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Abstract

We prove that on a compact Riemanninan manifold of dimension 3 or higher, with positive
Ricci curvature, the Allen–Cahn min-max scheme in [6], with prescribing function taken to be
a non-zero constant λ, produces an embedded hypersurface of constant mean curvature λ (λ-
CMC). More precisely, we prove that the interface arising from said min-max contains no even-
multiplicity minimal hypersurface and no quasi-embedded points (both of these occurrences
are in principle possible in the conclusions of [6]). The immediate geometric corollary is the
existence (in ambient manifolds as above) of embedded, closed λ-CMC hypersurfaces (with
Morse index 1) for any prescribed non-zero constant λ, with the expected singular set when
the ambient dimension is 8 or higher.

Theorem 1. For any λ ∈ R \ {0}, and compact Riemannian manifold (N, g), with positive Ricci
curvature and dimN = n + 1 ≥ 3, there exists a smooth, embedded, two-sided hypersurface M ,
with constant mean curvature λ (λ-CMC), and

1. M is closed when 2 ≤ n ≤ 6,

2. M \M consists of finitely many points when n = 7,

3. dimH (M \M) ≤ n− 7, when n ≥ 8.

In Theorem 1 the emphasis is on the fact that M is embedded: this appears to be a new result.
The statement of Theorem 1 with embedded replaced by (the weaker notion of) quasi-embedded
was on the other hand known, as detailed below (with two methods available). We recall that
quasi-embedded means that the hypersurface is a smooth immersion, with any self-intersections
being tangential, and with local structure around any point of tangential intersection being that
of two embedded disks lying on opposite sides of each other (see [6, Definition 8]).

As it will be important for our arguments, we begin by recalling that the existence result in
Theorem 1, with embedded replaced by quasi-embedded, follows from the work by the first author
and N. Wickramasekera in [6]. In fact, [6, Theorem 1.1] proves the following more general result.
Given a compact Riemannian manifold, (N, g), dimN ≥ 3 (without any curvature assumptions)
and a non-negative Lipschitz function h : N → R, there exists a quasi-embedded, two-sided C2

hypersurfaceMh such that, for each x ∈Mh, the scalar mean curvature ofMh at x is given by h(x);
the singular set Mh \Mh satisfies the dimensional estimates listed in Theorem 1. The construction
of Mh is carried out in the Allen–Cahn min-max framework, and serves as a starting point for the
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present work. We briefly recall it here in the case h = λ constant, with further details in Section
1.1.

Consider a sequence of functions {ui} in W 1,2(N), where each ui is the solution of the appropriate
εi-scaled inhomogeneous Allen–Cahn equation, with εi → 0. Assuming uniform energy bound, the
works of J. Hutchinson–Y. Tonegawa [12] and M. Röger–Y. Tonegawa [15] give, in the εi → 0 limit,
an integral varifold V (a “limit interface”), with generalised mean curvature HV ∈ L∞(supp∥V ∥),
along with a Caccioppoli set E, with ∂∗E ⊂ supp ∥V ∥, such that,{

HV (x) = λ, θV (x) = 1, Hn − a.e. x ∈ ∂∗E,

HV (x) = 0, θV (x) ∈ 2Z≥1, Hn − a.e. x ∈ supp ∥V ∥ \ ∂∗E.

In the presence of such a sequence {ui}, the two major roadblocks to an existence result for a
λ-CMC are (i) ∂∗E may be empty, in which case the limit interface is actually minimal (ii) even
if ∂∗E ̸= ∅, it may not have sufficient regularity ([6, Figure 1] illustrates how lack of regularity
could prevent ∂∗E from being an admissible candidate). In [6] a (first) sequence ui is produced by
means of a classical mountain pass lemma; the Morse index of ui is at most 1 (as a consequence
of the fact that the min-max has one parameter). It is moreover shown (see [6, Remark 6.7])
that in the case of ambient manifold with positive Ricci curvature (and with h = λ constant),
occurrence (i) cannot arise, that is, ∂∗E is non-trivial when ui is the sequence obtained from
the min-max. For arbitrary ambient manifolds, in the event that ui leads to occurrence (i), [6]
implements a gradient flow that yields a (second) sequence {vi}, for which ∂∗E ̸= ∅ and with
Morse index 0. The matter is thus reduced to a regularity question for the limit interface arising
from a sequence ui with uniformly bounded Morse index. This index control is used in a key
way to obtain regularity ([6, Theorem 1.2]), whose proof relies on extensions of Y. Tonegawa’s
work [18] and Y. Tonegawa–N. Wickramasekera’s work [19], and crucially on the (non-variational)
varifold regularity result [5, Theorem 9.1] (see also [6, Theorem 3.2]). In conclusion, [6] obtains
that V = Vλ + V0, where supp ∥Vλ∥ = ∂E = Mλ and supp ∥V0∥ = M0; here Mλ is a two-sided,
quasi-embedded λ-CMC hypersurface, andM0 an embedded minimal hypersurface, both satisfying
the dimensional estimates listed in Theorem 1. Furthermore, any intersections between Mh and
M0, and self-intersections of Mh, are always tangential intersections of C

2 graphs lying on one side
of each other.

With this as a starting point, our first step in establishing Theorem 1 is to show that when Ricg > 0,
the one-parameter Allen–Cahn min-max just recalled does not produce any minimal components
in the limit interface, i.e. V0 = 0. (As mentioned earlier, in this case [6] establishes already that
Vλ ̸= 0 for the ui produced by min-max.)

Theorem 2. Let (N, g) be a compact Riemannian manifold of dimension ≥ 3, with positive Ricci
curvature, and λ > 0. The one-parameter Allen–Cahn min-max in [6], with prescribing function
set to λ, produces a two-sided λ-CMC hypersurface and no minimal hypersurface.

Theorem 2 is achieved by exhibiting a suitable continuous path, admissible in the min-max con-
struction (which employs paths that are continuous in W 1,2(N)). This path will move through
functions that are each modelled on a level set of the signed distance to Mλ. The idea is to try to
place a 1-dimensional Allen–Cahn profile along the normal direction to a given level set and thus
produce a function (a point in the path). This might appear problematic due to the presence of
points where the level sets are not smoothly embedded in N (which, for example, may be caused
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by the presence of the singular set Mλ \Mλ, or by the fact that Mλ has quasi-embedded points).
We handle this after observing that all “problematic points” are contained in a closed n-rectifiable
set. The open complement (in N) of this n-rectifiable set is described (via a diffeomorphism) as
an open subset of M̃ ×R, where M̃ is a (abstract) n-manifold whose immersion into N gives Mλ.
We will refer to this open subset as the Abstract Cylinder (which is endowed with a metric pulled
back from N). Each level set of the distance function becomes a subset of M̃ ×{s}, where s is the
chosen distance value. The sought path is then defined by “sliding” the 1-dimensional Allen–Cahn
profiles in the R-direction in the whole cylinder M̃ × R, then restricting these functions to the
Abstract Cylinder, and passing them to N . We check that this indeed produces a continuous path
in W 1,2(N). Furthermore, performing the energy calculations on the Abstract Cylinder, we see
that the potentially “problematic points” do not cause any issues. The sliding argument yields a
path with the (key) property that the relevant Allen-Cahn energy attains a maximum (along the
path) at the function obtained in correspondence of Mλ (signed distance equal to 0); this relies
on the positivity of the Ricci curvature. This property of the path easily implies that V0 = 0
(no minimal component), for otherwise the min-max characterisation of V would be contradicted.
Theorem 1 is then proven by showing that the λ-CMC hypersurface arising in Theorem 2 is, in
fact, embedded. This is again done by exhibiting a suitable path (admissible in the min-max).
This path is constructed by editing the previous one about its maximum, under the contradiction
assumption that a non-embedded point exists in Mλ. The modification requires the identifica-
tion of suitable hypersurfaces obtained by deforming Mλ about the non-embedded point. This
construction ensures that the modified path attains a maximum that is strictly smaller than the
maximum obtained for the path used in the proof of Theorem 2. This contradicts the min-max
characterisation. We stress that these path constructions capitalise on the a priori knowledge (from
[6]) that Mλ and M0 are sufficiently regular.

We remark that Theorem 2 is somewhat interesting in its own sake: it is an open question whether
(and under what assumptions) a sequence of solutions to the inhomogeneous Allen–Cahn equation
with nowhere vanishing inhomogeneous term, and with a uniform bound on the Morse index, can
produce minimal components. (The regularity result in [6] recalled earlier allows us to refer to the
minimal and prescribed-mean-curvature components as hypersurfaces that are separately smooth,
except for a possible small singular set when the ambient dimension is 8 or higher.) Theorem 2 rules
out minimal components in the special instance in which the solutions come from a one-parameter
min-max (in N compact with RicN > 0) and the inhomogeneous term is constant.

The absence of minimal components and of non-embedded points established by Theorem 1 has,
among its consequences, a Morse index estimate:

Corollary 1. The λ-CMC hypersurface in Theorem 2 has Morse index equal to 1.

This follows directly from C. Mantoulidis [14]. Alternatively, the arguments of F. Hiesmayr [11]
apply verbatim. (We refer to Section 9 for the definition of Morse index.)

As we recalled, [6] employs an Allen–Cahn approximation scheme to construct the λ-CMC quasi-
embedded hypersurface. The statement of Theorem 1 with embedded replaced by quasi-embedded
can also be obtained (without any curvature assumption on N) using the so-called Almgren–Pitts
method for the min-max, see the combined works of X. Zhou–J. Zhu [22] (2 ≤ n ≤ 6) and A. Dey
in [7] (for n ≥ 7, relying on the compactness theory in [4, 5]).
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Regardless of the method used for the min-max construction, and without the need of curvature
assumptions, if 2 ≤ n ≤ 6 the λ-CMC hypersurface obtained is closed and immersed (completely
smooth). In B. White’s work [20, Theorem 35] it is proven that for each λ ∈ R, there exists
a generic set (in the sense of Baire category) of smooth metrics on the ambient manifold such
that any closed, codimension-1 (completely smooth) immersion with constant mean curvature λ,
is self-transverse. Therefore, combining the existence of quasi-embedded λ-CMC ([6] or [22]) with
[20, Theorem 35], one obtains: when 2 ≤ n ≤ 6, for any λ, there exists a generic set of metrics on
N , such that each admits an embedded λ-CMC hypersurface.1

This argument relies however on the complete smoothness of the λ-CMC hypersurface, which
is not available for n ≥ 7 in the existence results. The flavour of Theorem 1 differs from the
statement just given in that it allows a singular set and can handle all dimensions; moreover the
class of metrics (Ricci positive metrics) is the same for all λ ∈ R. We also stress that the proof
of embeddedness in Theorem 1 exploits the min-max characterisation of the λ-CMC, while one
can apply [20, Theorem 35] to any smooth CMC immersion, not necessarily one coming from a
min-max. Theorem 1 and 2 may also hold with other assumptions on the metric on N , or other
choices on the set of prescribing functions. (In these different scenarios an alternative approach to
the sliding argument mentioned above could be a gradient flow, for example, along the lines of [3,
Section 5.4] and [6, Section 6.9].)
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1 Preliminaries

1.1 Allen-Cahn and Construction of CMC Immersion

We recall the min-max construction in [6], of critical points to the inhomogeneous Allen–Cahn
energy,

Fε,λ(u) =

∫
N

ε

2
|∇u|2 + W (u)

ε
− σ

∫
N

λu, ε ∈ (0, 1), u ∈ W 1,2(N). (1)

WhereW is a smooth function on R, withW (±1) = 0 being non-degenerate minima, andW (t) > 0,
for t ∈ R \ {±1}. Furthermore, we impose that W has only three critical points, t = 0, ±1, and
quadratic growth outside some compact interval. For example W (t) = (1− t2)2/4, for t ∈ [−2, 2]
and is quadratic outside [−3, 3]. The constant σ is given by,

σ =

∫ 1

−1

√
W (s)/2 ds.

Moreover, we take λ > 0.
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εσλ

W ′(t)

aε bεcε

Figure 1: Intersection points, aε, bε, and cε, are the solutions to W ′(t) = εσλ.

Consider the first and second variations of (1) with respect to φ ∈ C∞(N),

δFε,λ(u)(φ) =

∫
N

ε∇u · ∇φ+

(
W ′(u)

ε
− σλ

)
φ, (2)

δ2Fε,λ(u)(φ, φ) =

∫
N

ε|∇φ|2 + W ′′(u)

ε
φ2. (3)

We say that u is a critical point of (1), if δFε,λ(u)(φ) = 0, for all φ ∈ C∞(N), and then by standard
elliptic theory we have that u ∈ C∞(N), and strongly solves,

ε∆u =
W ′(u)

ε
− σλ. (4)

If δ2Fε,λ(u)(φ, φ) ≥ 0, for all φ ∈ C∞(N), then we say that u is a stable solution to (4). By Figure
1, we see that there exists two stable constant solutions, aε > −1, and bε > 1. Furthermore, as
ε → 0, we have that aε → −1, and bε → 1. As Ricg > 0, [2, Proposition 7.1] shows that these are
the only stable critical points of (1).

The existence of these isolated, stable solutions permits us to find non-trivial critical points of (2)
via a min-max argument.

Proposition 1. (Existence of Min-Max Solution, [6, Proposition 5.1]) For ε > 0, let Γ denote
the collection of all continuous paths γ : [−1, 1] → W 1,2(N), such that γ(−1) = aε, and γ(1) = bε.
Then there exists an ε0 > 0, such that for all ε < ε0,

inf
γ∈Γ

sup
u∈γ([−1,1])

Fε,λ = βε > Fε,λ(aε) > Fε,λ(bε), (5)

is a critical value, i.e. there exists uε ∈ W 1,2(N), critical point of Fε,λ, with Fε,λ(uε) = βε;
moreover, uε has Morse index ≤ 1.

In our Ricci positive setting, as aε and bε are the only stable critical points we actually have that
uε has Morse index equal to 1.

Now taking a sequence {εi}i∈N ⊂ (0, ε0), with εi → 0, and associated critical points from Proposi-
tion 1, {ui = uεi}, we associate the following Radon measures,

µi := (2σ)−1

(
εi
2
|∇ui|2 +

W (ui)

εi

)
dµg. (6)
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Where µg is the volume measure of (N, g). Moreover there exists constants K, L > 0, such that
for all i,

sup
N

|ui|+ µi(N) ≤ K, (7)

and
µi(N) ≥ L. (8)

By the bounds of (7) and (8), there exists a subsequence {ui′} ⊂ {ui}, along with a u0 ∈ BV (N),
with u0(y) ∈ {+1,−1} for all y ∈ N , and a non-zero Radon measure µ, such that ui′ → u0 in
L1(N), and µi′ ⇀ µ as Radon measures. By [12, Theorem 1] and [15, Theorem 3.2], we have that
µ is the weight measure of an integral n-varifold V , with the following properties:

1. V , is an integral n-varifold with bounded generalised mean curvature HV , and first variation
δV = −HV µV .

2. The set E := {u0 = +1} is a Caccioppoli set, with reduced boundary ∂∗E ⊆ spt V ⊂
N \ E ̸= ∅.

3. For Hn-a.e. x ∈ ∂∗E, Θ(µV , x) = 1, and HV (x) · ν(x) = λ; where ν is the inward pointing
unit normal to ∂∗E, i.e. ν = ∇u0/|∇u0|.

4. For Hn a.e. x ∈ sptV \ ∂∗E, Θ(µV , x) is an even integer ≥ 2, and HV (x) = 0.

Optimal regularity of V was then proven in [6].

1. V = V0 + Vλ

2. V0 is a (possibly zero) stationary integral n-varifold with singular set of Hausdorff dimension
at most n− 7.

3. Vλ = |∂∗E| ≠ ∅, and ∂∗E is a quasi-embedded hypersurface with constant mean curvature λ,
with respect to unit normal pointing into E. The singular set of ∂∗E has Hausdorff dimension
at most n− 7.

