking N =
∧r
RM

∗ in (4) and noting that

(
⋂r
RM)⊗R R′ = HomR(

∧r
RM

∗, R)⊗R R′

we obtain an exact sequence of the desired form. The commutativity of the
diagram in the second claim of the lemma now follows via a straightforward,
but somewhat tedious, diagram chase using the naturality of the base-change
and tensor-hom isomorphisms.

2.2. Further properties

Lemma 2.7. Suppose that R satisfies (G1) and (S2). Let s ≥ 1 be an
integer and

(6) 0→ X → Y

⊕s
i=1 ϕi−−−−−→ R⊕s → Z → 0

an exact sequence of R-modules, where Y is a free R-module of rank d. Fix
an integer r such that 1 ≤ s ≤ r ≤ d and consider the map

ϕ =
∧

1≤i≤s
ϕi :

∧r
R Y →

∧r−s
R Y.

Then the following hold:

(a) There exists an exact sequence

0→
⋂r
RX →

∧r
R Y

⊕si=1ϕi−−−−→
s⊕
i=1

∧r−1
R Y.

(b) We have an inclusion
imϕ ⊆

⋂r−s
R X,

where we regard
⋂r−s
R X as a submodule of

⋂r−s
R Y =

∧r−s
R Y via

Lemma 2.3.
(c) We have an inclusion

Fitt0R(Z) ⊆ {f(a) | a ∈ imϕ, f ∈
∧r−s
R X∗}

with pseudo-null cokernel.
(d) Take r = d and let a ∈ imϕ be an R-generator. If R is reduced and Z is

torsion, then a is not a zero-divisor and there is an isomorphism

(
⋂d−s
R X)∗

'−→ Fitt0R(Z)
∗∗, Φ 7→ Φ(a).

Proof. Part (a) is a result of Sakamoto [Sak20, Lem. B.12]. If r = s,
part (b) is clear and we may therefore assume that r − s ≥ 1. The exact
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sequence from (a) implies that (b) will follow once we have proved that for
every k ∈ {1, . . . , s} the composition∧r

R Y
ϕ−→
∧r−s
R Y

ϕk−→
∧r−s−1
R Y

is zero. It now suffices to observe that this composition agrees with the map
ϕk ∧ ϕ and therefore vanishes because (1) is a morphism.

As for (c), the proof of [BS21, Prop. A.2 (ii)] shows that
(7) {f(a) | a ∈ imϕ, f ∈

∧r−s
R Y ∗} = Fitt0R(Z).

The inclusion
⋂r−s
R X ↪→

∧r−s
R Y induces a restriction map

(∧r−s
R Y

)∗ →(⋂r−s
R X

)∗ that fits into the commutative diagram∧r−s
R Y ∗

∧r−s
R X∗

(∧r−s
R Y

)∗ (⋂r−s
R X

)∗'

where the top arrow is also induced by restriction and the vertical arrows are
the respective canonical maps of the form (1). If f ∈

∧r−s
R Y ∗ and a ∈ imϕ,

then, since imϕ ⊆
⋂r−s
R X, the above diagram implies that the value f(a)

coincides with a evaluated at the image of f in
∧r−s
R X∗.

We remind the reader that for any x ∈
⋂r−s
R X and f ∈

∧r−s
R X∗, the

value f(x) ∈ R is given by x(f), where x is regarded, true to its definition, as
a map

∧r−s
R X∗ → R. The above discussion therefore shows that the set (7)

is contained in {f(a) | a ∈ imϕ, f ∈
∧r−s
R X∗}.

To show that this inclusion is a pseudo-isomorphism we claim that the
cokernel of the morphism ∧r−s

R Y ∗ →
∧r−s
R X∗

is pseudo-null. It suffices to show coker{Y ∗ → X∗} = Ext1R(im
⊕s

i=1ϕi, R)
is pseudo-null. To do this, fix a prime ideal p ∈ Spec(R) with ht p ≤ 1. Then

Ext1R

(
im

s⊕
i=1

ϕi, R
)
p
= Ext2Rp

(Zp, Rp) = 0

since, by assumption, R satisfies (G1) whence Rp has injective dimension 1.
Consequently, any f ∈

∧r−s
Rp

X∗p can be lifted to an element g ∈
∧r−s
Rp

Y ∗p .
This shows that
{f(a) | a ∈ imϕ, f ∈

∧r−s
R X∗}p = {f(a) | a ∈ (imϕ)p, f ∈

∧r−s
R X∗p}

is contained in the localisation of the set (7) at p.
To prove (d), we note that the assumption that R is reduced implies

that the total ring of fractions Q identifies with a product of fields and is
therefore a semisimple, semilocal ring. Since Z is torsion, we get a short
exact sequence

0→ Q⊗R X → Q⊗R Y → Q⊕s → 0
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and this implies that Q⊗RX is a projective Q-module of constant rank d−s,
hence is Q-free of rank d− s. It follows that
(8) Q⊗R (

⋂d−s
R X) ∼=

∧d−s
Q (Q⊗R X) ∼= Q

is Q-free of rank 1. As we are taking r = d, the module imϕ is the image of
a free R-module of rank 1, hence generated over R by an element a ∈ imϕ,
say. If a was a zero-divisor, then the set (7) would consist of zero-divisors.
However, we have

Q⊗R Fitt0R(Z) = Fitt0Q(Q⊗R Z) = Q

and so this cannot be the case. It follows that a generates a free R-submodule
of rank 1 of

⋂d−s
R X and this combines with (8) to imply that the quotient(⋂d−s

R X
)
/R · a is torsion. We deduce that the map

(
⋂d−s
R X)∗ → (R · a)∗ ∼= R

is injective. In other words, the map

ev : (
⋂d−s
R X)∗ → R, Φ 7→ Φ(a),

is injective. In particular, the image of ev is a reflexive ideal of R and there-
fore uniquely determined by its localisations at height-1 primes of R (see
[Sak20, Lem. C.13]). Given this, part (d) will follow from (c) once we have
demonstrated that the natural map

(9)
∧d−s
R X∗ → (

⋂d−r
R X)∗, x 7→ {f 7→ f(x)},

has pseudo-null cokernel. To this end, let p ⊆ R be a prime of height at
most 1 andM a finitely generated Rp-module. IfMtor denotes the Rp-torsion
submodule, then we have a commutative diagram

0 Mtor M M/Mtor 0

0 M∗∗ (M/Mtor)
∗∗

The claim therefore follows by combining this diagram with the the fact that
over Rp, which is a reduced Gorenstein ring of Krull dimension 1, any finitely
generated torsion-free module is reflexive (see [Bas63, Thm. (6.2)(4)]; note
also the comparison of the notions torsion-free and torsion-less in [Vas68,
Thm. (A.1)]).

3. Higher-rank universal norms

3.1. The set-up. Fix an odd prime p and let K be a number field with
GK its absolute Galois group. We write S∞(K) for the set of archimedean
places of K, and Sp(K) for the set of p-adic places of K. Given a Galois
extension F |K we write Sram(F |K) for the places of K that ramify in F and
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Ssplit(F |K) for the places of K that split completely in F . If S is a set of
places of K, we denote by S(F ) the union S∪Sram(F/K) and by SF the set
of places of F that lie above those contained in S. We will, however, often
omit the explicit reference to these fields in case it is clear from the context.
For example, OF,S will denote the ring of S(F )F -integers of F .

Given any commutative unital ringR we writeQ(R) for the total quotient
ring of R, that is, the localisation of R at the multiplicative set of non-zero-
divisors. If M is an R-module, then we denote M∨ := HomR(M,Q(R)/R).

For an abelian group A we denote by Ator its torsion subgroup and
by Atf = A/Ator its torsion-free part. If A is finite, we denote by Â =

HomZ(A,C×) its character group, and for any χ ∈ Â we let

eχ =
1

|A|
∑
σ∈A

χ(σ)σ−1 ∈ C[A]

be the usual primitive orthogonal idempotent associated to χ.
LetQ be a finite extension of Qp with ring of integersR. We also establish

the following objects and notations:

• L|K a finite abelian extension of number fields with Galois group G in
which every archimedean place splits completely,

• L∞|L a Zp-extension in which no non-archimedean place splits completely
and such that the extension L∞|K is Galois and has Galois group Γ ×G,
where Γ = Gal(L∞|L) ∼= Zp,

• Γn = Gal(L∞|Ln) the unique subgroup of Γ of index pn, and Γn = Γ/Γn,
• Gn = Gal(Ln|K),
• Λ = RJΓ K = lim←−nR[Γn] the Iwasawa algebra and

V
= RJGal(L∞|K)K =

lim←−nR[Gn] its equivariant counterpart; due to our assumptions, we have a
decomposition

V
= Λ[G].

We now fix a p-adic representation T with coefficients in R, that is, a free
R-module endowed with a continuous GK-action that we regard as a sheaf
on the étale site of SpecK. Assume that the set Sram(T ) of places of K at
which T has bad reduction is finite. We then fix a finite set S of places of K
containing

S∞(K) ∪ Sp(K) ∪ Sram(T ).
Let T ∗(1) := HomR(T,R(1)), where R(1) = R⊗Zp Zp(1).

Given a
V
-module M we write M# for the

V
-module which has the

same underlying Λ-module structure as M but with the G-action twisted by
the involution g 7→ g−1 for g ∈ G. Similarly, if γ is a topological generator
of Γ , then we write M◦ for the

V
-module which has the same underlying

R[G]-module structure asM but with the Γ -action twisted by the involution
γ 7→ γ−1.
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Σ-modified étale cohomology. In this article it is necessary to slightly
modify the usual compactly supported étale cohomology complex of the rep-
resentation T in order to ensure that the cohomology in the lowest degree is
R-torsion-free. This should, however, be regarded as a convenient technical
device rather than an integral feature of the theory since in many interesting
cases it can actually be disregarded (see Examples 3.3). We first briefly recall
the definitions of the relevant complexes from [BS21, §2.3].

Let Σ be a finite set of places of K that is disjoint from S(L0). For any
place w ∈ ΣLn denote by κw the residue field of OLn,S at w. Then we define
the Σ-modified étale cohomology complex of T to be

RΓΣ(OLn,S , T ) := cone
{
RΓét(OLn,S , T )→

⊕
w∈ΣLn

RΓét(κw, T )
}
[−1]

and set H i
Σ(OLn,S(Ln), T ) := H i(RΓΣ(OLn,S(Ln), T )) for all i ∈ Z. We shall

fix such a choice of Σ for the remainder of this article. For any i ∈ Z, the
Σ-modified Iwasawa cohomology of T with respect to the Zp-extension L∞
is defined as

H i
Σ,Iw(OL,S , T ) = lim←−

n∈N
H i
Σ(OLn,S , T ),

and this limit can be naturally endowed with the structure of a
V
-module.

Throughout this article we suppose, unless explcitly stated otherwise,
that the tuple (T, L∞, Σ) satisfies the following mild hypotheses:

Hypotheses 3.1.

(1) For every n ∈ N the module of invariants H0
Σ(Ln, T ) vanishes.

(2) The R-free module YK(T ) =
⊕

v∈S∞(K)H
0(Kv, T

∗(1)) has non-zero
rank rT (which we may often refer to as the basic rank of the tuple
(T, L∞, Σ)).

(3) H1
Σ(OLn,S , T ) is R-torsion-free for every n ∈ N0.

(4) H2
Σ,Iw(OL,S , T ) is a torsion Λ-module.

Remark 3.2. Hypothesis 3.1(4) is (the Σ-modified version of) the weak
Leopoldt conjecture for p-adic representations due to Perrin-Riou [PR95,
§ 1.3]. In fact, in Lemma 4.12 below we show that, under additional mild
conditions on the tuple (T, L∞, Σ), this hypothesis is independent of the
choice of Σ and is thus equivalent to requiring that H2(Gal(LS |L∞), T ⊗R
Q/R(1)) = 0, where LS is the maximal Galois extension of L unramified
outside S (see, for example, [PR95, Prop. 1.3.2])). The conjecture is known
in many cases naturally arising in arithmetic (see [PR95, Appendix B]) and
we shall recall some of these examples below.

