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Abstract

In Guaraco’s work [7] a new proof was given of the existence of a closed minimal
hypersurface in a compact Riemannian manifold Nn+1 with n ≥ 2. This was
achieved by employing an Allen–Cahn approximation scheme and a one-parameter
minmax for the Allen–Cahn energy (relying on works by Hutchinson, Tonegawa,
Wickramasekera to pass to the limit as the Allen-Cahn parameter tends to 0).
The minimal hypersurface obtained may a priori carry a locally constant integer
multiplicity. Here we modify the minmax construction of [7], by allowing an
initial freedom on the choice of the valley points between which the mountain pass
construction is carried out, and then optimising over said choice. We then prove
that, when 2 ≤ n ≤ 6 and the metric is bumpy, this minmax leads to a (smooth
closed) minimal hypersurface with multiplicity 1. (When n = 2 this conclusion also
follows from Chodosh–Mantoulidis’s work [5].) As immediate corollary we obtain
that every compact Riemannian manifold of dimension n+ 1, 2 ≤ n ≤ 6, endowed
with a bumpy metric, admits a two-sided smooth closed minimal hypersurface (this
existence conclusion also follows from Zhou’s result [37] for minmax constructions
via Almgren–Pitts theory).

1 Introduction

Existence problems in Riemannian geometry have a long history and those con-
cerned with stationary points of area (and related functionals) occupy a prominent
position. A minmax approach introduced in the 70s by Almgren and Pitts has lead
in the last decade to extraordinary developments in geometric analysis, starting with
the celebrated work [18] by Marques–Neves. More recently, an alternative minmax
approach has been developed, based on the approximation of the area functional by
the Allen–Cahn energy. In particular, the existence of a closed minimal hypersurface
(smoothly embedded away possibly form a singular set of dimension at most n − 7)
in an arbitrary compact Riemannian manifold Nn+1 (n ≥ 2), originally proved in
[1], [25], [26], [27], has been achieved in Guaraco’s work [7] with a construction that
employs very classical mountain pass tools and completely avoids the Almgren–Pitts
machinery; it capitalises instead on the analysis carried out in Hutchinson–Tonegawa
[12], Tonegawa [31], Tonegawa–Wickramasekera [32] (to send the Allen–Cahn param-
eter to 0) and on the sharp regularity result provided by Wickramasekera [35]. Both
in the Almgren–Pitts and in the Allen–Cahn approach, the minimal hypersurface is
obtained as an integral varifold, that turns out to be smooth away from a singular set
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of codimension ≥ 7 thanks to the fundamental regularity/compactness theory available
in each of the two settings. In general, in both approaches, the hypersurface may a
priori carry multiplicity > 1.

Very recently, Zhou [37] obtains multiplicity-1 and two-sidedness for minmax min-
imal hypersurfaces constructed via the Almgren–Pitts minmax when 2 ≤ n ≤ 6 and
N is endowed with a bumpy (thus generic) metric (or, also, with a metric with posi-
tive Ricci curvature). The result applies to multi-parameter minmax, and confirms a
well-known conjecture of Marques–Neves [20, 1.2]. Previous progress in this direction
had been made in [19].

A natural counterpart to Marques–Neves’s conjecture is expected to be true for
minmax constructions via Allen–Cahn. For n = 2 it follows from the work of Chodosh–
Mantoulidis [5] (valid for arbitrary solutions with finite Morse index, not necessarily
minmax solutions) that the minimal surface obtained by a (one- or multi-parameter)
Allen-Cahn minmax is two-sided with multiplicity 1 in the case of bumpy metrics (and
in the case of metrics with positive Ricci).

We point out that [37] and [5] obtain from their multi-parameter multiplicity-1
results (combined with the Weyl Laws available respectively for Almgren–Pitts and
Allen–Cahn minmax constructions [17], [9]) the existence of infinitely many minimal
hypersurfaces. In other words, they establish, under their respective assumptions, the
validity of (versions of) the well-known Yau’s conjecture, which is established by other
methods and for arbitrary Riemannian metrics with 2 ≤ n ≤ 6 by the combined efforts
of Marques–Neves [21] and Song [28] (for generic metrics with n ≥ 7, see [16]).

When the Riemannian metric of the compact manifold has positive Ricci curvature
several other multiplicity-1 and two-sidedness results were obtained in recent years in
the case of one-parameter minmax. For the Almgren–Pitts method, Ketover–Marques–
Neves obtain such conclusions (under the Ricci curvature assumption) in [15] for 2 ≤
n ≤ 6, relying on previous progress from [36]. For the Allen–Cahn method, it is noted
in Gaspar–Guaraco’s work [8] (see (4) in Theorem 2.1), relying on [15], [22], [23], that,
when 2 ≤ n ≤ 6 and the metric is bumpy and has positive Ricci curvature, then the
minmax hypersurfaces are two-sided with multiplicity 1. The multiplicity-1 and two-
sidedness conclusions for the one-parameter Allen–Cahn minmax is recently shown for
n ≥ 2 and any metric with positive Ricci curvature in the author’s work [2].

The relevance of multiplicity-1 results is shared by all minmax constructions (and
not only): a minmax procedure developed by Rivière [30] for 2-dimensional surfaces
in arbitrary codimension also faces the same issue, resolved by Pigati–Rivière [24].

We obtain here a multiplicity-1 result in the case in which 2 ≤ n ≤ 6 and N has
a bumpy (thus generic) metric, for a one-parameter minmax construction (via Allen–
Cahn energy) that is a modification of the one set up in [7] (see also Figure 1), and
of which we now give a brief overview, with details given in Section 2. (The minmax
construction itself can be performed for an arbitrary Riemannian metric and in any
dimension, while the multiplicity-1 conclusion exploits the metric and dimensional
restrictions.)

For each ε (the parameter of the Allen–Cahn energy Eε), instead of using the
admissible class of paths in W 1,2(N) that join the constant −1 to the constant +1 (as
in [7]), we consider all continuous paths in W 1,2(N) that connect two distinct strictly
stable critical points v1

ε , v
2
ε of the Allen–Cahn energy. (Note that the constants −1

and +1 are possible choices of strictly stable critical points.) For each ε and for any
such v1

ε 6= v2
ε , the minmax produces (by a standard mountain pass lemma) an Allen–
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Figure 1: It seems reasonable to expect that the minmax carried out here finds the minimal
hypersurface on the left, while the one in [7] finds the one on the right. There is a strictly
stable minimal hypersurface between the two unstable ones.

Cahn critical point u(v1ε ,v
2
ε) with Morse index at most 1, and with Allen–Cahn energy

Eε(u(v1ε ,v
2
ε)) realizing the minmax value. Then we consider (for each ε)

inf
v1ε ,v

2
ε

Eε(u(v1ε ,v
2
ε)),

where v1
ε 6= v2

ε vary among all possible strictly stable critical points of Eε. We note
that this infimum is achieved by the energy of a critical point uε, that has Morse index
at most 1. Next we let ε→ 0, and consider any (subsequential) varifold limit V of the
family V uε , the varifolds associated to uε. It then follows that V 6= 0 and (as in [7],
using [12], [31] [32], [35]) spt ‖V ‖ is smoothly embedded except possibly for a singular
set singV of dimension ≤ n − 7, and spt ‖V ‖ \ singV carries locally constant integer
multiplicity. We then establish:

Theorem 1.1. Let 2 ≤ n ≤ 6 and let N be a compact manifold of dimension n + 1.
There exists a set of Riemannian metrics on N that is generic in the sense of Baire
category (specifically, the bumpy metrics of [34]) such that any varifold V obtained by
the minmax in Section 2 is the multiplicity-1 varifold associated to a smooth (embedded)
closed minimal hypersurface M .

When n = 2, Theorem 1.1 follows from the more general result in [5] (that applies
under a uniform bound on the Morse index and on the energy). The multiplicity-
1 information in Theorem 1.1 implies immediately that M in Theorem 1.1 is the
common boundary of two disjoint open sets and therefore it is a two-sided hypersurface;
moreover, it has Morse index 1 (by the bumpy metric assumption). In particular, with
Theorem 1.1 we implicitly obtain a slender proof of the following geometric result (that
also follows from [37], which employs a multi-parameter Almgren–Pitts framework).

Corollary 1.1. Let 2 ≤ n ≤ 6. In any compact Riemannian manifold of dimension
n+ 1 endowed with a bumpy (thus generic) metric there exists a (smoothly embedded)
closed, two-sided minimal hypersurface, with Morse index 1.

Remark 1.1. It will also follow, under the assumptions of Theorem 1.1, that the critical
points uε employed in the construction of V can themselves be obtained as mountain
pass solutions, for the class of admissible paths that join two (suitably chosen) strictly
stable critical points; moreover, there is an optimal path, i.e. one for which the maxi-
mum of Eε is achieved at uε.
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In Section 2 we set up the minmax construction sketched above. In Section 3
we identify the key estimate (Proposition 3.1) to which Theorem 1.1 can be reduced.
The proof of this estimate will be given in Section 5, after some preliminary work in
Section 4. Once the minmax in Section 2 has been identified and carried out, the
proof of Theorem 1.1 is a variant of the one developed by the author in [2], in which
positiveness of the Ricci curvature is assumed for compact Riemannian manifolds of
dimension 3 or higher. In the present setting, we rely on the dimensional restriction
in order to have the smoothness of the support of the minmax varifold, and the metric
assumption to have that smooth minimal hypersurfaces admit no non-trivial Jacobi
fields (these is true for the so-called bumpy metrics, proved to be generic by White
in [34]). Moreover, we rely on the recent result [10] by Guaraco–Marques–Neves,
which implies that the orientable double cover of any given smooth minmax minimal
hypersurface, onto which index-1 Allen–Cahn solutions accumulate, cannot be strictly
stable (and hence it is unstable under a bumpy metric assumption). With [10] in mind,
the statement of Theorem 1.1 could be viewed as an Allen–Cahn counterpart of the
one in [19, Section 1.6] on one-parameter Almgren–Pitts minmax.

Acknowledgement. I am grateful to the anonymous referee for the constructive
comments provided.

2 The minmax construction

Let N be a compact Riemannian manifold of dimension n+1, n ≥ 2. For ε ∈ (0, 1)
consider the Allen–Cahn energy

Eε(u) =
1

2σ

∫
N

ε
|∇u|2

2
+
W (u)

ε

on the Hilbert space W 1,2(N); here W is a C3 “double well” potential, with (exactly)
three critical points, two non-degenerate minima at ±1 and a local maximum at 0, with
(exactly) two zeroes of W ′′ (one between −1 and 0, one between 0 and 1) and with
quadratic growth to ∞ at ±∞; the normalisation constant σ is σ =

∫ 1
−1

√
W (t)/2 dt.