4. V has a (λ, 0)-CMC structure.

By (λ, 0)-CMC structure we mean that for each point on the support of V , potentially away from
a closed set of Hausdorff dimension at most n− 7, the local picture is one of the following,

1. There is a single embedded λ-CMC disk.

2. There are two embedded λ-CMC disks that lie on either side of each other and only touch
tangentially.

3. There is a single embedded minimal disk

4. There is a single embedded λ-CMC disk and a single embedded minimal disk that only touch
tangentially.

5. There are two embedded λ-CMC disks that lie on either side of each other, along with an
embedded minimal disk, such that all three disks only touch tangentially.
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For a detailed definition of a (λ, 0)-CMC structure, see [6, Definition 8]. We define the set gen-regV ,
to be the set of points on supp ∥V ∥, which satisfy one of the local pictures of 1 to 5. For a detailed
definition of gen-regV see [6, Definition 5].

Therefore, we have the following

Theorem 3. (Theorem 1.1 [6]) Let N be a closed Riemannian manifold of dimension n+ 1 ≥ 3,
with positive Ricci curvature, and let λ ∈ (0,∞) be a fixed constant. There exists a smooth,
quasi-embedded hypersurface M ⊂ N , with;

1. M \M = ∅, if 2 ≤ n ≤ 6;

2. M \M is finite if n = 7;

3. dimH(M \M) ≤ n− 7, if n ≥ 8.

Moreover M is the image of a two sided immersion with mean curvature HM = λν, for a choice ν
of continuous unit normal to the immersion.

We restate Theorems 1 and 2 with our new notation.

Theorem 4. Consider a closed Riemannian manifold (N, g), with positive Ricci curvature and
dimN = n + 1 ≥ 3. Take λ ∈ (0,+∞). The limiting varifold V = Vλ + V0 from Section 1.1 has
the following properties

1. M := gen-regVλ is embedded, connected and has index 1.

2. V0 = 0.

This says that only case 1 can occur.

1.2 One Dimensional Allen–Cahn Solution

We refer to [2, Section 2.2] as a reference for this Section.

We define the function H on R to denote the monotonically increasing solution to the ODE
u′′ −W ′(u) = 0, with the conditions H(0) = 0 and limt→±∞ H(t) = ±1. We then define Hε( · ) =
H(ε−1 ·), which solves the ODE εu′′ − ε−1W ′(u) = 0.

We define an approximation for Hε. Start by considering the following bump function

χ ∈ C∞
c (R),

χ(t) = 1, t ∈ (−1, 1),

χ(t) = 0, t ∈ R \ (−2, 2),

χ(t) = χ(−t), t ∈ R,
χ′(t) ≤ 0, t ≥ 0.

For ε ∈ (0, 1), we define the truncation of Hε by

Hε(t) :=

{
χ((εΛ)−1t)Hε(t) + 1− χ((εΛ)−1t), t > 0,

χ((εΛ)−1t)Hε(t)− 1 + χ((εΛ)−1t), t < 0,

where Λ = 3| log ε|. There exists a constant β = β(W ) < +∞, such that for all ε ∈ (0, 1/4),

2σ − βε2 <

∫
R

ε

2
|(Hε)

′(t)|2 + W (Hε(t))

ε
dt < 2σ + βε2.
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2 Idea of Proof

We first prove Theorem 1 for the case λ > 0. To then prove for λ < 0, we take λ̃ = −λ > 0, and
reverse the direction of the unit normal on the resulting λ̃-CMC hypersurface. From here on we
take λ > 0.

For Caccioppoli sets Ω ⊂ N , we define the following functional,

Fλ(Ω) := Hn(∂∗Ω)− λµg(Ω).

Recall our converging sequence of critical points {uεj}, along with our limiting varifold V = Vλ+V0,
and Caccioppoli set E from Section 1.1. We have, as εj → 0,

Fεj ,λ(uεj) → 2σFλ(E) + 2σM(V0) + σλµg(N)

Therefore constructing minimising paths between ∅ and N for Fλ, may provide insight to min-
imising paths from aε to bε for Fε,λ.

As N is compact one obvious path that includes E, is {Et} for t ∈ [−2 diam(N), 2 diam(N)],
where,

Et := {y : d̃(y) > t}.

Here d̃ is the signed distance function to M := ∂∗E, taking positive values in E, and negative
values in N \ E. We also denote,

Γt := {y : d̃(y) = t} = ∂Et.

Assuming sufficent regularity on the sets Γt and Et, and the functions t 7→ Hn(Γt) and t 7→ µg(Et),
we have for t > 0,

Fλ(Et)−Fλ(E) =

∫ t

0

d

ds
Hn(Γs) ds− λ

∫ t

0

d

ds
µg(Es) ds,

=

∫ t

0

∫
Γs

λ−HΓs(x) dHn(x) ds,

(9)

where HΓs is the scalar mean curvature of Γs with respect to unit normal ∇d̃. Recalling that
HΓ0 = λ, a straightforward calculation yields the following inequalities.{

HΓt ≥ λ+mt, t ≥ 0,

HΓt ≤ λ+mt, t ≤ 0,

where m = min|X|=1 Ricg(X,X) > 0. Therefore by (9) for t ≥ 0,

Fλ(Et) ≤ Fλ(E).

The same inequality holds for t ≤ 0. Here we see the importance the assumption on the Ricci
curvature. Therefore,

γ : t ∈ [−2 diam(N), 2 diam(N)] 7→ E−t ∈ {Caccioppoli sets ofN},

is a path from ∅ to N , that has maximum height Fλ(E).
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We look to replicate this path in W 1,2(N). Consider the Lipschitz function on N ,

vtε = Hε(d̃(x)− t),

which can be thought of as placing the truncated one dimensional Allen-Cahn solution from Section
1.2 along the normal profile of Γt. By the Co-Area formula we have,

Fε,λ(v
t
ε) =

∫
R
Qε(s− t)Hn(Γs) ds− σλ

∫
R
Hε(s− t)Hn(Γs) ds,

were,

Qε(t) =
ε

2
|
(
Hε

)′
(t)|2 +

W
(
Hε(t)

)
ε

The functions

t 7→
∫
R
Qε(s− t)Hn(Γs) ds, and t 7→ σλ

∫
R
Hε(s− t)Hn(Γs) ds,

act as a smooth approximations to t 7→ 2σHn(Γt), and t 7→ 2σλµg(Et)− σλµg(N), respectively.

We say that v0ε is an Allen–Cahn approximation of M as,

Fε,λ(v
0
ε) → 2σHn(M)− σλµg(E) + σλµg(N \ E) =: A2,

as ε → 0, Section 3.6. Carrying out a calculation which replicates the previous one, we deduce
that for all τ > 0, there exists an ετ > 0, such that for all ε ∈ (0, ετ ),

max
t∈[−2 diam(N),2 diam(N)]

Fε,λ(v
t
ε) < A2 + τ = A1 − 2σM(V0) + τ,

where A1 := 2σHn(M) + 2σM(V0)− σµg(E) + σµg(N \E). Connecting v2 diam(N)
ε = −1 to aε, and

v
−2 diam(N)
ε = +1 to bε, by constant functions, we see that we have an appropriate min-max path
in W 1,2(N).

This path proves that we cannot have a minimal piece V0. We also get criterion for M . Indeed, as
there exists a ’Wall’, [6, Lemma 5.1], that all min-max paths must climb over, we have that

2σλHn(M)− σλµg(E) + σλµg(N \ E) > σλµg(N).

Rearranging yields,
Hn(M) > λµg(E).

We note that the above path can be constructed for any suitable λ-CMC hypersurface which
encloses a volume. Therefore for any such pair (M,E), the above inequality holds, and our min-
max must choose the pair that minimises the positive quantity Hn(M) − λµg(E). From this we
can deduce that E must be connected.

We turn our attention to proving that M is embedded. We prove by contradiction, exploiting the
min-max characterisation of M . We now know that, given our sequence of critical points {uεj},
and potentially after taking a subsequence,

Fεj ,λ(uεj) → 2σHn(M)− σλµg(E) + σλµg(N \ E) = A2,
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as εj → 0. Assume that M has a non-embedded point z0. Then for every εj > 0, we construct a
continuous, connected path,

γεj : [−1, 1] → W 1,2(N),

were, γεj(−1) = aεj , and γεj(1) = bεj . This path satisfies the following, there exists a J in N, and
ς > 0, independent of j, such that for all j ≥ J ,

max
t∈[−1,1]

Fεj ,λ(γεj(t)) < 2σHn(M)− σλµg(E) + σλµg(N \ E)− ς,

This is a contradiction of the min-max characterisation of uεj .

We sketch the main ideas of the path in the ε-limit, Figure 2.

The picture at z0 is Figure 3a. The limiting energy for this structure is A2. The starting point
for building this path is to construct a competitor with lower limiting energy. Then we wish to
connect this competitor to +1 and −1, with energy always remaining a fixed amount below A2.

Step 1 : Construction of Competitor, (1) → (2) in Figure 2, Section 5

The structure at z0 is two smooth, embedded CMC disks, that touch tangentially at z0 and lie
either side of each other. To construct the competitor, we push these disks together, and delete
portions of the disks that are pushed past each other. This reduces the area of our structure while
also increasing the size of E, leading to a drop in energy.

Idea 1 : Push the whole of M by some fixed distance ρ.

This equates to pushing M to the level Γ−ρ. As seen previously, this will lead to a drop in energy.
Furthermore there is an obvious path to +1, namely we keep pushing along level sets, Γ−r for r in
[ρ, 2 diam(N)]. However there is no obvious path to −1. Pushing Γ−ρ in the direction of E, will
increase the energy and bring us back toM , undoing the energy drop that the competitor created.

Idea 2 : Push the disks together locally.

Consider open balls B1 ⊂⊂ B2 about z0. We smoothly bump the disks at z0 such that inside B1

we move the disks of distance ρ > 0, and outside B2 we remain fixed. The balls B1 and B2 along
with ρ, are chosen so that the area inside B1 gets deleted, Figure 3b. Letting,

ς =
σ

2
Hn(B1 ∩M),

we see that our competitor has energy lying below, A2 − ς.

Step 2 : Path to +1, Section 7

To connect to the competitor +1 we look to copy the successful path to +1 of the competitor in
Idea 1 . To construct the competitor we only edited M locally about z0. Therefore pushing the
competitor to the level set Γ−ρ will correspond to a similar drop in energy from pushingM to Γ−ρ.
This is (2) → (6) in Figure 2. See Figures 3b and 3f for local pictures about z0. From Γ−ρ we can
easily connect to +1 by pushing along level sets Γ−r, as previously discussed.

Step 3 : Path to -1, Section 6

11



A1

A2

A2 − ς

(1)

(2)

(3)

(4)

(5)

−1

(6)

+1

Figure 2: The Paths. To prove V0 = 0, we follow the path from −1 to (5), then the dotted line
to (1), dotted line to (6), then complete the path to +1. The dashed line from (1) to (2) is the
construction of the competitor. Then to prove that M is embedded we follow the path from −1
to +1 given by the solid lines. Refer to Figure 3 for the local picture about non-emebedded point
z0 at each numbered stage on the paths.

We look to follow a similar method as in Step 2 by connecting our competitor to a level set Γr0 ,
for r0 > 0, then push this along level sets Γr for r in [r0, 2 diam(N)] to connect it to −1. By
pushing our competitor straight to Γr0 we run the risk of pushing through M and increasing our
energy back up to A2. Therefore we carry out our path in stages, again making use of the fact
that our edit about z0 was local.

The first stage is (2) → (3) in Figure 2. We fix our competitor in B2, and outside we push forward,
so that outside some larger ball B3, we line up with Γr0 . See Figures 3b and 3c for local pictures
about z0. Again as our edit is local about z0, this corresponds to a similar drop in energy of
pushing M to Γr0 , and the drop will be of order r20. For large enough r0 this will give us a large
enough energy drop to be able to undo the edit inside B2, and still have our energy remain below
A2− ς. This is the second stage from (3) → (4), in Figure 2. See Figure 3d, for local picture about
non-embedded point. From here we push up inside B3 to line up with Γr0 , (4) → (5) in Figure 2,
Figure 3e. Finally we connect to −1 by sliding along level sets as previously stated.

Path at ε Level
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+1

+1

−1 −1

(a) (1): Non-embedded point z0

+1

+1

−1 −1

(b) (2): Competitor

+1

+1

−1 −1

(c) (3): Move competitor to Γr0 outside
ball B3 centred at z0.

+1

+1

−1 −1

(d) (4): Undo the edit inside B2.

+1

+1

−1 −1

(e) (5): Push up in B3 to come into line
with Γr0 .

+1

+1

−1 −1

(f) (6): Push Competitor to come in line
with Γ−ρ.

Figure 3: Stages of the Path at the non-embedded point z0. In each image, the dashed lines repre-
sent the original λ-CMC disks, as a reference to what we are changing at each step. Furthermore,
in each image it is the solid lines that are the boundaries between the ’+1’ and ’−1’ regions.
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We carry out this ’pushing’, on what we refer to as our abstract cylinder, M̃ × R. See Section
3.3. Here M̃ is an n-dimensional manifold and ι : M̃ → M is a smooth immersion. We define the
following map,

F : M̃ × R → N,

(x, t) 7→ expι(x)(tν(x))),

with ν being a smooth choice of unit normal to immersion, pointing into E. Therefore we view
points (x, t) on our cylinder M̃×R as having base point ι(x) and moving length t along the geodesic
with initial direction ν(x). See Figure 4.

Recall our function v0ε = Hε ◦ d̃, then by the Co-Area formula,

Fε,λ(v
0
ε) =

∫
R

(
ε

2
|(Hε)

′(t)|2 + W (Hε(t))

ε
− σλHε(t)

)
Hn(Γt) dt,

=

∫
R

∫
M̃

(
ε

2
|(Hε)

′(t)|2 + W (Hε(t))

ε
− σλHε(t)

)
θt(x) dHn(x) dt,

where θt : M̃ → R, is defined by the Area Formula to be such that for a.e t ∈ R, and any Hn-
measurable function on N , ∫

Γt

g dHn =

∫
M̃

(g ◦ Ft) θt dHn,

with Ft( · ) = F ( · , t). Then we carry out the relevant ’pushings’ by considering a continuous family
of functions {gr}r∈[0,r′] ⊂ C(M̃),

Fε,λ(v
r
ε) =

∫
R

∫
M̃

(
ε

2
|(Hε)

′(t− gr(x))|2 +
W (Hε(t− gr(x)))

ε

−σλHε(t− gr(x))

)
θt(x) dHn(x, t) dt.

See Figure 5.

2.1 Structure of the Paper

The paper is organised as follows. We start with setup:

• Section 3 is devoted to setup of objects used in the main computation.

• In Section 4 we carry out the main computation. The constructions that follow are carried
out by plugging explicitly defined functions into this computation.

To prove Theorem 2:

• In Section 8.2 we build the dotted path (5) → (1) → (6) in Figure 2. Theorem 2 then follows
upon combining this with computations in Sections 6.4 and 7.2; in these sections we build
the paths (5) → −1, and (6) → +1, in Figure 2.

To prove Theorem 1 we argue by contradiction, assuming that M has a non-embedded point z0:
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D1

D2

ν1

ν2

+1

+1

−1

−1

−1

−1

F

∂t

∂t

t

t

t = 0

t = 0

D̃1

D̃2

x10

x20

(a) On the left we have a local picture about a non-emebedded point z0 of
M . On the right the two local pictures about x10 and x20 in M̃ ×R, where
ι(x10) = z0 = ι(x20). We have, F (D̃i) = Di, and dFxi

0
(∂t) = νi, for i = 1

and 2. The dotted line on the left picture respresents points in N which
are of equal distance to D1 and D2. The dotted lines on the right hand
picture are the preimages of the dotted line on the left, under the map
F , and these can be seen as acting as the boundary to the open set T̃ in
M̃ × R.

D +1

−1

ν

F
D̃ t = 0

t
∂t

(b) On the left a local picture about an embedded point of M . On the
right is it’s preimage in T̃ under the map F .

Figure 4: Local pictures about points in M
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D1

D2

+1

+1

−1

−1

−1

−1

F

t

t

t = 0

t = 0

D̃1

D̃2

Figure 5: How the competitor is constructed as the graph of bump functions about points x10
and x20 over M̃ . Whatever is bumped out beyond the dotted line on the right hand side, is not
considered in N . In other words it is deleted.

• In Section 5 we construct our competitor about z0. This is the dashed path (1) → (2) in
Figure 2.

• In Section 6 we construct a path from the competitor to the stable constant aε. This is the
solid path (2) → (6) → +1, in Figure 2.