Examples 3.3. (a) Let R = Zp and T = Zp(1); then T always satisfies
Hypotheses 3.1(1, 2). Moreover, for each n ≥ 1, Kummer theory gives a
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canonical identification

H1
Σ(OLn,S ,Zp(1)) = Zp ⊗Z ker

{
O×Ln,S →

⊕
w∈ΣLn

(OLn,S/w)×
}
.

The group on the right is the p-completion of the (S,Σ)-unit group O×L,S,Σ
and plays an important role in the context of the Stark conjectures. In par-
ticular, if L and K are both totally real, then we may take Σ = ∅.

To see the validity of the Leopoldt conjecture, we recall that there is an
exact sequence

0→ lim←−
n

AS,Σ(Ln)→ H2
Σ,Iw(OL,S ,Zp(1))→ lim←−

n

XLn,S\S∞(K) → 0,

where AS,Σ(Ln) denotes the p-part of the S-ray class group mod Σ, and
XLn,S\S∞(K) is the kernel of the augmentation map

⊕
w∈(S\S∞(K))Ln

Zp→Zp.
It is well-known that lim←−nAS,Σ(Ln) is Λ-torsion (see, for example, [NSW08,
Prop. (11.1.4)]). Moreover, lim←−nXLn,S\S∞(K) is Λ-torsion because of our as-
sumption that no finite place of L is split completely in L∞. The aforemen-
tioned exact sequence therefore implies that H2

Σ,Iw(OL,S ,Zp(1)) is Λ-torsion
as well.

(b) If T = TpE = H1
ét(EQ,Zp)

∗ is the Tate module of an elliptic curve E
defined over K, then 3.1(1) holds, and 3.1(2) holds because TpE is an odd
representation (due to the Weil pairing).

If E(L) is p-torsion-free, then we may take Σ = ∅. Indeed, an easy
exercise in group cohomology shows that in this case E(Ln) is also p-torsion-
free for all n ∈ N (see, for example, [NSW08, Prop. (1.6.12)]). Moreover, since
S contains Sram(T ), the validity of 3.1(1) implies that H0(OLn,S , T ) = 0. In
particular, it follows that

H1(OLn,S , T )tor ∼= H0(OLn,S , (Qp ⊗Zp T )/T )
∼= E(Ln)[p

∞]

and so, for each n ∈ N, the module H1(OLn,S , T ) is Zp-torsion-free.
Since every elliptic curve defined over Q is modular, the validity of the

weak Leopoldt conjecture 3.1(4) for K = Q follows from [Kat04, Thm.
12.4(i)].

(c) Let f be a normalised cuspidal newform of weight k ≥ 2 and level
N ≥ 5, and take R to be a finite extension of Zp that contains the Fourier
coefficients of f (using some fixed embedding Qp ↪→ C). Then one can attach
a rational p-adic representation Vf of GQ to f , that is, a finite-dimensional
Q-vector space with a continuous GQ-action; see for example [Del71]. Let
Tf ⊆ Vf be a Galois-stable lattice. Since the complex absolute values of
the eigenvalues of Frobq for q - pN are p(k−1)/2, the representation Tf sat-
isfies Hypothesis 3.1(1). Moreover, the representation Tf is odd, so we have
H0(R, V ∗f (1)) 6= 0 and Tf also satisfies Hypothesis 3.1(2). Finally, Tf satisfies
Hypothesis 3.1(4) for K = Q by [Kat04, Thm. 12.4(i)].
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Given these definitions, we have the Σ-modified compactly supported étale
cohomology complex

RΓc,Σ(OLn,S , T ) = RHomR(RΓΣ(OLn,S , T ∗(1)),R)[−3]

⊕
( ⊕
w∈S∞(Ln)

H0((Ln)w, T )
)
[−1]

as well as the complex

C•n := RHomR(RΓc,Σ(OLn,S , T ∗(1)),R)[−2].

Below we record the properties of these constructions that are needed in this
article.

Proposition 3.4 ([BS21], Prop. 2.22).

(a) C•n is acyclic outside degrees 0 and 1, and is perfect as an element of the
derived category D(R[Gn]).

(b) There is a canonical isomorphism

H0(C•n)
∼= H1

Σ(OLn,S , T )

and a split short exact sequence

(10) 0 H2
Σ(OLn,S , T ) H1(C•n) YK(T )∗ ⊗R R[Gn] 0

in which the first map is canonical and the second depends on the choice
of a set of representatives of the orbits of Gal(Ln|K) on S∞(Ln).

Next we introduce the Iwasawa-theoretic variants of the above construc-
tions.

Denote by C•∞ the complex of
V
-modules R lim←−nC

•
n taken with respect to

the natural codescent morphisms φn : C•n → C•n−1 (see, for example, [BS20,
Lem. 7.1(v)]). Here R lim←−n refers to the homotopy limit taken in the trian-
gulated category D(

V
) (which is unique up to non-unique isomorphism) and

is defined so as to fit in an exact triangle

(11) R lim←−
n

C•n →
∏
n

C•n
(1−φn)n−−−−−→

∏
n

C•n → .

We then have the following analogue of Proposition 3.4.

Proposition 3.5.

(a) C•∞ is acyclic outside degrees zero and one, and is perfect as an element
of the derived category D(

V
).

(b) There is a canonical isomorphism

H0(C•∞) ∼= H1
Σ,Iw(OL,S , T )
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and a split short exact sequence

(12) 0→ H2
Σ,Iw(OL,S , T )→ H1(C•∞)→ lim←−

n

(YK(T )
∗ ⊗R R[Gn])→ 0,

where the injection is canonical and the surjection depends on the choice
of a set of representatives of the orbits of Gal(L∞|K) on S∞(L∞).

Proof. At the outset we remark that an analysis of the long exact se-
quence of cohomology of the triangle (11) yields, for each i ∈ Z, an exact
sequence

0→ lim←−
(1)
n
H i−1(C•n)→ H i(C•∞)→ lim←−nH

i(C•n)→ 0

where the limits are taken with respect to the morphisms induced by φn.
In particular, since each H i(C•n) is finitely generated as an R[Gn]-module it
can be endowed with the structure of a compact Hausdorff space. Hence, the
left hand derived limit vanishes. Given this, the first claim of (a) and both
claims of (b) follow immediately from Proposition 3.4. The fact that C•∞ is
a perfect complex is proved in [FK06, Prop. 1.6.5(2)].

Lemma 3.6. There exists a quadratic standard representative [Π
ψ−→ Π]

(in the sense of [BS21, Def. A.6]) of the complex C•∞ with respect to the
surjection H1(C•∞)

f−→ YK(T )∗ ⊗R
V
.

Proof. By definition we are required to exhibit a representative [Π ψ−→ Π]
of C•∞ in D(

V
) with the property that for the free module Π there exists a

basis {b1, . . . , bd} of Π and an exact sequence

〈brT+1, . . . , bd〉V → H1(C•∞)
f−→ YK(T )∗ ⊗R

V
→ 0

where the first map is induced by the natural map Π → H1(C•∞).
This is proved in [BS20, Lem. 7.10] (where the complex C•∞ is denoted
CL∞,S(L0)(T )).

Fix a representative [Π
ψ−→ Π] of C•∞ where Π is a free

V
-module of

rank d. Then for any n ∈ N0, the complex C•n is represented by [Πn
ψn−−→ Πn]

where we write Πn := Π ⊗V R[Gn] and similarly for ψn (see [BS20, Lem.
7.10(iii)]). In particular, we have exact sequences

0→ H1
Σ(OLn,S , T )

φn−→ Πn
ψn−−→ Πn → H1(C•n)→ 0,(13)

0→ H1
Σ,Iw(OL,S , T )

φ−→ Π
ψ−→ Π → H1(C•∞)→ 0.(14)

Let {b1, . . . , bd} be the
V
-basis of Π chosen in the proof of Lemma 3.6 and

for each i ∈ {1, . . . , d} write b∗i ∈ Π∗ for the dual of bi. By construction, theV
-free module YK(T )∗⊗R

V
can then be identified with the direct summand
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i=1

V
bi of Π. It follows that we also have the exact sequence

(15)

0→ H1
Σ,Iw(OL,S , T )→ Π

⊕d
i=rT+1 ψi−−−−−−−−→

V⊕(d−rT ) → H2
Σ,Iw(OL,S , T )→ 0,

where we have set ψi = b∗i ◦ ψ for each i ∈ {rT + 1, . . . , d}.

3.2. The structure of universal norms in higher rank. In this
section we prove a number of basic results about higher-rank universal norms.
In doing so, we will heavily rely on the notion of exterior biduals reviewed
in the last section.

Definition of universal norms. Given integers m ≥ n ≥ 1 we have the
corestriction maps

coresm,n : H
1
Σ(OLm,S , T )→ H1

Σ(OLn,S , T ).
If r ≥ 1, then these maps induce natural maps on the exterior biduals

coresrm,n :
⋂r
R[Gm]H

1
Σ(OLm,S , T )→

⋂r
R[Gn]H

1
Σ(OLn,S , T )

in the following way: First observe that the natural codescent mapΠm → Πn

restricts to give coresm,n on H1
Σ(OLm,S , T ). With this in mind we then define

coresrm,n to be the leftmost vertical arrow in the commutative diagram that
is obtained by applying Lemma 2.7(a) to the exact sequences (13) for levels
m and n:

0
⋂r
R[Gm]H

1
Σ(OLm,S , T )

∧r
R[Gm]Πm Πm ⊗R[Gm]

∧r−1
R[Gm]Πm

0
⋂r
R[Gn]H

1
Σ(OLn,S , T )

∧r
R[Gn]Πn Πn ⊗R[Gn]

∧r−1
R[Gn]Πn

We also refer the reader to [BSS19a, Rem. 6.2 and Rem. 6.11] for more details
on this map.

Definition 3.7. Fix integers r ∈ N and n ∈ N0.

(a) We define the module of universal norms of rank r and level n for T to
be

UNrn = UNrn(T, L∞) :=
⋂
m≥n

im(coresrm,n).

We remark that UNrn(T, L∞) can be naturally regarded as an R[Gn]-
module.

(b) We define the module of norm-coherent sequences of rank r for T to be

NSr = NSr(T, L∞) := lim←−
n∈N

⋂r
R[Gn]H

1
Σ(OLn,S , T ) =

⋂rVH1
Σ,Iw(OL,S , T )
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where the inverse limit is taken with respect to the maps coresrm,n and
we have used Lemma 2.4 for the last identification. We will often use
the notations above interchangeably except in cases of ambiguity. We
remark that NSr(T, L∞) can be naturally regarded as a

V
-module.

The descent isomorphism. The following is one of the main results of this
article.

Theorem 3.8. Fix an integer 1 ≤ r ≤ rT .

(a) The module NSr is Λ-free of rank [L : K] ·
(
rT
r

)
.

(b) The natural map

NSr →
⋂r
R[Gn]H

1
Σ(OLn,S , T )

induces an isomorphism of R[Gn]-modules

NSr ⊗V R[Gn] ∼= UNrn.

In particular, UNrn is a free R[Γn]-module of rank [L : K] ·
(
rT
r

)
.

(c) There is an exact sequence

0→ UNrn →
⋂r
R[Gn]UN

1
n → Ext1V(

∧rVH1
Σ,Iw(OL,S , T )∗,

V
)Γ

n → 0.

The module on the right is a finite p-group which vanishes if, for example,
p - [L : K].

Remark 3.9. (a) In the case of rT = 1, universal norms have previously
been studied by many authors: The first to obtain a result similar to The-
orem 3.8 (for T = Zp(1)) was Kuz’min [Kuz72]; later Greither [Gre94] also
gave a proof in the abstract setting of a system of Galois modules satisfying
certain natural axioms. The article [Kat06] considers the non-commutative
case but also gives an overview of the classical theory that is similar in spirit
to our treatment. In the setting of elliptic curves a similar result is due to
Mazur and Rubin [MR03, Thm. 4.2].

