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Abstract. Special Legendrian Integral Cycles in S5 are the links of the
tangent cones to Special Lagrangian integer multiplicity rectifiable currents
in Calabi-Yau 3-folds. We show that Special Legendrian Cycles are smooth
except possibly at isolated points.

1 Introduction

Some years ago, in a survey paper [5], S.K. Donaldson and R.P. Thomas
gave a fresh boost to the analysis of non-linear gauge theories in geometry by
exhibiting heuristically links between some invariants in complex geometry
and spaces of solutions to Yang-Mills equations in dimensions higher than the
usual conformal 4 dimensions for these equations. In [22] G. Tian described
the loss of compactness of sequences of some Yang-Mills Fields in dimension
larger than 4. This loss of compactness arises along (n − 4)-rectifiable ob-
jects, called the blow-up sets. It plays a crucial role in the compactification
procedure of the space of the solutions of Ω-anti-self-dual instantons (the gen-
eralisation of the usual 4-dimensional instantons to dimensions larger than
4).

Can one expect the blow-up set to be more than just rectifiable? What
is its exact nature?

At such a level of generality this question is wide open and difficult. The
situation is better understood for some sub-classes of solutions: one exam-
ple is given by the so-called SU(4)-Instantons in a Calabi-Yau 4-fold. The
concentration set is, in this case, the carrier of a calibrated rectifiable cycle.
Among these cycles we find for instance the Special Lagrangian Integral Cur-
rents. This provides one possible field of application for Special Lagrangian
Geometry or calibrated geometries in general.
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Further reasons for studying Special Lagrangians come from String The-
ory, more precisely from Mirror Symmetry. According to this model, our uni-
verse is a product of the standard Minkowsky space R4 with a Calabi-Yau 3-
fold Y . Based on physical grounds, the so called SYZ-conjecture (named after
Strominger, Yau and Zaslov) expects, roughly speaking, that this Calabi-Yau
3-fold can be fibrated by (possibly singular) Special Lagrangians, whence the
interest in understanding the singularities of a Special Lagrangian current.
The compactification of the dual fibration should lead to the mirror partner
of Y . See the survey paper by Joyce [12] for a more thorough explanation.

We remark also that, as all calibrated geometries (see [10] or [11]), Special
Lagrangian Geometry provides examples of volume-minimizing submanifolds
or currents; Special Lagrangians are a particularly large family. Having such
examples helps the understanding of the possible singular behaviour of such
minimizers.

General description of the problem: setting and results. In the
complex euclidean space C3 with the standard coordinates z = (z1, z2, z3),
zi = xi + iyi, consider the constant differential 3-form

Ω = Re(dz1 ∧ dz2 ∧ dz3).
This is the so called Special Lagrangian calibration, introduced and analysed
in [10]. We recall some notions from calibrated geometry, referring to the
quoted paper for a broader exposition. Given a m-form φ on a Riemannian
manifold (M, g), the comass of φ is defined to be

||φ||∗ := sup{〈φx, ξx〉 : x ∈ M, ξx is a unit simple m-vector at x}.
A form φ of comass one is called a calibration if it is closed (dφ = 0); when
it is non-closed it is referred to as a semi-calibration.

Let φ be a calibration or a semi-calibration; among the oriented m-
dimensional planes that constitute the Grassmannians G(m, TxM), we pick
those that (represented as unit simple m-vectors) realize 〈φx, ξx〉 = 1 and
define the set G(φ) of m-planes calibrated by φ:

G(φ) := ∪x∈M{ξx ∈ G(m, TxM) : 〈φx, ξx〉 = 1}.
In other words, these are exactly the m-planes on which φ agrees with the
m-volume form.

We recall now the notion of calibrated cycle. For definitions and notations
from Geometric Measure Theory we refer to [7] or [8].

An integral m-cycle C in M is an integer multiplicity rectifiable current
of dimension m without boundary. Let us recall the basic notions used in
this definition:
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(i) Rectifiability : there is a countable family of oriented C1 submanifolds Ni

of dimension m in M ; in each of them we take a Hm-measurable subset
Ni, so that the Ni-s are disjoint; the union C = ∪iNi is a so-called
oriented rectifiable set.

C possesses an oriented approximate tangent plane Hm-a.e. (see [7] or
[8]). On C an integer valued and locally summable multiplicity function
θ is given, θ ∈ L1

loc
(C;Z); the action of the current C on any m-form

ψ, that is smooth and compactly supported in M , is given by

C(ψ) =

∫

C
θ(x)〈ψx, ξx〉dHm(x),

where ξx is the oriented tangent at x represented as a unit simple vector.

(ii) Closedness: the boundary ∂C of the current is 0 1. Explicitly: for any
smooth (m− 1)-form α, that is compactly supported in M ,

(∂C)(α) := C(dα) = 0.

The class of integer-multiplicity, rectifiable currents of dimension m in M
is denoted by Rm(M). The support spt(C) of the current is defined as the
complement of the open set

∪{A : A is open and C(ψ) = 0 for all m-forms ψ compactly supported in A}.

Without loss of generality one can assume θ to be strictly positive: for that
purpose it is enough to choose the appropriate orientation for the oriented
rectifiable set and neglect the part where θ = 0. With this in mind, one can
always express the action of a rectifiable current C by means of a rectifiable
set C on which a multiplicity function θ ∈ L1

loc
(C;N \ {0}) is given: this

underlying rectifiable set C is referred to as the carrier of the current C.

We recall the notions of Smooth Points and Singular Points. A point
x ∈ C is said to be a smooth point if there is a ball Br(x) in which the
current acts as a smooth m-submanifold V, i.e. if there is some constant
N ∈ N such that for any smooth m-form ψ compactly supported in Br(x)

C(ψ) = N

∫

V
ψ.