• In Section 7 we construct a path from the competitor to the stable constant bε. This is the
solid path (2) → (3) → (4) → (5) → −1 in Figure 2.

• In Section 8.3 we piece together this continuous path from aε to bε, in W
1,2(N). The energy

Fε,λ, is less than A2 − ς for every point along this path, Figure 2. This contradicts the
min-max construction, proving that M is embedded.

Finally, in Section 9 we prove Corollary 1 (the Morse index of M is equal to 1, which also implies
that M must be connected).

2.2 A Note on Choice of Constants

The biggest subtlety in the Construction of the path in Sections 5, 6 and 7 is the choice of constants,
and the order that we choose them in. We explicitly list the order of choices here, and reference
where they have been chosen.

1. We first choose a non-embedded point z0

2. We choose δ = δ(z0, N,M, g, λ,W ) > 0, in Remarks 5, 6, 7, 8, 16.

3. We choose L = L(z0, N,M, g, δ, λ,W ) > 0, in Remarks 12, 21.

4. We choose k = k(z0, N,M, g, δ, L, λ,W ), in Remark 22.

5. We choose r0 = r0(z0, N,M, g, δ, L, k, λ,W ) > 0, in Remarks 12, 21, 24.

6. We choose ρ = ρ(z0, N,M, g, δ, L, k, r0, λ,W ) > 0, in Remarks 9, 10, 11, 14, 18, 23.
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7. We define l = l(ρ) in (10).

8. We choose τ > 0.

9. We finally choose ετ = ετ (z0, N,M, g, δ, L, k, r0, ρ, τ, λ,W ) > 0, in Remarks 15, 19, 20 and
Sections 8.2 and 8.3.

3 Construction of Objects

3.1 Signed Distance Function

Let dM : N → R be the distance function to the closed set M ⊂ N . As M is closed, and N is
complete, Hopf–Rinow tells us that, for each z in N , the value, dM(z), is obtained by a geodesic
from z to a point on M . Furthermore, dM is Lipschitz, with Lipschitz constant 1.

The set E = {u0 = 1} is an open in N , and M = ∂E. This allows us to define the signed distance
function, d̃ : N → R, to M , which takes positive values in E, and negative values in N \ E,

d̃(y) =

{
dM(z), x ∈ E,

−dM(z), x ̸∈ E.

This is a 1-Lipschitz function on N .

3.2 Abstract Surface

M is a quasi-embedded λ-CMC hypersurface, [6, Definition 8].

Remark 1. For a point z ∈ M , there exists an n-dimensional linear subspace T = Tz ⊂ TzN ,
and a unit vector νz ∈ T⊥, along with r = r(z) > 0, s = s(z) > 0, and S = S(z) > 0, such that
S < inj (N). We define the cylinder

Cz,T,r,s := expz

(
{X + tνz : X ∈ BTzN

r (0) ∩ T, t ∈ (−s, s)}
)
⊂ BN

S (z),

and, one of the following holds:

1. (See Figure 4b) There exists a smooth function,

f : Bz,T,r := BTzN
r (0) ∩ T → (−s, s),

which satisfies, 
f(0) = 0,

∇Tf(0) = 0,

∆Tf(0) = λ,

and,
M ∩ Cz,T,r,s = expz(Graph (f)) = expz({X + f(X)νz : X ∈ Bz,T,r})

Furthermore, we have that,

E ∩ Cz,T,r,s = expz({X + tνz : X ∈ Bz,T,r, f(X) < t < s}),
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and we can define a smooth choice of unit normal to expz(Graph (f)),

ν : expz(Graph (f)) → T (expz(Graph (f)))⊥,

such that ν(z) = νz.

2. (See Figure 4a) There exists two smooth functions,

f1, f2 : Bz,T,r → (−s, s),

which satisfy, 
f1(0) = 0 = f2(0),

f1 ≥ f2,

∇Tf1(0) = 0 = ∇Tf2(0),

∆Tf1(0) = λ = −∆Tf2(0),

and,

M ∩ Cz,T,r,s =
⋃
i=1,2

expz(Graph (fi)) =
⋃
i=1,2

expz({X + fi(X)νz : X ∈ Bz,T,r}).

Furthermore, we have that,

E ∩ Cz,T,r,s = expz({X + tνz : X ∈ Bz,T,r, f1(X) < t < s})
∪ expz({X + tνz : X ∈ Bz,T,r, −s < t < f2(X)}),

and we can define smooth choices of unit normals,

νi : expz(Graph (fi)) → T (expz(Graph (f)))⊥,

such that ν1(z) = νz, and ν2(z) = −νz.

If Case 1 holds then we say that z is an embedded point of M . Alternatively, if Case 2 holds we
say that z is a non-embedded point of M . In either case the tangent space of M at z is given by,
TzM := Tz.

Claim 1. (Remark 2.6 of [4]) The set of non-embedded points of M has Hn-measure 0.

We define our abstract surface M̃ by

M̃ = {(z, ν) : z ∈M, ν ∈ TzM
⊥, with |ν| = 1, and points intoE}.

Locally M̃ is a smooth, embedded CMC disk inN , therefore M̃ is a smooth n-dimensional manifold.

3.3 Abstract Cylinder

Consider x in M̃ , then x = (z,X), for some z in M and X in TzM
⊥. We define two, smooth

projections, first from M̃ to TM⊥,
ν : (z,X) 7→ X,

and secondly from M̃ to M ,
ι : (z,X) 7→ z.
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From these we define the following map,

F : M̃ × R → N,

(x, t) 7→ expι(x)(tν(x)),

which, as N is complete, is well defined. For a fixed x in M̃ , F is a unit parametrisation of a
geodesic which, at time 0, passes through ι(x), with velocity ν(x). The set {t : dM(F (x, t)) = |t|},
is the set of times t, at which this geodesic achieves the shortest distance from F (x, t) to M .
Consider the subset {t : d̃(F (x, t)) = t} ⊂ {t : dM(F (x, t)) = |t|}, and its endpoints,

σ+(x) = sup{t : d̃(F (x, t)) = t} ≥ 0,

σ−(x) = inf{t : d̃(F (x, t)) = t} ≤ 0.

These are uniformly bounded functions on M̃ , and in fact as the next claim shows, {t : d̃(F (x, t)) =
t} is a closed and connected interval on R.

Claim 2. We have that
[σ−(x), σ+(x)] = {t : d̃(F (x, t)) = t}.

Proof. Consider the geodesic, γ : t 7→ F (x, t), and define the following function,

f : t 7→ d̃(F (x, t)).

This is a 1-Lipschitz function with f(0) = 0. Indeed,

|f(t1)− f(t2)| ≤ |d(F (x, t1), F (x, t2))| ≤ Length(γ|[t1,t2]) = |t1 − t2|.

For t0 ≥ 0, such that f(t0) ̸= t0, we must have f(t0) < t0. By Lipschitz constant 1, for any t > t0,

f(t) = f(t)− f(t0) + f(t0),

≤ t− t0 + f(t0),

< t.

Similarly if we have t0 ≤ 0, such that f(t0) ̸= t0, then f(t) ̸= t, for all t < t0.

By continuity we have that d̃(F (x, σ+(x))) = σ+(x), and therefore by above, for all t ∈ [0, σ+(x)],
we must have that d̃(F (x, t)) = t. By definition of σ+(x), for all t > σ+(x), d̃(F (x, t)) < t.
Therefore

[0, σ+(x)] = {t ≥ 0: d̃(F (x, t)) = t}.

Similarly [σ−(x), 0] = {t ≤ 0: d̃(F (x, t)) = t}.

We define the abstract cylinder,

T̃ = {(x, t) : x ∈ M̃, t ∈ (σ−(x), σ+(x))} ⊂ M̃ × R.

Defining the projection map from M̃ ×R onto R, p : (x, t) 7→ t, then on T̃ we have that d̃ ◦F = p.

We wish to work on T̃ instead of N . The following Lemma is crucial in that respect.
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Lemma 1. (Geodesic Touching Lemma) For all y in N \M , there exists a geodesic from y to
M that achieves the length of dM(y). The end point of this geodesic on M must in fact be a
quasi-embedded point of M , and the geodesic will hit M orthogonally.

Proof. Identical argument to [2, Lemma 3.1], except we replace the Sheeting Theorem of [21] with
the Sheeting Theorem of [4].

From this Lemma the following result is immediate,

Proposition 2. For all y in N \ (M \M), there exists an x in M̃ , such that F (x, d̃(y)) = y.

Understanding the regularity of σ+ and σ−, will be helpful in our analysis of T̃ .

Claim 3. The functions, σ+, σ− : M̃ → R, are continuous.

Proof. We prove by contradiction. Suppose there exists an x̂ ∈ M̃ such that, lim infx→x̂ σ
+(x) =

α < σ+(x̂). Choose 0 < δ < σ+(x̂)− α, then there exists xn → x̂ in M̃ such that σ+(xn) < α+ δ.
Now consider the points,

zn = F (xn, α+ δ) → z := F (x̂, α+ δ).

By Claim 2, d̃(zn) < α+ δ. By Proposition 2 there exists a sequence x̃n, such that,

F (x̃n, d̃(zn)) = zn.

After potentially taking a subsequence and renumerating we have that there exists an y ∈ M ,
such that ι(x̃n) → y, then note d(y, z) = d̃(z) = α + δ. Therefore, by Lemma 1, y ∈ M , and as
t 7→ F (x̂, t) is the unique length minimising geodesic from M to z, x̃n → x̂ in M̃ . Now we have
that,

F (xn, α+ δ) = zn = F (x̃n, d̃(zn)).

However, (xn, α+ δ) ̸= (x̃n, d̃(zn)), and

lim
n→∞

(xn, α+ δ) = (x̂, α+ δ) = lim
n→∞

(x̃n, d̃(zn)).

This implies that F is not a diffeomorphism about the point (x̂, α+ δ), and therefore by classical
theory of geodesics, [16, Lemma 2.11], t 7→ F (x̂, t) is no longer length minimising to M beyond
time t = α + δ. This contradicts α + δ < σ+(x̂).

Now suppose that σ+(x̂) < lim supx→x̂ σ
+(x) = β < +∞. Choose 0 < δ < β−σ+(x̂), and sequence

xn → x̂, such that,
σ+(xn) > σ+(x̂) + δ.

Define,
zn = F (xn, σ

+(x̂) + δ),

then d̃(zn) = σ+(x̂) + δ. By continuity of F ,

zn → z := F (x̂, σ+(x̂) + δ).

However, by definition of σ+(x̂), d̃(z) < σ+(x̂) + δ = d̃(zn). This contradicts continuity of d̃.

Similar arguments show that σ− is also continuous.
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We define the Cut Locus of M to be the following points in N ,

Cut (M) = {F (x, σ+(x)) : x ∈ M̃} ∪ {F (x, σ−(x)) : x ∈ M̃} ⊂ N.

and by Proposition 2, we have that,

N \ (M \M) = F (T̃ ) ∪ Cut (M).

Proposition 3. Cut (M) is an n-rectifiable set.

To prove Proposition 3, we first classify points in Cut(M),

Proposition 4. A point y in N \ (M \ M), lies in Cut(M) if and only if at least one of the
following conditions holds:

1. y lies in N \M , and there exists an x in M̃ such that F (x, d̃(y)) = y, and dF(x,d̃(y)) : TxM̃ ×
R → TyN , is non-invertible.

2. y lies in N \M , and there exists at least two unique geodesics from y to M which achieve
the length dM(y).

3. y is a non-embedded point of M .

Proof. Consider a point y = F (x, 0) ∈M . If y is an embedded point ofM , then case 1 of Remark 1
holds, and there exists an S > 0, such thatM∩BS(y) is a smooth, embedded CMC disk. Therefore
([13, Proposition 4.2]) there exists an r in (0, S/2), such that for all t in (−r, r), d̃(F (x, t)) = t.
Therefore if y ∈M ∩ Cut(M), then y must be a non-embedded point.

Alternatively, if y is a non-embedded point then case 2 of Remark 1 holds, and (y, ν) and (y,−ν)
both lie in M̃ . Moreover, for t ∈ (−s, 0), t < f2(0), implying that F ((y, ν), t) = expy(tν) lies in E.

Therefore, d̃(F ((y, ν), t)) ≥ 0, implying that σ−(y, ν) = 0, and thus y is a point in Cut(M).

For y ∈ N \M , the conclusion follows from standard theory of geodesics, see [16]. We can use this
classical theory in our setting by Lemma 1. This observation is seen [2, Proposition 3.1].

Remark 2. By point 2 of Proposition 4, F (T̃ ) and Cut (M) must be disjoint. Therefore by point
1 of Proposition 4, F must be a local diffeomorphism on T̃ . Moreover by point 2, F : T̃ → F (T̃ ) is
a bijection.

Proof. (of Proposition 3) As Cut(M) ∩M consists of non-embedded points of M , by Claim 1 we
have Hn(Cut(M)∩M) = 0. Therefore to prove that Cut(M) is rectifiable we just need to concern
ourselves with Cut(M)\M . This follows from the observation made in the proof of [2, Proposition
3.1], that as Lemma 1 holds, then the arguments in [13, Theorem 4.10] hold verbatim.

Remark 3. As M is smooth we have that d̃ is smooth in F (T̃ ), [13, Proposition 4.2].

Denoting h = F ∗g, we have that F : (T̃ , h) → (F (T̃ ), g), is a bijective, local isometry.

Consider the projection map,

p : M̃ × R → R,
(x, t) 7→ t.
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In T̃ , we have that p = d̃ ◦ F , and

|∇p(x, t)|h = |∇d̃(F (x, t))|g = 1.

We denote the sets,
Γ̃t = p−1(t) ∩ T̃ ,

and,
Γt = d̃−1(t) ⊂ N.

Note,

F (Γ̃t) =

{
Γt ∩ F (T̃ ) = Γt \ Cut(M), t ̸= 0,

{embedded points of M}, t = 0.

Denote HΓ̃t
(x, t) as the scalar mean curvature of Γ̃t, at (x, t), with respect to unit normal ∇p(x, t),

and define the following function,

Ht : M̃ → R,

x 7→

{
HΓ̃t

(x, t), (x, t) ∈ T̃ ,

0, (x, t) ̸∈ T̃ ,

For (x, t) in T̃ , we have,

Ht(x) = −trT(x,t)Γ̃t
h(∇· ∇p(x, t), · ) = −∆Γ̃t

p(x, t).

However, as ∇p is a geodesic vector field

∇∇p∇p = 0,

and as |∇p| = 1,

h(∇X∇p,∇p) =
1

2
X(|∇p|) = 0.

Therefore, ∆Γ̃t
p(x, t) = ∆T̃p(x, t), and thus for (x, t) in T̃ ,

Ht(x) = −∆p(x, t).

Proposition 5. ([10, Corollary 3.6]) For (x, t) in T̃ ,

∂tHt(x) = −∇p(∆p)(x, t) ≥ m,

where m = inf |X|=1Ricg(X,X) > 0.

Remark 4. Consider fixed x in M̃ . For σ−(x) < 0, we have H0(x) = λ. If σ−(x) = 0, we still
have,

lim
t↘0

Ht(x) = λ.

Thus by Proposition 5, we have for (x, t) ∈ T̃ ,
Ht(x) ≥ λ+mt, t > 0,

H0(x) = λ,

Ht(x) ≤ λ+mt, t < 0.
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3.4 Area Element

We define the function on M̃ ,

θt(x) =

{
JΠt(x), (x, t) ∈ T̃ ,

0, (x, t) ̸∈ T̃ ,

where JΠt is the Jacobian of the map Πt : x ∈ M̃ 7→ (x, t) ∈ M̃ × R. By the Area Formula,∫
M̃

θt dHn = Hn(Γ̃t).

Proposition 6. ([10, Theorem 3.11]) For (x0, t0) in T̃ ,

∂t log(θt)(x0)|t=t0 = −Ht0(x0).

Consider a fixed point (x0, t0) in T̃ . First consider t0 ≥ 0. For all t in (0, t0], (x0, t) lies in
T̃ , which implies that the function t 7→ θt(x0) is smooth on the interval (0, t0]. Furthermore
limt→0+ θt(x0) = 1, and applying Fundamental Theorem of Calculus,

log(θt0(x0)) = −t0
(
λ+

1

2
mt0

)
.

