FLEXIBILITY IN HIGHER-DIMENSIONAL CONTACT GEOMETRY BY PATRICK MASSOT AND EMMY MURPHY

1. FOMAL LEGENDRIAN EMBEDDINGS

We fix a closed manifold L of dimension n and (Y,ξ) a closed contact manifold of dimension 2n + 1.

Definition 1. A formal legendrian embedding is the data (f, F) where $f : L \to Y$ is a smooth embedding and $F = (F_s)_{s \in [0,1]}$ is a homotopy of monomorphisms $F_s : TL \to TY$ such that $F_0 = Tf$ and F_1 is legendrian.

Two legendrian embeddings f_0 and f_1 are called formally isotopic if there is an isotopy (f_t) of smooth embeddings connecting f_0 to f_1 and a homotopy of monomorphisms $(\hat{F}_{s,t})_{s,t\in[0,1]}$: $TL \to TY$ such that $\hat{F}_{0,t} = Tf_t$, $\hat{F}_{1,t}$ is legendrian, $\hat{F}_{s,0} = Tf_0$ and $\hat{F}_{s,1} = Tf_1$.

Proposition 2. If $f : L \to (Y, \xi)$ is a legendrian embedding then (f, Tf) is a formal legendrian embedding.

Question 1. If $f_0, f_1 : L \to Y$ are two legendrian embeddings that are formally isotopic then are they legendrian isotopic?

Answer no : Chekanov in dimension 3 (97) and Ekholm, Etnyre, Sullivan in general (2002).

Theorem 3 (Murphy(2012)). When $n \ge 2$ there exists a class of legendrian called loose such that

- (1) For any legendrian embedding $f_0 : L \to Y$ there is a loose legendrian embedding f_1 that coincides with f_0 outside the neighborhood of a point in L that is formally isotopic to f_0 with support in this neighborhood.
- (2) If two legendrian loose embeddings are formally isotopic then they are legendrian isotopic.

2. ϵ -legendrians and convex integration

We fix a Riemannian metric g on (Y,ξ) and $\epsilon < \frac{\pi}{2}$.

Definition 4. An *n*-plane $P \subset T_y Y$ is called ϵ -legendrian if there exists a legendrian plane $\overline{P} \subset (T_y Y, \xi_y)$ such that the angle between P and \overline{P} is less than ϵ for the metric g.

We define the notions of ϵ -legendrian embedding, formal legendrian embedding and formal legendrian isotopy replacing 'legendrian' by ϵ -legendrian in previous section definitions.

Using Gromov convex integration one can prove that the class of ϵ -legendrian satisfy an h-principle :

Theorem 5 (Gromov). If f_0 and f_1 are two ϵ -legendrians that are formally ϵ -legendrian isotopic then they are ϵ -legendrian isotopic.

Let's simplify the problem to explain the idea of convex integration :

Proposition 6. For any smooth $f : [0,1] \to \mathbb{R}^2$ and any $\delta > 0$ there exists a smooth $\overline{f} : [0,1] \to \mathbb{R}^2$ such that $|\overline{f}'(t)| > 50$ and $d(f(t),\overline{f}(t)) < \delta$.

The key fact here is that the convex hull of $\{v \in \mathbb{R}^2 | |v| > 50\}$ is the whole \mathbb{R}^2 .

Lemma 7. For any r > 0 and $v \in \mathbb{R}^2$ there exists a 1-perodic map $h : \mathbb{R} \to \mathbb{R}^2$ such that |h(u)| > r at every u and $\int_0^1 h = v$.

Démonstration. FIG

This lemma also holds when v depends on a parameter p.