The set of smooth points is open in C by definition; its complement in C
is called the singular set of C, denoted by Sing C.

1The term cycle refers to the absence of boundary.
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For a current in Rm(M), at Hm-almost every point x ∈ C denote by TxC
the m-dimensional oriented approximate tangent plane to the underlying
rectifiable set C; given a (semi)-calibration φ, C is said to be calibrated by φ
if

for Hm-almost every x, sign(θ)TxC ∈ G(φ).
When φ is a closed form, then a current calibrated by φ is locally homolog-
ically volume-minimizing; (closed) calibrations were introduced in the foun-
dational paper [10].

Returning to our case, being Ω constant, it is obviously closed; as shown
in [10] it has comass one. Currents in R3(C3), calibrated by Ω, are called
Special Lagrangians.

Let N denote the radial vector field N := r ∂
∂r

in C3 and define the normal
part of Ω by

ΩN := ιNΩ,

where ι denotes the interior product. We will work in the sphere S5 ⊂ C3,
with the induced metric. Consider the pull-back of ΩN on the sphere via the
canonical inclusion map E : S5 →֒ C3:

ω := E∗ΩN .

An easy computation shows that

ω = Re(z1dz
2 ∧ dz3 + z2dz

3 ∧ dz1 + z3dz
1 ∧ dz2).

ω is a 2-form on S5 of comass one. Indeed, |N | = 1 on S5 and for any simple
2-vector ξ in TS5

|ω(ξ)| = |Ω(N ∧ ξ)| ≤ ‖N ∧ ξ‖ = ‖ξ‖.

Equality is surely reached when N ∧ ξ is a Special Lagrangian 3-plane, com-
pare Proposition 1. We remark that both Ω and ω are SU(3)-invariant. As
explained in [10] (Section II.5) or [11] (Section 2.2), ω is non-closed.

ω is referred to as the Special Legendrian semi-calibration. Rectifiable
currents in S5 calibrated by ω are called Special Legendrians.

Our main result is the following:

Theorem 1.1. An integer multiplicity rectifiable current C without boundary
calibrated by ω (this is called a Special Legendrian integral cycle) in S5 can
only have isolated singularities, therefore finitely many.

In other words: C is, out of isolated points, the current of integration
along a smooth Special Legendrian submanifold with smooth integer multi-
plicity.
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Remark 1.1. This result is optimal. We will provide an example in the next
section, see remark 2.2.

Still from [10] (Section II.5) or [11] (Section 2.2), the 2-currents of S5 on
which ω restricts to the area form are exactly those such that the cone built
on them is calibrated by Ω:

Proposition 1. ([10] or [11]) A rectifiable current T in S5 is a Special
Legendrian if and only if the cone on T

C(T ) = {tx ∈ R6 : x ∈ T, t > 0}

is Special Lagrangian.

We know that Special Lagrangian currents (as a particular case of cur-
rents calibrated by a closed form) are (locally) homologically area-minimizing
in C3; from [1] we know that volume-minimizing 3-cycles are smooth outside
a set of Hausdorff dimension 1. In the case of a cone, this roughly trans-
lates into having radial lines of singularities, possibly accumulating onto each
other. We establish here that there can only by a finite number of such lines.

We remark here that Special Lagrangians can be defined in general Calabi-
Yau n-folds, see [12]; Special Lagrangians are known to possess tangent cones
at all points (see [10] sect. II.5), and such cones are Special Lagrangian cones
in Cn. Thanks to Proposition 1, our result can be restated as follows:

Corollary 1.1. Tangent cones to a Special Lagrangian in a Calabi-Yau 3-
fold have a singular set made of at most finitely many lines passing through
the vertex.

From [20] (Prop. 6.1.1), T in S5 is minimal, in the sense of vanishing mean
curvature, if and only if C(T ) ⊂ C3 is minimal. Therefore, Special Legendri-
ans are minimal currents in S5 (although not necessarily area-minimizing).

Relying on [1], Chang proved in [3] the corresponding regularity result
for area-minimizing 2-dimensional currents.

One advantage coming from the existence of the calibration, as will be
seen, is the fact that the current can locally be described as integration along
a multi-valued graph satisfying a first order elliptic PDE; the general problem
of volume-minimizing currents, instead, requires an elliptic problem of order
two, see [1] or [3]. It is also remarkable that the general regularity theory for
mass-minimizing currents developed by Almgren is extremely hard; his Big
Regularity Paper [1] comprises a thousand pages and it is therefore helpful
to have shorter (and relatively easier) self-contained proofs of regularity re-
sults for some sub-classes of minimizing currents, such as Special Lagrangian
currents or J-holomorphic currents (see [21], [17], [18]).
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The proof. We will now give a sketch of our proof. The underlying
structure is basically the same as in [21] and [17], where the regularity of J-
holomorphic cycles in a 4-dimensional ambient manifold was shown. In our
case we have a fifth coordinate to deal with, which introduces new challenging
difficulties, as will be seen.

A standard blow-up analysis tells us that at any point x of S5 the multi-

plicity function θ(x) = lim
r→0

M(C Br(x))

πr2
is2 an integer Q. The monotonicity

formula (see [16] or [19]) tells us that, at any x0,
M(C Br(x0))

r2
is monoton-

ically non-increasing as r ↓ 0, whence we get that θ is upper semi-continuous.
Therefore the set

C≤Q := {x ∈ S5 : θ(x) ≤ Q}
is open in S5. This allows a proof by induction of our result: indeed, the
statement of Theorem 1.1 is local, so we can restrict the current to C≤Q and
consider increasing integers Q (see the beginning of section 5).