A customary choice for the potential is W (x) = (1−x2)2

4 , suitably modified (to have
quadratic growth) outside [−2, 2]. We recall that the Euler–Lagrange equation for Eε is

the semi-linear elliptic PDE ε∆u− W ′(u)
ε = 0 (where ∆ denotes the Laplace–Beltrami

operator on N), and that the second variation of Eε at u is given by the quadratic

form Eε′′(u)(φ, φ) = 1
2σ

∫
N
ε |∇φ|2 + W ′′(u)

ε φ2 for φ ∈ C∞(N). Stability amounts to
Eε′′(u)(φ, φ) ≥ 0 for all φ, while strict stability means Eε′′(u)(φ, φ) > 0 for all φ 6= 0.

For any continuous path in W 1,2(N) that starts at the constant −1 and ends at
the constant +1 there exists α > 0 such that the maximum of Eε on the path is ≥ α.
This is proved in [7]. (In fact the constant α is independent of ε.) The constants ±1
are strictly stable critical points of Eε (they are also the only global minimizers and
Eε(±1) = 0).

For any strictly stable critical point v of Eε there exists a neighbourhood of v in
W 1,2(N) in which v achieves the (strict) minimum of Eε. This follows from the Morse–
Palais lemma (see e.g. [14, Lemma 7.3.1]) for non-degenerate critical points of smooth
functionals on Banach spaces. Consider a continuous path γ : [a, b] → W 1,2(N) such
that γ(a) and γ(b) are strictly stable critical points of Eε. Then the maximum of Eε
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on γ has to be strictly greater than max{γ(a), γ(b)} + δ, where δ > 0 is independent
of γ.

For any pair of strictly stable critical points v1, v2 of Eε we define the class of
paths Γv1,v2 to be the collection of continuous paths γ : [a, b] → W 1,2(N) with end-
points γ(a), γ(b) respectively equal to v1 and v2. The previous considerations guar-
antee the validity of the following “mountain pass condition”: there exists a value
Cv1,v2 ∈ R with Cv1,v2 > max{Eε(v1), Eε(v2)} and such that for every γ ∈ Γv1,v2
we have maxt∈[a,b] Eε(γt) ≥ Cv1,v2 . Moreover, the Palais–Smale condition is satis-
fied by Eε (by the argument in [7, Proposition 4.4 (ii)]). This allows the use of a
standard mountain pass theorem and yields the existence of a minmax solution to
Eε′ = 0 with Morse index ≤ 1 and whose Allen–Cahn energy realises the minmax value
minγ∈Γv1,v2

maxt∈[a,b] Eε(γt). (For example, see [29].)

Given ε ∈ (0, 1) we will denote by Sε the collection of strictly stable critical points
of Eε on N . We will consider, for any v1

ε , v
2
ε ∈ Sε, v1

ε 6= v2
ε , the admissible class of paths

Γv1ε ,v2ε : the mountain pass theorem yields (as just described) a critical point u(v1ε ,v
2
ε) (of

Eε) with Morse index ≤ 1 and with

Eε(u(v1ε ,v
2
ε)) = min

γ∈Γ
v1ε,v

2
ε

max
t∈[a,b]

Eε(γt).

We now “optimise” the choice of the valley points v1
ε , v

2
ε : as v1

ε 6= v2
ε vary in Sε, we

consider the “infimum of the minmax values”, namely

inf
v1
ε , v

2
ε ∈ Sε

v1
ε 6= v2

ε

Eε(u(v1ε ,v
2
ε)) = inf

v1
ε , v

2
ε ∈ Sε

v1
ε 6= v2

ε

min
γ∈Γ

v1ε,v
2
ε

max
t∈[a,b]

Eε(γt);

we will now check that there exists a critical point uε of Eε such that

Eε(uε) = inf
v1
ε , v

2
ε ∈ Sε

v1
ε 6= v2

ε

Eε(u(v1ε ,v
2
ε)). (1)

Indeed, taking an infimizing sequence (v1
ε , v

2
ε)` for ` → ∞, we have a uniform bound

on Eε(u(v1ε ,v
2
ε)`

) along the sequence and thus a uniform W 1,2 bound on u(v1ε ,v
2
ε)`

; we first

extract a weak W 1,2-limit of u(v1ε ,v
2
ε)`

, as ` → ∞, that we denote by uε; by passing

to the limit in the weak version of Eε′ = 0 we obtain that uε is a weak solution to
the Allen–Cahn equation; then we show that the convergence to uε is strong in W 1,2

by the stationarity assumption Eε′
(
u(v1ε ,v

2
ε)`

)
= 0 (the computation is again the same

as in [7, Proposition 4.4 (ii)]). Elliptic theory guarantees smoothness of uε and the
fact that it solves Eε′(uε) = 0 in the strong sense. Moreover, the minimizing sequence
u(v1ε ,v

2
ε)`

converges (as `→∞) to uε in Ck(N) for any k ∈ N, by elliptic estimates, and
Eε(u(v1ε ,v

2
ε)`

)→ Eε(uε).
We notice that uε has Morse index ≤ 1; this follows from the Rayleigh quotient

characterisation of the eigenvalues (see e.g. [11, (3.21)]), from the strong convergence
of u(v1ε ,v

2
ε)`

to uε and from the fact that each u(v1ε ,v
2
ε)`

has Morse index ≤ 1 for each `.

(It suffices to check that if f` → f∞ in C2 and E ′ε(f`) = 0 for ` ∈ N∪{∞}, denoting by

λf`p the p-th eigenvalue of the Jacobi operator associated to Eε and f`, for ` ∈ N∪{∞},
then lim sup`→∞ λ

f`
p ≤ λf∞p .)

Associated varifolds. In order to produce candidate minimal hypersurfaces (i.e. sta-
tionary integral varifolds) we follow the construction in [12]. Given a smooth function
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u : N → R we let w = Φ(u), where Φ(s) =
∫ s

0

√
W (t)/2 dt. Recall that σ denotes the

normalization constant
∫ 1
−1

√
W (t)/2 dt. Then we define the n-varifold

V u(A) =
1

σ

∫ ∞
−∞

V{w=t}(A) dt,

where A ⊂ Gn(N) and V{w=t} denotes, for a.e. t, the varifold of integration on the
(smooth) level set {w = t}. If, for ε = εj → 0+, the functions uε are critical points of
Eε and Eε(uε) is uniformly bounded, then the analysis in [12] gives that V uε converge
subsequentially, as ε → 0, to an integral n-varifold V with vanishing first variation.
Moreover Eε(uε)→ ‖V ‖(N), the total mass of V .

Upper and lower energy bounds. We have positive upper and lower bounds on Eε(uε)
as ε→ 0, for the critical points uε constructed in (1). For the upper bound this follows
from the upper bound (independent of ε) obtained in [7] for lim supε→0 cε, where cε is
the minmax value obtained by employing the class of paths Γ−1,+1, together with the
infimum characterisation of uε in (1). The lower bound follows from the lower bound
obtained in [7] for lim infε→0 cε, together with the following observation.

If Eε(vε)→ 0 for a sequence of critical points (Eε′(vε) = 0) with ε = εj → 0+, then for
all sufficiently large j we have vε ≡ −1 or vε ≡ +1.

This is proved by the following argument, as in [3]. Note, first of all, that it suffices
to prove that if Eε(vε) → 0 then {vε = 0} = ∅ for sufficiently small ε; then the
maximum principle gives the conclusion vε ≡ −1 or vε ≡ +1 (by employing constant
functions as barriers). Arguing by contradiction, we let xj ∈ {vεj = 0} for j in a
subsequence. Working in normal coordinates in a geodesic ball Bρ(xj) centred at xj
and with ρ ∈ (0, inj(N)), we define ṽj(y) = vεj (εjy + xj). The function ṽj is defined on
the ball Bρ/εj (0) ⊂ Rn+1, which is endowed with the pull-back metric (from Bρ(xj)).

Sending j →∞ we obtain an entire solution v : Rn+1 → R to E ′1(v) = 0 with v(0) = 0
and E1(v) = 0, contradiction. (Here Rn+1 is endowed with the Euclidean metric, since
the metrics on Bρ/εj (0) converge to the Euclidean one on any compact set).

The above observation equivalently says that there exist ε0 > 0 and C > 0 such
that if vε is a critical point of Eε for ε ≤ ε0 and vε 6≡ −1, vε 6≡ −1, then Eε(vε) ≥ C.
For the construction above (see the discussion preceding (1)), if ε ≤ ε0 and at least one
between v1

ε , v
2
ε is not ±1, then we have Eε(u(v1ε ,v

2
ε)) ≥ max{Eε(v1

ε), Eε(v2
ε)} ≥ C > 0.

If v1
ε , v

2
ε are the constants −1,+1, on the other hand, then by [7] for all sufficiently

small ε we have Eε(u(−1,+1)) ≥ 1
2 lim infε→0 cε > 0. Therefore a positive lower bound

for lim infε→0 Eε(u(v1ε ,v
2
ε)) exists.

Varifold limit and regularity. Following [7] we consider any (subsequential) varifold
limit of V uε as ε→ 0; for n ≥ 2 we get that spt ‖V ‖ is a smoothly embedded minimal
hypersurface except possibly for a closed singular set of dimension ≤ n−7. This follows
upon noticing that the uniform bound on the Morse index of uε allows to reduce locally
in N to the case in which uε are stable so that the regularity results in [32], [35] apply.
Note that V 6= 0 by the lower energy bound on uε. In other words,

V =
K∑
j=1

qj |Mj |, (2)

with qj ∈ N and Mj minimal and smoothly embedded away from a set of dimension
≤ n− 7 (|Mj | denotes the multiplicity-1 varifold of integration on Mj).
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Remark 2.1. The observation that uε has Morse index ≤ 1 simplifies the exposition,
however an alternative way to carry out the construction would be to consider a di-
agonal sequence of u(v1ε ,v

2
ε) as ε → 0 such that the varifolds V

u
(v1ε,v

2
ε) converge to the

same limit V as the varifolds V uε . Then the regularity of V could be obtained from
the knowledge that the Morse index of u(v1ε ,v

2
ε) is ≤ 1.

The previous construction can be carried out for any n ≥ 2 and any Riemannian
metric on N . In the case n ≤ 6 that we will be interested in, all the Mj ’s obtained
in (2) are completely smooth. The scope, in the remainder of this work, is to prove
that if 2 ≤ n ≤ 6 and the metric is bumpy, then all the multiplicities qj in (2) must be
equal to 1. This will establish Theorem 1.1.

Remark 2.2. It is also true (see Remark 5.7) that if 2 ≤ n ≤ 6 and the metric is bumpy,
then uε itself can be obtained, for all sufficiently small ε, by a minmax in the class
Γv1ε ,v2ε for a suitable choice of v1

ε 6= v2
ε ∈ Sε, in particular

Eε(uε) = min
v1
ε , v

2
ε ∈ Sε

v1
ε 6= v2

ε

Eε(u(v1ε ,v
2
ε)) = min

v1
ε , v

2
ε ∈ Sε

v1
ε 6= v2

ε

min
γ∈Γ

v1ε,v
2
ε

max
t∈[a,b]

Eε(γt).