(b) Suppose p - [L : K]. Then it is well-known that any
V
-module that

is Λ-projective is necessarily
V
-projective (see, for example, [NSW08, Lem.

5.4.16]). Since
V

is a semilocal ring in this case, and NSr has constant local
rank

(
rT
r

)
by the calculation of the proof below, it follows that NSr is neces-

sarily
V
-free of rank

(
rT
r

)
. An analogous statement for universal norms now

also follows by codescent.

Proof of Theorem 3.8. Consider the complex D• represented by

(16)
∧rVΠ

ψ−→ Π ⊗V ∧r−1V Π.

By virtue of Lemma 2.7(a) we have H0(D•) =
⋂rVH1

Σ,Iw(OL,S , T ). In par-
ticular, (

⋂rVH1
Σ,Iw(OL,S , T ))Γ = 0 since

∧rVΠ is Λ-free.
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Moreover, the complexD• is clearly perfect and the complexD•n = D•⊗LV

R[Gn] is represented by∧r
R[Gn]Πn

ψn−−→ Πn ⊗R[Gn]
∧r−1
R[Gn]Πn

which has H0(D•n) =
⋂r
R[Gn]H

1
Σ(OLn,S , T ) as its cohomology in its lowest

degree.
Now fix a topological generator γn of Γn. Then the decomposition

V
=

Λ[G] implies that there is an exact sequence

(17) 0→
V · (1−γn)−−−−−→

V
→ R[Gn]→ 0.

From this it follows that for any
V
-module M and i ≥ 2, the module

Tor
V
i (R[Gn],M) vanishes. Since the complex D• is acyclic outside degrees

zero and one, we then deduce that the spectral sequence

(18) Ei,j2 = Tor
V
−i(R[Gn], Hj(D•)) =⇒ Ei+j = H i+j(D• ⊗LV R[Gn])

degenerates on its second page into a collection of short exact sequences. In
particular, there is an injection

(19) (
⋂rVH1

Σ,Iw(OL,S , T ))⊗V R[Gn] ↪→
⋂r
R[Gn]H

1
Σ(OLn,S , T )

from which one sees that the coinvariants module (
⋂rVH1

Σ,Iw(OL,S , T ))Γ
is R-free. This implies that

⋂rVH1
Σ,Iw(OL,S , T ) is Λ-free (see, for example,

[NSW08, Prop. 5.3.19]).
To prove part (a) of Theorem 3.8 it now remains to demonstrate that

the Λ-rank of NSr is [L : K] ·
(
rT
r

)
. Since Q(

V
) is semisimple, an analysis of

the exact sequence (12) implies that

rkQ(
V
)(Q(

V
)⊗V H1(C•∞)) = rkQ(

V
)(Q(

V
)⊗V H2

Σ,Iw(OL,S , T ))

+ rkQ(
V
)

(
Q(

V
)⊗V lim←−

n∈N
(YK(T )⊗R R[Gn])

)
.

By the assumed validity of the weak Leopoldt conjecture we therefore have
the equality of ranks

rkQ(
V
)(Q(

V
)⊗V H1(C•∞)) = rkQ(

V
)(Q(

V
)⊗V lim←−

n

(YK(T )⊗R R[Gn])) = rT .

On the other hand, an analysis of the Yoneda 2-extension (cf. (14))

0→ H1
Σ,Iw(OL,S , T )→ Π → Π → H1(C•∞)→ 0

associated to the complex C•∞ yields the equality

rkQ(
V
)(Q(

V
)⊗V H1

Σ,Iw(OL,S , T )) = rT .
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We may thus calculate

rkQ(Λ)(Q(Λ)⊗Λ NSr) = [L : K] · rkQ(
V
)(Q(

V
)⊗V NSr)

= [L : K] · rkQ(
V
)(Q(

V
)⊗V ⋂rVH1

Σ,Iw(OL,S , T ))
= [L : K] · rkQ(

V
)(
∧r
Q(

V
)Q(

V
)⊗V H1

Σ,Iw(OL,S , T ))

= [L : K] ·
(
rT
r

)
.

Before we proceed with the proof of part (b) we first require the following
lemma for which we include the proof for lack of a better reference (see
Remark 3.11 below for another proof in our situation suggested to us by the
referee).

Lemma 3.10. Let M = (Mn, φm,n) be an inverse system in the category
of compact Hausdorff spaces with limit M∞. Fix n ∈ N0 and write

UNn(M) :=
⋂
m≥n

im(φm,n).

Then the natural map M∞ →Mn has image UNn(M).

Proof. Without loss of generality (and for notational simplicity) we prove
the statement for n = 0.

Suppose to be given an element u ∈ UN0(M). We shall inductively con-
struct an element m ∈ M∞ with the property that m0 = u. Suppose that
for some s ≥ 1 we have constructed a coherent tuple (mi)0≤i≤s such that
m0 = u and each mi is in UNi(M). For j ≥ s define the sets

Xs = φ−1s+1,s(ms), Yj,s = im(φj,s+1).

Then both Xs and Yj,s are closed. Indeed, the former is so since φs+1,s is
continuous and the latter since Yj,s is a compact subspace of a Hausdorff
space.

It follows that the intersection Xs∩Yj,s is also closed and, by hypothesis,
non-empty. In particular, the descending filtration (Xs∩Yj,s)j>s has the finite
intersection property. Since Ms+1 is compact,

⋂
j>sXs ∩ Yj,s is non-empty.

We can therefore takems+1 to be any element of this intersection. Continuing
in this fashion we may inductively construct an element m = (mi) of M∞
with the desired property.

Returning now to the proof of Theorem 3.8(b), we note that the aug-
mentation ideal in

V
relative to Gn applied to NSr is contained in the kernel

of the natural map

NSr →
⋂r
R[Gn]H

1
Σ(OLn,S , T ).
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Given this, we may apply the above Lemma 3.10 to conclude that for all
r ∈ N and n ∈ N0 the induced map

ιn :
(
lim←−
n

⋂r
R[Gn]H

1
Σ(OLn,S , T )

)
⊗V R[Gn]→

⋂r
R[Gn]H

1
Σ(OLn,S , T )

has image UNrn. On the other hand, the map of (19) factors through ιn via
the identification

⋂rVH1
Σ,Iw(OL,S , T ) ∼= lim←−n

⋂r
R[Gn]H

1
Σ(OLn,S , T ) and so it

is in fact an isomorphism. This establishes part (b) of the theorem.
Finally, the exact sequence in (c) follows directly by combining Lemma 2.5

with the explicit resolution (17). To prove that the cokernel appearing in
this exact sequence is finite, we claim that the R-rank of the R-free module⋂r
R[Gn]UN

1
n agrees with the R-rank of UNrn.

To do this we first observe that the isomorphism in (b) gives rise to the
isomorphism

Q⊗R UN1
n
∼= Q⊗R (R[Gn]⊗V H1

Σ,Iw(OL,S , T ))
∼= Q[Gn]⊗Q(

V
) (Q(

V
)⊗V H1

Σ,Iw(OL,S , T )).

In particular, since we have already seen that Q(
V
) ⊗V H1

Σ,Iw(OL,S , T ) is
Q(

V
)-free of rank rT it follows that Q⊗R UN1

n is Q[Gn]-free of rank rT . We
may thus calculate

rkR(
⋂r
R[Gn]UN

1
n) = dimQ(Q⊗R

⋂r
R[Gn]UN

1
n)

= |Gn| · rkQ[Gn](
∧r
Q[Gn]Q⊗R UN1

n)

= [Ln : K] ·
(
rT
r

)
,

and this matches the R-rank of UNrn calculated in (b). If p - |G|, then the
observation made in Remark 3.9(b) implies that H1

Σ,Iw(OL,S , T ) is a free
V
-

module. From this it follows that the module Ext1V(
∧rVH1

Σ,Iw(OL,S , T )∗,
V
)

vanishes, as required.
This concludes the proof of Theorem 3.8.

Remark 3.11. We are grateful to the referee for pointing out the fol-
lowing easy algebraic proof of Lemma 3.10 in the situation at hand (rather
than the more general setting of compact Hausdorff spaces). Namely, suppose
that each Mn is a finitely generated R[Gn]-module with each φm,n surjec-
tive. Then the limit M∞ is a finitely generated

V
-module. Consider now the

exact sequence M∞ → UNn(M)→ Qn → 0. By passing to the limit over n,
and noting that all modules involved are compact Hausdorff, one deduces
that the sequence M∞ → lim←−nUNn(M)→ lim←−nQn → 0 is exact. By defini-
tion the first of these maps must be an isomorphism, whence lim←−nQn = 0.
Since this is an inverse limit with surjective transition maps, indexed over a
countable set, one deduces that each Qn = 0, whence the claim.
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3.3. An Iwasawa-theoretic pairing

Basic norms. First we define the following projection map:

Θ : DetV(C•∞) ↪→ Q(
V
)⊗V DetV(C•∞)

'−→ DetQ(
V
)(Q(

V
)⊗V C•∞)

'−→ Q(
V
)⊗V

(∧rTV H1
Σ,Iw(OL,S , T )

⊗V
(∧rTV lim←−

n

(YK(T )
∗ ⊗R R[Gn])

)∗)
'−→ Q(

V
)⊗V ∧rTV H1

Σ,Iw(OL,S , T ),
where the second arrow follows from the base-change property of determinant
functors, the third follows by passing to cohomology and noting that the
weak Leopoldt conjecture is assumed to hold, and the final arrow follows
from collapsing the exterior power with respect to a fixed

V
-basis of the

inverse limit.
We now have the following lemma which will prove useful later.

Lemma 3.12. The image of Θ is contained in NSrT .

Proof. Recall that in Lemma 3.6 we have chosen a quadratic standard
representative [Π

ψ−→ Π] of the complex C•∞ and thereby also fixed a basis
{b1, . . . , bd} of Π. By applying [BS21, Lem. A.7] to the complex Q(

V
)⊗LVC•∞

we see that the projection map Θ coincides with the rank reduction map

πψ = (−1)rT (d−rT ) ·
∧

rT<i≤d
(ψ ◦ b∗i ) :

∧dVΠ →
∧rTV Π,

where each b∗i ∈ Π∗ denotes the dual of bi. By Lemma 2.7, applied to the
exact sequence (15), the image of πψ is contained in

⋂rTV H1
Σ,Iw(OL,S , T ).

Definition 3.13. We define the
V
-module of basic norm-coherent se-

quences NSb = NSb(T, L∞) to be the image of the homomorphism

Θ : DetV(C•∞)→ NSrT (T, L∞).

Proposition 3.14. The
V
-submodule NSb = NSb(T, L∞) of NSrT isV

-free of rank 1. In particular, the quotient NSrT /NSb is
V
-torsion.

Proof. It suffices to observe that DetV(C•∞), and thus NSb, is a free
V
-

module of rank 1. In particular, both NSrT and NSb are free Λ-modules of
rank [L : K] and so their quotient is

V
-torsion.

The following result shows that, at least conjecturally, the elements of
NSb(Zp(1), L∞) are familiar objects.

Proposition 3.15. Assume that for each n ∈ N the p-part of the Rubin–
Stark conjecture is valid for the data (Ln|K,S,Σ, S∞(K)) (as is formulated,
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for example, in [BKS17, Conj. 2.1]) and let εn be the corresponding Rubin–
Stark element. Assume, moreover, that the equivariant Iwasawa Main Con-
jecture (eIMC) is valid for the data (L∞|K,S,Σ, p) (as is formulated in
[BKS17, Conj. 3.1]). Then

NSb(Zp(1), L∞) = 〈(εn)n〉V.

Proof. It is well-known that the family (εn)n constitutes an element of
the module NSrT (Zp(1), L∞); see [Rub96, Prop. 6.1]. Denote by

z∞ ∈ Q(
V
)⊗V DetV(C•∞)

the inverse image of (εn)n under the latter three arrows in the definition
of Θ. Then, after taking into account the equivalent formulation [BKS17,
Conj. 3.7] of the eIMC, one knows that z∞ is a

V
-basis of DetV(C•∞). The

result now follows immediately from the definition of the module NSb.