One key ingredient is the construction of families of 3-dimensional surfaces
Σ which locally foliate S5 and that have the property of intersecting positively
the Special Legendrian ones. As in [17], this algebraic property can be ex-
ploited to provide a self-contained proof of the uniqueness of tangent cones
for our current. This result was proved for general semi-calibrated cycles in
[16] and for general area-minimizing ones in [23] using a completely different
approach3.

Further, the positiveness of intersection allows us to describe our current,
locally around a point x0 of multiplicity Q, as a Q-valued graph from a disk
D2 ⊂ C into R3 ∼= C × R. This means that we associate to each z ∈ D2 a
Q-tuple of points in C × R. The Q-tuple is to be understood as unordered,
i.e. as an element of the Q-th symmetric product of C×R. It is not possible
to find, globally on D2, a coherent labeling of the multi-valued graph as a
superposition of Q functions.

The transition current → multi-valued graph is done by slicing the current
with a “parallel family” of 3-surfaces Σ of the type mentioned above: one must
choose a good “direction” for the slicing, namely take a Σ that is transverse

2For general integral cycles, the limit limr→0
M(C Br(x))

πr2
exists a.e. and coincides

with the absolute value |θ| of the multiplicity assigned in the definition of integer cycle.

In our case limr→0
M(C Br(x))

πr2
is well-defined everywhere, therefore we can choose (ev-

erywhere) this natural representative for θ, after having chosen the correct orientation for
the approximate tangent plane.

3The proof in [23] relies however on the area-minimality property which is not generally
true for Special Legendrians.
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to the tangent cone at x0. This ensures, locally around x0, the constancy of
the intersection index when we move Σ “parallel to itself”. The intersection
index, which counts intersections with signs, turns out to be constantly Q.
But the sign of intersection is always positive, due to the property of the
Σ’s. This yields that the number of points at which the 3-surfaces cross the
current is exactly Q, taking multiplicities into account.

Currents of integration along multivalued graphs constitute one of the im-
portant objects of interest in Geometric Measure Theory. Multivalued graphs
were introduced by Almgren in [1] for the study of Dirichlet-minimizing and
volume-minimizing currents and were lately revisited in a new flavour in [4].

As we said above, the proof of theorem 1.1 is done by induction on the
multiplicity Q. Recall that by upper semi-continuity of the multiplicity, we
already know that all points in a neighbourhood of a point of multiplicity Q
have multiplicity no higher than Q. Therefore, the inductive step is divided
into two parts: in the first one we show that there is no possibility for an
accumulation of singularities of multiplicity Q to a singularity of the same
multiplicity; in the second part we exclude accumulation of lower order sin-
gularities to a singularity of order Q.

First part of the inductive step. There is a situation in which, just by
slicing techniques, it is possible to exclude the possibility that singular points
of multiplicity Q accumulate onto a point x0 of the same multiplicity. This
case occurs when the tangent cone at x0 is not made of Q times the same
disk and will be referred to as easy case of non accumulation (see theorem
4.2).

The case of a point with a tangent made of the same disk counted Q times
is considerably harder and leads to theorem 5.1. Let us therefore focus on
this case and see an overview of the several steps.

We introduce the first order PDEs (for the Q-valued graph) that describe
the calibrating condition. These equations turn out to be, in appropriate
coordinates, perturbations of the classical Cauchy-Riemann equations, but
with three real functions and two real variables.

More precisely, we denote the Q-valued graph describing the current in a
neighbourhood of a point of multiplicity Q by

{(ϕj(z), αj(z))}j=1···Q ,

where z = x+ iy is the coordinate in the Disk D2 ⊂ C, ϕi ∈ C and αi ∈ R.
Without loss of generality we can assume (ϕj(0), αj(0)) = (0, 0) for all j =
1, · · · , Q, so that we are centered at the origin of D2 × C× R.
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The equations solved by the branches of {(ϕj(z), αj(z))} are as follows:







∂zϕj = ν((ϕj , αj), z) ∂zϕj + µ((ϕj, αj), z)

∇αj = h((ϕj , αj), z),
(1)

where ν and µ are smooth complex valued functions on R5 such that ν(0) =
µ(0) = 0 and h is a smooth R2−valued map on R5.

It is remarkable that if we were dealing with a single (Sobolev) solution
ϕ : D2 ⊂ C → C×R of the system above, then the regularity question would
be easily answered by elliptic theory, yielding that ϕ is C∞.

As soon as we have a multi-valued graph, even just 2-valued, singularities
are actually allowed! Then we can restate theorem 1.1 by saying that a sin-
gular behaviour for a multi-valued graph solving the system above is possible
at most at isolated points.

We stress here that in order to get a Q-valued graph solving the system
above we need to perform a careful choice of coordinates. Since this choice
will require a lot of work, we digress shortly on its importance.

With general coordinates, induced by a slicing with arbitrary 3-dimensional
surfaces, we would, in a first instance, lose the property of positive intersec-
tion and not any longer get a Q-valued graph. We could only associate to each
z ∈ D2 a set of points {A1(z), ..., AP (z), B1(z), ..., BN(z)} with P,N ∈ N
changing with z. The only thing that would be independent of z would be the
difference P −N = Q. The points Ai would be those where there is a positive
intersection with the slicing surfaces, the Bi-s those where this intersection
is negative.

In addition to this, a further difficulty would arise. Writing equations
for this “algebraic” Q-valued graph, we would find a supercritical equation,
as explained in [18]. In comparison with the system (1), we would have a
dependence on ∇ϕj inside µ and ν. With such an equation, even for a single-
valued graph, we could not perform bootstrapping in order to get regularity,
and in our case of multiple values, the unique continuation argument (see
below) would fail.