Therefore,

θt0(x0) ≤ e−t0(λ+ 1
2
mt0).

Identical inequality holds for t0 ≤ 0.

The term −t(λ + 1
2
mt) achieves a global maximum at t = − λ

m
. Noting that for (x0, t0) not in T̃ ,

θt0(x0) = 0, we have that,

0 ≤ θt0(x0) ≤ e
λ2

2m ,

for all (x0, t0) in M̃ × R.

3.5 Construction About Non-Embedded point

Let z0 in M be a non-embedded point.

Remark 5. (Choice of δ = δ(z0, N,M, g) to define d̃1 and d̃2) We are in case 2 of Remark 1. We
can choose δ = δ(z0,M,N, g) such that,

B2δ(z0) ⊂ Cz0,T,r,s.

We have three disjoint sets,

E1 := expz({X + tν : X ∈ Bz0,T,r, f1(X) < t < s}) ∩BN
2δ(z0),

F := expz({X + tν : X ∈ Bz0,T,r, f2(X) ≤ t ≤ f1(X)}) ∩BN
2δ(z0),

E2 := expz({X + tν : X ∈ Bz0,T,r, −s < t < f2(X)}) ∩BN
2δ(z0).
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As ∂Ei ∩BN
2δ(z0) = expz({Graph (fi)})∩BN

2δ(z0) =: Di, the following signed distance functions are
well defined for i = 1, 2,

d̃i : B
N
2δ(z0) → R,

y 7→

{
dDi

(y), y ∈ Ei,

−dDi
(y), y ∈ BN

2δ(z0) \ Ei.

For y in BN
δ (z0) ⊂⊂ BN

2δ(z0),
d̃(y) = max{d̃1(y), d̃2(y)}.

Furthermore by [13, Proposition 4.2], we may choose δ > 0, such that d̃1 and d̃2 will be smooth on
BN

2δ(z0).

For i = 1, 2, we define
D̃i := {(z, νi(z)) : z ∈ Di} ⊂ M̃,

and points xi0 = (z0, νi(z0)).

Remark 6. We make a choice of δ = δ(N,M, g, z0) > 0 small enough such that, for each i = 1, 2,
we have open sets Ṽi ⊂ M̃ × R, and maps,

Fi : Ṽi → BN
2δ(z0),

such that D̃i = Ṽi ∩ {t = 0}, and Fi = F|Ṽi
, is a diffeomorphism. We also insist that δ =

δ(N,M, g, z0) > 0, is chosen small enough such that Cut(D1) and Cut(D2) are empty in B2δ(z0).
We know we can pick such a δ > 0 by [13, Proposition 4.2]

By choice of δ > 0 in Remark 6, and Proposition 4,

Cut(M) ∩BN
δ (z0) = {y ∈ BN

δ (z0) : d̃1(y) = d̃2(y)} ⊂ BN
δ (z0) \ E.

Remark 7. Denote the set,

A = {y ∈ BN
2δ(z0) : d̃1(y) = d̃2(y)}.

For i = 1, 2, we consider the functions,

ψi : Ṽi → R,
(x, t) 7→ d̃1(Fi(x, t))− d̃2(Fi(x, t)).

Therefore, A = Fi({ψi = 0}). Moreover,

∂tψi(x
i
0, 0) = dF−1

i (∇d̃1(z0))− dF−1
i (∇d̃2(z0)) = 2∂t ̸= 0.

Thus, by Implicit Function Theorem we may choose δ = δ(z0, N,M, g) > 0, such that set A =
Cut (M) ∩BN

2δ(z0) is a smooth n-submanifold in BN
2δ(z0), and σ

− is smooth on D̃1 ∪ D̃2.

We now look to define the push out function to construct our competitor, Figure 5.

We wish to determine the amount we want to push out by, and the set we wish to push out on.
Fix ρ > 0, and we set l = l(ρ), to be,

l(ρ) = sup{t : for all x inBM̃
t (x10), |σ−(x)| < ρ}. (10)
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Here, BM̃
t (x) is the geodesic ball in M̃ , about point x, of radius t. As σ− is smooth about x10,

and σ−(x10) = 0, this implies that l(ρ) > 0 for all ρ > 0. Furthermore, l(ρ) is increasing in ρ,
implying that the limit of l(ρ), as ρ → 0, exists. Therefore as σ−(x) = 0 if and only if ι(x) is a
non-embedded point, and such points have Hn-measure 0 in M̃ , we have that this limit must be 0.

Remark 8. As σ− is smooth on D̃1, σ
− ≤ 0, and σ−(x10) = 0, then there exists a C1 =

C1(N,M, g, z0) < +∞, and a δ = δ(N,M, g, z0), such that for all x in D̃1,

σ−(x) ≥ −C1d
2
M̃
(x, x10).

As l(ρ) → 0, as ρ→ 0, this implies that we can choose ρ > 0, Remark 9, such that

BM̃
l(ρ)(x

1
0) ⊂⊂ D̃1.

There exists an x′ in D̃1, such that dM̃(x′, x10) = l, and σ−(x′) = −ρ. Therefore, by Remark 8,

ρ ≤ C1l
2.

Remark 9. Note that we have made our first choice of ρ = ρ(z0, N,M, g, δ).

We push out on disks D1 and D2 equally, so that they meet on the Cut Locus in BN
δ (z0), which is

our previously denoted set A, as seen in Figure 5. We consider the open sets W̃i ⊂ D̃i, defined by,

W̃i = {x : Fi(x, σ
−(x)) ∈ Bδ(z0)}.

Clearly xi0 lies in W̃i, therefore these sets are non-empty. We can then define a diffeomorphism
between W̃1, and W̃2.

Ψ: W̃1 → W̃2,

x 7→ (π ◦ F−1
2 ◦ F1 ◦ (id, σ−))(x),

where we define, π by,

π : M̃ × R → M̃,

(x, t) 7→ x,

and (id, σ−), by

(id, σ−) : M̃ → M̃ × R,
x 7→ (x, σ−(x)).

The function Ψ is smooth and has smooth inverse given by

Ψ−1 : W̃2 → W̃1,

x 7→ (π ◦ F−1
1 ◦ F2 ◦ (id, σ−))(x).

We note that, dΨx1
0
= Id.

Remark 10. We choose ρ = ρ(z0, N,M, g, δ) > 0, such that,

BM̃
2l (x

1
0) ⊂⊂ W̃1.
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Consider a push out function, which lies in C∞
c (D̃1), and has the following properties,

f1(x) =


−1, x ∈ BM̃

l (x10),

[−1, 0], x ∈ BM̃
2l (x

1
0) \BM̃

l (x10),

0, x ∈ D̃1 \BM̃
2l (x

1
0).

We further impose the condition,

|∇f1| ≤
2

l
.

Define f2 in C∞
c (D̃2), by

f2(x) =

{
(f1 ◦Ψ−1)(x), x ∈ W̃2,

0, x ∈ D̃2 \ W̃2.

The support of f2 will lie in Ψ(BM̃
2l (x

1
0)) ⊂⊂ Ψ(W̃1) = W̃2. We then define the function f in

C∞
c (M̃), by f = f1 + f2.

Define the sets,

B2l = BM̃
2l (x

1
0) ∪Ψ(BM̃

2l (x
1
0)),

Bl = BM̃
l (x10) ∪Ψ(BM̃

l (x10)),

Al = B2l \Bl.

We will similarly define the sets,

Bt = BM̃
t (x10) ∪Ψ(BM̃

t (x10)),

for t > 0, such that BM̃
t (x10) ⊂ W̃1.

Remark 11. We choose ρ = ρ(z0,M,N, g, δ,W, λ) > 0, such that

F1 (B2l × (−2ρ, 2ρ)) ⊂⊂ BN
δ (z0)

We now look to define the function that will ’push out away from non-embedded point’. This
function will define the path from (2) to (3) in Figure 2.

Remark 12. (Choice of L and r0) We choose L = L(z0, N,M, g, δ) > 0 and r0 = r0(z0, N,M, g, δ) >
0, such that,

BM̃
L (x10) ⊂⊂ W̃1,

and,
F (BL × (−2r0, 2r0)) ⊂⊂ BN

δ (z0).

For a sets Ω̃ and Ω, were Ω is open and Ω̃ ⊂⊂ Ω, we define the 2-Capacity of Ω̃ in Ω as the value,

Cap2(Ω̃,Ω) = inf

{∫
Ω

|∇φ|2 dHn : φ ∈ C∞
c (Ω), φ ≥ χΩ̃

}
.
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For n ≥ 3 [8, Theorem 4.16, Section 4.7.2],

Cap2({x10}, BM̃
L (x10)) = 0.

Applying this to [8, Theorem 4.15 (ix), Section 4.7.1],

lim
k→∞

Cap2(B
M̃
L
k
(x10), B

M̃
L (x10)) = Cap2({x10} ∪ {x20}, BL) = 0.

Identical proofs show that this also holds for n = 2. Therefore, for all γ > 0, there exists a function
φγ,k, such that, 

φγ,k ∈ C∞
c (BM̃

L (x10)),

φγ,k : M̃ → [0, 1],

φγ,k(x) = 1, x ∈ BM̃
L
k

(x10),

and, defining φ̃γ,k = φγ,k + φγ,k ◦Ψ−1, we have∫
M̃

|∇φ̃γ,k|2 dHn(x) < γ.

We consider the function f̃ = 1− φ̃γ,k in C∞(M̃), and ∥∇f̃∥2
L2(M̃)

< γ.

Remark 13. (Later Choices of r0, L, γ, and k) We will later make fixed choices for L =
L(z0,M,N, g, δ,W, λ), r0 = r0(z0,M,N, g, δ,W, λ, L), γ = γ(z0, N,M, g, δ, r0, L), and k = k(z0, N,M, g, δ, L, γ).

Remark 14. (Choice of ρ based on r0 and L) We make a further choice of ρ = ρ(z0, N,M, g, δ, L, r0, k),
such that,

B2l ⊂⊂ BL
k
,

We will make a further choice of ρ later on, so that ρ = ρ(z0, N,M, g, δ, L, k, r0).

3.6 Approximating Function for CMC

We use the tools we have constructed to give a simple proof that function,

vε(y) = Hε(d̃(y)),

is suitable approximation of M , i.e.

lim
ε→0

Fε,λ(vε) = 2σHn(M)− σλHn+1(E)− σλHn+1(N \ E) = Fλ(E).

By the Co-Area formula on the function d̃,

Fε,λ(vε) =

∫
N

ε

2
|∇vε|2 +

W (vε)

2
− σλ

∫
N

vε,

=

∫
R

∫
Γt

Qε(t) dHn dt− σλ

∫
R

∫
Γt

Hε(t) dHn dt,
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where,

Qε(t) =
ε

2
((Hε)

′(t))2 +
W (Hε(t))

ε
.

Using the fact that N \ F (T̃ ) is a set of 0 Hn+1-measure, and that F : (T̃ , h) → (F (T̃ ), g), is a
bijective local isometry, we have,

Fε,λ(vε) =

∫
R
Qε(t)Hn(Γ̃t) dt− σλ

∫
R
Hε(t)Hn(Γ̃t) dt.

From Analysis of Hε, we have that, suppQε ⊂ [−2εΛ, 2εΛ], and

2σ − βε2 ≤
∫
R
Qε(t) dt ≤ 2σ + βε2.

Furthermore,

Hε(t) ≤

{
1, t > −2εΛ,

−1, t ≤ −2εΛ,

and,

Hε(t) ≥

{
1, t > 2εΛ,

−1, t ≤ 2εΛ.

Therefore,

Fε,λ(vε) ≤ (2σ + βε2) ess sup
t∈[−2εΛ,2εΛ]

Hn(Γ̃t)− σλ

∫ +∞

2εΛ

Hn(Γ̃t) dt+ σλ

∫ 2εΛ

−∞
Hn(Γ̃t) dt.

Similarly,

Fε,λ(vε) ≥ (2σ − βε2) ess inf
t∈[−2εΛ,2εΛ]

Hn(Γ̃t)− σλ

∫ +∞

−2εΛ

Hn(Γ̃t) dt+ σλ

∫ 2εΛ

−∞
Hn(Γ̃t) dt.

We have,

Hn(Γ̃t) =

∫
M̃

θt(x) dHn(x),

and by applying Dominated Convergence Theorem to θt, we have that,

lim
t→0

Hn(Γ̃t) = lim
t→0

∫
M̃

θt(x) dHn(x) = Hn(M̃ ∩ T̃ ) = Hn(M̃).

This implies that,
lim
ε→0

ess sup
t∈[−2εΛ,2εΛ]

Hn(Γ̃t) = Hn(M̃) = Hn(M),

and,
lim
ε→0

ess inf
t∈[−2εΛ,2εΛ]

Hn(Γ̃t) = Hn(M̃) = Hn(M).

The function t 7→ Hn(Γ̃t) is measurable, implying that,

lim
ε→0

∫ +∞

±2εΛ

Hn(Γ̃t) dt =

∫ +∞

0

Hn(Γ̃t) dt = Hn+1({y ∈ N : d̃(y) > 0}) = Hn+1(E),
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and,

lim
ε→0

∫ ±2εΛ

−∞
Hn(Γ̃t) dt =

∫ 0

−∞
Hn(Γ̃t) dt = Hn+1({y ∈ N : d̃(y) < 0}) = Hn+1(N \ E).

Therefore we have,

lim
ε→0

Fε,λ(vε) = 2σHn(M)− σλHn+1(E) + σλHn+1(N \ E).

4 Base Computation

Consider a smooth function,
g : R× M̃ → R.

and define the following

vr,gε : M̃ × R → R,
(x, t) 7→ Hε(t− g(r, x)).

By Gauss Lemma,

|∇vr,gε (x, t)|2 = ((Hε)
′(t− g(r, x)))2(1 + |∇xg(r, x)|2(x,t)).

By the co-area formula on p,

Fε,λ(v
r,g
ε ) =

∫
T̃

ε

2
|∇vr,gε |2 + W (vr,gε )

ε
− σλvr,gε dµh,

=

∫
R

∫
Γ̃t

ε

2
((Hε)

′(t− g(r, x)))2|∇xg(r, x)|2(x,t) dHn(x, t) dt

+

∫
R

∫
Γ̃t

ε

2
((Hε)

′(t− g(r, x)))2 +
W (Hε(t− g(r, x)))

ε
− σλHε(t− g(r, x)) dHn(x, t) dt,

=

∫
M̃

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− g(r, x)))2|∇xg(r, x)|2(x,t) θt(x) dt dHn(x)

+

∫
M̃

∫ σ+(x)

σ−(x)

(
ε

2
((Hε)

′(t− g(r, x)))2 +
W (Hε(t− g(r, x)))

ε

−σλHε(t− g(r, x))

)
θt(x) dt dHn(x),

In the last equality we use Fubini’s Theorem to switch the integrals.