3 Key estimate and proof of Theorem 1.1

Theorem 1.1 will follow mainly from the following key estimate (in which the di-
mensional restriction is absent in view of the fact that M is assumed to be smoothly
embedded).

Proposition 3.1. Let N be a compact Riemannian manifold of dimension n+ 1 with
n ≥ 2 and let M ⊂ N be a smoothly embedded, closed minimal hypersurface, whose
oriented double cover is unstable. There exists ς > 0 (depending only on M ⊂ N)
and ε0 > 0 such that for every ε < ε0 there exist a stable Allen–Cahn critical point vε
(E ′ε(vε) = 0, E ′′ε(vε) ≥ 0) and a continuous path γ : [a, b]→W 1,2(N) with γ(a) ≡ −1
and γ(b) = vε such that

max
t∈[a,b]

Eε(γ(t)) ≤ 2Hn(M)− ς.

Additionally, we will need the following lemma, whose proof (see Appendix A) follows
from Lemma A.1 and from [10].

Lemma 3.1. Let N be a compact Riemannian manifold of dimension n + 1 with
2 ≤ n ≤ 6, endowed with a bumpy metric. For any K > 0 there exists ε0 > 0 such that
if ε ∈ (0, ε0) and vε : N → R is a stable critical point of Eε with Eε(vε) ≤ K, then vε
is strictly stable.

proof of Theorem 1.1 assuming Proposition 3.1 and Lemma 3.1. We recall that the var-
ifold V =

∑
j qj |Mj | obtained in Section 2 satisfies ‖V ‖(N) = lim Eε(uε) for ε = εj →

0+. It follows from [10] that if for some j0 the oriented double cover of Mj0 is sta-
ble, then qj0 = 1. Indeed, since each Mj0 is smoothly embedded we can choose a
tubular neighbourhood Tj0 of it such that spt ‖V ‖ ∩ Tj0 = Mj0 . The oriented dou-
ble cover of Mj0 is strictly stable by the bumpy metric assumption, so using [10] in
Tj0 we conclude that the associated varifolds V uε Tj0 converge with multiplicity 1.
Since V uε → V =

∑
j qj |Mj | on N , we conclude that qj0 = 1. On the other hand,

Proposition 3.1 and Lemma 3.1 imply that if j0 is such that Mj0 has unstable dou-
ble cover, then qj0 must be 1. Indeed, if that were not the case, we could choose
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M = Mj0 in Proposition 3.1 (and K = 2Hn(Mj0) in Lemma 3.1), obtaining, for
ε < min{ε0, ε0}, the existence of a path γ ∈ Γ−1,vε , for some strictly stable vε, such
that maxt∈[a,b] Eε(γ(t)) ≤ 2Hn(Mj0)− ς; a fortiori,

min
γ∈Γ−1,vε

max
t∈[a,b]

Eε(γ(t)) ≤ 2Hn(Mj0)− ς

for ε < min{ε0, ε0}, and

Eε(uε) = inf
v1
ε , v

2
ε ∈ Sε

v1
ε 6= v2

ε

min
γ∈Γ

v1ε,v
2
ε

max
t∈[a,b]

Eε(γ(t)) ≤ 2Hn(Mj0)− ς

for ε < min{ε0, ε0}. Since ‖V ‖(N) = limε→0 Eε(uε) (where ε = εj is any subsequence
that led to (2)) and ‖V ‖(N) ≥ qj0Hn(Mj0) we conclude that qj0 = 1.

4 Preliminary results

4.1 Truncated 1-dimensional Allen–Cahn solutions

We denote by H(r) the monotonically increasing solution to u′′ −W ′(u) = 0 such

that limr→±∞H(r) = ±1, with H(0) = 0. (For the standard potential (1−x2)2

4 , we have

H(r) = tanh
(

r√
2

)
.) Then the functions H(−r) and H(±r+z) also solve u′′−W ′(u) = 0

(for any z ∈ R). The rescaled function Hε(r) = H
(
r
ε

)
solves εu′′ − W ′(u)

ε = 0.
We will make use of truncated versions of Hε (see [5], [33], [2] for details that are

omitted below): for Λ = 3| log ε | define

H(r) = χ(Λ−1r)H(r)± (1− χ(Λ−1r)),

where ± is chosen respectively on r > 0, r < 0 and χ is a smooth bump function that is
+1 on (−1, 1) and has support equal to [−2, 2]. With this definition, H = H on (−Λ,Λ),

H = −1 on (−∞,−2Λ], H = +1 on [2Λ,∞). Moreover H solves ‖H′′−W ′(H)‖C2(R) ≤
C ε3, for C > 0 independent of ε. (Note also that H′′ − W ′(H) = 0 away from
(−2Λ,−Λ) ∪ (Λ, 2Λ).)

For ε < 1, we rescale these truncated solutions and let Hε(·) = H
( ·
ε

)
. Note that Hε

solves ‖ εH′′ − W ′(H)
ε ‖C2(R) ≤ C ε2 and εH′′ − W ′(H)

ε = 0 on (− εΛ, εΛ), Hε = +1 on

(2 εΛ,∞), Hε = −1 on (−∞,−2 εΛ). Using these facts and recalling that Eε(Hε) = 1
we get Eε(H

ε
) = 1+O(ε2). (The function O(ε2) is bounded by Cε2 for all ε sufficiently

small, with C independent of ε.)

For ε ∈ (0, 1) we define the function Ψ : R→ R (for notational convenience we do
not indicate explicitly the dependence on the chosen ε in both Ψ and Ψt below)

Ψ(r) =

{
Hε(r + 2 εΛ) r ≤ 0

Hε(−r + 2 εΛ) r > 0
. (3)

This function is smooth thanks to the fact that all derivatives of Hε vanish at ±2 εΛ.
Moreover let Ψt denote the following family of functions, with Ψ0 = Ψ and t ∈ [0,∞):

Ψt(r) :=

{
Hε(r + 2 εΛ− t) r ≤ 0

Hε(−r + 2 εΛ− t) r > 0
. (4)
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We have Ψ0 = Ψ. Moreover, Ψt ≡ −1 for t ≥ 4 εΛ. For t ∈ (0, 4 εΛ) the function
Ψt is equal to −1 for r such that |r| ≥ 4 εΛ − t. The functions Ψt form a family of
even, Lipschitz functions. The energy Eε(Ψt) is decreasing in t: indeed, the energy

contribution of the “tails” is zero and we have Eε(Ψt) = Eε(Ψ)− 1
2σ

∫ t
−t ε

|Ψ′|2
2 + W (Ψ)

ε .

4.2 Large unstable region

Let N be a Riemannian manifold of dimension n+ 1 with n ≥ 2. Let M ⊂ N be a
smooth closed minimal hypersurface such that its oriented double cover M̃ is unstable.
We denote by ι : M̃ → N the minimal smooth immersion induced by the projection of
M̃ onto M . Let ν be a choice (on M̃) of unit normal to the immersion ι.

Let ω > 0 be the semi-width of a well-defined tubular neighbourhood of M in N ,
with ω < inj(N). Define the map M̃ × [0, ω)→ N given by

(p, s)→ expι(p)(sν(p)),

where expι(p) denotes the exponential map at ι(p) (from a ball in the tangent to N
at ι(p) to a geodesic ball in N centred at ι(p)). This is a bijective diffeomorphism
on M̃ × (0, ω) (the map is 2 − 1 on M̃ × {0}). We will endow M̃ × [0, ω) with the
pull-back metric from N . This metric is of the form gs+ds2, where gs is a Riemannian
metric on M̃×{s}. In the following, M̃ will be implicitly assumed to be a Riemannian
n-dimensional manifold with the metric g0. By abuse of notation we will write ι+sν in
place of expι(p)(sν(p)) and also ι+ ϕν in place of expι(p)(ϕ(p)ν(p)), where 0 ≤ ϕ < ω

is a smooth function on M̃ .
The quotient (M̃ × [0, ω))� ∼, where (p1, s1) ∼ (p2, s2) if and only if ι(p1) = ι(p2)

and s1 = s2 = 0, is the (open) tubular neighbhourhood of M of semi-width ω. For

notational convenience we will denote it by M̃
×∼ [0, ω). Whenever we define functions

on M̃×[0, ω) they will be always even in (p, 0) ∈ M̃×{0}, so that they can be identified

with functions in M̃
×∼ [0, ω). (Lifts of functions on M are exactly even functions on

M̃ . By lift of ρ : M → R we mean the function ρ̃ on M̃ defined by ρ̃(p) = ρ(ι(p)).)
We will now consider deformations of ι with initial velocity dictated by a func-

tion ϕ ∈ C2(M̃). For ϕ ∈ C2(M̃), consider the one-parameter family of immer-
sions ιt : M̃ → N defined, for t ∈ (−δ0, δ0) (for some δ0 ∈ (0, ω

maxϕ)), by (p, t) →
expι(p)(tϕ(p)ν(p)), for p ∈ M̃ . The first variation of area at t = 0 is 0 because M is
minimal. The second variation of area at t = 0 is given by the well-known expression∫

M̃
|∇ϕ|2dHn −

∫
M̃
ϕ2(|A|2 + RicN (ν, ν))dHn, (5)

where A denotes the second fundamental form of ι, ∇ the gradient on M̃ (with respect
to g0), RicN the Ricci tensor of N and dHn coincides with dvolg0 .

Lemma 4.1 (unstable region). Let M ⊂ N be as above. There exist a geodesic ball
D ⊂ M with radius R0, with 0 < R0 < inj(N), and a function φ̃ ∈ C2

c (M̃) with
supp φ̃ ⊂ M̃ \ ι−1(D) and φ̃ ≥ 0, such that∫

M̃
|∇φ̃|2dHn −

∫
M̃
φ̃2(|A|2 + RicN (ν, ν))dHn < 0. (6)
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Proof. Let η be the first eigenfunction (suitably normalized, e.g. to have unit L2 norm)
of the Jacobi operator L (on M̃) and let λ be the associated eigenvalue:

L(η) := ∆η + (|A|2 + RicN (ν, ν))η = λη, λ > 0,

where ∆ is the Laplace–Beltrami operator on M̃ . By standard theory η is smooth and
never vanishing, so we will assume that it is strictly positive on M̃ . The positiveness
of λ follows from the fact that ι : M̃ → N is an unstable minimal immersion; we have∫
M̃ |∇η|

2dHn−
∫
M̃ η2(|A|2 +RicN (ν, ν))dHn = −λ

∫
M̃ η2 < 0. Pick an arbitrary b ∈M

and let {b1, b2} = ι−1(b). By standard capacity properties, given δ > 0 arbitrary there
exists ρ ∈ C∞c (N), 0 ≤ ρ ≤ 1, that vanishes in a neighbourhood of b and is identically
one away from a (slightly larger) neighbourhood of b and such that

∫
N |∇ρ|

2 < δ.
These properties of ρ imply that for δ sufficiently small it is possible to replace η by
η(1 − ρ ◦ ι) (which is still non-negative) in the previous inequality and still obtain a
negative result. Then we set φ̃ = η(1− ρ ◦ ι). By construction there exists a geodesic
ball D ⊂M (centred at b) contained in {1− ρ = 0}.