The following theorem provides a direct link between the Galois module
structures of the quotient appearing in Proposition 3.14 and H2

Σ,Iw(OL,S , T ).
We remark that if I is an ideal of

V
then one can, in turn, regard its reflexive

hull I∗∗ as an ideal of
V
.

Theorem 3.16.

(a) There exists an isomorphism of
V
-modules

Ext1V(NSrT /NSb,
V
) ∼=

V
/Fitt0V(H2

Σ,Iw(OL,S , T ))∗∗.
(b) There exists a perfect pairing of

V
-modules

(NSrT /NSb)× (
V
/Fitt0V(H2

Σ,Iw(OL,S , T ))∗∗)→ Q(
V
)/
V

which is explicitly given by the assignment (u, v) 7→ v · η∗(u), where η is
any choice of

V
-basis of NSb and u and v are any lifts of u and v to

NSrT and
V
, respectively.

(c) There exists an injective pseudo-isomorphism of Λ-modules

NSrT /NSb ≈
(V
/Fitt0V(H2

Σ,Iw(OL,S , T ))
)◦
.

If p - [L : K], then this can be taken to be a pseudo-isomorphism ofV
-modules where ◦ now also inverts the G-action.

Remark 3.17. (a) The existence of pairings of the displayed shape in
Theorem 3.16(2) was first observed (at least in the case of representations
with coefficients in Gorenstein orders in finite-dimensional Q-algebras) by
Burns, Sano and Tsoi [BST19]. The above result can therefore be seen as a
natural Iwasawa-theoretic analogue of the pairing constructed for T by the
aforementioned authors. Similar Iwasawa-theoretic results in the setting of
K = Q have previously appeared in [NQD14, Prop. 3], which in turn is based
on [KS95], and [Sol14, Thm. 4].
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(b) Let M be a finitely generated
V
-module. The ideal Fitt0V(M)∗∗ is

related to a generalised notion of characteristic ideal due to Sakamoto [Sak20,
Appendix C] (see also the earlier construction of Greither [Gre02, § 5.2]). To
briefly explain this, fix a presentation 0 → N

f−→
Vn → M → 0 of M .

Define charV(M) to be the image of
⋂nVN inside

⋂nVVn ∼=
V

under the map
induced by f . Then charV(M) is independent of the choice of presentation
ofM , reflexive and one has the inclusion Fitt0V(M)∗∗ ⊆ charV(M). Moreover,
we have the equality Fitt0V(M)∗∗ = charV(M) in the following scenarios:

(i) M is cyclic. In this case one can take N = FittV(M) and n = 1 in the
definition of charV(M).

(ii) The projective dimension ofM is at most 1. In this case N is projective
and the natural map

∧rVN →
⋂rVN is an isomorphism.

(iii) p - |G|. In this case
V

is a normal ring and charV(M) coincides with the
usual notion of characteristic ideal.

(iv) The µ-invariant of M (as a Λ-module) vanishes. To see this, note that
by Lemma (B.6.a) we have Mp = 0 for any singular prime p of

V
. On

the other hand, if p is a regular prime then the ring
V
p is normal and so

Fitt0V
p
(Mp)

∗∗ = charVp(Mp). Since charV(M) and Fitt0V(M)∗∗ are both
reflexive and any reflexive

V
-module is determined by its localisations

at primes of height at most 1 (see [Sak20, Lem. C.13]), the claim follows.

Proof of Theorem 3.16. By applying Lemma 2.7(d) to the exact se-
quence (15) we see that NSb = η

V
is a free

V
-module of rank 1 and that we

have an isomorphism

(NSrT )∗
'−→ I∗∗, f 7→ f(η),(20)

where we denote I := Fitt0V(H2
Σ,Iw(OL,S , T )). Moreover, (35) and Theo-

rem 3.8(a) taken together imply that the module Ext1V(NSrT ,
V
) vanishes.

We thus have a commutative diagram with exact rows

0 (NSrT )∗ (
V
η)∗ Ext1V(NSrT /NSb,

V
) 0

0 I∗∗
V V

/I∗∗ 0

' '

The isomorphism given in (a) now follows via an application of the Five-
Lemma.

To prove (c), note that NSrT /NSb has projective dimension one as a
Λ-module and thus has no non-zero finite submodules (see, for example,
[NSW08, Prop. 5.3.19]). We therefore have an injective pseudo-isomorphism

NSrT /NSb → (
V
/I∗∗)◦(21)
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which can be obtained, for example, by appealing to [NSW08, Prop. 5.5.13] or
via an explicit calculation using a free resolution of NSrT /NSb (in which case
one in fact obtains an isomorphism). Now, the natural map

V
/I →

V
/I∗∗ is a

pseudo-isomorphism of Λ modules as its kernel is I∗∗/I which is pseudo-null
since I∗∗ is the reflexive hull of I. On the other hand, I∗∗ is Λ-free of the
same rank as

V
by (20) whence

V
/I is Λ-torsion and so one may deduce the

existence of a pseudo-isomorphism
V
/I∗∗ ≈

V
/I. The pseudo-isomorphism

of the theorem now follows by inverting the Γ -action across this map and
then composing with the map (21).

It remains to demonstrate the existence of the pairing in (b). Observe
that if M is

V
-torsion, then by applying the functor HomV(M,−) to the

tautological sequence 0→
V
→ Q(

V
)→ Q(

V
)/
V
→ 0 one finds a canonical

identification M∨ ∼= Ext1V(M,
V
). In addition, one knows by [NSW08, Prop.

5.5.8(iv)] and the isomorphism (35) that

(
V
/I∗∗)∨ ∼= (NSrT /NSb)∨∨ ∼= NSrT /NSb.(22)

These two facts together establish both the existence and the perfectness
of the desired pairing. Since the quotient NSrT /NSb is

V
-torsion, we may

regard η∗ as an element of (NSrT )∗ ⊗V Q(
V
). A straightforward calculation

then shows that one can in fact regard this as an element of (NSrT /NSb)∨
from which one deduces the given explicit description of the pairing.

3.4. Results on finite level. In analogy to the Iwasawa-theoretic def-
inition of basic norm coherent sequences, it is natural to make the following
corresponding definition on finite level.

Definition 3.18. For each n ∈ N0, we define the R[Gn]-module of basic
universal norms UNbn = UNbn(T, L∞) to be the image of NSb(T, L∞) under
the map of Theorem 3.8(b).

There is another, equivalent, way of constructing the module of basic uni-
versal norms that is closer in spirit to the definition of basic norm-coherent
sequences. In order to explain this, we let eLn,T ∈ Q[Gn] be the sum of
the primitive idempotents that annihilate H2

Σ(OLn,S , T ). In this regard we
remark that Jannsen has conjectured in [Jan89, Conj. 1] that this module
should be finite in all but a few exceptional cases. We then have the projec-
tion map

ΘLn : DetR[Gn](C
•
n) ↪→ Q⊗R DetR[Gn](C

•
n)

'−→ DetQ[Gn](Q⊗R C
•
n)

'−→ DetQ[Gn](Q⊗R H
0(C•n))

⊗Q[Gn]
(
DetQ[Gn](Q⊗R H

1(C•n))
)−1
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· eLn,T−−−−→ eLn,T
(
DetQ[Gn](Q⊗R H

0(C•n))

⊗Q[Gn]
(
DetQ[Gn](Q⊗R H

1(C•n))
)−1)

'−→ eLn,T (
∧rT
Q[Gn]Q⊗R H

1
Σ(OL,S , T ))

⊗Q[Gn]
∧rT
Q[Gn](YK(T )⊗R Q[Gn])∗

'−→ eLn,T
(∧rT
Q[Gn]Q⊗R H

1
Σ(OL,S , T )

)
,

where the second arrow follows from the base-change property of determinant
functors, the third from the natural passage-to-cohomology map, the fourth
by multiplication by the idempotent eLn,T , and the final one by applying the
(non-canonical) isomorphism

∧rT
Q[Gn](YK(T ) ⊗R Q[Gn])

∗ ∼= Q[Gn] resulting
from the fact that YK(T )⊗R R[Gn] is a free R[Gn]-module of rank rT .

Lemma 3.19. The image of the map ΘLn is contained in

(
⋂rT
R[Gn]H

1
Σ(OLn,S , T ))[1− eLn,T ],

and coincides with UNbn.

Proof. Since the complex C•n admits a standard quadratic representative
with respect to the map H1(C•n) → YK(T )∗ ⊗R R[Gn], the first claim is
exactly [BS21, Prop. A.7(i)]. As for the second claim, we observe that the
descriptions of Θ and ΘLn in terms of rank reduction maps πψ∞ and πψn ,
respectively, yield a commutative diagram

DetV(C•∞)
⋂rTV H1

Σ,Iw(OL,S , T )

DetR[Gn](C
•
n)

⋂rT
R[Gn]H

1
Σ(OLn,S , T )

Θ

ΘLn

where the vertical arrows are the natural codescent maps.

It turns out that the module of basic universal norms may not be very
interesting at the bottom layers of the extension L∞. We remark, however,
that the behaviour explicated in the next lemma will always stop if one
climbs high enough up the tower due to our assumption that no finite place
splits completely in L∞|K.

Lemma 3.20. Suppose there is a finite place v ∈ S that splits completely
in Ln|K and is such that H0(Kv, T

∗(1)) is non-zero. Then UNbn = 0.

Proof. We have a commutative diagram
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NSrT
∧rTV Π

UNrTn
∧rT
R[Gn]Πn

where the vertical maps are the natural codescent maps. It therefore suffices
to demonstrate that any basis η of NSb is contained in IΓn ·

∧rTV Π, where
we write

IΓn = ker{
V
→ R[Γn]}

for the augmentation ideal relative to Γn. An application of [BS21, Prop.
A.2(ii)] to the exact sequence (15) implies that for any f ∈

∧rTV Π∗ we have

f(η) ∈ Fitt0V(H2
Σ,Iw(OL,S , T )).

If b1, . . . , bd ∈ Π constitute a
V
-basis, then for any σ ∈ Sd,rT (see the

definiton following (2)) the inclusion

(b∗σ(1) ∧ · · · ∧ b
∗
σ(rT )

)(η) ∈ Fitt0V(H2
Σ,Iw(OL,S , T ))

holds. Since {
∧

1≤i≤rT bσ(i) | σ ∈ Sd,rT } constitutes a basis of
∧rTV Π, we

conclude that
η ∈ Fitt0V(H2

Σ,Iw(OL,S , T )) ·
∧rTV Π.

We are therefore reduced to showing that Fitt0V(H2
Σ,Iw(OL,S , T )) ⊆ IΓn . By

Proposition (A.2) there is a surjection

H2
Σ,Iw(OL,S , T ) � H2

Σ(OLn,S , T ) � H0(Kv, T
∗(1))⊗R R[Gn].

Since we assumed H0(Kv, T
∗(1)) 6= 0, the module H0(Kv, T

∗(1))⊗R R[Gn]
is R[Gn]-free of non-zero rank t, say. The lemma therefore follows from the
inclusion

Fitt0V(H2
Σ,Iw(OL,S , T )) ⊆ Fitt0V(H0(Kv, T

∗(1))⊗R R[Gn])
= Fitt0V(R[Gn]t) = ItΓn .

We next turn to a description of the quotient
⋂rT
R[Gn]H

1
Σ(OL,S , T )/UN

rT
n .

This should be regarded as a complement to the study of the quotient⋂rT
R[Gn]H

1
Σ(OL,S , T )/UN

b
n in [BST19]. We recall that for an abelian group A

we write Ator and Atf for its torsion and torsion-free parts, respectively.

Proposition 3.21. Assume that p - |G|.