We have,

Fε,λ(v
r,g
ε )−Fε,λ(v

0,g
ε ) =

∫
M̃

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− g(r, x)))2|∇xg(r, x)|2(x,t) θt(x) dt dHn(x)

−
∫
M̃

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− g(r, x)))2|∇xg(0, x)|2(x,t) θt(x) dt dHn(x),

+

∫
M̃

∫ σ+(x)

σ−(x)

(Qε(t− g(r, x))−Qε(t− g(0, x)))θt(x) dt dHn(x)

−
∫
M̃

∫ σ+(x)

σ−(x)

σλ(Hε(t− g(r, x))−Hε(t− g(0, x))) θt(x) dt dHn(x),
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We have the following two terms,

Ir,gε =

∫
M̃

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− g(r, x)))2|∇xg(r, x)|2(x,t) θt(x) dt dHn(x)

−
∫
M̃

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− g(r, x)))2|∇xg(0, x)|2(x,t) θt(x) dt dHn(x),

and, by Fundamental Theorem of Calculus and Fubini’s Theorem,

IIr,gε =

∫
M̃

∫ σ+(x)

σ−(x)

(Qε(t− g(r, x))−Qε(t− g(0, x)))θt(x) dt dHn(x)

−
∫
M̃

∫ σ+(x)

σ−(x)

σλ(Hε(t− g(r, x))−Hε(t− g(0, x))) θt(x) dt dHn(x),

= −
∫ r

0

∫
M̃

∂sg(s, x)

∫ σ+(x)

σ−(x)

Q′
ε(t− g(s, x)) θt(x) dt dHn(x) ds

+

∫ r

0

∫
M̃

∂sg(s, x)

∫ σ+(x)

σ−(x)

σλ(Hε)
′(t− g(s, x)) θt(x) dt dHn(x) ds,

= −
∫ r

0

∫
M̃

∂sg(s, x)Qε(σ
+(x)− g(s, x)) θ+(x) dHn(x) ds

+

∫ r

0

∫
M̃

∂sg(s, x)Qε(σ
−(x)− g(s, x)) θ−(x) dHn(x) ds

+

∫ r

0

∫
M̃

∂sg(s, x)

∫ σ+(x)

σ−(x)

Qε(t− g(s, x)) ∂tθt(x) dt dHn(x) ds

+

∫ r

0

∫
M̃

∂sg(s, x)

∫ σ+(x)

σ−(x)

σλ(Hε)
′(t− g(s, x)) θt(x) dt dHn(x) ds,

= −
∫ r

0

∫
M̃

∂sg(s, x)Qε(σ
+(x)− g(s, x)) θ+(x) dHn(x) ds

+

∫ r

0

∫
M̃

∂sg(s, x)Qε(σ
−(x)− g(s, x)) θ−(x) dHn(x) ds

+

∫ r

0

∫
M̃

∂sg(s, x)

∫ σ+(x)

σ−(x)

Qε(t− g(s, x)) (λ−Ht(x)) θt(x) dt dHn(x) ds

+λ

∫ r

0

∫
M̃

Θ1
ε,g(s, x)−Θ2

ε,g dHn(x) ds,

Where,

θ+(x) = lim
t↗σ+(x)

θt(x),

θ−(x) = lim
t↘σ−(x)

θt(x),

Θ1
ε,g(s, x) = σ

∫ σ+(x)

σ−(x)

∂sg(s, x)(Hε)
′(t− g(s, x))θt(x) dt,

Θ2
ε,g(s, x) =

∫ σ+(x)

σ−(x)

∂sg(s, x)Qε(t− g(s, x))θt(x) dt.
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For the last equality of IIr,gε we are using ∂tθt(x) = −Ht(x)θt(x), for t in (σ−(x), σ+(x)).

5 Competitor

5.1 Calculation on M̃ × R
Here we construct the path in Figure 2 from (1) to (2).

Set g1(r, x) = rf(x), take r in [0, ρ], where ρ ∈ (0, 1) will be chosen later and f : M̃ → R is defined
in Section 3.5.

Remark 15. (Choice in ε1) We choose ε1 = ε1(ρ) ∈ (0, 1/4), such that,

2ε1Λ = 6ε1| log ε1| << ρ.

From here we consider ε in (0, ε1).

We have,

IIr,g1ε =−
∫ r

0

∫
M̃

f(x)Qε(σ
+(x)− sf(x)) θ+(x) dHn(x) ds

+

∫ r

0

∫
M̃

f(x)Qε(σ
−(x)− sf(x)) θ−(x) dHn(x) ds

+

∫ r

0

∫
M̃

f(x)

∫ σ+(x)

σ−(x)

Qε(t− sf(x)) (λ−Ht(x)) θt(x) dt dHn(x) ds

+ λ

∫ r

0

∫
M̃

Θ1
ε,g(s, x)−Θ2

ε,g dHn(x) ds,

(11)

Concentrate on the second term of the right hand side of (11). As the integrand is non-positive,
f = −1 on Bl and suppQε ⊂ [−2εΛ, 2εΛ], we have∫ r

0

∫
M̃

f(x)Qε(σ
−(x)− sf(x)) θ−(x) dHn(x) ds

≤ −(2σ − βε2)

∫
Bl∩{−r+2εΛ≤σ−(x)≤−2εΛ}

θ−(x) dHn(x)

We look for lower bounds on θ−.

Remark 16. Choose δ = δ(z0, N,M, g) > 0, such that,

min
y∈BN

δ (z0)
{∆d̃1(y),∆d̃2(y)} ≥ λ

2
,

and,

max
y∈BN

δ (z0)
{∆d̃1(y),∆d̃2(y)} ≤ 3λ

2
.
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Therefore, for (x, t) in T̃ , such that, F (x, t) lies in BN
δ (z0), we have that,

λ

2
≤ Ht(x) ≤

3λ

2
.

Thus by similar calculations carried out in Section 3.4, for all (x, t) in T̃ , such that F (x, t) lies in
BN

δ (z0), we have,

θt(x) ≥

{
e−

3λt
2 , t ≥ 0,

e−
λt
2 , t ≤ 0.

For x in Bl, we have σ−(x) > −ρ, and by choice of ρ in Remark 11, we have that F ({x} ×
(σ−(x), 0)) ⊂ BN

δ (z0). Thus

θ−(x) = lim
t↘σ−(x)

θt(x) ≥ e−
λσ−(x)

2 ≥ 1,

for all x in Bl. Therefore,∫ r

0

∫
M̃

f(x)Qε(σ
−(x)− sf(x)) θ−(x) dHn(x) ds

≤ −2σHn({x : x ∈ Bl, −r + 2εΛ ≤ σ−(x) ≤ −2εΛ}) + C2ε
2,

for C2 = C2(N,M, g, λ,W ) < +∞. This is a lower bound for the area deleted in pushing the disks
together.

Concentrate on First term on the right hand side of (11). By choice of δ > 0 in Remark 6 and
ρ > 0 in Remark 11 we have that for x in supp (f) ⊂ B2l, σ

+(x) > 2ρ >> 2εΛ. Thus,∫ r

0

∫
M̃

f(x)Qε(σ
+(x)− sf(x)) θ+(x) dHn(x) ds = 0.

Concentrate on the third term on the right hand side of (11). Consider s > 0, and x in M̃ , such
that sf(x) < −2εΛ. Using the fact that suppQε ⊂ [−2εΛ, 2εΛ], and the inequalities on Ht in
Remark 4,∫ σ+(x)

σ−(x)

Qε(t− sf(x)) (λ−Ht(x)) θt(x) dt =

∫ 2εΛ

−2εΛ

Qε(ξ)(λ−Hξ+sf(x))θξ+sf(x)dξ,

≥ 0.

For sf(x) ≥ −2εΛ, we have,∫ σ+(x)

σ−(x)

Qε(t− sf(x)) (λ−Ht(x)) θt(x) dt =

∫ 2εΛ

−2εΛ

Qε(ξ)(λ−Hξ+sf(x))θξ+sf(x)dξ,

≥ C2 min
t∈[−4εΛ,2εΛ]

(λ−Ht(x))θt(x),

potentially rechoosing C2 = C2(M,N, g, λ,W ). Therefore we have that for all r in [0, ρ],

IIr,g1ε ≤ −2σHn({x : x ∈ Bl, −r + 2εΛ ≤ σ−(x) ≤ −2εΛ})

+C2

(
r

∫
B2l

q1ε(x) dHn(x) +

∫ r

0

∫
M̃

Θ1
ε,g(s, x)−Θ2

ε,g dHn(x) ds+ ε2
)
.
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where,
q1ε(x) = max

t∈[−4εΛ,2εΛ]
(Ht(x)− λ)θt(x) ≥ 0,

and we have potentially rechosen C2 = C2(M,N, g, λ,W ). Therefore, for r < 4εΛ,

IIr,g1ε = C2

(
r

∫
B2l

q1ε(x) dHn(x) +

∫ r

0

∫
M̃

Θ1
ε,g(s, x)−Θ2

ε,g dHn(x) ds+ ε2
)
,

and for r ≥ 4εΛ,

IIr,g1ε ≤ −2σHn({x : x ∈ Bl, −r + 2εΛ ≤ σ−(x) ≤ 0})

+C2

(
Hn({x : x ∈ Bl,−2εΛ < σ−(x) ≤ 0})

+

∫
B2l

q1ε(x) dHn(x) +

∫ r

0

∫
M̃

Θ1
ε,g(s, x)−Θ2

ε,g dHn(x) ds+ ε2
)
.

Again we have potentially rechoosing C2 = C2(M,N, g, λ,W ).

We now turn our attention to the term,

Ir,g1ε =

∫
M̃

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− rf(x)))2|r∇f(x)|2(x,t) θt(x) dt dHn(x),

=

∫
M̃

∫ 2εΛ

−2εΛ

ε

2
((Hε)

′(ξ))2|r∇f(x)|2(x,ξ+rf(x)) θξ+rf(x)(x) dξ dHn(x),

with,

|∇f(x)|2(x,t) = gexpι(x)(tν(x))(d expι(x)(tν(x))(ι∗(∇f(x))), d expι(x)(tν(x))(ι∗(∇f(x))))

Remark 17. We may choose δ = δ(z0, N, g) > 0, such that BN
2δ(z0) is a totally normal neighbour-

hood, and the following holds

C3 = C3(z0, N, g, δ) = sup{|d expy(X)|2 : y ∈ BN
δ (z0), X ∈ B

TyN
2δ (0)} ≤ 100n2.

By choices of ρ in Remark 11, and ε in Remark 15, for all x in Al, r in [0, ρ], and ξ in [−2εΛ, 2εΛ],

|r∇f(x)|2(x,ξ+rf(x)) ≤ C3|r2∇f(x)|2(x,0) ≤ 2C3
r2

l2
.

Note that for x in M̃ \ Al, ∇f(x) = 0, therefore, |∇f(x)|(x,t) = 0, for all t. We have,

Ir,g1ε ≤ C3Hn(Al)
r2

l2
,

where we have potentially rechosen C3 = C3(z0, N,M, g, δ, λ,W ).

For r in [0, 4εΛ), we have,

Ir,gε + IIr,gε ≤ C3
(εΛ)2

l2
+ C2

(
εΛ

∫
B2l

q1ε(x) dHn(x)

+

∫ r

0

∫
M̃

Θ1
ε,g(s, x)−Θ2

ε,g dHn(x) ds+ ε2
)
.
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Again, we are potentially rechoosing C3 = C3(z0, N,M, g, δ) < +∞.

For r in [4εΛ, ρ] we define the following non-decreasing function,

Pε(r) :=
Hn({x : x ∈ Bl, −r + 2εΛ ≤ σ−(x) ≤ 0})

Hn(Al)
,

and we have,

Ir,g1ε + IIr,g1ε ≤ Hn(Al)

(
C3
r2

l2
− 2σPε(r)

)
+C2

(
Hn({x : x ∈ Bl,−2εΛ < σ−(x) ≤ 0}) +

∫
B2l

q1ε(x) dHn(x)

+

∫ r

0

∫
M̃

Θ1
ε,g(s, x)−Θ2

ε,g dHn(x) ds+ ε2
)
.

We now define the following function on [0, 1],

κε(s) =

{
0, s ∈ [0, (4εΛ)/ρ),

C2
ρ2

l2
s2 − 2σPε(sρ), s ∈ [(4εΛ)/ρ, 1].

Note that,

Pε(ρ)
ε→0−−→ Hn(Bl)

Hn(Al)

ρ→0−−→ 1

2n − 1
,

and furthermore, recalling the bound ρ ≤ C1l
2, C1 = C1(z0, N,M, g, δ) < +∞, we have,

0 <
ρ2

l2
≤ C1ρ

ρ→0−−→ 0.

Remark 18. Choose ρ = ρ(z0, N,M, g, δ, λ,W ) > 0, such that

C3
ρ2

l2
<

σ

2(2n − 1)
,

and,
Hn(Bl)

Hn(Al)
>

7

8(2n − 1)
.

Remark 19. (Choice of ε2) There exists an ε2 = ε2(z0,M,N, g, δ,W, λ, ρ) > 0, such that, ε2 ≤ ε1,
and for all ε in (0, ε2),

Pε(ρ) >
3

4(2n − 1)
.

From here we always choose ε in (0, ε2).
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We have that,

max
s∈[0,1]

κε(s) ≤ C2
ρ2

l2
<

σ

2(2n − 1)
,

and,

κε(1) < − σ

2n − 1
.

We have, for r in [0, 4εΛ),
Fε,λ(v

r,g1
ε ) ≤ Fε,λ(vε) + III1,rε ,

where,

III1,rε = C4

(
εΛ

∫
B2l

q1ε(x) dHn(x) +

∫ r

0

∫
M̃

Θ1
ε,g(s, x)−Θ2

ε,g dHn(x) ds+ (εΛ)2
)
,

and C4 = C4(z0,M,N, g, δ,W, λ, ρ) < +∞.

For r in [4εΛ, ρ],

Fε,λ(v
r,g1
ε ) ≤ Fε,λ(vε) +Hn(Al)κε

(
r

ρ

)
+ III2,rε ,

where,

III2,rε = C2

(
Hn({x : x ∈ Bl,−2εΛ < σ−(x) ≤ 0}) +

∫
B2l

q1ε(x) dHn(x)

+

∫ r

0

∫
M̃

Θ1
ε,g(s, x)−Θ2

ε,g dHn(x) ds+ ε2
)
.

Furthermore,

Fε,λ(v
ρ,g1
ε ) ≤ Fε,λ(vε)−

σHn(Al)

2n − 1
+ III2,ρε .

5.2 Appropriate Function on Manifold

We wish to show that for every r in [0, ρ], there exists an ṽr,g1ε , in W 1,∞(N) ⊂ W 1,2(N), such that,
for every (x, t) in T̃ ,

ṽr,g1ε (F (x, t)) = vr,g1ε (x, t).

This implies that Fε,λ(ṽ
r,g1
ε )(N) = Fε,λ(v

r,g1
ε )(T̃ ). Indeed, this follows from the fact that Hn+1(N \

F (T̃ )) = Hn+1(Cut(M) ∪ (M \ M)) = 0, and F : T̃ → F (T̃ ) is a bijection between open sets,
Remark 2,

Fε,λ(ṽ
r,g1
ε )(N) = Fε,λ(ṽ

r,g1
ε )(N \ (Cut(M) ∪ (M \M))),

= Fε,λ(ṽ
r,g1
ε )(F (T̃ )),

= Fε,λ(v
r,g1
ε )(T̃ ).

We have the following,
BN

δ (z0) = Υ1 ⊔ A ⊔Υ2,
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where,
Υ1 = {y ∈ BN

δ (z0) : d̃1(y) > d̃2(y)},

and,
Υ2 = {y ∈ BN

δ (z0) : d̃2(y) > d̃1(y)}.

Recall Remark 7,
A = {y ∈ BN

δ (z0) : d̃1(y) = d̃2(y)},

is a smooth n-submanifold in BN
δ (z0). Recall the diffeomorphisms, for i = 1, 2, defined in Remark

6,
Fi : Ṽi ⊂ M̃ × R → BN

2δ(z0).

We then define, ṽr,g1ε ,

ṽr,g1ε (y) =


Hε(d̃(y)), y ̸∈ BN

δ (z0),

vr,g1ε (F−1
1 (y)), y ∈ Υ1 ∩BN

δ (z0),

vr,g1ε (F−1
2 (y)), y ∈ Υ2 ∩BN

δ (z0).

For (x, t) in T̃ , we have ṽr,g1ε (F (x, t)) = vr,g1ε (x, t). Indeed, first we consider the case that F (x, t)
lies in Υ1 ∪Υ2. In Υi, F = Fi, and we have,

ṽr,g1ε (F (x, t)) = vr,g1ε (F−1
i (F (x, t))) = vr,g1ε (x, t).

As A ⊂ Cut(M), we know that F (x, t) cannot lie on A. Last case to consider case is F (x, t) lies
in N \ BN

δ (z0). By Remark 11 (x, t) must lie in T̃ \ (B2l × (−2ρ, 2ρ)). If x lies in M̃ \ B2l, then
f(x) = 0, and,

vr,g1ε (x, t) = Hε(t) = Hε(d̃(F (x, t))) = ṽr,g1ε (F (x, t)).

If x lies in B2l, then |t| ≥ 2ρ > r|f(x)|+ 2εΛ, and therefore,

vr,g1ε (x, t) = Hε(t− rf(x)) =

{
1, t ≥ 2ρ > rf(x) + 2εΛ,

−1, t ≤ −2ρ < rf(x)− 2εΛ.