Remark 4.1 (choice of B). For D obtained in Lemma 4.1, we choose a (geodesic) ball
B in M centred at b and of radius R < R0

2 , where R0 is the radius of D. The choices

of B and φ̃ will be kept until the end. We will write D̃ = ι−1(D) and B̃ = ι−1(B).

Remark 4.2. The geometric counterpart of Lemma 4.1 is that the minimal immersion
ι is unstable with respect to the area functional also if we restrict to deformations that
leave B̃ (and B) fixed, see Remark 4.4.

4.3 Relevant immersions

We have a natural unsigned distance on M̃ × [0, ω), induced by the Riemannian
metric gs + ds2; note that the unsigned distance to M̃ of a point (p, s) ∈ M̃ × [0, ω) is
given by s. The unsigned distance to M̃ descends to the usual Riemannian distance

to M in M̃
×∼ [0, ω) and is a smooth function in

(
M̃
×∼ [0, ω)

)
\M .

Let Π denote the nearest point projection onto M , well-defined in M̃
×∼ [0, ω); with

a slight abuse of notation, we will often identify this map with Π(p, s) = (p, 0), which
is defined in M̃ × [0, ω). For future purposes, we choose ω suitably small so that if x is

in M̃
×∼ [0, ω), then | |JΠ|(x)− 1 | ≤ 2K ′Ad(x,M) and

∣∣∣ 1
|JΠ|(x) − 1

∣∣∣ ≤ 2K ′Ad(x,M),

where d is the Riemannian distance and K ′A is the maximum of the norm of the second
fundamental form of M .

Given an immersion ι+ϕν, where ϕ > 0 is a (positive) smooth function on M̃ , with
ϕ < ω, the image of this immersion is a two-sided embedded (closed) hypersurface,
that we will denote by Mϕ. We will always assume that the choice of normal to Mϕ is
the one for which the scalar product with ∂

∂s is positive.

Signed distance to Mϕ. We define, on
(
M̃
×∼ [0, ω)

)
\M , the following “signed

distance to Mϕ”. Using the identification with M̃ × (0, ω), so that Mϕ is identified
with the graph of ϕ over M̃ , we say that (p, s) has negative distance to Mϕ if s < ϕ(p)
and positive distance to Mϕ if s > ϕ(p). The modulus of the signed distance is the
unsigned distance to graph(ϕ) in M̃ × (0, ω) (recall that the latter is endowed with
the Riemannian metric pulled back from N). If (p, s) ∈ graph(ϕ) then the distance
extends smoothly at (p, s) with value 0. (We do not define the signed distance on M .)
We will use the notation dist(x,Mϕ) to denote the signed distance of x to Mϕ.
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Remark 4.3 (relevant immersions). Recall the function φ̃ given by Lemma 4.1. Let
c̃0 > 0 and t̃0 > 0 be constants sufficiently small so that the following immersions
are well-defined for all c ∈ [0, c̃0], t ∈ [0, t̃0] (the constants c̃0, t̃0 need to be sufficiently

small to ensure that the image of the immersions always lies in M̃
×∼ [0, ω)):

M̃ → M̃
×∼ [0, ω)

p → (p, c+ tφ̃(p))
or, equivalently, ι+ (c+ tφ̃)ν : M̃ → N.

The image of this immersion is identified with

graph
(

(c+ tφ̃)
)
⊂ M̃ × [0, ω).

(The immersion is not necessarily even in p.)
In view of bounds needed later, we also ensure that t̃0 is sufficiently small to

have t̃0 maxM̃ η < 1
4ω, where η is the (positive and normalised) first eigenfunction

considered in Lemma 4.1.
Note, moreover, that a suitably small choice of c̃0 > 0 and t̃0 > 0 additionally

guarantees the following (technically useful) fact: let 0 < c1 < c̃0, for every c ∈ [c1, c̃0]
and t ∈ [0, t̃0] there exists a tubular neighbourhood of semi-width c1 of the embedded

separating hypersurface graph
(

(c+ tφ̃)
)

. (We will use this with c1 = 6 ε | log ε | in

Section 5.3 in particular.)
Let B be the ball in Remark 4.1. We let M̃B = M̃ \ ι−1(B) and ιB = ι|M̃B

(note

that M̃B is a manifold with boundary). By abuse of notation we will write φ̃ also to

mean φ̃
∣∣∣
M̃B

. The immersions

M̃B → M̃
×∼ [0, ω)

p → (p, c+ tφ̃(p))
or, equivalently, ιB + (c+ tφ̃)ν : M̃B → N,

are well-defined for all c ∈ [0, c̃0], t ∈ [0, t̃0]. The image of this immersion with boundary
is identified with

graph

(
(c+ tφ̃)

∣∣∣
M̃B

)
.

Remark 4.4. By Lemma 4.1 and Remark 4.2 there exists t0 ∈ [0, t̃0] such that the area
of the immersion ι+ tφ̃ν : M̃ → N for t ∈ [0, t0] is strictly decreasing in t (the second
derivative of area at t = 0 along the deformation ι + tφ̃ν is strictly negative). Note,
moreover, that this deformation leaves B fixed, so we equivalently have the following:
the area of the immersion with boundary ιB + tφ̃ν : M̃B → N is strictly decreasing in
t for t ∈ [0, t0] (this is a deformation of the immersion with fixed boundary; the area
at t = 0 is 2Hn(M)− 2Hn(B)).

Lemma 4.2. Let t0 be as in Remark 4.4. There exist c0 ∈ [0, c̃0] and τ > 0 such that

(i) for all c ∈ [0, c0] and for all t ∈ [0, t0] the area of the immersion (with boundary)
ιB + (c+ tφ̃)ν : M̃B → N is ≤ 2

(
Hn(M)− 3

4H
n(B)

)
;

(ii) for all c ∈ [0, c0] the area of the immersion ι+(c+t0φ̃)ν : M̃ → N is ≤ 2Hn(M)−τ .
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Proof. Let us prove that (i) holds for some c′0 ∈ [0, c̃0] (in place of c0). Argue by
contradiction: if not, then there exist ci → 0 and ti ∈ [0, t0] such that the area of
ιB + (ci + tiφ̃)ν is ≥ 2

(
Hn(M)− 3

4H
n(B)

)
for all i. Upon extracting a subsequence

we may assume ti → t ∈ [0, t0] and by continuity of the area we get that the area of
ιB + tφ̃ν is ≥ 2

(
Hn(M)− 3

4H
n(B)

)
. This is however in contradiction with Remark

4.4, which says that this area is ≤ 2Hn(M)− 2Hn(B).
Next, let us prove that (ii) holds for some c′′0 ∈ [0, c̃0] (in place of c0) and for some

τ > 0. By Remark 4.4 the area of ι + t0φ̃ν is below 2Hn(M) by a (strictly) positive
amount; denote by 2τ this positive quantity. By continuity, there exists c′′0 > 0 such
that for all c ∈ [0, c′′0] the area of the immersion ι+(c+t0φ̃)ν is smaller than 2Hn(M)−τ .

Choosing c0 = min{c′0, c′′0} concludes the proof.

Since ι : M̃ → N is a closed smooth immersion we can find a constant KA > 0
such that:

(i) the modulus of the second fundamental form along the immersion ι+ (c+ tφ̃)ν
is ≤ KA for all c ∈ [0, c0], t ∈ [0, t0];

(ii) let Mc,t be the embedded hypersurface obtained as image of ι+ (c+ tφ̃)ν; the
nearest point projection Πc,t from a tubular neighbourhood of Mc,t with semi-width

c, has the following bounds: | |JΠc,t|(x)− 1 | ≤ KAd(x,Mc,t) and
∣∣∣ 1
|JΠc,t|(x) − 1

∣∣∣ ≤
KAd(x,Mc,t), where d is the Riemannian distance. To simplify notation, we also
assume that KA is chosen to be larger than 2K ′A, the constant that appeared in the
estimates on JΠ at the beginning of this section.

The immersions in Lemma 4.2 will represent intermediate points of the path (join-
ing −1 to a stable critical point vε) that we will produce in Sections 5.2, 5.3, 5.4, 5.5.
The next one, instead, will be used as a barrier for the gradient flow in Section 5.4.

Consider the one-parameter deformation ιt := ι + tϕν : M̃ → N for t ∈ (−δ0, δ0)
for some positive δ0 <

ω
maxϕ and for some ϕ ∈ C2(M̃). Let Ht(p) denote the scalar

mean curvature of ιt at p ∈ M̃ with respect to the choice of unit normal νt (along ιt)
that has positive scalar product with ν. Recall that the first variation of area at time
t is given by −

∫
M̃ Htϕdvolgt (where gt is the metric induced by the pull-back via ιt)

and the second variation of area at t = 0 is given by −
∫
M̃ L(ϕ)ϕdvolg0 . Then, using

H0 ≡ 0, we get d
dt

∣∣
t=0

Ht(p) = L(ϕ).
Let η be the (smooth, positive and normalised) first eigenfunction of the Jacobi

operator L on M̃ , and λ > 0 the associated eigenvalue (see the proof of Lemma 4.1).
Choosing η in place of ϕ in ιt we obtain

d

dt

∣∣∣∣
t=0

Ht(p) = L(η) = λη(p) > 0.

(In other words, the mean curvature vector of ιt will point away from M if we perturb
by the first eigenfunction.) From this, we see that there exists a sufficiently small z1 > 0
such that the scalar mean curvature Ht,η of ι+ tην satisfies (recall that minM̃ η > 0)

Ht,η ≥
t

2
λ min

M̃
η for all t ∈ [0, z1]. (7)

We choose z0 ∈ (0, z1] such that z0 maxM̃ η < c0, where c0 was chosen in Lemma 4.2.
The embedded hypersurface graph(z0η) (more precisely, the image of the immersion

ι + z0ην, contained in M̃
×∼ [0, ω)) will be used as a barrier in Section 5.4, thanks to

the mean convexity property (7).
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5 Proof of Proposition 3.1

The upshot of the forthcoming sections is the following: given M ⊂ N as in
Proposition 3.1, prove that there exists ε0 > 0 such that for any ε < ε0 we can find a
continuous path (in W 1,2(N)) that joins the constant −1 to a stable critical point of
Eε and such that the maximum of Eε along this path is at most 2Hn(M)− δ, for some
δ > 0 that only depends on M and N (hence independent of ε).

5.1 Choice of ε

Let B be as in Remark 4.1, c0, t0, τ be as in Lemma 4.2 and KA as in the remarks
that follow Lemma 4.2. The geometric quantities Hn(B) and τ are relevant in the
forthcoming construction.