(a) We have

{f(a) | a ∈ UNrTn , f ∈
∧rT
R[Gn]H

1
Σ(OLn,S , T )∗}

= Fitt0R[Gn](H
2
Σ,Iw(OL,S , T )

Γn,∨
tor ).
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(b) (
⋂rT
R[Gn]H

1
Σ(OLn,S , T )/UN

rT
n )tor

∼=
(
R[Gn]/Fitt0R[Gn](H

2
Σ,Iw(OL,S , T )

Γn,∨
tor )

)∨.
(c) There is an injection

(
∧rT
R[G]H

1
Σ(OL,S , T )/UN

rT
0 )tf

↪→ (H2
Σ,Iw(OL,S , T )Γ )tf ⊗R[G]

∧rT−1
R[G] H

1
Σ(OL,S , T )

that is induced by the boundary morphism

δ : (H1
Σ(OL,S , T )/UN1

0)tf
'−→ H2

Σ,Iw(OL,S , T )Γtf .

Proof. By truncating the exact sequence representing the complex C•∞
we obtain an exact sequence

0→ H1
Σ,Iw(OL,S , T )→ Π

ψ−→ imψ → 0.

Since imψ has trivial Γn-invariants, Theorem 3.8(b) implies that this se-
quence descends to give an exact sequence

(23) 0→ UN1
n → Πn → (imψ)Γn → 0.

Dualising, and using the identification

Ext1R[Gn]((imψ)Γn ,R[Gn]) ∼= ((imψ)Γn,tor)
∨,

we get the exact sequence

(24) Π∗n → (UN1
n)
∗ → ((imψ)Γn,tor)

∨ → 0.

We have observed in Remark 3.9(b) that the assumption p - |G| implies that
UN1

n is R[Gn]-free of rank rT , so the above exact sequence is in fact a free
presentation of ((imψ)Γn,tor)

∨. This implies that

im{
∧rT
R[Gn]Π

∗
n →

∧rT
R[Gn](UN

1
n)
∗ ∼= R[Gn]} = Fitt0R[Gn]((imψ)∨Γn,tor).

Combining this with the identification UNrTn =
⋂rT
R[Gn]UN

1
n from Theo-

rem 3.8(c) then gives

{f(a) | a ∈ UNrTn , f ∈
∧rT
R[Gn]Π

∗
n} = Fitt0R[Gn]((imψ)∨Γn,tor).

The exact sequence

0→ imψ → Π → H1(C•∞)→ 0

gives the exact sequence

0→ H1(C•∞)Γ
n → (imψ)Γn → Πn.

Since Πn is torsion-free, we deduce that

(25) (imψ)Γn,tor = H1(C•∞)Γ
n

tor = H2
Σ,Iw(OL,S , T )Γ

n

tor .
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Finally, since the cokernel of H1
Σ(OLn,S , T ) ↪→ Πn is R-torsion-free, the

restriction map Π∗n → H1
Σ(OLn,S , T )∗ is surjective. This shows that

{f(a) | a ∈ UNrTn , f ∈
∧rT
R[Gn]Π

∗
n}

= {f(a) | a ∈ UNrTn , f ∈
∧rT
R[Gn]H

1
Σ(OLn,S , T )∗}

and concludes the proof of (a). For (b), let C denote the cokernel of the map
UNrTn →

⋂rT
R[Gn]H

1
Σ(OLn,S , T ). Then dualising gives a commutative diagram

(
⋂rT
R[Gn]H

1
Σ(OLn,S , T ))

∗ (UNrTn )∗ Ext1R[Gn](C,R[Gn]) 0

0 Fitt0R[Gn](H
1(C•∞)Γ

n,∨
tor ) R[Gn] R[Gn]/Fitt0R[Gn](H

1(C•∞)Γ
n,∨

tor ) 0

'

where the middle isomorphism is given by evaluating at a generator of the
free rank-1 module UNrTn and the surjectivity of the first of these follows
from the surjectivity of the natural map∧rT

R[Gn]H
1
Σ(OLn,S , T )∗ → (

⋂rT
R[Gn]H

1
Σ(OLn,S , T ))∗, f 7→ {a 7→ f(a)},

itself a consequence of the proof of (9). Applying the Snake Lemma to the
aforementioned diagram reveals that the rightmost downward map is an
isomorphism as well. The claim follows now upon noting that

Ext1R[Gn](C,R[Gn]) ∼= Ext1R(C,R) ∼= (Ctor)
∨.

Turning our sights now to (c), we first record that the spectral sequence (18)
applied to the complex C•∞ gives an exact sequence

0→ UN1
0
ι−→ H1

Σ(OL,S , T )
δ−→ H2

Σ,Iw(OL,S , T )Γ → 0.

Dualising this sequence, we obtain

0→ (H2
Σ,Iw(OL,S , T )Γ )∗ → H1

Σ(OL,S , T )∗ → im ι∗ → 0,

where ι∗ denotes the dual map of ι. This induces the exact sequence

(H2
Σ,Iw(OL,S , T )Γ )∗ ⊗R[G]

∧rT−1
R[G] H

1
Σ(OL,S , T )∗

∧rT
R[G]H

1
Σ(OL,S , T )∗

∧rT
R[G] im ι∗ 0.

Dualising again, we find that there is an exact sequence

0 (
∧rT
R[G] im ι∗)∗

∧rT
R[G]H

1
Σ(OL,S , T )

(
(H2

Σ,Iw(OL,S , T )Γ )∗ ⊗R[G]
∧rT−1
R[G] H

1
Σ(OL,S , T )∗

)∗
.
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Since p - |G|, the module H1
Σ(OL,S , T )∗ is R[G]-projective, so we have(

(H2
Σ,Iw(OL,S , T )Γ )∗ ⊗R[G]

∧rT−1
R[G] H

1
Σ(OL,S , T )∗

)∗
= (H2

Σ,Iw(OL,S , T )Γ )∗∗ ⊗R[G] (
∧rT−1
R[G] H

1
Σ(OL,S , T )∗)∗

∼= (H2
Σ,Iw(OL,S , T )Γ )tf ⊗R[G]

∧rT−1
R[G] H

1
Σ(OL,S , T ).

It therefore remains to show that
∧rT
R[G]H

1
Σ(OL,S , T )/(

∧rT
R[G] im ι∗)∗ is ex-

actly the torsion-free part of
∧rT
R[G]H

1
Σ(OL,S , T )/UN

rT
0 .

The above exact sequence shows that the former quotient is torsion-free.
From the exact sequence

0→ im ι∗ → (UN1
0)
∗ → Ext1R[G](H

2
Σ,Iw(OL,S , T )Γ ,R[G])→ 0

we see that im ι∗ has finite index inside (UN1
0)
∗. Finally, from the diagram

Q⊗R
∧rT
R[G] im ι∗ Q⊗R

∧rT
R[G](UN

1
0)
∗

∧rT
R[G] im ι∗

∧rT
R[G](UN

1
0)
∗

'

we get, via dualising, the commutative diagram

Q⊗R (
∧rT
R[G] im ι∗)∗ Q⊗R

∧rT
R[G]UN

1
0

(
∧rT
R[G] im ι∗)∗

∧rT
R[G]UN

1
0

'

from which we deduce that UNrT0 =
∧rT
R[G]UN1

0 injects with finite index into
(
∧rT
R[G] im ι∗)∗.

Remark 3.22. A curious consequence of the proof of Proposition 3.21
is that the Zp-torsion submodule of H2

Σ,Iw(OL,S , T )Γ is necessarily a cyclic
R[G]-module if rT = 1 and p - |G|. Indeed, in this situation UN1

0 is R[G]-
free of rank 1, so (24) and (25) imply that H2

Σ,Iw(OL,S , T )
Γ,∨
tor is cyclic. The

ideal Fitt0R[G](H
2
Σ,Iw(OL,S , T )

Γ,∨
tor ) is principal and generated by a non-zero-

divisor x, say (see [Gre02, Prop. 2.2.2]), hence it is then immediate from the
exact sequence

0→ R[G] ·x−→ R[G]→ R[G]/(x)→ 0

that Ext1R[G](R[G]/(x),R[G]) = H2
Σ,Iw(OL,S , T )Γtor is R[G]-cyclic.
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4. Applications to arithmetic. In this section we exemplify how one
can use the general framework laid out in the previous section to derive
concrete arithmetic consequences.

4.1. Tate twist T = Zp(1). We shall first specialise to the representa-
tion T = Zp(1). After an appropriate choice of the set Σ, this representation
satisfies Hypothesis 3.1 as observed in Example 3.3(b) and so the general
results from the last section are applicable in this situation. We introduce
the following additional notation.

Let F be a number field. For finite sets of places V and Σ of F satisfying
V ∩Σ = ∅, S∞(K) ∩Σ = ∅, and Sp(F ) ⊆ V we denote by

• UF,V,Σ = Zp⊗ZO×F,V,Σ ∼= H1
Σ(OF,S ,Zp(1)) the p-completion of the (V,Σ)-

unit group of F ,
• AV,Σ(F ) = Zp⊗Z clV,Σ(F ) the p-Sylow subgroup of the V -ray class group

mod Σ of F ,
• YF,V =

⊕
v∈V Zp the free Zp-module on the set of places contained in V ,

• XF,V the kernel of the natural augmention map YF,V → Zp.

When Σ = ∅, we omit the reference to Σ from the above notation. If F∞ =⋃
n≥0 Fn defines a Zp-extension of F , then for any of the objects � above we

denote by �∞ the projective limit over n of the respective objects � for Fn,
where the limits are taken with respect to the natural transition maps in
each situation.

4.1.1. Iwasawa Main Conjecture. In this section we give a straightfor-
ward application of Theorem 3.16. In particular, we show that the isomor-
phism of Theorem 3.16(a) refines the (plus-part of the) classical Iwasawa
Main Conjecture.

For any integer m ≥ 1, let ξm = e2πi/m, which we regard as an element
of Q via a fixed embedding Q ↪→ C. Take f > 0 to be an integer such that
f 6≡ 2 mod 4 and p - f . Then for every n ≥ 0 we set Ln = Q(ξfpn+1) and
note that the collection of maximal totally real subfields L+

n constitutes a Zp-
extension that satisfies the assumptions of § 3.1. We will therefore resume the
notation introduced there and hope that this does not cause any confusion.

For every n we denote by Cycn the group of cyclotomic units of Ln. In
other words,

Cycn := 〈−1, 1− ξd : d | fpn+1〉Zp[Gn] ∩ O
×
Ln
.

We then set Cyc∞ := lim←−nCycn, where the limit is taken with respect to
the norm maps.

Theorem 4.1. Let χ ∈ Ĝ be an even character and assume that p does
not divide [L : Q], where L = L0. Then there is a canonical isomorphism of
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Λχ := Zp(im(χ))JΓ K-modules

U∞,χ/Cyc∞,χ ∼= α(Λχ/charΛχ(A
∞,χ)),

where (−)χ is the functor − ⊗Zp[G] Zp(im(χ)) = − ⊗V Λχ, and α(−) =

Ext1Λχ(−, Λχ) denotes the Iwasawa adjoint.

Remark 4.2. Theorem 4.1 can be seen as a refinement of the classical
Iwasawa Main Conjecture for the following reason: [NSW08, Prop. 5.5.13]
gives a pseudo-isomorphism α(Λχ/charΛχ(A

∞,χ)) ≈ (Λχ/charΛχ(A
∞,χ))◦

and so taking characteristic ideals on both sides of the isomorphism stated
in Theorem 4.1 yields

charΛχ(U
∞,χ/Cyc∞,χ) = charΛχ(A

∞,χ).

This is one form of the classical Iwasawa Main Conjecture first proved by
Mazur and Wiles [MW84] (see also [Rub90, Thm. 5.1]). That is, Theorem 4.1
amounts to the assertion that not only do the characteristic ideals of the
aforementioned modules agree but in fact their Λχ-module structures are
intimately related.

Proof of Theorem 4.1. At the outset we remark that the equivariant
Iwasawa Main Conjecture is known to be valid (by the work of Burns and
Greither [BG03]) for the data (L∞|Q, S ∪ S∞(Q), ∅, p), where S = {v | fp},
and so Proposition 3.15 implies that

NSb(Zp(1), L+
∞) = 〈e+ηf 〉V,

where for each m | f we put ηm = (1− ξmpn+1)n≥0 ∈ U∞S and use the idem-
potent e+ = 1

2(1 + c) with complex conjugation c ∈ G := Gal(L|Q).
Given this, Theorem 3.16(a) implies that there is an isomorphism

e+(U∞S /〈ηf 〉) ∼= e+ Ext1V
(V
/Fitt0V(H2

Iw(OL,S ,Zp(1)))∗∗,
V)
.