Let us go back to the proof. Using the PDEs (1) we prove a W 1,2 estimate
for the average (ϕ̃, α̃) of the branches of our multivalued graph. We remark
here that we give a proof of the W 1,2-estimate different than the one in [17],
where the authors had the further hypothesis that Sing C was H2-negligible
(see theorem 5.2).

We make a key use of the so-called relative Lipschitz estimate (theorem
4.3 and corollary 5.1). This estimate tells us the following: taken a point x0
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of multiplicity Q whose tangent cone is made of Q times the same disk D0,
if there is a sequence of points {yn} of multiplicity Q accumulating onto x0
then the tangent cones at the points yn must flatten towards D0 as n → ∞
(see figure 6).

The W 1,2-regularity of the average allows us to translate the issue of
accumulation of singularities of multiplicity Q into a problem of accumulation
of zeros for a new Q-valued graph solving a PDEs system - equations (42)
and (43), that is again a perturbation of the classical Cauchy-Riemann. The
new multi-valued graph, described by (41), is obtained from the original one
by subtracting the average, as illustrated in figure 7. The W 1,2-regularity of
the average is the minimum regularity required in order to get that the new
Q-valued graph (41) still represents a boundaryless current in D2 × C × R:
this fact is crucial later for the essential integration by parts formulae (see
lemma 6.2).

Then by a suitable adaptation of the unique continuation argument used
in [21], we prove that the multi-valued graph (41) obtained by subtracting
the average from each branch cannot have accumulating zeros, thereby con-
cluding the first part of the inductive step. The proof is by contradiction.
The argument requires a further modification of the multi-valued graph (see
(44) and (46)): this trick allows to “focus attention” on an accumulating se-
quence of zeros. In order to get a L∞-bound for this multi-valued graph (46)
we need the Lipschitz-type estimate of corollary 5.1. Then we can use the
partial integration allowed by lemma 6.2 and get a contradiction thanks to
the elliptic nature of the equations (47) and (48) satisfied by the multi-valued
graph.

The techniques we employ to show the partial integration formulae for
multi-valued graphs are more typical of geometric measure theory; we also
provide in lemma 6.2 a step that was incomplete in [21].

Second part of the inductive step. Let x0 be a point of multiplicity
Q such that, in a neighbourhood Br(x0), the current C is smooth except
at points of multiplicity ≤ Q − 1 that are isolated in Br(x0) \ {x0} (this
is what we have from the inductive assumption and from the first part of
the inductive step). Then we aim to prove that it is not possible to have a
sequence of such isolated singularities of multiplicity ≤ Q − 1 accumulating
onto x0 (this is the content of theorem 7.1).

We use an homological argument inspired by the one used in [21], where
the same statement was proved in the case of J-holomorphic cycles in a 4-
manifold, although in our case the existence of the fifth coordinate induces
new difficulties and a more involved argument.

For the moment we just sketch the underlying idea, warning the reader
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that in section 7 the formal proof will require new spaces and functions,
different from those sketched here, and some delicate estimates.

As above, we denote the Q-valued graph describing the current in a neigh-
bourhood of a singular point x0 of multiplicity Q by

{(ϕj(z), αj(z))}j=1···Q ,

and denote π : D2 × C × R → D2 the projection map. There is no loss of
generality in taking x0 = 0, the origin of D2 ×C×R. We assume (inductive
assumption + first part of the inductive step) that the multi-valued graph
is smooth except at 0 and at a sequence of points (different from 0) having
multiplicity ≤ Q− 1, isolated in D2 ×C× R and accumulating to x0 (so we
are arguing by contradiction to prove theorem 7.1). Denote the projection
onto D2 of this sequence by {zj}.

Roughly speaking, we would like to exhibit a continuous function u :
D2 → C, vanishing exactly on the set π(Sing C) = {0, z1, ...zj , ...}, such
that when we observe u

|u| on positively oriented loops in D2 \ π(Sing C) the
following hold:

(i) if the loop γ encloses a point zj then the topological degree of u
|u| : γ → S1

on that loop is strictly positive;

(ii) for any loop γr = ∂Br(0) around the origin, the degree of u
|u| : γr → S1

is bounded from below by a constant k ∈ Z independent of r.

From these properties we could conclude theorem 7.1 by the following
homotopy argument.

Take any loop γr1 = ∂Br1(0) lying in D2 \ π(Sing C) and look at the

integer deg
(

u
|u| , γr1

)

, the degree of u
|u| : γr1 → S1. Say it is 1000.

Inside Br1(0) we can choose γr2 = ∂Br2(0) lying in D2 \ π(Sing C) so
that in the annulus Br1(0) \Br2(0) there are 1001 + k of the points zj . This
is possible by the contradiction assumption of actually having a sequence
converging to 0. Around each such zl take an oriented loop γl which encloses
exactly one of them. We can of course ensure that each γl lies in the annulus

and does not meet π(Sing C). We know from (i) that deg
(

u
|u| , γl

)

≥ 1 for

all l.
By homotopy, since u

|u| is continuous on D2 \ π(Sing C) = {u 6= 0}, we
have

deg

(

u

|u| , γr1
)

= deg

(

u

|u| , γr2
)

+ Σldeg

(

u

|u| , γl
)

,
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where the summation is taken over the 1001 + k loops γl in the annulus.

Each term in this summation is ≥ 1. From this we get deg
(

u
|u| , γr2

)

≤ k−1,

contradicting (ii).

This is also the idea in [21]. In that work, the function u is defined by
observing the relative difference of points having the same projection on D2:
this is naturally an element of C in that case.

But for our Special Legendrian, the relative difference naturally lives in
C× R (see figure 8), and there is no notion of degree for a function u : D2 →
C×R, therefore we need to change the setting. We will introduce a new space,
modelled on the product of the 2-dimensional current with R and define a
function u from this product into C × R; this function mimics the relative
difference and that allows a homological argument.