In the following sections we are going to exhibit, for every sufficiently small ε,
an admissible continuous path in W 1,2(N) with Eε suitably bounded along the whole
path. We will specify now an initial choice ε < ε1, which permits the construction of
the W 1,2-functions that describe the path. When we will estimate Eε along the path,
we will do so in terms of geometric quantities (hence independent of ε) plus errors
that will depend on ε. For sufficiently small ε, i.e. ε < ε2 for a choice of ε2 ≤ ε1

to be specified, these errors will be ≤ C(ε | log ε |), where C > 0 is independent of
ε ∈ (0, ε2); we will not keep track of the constants and will instead write O(ε | log ε |).
At the very end (see Section 5.5), in order to make these errors much smaller than
the geometric quantities, and thus have an effective estimate for Eε, we will revisit the
smallness choice of ε: for some ε3 ≤ ε2 we will get that whenever ε < ε3 the errors can
be absorbed in the geometric quantities. Therefore for ε < ε3, we will obtain an upper
bound for Eε along the path that is independent of ε.

Now we choose ε1; the choices of ε2, ε3 will be made as we proceed into the
forthcoming sections. We restrict to values sufficiently small, namely ε1 < 1/e, so
to have that ε | log ε | is decreasing as ε decreases; this guarantees that the conditions
specified below on ε1 hold also for each ε < ε1. The condition ε1 < 1/e, also gives
that the O(ε2)-control that we have in Section 4.1 on the truncated one-dimensional
solutions Hε are valid for all ε < ε1. Moreover, (recall that η, c0 and z0 are chosen at
the end of Section 4.3) we require:
(i) 12 ε1 | log ε1 | < c0

20 (and, from above, 12 ε1 | log ε1 | < 1
2ω and ε1 < 1/e);

(ii) 12 ε1 | log ε1 | < z0 minM̃ η;
(iii) 24 ε1 | log ε1 | < c0 − z0 maxM̃ η;
(iv) 6 ε1 | log ε1 | < 1

4ω − t0 maxM̃ η.
(The right-hand-sides of the last two inequalities are strictly positive by the choices
made in Section 4.3.) Moreover, we will need to ensure a positiveness condition for
the mean curvature of the level sets of the distance function to the image of ι+ z0ην
(equivalently, to graph(z0η), working in M̃ × [0, ω)). Recall that the signed distance
dist(·, graph(z0η)) is well-defined on M̃ × (0, ω) and negative at (p, s) with s < z0η(p)
and positive at (p, s) with s > z0η(p); its modulus is the Riemannian distance to
graph(z0η). To begin with, consider a tubular neighbourhood of graph(z0η) that does
not intersect M , and denote by ω1 its semi-width. Choose ε1 small enough to have
12 ε1 | log ε1 | < ω1. Now, for d ∈ [−12 ε1 | log ε1 |, 12 ε1 | log ε1 |], consider the smooth
embedded hypersurface given by the level set {dist(·, graph(z0η)) = d}. Let Hd,z0η

denote the scalar mean curvature of {dist(·, graph(z0η)) = d} (with respect to the
normal on ι+ z0ην that has positive scalar product with ∂

∂s). Recall from (7) that for
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d = 0 (i.e. on graph(z0η)) we have that the scalar mean curvature is ≥ z0
2 λminM̃ η.

By continuity we therefore ensure that, for ε1 sufficiently small, we have, for all d ∈
[−12 ε1 | log ε1 |, 12 ε1 | log ε1 |]:
(v) Hd,z0η ≥ z0

4 λ minM̃ η. (Implicitly, 12 ε1 | log ε1 | < ω1.)

5.2 From Eε(−1) = 0 to 2(|M | − |B|)

We will work at fixed ε, with ε < ε1 for ε1 chosen to satisfy (i), (ii), (iii), (iv), (v)
of Section 5.1. We will often use the shorthand notation Λ = 3| log ε |. We recall the

notation M̃
×∼ [0, ω) introduced in Section 4.2 (to denote the quotient of M̃ × [0, ω))

and the choices (independent of ε) made in Remark 4.1, with R denoting the radius
of the (geodesic) ball B, D denoting the concentric ball with radius 2R, and with
D̃ = ι−1(D), B̃ = ι−1(B).

Definition of χ. Let χ0 : M → [0, 1] be a smooth function on M with compact support
contained in D and such that χ0 = 1 on B and |∇χ0| ≤ 2/R. Let χ : M̃ → [0, 1] be
defined by χ = ι ◦ χ0. Then χ is smooth and compactly supported in D̃, with χ = 1
on B̃ and |∇χ| ≤ 2/R.

Definition of f . We define f(y, z) on M̃ × [0, ω) as follows (Ψt was defined in (4)):

f(y, z) = Ψ4 εΛχ(y)(z).

This function is even in y, therefore it descends to a function on M̃
×∼ [0, ω) and we will

now check that it is there Lipschitz. Since f is smooth on M̃ × (0, ω) and equal to −1
on M̃ × [ω/2, ω), we only need to check at x ∈M . Let Bρ(x) ⊂M be a geodesic ball,
then we have a well-defined tubular neighbourhood of Bρ(x) of semi-width ω that is
diffeomorphic to Bρ(x)× (−ω, ω) and isometric to it, when we endow Bρ(x)× (−ω, ω)
with the Riemannian metric from N . The Jacobian factor measuring the distortion
of this metric from the product metric is bounded by a constant that only depends
on the geometric data M,N , therefore it suffices to prove the Lipschitz property with
respect to the product metric. Using Fermi coordinates (a, s) in Bρ(x) × (−ω, ω) the
expression of f becomes Ψ4 εΛχ0(a)(s) because Ψt is even for all t. As Ψt(r) is Lipschitz
in (t, r), this expression shows that f is Lipschitz continuous in Bρ(x)× (−ω, ω) (the
Lipschitz constant depends only on Ψ, χ, and on the geometric data M,N).

Passing f to the quotient M̃
×∼ [0, ω), we can extend it to N by setting it equal

to −1 on N \
(
M̃
×∼ [0, ω)

)
, (since f = −1 on M̃ × [ω/2, ω)). We will denote the

function defined on N also by f , by abuse of notation. This function is Lipschitz on N
(and actually smooth away from (D \ B)). We may think of f as of an “Allen–Cahn
approximation” of the hypersurface-with-boundary given by the image of ιB counted
twice (2|M | − 2|B| in varifold notation).

Allen–Cahn energy of f . We will show that for ε sufficiently small Eε(f) is controlled
by twice the area of M \B, up to errors of type O(ε | log ε |). Recall (see Section 4.3)
that Π denotes the nearest point projection onto M and that its Jacobian determinant

satisfies
∣∣∣ 1
|JΠ|(x) − 1

∣∣∣ ≤ KA d(x,M) whenever d(x,M) ≤ 4 εΛ and ε < ε1.

The Allen–Cahn energy of the Lipschitz function f on N is 0 outside M̃
×∼ [0, ω),

since f = −1 there. We perform the computation in M̃ × (0, ω) (removing M from
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the domain does not affect the computation). Denote by ∇yf the gradient of f with
respect to the variables y ∈ M̃ . Then by definition of f we have, at (y, z) ∈ M̃×(0, ω):

∂f

∂yi
=

d

ds
(Ψs)(z)

∣∣∣∣
s=4 εΛχ(y)

4 εΛ
∂χ

∂yi

and since |∇χ| ≤ 2
R , | dds(Ψs)(z)| = |Ψ′(|z|+ s)| ≤ 3

ε , this implies (Λ = 3| log ε |)

ε |∇y(f)|2 ≤ ε C
ε2

ε2 | log ε |2

R2
=
C ε | log ε |2

R2
. (8)

(Here C = (48 · 3)2 · C ′, where C ′ depends on (g0)−1gs.) By the coarea formula (the
metric is the one induced by the pull-back from N) we compute 2σ Eε(f) as follows:∫

B̃

(∫
(0,ω)

1

|JΠ|

(
ε

2

∣∣∣∣ ∂∂z f
∣∣∣∣2 +

W (f)

ε

)
dz

)
dy+ (9)

+

∫
D̃\B̃

(∫
(0,ω)

1

|JΠ|

(
ε

2

∣∣∣∣ ∂∂z f
∣∣∣∣2 +

W (f)

ε

)
dz

)
dy+

+

∫
(D̃\B̃)×(0,ω)

ε

2
|∇yf |2 +

+

∫
M̃\D̃

(∫
(0,ω)

1

|JΠ|

(
ε

2

∣∣∣∣ ∂∂z f
∣∣∣∣2 +

W (f)

ε

)
dz

)
dy.

The first term vanishes because f = −1 on the domain of integration. Thanks to (8)
the third term can be made arbitrarily small by choosing ε sufficiently small; this term
is O(ε2 | log ε |3), since the inner integrand in non-zero only on [0, 4 εΛ]. For the second
term, note that the inner integral only gives a contribution in [0, 4 εΛ] (as f = −1 on
[4 εΛ, ω]). Recalling the bounds on the Jacobian factor |JΠ| and the energy estimates
on the one-dimensional profiles, see Section 4.1, we find

second term of (9) ≤ Hn(D̃ \ B̃) (1 + 4 εΛKA)
Eε(Ψ4 εΛχ(y))

2
≤

≤ Hn(D̃ \ B̃) (1 + 4 εΛKA)(1 +O(ε2)).

Arguing similarly for the fourth term, we get the upper bound

fourth term of (9) ≤ (1 + 4 εΛKA)
(
Hn(M̃)−Hn(D̃)

)
(1 +O(ε2)).

Recall that f depends on ε, although for notational convenience we do not explicit the
dependence; we can produce f = f ε as above for every ε < ε1. The estimates obtained
contain leading terms, independent of ε, and errors depending on ε. For a sufficiently
small choice of ε2 ≤ ε1, all the errors above, for ε < ε2, are of the type O(ε | log ε |).
Putting together the previous estimates we conclude that, for ε < ε2,

Eε(f) ≤ 2 (Hn(M)−Hn(B)) +O(ε | log ε |).

Path to −1. We will now exhibit a continuous (in r) path {fr}r∈[0,4 εΛ], with fr ∈
W 1,2(N) for all r (actually, fr ∈W 1,∞(N)), that starts at f0 = f and ends at f4 εΛ ≡
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−1. Recall that f = −1 outside M̃
×∼ [0, ω), so we set fr = −1 in N \ (M̃

×∼ [0, ω))

for every r. In order to define fr in M̃
×∼ [0, ω), we will give a definition in M̃ × [0, ω),

taking care that it is even on M̃ and therefore passes to the quotient. (Again, by

abuse of notation we call fr both the function on M̃
×∼ [0, ω) and the one on the

double cover.) For (y, z) ∈ M̃ × [0, ω) we define fr, for r ∈ [0, 4 εΛ] by

fr(y, z) = Ψ4 εΛχ(y)+r(z). (10)

For r = 4 εΛ this function becomes constantly−1. We can check the Lipschitz property
of fr on N as done for f earlier, by noticing that on Bρ(x)× (−ω, ω) (for Bρ(x) ⊂M)
we have the coordinate expression fr(a, z) = Ψ4 εΛχ(a)+r(z) thanks to the fact that Ψt

is even. This shows that for every r ∈ [0, 4 εΛ] the function fr is smooth on N \M
and globally Lipschitz.