Proof of proposition 6. We apply the last lemma with v = f'(t) depending on the parameter $t \in [0, 1]$ which gives h(t, u) at time t. Then let

$$f_N(t) = f(0) + \int_0^t h(u, Nu) \, du$$

with N a large positive integer. Then $f'_N(t) = h(t, Nt)$ has norm greater than 50. On the other hand $f_N(t) - f(t) = \int_0^t (h(u, Nu) - f'(u)) du$ to bound the difference we partition [0, t] in a increasing sequence of $n = \lfloor tN \rfloor$ intervals I_j of time 1/N and the interval left I_{n+1} . On each interval I_j with $j \leq n$ we have $\int_{I_j} h(u, Nu) = \frac{1}{N} \int_0^1 h(\frac{v+j}{N}, v)$. Then

$$f_N(t) - f(t) = \sum_{j=0}^{n+1} \int_{I_j} \int_0^1 (h(\frac{u+j}{N}, u) - h(v, u)) \, du \, dv$$
$$\leqslant \sum_{j=0}^n \frac{1}{N^2} \sup |\partial_t h| + \frac{2}{N} \sup_{I_{n+1}} |\partial_t h|.$$

This is arbitrary small when N is large.

Remark 8. If f was initially embedded then \overline{f} is an embedding to provided that δ is chosen small enough.

Claim 1. Take a smooth embedding $f : C := [0,1]^2 \to \mathbb{R}^5_{std}$ and an ϵ -legendrian plane field along the image of f. Then there exists an ϵ -legendrian immersion $\overline{f}: C \to \mathbb{R}^5_{std}$ that is \mathcal{C}^0 -close to f.

Démonstration. Consider the jet bundle $J := J^1(C, \mathbb{R}^5)$ over C and set the sub-bundle

 $R := \{ (c, y, v_1, v_2) \in J | \operatorname{Span}(v_1, v_2) \text{ is } \epsilon \text{-legendrian } \},\$

The ϵ -legendrian plane field over f corresponds to a non holonomic section $\sigma^0 = (c, f, \sigma_1^0, \sigma_2^0)$ of R.

Let's adjust the holonomy of the first derivative considering the bundle S^1 over C whose fiber over $c \in C$ is

$$\mathcal{S}_c^1 = \{ v_1 \in T_f Y | \operatorname{Span}(v_1, \sigma_2^0) \text{ is } \epsilon \text{-legendrian in } T_f Y \}.$$

Using the fact that the convex hull of S_c^1 is $T_f Y$ we can use the loop lemma with $v = \partial_1 f$ and parameter space C. We can then get a one periodic section h^1 of S^1 with $h^1(c, 0) = \sigma_1^0(c)$. Let's set

$$\sigma_v^1(c) = f(0, c_2) + \int_0^{c_1} h^1((u, c_2), N_1 u) \, du$$

where N_1 is a large positive integer and set

$$\sigma^{1}(c) = (c, \sigma_{v}^{1}(c), \partial_{1}\sigma_{v}^{1}(c), \sigma_{2}^{0}(c)).$$

Then $\operatorname{Span}(\partial_1 \sigma_v^1(c), \sigma_2^0(c))$ is ϵ -legendrian in $T_{\sigma_v^0}Y$ but since σ_v^1 is $O(1/N_1)$ close to σ_v^0 it is also ϵ -legendrian in $T_{\sigma_v^1}Y$ (as being ϵ -legendrian is an open condition).

Now do the second variable considering the bundle \mathcal{S}^2 over C whose fiber over $c \in C$ is

$$\mathcal{S}_c^1 = \{ v_2 \in T_{\sigma_v^1} Y | \operatorname{Span}(\partial_1 \sigma_0^1(c), v_2) \text{ is } \epsilon \text{-legendrian in } T_{\sigma_v^1} Y \}.$$

Using the loop lemma again, with $v = \partial_2 \sigma_v^1$ and parameter space C, we can get a one periodic section h^2 of S^1 with $h^2(c, 0) = \sigma_2^1(c)$. Let's set

$$\overline{f} := \sigma_v^2(c) = \sigma_v^1(c_1, 0) + \int_0^{c_2} h^1((c_1, u), N_2 u) \, du$$

where N_2 is a large positive integer and set

$$\sigma^2(c) = j^1 \sigma_v^2(c).$$

Then $\operatorname{Span}(\partial_1 \sigma_v^1(c), \partial_2 \sigma_v^2(c))$ is ϵ -legendrian in $T_{\sigma_v^1} Y$ but since σ_v^2 is $O(1/N_2)$ close to σ_v^1 and $\partial_1 \sigma_v^2$ is $O(1/N_2)$ -close to $\partial_1 \sigma_v^1$ the plane $\operatorname{Span}(\partial_1 \sigma_v^2(c), \partial_2 \sigma_v^2(c))$ is also ϵ -legendrian in $T_{\sigma_v^2} Y$.