Also, d̃(F (x, t)) = t, implies that,

ṽr,g1ε (F (x, t)) = Hε(t) =

{
1, t ≥ 2ρ > 2εΛ,

−1, t ≤ −2ρ < −2εΛ.

Therefore, for all (x, t) in T̃ , we have that vr,g1ε (x, t) = ṽr,g1ε (F (x, t)).

We now just look to show that ṽr,g1ε lies in W 1,∞(N). First consider y in N \ F (B2l × (−2ρ, 2ρ)).
There exists an x in M̃ , such that, F (x, d̃(y)) = y, and (x, d̃(y)) lies in (M̃ ×R)\ (B2l× (−2ρ, 2ρ)).
By previous argument we see that,

ṽr,g1ε (y) = Hε(d̃(y)).

and therefore, ṽr,g1ε is Lipschitz on the set N \ F (B2l × (−2ρ, 2ρ)).

As
F (B2l × (−2ρ, 2ρ)) ⊂⊂ BN

δ (z0),
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showing that ṽr,g1ε is Lipschitz on BN
δ (z0), implies that it is Lipschitz on N .

Consider y on A, then d̃1(y) = d̃2(y), and by construction of f and Ψ,

f(π(F−1
1 (y))) = f(π(F−1

2 (y))).

Therefore,
vr,g1ε (F−1

1 (y)) = vr,g1ε (F−1
2 (y)),

and ṽr,g1ε is well defined and continuous across the smooth n-submanifold A. Thus we have that
ṽr,g1ε lies in W 1,∞(BN

δ (z0)).

5.3 Continuity of the Path

We show that the path,

γ : [0, ρ] → W 1,2(N),

r 7→ ṽr,g1ε ,

is continuous in W 1,2(N).

Take r and s in [0, ρ]. Recalling that Hn+1(N \ F (T̃ )) = Hn+1(Cut(M) ∪ (M \M)) = 0,

∥ṽr,g1ε − ṽs,g1ε ∥2L2(N) =

∫
F (T̃ )

|ṽr,g1ε − ṽs,g1ε |2,

=

∫
R

∫
M̃

|Hε(t− rf(x))−Hε(t− sf(x))|2θt(x) dHn(x) dt,

s→r−−→ 0,

by Dominated Convergence Theorem.

Noting that, ṽr,g1ε = ṽr,g1ε on N \ BN
δ (z0), for all r in [0, ρ], and Hn+1(BN

δ (z0) \ (Υ1 ∪ Υ2)) =
Hn+1(A) = 0,

∥∇ṽr,g1ε −∇ṽs,g1ε ∥2L2(N) =

∫
Υ1∪Υ2

|∇ṽr,g1ε −∇ṽs,g1ε | dµg.

As F−1
i : (Υi, g) → (F−1

i (Υi), h) is an isometry, we have,

∥∇ṽr,g1ε −∇ṽs,g1ε ∥2L2(N) =

∫
F−1
1 (Υ1)∪F−1

2 (Υ2)

|∇vr,g1ε (x, t)−∇vs,g1ε (x, t)|2,

=

∫
F−1
1 (Υ1)∪F−1

2 (Υ2)

(H′
ε(t− rf(x))−H′

ε(t− sf(x)))2

+|∇xf(x)|2(rH
′
ε(t− rf(x))− sH′

ε(t− sf(x)))2,
s→r−−→ 0,

by Dominated Convergence Theorem.
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6 Path to aε

6.1 Fixed Energy Gain Away from Non-Embedded Point

We construct the path from (2) to (3) in Figure 2.

Recall f̃ from Section 3.5 and set,

g2(r, x) = ρf(x) + rf̃(x),

for r in [0, r0], where r0 ∈ (0,min{1, diam(N)/2}), will be chosen later. Denote, Ak
L = BL \BL

k
.

Remark 20. (Choice of ε3) We choose 0 < ε3 ≤ ε2, such that 2ε3Λ = 6ε3| log ε3| << r0. From
here on we consider ε on (0, ε3).

We slightly edit the Base Computation in Section 4. Consider r > 2εΛ,

Fε,λ(v
r,g2
ε )−Fε,λ(v

r,g2
ε ) = Ir,g2ε + (IIr,g2ε − II2εΛ,g2ε ) + II2εΛ,g2ε .

We have,

IIr,g2ε − II2εΛ,g2ε =−
∫ r

2εΛ

∫
M̃\BL

k

f̃(x)Qε(σ
+(x)− sf̃(x)) θ+(x) dHn(x) ds

+

∫ r

2εΛ

∫
M̃\BL

k

f̃(x)Qε(σ
−(x)− sf̃(x)) θ−(x) dHn(x) ds

+

∫ r

2εΛ

∫
M̃\BL

k

f̃(x)

∫ σ+(x)

σ−(x)

Qε(t− sf̃(x)) (λ−Ht(x)) θt(x) dt dHn(x) ds

+ λ

∫ r

2εΛ

∫
M̃

Θ1
ε,g2

(s, x)−Θ2
ε,g2

(s, x) dHn(x) ds.

(12)

Considering the first term on the right hand side of (12),

−
∫ r

2εΛ

∫
M̃\BL

k

f̃(x)Qε(σ
+(x)− sf̃(x)) θ+(x) dHn(x) ds ≤ 0.

Considering the second term on the right hand side of (12), and by applying similar arguments for
when we considered the corresponding term on the right hand side of (11) in Section 5.1,∫ r

2εΛ

∫
M̃\BL

k

f̃(x)Qε(σ
−(x)− sf̃(x)) θ−(x) dHn(x) ds

≤ C2Hn({x : x ∈ M̃ \BL
k
, σ−(x) ≥ 2εΛ(f̃(x)− 1)}),

where we are potentially rechoosing C2 = C2(M,N, g,W, λ) < +∞.
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Considering the third term on the right hand side of (12). Applying similar arguments in Ak
L from

when we considered the corresponding term on the right hand side of (11) in Section 5.1,∫ r

2εΛ

∫
M̃\BL

k

f̃(x)

∫ σ+(x)

σ−(x)

Qε(t− sf̃(x)) (λ−Ht(x)) θt(x) dt dHn(x) ds

≤
∫ r

2εΛ

∫
M̃\BL

∫ 2εΛ

−2εΛ

Qε(ξ)(λ−Hξ+s(x))θξ+s(x) dξ dHn(x) ds

+ C2

∫
Ak

L

q2ε(x) dHn(x),

(13)

where, q2ε(x) := maxt∈[−2εΛ,4εΛ](λ−Ht(x))θt(x), and we are potentially rechoosing C2 = C2(M,N, g, λ,W ).

Define the following measurable set,

Ωr = {x ∈ M̃ : σ+(x) > 2r }.

Remark 21. We choose L = L(z0, N,M, g, δ) > 0, such that,

Hn(M̃ \BL) >
3

4
Hn(M̃).

Then we can find an r0 = r0(z0, M̃ , N, g, δ, L) > 0, such that, for all r in [0, r0],

Hn({(x, 2r) : x ∈ Ωr \BL}) >
1

2
Hn(M̃).

For all x in Ωr, s in (2εΛ, r), and ξ in [−2εΛ, 2εΛ], s + ξ lies in (0, σ+(x)). Therefore, recalling
bounds on Ht and θt from Remark 4 and Claim 6, we have,

(λ−Hξ+s(x))θξ+s(x) < −m(s+ ξ)θξ+s ≤ −m(s− 2εΛ)θ2r(x),

Then for r in (2εΛ, r0], we compute an energy decrease from the first term on the right hand side
of (13),∫ r

2εΛ

∫
M̃\BL

∫ 2εΛ

−2εΛ

Qε(ξ)(λ−Hξ+s(x))θξ+s(x) dξ dHn(x) ds ≤ −mσ
2

Hn(M̃)r2 + C2εΛ,

potentially rechoosing C2 = C2(N,M, g, λ,W ) < +∞.

For r in [0, 2εΛ], by repeating of arguments similar to those in Section 3.6, yields,

IIr,g2ε ≤ C2

(∫
M̃\BL

k

m1
ε(x) dHn(x) + εΛ

)
,

where we are potentially rechoosing C2 = C2(N,M, g,W, λ), and m1
ε(x) = maxt∈[−2εΛ,4εΛ] θt(x) −

mint∈[−2εΛ,4εΛ] θt(x).
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For r in [0, r0], consider the term,

Ir,g2ε =

∫
Ak

L

∫ 2εΛ

−2εΛ

ε

2
((H)′(ξ))2|r∇f̃(x)|2

(x,rf̃(x)+ξ)
θrf̃(x)+ξ(x) dξ dH

n(x).

By choice of L and r0 in Remark 12, and constant C3 = C3(z0,M,N, g, δ, λ,W ) from Remark 17,
we have, for all x in Ak

L, r in [0, r0], and ξ in [−2εΛ, 2εΛ],

|∇f̃(x)|(x,rf̃(x)+ξ) ≤ C
1/2
3 |∇f̃(x)|(x,0)

Thus we have,
Ir,g2ε ≤ C3∥∇f̃∥2L2(M̃)

r2.

Again we are potentially rechoosing C3 = C3(z0,M,N, g, δ,W, λ).

Remark 22. Choose k = k(z0,M,N, g, δ,W, λ, L) such that

∥∇f̃∥2
L2(M̃)

< C−1
3

mσ

4
Hn(M̃).

Therefore, after potentially rechoosing C3 = C3(z0,M,N, g, δ,W, λ),

Ir,g2ε ≤ mσ

4
Hn(M̃)r2.

For r in (0, 2εΛ],
Fε,λ(v

r,g2
ε )−Fε,λ(v

0,g2
ε ) ≤ III3,rε ,

where,

III3,rε = C2

∫
M̃\BL

k

mε(x) dHn(x) + εΛ

 ,

where we are potentially rechoosing C2 = C2(N,M, g,W, λ) < +∞. For r in (2εΛ, r0],

Fε,λ(v
r,g2
ε )−Fε,λ(v

0,g2
ε ) ≤ −mσ

4
Hn(M̃)r2 + III4,rε

where,

III4,rε = C2

(
Hn({x : x ∈ M̃ \BL

k
, σ−(x) ≥ 2εΛ(f̃(x)− 1) })

+

∫
Ak

L

q2ε(x) dHn(x) +

∫ r

2εΛ

∫
M̃

Θ1
ε,g2

(s, x)−Θ2
ε,g2

dHn(x) ds

+

∫
M̃\BL

k

mε(x) dHn(x) + εΛ

)
,

again, we are potentially rechoosing C2 = C2(M,N, g,W, λ).
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As g2(0, x) = g1(ρ, x), we have, for r in (0, 2εΛ],

Fε,λ(v
r,g2
ε ) ≤ Fε,λ(vε)−

σHn(Al)

2n − 1
+ IIIρ,2ε + IIIr,3ε ,

and for r in (2εΛ, r0],

Fε,λ(v
r,g2
ε ) ≤ Fε,λ(vε)−

σHn(Al)

2n − 1
− mσ

4
Hn(M̃)r2 + IIIρ,2ε + IIIr,4ε .

We may define the appropriate function on N , for r in [0, r0],

ṽr,g2ε (y) =


Hε(d̃(y)− r), y ̸∈ BN

δ (z0),

vr,g2ε (F−1
1 (y)), y ∈ Υ1 ∩BN

δ (z0),

vr,g2ε (F−1
2 (y)), y ∈ Υ2 ∩BN

δ (z0).

Following similar arguments to Sections 5.2, and 5.3, we may show that ṽr,g2ε lies in W 1,∞(N), and
that the path ṽ0,g2ε → ṽr0,g2ε is continuous in W 1,2(N).

6.2 Reversing Construction of Competitor

We construct the path from (3) to (4) in Figure 2.

For r in [0, ρ], we set,
g3(r, x) = r0f̃(x) + (ρ− r)f(x).

For x in B2l,
g3(r, x) = (ρ− r)f(x) = g1(ρ− r, x),

and for x in M̃ \B2l,
g3(r, x) = r0f̃(x) = g3(0, x).

Therefore,
Fε,λ(v

r,g3
ε )−Fε,λ(v

0,g3
ε ) = Fε,λ(v

ρ−r,g1
ε )−Fε,λ(v

ρ,g1
ε ).

As g1(ρ, x) = g2(0, x), and g3(0, x) = g2(r0, x), we have,

Fε,λ(v
r,g3
ε ) = Fε,λ(v

ρ−r,g1
ε ) + Fε,λ(v

r0,g2
ε )−Fε,λ(v

0,g2
ε ).

Remark 23. (Choice of ρ = ρ(z0,M,N, g, δ,W, λ, L, r0)) We choose ρ > 0, such that,

σHn(Al)

2n − 1
<
mσ

4
Hn(M̃)r20.

Therefore, we have that

Fε,λ(v
r,g3
ε ) < Fε,λ(v

ρ−r,g1
ε )− σHn(Al)

2n − 1
+ III4,r0ε .
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Furthermore, for r in [0, ρ− 4εΛ], we have,

Fε,λ(v
r,g3
ε ) < Fε,λ(vε) +

σHn(Al)

2(2n − 1)
+ IIIρ−r,2

ε − σHn(Al)

2n − 1
+ III4,r0ε ,

= Fε,λ(vε)−
σHn(Al)

2(2n − 1)
+ IIIρ−r,2

ε + III4,r0ε .

For r in (ρ− 4εΛ, ρ], we similarly have,

Fε,λ(v
r,g3
ε ) < Fε,λ(vε)−

σHn(Al)

2(2n − 1)
+ IIIρ−r,1

ε + III4,r0ε .

We define the appropriate function on N . For r in [0, ρ],

ṽr,g3ε (y) =


Hε(d̃(y)− r0), y ̸∈ BN

δ (z0),

vr,g3ε (F−1
1 (y)), y ∈ Ω1 ∩BN

δ (z0),

vr,g3ε (F−1
2 (y)), y ∈ Ω2 ∩BN

δ (z0).

Following similar arguments to Sections 5.2, and 5.3, we may show that ṽr,g3ε lies in W 1,∞(N), and
that the path ṽ0,g3ε → ṽρ,g3ε is continuous in W 1,2(N).

6.3 Lining Up With Level Set Γr0

We construct path from (4) to (5) in Figure 2

For r in [0, r0], consider,

g4(r, x) = r0f̃(x) + r(1− f̃(x)) = (r0 − r)f̃(x) + r ≥ r.

By applying similar arguments to those in Section 5.1, we have

IIr,g4ε ≤ C3

(
Hn({x ∈ BL : σ

−(x) ≥ −2εΛ}) + εΛ

+

∫ r

0

∫
M̃

Θ1
ε,g4

(s, x)−Θ2
ε,g4

(s, x) dHn(x) ds

)
,

where we are potentially rechoosing C3 = C3(z0,M,N, g, δ,W, λ) < +∞.

We turn our attention to the term,

Ir,g4ε =

∫
Ak

L

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− (r0 − r)f̃(x)− r))2(r0 − r)2|∇xf̃(x)|2 θt(x) dt dHn(x)

−
∫
Ak

L

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− r0f̃(x)))
2r20|∇xf̃(x)|2 θt(x) dt dHn(x).
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For r in [0, r0],∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− (r0 − r)f̃(x)− r))2|∇xf̃(x)|2(x,t) θt(x) dt

≤ (σ + βε2) max
t∈[−2εΛ,2εΛ]

|∇f̃(x)|2(x,t+g4(r,x))
θt+g4(r,x)(x),

= σ|∇f̃(x)|2(x,g4(r,x))θg4(r,x)(x) + βε2 max
t∈[−2εΛ,2εΛ]

|∇f̃(x)|2(x,t+g4(r,x))
θt+g4(r,x)(x)

+σ

(
max

t∈[−2εΛ,2εΛ]
|∇f̃(x)|2(x,t+g4(r,x))

θt+g4(r,x)(x)− |∇f̃(x)|2(x,g4(r,x))θg4(r,x)(x)
)

Denote the functions,

q3ε(x, r) = max
t∈[−2εΛ,2εΛ]

|∇f̃(x)|2(x,t+g4(r,x))
θt+g4(r,x)(x)− |∇f̃(x)|2(x,g4(r,x))θg4(r,x)(x),

and,

p1ε(r) =

∫
Ak

L

q3ε(x, r) dHn(x).