We will now check that r ∈ [0, 4 εΛ] → fr ∈ W 1,2(N) is continuous. (In fact, the
argument below establishes that this is a Lipschitz curve in W 1,∞(N).) For each r
(compare the computation that led to (8)) we have

∂fr
∂yi

(y, z) = (4 εΛ) Ψ′(|z|+ 4 εΛχ(y) + r)
∂χ

∂yi
(y);

given r1, r2 ∈ [0, 4 εΛ], for every (y, z) there exists ζ ∈ R such that

∂(fr1 − fr2)

∂yi
(y, z) = (4 εΛ)

∂χ

∂yi
(y) Ψ′′(ζ) (r1 − r2)

and, in conclusion,

|∇(fr1 − fr2)| ≤ C 8 εΛ

R
sup
R
|Ψ′′| |r1 − r2|

for a constant C that depends on (g0)−1gs. From the definition of fr one also obtains
‖fr1 − fr2‖L∞ ≤ C supR |Ψ′| |r1 − r2|. The claimed continuity is proved.

To visualize the evolution in r, recall from (4) that, for every y, the two half profiles
Ψ4 εΛχ(y)(z)

∣∣
{z>0} and Ψ4 εΛχ(y)(z)

∣∣
{z<0} in the normal direction to TyM move towards

each other at unit speed (creating a non smooth point at z = 0 on M , where the
regularity of fr is just Lipschitz).

The same computation performed in (9), this time on fr, shows that

Eε(fr) ≤ (1 +O(ε | log ε |))2(Hn(M)−Hn(B)) (11)

for every r, i.e. the energy stays below 2(Hn(M) − Hn(B)) + O(ε | log ε |) along this
path, for all ε < ε2, for a suitable choice of ε2 ≤ ε1. (Moreover it reaches 0 at the end of
the path.) This follows immediately upon noticing that, using the coarea formula as in
(9), this time for fr, the inner integrands that we find are controlled by those computed

for f , since for every t1 we have
∫ ω

0
ε
2 |(Ψt1+r)

′|2 +
W (Ψt1+r)

ε ≤
∫ ω

0
ε
2 |(Ψt1)′|2 +

W (Ψt1 )
ε .

Remark 5.1. The choice of ε2 will be made several times in the forthcoming sections,
always with the scope of making the errors controlled by C ε | log ε | with C independent
of ε ∈ (0, ε2). It should be kept in mind that the specific value ε2 might change from
one instance to the next, however we make finitely many choices, therefore we implicitly
assume that the correct ε2 is the smallest of all. From now on, this remark will be
tacitly applied every time we say that the errors are of the form O(ε | log ε |) for all
ε < ε2, for some suitably small choice of ε2 (see the related comments in Section 5.1).
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5.3 Lowering the peak

In this section we construct the portion of our path that ensures the upper bound
on the maximum along the path. We keep writing Λ = 3| log ε |. To begin with, recall
the definition of signed distance (to Mϕ) given in Section 4.3 and note that in the case
ϕ = 2 εΛ we have that dist(x,M2 εΛ), which was defined on M̃ × (0, ω), extends by
continuity to M̃ × {0} with value −2 εΛ.

The definition of f in Section 5.2 can therefore equivalently be given as follows at
x = (y, z) ∈ M̃ × [0, ω):

f(x) = Hε4 εΛχ(y)(−dist(x,M2 εΛ)),

where Hεs(·) = Hε(· − s) and χ is as in the previous section. Note that the expression

is even in y, therefore f passes to the quotient M̃
×∼ [0, ω). (The signed distance

dist(x,M2 εΛ) passes to the quotient as a smooth function on M̃
×∼ [0, ω), this provides

an alternative way to chech that f is Lipschitz in M̃
×∼ [0, ω)). Recall that f = −1 in

N \ (M̃
×∼ [0, ω)).

Recall the choice of φ̃ in Lemma 4.1 and Remark 4.3, with suppφ̃∩ D̃ = ∅. We will
now produce a continuous path gt, t ∈ [0, t0]→ gt ∈ W 1,2(N), with the property that
g0 = f and gt is an Allen–Cahn approximation of ιB + (2 εΛ + tφ̃)ν (with notation as

in Section 4.3). Under the identification of M × [0, ω) with M̃
×∼ [0, ω), the latter is

the hypersurface-with-boundary

graph

(
(2 εΛ + tφ̃)

∣∣∣
M̃B

)
⊂ M̃ × (0, ω),

where t ∈ [0, t0]. Subsequently, we will produce a continuous (in W 1,2(N)) path gt0+s,
s ∈ [0, 1], that starts at gt0 and ends at a function that is an Allen–Cahn approximation
of the (closed) hypersurface

graph
(

(2 εΛ + t0φ̃)
)
.

The latter path starts (at s = 0) from the endpoint of the former path and has the
geometric effect of “closing the hole” at B (at s = 1).

Remark 5.2. The signed distance dist(x,M2 εΛ+tφ̃) is defined for x ∈ M̃ × (0, ω),
using the notation MC+tφ̃ as in Section 4.3. We point out the following facts. Let

x ∈ M̃ × {0} and xj → x, xj ∈ M̃ × (0, ω) (so that the signed distance is negative on
xj); then lim supj→∞ dist(xj ,M2 εΛ+tφ̃) ≤ −2 εΛ. Moreover, dist(x,M2 εΛ+tφ̃) extends

continuously, with value −2 εΛ, to
(
M̃ \ supp(φ̃)

)
×{0}. In particular, this continuous

extension is valid on D̃ × {0}.

Definition of gt. As done earlier, we will define the functions on M̃ × [0, ω), taking

care that they pass to the quotient M̃
×∼ [0, ω) and are there Lipschitz. Again, we do

not distinguish the notation for the functions on M̃
×∼ [0, ω) and on M̃ × [0, ω). For

t ∈ [0, t0], we define

gt(x) = Hε4 εΛχ(y)(−dist(x,M2 εΛ+tφ̃)) for x = (y, z) ∈ M̃ × (0, ω).
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This function is smooth on
(
M̃
×∼ [0, ω)

)
\M and can be extended smoothly to N \M

by setting it equal to −1 on N \
(
M̃
×∼ [0, ω)

)
, thanks to (iv) of Section 5.1.

We can now check that (for every t) gt extends continuously across M . On
the support of χ, which is contained in D̃, we have, thanks to Remark 5.2, that
−dist(x,M2 εΛ+tφ̃) is continuous and takes value 2 εΛ: therefore gt extends continu-

ously, with value Hε4 εΛχ(y)(2 εΛ), across D. On the complement of suppχ, on the other
hand, we have lim infx→M̃×{0}−dist(x,M2 εΛ+tφ̃) ≥ 2 εΛ: this implies that, away from

the interior of the support of χ, i.e. where Hε4 εΛχ(y) = Hε, the function gt extends con-

tinuously to (M̃ \ D̃) × {0} with value +1. More precisely, we can check that gt is
Lipschitz on N , and actually smooth in the complement of supp(∇χ) × {0}. The
smoothness in N \ (D \B) is immediate since Hε, dist and χ are smooth and thanks to
the fact that Hε has all derivatives vanishing at ±(2 εΛ). So we only need to check the
Lipschitz property at an arbitrary point x ∈ D \B. Let Bρ(x) ⊂M be a geodesic ball
in M centred at x; we work in a tubular neighbourhood Bρ(x)× (−ω, ω) (using Fermi

coordinates (y, s)). Recall that suppφ is disjoint from ι−1(D) (Lemma 4.1). Then,
for ρ sufficiently small, gt(y, s) = Ψ2 εΛχ(y)(s), which shows that gt is Lipschitz in this
neighbourhood.

Note that g0 = f by the expression of f given in the beginning of this sec-
tion. Next, we check that the path t ∈ [0, t0] → gt ∈ W 1,2(N) is continuous (in
t). From the triangle inequality it follows that, for t1, t2 ∈ [0, t0], sup |gt1 − gt2 | ≤
|t2 − t1| supM̃ |φ̃| supR |(H

ε
)′|. Noting that |∇gt| is uniformly bounded, independently

of t (because |∇dist(x,M2 εΛ+tφ̃)| = 1 a.e. ), and that we are on a finite measure space,

the continuity of t → ∇gt ∈ L2(N) follows from the fact that ∇gt → ∇gt a.e. when
t→ t (by dominated convergence). This in turn follows from the well-known fact (see
e.g. [7, Section 9]) that, whenever Ki,K are compact sets with i ∈ N and Ki converge
to K in the Hausdorff distance as i → ∞, then d(·,Ki) converges pointwise a.e. to
d(·,K) as i → ∞, where d is the Riemannian distance. In our case, the compact sets
in question are graph(2 εΛ + tφ̃) (the convergence available is in fact stronger than
just convergence in Hausdorff distance).

To compute Eε(gt), we argue analogously to (9) of Section 5.2, however this time
we use the coarea formula in a tubular neighbourhood of Mc+tφ̃ (or, equivalently, of

graph(c+tφ̃)), with the function Πc,t. Using the bounds on the Jacobian of Πc,t, for c =

2 εΛ, see Section 4.3, we find, for every t, that Eε(gt) ≤ Hn
(

graph

(
(2 εΛ + tφ̃)

∣∣∣
M̃B

))
+

O(ε | log ε |) whenever ε < ε2 for a suitably small choice of ε2 and independently of t.
Therefore (for all ε < ε2 and for all t ∈ [0, t0])

Eε(gt) ≤ 2

(
Hn(M)− 3

4
Hn(B)

)
+O(ε | log ε |) (12)

thanks to the estimate in (i) of Lemma 4.2.

Definition of gt0+s: “closing the hole at B”. We set, for s ∈ [0, 1], for x ∈ M̃ × (0, ω),

gt0+s(x) = Hε4 εΛ(1−s)χ(y)(−dist(x,M2 εΛ+t0φ̃
)). (13)

The argument that follows the definition of gt above can be repeated to show that the
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functions gt0+s (passed to the quotient) extend to smooth functions on N \M (with

gt0+s = −1 in N \
(
M̃
×∼ [0, ω)

)
) and extend in a Lipschitz fashion across M .

The path s ∈ [0, 1]→ gt0+s ∈ W 1,2(N) is continuous in s by definition. Note that

gt0+1 is an Allen–Cahn approximation of the (closed) hypersurface graph
(

(2 εΛ + t0φ̃)
)

.

As s increases from 0 to 1, the “weight carried by B” increases from 0 to 2.
Moreover, with computations as those for gt above, we can compute for every s

the energy Eε(gt0+s). For sufficiently small ε2, we obtain that, for every s ∈ [0, 1] and

for every ε < ε2, the following holds: Eε(gt0+s) ≤ area of graph of
(

(2 εΛ + t0φ̃)
)

+

O(ε | log ε |). Therefore

Eε(gt0+s) ≤ 2Hn(M)− τ +O(ε | log ε |) (14)

thanks to Lemma 4.2 (and by (i) of Section 5.1), for all s ∈ [0, 1] and for every ε < ε2.