By assumption the order of G is invertible in Zp and hence Λχ is a projectiveV
-module. In particular, the functor (−)χ is exact and thus we obtain an

isomorphism of Λχ-modules

U∞,χS /〈eχηf 〉V ∼= Ext1Λχ
(
Λχ/Fitt

0
Λχ(H

2
Iw(OL,S ,Zp(1))χ)∗∗, Λχ

)
= Ext1Λχ

(
Λχ/charΛχ(H

2
Iw(OL,S ,Zp(1))χ), Λχ

)
.

The explicit description of the pairing given in Theorem 3.16 then shows
that this isomorphism is induced by the map

e+U∞S → e+HomV(
V
/Fitt0V(H2

Iw(OL,S ,Zp(1))∗∗, Q(
V
)/
V
),(26)

e+u 7→ {λ 7→ e+(λ · η∗f (u))},

where η∗f ∈ Q(
V
) ⊗V (U∞S )∗ is the dual of ηf . We next note that the Euler
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system norm relation in this case reads

(27) NQ(ξf )|Q(ξm)(ηk) = [Q(ξf ) : Q(ξk)] ·
(∏
l|k
l-m

(1− Frob−1l )
)
· ηm

for any pair of integers (k,m) satisfiying the divisibility relation m | k | f .
Now let d be the conductor of χ; then for d | k | f we find that

eχηk = [Q(ξk) : Q(ξd)]
−1 · eχ

(∏
l|k
l-d

(1− Frob−1l )
)
· ηd

is a
V
-multiple of ηd. For any m - d, on the other hand, we have

eχηm = [Q(ξf ) : Q(ξm)]
−1 · eχNQ(ξf )|Q(ξm)(ηm) = 0

since χ is non-trivial on Gal(Q(ξf )|Q(ξm)). Let t = (γ − 1) for a topological
generator γ of Γ ; then the above reasoning shows that

Cyc∞,χ = 〈eχtδχηd〉Λχ for δχ =

{
0 if χ 6= 1,

1 if χ = 1,

where we have used the fact that if d 6= 1 then both ηd, tη1 are in U∞ since
p - d. Moreover, from (27) we deduce that the isomorphism (26) maps eχηd
onto the element corresponding to multiplication by eχθ−1d , where

(28) θd =
∏
l|f
l-d

(1− Frob−1l ).

Write now V = S \ S∞. Then from the exact sequence

0→ A∞S → H2
Iw(OL,S ,Zp(1))→ X∞V → 0

one obtains, using the fact that characteristic ideals are multiplicative, the
equality

charΛχ(H
2
Iw(OL,S ,Zp(1))χ) = charΛχ(A

∞,χ
S ) · charΛχ(X

∞,χ
V ).

An explicit calculation furthermore shows (cf. [Fla04, Lem. 5.5] but note
that in our case p ∈ S) that

charΛχ(X
∞,χ
V ) =

(
eχt

εχ
∏
l|f
l-d

(1− Frob−1l )
)
= (eχt

εχθd),

where

εχ =

{
1 if χ(p) = 1 and χ 6= 1,

0 otherwise.
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Hence we have the exact sequence

Λχ/t
εχcharΛχ(A

∞,χ
S )

·θd
↪−→ Λχ/charΛχH

2
Iw(OL,S ,Zp(1))χ

� Λχ/t
−εχcharΛχ(X

∞
V )

that combines with the statement (28) to give a commutative diagram
〈eχηd〉/〈eχηf 〉 U∞,χS /〈eχηf 〉 U∞,χS /〈eχηd〉

α(Λχ/t
−εχcharΛχ(X

∞
V )) α(Λχ/charΛχ(H

2
Iw(OL,S ,Zp(1))χ)) α(Λχ/t

εχcharΛχ(A
∞,χ
S ))

' '

·θd

An application of the Snake Lemma then implies that the right hand
map is an isomorphism. Now, observe that U∞,χ/〈eχtδχηd〉 = U∞,χ/Cyc∞,χ

is Λχ-cyclic since U∞,χ is Λχ-free of rank 1. The aforementioned quo-
tient is furthermore Zp-torsion-free as it injects into U∞,χS /〈eχηd〉 ∼=
α(Λχ/t

εχcharΛχ(A
∞,χ
S )). It follows that

AnnΛχ(U
∞,χ/Cyc∞,χ) = Fitt0Λχ(U

∞,χ/Cyc∞,χ) = charΛχ(U
∞,χ/Cyc∞,χ)

= charΛχ(A
∞,χ),

where we have used the classical Iwasawa Main Conjecture [Rub90, Thm. 5.1]
to establish the final equality. By using an explicit description analogous
to (26), we see that the image of U∞,χ/Cyc∞,χ under the isomorphism

(29) U∞,χS /〈eχηd〉 ∼= α(Λχ/t
εχcharΛχ(A

∞,χ
S ))

coincides with the kernel of multiplication by a generator of charΛχ(A∞,χ)
on α(Λχ/charΛχ(A

∞,χ
S )). An argument entirely similar to the one utilised

above shows that this kernel is exactly α(Λχ/charΛχ(A∞,χ)). Hence the iso-
morphism (29) restricts to give the isomorphism claimed in the statement of
Theorem 4.1.

4.1.2. Greenberg’s conjecture. In this subsection we will rely on the re-
sults of Appendix B. We resume the notation and assumptions of § 3.1.

Proposition 4.3. Assume the µ-invariant of A∞S,Σ vanishes. The fol-
lowing are equivalent:

(a) the module A∞S,Σ is finite,
(b) there is an isomorphism

NSrT (Zp(1), L∞)/NSb(Zp(1), L∞) ∼= Ext1V(
V
/Fitt0V(X∞S\S∞),

V
).

Remark 4.4. (a) If L is a totally real field, we may take Σ = ∅ since
p is odd. Then A∞S,Σ agrees with the inverse limit of S-class groups A∞S .
In this situation, Greenberg [Gre76] has conjectured that both the µ- and
λ-invariant of the Λ-module A∞ vanish, i.e. A∞ is finite, and this clearly
implies that A∞S is finite. In certain situations one can show that the converse
of this implication holds. This is the case, for example, if L either validates
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Leopoldt’s conjecture or has exactly one prime that ramifies in L∞ (see
[Iwa01, § 4]).

(b) Theoretical evidence for Greenberg’s conjecture is still very sparse.
The only general class of fields known to satisfy the conjecture are fields L
with a unique prime above p and such that ASp(L) = 1 (in this case Green-
berg’s conjecture follows from Nakayama’s Lemma). However, there are many
explicit examples giving evidence for the conjecture, starting with Green-
berg’s original article [Gre76, §8]. For example, Kraft and Schoof [KS95] have
numerically verified the conjecture for p = 3 and all real quadratic fields
Q(
√
f) such that f 6≡ 1 mod 3 and f < 10000.
(c) The case rT = 1 of Proposition 4.3 is classical and well-known. To the

best of the knowledge of the authors, a result of this shape first appeared in
[Gol84, Lem. 1].

Proof of Proposition 4.3. We have an exact sequence

0→ A∞S,Σ → H2
Σ,Iw(OL,S ,Zp(1))→ X∞S\S∞ → 0

and it follows that at every regular height 1 prime p of
V

there is an equality

(30) Fitt0V(H2
Σ,Iw(OL,S ,Zp(1)))p = Fitt0V(A∞S,Σ)p · Fitt0V(X∞S\S∞)p

since
V
p is a discrete valuation ring in this case. If p is a singular prime, in

turn, then H2
Σ,Iw(OL,S ,Zp(1))p = Fitt0V(A∞S,Σ)p by Lemma (B.6)(a) because

X∞S\S∞ has vanishing µ-invariant.
Let us now assume that A∞S,Σ is finite. The previous discussion combines

with Lemma (B.6)(b) to imply that

Fitt0V(X∞S\S∞)p = Fitt0V(H2
Σ,Iw(OL,S ,Zp(1)))p

for all height-1 primes p of
V
. This implies that the surjection

V
/Fitt0V(H2

Σ,Iw(OL,S ,Zp(1)))→
V
/Fitt0V(X∞S\S∞)

is a pseudo-isomorphism and hence has finite kernel. It follows that the
induced map

Ext1V(
V
/Fitt0V(X∞S\S∞),

V
)→ Ext1V

(V
/Fitt0V(H2

Σ,Iw(OL,S ,Zp(1))),
V)

→ Ext1V
(V
/Fitt0V(H2

Σ,Iw(OL,S ,Zp(1)))∗∗,
V)

is an isomorphism, where we have used the fact that the second arrow is
also induced by a pseudo-isomorphism (see the discussion in the proof of
Theorem 3.16(c)). Taking Ext1V(−,

V
) across the isomorphism in Theorem

3.16(a) then gives (cf. (22))

NSrT /NSb ∼= Ext1V(
V
/Fitt0V(X∞S\S∞),

V
).

Conversely, assume to be given such an isomorphism. Taking Ext1V(−,
V
)
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and combining with Theorem 3.16, we obtain a pseudo-isomorphism
V
/Fitt0V(H2

Σ,Iw(OL,S ,Zp(1))) ≈
V
/Fitt0V(X∞S\S∞).(31)

Now let p be a regular height-1 prime, then the above pseudo-isomorphism
gives

Fitt0V(H2
Σ,Iw(OL,S ,Zp(1)))p ∼= Fitt0V(X∞S\S∞)p.

Since
V
p is a discrete valuation ring, this implies

(p
V
p)

lengthV
p
(X∞

S\S∞
)p+lengthV

p
(A∞S,Σ)p = Fitt0V(A∞S,Σ)p · Fitt0V(X∞S\S∞)p

= Fitt0V(X∞S\S∞)p=(p
V
p)

lengthV
p
(X∞

S\S∞
)p .

We deduce that lengthV(A∞S,Σ)p = 0, hence (A∞S,Σ)p = 0. Thus, the finite-
ness of A∞S,Σ follows now from the assumed vanishing of its µ-invariant and
Lemma B.6.

4.1.3. Leading term conjectures. We continue using the notations and as-
sumptions of §3.1. In this section we describe a connection between Propo-
sition 4.3 and conjectures concerning the leading terms of equivariant L-
functions that appear in the literature. The central player in these conjec-
tures is the S-truncated and Σ-modified Dirichlet L-function that is defined
as

LLn|K,S,Σ(χ, s) =
∏
v∈Σ

(1− χ(Frobv)Nv1−s) ·
∏
v 6∈S

(1− χ(Frobv)Nv−s)−1

for any complex values s satisfying Re(s) > 1, and any character χ ∈ Ĝn.
It is well-known that LLn|K,S,Σ(χ, s) can be continued to a meromorphic
function that is defined on the whole complex plane and holomorphic at
s = 0. For any r ≥ 0, we denote the r-th coefficient in the Taylor expansion
of LLn|K,S,Σ(χ, s) at s = 0 by

L
(r)
Ln|K,S,Σ(χ, 0) = lim

s→0
s−rLLn|K,S,Σ(χ, s)

and define the Stickelberger element to be

θ
(r)
Ln|K,S,Σ(0) =

∑
χ∈Ĝn

eχL
(r)
Ln|K,S,Σ(0).

Fix an isomorphism C ∼= Cp and recall that the Dirichlet regulator defines a
Cp[Gn]-linear isomorphism

λLn,S,Σ : Cp ⊗Z O×Ln,S,Σ
'−→ Cp ⊗Z XLn,S , a 7→ −

∑
w∈SLn

log(|a|w) · w.