Close enough to each isolated singularity, the C-component of the rela-
tive difference encloses all the topological information and we can neglect
the R-component (see lemmas 7.2 and 7.3). Unfortunately this is only pos-
sible very close to each isolated singularity, and we need to take care also
of the R-component when we seek a global estimate from below (obtained in
lemma 7.5) analogous to the one in (ii), whence the somewhat curious choice
of u and of its domain.
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2 Preliminaries: the construction of positively

intersecting foliations

In this section we are going to construct in a generic way a smooth 3-
surface Σ in S5 with the property that, anytime Σ intersects a Special Leg-
endrian L transversally, this intersection is positive, i.e., the orientation of
TpL ∧ TpΣ agrees with that of TpS

5 (S5 being oriented according to the
outward normal). Then we will construct foliations made with families of
3-surfaces of this kind.

Contact structure. Now we recall some basic facts on the geometry of
the contact structure associated to the Special Legendrian calibration in S5,
see [11] for more details.
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S5 inherits from the symplectic manifold (C3,

3
∑

i=1

dzi ∧ dzi) the contact

structure given by the form

γ := E∗ιN (
3
∑

i=1

dzi ∧ dzi).

This is a 1-form with the contact property saying that γ ∧ (dγ)2 6= 0 every-
where; the associated distribution of hyperplanes is ker(γ(p)) ⊂ TpS

5. In
the sequel the hyperplane of the distribution at p will be denoted by H4

p ,
where H stands for horizontal 4. The condition on γ is equivalent to the
non-integrability of this distribution, i.e. it is impossible (even locally) to
find a 4-surface in S5 which is everywhere tangent to the H4. The vectors
v orthogonal to H4 are called vertical; they are everywhere tangent to the
Hopf fibers eiθ(z1, z2, z3) ⊂ S5.

Special Legendrians are tangent to the horizontal distribution.
The Special Legendrian calibration ω has the property that any calibrated
2-plane in TS5 must be contained in H4. Therefore, Special Legendrian sub-
manifolds are everywhere tangent to the horizontal distribution and they are
a particular case of the so called Legendrian curves, which are the maximal
dimensional integral submanifolds of the contact distribution. We can shortly
justify this as follows: recall that ω and the horizontal distribution are invari-
ant under the action of SU(3). At the point (1, 0, 0) ∈ S5 the Special Legen-
drian semi-calibration is easily5 computed: ω(1,0,0) = dx2 ∧ dx3 − dy2 ∧ dy3.
Then if a unit simple 2-vector in T(1,0,0)S

5 is calibrated, it must lie in the 4-
plane spanned by the coordinates x2, y2, x3, y3, which is the horizontal hyper-
plane H4

(1,0,0) orthogonal to the Hopf fiber eiθ(1, 0, 0). The SU(3)-invariance

of ω and of {H4} implies that, at all points on the sphere, Special Legendrians
are tangent to the horizontal distribution.

J-structure and J-invariance. We introduce now a further structure:
on each hyperplane H4

p , ω restricts to a non-degenerate 2-form, so we get a
symplectic structure and we can define the (unique) linear map

Jp : H
4
p → H4

p

4This is nothing else but the universal horizontal connection associated to the Hopf
projection S5 → CP2 sending (z1, z2, z3) → [z1, z2, z3]. The fibers eiθp, θ ∈ [0, 2π] and
p ∈ S5, are great circles in S5 and the hyperplanes H4

p of the horizontal distribution are
everywhere orthogonal to the fibers. This structure is SU(3)-invariant.

5Recall that we are using standard coordinates zj = xj + iyj, j = 1, 2, 3 on C3.
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characterized by the properties that J2
p = −Id and, for v, w ∈ H4

p ,

ω(p)(v, w) = ω(p)(Jpv, Jpw), 〈v, w〉TpS5 = ω(p)(v, Jpw). (2)

This is a standard construction from symplectic geometry and the uniqueness
of the Jp at each point implies that we get a smooth endomorphism of the
horizontal bundle; in our case the setting is simple enough to allow an explicit
expression of Jp in coordinates, as follows.

ω(1,0,0) = dx2 ∧ dx3 − dy2 ∧ dy3 and recall that H4
(1,0,0) is spanned by the

coordinates x2, y2, x3, y3. Then choose

J(1,0,0) :=

{ ∂
∂x2

→ ∂
∂x3

∂
∂y2

→ − ∂
∂y3

.

The conditions in (2) hold true at this point.
For any p ∈ S5, take g ∈ SU(3)/SU(2) sending p to (1, 0, 0). The SU(2)

in the quotient is the stabilizer of H4
(1,0,0). This stabilizer leaves J(1,0,0) in-

variant (any element of SU(2) commutes with J(1,0,0)) and we can define, for
v ∈ H4

p ,

Jp(v) := dg−1(J(1,0,0)(dg(v))).

Thus we get a smooth J-structure on the horizontal bundle.
From the properties in (2), if a simple unit 2-vector v ∧ w in H4

p is cali-
brated by ω, then

1 = ωp(v, w) = ωp(Jpv, Jpw) = 〈Jpv, w〉TpS5

so

v ∧ w is a Special Legendrian plane ⇔ Jp(v ∧ w) := Jpv ∧ Jpw = v ∧ w,

i.e.

Proposition 2. A 2-plane in TpS
5 is Special Legendrian if and only if it

lies in H4
p (horizontal for the Hopf connection) and it is Jp-invariant for the

J-structure above.

Since all the above introduced objects are invariant under the action of
SU(3), we can afford to work at a given point of S5; from now on we will
focus on a neighbourhood of the point (1, 0, 0) ∈ S5, where we are using the
complex coordinates (z1, z2, z3) = (x1, y1, x2, y2, x3, y3) of C3.