5.4 Connect to a stable critical point of Eε
To conclude, we will produce a path (continuous in W 1,2(N)) that connects gt0+1

to a stable critical point of Eε. This will be achieved by a negative gradient flow,
employing a barrier m. To ensure the barrier condition we need to push gt0+1 a bit
more “away from M”: we define gt0+1+r for r ∈ [0, c0 − 2 εΛ] so that we reach an
Allen–Cahn approximation of the immersion ι+ (c0 + t0φ̃)ν when r = c0 − 2 εΛ.

For r ∈ [0, c0−2 εΛ] we define gt0+1+r = −1 on N \
(
M̃
×∼ [0, ω)

)
and the following

for x ∈ M̃ ×∼ [0, ω):

gt0+1+r(x) = Hε(−dist(x,M2 εΛ+r+t0φ̃
)). (15)

Note that this is well-defined and equal to +1 on M thanks to Remark 5.2 and the
function is smooth on N for every r. Moreover, the path is continuous in r (inW 1,2(N))
and computing Eε again, we obtain (as done for gt0+s) the bound

Eε(gt0+1+r) ≤ 2Hn(M)− τ +O(ε | log ε |) (16)

thanks to Lemma 4.2 (and by (i) of Section 5.1), for all r ∈ [0, c0−2 εΛ] and for every
ε < ε2 (for a suitable choice of ε2 ≤ ε1).

We set h = gt0+1+c0−2 εΛ: by definition, h(x) = Hε(−dist(x,Mc0+t0φ̃
)) for x ∈

M̃
×∼ [0, ω) and h = −1 on N \

(
M̃
×∼ [0, ω)

)
. Also note that h = +1 on a tubular

neighbourhood of M of semi-width 19
20c0 , by (i) of Section 5.1.

Barrier construction. With this preparation, we are ready to construct the barrier
m. This will be an Allen–Cahn approximation of ι + z0ην (see end of Section 4.3).
Recall that this is an embedded two-sided hypersurface that we also denote by Mz0η

(or by graph(z0η), when identifying M̃
×∼ [0, ω) with M̃ × [0, ω)) and we defined a

signed distance to Mz0η (for points in (M̃
×∼ [0, ω)) \ M) in Section 5.1. For x in

M̃ × (0, ω) ≡
(
M̃
×∼ [0, ω)

)
\M , we set

m(x) = Hε(−dist(x, graph(z0η))).
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This function extends smoothly across M with value +1: indeed, in a tubular neigh-
bourhood of M , the argument of Hε is larger than 2 εΛ by (ii) of Section 5.1 and this
means that m = +1 in a tubular neighbourhood of M (recall that Hε is smooth with

all derivatives vanishing at ±2 εΛ). Similarly we set m = −1 on N \
(
M̃
×∼ [0, ω)

)
,

which is also a smooth extension since m = −1 in M̃ × (c0, ω) by (iii) of Section 5.1.
The function m is thus smooth on N .

Remark 5.3. In order to use it as a barrier for the flow starting at h, we check that
m ≤ h. Recall that −1 ≤ m,h ≤ +1 by construction. By (iii) of Section 5.1, on the
set where dist(·, graph(z0η)) ≤ 2 εΛ we have dist(·,Mc0+t0φ̃

) ≤ −2 εΛ. This implies
that whenever m > −1 we have h = +1 and so m ≤ h on N .

Flow starting at m. We consider the negative Eε-gradient flow with initial condition
m. Since m = −1 on {|dist(·, graph(z0η))| ≥ 2 εΛ} we get

−E ′ε(m) = 0 on {|dist(·, graph(z0η))| ≥ 2 εΛ}.

Next, we compute the first variation of m with respect to Eε on the set {−2 εΛ <
dist(·, graph(z0η)) < 2 εΛ}. We use the chain rule to express the Laplacian of m in
Fermi coordinates (a, d) centred on Mz0η; we have m = Hε(−d) in these coordinates.
Since |∇d| = 1, using the temporary notation η(x) = Hε(−x), we get ∆ (η(d)) =
(η)′′(d) + η′(d)∆d. Moreover, ∆d = −Hd,z0η with notation as in (7) and with our

convention for the choice of unit normal. Therefore (in what follows, Hε and its
derivatives are evaluated at −d)

−(2σ)E ′ε(m) = ε∆m− W ′(m)

ε
= ε(Hε)′′ − W ′(Hε)

ε
+ εHd,z0η(H

ε
)′ =

= O(ε2) + εHd,z0η(H
ε
)′, (17)

where we used the O(ε2)-bound for Hε from Section 4.1. By (v) of Section 5.1 the hy-
persurfaces {dist(·, graph(z0η)) = d} have scalar mean curvature Hd,z0η ≥ z0

4 λ minM̃ η

for d ∈ [−2 εΛ, 2 εΛ]. Moreover 0 ≤ (Hε)′ ≤ 3
ε . As a consequence, we obtain

−(2σ)E ′ε(m) ≥ O(ε2). Denote by µ = µε > 0 a constant such that |O(ε2)| < µ,
where O(ε2) is the function appearing in (17) (we will finalize the choice of µ later).
Then we consider the functional Fε,µ(u) = (2σ) Eε(u)− µ

∫
N u. For the first variation

of m with respect to Fε,µ we have

−F ′ε,µ(m) > 0.

This condition implies that the negative Fε,µ-gradient flow {mt} (t ∈ [0,∞)) with
initial condition m0 = m is “mean convex”, i.e. the condition −F ′ε,µ(mt) > 0 holds
for all t ≥ 0. (By standard semi-linear parabolic theory the flow exists smoothly
for all times, we refer to [2, Section 7.5] for details.) To see that mean convexity is
preserved, one argues as follows. For notational convenience, we write temporarily

Ft = ε∆mt− W ′(mt)
ε +µ (the negative gradient). Differentiating the PDE we get that

the evolution of Ft is given by ∂tFt = ∆Ft − W ′′(mt)
ε2 Ft. So Ft is a smooth solution of

∂tγ = ∆γ − W ′′(mt)
ε2 γ, and the constant γ = 0 is also a solution to the same PDE. The

condition F > 0 is therefore preserved by the maximum principle.

20



The mean convexity immediately gives that mt : N → R increases in t (since
∂tmt = −1

εF ′ε,µ(mt) > 0). Moreover the limit m∞ of this flow (as t→∞) must be a
stable solution of F ′ε,µ = 0. This follows by combining the mean convexity property
with the maximum principle, see for example [2, Lemma 7.3].

Recall that for all sufficiently small ε there exist (exactly) three constant solutions
of F ′ε,µ = 0: indeed, any such constant k must satisfy W ′(k) = ε µ so one constant is
slightly larger than −1, one is slightly larger than +1, and the third is slightly smaller
than 0 (as ε → 0 they converge respectively to −1, +1, 0). It is immediate to check
that the first two, that we denote respectively by kε,µ and kε,µ, are stable, while the
third is unstable. Note that m∞ ≥ 1 on M since mt ≥ m for all t and m = 1 on M . In
conclusion, we must have that either m∞ is the constant kε,µ, or m∞ is a non-constant
(stable) solution to F ′ε,µ = 0 with m∞ ≥ 1 on M .

Flow starting at h. By the maximum principle, since h ≥ m, the negative Fε,µ-
gradient flow {ht} starting at h0 = h stays above {mt} at all times. On the other
hand, h < kε,µ (because h ≤ 1) and kε,µ is stationary, so ht ≤ kε,µ for all t. Then we
have two options for the limit h∞ of ht, as t→∞:
(a) ht converges to the constant kε,µ (which solves F ′ε,µ = 0);
(b) ht converges to a non-constant solution h∞ of F ′ε,µ = 0 with h∞ ≥ m.

In either case (a) or (b), using h∞ as initial condition, we can run the negative Eε-
gradient flow {h∞,β}β for β ≥ 0; the initial condition h∞,0 = h∞ satisfies −E ′ε(h∞) =
− µ

2σ < 0, therefore the same arguments used above prove that the sign of the first
variation is preserved, i.e. −E ′ε(h∞,β) < 0 for all β ≥ 0 and the limit as β → ∞ is a
stable solution h∞,∞ to E ′ε = 0.

In case (a), the limit h∞,∞ must be the constant +1. This follows by considering

the ODE ε dy
dβ (β) = W ′(y(β))

ε with initial condition y(0) = kε,µ, whose solution decreases
to +1 as β →∞. Then h∞,β(x) = y(β) is the solution of the negative Eε-gradient flow
(by uniqueness). So in case (a) all times slices are constant and they converge to the
constant +1. By composing the two paths produced, first from h to kε,µ0 and then
from kε,µ0 to +1, we obtain a continuous path from h to +1.

Let us analyse case (b). The flow h∞,β is decreasing (by the mean convexity
condition −E ′ε < 0 at β = 0) and reaches a stable solution h∞,∞; we want to ensure
that h∞,∞ is not the constant −1 and we will do so, roughly speaking, by comparing
with the mean curvature flow starting at Mzη. More precisely, the mean curvature flow
with initial condition Mzη is well-defined, smooth and mean convex for all z ∈ (0, z0]
thanks to (7), which gives mean convexity for the initial condition. Let z = z0

2 and
define the function

m(x) = Hδ (−dist(x, graph(zη))) ,

for x ∈ M̃
×∼ [0, ω), where δ ∈ (0, ε1) is chosen sufficiently small to satisfy that

{dist(·,Mzη) ≤ 6δ| log δ|} and {dist(·,Mz0η) ≥ −6δ| log δ|} are disjoint; the function

m is extended smoothly in the complement of M̃
×∼ [0, ω) by setting it equal to −1

there. We stress that the definitions of m and m are similar, however with the fol-
lowing differences: firstly, m was chosen to vanish at graph(z0η) while m vanishes at
graph(zη); secondly, m depends on ε, while m does not (δ has been fixed). The choice
of δ guarantees m ≤ mδ (the latter is m taken with ε = δ), since whenever m > −1
we have mδ = +1. It then follows (ε | log ε | decreases as ε decreases, see Section 5.1)
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that whenever m > −1 we have m = mε = +1 for all ε ≤ δ, that is, m ≤ m = mε for
all ε ≤ δ. It follows that m ≤ h∞ for all ε ≤ δ.

Then [13, 6.5] implies that the negative Eε-gradient flow with initial condition m,
that we denote by {mβ}β, “follows” the mean curvature flow

{
(Mzη)β

}
β

with initial

condition Mzη. Precisely, [13, 6.5] (which is in turn adapted from [4]) says that there
exist constants M2 > 0 and β0 > 0 such that for all ε sufficiently small the following
implication holds for β ≥ β0 ε

2 | log ε |:

dist
(
x, (Mzη)β

)
≤ −M2 ε | log ε | ⇒ mβ(x) ≥ 1− ε .