3. HOLONOMIC APPROXIMATION IN DARBOUX BOXES

Goal : Deform the ϵ -legendrian $f: L \to Y$ to a legendrian $\overline{f}: L \to Y$. Every point $p \in f(L)$ has a neighborhood in Y contactomorphic to a Darboux box $D_{a,b,c} := B_a \times B_b \times B_c \subset \mathbb{R}^n \times \mathbb{R} \times \mathbb{R}^n$ (we denote x, z and xthe coordinates in the respective first, second and third factor) such that the contact form in the box is given by $\xi = \ker(dz - \sum_i y_i dx_i)$ and the image of T_pL is given by $\operatorname{Span}(\partial_{x_1}, \ldots, \partial_{x_n})$. Shrinking the box ensures that f(TL)stays transverse to $\operatorname{Span}(\partial_z, \partial_{y_i})$ so f(L) is the graph of a function

$$\sigma: B_a \to B_b \times B_c$$
$$x \mapsto (z(x), y(x)).$$

Note that $D_{a,b,c}$ is contactomorphic to $D_{1,1,ac/b}$ by rescaling in each factor, so we can restrict to the use of boxes of the form $D_{1,1,n} =: D_n$.

In the Darboux box, saying that $f: L \to Y$ is legendrian amounts to saying that σ corresponds to a holonomic section of $J^1(B_a, \mathbb{R})$, so our objective is to deform σ into a holonomic section of this jet bundle with $|\partial_{x_i} z| < \eta$. There are obstructions to do this in general, but we can achieve it over a \mathcal{C}^0 -small perturbation on the boundary of a *n*-simplex A that is included in the box. For simplicity take n = 2. **Proposition 9** (Eliashberg, Mischachev). Fix $\eta > 0$, and a closed embedded path γ . Then there is a C^0 -small isotopy relative to the boundary that sends γ to a perturbation $\overline{\gamma_i}$ and a section $\overline{\sigma} : B_1 \to D_\eta$ that is holonomic near $\overline{\gamma}$.

Démonstration. The main idea is to construct a road on a steep mountain (FIG). $\hfill \Box$

Applying this property to the edges γ_i of the triangle ∂A gives a perturbed triangle $\overline{\partial A}$ and $\overline{f} : L \to Y$ is legendrian over a neighborhood of $\overline{\partial A}$.

If we take a triangulation of L such that each *n*-simplex is in a Darboux box and apply the latter reasoning we get $\overline{f}: L \to Y$ a legendrian embedding outside finitely many disjoint Darboux boxes D'_n .

4. WRINKLED LEGENDRIAN EMBEDDINGS

For $\delta \in \mathbb{R}$ define

$$\psi_{\delta}: [-1,1] \to \mathbb{R}^2$$
$$u \mapsto (u^3 - 3\delta u, \frac{1}{5}u^5 - \frac{2}{3}\delta u^3 + \delta^2 u).$$

(FIG)

Definition 10 (Eliashberg, Mischachev(09)). A smooth map $W : \mathbb{R}^n \to \mathbb{R}^{n+1}$ that is a topological embedding is called a wrinkled embedding if it is a smooth embedding except at finitely many (n-1)-spheres S_j such that there exists coordinates $(u, v) \in \mathbb{R} \times \mathbb{R}^{n-1}$ near $S_j = \{u^2 + |v|^2 = 1\}$ such that $W(u, v) = (v, \psi_{1-|v|^2}(u))$. The S_j are called wrinkles.

One can check that the singularities at $\{u \neq 0\} \subset S_j$ are cusps, so the lift of W from the front projection

$$\hat{W}: \mathbb{R}^n \to \mathbb{R}^{2n+1}_{std}$$
$$(u, v) \mapsto (v, \psi_{1-|v|^2}(u), \partial_{v_i}\psi_{1-|v|^2}(u))$$

is a smooth (and legendrian) embedding at $\{u \neq 0\} \subset S_j$. However at the singularities of the equator $S'j := \{u = 0\}$ of S_j the wrinkle embedding does not lift to an immersion.