We remind the reader that the integer rT ≥ 0 for T = Zp(1) is given by
rT = |S∞(K)| under the running hypotheses. For every v ∈ S, we also fix a
place w ∈ SLn such that w|v.
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Definition 4.5. Pick w0 ∈ S \ S∞. The rT -th Rubin–Stark element
εLn|K,S,Σ is the preimage of θ(rT )Ln|K,S,Σ(0) ·

∧
w∈S∞(w−w0) under the isomor-

phism
Cp ⊗Zp

∧rT
Zp[Gn] ULn,S,Σ

'−→ Cp ⊗Zp
∧rT

Zp[Gn]XLn,S

induced by the Dirichlet regulator λL,S,Σ .

We shall investigate the following conjectures.

Conjecture 4.6.

(a) We have εLn|K,S,Σ ∈
⋂rT

Zp[Gn] ULn,S,Σ.
(b) There is a basis zLn ∈ DetZp[Gn](C

•
n) such that ΘLn(zLn) = εLn|K,S,Σ.

(c) There is a basis z∞ ∈ DetV(C•∞) such that Θ(z∞) = (εLn|K,S,Σ)n.

Remark 4.7. The above are special cases of conjectures appearing in
the literature. Conjecture 4.6(a) is the relevant case of the Rubin–Stark con-
jecture [Rub96, Conj. B′] in this setting. Conjecture 4.6(b) is a consequence
of the equivariant Tamagawa Number Conjecture as stated, for example, in
[BKS17, Conj. 2.3] after taking [BKS17, Prop. 2.5] into consideration. It is
easy to see that if L|K has a unique place above p and S = S∞(K) ∪ Sp,
then Conjecture 4.6(b) in fact coincides with [BKS17, Conj. 2.3]. Finally,
Conjecture 4.6(c) is the higher-rank equivariant Iwasawa Main Conjecture
appearing in [BKS17, Conj. 3.1].

The following is an analogue of the classical index formula for cyclotomic
units (see [Was97, Thm. 8.2]).

Lemma 4.8. Assume that all infinite places split in L|K and that there
is a unique place p above p in L. Put S = S∞(K) ∪ Sp and assume that
AS,Σ(L) is G-cohomologically trivial. Then

(
⋂rT

Zp[G] UL,S,Σ : Zp[G] · εL|K,S,Σ) = hL,S,Σ ,

where hL,S,Σ = |AS,Σ(L)| is the p-part of the (S,Σ)-class number of L.

Proof. Since G acts trivially on p, the module XL,S is Zp[G]-free, gener-
ated by the Zp[G]-linearly independent set {(w − p)}, where w ranges over
our set of fixed places in SL. It follows that H2(C•0 ) is G-cohomologically
trivial and the isomorphism

Ĥ i(G, UL,S,Σ) ∼= Ĥ i+2(G, H2(C•0 ))

for all i ∈ Z induced by the complex C•0 shows that UL,S,Σ is G-cohomo-
logically trivial, hence Zp[G]-projective. The Dirichlet regulator map λL,S,Σ
induces a rational isomorphism QpUL,S,Σ ∼= QpXL,S (see [Tat84, §I.4.3]),
which in this setting (see [NSW08, Thm. 5.6.10(ii)]) implies that there is an
isomorphism UL,S,Σ ∼= XL,S and so UL,S,Σ is Zp[G]-free. Let {u1, . . . , urT }
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be any Zp[G]-basis of this module. Then⋂rT
Zp[G] UL,S,Σ =

∧rT
Zp[G] UL,S,Σ = Zp[G] · (u1 ∧ · · · ∧ urT ).

It now suffices to calculate the index

Zp[G] · λL,S,Σ(εL|K,S,Σ)=Zp[G] · θ(rT )L,S,Σ(0) inside Zp[G] ·λL,S,Σ(u1∧· · ·∧urT )
as sublattices of Cp

∧r
Zp[G]XL,S

∼= Cp[G]. If we can find a Cp-linear isomor-
phism f : Cp[G] → Cp[G] that maps the first of these two aforementioned
lattices bijectively onto the latter, then by [Sin80, Lem. 1.1(b)] this index is
given by the Cp-determinant of (det f)−1.

Let f be theCp[G]-linear extension of 1 7→θ(rT )L,S,Σ(0)
−1·λL,S,Σ(u1∧· · ·∧urT );

then this map has the desired properties. Calculating the determinant of
multiplication by θ(rT )L,S,Σ(0)

−1 with respect to the basis {eχ}χ∈Ĝ , we find that
it equals ∏

χ∈Ĝ

L
(rT )
L|K,S,Σ(χ, 0)

−1 = ζ
(rT )
L,S,T (0)

−1 = (hL,S,Σ ·RL,S,Σ)−1

by the analytic class number formula, where RL,S,Σ is the (S,Σ)-regulator.
Finally, using [Bou74, Ch. III, §9.4, Prop. 6], we conclude that multiplication
by λL,S,Σ(u1 ∧ · · · ∧ urT ) has determinant RL,S,Σ . This completes the proof
of the lemma.

Theorem 4.9. Let L be a totally real field. Assume that |Sp(L)| = 1 and
p - |G|. If
(i) the Rubin–Stark conjecture 4.6(a) holds for the data (Ln|K,S, ∅) for all

n ∈ N0,
(ii) Greenberg’s conjecture holds for L,

then the equivariant Iwasawa Main Conjecture [BKS17, Conj. 3.1] for L∞|K
and the equivariant Tamagawa Number Conjecture [BKS17, Conj. 2.3] for
L|K both hold true for S = S∞ ∪ Sp.

Proof. By [Rub96, Prop. 6.1] we have εL|K,S ∈ UNr0, so Lemma 4.8 in
particular implies that the index of UNrT0 inside

⋂rT
Zp[G] UL,S is finite. By

Proposition 3.21(b) and [CG98, Prop. 7], this index is given by

(
⋂rT

Zp[G] UL,S : UNrT0 ) = (Zp[G] : Fitt0Zp[G]((A
∞
S )Γ,∨)) = |(A∞S )Γ,∨| = |(A∞S )Γ |,

where we have used the fact that A∞S is finite by assumption (ii). This
finiteness also implies that the Herbrand quotient of A∞S is trivial, hence

|(A∞S )Γ | = |(A∞S )Γ | = |AS(L)| = hL,S ,

where the second equality follows by applying [Was97, Prop. 13.22]. Now,
Lemma 4.8 implies that

UNrT0 = Zp[G] · εL|K,S .
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It follows from Nakayama’s Lemma that the sequence (εLn|K,S)n≥0 is a
V
-

basis of NSrT (L∞,Zp(1)). Since we are assuming (ii), Proposition 4.3 gives
the equality NSrT = NSb, hence the equivariant Iwasawa Main Conjecture
4.6(c) holds true. Moreover, we know from Lemma 3.19 that imΘL = UNb0,
so we also find that UNrT0 = imΘL. Thus, Conjecture 4.6(b) is valid. Since we
have already observed in Remark 4.7 that in this setting Conjecture 4.6(b)
coincides with [BKS17, Conj. 2.3], this concludes the proof.

4.2. µ-invariant conjectures and the Tate module of elliptic
curves. In this section we use the result of Theorem 3.16 to give a refor-
mulation of the various µ-vanishing conjectures. To do this, we assume that
L∞|L is the cyclotomic Zp-extension and consider the following hypothesis:

Hypothesis 4.10. Σ is a finite (possibly empty) set of places of K, dis-
joint from S, such that for every v ∈ Σ the module of invariants H0(Kv, T )
vanishes.

We caution the reader that we are not yet assuming that Σ is chosen in
such a way that Hypothesis 3.1(3, 4) are satisfied.

It is then natural to formulate the following conjecture.
Conjecture 4.11. Assume that Σ satisfies Hypothesis 4.10. Then

H2
Σ,Iw(OL,S , T ) is a torsion Λ-module, and furthermore has vanishing µ-

invariant as a Λ-module.

Lemma 4.12. Conjecture 4.11 is independent of the choice of Σ.

Proof. By the definition of Σ-modified cohomology one has, for each
n ∈ N0, an exact sequence⊕

w∈ΣLn

H1(κw, T )→ H2
Σ(OLn,S , T )→ H2(OLn,S , T )→ 0.

Fix a place v ∈ Σ and recall that the complex
⊕

w|v RΓét(κw, T ) is rep-

resented in D(R[Gn]) by the complex
⊕

w|v[T
1−Frob−1

w−−−−−−→ T ]. In particular,
Hypothesis 4.10 implies that

⊕
w|vH

1(κw, T ) is finite and its minimal num-
ber of R-generators is bounded above by the R-rank of ⊕w|vT .

Since L∞|L is the cyclotomic Zp-extension, there are only finitely many
primes of L∞ lying above v. We may thus pass to the limit to deduce that⊕

w∈{v}L∞
lim←−nH

1(κw, T ) is finitely generated as a Zp-module, hence has
vanishing µ-invariant.

This fact now combines with the exact sequence above to imply that
H2
Σ,Iw(OL,S , T ) is Λ-torsion and, moreover, has vanishing µ-invariant if and

only if the same is true of H2
Iw(OL,S , T ).

Examples 4.13. Lemma 4.11 shows that, under the current hypotheses,
the question of whetherH2

Σ,Iw(OL,S , T ) is a torsion Λ-module is equivalent to
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the weak Leopoldt conjecture for the pair (T ∗(1), L∞). As for the µ-invariant
component of Conjecture 4.11 we make the following observations:

(a) When K is totally real and T = Zp(1), then Hypothesis 4.10 is satisfied
for any choice of Σ. The exact sequence

0→ A∞S,Σ → H2
Σ,Iw(OL,S , T )→ X∞S → 0

combines with Lemma 4.12 to imply that Conjecture 4.11 is equiva-
lent to Iwasawa’s famous conjecture on the vanishing of the µ-invariant
of A∞. In particular, the theorem of Ferrero–Washington implies that
Conjecture 4.11 is valid whenever L|Q is an abelian extension.

(b) Let T = Tp(E) be the p-adic Tate module of an elliptic curve over K,
and take Σ to be a set of primes of K disjoint from S. Since E has good
reduction at every prime in Σ it follows that Σ satisfies Hypothesis 4.10.
Hence, Conjecture 4.11 is equivalent to the Coates–Sujatha conjecture
[CS05, Conj. A] after taking into consideration Lemma 3.2 of loc. cit. In
particular, if K = Q and L|Q is any finite abelian extension such that
E(L)[p∞] 6= 0 then Conjecture 4.11 is valid by [CS05, Cor. 3.6].

(c) More generally, Lim has conjectured in [Lim07, Conj. A] that the µ-
invariant of H2

Iw(OL,S , T ) vanishes and Conjecture 4.11 is equivalent to
his conjecture after taking into consideration Lemma 3.4 of loc. cit.

We can now formulate the main result of this section.

Proposition 4.14. Suppose that Σ is chosen to satisfy Hypothesis 4.10
and so that the triple (T, L∞, Σ) satisfies Hypothesis 3.1. Then Conjec-
ture 4.11 is valid if and only if NSrT /NSb is finitely generated as an R-
module.

Proof. At the outset we first note that ifM is a finitely generated torsionV
-module, then its µ-invariant vanishes if and only if Mp = 0 for every

singular prime p of
V

by Lemma B.6. To prove the proposition we now fix
such a prime p of

V
. By localising the isomorphism of Theorem 3.16 at p we

obtain an isomorphism

Ext1V(NSrT /NSb,
V
)p ∼=

V
p/FittVp(H

2
Σ,Iw(OL,S , T )p).

On the other hand, one knows by [NSW08, Prop. 5.5.13] that NSrT /NSb and
Ext1V(NSrT /NSb,

V
) have the same µ-invariant. Hence, one deduces from the

above discussion that the µ-invariant of H2
Σ,Iw(OL,S , T ) vanishes if and only

if the same is true of that of NSrT /NSb.

Using this proposition we can now appeal to the known validity of the
Coates–Sujatha conjecture for particular elliptic curves over Q to say some-
thing about the structure of the quotient module NSrT /NSb.
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Corollary 4.15. Let K = Q and E/Q be an elliptic curve. If (T, L∞, Σ)
satisfies Hypothesis 3.1 and E(L)[p∞] 6= 0, then NS1/NSb is a free Zp-module
of finite rank.