We have, ∫
Ak

L

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− (r0 − r)f̃(x)− r))2(r0 − r)2|∇xf̃(x)|2 θt(x) dt dHn(x)

≤ σ

∫
Ak

L

(r0 − r)2|∇f̃(x)|2(x,g4(r,x))θg(r,x)(x) dH
n(x) + C5(ε

2 + p1ε(r)).

where C5 = C5(z0, N,M, g, δ, L, r0, k,W, λ) < +∞. Similarly we have,∫
Ak

L

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− r0f̃(x)))
2r20|∇xf̃(x)|2 θt(x) dt dHn(x)

≥ σ

∫
Ak

L

r20|∇f̃(x)|2(x,g4(0,x))θg4(0,x)(x) dH
n(x)− C5(ε

2 + p2ε(0)),

where,

p2ε(0) =

∫
Ak

L

q4ε(x, 0) dHn(x),

and
q4ε(x, r) = min

t∈[−2εΛ,2εΛ]
|∇f̃(x)|2(x,t+g4(r,x))

θt+g4(r,x)(x)− |∇f̃(x)|2(x,g4(r,x))θg4(r,x)(x) ≤ 0

Therefore we have, for r in [0, r0],

Ir,g3ε ≤ σ

∫
Ak

L

(r0 − r)2|∇f̃(x)|2(x,g(r,x))θg(r,x)(x)− r20|∇f̃(x)|2(x,g(0,x))θg(0,x)(x) dHn(x)

+C5(ε
2 + p1ε(r)− p2ε(0)).

Claim 4. There exists an r0 > 0, such that for all r in [0, r0],∫
Ak

L

(r0 − r)2|∇f̃(x)|2(x,g(r,x))θg(r,x)(x)− r20|∇f̃(x)|2(x,g(0,x))θg(0,x)(x) dHn(x) ≤ 0.
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Proof. For (x, t) ∈ M̃ × R, denote,

ζ(x, t) := |∇f̃(x)|2(x,t)θt(x).

We note that ζ ∈ C∞(T̃ ), and ζ(x, t) = 0, for (x, t) ̸∈ T̃ .

For r in [0, r0], denote,

G(r) :=

∫
Ak

L

ζ(x, g4(r, x)) dHn(x) =

∫
Ak

L∩{f̃ ̸=0}
ζ(x, g4(r, x)) dHn(x).

For r ∈ [0, r0], and f̃(x) ̸= 0, we have that,

g4(r, x) ∈ (σ−(x), σ+(x)),

i.e. (x, g4(r, x)) ∈ T̃ . Therefore, G lies in C∞([0, r0]), and

G′(r) =

∫
Ak

L∩{f̃ ̸=0}
(∂tζ)(x, g4(r, x))(1− f̃(x)) dx.

We may obtain a bound |G′(r)| ≤ C6 = C6(z0,M,N, g, δ,W, λ, L, k) < +∞, for r0 ≤ R0 < +∞,
R0 = R0(z0,M,N, g, δ,W, λ, L, k) fixed. We also have that G(0) = ∥∇f̃∥2

L2(M̃)
> 0, and we may

choose r0 > 0, small enough such that,

min
r∈[0,r0]

G(r) ≥ 1

2
G(0) > 0.

Denoting,
F (r) := (r0 − r)2G(r).

Differentiating we obtain,

F ′(r) = (r − r0)(2G(r) + (r − r0)G
′(r)).

Thus setting, r0 < G(0)/C6, we have that F ′(r) ≤ 0, for all r in [0, r0]. This completes the
proof.

Remark 24. Claim 4 is a further choice of r0 = r0(z0,M,N, g, δ,W, λ, L, k) > 0.

Therefore, there exists an r0, such that for all r in [0, r0],

Fε,λ(v
r,g4
ε )−Fε,λ(v

0,g4
ε ) = Ir,g4ε + IIr,g4ε ,

≤ III5,rε ,

where

III5,rε ≤ C5

(
p1ε(r)− p2ε(0) +Hn({x ∈ B2L : σ

−(x) ≥ −2εΛ}) + εΛ

+λ

∫ r

0

∫
M̃

Θ1
ε,g4

(s, x)−Θ2
ε,g4

(s, x) dHn(x) ds

)
,
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where we are potentially rechoosing C5 = C5(z0,M,N, g, k, L, δ, r0,W, λ).

As g4(0, x) = g3(ρ, x), we have, for r in [0, r0],

Fε,λ(v
r,g4
ε ) ≤ Fε,λ(vε)−

σHn(x)

2(2n − 1)
+ III1,0ε + III4,r0ε + III5,rε .

Consider the following function on N , for r in [0, r0],

ṽr,g4ε (y) =


Hε(d̃(y)− r0), y ̸∈ BN

δ (z0),

vr,g4ε (F−1
1 (y)), y ∈ Υ1 ∩BN

δ (z0),

vr,g4ε (F−1
2 (y)), y ∈ Υ2 ∩BN

δ (z0).

We can show, as in Section 5.2 and 5.3, that ṽr,g3ε lies in W 1,∞(N), Fε,λ(ṽ
r,g4
ε ) = Fε,λ(v

r,g4
ε ), and

that, r 7→ ṽr,g4ε is a continuous path in W 1,2(N).

6.4 Completing Path to aε

We construct the path from (5) to ’-1’ in Figure 2.

Consider, for r in [r0, 2 diam(N)],
g5(r, x) = r.

By repeating similar arguments to those in Section 5.1, we have

Fε,λ(v
r,g5
ε )−Fε,λ(v

r0,g5
ε ) ≤ III6,rε ,

where

III6,rε = λ

∫ r

ρ

Θ1
ε,g5

(s, x)−Θ2
ε,g5

(s, x) dHn(x) ds.

Recalling that, g5(r0, x) = g4(r0, x), we have, for all r in [r0, 2 diam(N)],

Fε,λ(v
r,g5
ε ) ≤ Fε,λ(v

r0,g4
ε ) + III6,rε ,

< Fε,λ(vε)−
σHn(Al)

2(2n − 1)
+ III1,0ε + III4,r0ε + III5,r0ε + III6,rε .

Define the function, ṽr,g5ε (y) = Hε(d̃(y)− r), in N . This function lies in W 1,∞(N). We have that,
Fε,λ(ṽ

r,g5
ε ) = Fε,λ(v

r,g5
ε ), and r 7→ ṽr,g5ε is a continuous path in W 1,2(N).

As |d̃(y)| ≤ diam(N), we have that,

d̃(y)− 2 diam(N) ≤ − diam(N) < −2εΛ.

Therefore,
ṽ2 diam(N),g5
ε (y) = Hε(d̃(x)− 2 diam(N)) = −1.
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Recall that our end point is aε > −1. We connect −1 to aε, by constant functions,

urε(y) = r

for r in [−1, aε]. Then,

Fε,λ(u
r
ε) =

∫
N

W (r)

ε
− σλr dµg ≤ Fε,λ(u

−1
ε ).

As u−1
ε = ṽ

2 diam(N),g5
ε , we have that, for all r in [−1, aε],

Fε,λ(u
r
ε) < Fε,λ(vε)−

σHn(Al)

2(2n − 1)
+ III1,0ε + III4,r0ε + III5,r0ε + III6,2 diam(N)

ε .

7 Path to bε

7.1 Lining Up With Level Set Γ−ρ

We construct the path from (2) to (6) in Figure 2

We consider, for r in [0, ρ], and x in M̃ ,

g6(r, x) = ρf(x)− r(1 + f(x)).

First consider r, in (2εΛ, ρ],

Fε,λ(v
r,g6
ε )−Fε,λ(v

0,g6
ε ) = Ir,g6ε + (IIr,g6ε − II2εΛ,g6ε ) + II2εΛ,g6ε

Similar to Section 6.1 we have,

IIr,g6ε − II2εΛ,g6ε ≤ λ

∫ r

2εΛ

∫
M̃

Θ1
ε,g6

(s, x)−Θ2
ε,g6

(s, x) dHn(x) ds.

For r in [0, 2εΛ], again by similar arguments to those in Section 6.1

IIr,g6ε ≤ C2

(∫ r

0

∫
{ρf<−2εΛ}

Θ1
ε,g6

(s, x)−Θ2
ε,g6

(s, x) dHn(x) ds

+

∫
{ρf≥−2εΛ}

m2
ε(x) dHn(x) + εΛ

)
,

where,
m2

ε(x) := max
t∈[−6εΛ.2εΛ]

θt(x)− min
t∈[−6εΛ,2εΛ]

θt(x),

and we are potentially rechoosing C2(M,N, g,W, λ).

For r in [0, ρ], we consider,

Ir,g6ε =

∫
Al

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− g4(r, x)))
2(ρ− r)2|∇f(x)|2(x,t)θt(x) dt dHn(x)

−
∫
Al

∫ σ+(x)

σ−(x)

ε

2
((Hε)

′(t− g4(0, x)))
2ρ2|∇f(x)|2(x,t)θt(x) dt dHn(x)
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Following similar arguments to Section 5.1, and after potentially rechoosing C3 = C3(z0,M,N, g, δ,W, λ),
we have that,

Ir,g6ε ≤ C3Hn(Al)
ρ2

l2
.

Therefore, recalling our choice of ρ > 0 in Remark 18, we have

Ir,g6ε ≤ σHn(Al)

2(2n − 1)
.

Thus, for r in [0, 2εΛ],

Fε,λ(v
r,g6
ε )−Fε(v

0,g6
ε ) <

σHn(Al)

2(2n − 1)
+ III7,rε ,

where,

III7,rε = C2

(∫ r

0

∫
{ρf<−2εΛ}

Θ1
ε,g6

(s, x)−Θ2
ε,g6

(s, x) dHn(x) ds

+

∫
{ρf≥−2εΛ}

m2
ε(x) dHn(x) + εΛ

)
.

For r in (2εΛ, ρ],

Fε,λ(v
r,g6
ε )−Fε(v

0,g6
ε ) <

σHn(Al)

2(2n − 1)
+ III8,rε ,

where

III8,rε = C2

(∫ 2εΛ

0

∫
{ρf<−2εΛ}

Θ1
ε,g6

(s, x)−Θ2
ε,g6

(s, x) dHn(x) ds

+

∫ r

2εΛ

∫
M̃

Θ1
ε,g6

(s, x)−Θ2
ε,g6

(s, x) dHn(x)

+

∫
{ρf≥−2εΛ}

m2
ε(x) dHn(x) + εΛ

)
.

As g6(0, x) = g1(ρ, x), we have, for r in [0, 2εΛ],

Fε,λ(v
r,g6
ε ) ≤ Fε,λ(vε)−

σHn(Al)

2(2n − 1)
+ III2,ρε + III7,rε ,

and for r in (2εΛ, ρ], we have,

Fε,λ(v
r,g6
ε ) ≤ Fε,λ(vε)−

σHn(Al)

2(2n − 1)
+ III2,ρε + III8,rε .

For r in [0, ρ], we define the following function on N ,

ṽr,g6ε (y) =


Hε(d̃(y) + r), y ̸∈ BN

δ (z0),

vr,g6ε (F−1
1 (y)), y ∈ Υ1 ∩BN

δ (z0),

vr,g6ε (F−1
2 (y)), y ∈ Υ2 ∩BN

δ (z0).

We can show, as in Section 5.2 and 5.3 that, ṽr,g6ε lies in W 1,∞(N), Fε,λ(ṽ
r,g6
ε ) = Fε,λ(v

r,g6
ε ), and

the path r 7→ ṽr,g6ε is continuous in W 1,2(N).
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7.2 Completing Path to bε

We construct the path from (6) to ’+1’ in Figure 2. This is done in an identical way to Section
6.4.

For r in [ρ, 2 diam(N)], we define the following function on N ,

ṽr,g7ε (y) := Hε(d̃(y) + r).

Similar to arguments in Section 6.4 we have,

Fε,λ(ṽ
r,g7
ε ) ≤ Fε,λ(vε)−

σHn(Al)

2(2n − 1)
+ III2,ρε + III8,ρε + III9,rε ,

where,

III9,rε = λ

∫ r

ρ

Θ1
ε,g6

(s, x)−Θ2
ε,g6

(s, x) dHn(x) ds.

Again as in Section 6.4, we connect ṽ
2 diam(N),g7
ε = 1, to bε, by constant functions, urε = r, for r in

[1, bε]. We have that for all r in [1, bε],

Fε,λ(u
r
ε) ≤ Fε,λ(ṽ

2 diam(N),g7
ε ) ≤ Fε,λ(vε)−

σHn(Al)

2(2n − 1)
+ III2,ρε + III8,ρε + III9,2 diam(N)

ε .

Both ṽr,g7ε , and urε give continuous paths in W 1,2(N) with respect to r.

8 Conclusion of the Paths

8.1 Error Terms

8.1.1 Theta Error Terms

Consider the term,

Θ1
ε,g(s, x)−Θ2

ε,g(s, x) = σ

∫ σ+(x)

σ−(x)

∂sg(s, x)(Hε)
′(t− g(s, x))θt(x) dt

−
∫ σ+(x)

σ−(x)

∂sg(s, x)Qε(t− g(s, x))θt(x) dt.

Assuming that g is monotone in the first variable, we have,

|Θ1
ε,g(s, x)−Θ2

ε,g(s, x)| ≤ 2σ|∂sg(s, x)|mε(g(s, x), x) + C7ε
2.

where,
mε(T, x) = max

t∈[T−2εΛ,T+2εΛ]
θt(x)− min

t∈[T−2εΛ,T+2εΛ]
θt(x).

and C7 = C7(N,m, λ,W, |g|C1) < +∞.
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Now we assume that ∂sg ≥ 0, and |∂sg|C0(R×M̃) < +∞. Apply Fubini’s Theorem to swap integrals,∫ r

0

∫
M̃

∣∣Θ1
ε,g(s, x)−Θ2

ε,g(s, x)
∣∣ dHn(x) ds ≤ 2σ

∫
M̃

∫ g(r,x)

g(0,x)

mε(T, x) dT Hn(x) + C7rε
2.

Fixing x in M̃ and r in R, we see that for all T in R \ {σ−(x), σ+(x)},

mε(T, x) → 0, as ε→ 0,

and furthermore, we have the following bounds, 0 ≤ mε(T, x) ≤ e
λ2

2m . Therefore we can apply
Dominated Convergence Theorem for fixed x in M̃ and r in [0,∞),∫ g(r,x)

g(0,x)

mε(T, x) dT → 0, as ε→ 0.

Furthermore, as 0 ≤ g(r, x)− g(0, x) ≤ |∂sg|C0(R×M̃) r, we have the bounds,

0 ≤
∫ g(r,x)

g(0,x)

mε(T, x) dT ≤ |∂sg|C0(R×M̃)re
λ2

2m .

Therefore, again by Dominated Convergence Theorem, we have, for fixed r in [0,∞)∫
M̃

∫ g(r,x)

g(0,x)

mε(T, x) dT Hn(x) → 0, as ε→ 0.

Define the following continuous function on [0,+∞),

M g
ε (r) =

∫
M̃

∫ g(r,x)

g(0,x)

mε(T, x) dT Hn(x).

We have that M g
ε (r) → 0, pointwise, as ε→ 0, and furthermore, as

0 ≤ mε1(T, x) ≤ mε2(T, x),

for all T in R, x in M̃ , and 0 < ε1 < ε2, this implies that,

0 ≤M g
ε1
(r) ≤M g

ε2
(r),

for all r in [0,+∞). Therefore, by Dini’s Theorem, we have that,

M g
ε → 0, as ε→ 0,

uniformly on compact sets of [0,+∞). Thus,∫ r

0

∫
M̃

∣∣Θ1
ε,g(s, x)−Θ2

ε,g(s, x)
∣∣ dHn(x) ds→ 0 (14)

as ε → 0, uniformly in r, on compact sets of [0,+∞). The same holds assuming that g satisfies
∂sg ≤ 0, on R× M̃ , and |∂sg|C0(R×M̃) < +∞.

For i = 1, . . . , 7 our gi’s are monotone in the first variable and |∂sgi|C0(R×M̃) < +∞. Therefore
(14) holds for each i.
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8.1.2 The Other Error Terms

We first consider, ∫
B2l

q1ε(x) dHn(x),

with,
q1ε(x) = max

t∈[−4εΛ,2εΛ]
(Ht(x)− λ)θt(x).