Every x in the tubular neighbourhood of M of semi-width
z0 minM̃ η

4 satisfies the

condition dist
(
x, (Mzη)

)
≤ − z0 minM̃ η

4 . This inequality implies dist
(
x, (Mzη)

)
≤

−M2 ε | log ε | for all sufficiently small ε. As
{

(Mzη)β
}
β

is a mean convex mean curva-

ture flow by (7), the inequality is preserved for all β ≥ 0, that is, every x in the same
tubular neighbourhood satisfies dist

(
x, (Mzη)β

)
≤ −M2 ε | log ε | for all β ≥ 0. The

implication above then gives, on this fixed tubular neighbourhood, mβ(x) ≥ 1− ε for
all β ≥ β0 ε

2 | log ε |. The maximum principle (applied to the negative Eε-gradient flows
with initial conditions m ≤ h∞) guarantees h∞,β ≥ mβ for all β ≥ 0. In particular,

on the chosen tubular neighbourhood we have h∞,∞ ≥ 1
2 for all sufficiently small ε.

In conclusion, in case (b) we have that h∞,∞ is a stable Allen–Cahn solution with the
property that there exists a fixed non-empty open set (independent of ε, as long as ε

is sufficiently small) contained in {h∞,∞ > 1/2}.
The function vε in Proposition 3.1 is going to be h∞,∞ (in both cases (a) and (b)).

We showed that h∞,∞ 6≡ −1.

Remark 5.4. We used the initial condition m in order to apply [13, 6.5], which takes
an initial condition with gradient bounds independent of ε. In fact, we only need that
result insofar as it permits to conclude that the negative Eε-gradient flow starting at
m stays above the initial condition for all sufficiently small ε, possibly after waiting
for a time β0 ε

2 | log ε |. This could be proved directly, using the arguments of [4] that
build a suitable subsolution.

Evaluation of Eε on the path. Let us estimate the value of Eε along the path
(continuously joining h to h∞,∞ = vε in W 1,2(N)) that we have produced. For this,
note that Fε,µ is decreasing along the flow {ht}, therefore Eε(ht) ≤ Eε(h) + µ

σH
n+1(N)

for all t: this implies that Eε is bounded above indepedently of ε. More precisely,
choosing µ = µε to be 2‖O(ε2)‖∞, where O(ε2) is the function appearing in (17), and
recalling that Eε(h) ≤ 2Hn(M) − τ + O(ε | log ε |), we can absorbe µ

σH
n+1(N) in the

error term O(ε | log ε |) for ε sufficiently small. In other words we obtain the upper
bound

Eε(ht) ≤ 2Hn(M)− τ +O(ε | log ε |) (18)

for all t and for ε < ε2. For the second part of the path (h∞,β) the energy Eε is
decreasing, so the same upper bound holds. (In case (a), one can easily check that Eε
decreases to 0 on the second part of the path.)

5.5 Conclusive arguments

In Sections 5.2, 5.3 and (in the beginning of) 5.4 we exhibited (given M , which
also fixed B and τ) continuous paths in W 1,2(N) that join −1 to f , f to g, g to h.
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Then in Section 5.4 we produced by gradient flow a path (still continuous in W 1,2(N))
that joins h to a stable solution vε = h∞,∞ of E ′ε = 0 that is not the constant −1. We
obtained the energy bounds respectively (11), (12), (14), (16), (18). These are valid
uniformly on the paths for all ε < ε2.

For all sufficiently small ε, composing these partial paths we obtain a continuous
path in W 1,2(N) that starts at the constant −1 and ends at vε and such that

Eε along this path is ≤ 2Hn(M)−min

{
τ,

3Hn(B)

2

}
+O(ε | log ε |).

Choosing ε3 sufficiently small to ensure O(ε | log ε |) ≤ min
{
τ
2 ,H

n(B)
}

the above
bound gives, for all ε < ε3, that the maximum of Eε on the path is at most 2Hn(M)−
min

{
τ
2 ,
Hn(B)

2

}
. This proves Proposition 3.1.

Remark 5.5 (proof of Corollary 1.1). Multiplicity-1 convergence of critical points uε of
Eε to a minimal hypersurface M implies that the functions uε converge in BV (N) to
a function u∞ : N → {±1}, with the property that M = ∂{u∞ = +1}. In particular,
the inner normal to {u∞ = +1} provides a global unit normal to M , so M is two-sided.

Remark 5.6. The multiplicity-1 convergence guarantees that the Morse index of M is
at most 1 and that only way for it to vanish is that M has non trivial nullity. However,
with a bumpy metric, the nullity has to be trivial, hence the Morse index of M is 1.
(The lower semi-continuity of the Morse index also follows from [6] or [11].)

Remark 5.7. The statement in Remark 2.2 is proved as follows. Since V uε converge
(upon extraction of a sequence) to |M | (with multiplicity 1), and M is strictly stable
(and two-sided) by the bumpy metric assumption, then the nullity of uε has to be 0
for all sufficiently small ε (the nullity is upper-semi-continuous as ε→ 0). Then uε has
Morse index 1. We perturb uε by its first eigenfunction, in both directions, obtaining
two functions, one strictly larger and one strictly smaller than uε (the perturbation
is energy-decreasing), with −Eε′ respectively positive and negative. We then consider
two negative-Eε-gradient flows, one increasing, one decreasing, starting respectively at
the two functions. These flows are mean convex and produce two continuous paths
that reach respectively a stable solution v2

ε with v2
ε > uε and a stable solution v1

ε with
v1
ε < uε. In particular these solutions are distinct. Moreover, they must be strictly

stable for sufficiently small ε, thanks to Lemma A.1. We thus have a continuous path
that joins two strictly stable solutions and such that the maximum of Eε along this
path is achieved at uε.

A Passing stability to the limit for the double cover

The proof of Lemma 3.1 will be a consequence of the following observation.

Lemma A.1. Let N be a Riemannian manifold of dimension n+1, and let vεi : N → R
be stable solutions to E ′εi = 0, with V vεi → V (V vεi are the varifolds associated to vεi
as in Section 2) and V =

∑
θα|Mα|, where θα ∈ N and Mα is a smoothly embedded

minimal hypersurface with dimH(M \M) ≤ n− 7. Then the oriented double cover of
Mα is stable for each α.

Note that the regularity of spt ‖V ‖ is not an assumption: it follows from the fact
that any limit of V vεi is a stationary integral varifold by [12] satisfying a stability
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condition and therefore its support must be smooth away from a codimension-7 set by
[32], [35].

proof of Lemma A.1. Denoting by V i = V vεi the associated varifolds, we have V i →
V . Let R be the smoothly embedded part of a connected component of spt ‖V ‖.
Then R is a stable minimal hypersurface and more precisely, if R carries multiplicity
θ ∈ N we have that for every f ∈ C2(R) the following inequality holds:

∫
f2(|A|2 +

RicN (ν, ν))θdHn R ≤
∫
|∇f |2θdHn R. This follows from the stability inequality

E ′′ε ≥ 0 as in [31] (by first extending f to a C2 function on N , employing a tubular
neighbhourhood of R). Since θ is constant on R we can write the same inequality
for θ = 2, which amounts to the following fact: letting R̃ denote the oriented double
cover of R, the minimal immersion ι : R̃ → N (that covers R twice) is stable for all
deformations whose initial speed is given by a C2 even function on R̃ multiplied by ν,
where ν is a determination of the unit normal for the immersion. Let now φ be a C2

odd function on R̃. Then a deformation of R̃ as an immersion, with initial speed given
by φν, amounts to an ambient deformation of 2|R|: indeed, both ν and f are odd on
R̃, hence φν is (identified with) a well-defined C2 vector field on R (in particular, if R
is one-sided then this vector field must vanish somewhere). Then the second variation
of area is non-negative along this deformation, by using [6] to pass to the limit the
stability condition for vεi .

Next, we consider an arbitrary φ ∈ C2(R̃). We consider the deformation of the
immersion ι : R̃→ N (induced by the standard 2−1 projection) given by expι(p)(ι(p)+
tφ(p)ν(p)), for t ∈ (−δ, δ) and ν a choice of unit normal to the immersion. The second
variation of area computed at t = 0 along this deformation is given by∫

|∇φ|2 − φ2(|A|2 + RicN (ν, ν)) dHn R̃. (19)

Consider the involution i : R̃ → R̃ that sends each point to the only other point
with the same image via ι. Then by writing φe = φ+φ(i)

2 and φo = φ−φ(i)
2 we obtain

φ = φe + φo with φe even on R̃ and φo odd on R̃. We expand and rewrite (19) as
follows:

∫
|∇φe|2 + |∇φe|2 − φ2

e(|A|2 + RicN (ν, ν))− φ2
o(|A|2 + RicN (ν, ν)) dHn R̃. (20)

Here we used the fact that
∫
∇φe∇φo dHn R̃ = 0 because∇φo∇φe is an odd function,

and the fact that φeφo is odd and |A|2+RicN (ν, ν) is even, therefore the mixed product
φeφo(|A|2 + RicN (ν, ν)) integrates to 0.

In conclusion, (20) shows that the second variation of area for ι along the deforma-
tion induced by φν is the sum of the second variation induced by φeν and the second
variation of 2|R| induced by the ambient vector field (in a tubular neighbhourhood of
R) given by φoν. As we saw above that both of these are non-negative, we conclude
that the double cover R̃ of R is stable.

proof of Lemma 3.1. Arguing by contradiction, let vεi for εi → 0 be stable critical
points of Eεi and assume that for every i strict stability fails.

Let V i = V vεi denote the associated varifolds, we have V i → V (subsequentially)
and spt ‖V ‖ is everywhere smoothly embedded. By Lemma A.1 each connected com-
ponent R of spt ‖V ‖ is a smoothly embedded closed minimal hypersurface with stable
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double cover. By the bumpy metric assumption, the double cover is strictly stable.
Then [10] applies to give that V vεi converge with multiplicity 1 to their varifold limit
V . The multiplicity-1 convergence implies that the nullity is upper-semi continuous in
the ε→ 0 limit, therefore vεi must be strictly stable for sufficiently large i, contradic-
tion.
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[10] M. A. M. Guaraco, F. Codá Marques, A. Neves Multiplicity one and strictly stable
Allen-Cahn minimal hypersurfaces to appear in J. Differential Geom.

[11] F. Hiesmayr Spectrum and index of two-sided Allen–Cahn minimal hypersurfaces
Comm. Part. Diff. Eq. 43, No. 11, 1541-1565 (2018).

[12] J. E. Hutchinson, Y. Tonegawa Convergence of phase interfaces in the van der
Waals–Cahn–Hilliard theory Calc. Var. Partial Differential Equations 10 (2000),
no. 1, 49-84.

[13] T. Ilmanen Convergence of the Allen-Cahn equation to Brakke’s motion by mean
curvature J. Differential Geom. 38, no. 2 (1993), 417-461.

[14] J. Jost Riemannian Geometry and Geometric Analysis, sixth edition, Universitext,
Springer (2017).

25
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