Proof. By combining Proposition 4.14 with the observation of Example
4.13(b) one deduces that NS1/NSb is finitely generated as a Zp-module.
Moreover, NS1/NSb has projective dimension 1 as a Λ-module and so has
no non-zero finite Λ-submodules. Since the maximal finite Λ-submodule of
NS1/NSb necessarily coincides with its maximal finite Zp-submodule, it fol-
lows that NS1/NSb is Zp-free, as claimed.

Remark 4.16. Let K = L = Q and let E/Q be an elliptic curve of
algebraic rank 0 with finite Tate–Shafarevich group and such that E(Q) 6= 0.
Suppose that Σ is chosen so that (T,Q∞, Σ) satisfies Hypothesis 3.1. If p > 7
does not divide any of the Tamagawa numbers at primes of bad reduction
for E or the order of the Tate–Shafarevich group of E, then Wuthrich has
shown in [Wut07, Prop. 9.1] that the fine Selmer group of E over Q∞ is
trivial. If we assume, in addition, that for every v ∈ S \ S∞(Q) the group
E(Qv) has no points of order p, then a straightforward argument using the
Weil pairing implies that the dual of the fine Selmer group of E over Q∞
coincides withH2

Iw(OQ,S , T ). Given this, the proof of Proposition 4.14 implies
that, under all the above assumptions, NS1(T,Q∞) = NSb(T,Q∞).

Appendix A. Finite places splitting in L∞. Key to the approach of
the main body of the present article is the assumption that no finite place of
K splits completely in L∞. While this is not a particularly strong assumption
(it is always satisfied for the cyclotomic Zp-extension of L, for example), it
is natural to ask whether one can weaken this hypothesis to include many
other interesting situations that arise in arithmetic. For example, if K = L is
an imaginary quadratic field and K∞ is not the anti-cyclotomic Zp-extension
of K, then only finitely many finite places of K can split in K∞ (see, for
example, [Ems87]). In particular, to obtain a module of higher-rank universal
norms in this situation which incorporates all arithmetic data of interest one
must modify the notion of basic rank given above to take into account these
new non-archimedean places.

In this appendix we briefly outline how one can do this for general p-adic
representations. Since this exposition will contain essentially no additional
ideas, we prefer to prove as little as we feel is necessary and refer to existing
arguments to justify the claims.

At the outset we adopt all notations in § 3.1 with the exception that
L∞|L is now a Zp-extension in which finitely many places (infinite or finite)
of K are allowed to split.
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A.1. Σ-modified Selmer complexes. In this subsection we introduce
a Σ-modified Selmer complex which will prove useful throughout this ap-
pendix.

Denote by Sf the subset of S comprising the finite places. Let V be a
finite set of finite places of K, disjoint from Σ. For any abelian extension F
of K we define the Σ-modified V -supported complex RΓΣ,V (OF,S , T ) to be
the mapping fibre in D(R[Gal(F |K)]) of the morphism

RΓ (OF,S , T )⊕
⊕

w∈(Sf\V )F

RΓ (Fw, T )
φ−→

⊕
w∈Sf,F

RΓ (Fw, T )⊕
⊕
w∈ΣF

RΓ (κw, T ),

where φ is given by (⊕w∈Sf,F − resw,⊕w∈ΣF − resw) on the former summand
and by (ι, 0) on the latter summand where ι is the natural inclusion map.

Given this construction, we then have the following lemma, which results
from a straightforward application of the octahedral axiom.

Lemma (A.1). Suppose that V ⊆ S. Then there is an exact triangle

(32) RΓΣ,V (OF,S , T )→ RΓΣ(OF,S , T )→
⊕
w∈VF

RΓ (Fw, T )

in D(R[GF ]).
We now use this lemma to study the complex C•n defined in § 3.1.

Proposition (A.2). Fix n ∈ N0. Denote by Vn the subset of S consisting
of those finite places that split completely in Ln and write

Yn,K(T ) :=
⊕

v∈S∞(K)∪Vn

H0(Kv, T
∗(1)).

Then there is an exact sequence

H2
Σ,Vn(OLn,S , T )→ H1(C•n)→

⊕
v∈S∞(K)∪Vn

Yn,K(T )∗ ⊗R R[Gn]→ 0

in which the first map is canonical and the second depends on the choice of
a set of representatives of the orbits of Gal(Ln|K) on Vn.

Proof. From Proposition 3.4 there is a decomposition

H1(C•n)
∼= H2

Σ(OLn,S , T )⊕
⊕

v∈S∞(K)

H0(Kv, T
∗(1))∗.

On the other hand, Tate local duality combines with the fact that p is odd
and the exact triangle (32) to imply the existence of an exact sequence

H2
Σ,Vn(OLn,S , T )→ H2

Σ(OLn,S , T )→
⊕
v∈Vn

H0(Kv, T
∗(1))∗ ⊗R R[Gn]→ 0

in which the middle arrow depends on the choice of a set of representatives
of the orbits of Gal(Ln/K) on Vn. In particular, if we write Kn for the kernel
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of the left hand map then, since every prime in Vn splits completely in Ln,
we obtain a decomposition

H1(C•n)
∼= Kn ⊕ (Yn,K(T )∗ ⊗R R[Gn]),

which completes the proof of the claim.

A.2. Universal norms. We write Ssplit(L∞) for the set of places of K
that split completely in L∞ and remark that, by our assumptions and the
standard properties of Zp-extensions, Ssplit(L∞) contains all the archimedean
places of K. We then fix a finite set of places S containing

Ssplit(L∞) ∪ Sp(K) ∪ Sram(T ) ∪ Sram(L/K)

and we suppose that the tuple (T, L∞, Σ) satisfies the following mild hy-
potheses:

Hypothesis (A.3).

(1) For every n ∈ N0 the module of invariants H0
Σ(Ln, T ) vanishes.

(2) The R-free module YK(T ) =
⊕

v∈Ssplit(L∞)H
0(Kv, T

∗(1)) has non-zero
rank rT .

(3) H1
Σ(OLn,S , T ) is R-torsion-free for every n ∈ N0.

For every subextension F of L∞|K we write

H2
Σ,split(OF,S , T ) := H2(RΓΣ,Ssplit(L∞)(OF,S , T )).

Now fix n ∈ N0. By considering the sum of primitive idempotents in
Q[Gn] that annihilate the kernel Kn := ker(H2

Σ,split(OLn,S , T ) → H1(C•n))
of the map of Proposition (A.2) one can construct, as in §3.4, a projection
map

ΘLn : DetR[Gn](C
•
Ln)→

⋂rT
R[Gn]H

1
Σ(OLn,S , T ).

In particular, if there exists n ∈ N for which the projection map ΘLn is
non-zero, then the argument of [BSS19b, Prop. 4.30(i)] can be used to show
that lim←−nKn is a torsion

V
-module.

Given this, it is straightforward to check that the arguments used to prove
Theorems 3.8 and 3.16 give analogous results under the running hypotheses
of this appendix.

Appendix B. Equivariant Iwasawa algebras. This appendix serves
the purpose of collecting useful facts on rings of the form

V
= RJΓ K[G],

where

• R is the ring of integers in a finite extension Q of Qp,
• Γ ∼= Zp,
• G is a finite abelian group.
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We shall also write Γn for the unique subgroup of Γ of order pn, and Γn
for the quotient Γ/Γn. Moreover, we set Λ = RJΓ K.

B.1. Basic properties. Let P be the p-Sylow subgroup of G and write
H = G/P . Then we have a character-part decomposition

(33)
V ∼=

⊕
χ∈Ĥ/∼

Λχ with Λχ = R[imχ]JΓ K[P ].

Here the relation ∼ is defined as χ ∼ χ′ if there is a σ ∈ GQ such that
χ = σ ◦ χ′.

Lemma (B.4). The ring
V

is Gorenstein.

Proof. Let γ be a topological generator of Γ . For every χ ∈ Ĥ/∼, the
quotient Λχ/(γ − 1) ∼= O[imχ][P ] is a finite group ring and is therefore
Gorenstein by [CR81, 10.29]. Since γ − 1 is a non-zero-divisor in Λχ, this
implies that Λχ is Gorenstein as well.

If p ⊆
V

is any prime ideal, then the localisation
V
p is given by the

sum
⊕

χ∈Ĥ/∼(Λχ)pχ , where pχ denotes the projection of p onto Λχ. Each
summand (Λχ)pχ is already a local ring, so we must have

V
p = (Λχ)pχ for

a certain character χ. Since Λχ is a Gorenstein ring, this shows that
V

is
Gorenstein as well.

We also note that for any commutative ring R and R-moduleM , we have
a natural isomorphism of R[G]-modules

HomR(M,R)
∼−→ HomR[G](M,R[G])#,(34)

f 7→
{
m 7→

∑
σ∈G

σ−1f(σ ·m)
}
.

In particular, when R = Λ we obtain an isomorphism

(35) ExtiΛ(M,Λ) ∼= ExtiV(M,
V
)# for all i ≥ 0.

B.2. Height-1 primes. The aim of this section is to describe the rela-
tion between the classical Iwasawa λ- and µ-invariants of a module M and
the localisation of M at height-1 primes of

V
. In order to do this, it is useful

to make the following distinction among the latter.

Definition (B.5). A height-1 prime p of
V

is called singular if p ∈ p
and regular otherwise.

If p is regular, then
V
p is identified with the localisation of

V
[1/p] at

p
V
[1/p]. From the decomposition

V
[1/p] =

⊕
χ∈Ĝ/∼

Λχ[1/p] with Λχ[1/p] = O[imχ]JΓ K[1/p]
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we deduce via an argument similar to the one used in the proof of Lemma
(B.4) that the localisation (

V
[1/p])p

V
[1/p] agrees with (Λχ[1/p])pΛχ[1/p] for a

certain character χ. Note that Zp[imχ]JΓ K is a conventional Iwasawa algebra.
In particular, its localisation Zp[imχ]JΓ K[1/p] is also a regular local domain.
It follows that

V
p is a discrete valuation ring.

If p is such that
V
p = (Λχ[1/p])pΛχ[1/p] for the character χ ∈ Ĝ/∼, then

we say the character χ is associated to p. Similarly, if p is a singular prime
and

V
p = (Λχ)pΛχ for some character χ ∈ Ĥ/∼, then we call χ associated

to p as well. It should always be clear from the context what is meant.

Lemma (B.6). Let M be a finitely generated
V
-torsion module.

(a) The µ-invariant of M (as a Λ-module) vanishes if and only if Mp = 0
for every singular prime p of

V
.

(b) The module M is finite (equivalently, its µ- and λ-invariants as a Λ-
module both vanish) if and only ifMp = 0 for every height-1 prime p of

V
.

Proof. The ‘only if’ part of (a) follows from [Fla04, Lem. 5.6] (see also
[BG03, Lem. 6.3]).

As for the converse, we write Mχ := M ⊗V Λχ for each χ ∈ Ĥ/∼. Then
by tensoring the decomposition (33) with M we have a natural isomorphism
M ∼=

⊕
χ∈Ĥ/∼Mχ. Now, for any character χ ∈ Ĥ/∼ there exists a singular

prime p of
V

such that χ is associated to p. The hypothesis now implies that
the module Mp =Mχ,p vanishes, hence Mχ is a finitely generated O(im(χ))-
module by the result of loc. cit. Since O(im(χ)) is finitely generated as an
O-module, it follows that M is finitely generated as an O-module whence it
has vanishing µ-invariant as a Λ-module.

For part (b) we first note that if the λ-invariant of M vanishes then M is
necessarily Zp-torsion (cf. [NSW08, Rem. 3 following Def. 5.3.9]). It follows
that Mp = 0 for any regular height-1 prime p of

V
. In combination with (a)

this gives one direction of assertion (b).
Conversely, assume thatMp = 0 for any height-1 prime p of

V
. Appealing

to [Sak20, Lemma B.11] one sees that

0 = Ext1V(M,
V
) ∼= Ext1Λ(M,Λ).

This combines with [NSW08, Prop. 5.5.8(iv)] to imply that M is finite as
desired.
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