Proposition 11 (Eliashberg, Mischachev). Fix $\eta > 0$ and a compact hyper surface in \mathbb{R}^{n+1} transverse to ∂_z such that $(q, T_q S) \in D_\eta$ for q near ∂S . Then there exists a wrinkled hypersurface \overline{S} which coincides with S near ∂S such that $\{(q, T_q \overline{S}) \ q \in \overline{S}\} \subset D_\eta$.

The main idea of the proof is to replace the steep areas by wrinkles.(FIG)

Definition 12 (Murphy(2012)). $f: L \to Y$ is called a wrinkled legendrian if it is a smooth legendrian embedding away from the finitely many Darboux boxes D_{η} , where its front is a wrinkled hypersurface. The lift of the image of an equator S'_i is called a Legendrian wrinkle.

Theorem 13 (Murphy). If two legendrian embeddings $f_0, f_1 : L \to Y$ are ϵ -legendrian isotopic then they are connected by an isotopy of wrinkled legendrians.

5. LOOSE LEGENDRIANS

We consider a cut-off version of ψ_{δ} for $\delta > 0$ (FIG) and we call Λ_0 the lift of its image to \mathbb{R}^3_{std} ; we also denote Z the zero section of $T^*\mathbb{R}^{n-1}$ and $B^{2n-2}(R)$ a ball of radius R in $T^*\mathbb{R}^{n-1}$. Then $\Lambda_0 \times Z$ is legendrian in the contact manifold $\mathbb{R}^3_{std} \times T^*\mathbb{R}^{n-1}$.

Definition 14. A legendrian embedding $f : \Lambda \to (M, \xi)$ is called loose if for all R > 0 there exists an open set $U \subset M$ such that $(U \cap \Lambda, U \cap \Lambda)$ is contactomorphic to $(\Lambda_0 \times Z, \mathbb{R}^3_{std} \times B(R))$.

Proposition 15. The following assertions are equivalent :

- (1) Λ is loose;
- (2) There exists an open set $U \subset M$ verifying $(U \cap \Lambda, U \cap \Lambda)$ contactomorphic to $(\Lambda_0 \times Z, \mathbb{R}^3_{std} \times B(R_0 = 2)).$
- (3) There exists a closed (n-1)-manifold V such that for all open $W \subset T^*V$ with $Z \subset W$ there exists an open set $U \subset M$ verifying $(U \cap \Lambda, U \cap \Lambda)$ contactomorphic to $(\Lambda_0 \times Z, \mathbb{R}^3_{std} \times W)$.
- (4) For all closed (n-1)-manifold V and open $W \subset T^*V$ with $Z \subset W$ there exists an open set $U \subset M$ verifying $(U \cap \Lambda, U \cap \Lambda)$ contactomorphic to $(\Lambda_0 \times Z, \mathbb{R}^3_{std} \times W)$.

Démonstration. (4) \Rightarrow (3) is clear. If we suppose (3) there is a contactomorphism of $(\Lambda_0 \times Z, \mathbb{R}^3_{std} \times W)$ that shrinks the wrinkle by a rescaling in x_1 and z directions with same scale. Then we choose a point in V with a small neighborhood in which the wrinkle looks like $(\Lambda_0 \times Z, \mathbb{R}^3_{std} \times B(R_0))$ hence we get (2). If we suppose (2) we can lower the height of the wrinkle to an arbitrary small δ in the x_2 direction on the interval $x_2 \in (R_0 - 1/R_0, R_0 + 1/R_0)$ such that the isotopy is relative to the boundary and $|\partial_{x_2} z| < R_0$. It suffices then to choose a smaller neighbourhood of the wrinkle in the part of height δ to get (1). If we suppose (1) and we fix V^{n-1} closed we introduce a wrinkle at V of type (4) away from the loose chart; this may change the isotopy class of Λ . By introducing another wrinkle away from the loose chart and the first wrinkle one can get a legendrian Λ' whose formal homotopy class is the same as Λ and is also loose. By theorem 3 the latter are legendrian isotopic.