Positive 3-surface. We are now ready for the construction of a 3-surface
with the property of positive intersection.
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Oriented m-planes in C3 will be identified with unit simple m-vectors in
C3. In particular, TS5 is oriented so that TS5 ∧ ∂

∂r
= C3.

Writing down the Special Lagrangian calibration explicitly

Ω = dx1 ∧ dx2 ∧ dx3 − dx1 ∧ dy2 ∧ dy3 − dy1 ∧ dx2 ∧ dy3 − dy1 ∧ dy2 ∧ dx3,

it is straightforward to see that

L0 =
∂

∂x1
∧ ∂

∂x2
∧ ∂

∂x3

is a Special Lagrangian 3-plane passing through the origin of C3 and through
the point (1, 0, 0). We now consider, for a small positive ε, the following
family {Lθ}θ∈(− ε,ε) of Special Lagrangian planes, where {(eiθ, 0, 0)}θ∈(− ε,ε) is
the fiber containing (1, 0, 0) and Lθ goes through the point (eiθ, 0, 0):

Lθ =





eiθ 0 0
0 e−iθ 0
0 0 1





∗

L0 =

= (cos θ
∂

∂x1
+ sin θ

∂

∂y1
) ∧ (cos θ

∂

∂x2
− sin θ

∂

∂y2
) ∧ ∂

∂x3
,

which is Special Lagrangian since it has been obtained by pushing forward
L0 by an element in SU(3).

We introduce the 4-surface Σ4 in C3 obtained by attaching the Lθ-planes
along the fiber {(eiθ, 0, 0)}θ∈(− ε,ε): this 4-surface can be expressed as

Σ4 = (aeiθ, be−iθ, c),

parametrized with (a, b, c) ∈ R3 \ {0}, θ ∈ (− ε, ε). Then define

Σ = Σ4 ∩ S5.

As stated in the coming lemma 2.1, this 3-surface has the desired property
of intersecting Special Legendrians positively.

We can make the equivalent construction starting from the form ω re-
stricted to the fiber {(eiθ, 0, 0)}θ∈(− ε,ε), namely

ω = cos θ(dx2 ∧ dx3 − dy2 ∧ dy3) + sin θ(−dx2 ∧ dy3 − dy2 ∧ dx3),

and explicitly writing down the J-structure onH4
(eiθ,0,0)

introduced above. On

H4
(eiθ ,0,0) we can use coordinates (x2, y2, x3, y3) since H4∧v = TS5, TS5∧ ∂

∂r
=

14



C3 and v = i ∂
∂r

, so H4 = ∂
∂x2

∧ ∂
∂y2

∧ ∂
∂x3

∧ ∂
∂y3

.

Jθ = J(eiθ,0,0) :=



















∂
∂x2

→ cos θ ∂
∂x3

− sin θ ∂
∂y3

∂
∂y2

→ − cos θ ∂
∂y3

− sin θ ∂
∂x3

∂
∂x3

→ − cos θ ∂
∂x2

+ sin θ ∂
∂y2

∂
∂y3

→ cos θ ∂
∂y3

+ sin θ ∂
∂x2

.

So Jθ is represented by the matrix J0Aθ, where 6

J0 =









0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0









, Aθ =









cos θ sin θ 0 0
− sin θ cos θ 0 0

0 0 cos θ − sin θ
0 0 sin θ cos θ









.

If v ∧ w is a J-invariant 2-plane in H4
0 , with w = J0v, then A−1

θ v ∧ w is
Jθ invariant, in fact Jθ(A

−1
θ v) = J0AθA

−1
θ v = J0v = w. Take the geodesic

2-sphere L0 tangent to the J0-holomorphic plane

∂

∂x2
∧ ∂

∂x3
.

This Special Legendrian 2-sphere L0 coincides with L0∩S5 introduced above.
The 2-plane

A−1
θ

∂

∂x2
∧ ∂

∂x3
= (cos θ

∂

∂x2
− sin θ

∂

∂y2
) ∧ ∂

∂x3

is therefore Jθ holomorphic and the geodesic 2-sphere tangent to it is Lθ∩S5.
Σ is the 3-surface obtained from the union of those Special Legendrian spheres
as θ ∈ (− ε, ε).

Lemma 2.1. There is an ε0 > 0 small enough such that for any ε < ε0 the
following holds:

let S be any Special Legendrian current in Bε(1, 0, 0) ⊂ S5; then, at any
point p where TpS is defined and transversal to TpΣ, S and Σ intersect each
other in a positive way, i.e.

TpS ∧ TpΣ = TpS
5.

6In complex notation, looking at H4
(eiθ,0,0) as C2

z2,z3
, we can write

Aθ =

(

eiθ 0
0 e−iθ

)

.
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proof of lemma 2.1.

T(eiθ,0,0)Σ = A−1
θ

∂

∂x2
∧ ∂

∂x3
∧ vθ,

so, along the fiber, the tangent space to Σ is spanned by two vectors l1, l2

such that l1 ∧ l2 is Special Legendrian and by the vertical vector vθ. At any
other point p of Σ, the tangent space always contains two directions l1p, l

2
p

such that l1p ∧ l2p is Special Legendrian (from the construction of Σ). The
third vector w, orthogonal to these two and such that l1p∧ l2p∧w = TΣ, drifts
from the vertical direction as the point moves away from the fiber, but by
continuity, for a small neighbourhood Bε(1, 0, 0), we still have that

H4
p ∧ wp = TpS

5.