By choice of ε > 0, in Remark 15, 2εΛ << ρ. Therefore by choice of ρ > 0, in Remark 11, and
δ > 0, from Remark 16, we have

0 ≤ max
x∈B2l

qε(x) ≤
λ

2
e

λ2

2m .

Fixing x′ in B2l \ {x : σ−(x) = 0}, we see that there exists an ε′ = ε′(x′) > 0, such that for all
0 < ε ≤ ε′,

[−4εΛ, 2εΛ] ⊂ (σ−(x′), σ+(x′)).

Therefore, (Ht(x
′)− λ)θt(x

′), is a smooth function in t on [−4εΛ, 2εΛ], and clearly,

max
t∈[−4εΛ,2εΛ]

(Ht(x
′)− λ)θt(x

′) → 0, as ε→ 0.

Thus q1ε → 0, Hn–a.e in B2l, and we can apply Dominated Convergence Theorem to say that∫
B2l

q1ε(x) dHn(x) → 0, as ε→ 0.

Identically we also have, ∫
Ak

L

q2ε(x) dHn(x) → 0, as ε→ 0,

recalling q2ε(x) = maxt∈[−2εΛ,4εΛ](λ−Ht(x))θt(x).

Now considering
q3ε(r, x) = max

t∈[−2εΛ,2εΛ]
ζ(x, t+ g4(r, x))− ζ(x, g4(r, x))

where we are recalling the function

ζ(x, t) = |∇f̃(x)|2(x,t)θt(x)

from Claim 4. For x in B2L such that f̃(x) = 0, we have that ζ(x, t) = 0, for all t. Considering x
in Ak

L ∩ {f̃ ̸= 0}, such that r0f̃(x) > 2εΛ, then

[−2εΛ + g4(r, x), 2εΛ + g4(r, x)] ⊂ (0, 2r0) ⊂ (σ−(x), σ+(x)).

Thus, for t in [−2εΛ + g4(r, x), 2εΛ + g4(r, x)],

(x, t) ∈ T̃ ∩ (BL × (−2r0, 2r0)) ⊂⊂ Ṽ1 ∪ Ṽ2,

where we are recalling sets Ṽ1 and Ṽ2 from Remark 6. Therefore, ζ is differentiable at (x, t) and

|∂tζ(x, t)| ≤ C(|Fi|C2(BL×(−2r0,2r0)), |f̃ |C1 , λ) ≤ C6.
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Where we are potentially rechoosing C6 = C6(z0,M,N, g, k, L, δ,W, λ). Therefore, for x in Ak
L such

that r0f̃(x) > 2εΛ, we have that 0 ≤ q3ε(r, x) ≤ C6εΛ. Furthermore, for all x in Ak
L,

|q3ε(r, x)| ≤ max
(x,t)∈BL×(−2r0,2r0)

ζ(x, t) ≤ C6.

Again we are potentially rechoosing C6 = C6(z0,M,N, g, k, L, δ,W, λ).

Therefore,

p1ε(r) =

∫
Ak

L∩{r0f̃>2εΛ}
q3ε(r, x) dHn(x) +

∫
Ak

L∩{0<r0f̃≤2εΛ}
q3ε(r, x) dHn(x),

≤ C6

(
εΛ +Hn({x ∈ Ak

L : 0 < r0f̃(x) ≤ 2εΛ})
)
.

Thus
max
r∈[0,r0]

p1ε(r) → 0

as ε→ 0. Similarly, p2ε(0) → 0, as ε→ 0.

For the remaining error terms, as Hn({x ∈ M̃ : σ−(x) = 0}) = 0, by Dominated Convergence
Theorem, we have that,

Hn({x ∈ M̃ : σ−(x) ≥ −2εΛ}) → 0,

and ∫
M̃

mi
ε(x) dHn(x) → 0,

where,

m1
ε(x) = max

t∈[−2εΛ,4εΛ]
θt(x)− min

t∈[−2εΛ,4εΛ]
θt(x),

m2
ε(x) = max

t∈[−6εΛ,2εΛ]
θt(x)− min

t∈[−6εΛ,2εΛ]
θt(x).

8.2 Path for Theorem 2

Consider the following continuous path in W 1,2(N), for ε > 0,

γε(t) =


−1− 2diam (N)− t, t ∈ [−2 diam (N)− aε − 1, 2 diam (N)],

Hε(d̃− t), t ∈ [−2 diam (N), 2 diam (N)],

1− 2 diam (N) + t, t ∈ [2 diam (N), 2 diam (N) + bε − 1].

which satisfies γε(−1− 2diam (N)− aε) = aε, and γε(1− 2 diam (N) + bε) = bε.

Replacing r0 = 2εΛ, in Section 6.4, and ρ = 2εΛ, in Section 7.2, we see that, for all ε in (0, ε̃), for
some ε̃ = ε̃(N,M, g, λ,W ) > 0, fixed,

Fε,λ(γε(t)) < Fε,λ(vε) + III
6,2 diam (N)
ε , t ∈ [−2 diam (N)− aε − 1, 2 diam (N)],

Fε,λ(γε(t)) < Fε,λ(vε) + III6,−t
ε , t ∈ [−2diam (N),−2εΛ],

Fε,λ(γε(t)) < Fε,λ(vε) + III9,tε , t ∈ [2εΛ, 2diam (N)],

Fε,λ(γε(t)) < Fε,λ(vε) + III
9,2 diam (N)
ε , t ∈ [2 diam (N), 2 diam (N) + bε − 1].
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Recalling from Section 3.6

Fε,λ(vε) → 2σHn(M)− σλHn+1(E) + σλHn+1(N \ E),

as ε→ 0, and Section 8.1.1,

max
t∈[2εΛ,2 diam (N)]

(
III6,tε + III9,t

)
→ 0,

as ε → 0. Therefore, for τ > 0, there exists a 0 < ετ = ετ (N,M, g, λ,W ) ≤ ε̃, such that for all ε
in (0, ετ ) and t in [−2 diam (N)− aε − 1, 2 diam (N) + bε − 1] \ (−2εΛ, 2εΛ),

Fε,λ(γε(t)) < 2σHn(M)− σλHn(E) + σλHn+1(N \ E) + τ.

Furthermore by similar arguments to those in Section 3.6, and after potentially rechoosing ετ > 0,
we have that for all ε in (0, ετ )

max
t∈[−2εΛ,2εΛ]

Fε,λ(γε(t)) < 2σHn(M)− σλHn+1(E) + σλHn+1(N \ E) + τ.

Therefore this is an admissible path in W 1,2(N), that proves that the limiting Allen-Cahn varifold
can not have a minimal piece.

Remark 25. Note that we can build the path γε, for any suitable Caccioppoli set E. The suitable
properties are the following:

1. ∂∗E ̸= ∅, has a quasi embedded λ-CMC structure, with respect to unit normal pointing into
E.

2. ∂∗E satisfies the Geodesic Touching Lemma (Lemma 1).

From Remark 25 we can deduce that E must be a single connected component and minimises the
value

Fλ(E) = Hn(∂∗E)− λHn+1(E) > 0,

among all suitable competitors.

8.3 Contradiction Path for Theorem 1

Recall all the error terms from Sections 5, 6 and 7. By Section 3.6 and 8.1, for τ > 0, there exists
an ετ = ε(z0,M,N, g, δ,W, λ, L, k, r0, ρ, τ) ∈ (0, ε3), such that for all ε in (0, ετ ), we have that

Fε,λ(vε) + max
r∈[0,4εΛ)

III1,rε + max
r∈[4εΛ,ρ]

III2,rε + max
r∈[0,2εΛ]

III3,rε

+ max
r∈(2εΛ,r0]

III4,rε + max
r∈[0,r0]

III5,rε + max
r∈[r0,2 diam (N)]

III6,rε

+ max
r∈[0,2εΛ]

III7,rε + max
r∈(2εΛ,ρ]

III8,rε + max
r∈[ρ,2 diam (N)]

III9,rε

< 2σHn(M)− σλHn+1(E) + σλHn+1(N \ E) + τ.

Therefore, for any τ > 0, there exists an ετ > 0, such that for any ε in (0, ετ ), we can define a
continuous path,

γε : [−1− aε, 4 diam (N) + r0 + ρ+ bε − 1] → W 1,2(N),
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by

γε(t) =



−1− t, t ∈ [−1− aε, 0],

Hε(d̃− 2 diam (N) + t), [0, 2 diam (N)− r0],

ṽ
2 diam (N)−t,g4
ε , [2 diam (N)− r0, 2 diam (N)],

ṽ
2 diam (N)+ρ−t,g3
ε , [2 diam (N), 2 diam (N) + ρ],

ṽ
2 diam (N)+ρ+r0−t,g2
ε , [2 diam (N) + ρ, 2 diam (N) + ρ+ r0],

ṽ
2 diam (N)+ρ+r0+t,g6
ε , [2 diam (N) + ρ+ r0, 2 diam (N) + 2ρ+ r0],

Hε(d̃+ t− 2 diam (N)− ρ− r0), [2 diam (N) + 2ρ+ r0, 4 diam (N) + ρ+ r0],

1 + t− 4 diam (N) + r0 + ρ, [4 diam (N) + r0 + ρ, 4 diam (N) + r0 + ρ+ bε − 1]

This path satisfies the following; γε(−1− aε) = aε, γε(4 diam (N) + r0 + ρ+ bε − 1) = bε, and

γε(t) < 2σHn(M)− σλHn+1(E) + σλHn+1(N \ E)− σHn(Al)

2(2n − 1)
+ τ,

for all t in [−1 − aε, 4 diam (N) + r0 + ρ + bε − 1]. This contradicts the min-max construction of
M , implying that M must be embedded.

9 Morse Index

Recall the functional defined on Caccioppoli sets of N ,

Fλ(Ω) = Hn(∂∗Ω)− λµg(Ω).

For a C2 vector field X, we may take variations in direction X by considering its flow {Φt}. We
define the first variation of Fλ by,

δFλ(Ω)(X) =
d

dt
Fλ(Φt(Ω))|t=0. (15)

and the second variation by,

δ2Fλ(Ω)(X) =
d2

dt2
Fλ(Φt(Ω))|t=0. (16)

We have that δFλ(E)(X) = 0, for all C1 vector fields X. Note that we require M to be embedded
and orientable for the following to be well defined. Consider the class of vector fields X ∈ C2

c (N \
(M \M)), such that X|M = φν, where φ ∈ C2

c (M). By [1, Proposition 2.5],

δ2Fλ(E)(X) =

∫
M

|∇Mφ|2 − (|AM |2 +Ric(ν, ν))φ2 dHn. (17)

We extend the expression on the right hand side to all functions in W 1,2
0 (M), and define the

following quadratic form,

BM(φ, φ) :=

∫
M

|∇Mφ|2 − (|AM |2 +Ric(ν, ν))φ2 dHn, φ ∈ W 1,2
0 (M).
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After integrating by parts we obtain the second order elliptic operator on M ,

LM := ∆M + |AM |2 +Ric(ν, ν).

We restrict ourselves to a set W ⊂⊂ N \ (M \ M), to avoid our curvature term |AM |, from
potentially blowing up. A value κ = κ(W ) ∈ R is said to be an eigenvalue of LM in W , if there
exists an φ ∈ W 1,2

0 (W ∩M) such that

LMφ+ κφ = 0.

By standard elliptic theory, see [9], the spectrum of LM in W ∩M ,

κ1(W ) ≤ κ2(W ) ≤ · · · → +∞,

is discrete and bounded from below. We then define the index of M in W by,

indW (M) = |{p : κp(W ) < 0}|,

or equivalently, it is the maximum dimension of a linear subspace of W 1,2
0 (W ∩M) on which BM

is negative definite. If indW (indM) = 0, then we say that M is stable in W and κp(W ) ≥ 0, for
all p in N, and

BM(φ, φ) ≥ 0, for all φ ∈ W 1,2
0 (W ∩M).

We define,
ind(M) = sup

W⊂⊂N\(M\M)

(indW (M)).

As M is embedded, and our sequence of critical points {ui} from Section 1.1 has indui ≤ 1, by
[14, Theorem 1a.], we have that indM ≤ 1.

Remark 26. As M is two-sided and embedded, and the inhomogeneous term is a constant, we
may also apply the ideas and arguments of [11] verbatim to conclude that indM ≤ 1.

Claim 5. indM = 1.

Proof. We only need to show a lower bound, which follows from the Ricci positivity on N . We
construct an appropriate function on M , using a similar argument to [2, Lemma 5.1].

We wish to prove that we can find a set W ⊂⊂ N \ (M \M), and a function φ in W 1,2
0 (M ∩W )

such that,
BM(φ, φ) < 0.

By the Ricci positivity of N , for any W ⊂⊂ N \ (M \M), and φ in W 1,2
0 (M ∩W ), we have

BM(φ, φ) ≤
∫
M

|∇Mφ|2 − |AM |2φ2 dHn.

If M \M = ∅, we set W = N , and φ = 1,

BM(φ, φ) ≤ −
∫
M

|AM |2 dHn < 0.
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For M \M ̸= ∅, we first we note that we must have n ≥ 7, and Hn−1(M \M) = 0. Therefore, the
2-capacity of M \M is 0, [8, Section 4.7.2, Theorem 3], implying that for all δ > 0, there exists a
function fδ such that, 

fδ ∈ C∞
c (N \ (M \M)),

fδ(y) ∈ [0, 1], y ∈ N,∫
N
|∇fδ|2dµg < δ,

µg({fδ = 1}) > µg(N)− δ.

Furthermore, as |M | is a multiplicity 1 integral varifold with uniformly bounded generalised mean
curvature, we have a monotonicity formula [17, Corollary 17.8]. The existence of such a mono-
tonicity formula implies Euclidean volume growth about each point in M . Therefore, there exists
a constant C = C(N,M, g), such that, by the construction of fδ as in [8, Section 4.7.2, Theorem
3], ∫

M

|∇Mfδ|2 dHn ≤ Cδ.

Taking Wδ = supp fδ ⊂⊂ N \ (M \M), we have that (fδ)|M ∈ W 1,2
0 (M ∩Wδ), and,

BM(fδ, fδ) ≤ Cδ − n−2λ2Hn({fδ = 1} ∩M).

We have that as we send δ → 0, Hn({fδ = 1} ∩M) → Hn(M). Therefore for small enough δ > 0,
we have that BM(fδ, fδ) < 0. This implies that indM ≥ 1.

The fact that M is connected immediately follows from this, as on each connected component we
could construct a function as in Claim 5. Therefore each connected component adds atleast 1 to
the index.

References

[1] J. Barbosa and M. do Carmo, Stability of Hypersurfaces with Constant Mean Curvature, Math-
ematische Zeitschrift 185 (1983), pp. 339 – 353.

[2] C. Bellettini, Multiplicity-1 Minmax Minimal Hypersurfaces in Manifolds with Positive
Ricci Curvature, (to appear in) Communications on Pure and Applied Mathematics,
arXiv:2004.10112.

[3] C. Bellettini, Generic Existence of Multiplicity-1 Minmax Minimal Hypersurfaces via Allen–
Cahn, Calculus of Variations and Partial Differential Equations 61 (2022), ar. 149.

[4] C. Bellettini and N. Wickramasekera, Stable CMC Integral Varifolds of Codimension 1: Regu-
larity and Compactness (2018), arXiv:1802.00377.

[5] C. Bellettini and N. Wickramasekera, Stable Prescribed-Mean-Curvature Integral Varifolds of
Codimension 1: Regularity and Compactness (2020), arXiv:1902.09669.

[6] C. Bellettini and N. Wickramasekera, The Inhomogeneous Allen–Cahn Equation and the Exis-
tence of Prescribed-Mean-Curvature Hypersurfaces (2021), arXiv:2010.05847.

[7] A. Dey, Existence of Multiple Closed CMC Hypersurfaces with Small Mean Curvature, (to
appear in) Journal of Differential Geometry, arXiv:1910.00989.

55



[8] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions, Studies in
Advanced Mathematics, Taylor and Francis (1992).

[9] D. Gilbarg and N. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd ed.,
rev. 3rd printing, Classics in Mathematics, Springer (2001).

[10] A. Gray, Tubes, 2nd ed. Progress in Mathematics 221, Birkhäuser Basel (2004).
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