On the other hand, it is a general fact that, given a 4-plane with a J-structure,
two transversal J-invariant planes always intersect positively. Therefore

TpS ∧ l1p ∧ l2p = H4
p

at any point p, so

TpS ∧ TpΣ = TpS ∧ (l1p ∧ l2p ∧ wp) = (TpS ∧ l1p ∧ l2p) ∧ wp = TpS
5.

First parallel foliation. Now we are going to exhibit a 2-parameter
family of 3-surfaces that foliate Bε(1, 0, 0) and have the property of positive
intersection. Consider the Special Legendrian 2-sphere

L = (− ∂

∂x1
∧ ∂

∂y2
∧ ∂

∂y3
) ∩ S5.

This is going to be the space of parameters. Consider SO(3) and let it act
on the 3-space − ∂

∂x1
∧ ∂

∂y2
∧ ∂

∂y3
. We are only interested in the subgroup of

rotations having axis in the plane ∂
∂y2

∧ ∂
∂y3

. This subgroup is isomorphic to

SO(3)/S, where S is the stabilizer of a point, in our case the point (1, 0, 0) ∈
− ∂

∂x1
∧ ∂

∂y2
∧ ∂

∂y3
. Thus the rotations in this subgroup can be parametrized

over the points of L =
(

− ∂
∂x1

∧ ∂
∂y2

∧ ∂
∂y3

)

∩ S5 and we will write Aq for the

rotation sending (1, 0, 0) to q ∈ L. We extend Aq to a rotation of the whole
S5 by letting it act diagonally on R3 ⊕ R3 = C3. Then define

Σq = Aq(Σ),
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for q ∈ L. Since Aq ∈ SU(3), Special Legendrian spheres are invariant and
Aq(e

iθ(1, 0, 0)) = eiθAq((1, 0, 0)) = eiθq, so the fiber through (1, 0, 0) is sent
into the fiber through q. Therefore, for a fixed q, Σq is a 3-surface of the
same type as Σ, that is, it contains the fiber through q and is made of the
union of Special Legendrian spheres smoothly attached along the fiber. By
the SU(3)-invariance of ω, from lemma 2.1 we get that Σq has the property
of intersecting positively any transversal Special Legendrian S.

For the sequel define Lε = L ∩ Bε(1, 0, 0).

Lemma 2.2. The 3-surfaces Σq, as q ∈ Lε, foliate a neighbourhood of (1, 0, 0)
in S5.

proof of lemma 2.2. Parametrize Lε with normal coordinates (s, t), with
∂
∂s

= ∂
∂y2
, ∂
∂t

= − ∂
∂y3

and Σ = Σ0 with (a, b, c, θ) ∈ (S2∩Bε(1, 0, 0))× (− ε, ε),

with (a, b, c) ∈ S2 ⊂ R3 = ∂
∂x1

∧ ∂
∂x2

∧ ∂
∂x3

and θ ∈ (− ε, ε) as done during the

construction (we set a = (1−b2−c2)1/2). Consider the function ψ : Σ×Lε →
S5 defined as

ψ(p, q) = Aq(p)

for p = (b, c, θ) ∈ Σ, q = (s, t) ∈ Lε. Analysing the action of the differential
dψ on the basis vectors at (0, 0) ∈ Σ× Lε we get:

∂ψ

∂b
=

∂

∂x2
,
∂ψ

∂c
=

∂

∂x3
,
∂ψ

∂θ
=

∂

∂y1
,
∂ψ

∂s
=

∂

∂y2
,
∂ψ

∂t
= − ∂

∂y3
.

So the Jacobian determinant at 0 is 1 and ψ is a diffeomorphism in some
neighbourhood of (1, 0, 0) where we can introduce the new set of coordinates
(b, c, θ, s, t). Therefore, the family {Σs,t}(s,t)∈L foliates an open set that we
can assume to be ψ(Σ× Lε) if both Σ and Lε were taken small enough.

Coordinates induced by the first parallel foliation. Recall that, in
each H4

p we are interested in the possible calibrated 2-planes, which, as shown
above, must be Jp-invariant. The set of these 2-planes is parametrized by the
complex lines in C2 and is therefore diffeomorphic to CP1. We are often going
to identify H4 with C2 (respectively CP1, if we are interested in the complex
lines) with the following coordinates: on H4

(1,0,0) we set H4
(1,0,0) = TL ⊕

T (L0) = Cs+it ⊕ Cb+ic, where L, L0 are the Special Legendrians introduced
above; TL, TL0 are C-orthogonal complex lines in H4

(1,0,0), TL = ∂
∂s

∧ ∂
∂t

and

TL0 =
∂
∂b

∧ ∂
∂c

. Then the complex line L will be represented by [1, 0] in CP1

and L0 by [0, 1]. Extend these coordinates to the other hyperplanes H4 as
follows: at any H4

p we have that, for the unique Σ containing p:

TpL = [1, 0], TpΣ ∩H4
p = [0, 1]. (3)
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Families of parallel foliations. We will often need to use not only
the foliation constructed, but a family of foliations. Keeping as base coor-
dinates the coordinates that we just introduced, we can perform a similar
construction. The foliation we constructed is parametrized by q ∈ L with
the property that TqΣq ∩ H4

q = [0, 1] ∈ CP1. For X in a neighbourhood

of [0, 1] ∈ CP1, e.g. {X = [Z,W ] ∈ CP1, : |Z| ≤ |W |}, we start from the
3-surface ΣX

0 built as follows: the Special Legendrian spheres that we attach
to the fiber should have tangent planes in the direction X ∈ CP1. Then,
for any such fixed X, we still have a foliation of a neighbourhood of (1, 0, 0),
parametrized on L and made of the 3-surfaces

ΣX
q := Aq(Σ

X
0 ), q ∈ L. (4)

We will refer to ΣX
q as to the 3-surface born at q in the direction X. The

original surfaces we built will be denoted Σ[0,1]. By the SU(3)-invariance of
ω, from lemma 2.1 we get the positiveness property for ΣX

q :

Corollary 2.1. For any q, ΣX
q has the property of intersecting positively any

transversal Special Legendrian S, i.e. at any point p where TpS is defined
and transversal to TpΣ

X
q ,

TpS ∧ TpΣX
q = TpS

5.

For a fixed X, a parallel foliation {ΣX
p } (as p ranges over Lε) gives rise

in a neighbourhood of (1, 0, 0) to a system of five real coordinates. The
adjective parallel is reminiscent of this resemblance to a cartesian system of
coordinates in the chosen neighbourhood. There are several reasons why we
produced parallel foliations keeping freedom on the "direction" X; they will
be clear later on.

Families of polar foliations. So far we have been dealing with "paral-
lel" foliations. We turn now to "polar" foliations7.

Notice that, a point in L being fixed, say 0, we have that, as X runs over
a neighbourhood of [0, 1] ∈ CP1, the family {ΣX

0 } foliates a conic neighbour-

hood of Σ
[0,1]
0 . Observe that the rotations in SO(3) ⊂ SU(3) fixing the fiber

through q ∈ S5 have for differentials exactly the rotations in SU(2) on H4
q .

Denoting RX,Y the rotation whose differential sends X to Y ∈ H4
q , we have

RX,Y (Σ
X
q ) = ΣY

q .

7The term polar is used as reminiscent of the standard polar coordinates in the plane.
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Lemma 2.3. With the above notations, let U be a small enough neighbour-
hood of Y ∈ CP1 and consider ΣY

q for some point q. Let LY ⊂ ΣY
q be the

Special Legendrian 2-sphere tangent to Y at q. Then

(∪X∈UΣ
X
q )− {eiθq}

is a neighbourhood of LY − {q}.

proof of lemma 2.3. Introduce the function ψ : Σ × U → S5 sending
(p,X), p ∈ Σ = ΣY

q , X ∈ U , to the point RY,X(p) ∈ ΣX
q . Observe that,

in a neighbourhood of (1, 0, 0), the differential of ψ is different from zero
except at the points of the Hopf fiber through (1, 0, 0). Indeed, on this fiber,
dψ restricted to the 3-space TΣ has rank 3 and TΣ ∼= Y1∧Y2∧v, with Y1∧Y2
the 2-plane in C2 represented by Y . At any point F among these, dψ is zero
on the tangent space to U at Y , since the image ψ(F,X) is constantly equal
to F for any X. For any fixed point p not on the fiber and for X on a curve
in U through Y , ψ(p,X) is a curve transversal to ΣY

p , since we are moving
p by the rotation RY,X . Therefore the differential dψ(p, Y ) has rank 2 when
restricted to the tangent to U at Y , while on the complementary 3-space dψ
still has rank 3 by smoothness. Therefore we get the desired result.

Remark 2.1. We remark here that a 3-surface Σ of the type just exhibited
above, is foliated by Special Legendrian spheres, so the Special Legendrian
structure restricted to Σ is integrable; a Special Legendrian integral cycle
contained in such a Σ must locally be one of these spheres.

Remark 2.2. With the above notations, L0 +L is a Special Legendrian cycle
with isolated singularities at the points (1, 0, 0) and (−1, 0, 0). This example
shows that our regularity result is optimal. The reader may consult [11] for
further explicit examples of Special Legendrian surfaces.

3 Tools from intersection theory

In this section we recall some basic facts about the blowing-up of the
current at a point and about the Kronecker intersection index (for the related
issues in geometric measure theory we refer to [8]); then we show that this
index is preserved when we send a blown-up sequence to the limit.

Let C be the Special Legendrian cycle that we are studying. The blow-up
analysis of the current C around a point x0 is performed as follows: consider
a dilation of C around x0 of factor r which, in normal coordinates around x0,

19



is expressed by the push-forward of C under the action of the map
x− x0
r

:

Cx0,r(ψ) =

[(

x− x0
r

)

∗
C

]

(ψ) = C

((

x− x0
r

)∗
ψ

)

.

From [16] or [19] we have the monotonicity formula8 which states that, for
any x0, the function mass ratio, i.e.

M(C Br(x0))

r2
,

is monotonically non-increasing as r ↓ 0, therefore9 the limit

θ(x) := lim
r→0

M(C Br(x))

πr2

exists for any point x ∈ S5. This limit coincides (a.e.) with the multiplicity θ
assigned in the definition10 of integer cycle, whence the use of the same nota-
tion. We can therefore speak of the multiplicity function θ as a (everywhere)
well-defined function on C.

We recall the definitions of weak-convergence and flat-convergence for a
sequence Tn of currents in Rm to T ∈ Rm. We remark, however, that the
notions of weak-convergence and flat-convergence turn out to be equivalent
for integral currents of equibounded mass and boundary mass (as it is in our
case), see 31.2 of [19] or [8], page 516.

We say that Tn ⇀ T weakly when we look at the dual pairing with m-
forms, i.e. if Tn(ψ) → T (ψ) for any smooth and compactly supported m-form
ψ.

Tn → T in the Flat-norm if the quantity F(T−Tn) := inf{M(A)+M(B) :
T − Tn = A+ ∂B,A ∈ Rm, B ∈ Rm+1} goes to 0 as n→ ∞.

The fact that
M(C Br(x0))

r2
is monotonically non-increasing as r ↓ 0

gives that, for r ≤ r0 (for a small enough r0), we are dealing with a family
of currents {Cx0,r} which are boundaryless and locally equibounded in mass;
by Federer-Fleming’s compactness theorem11, there exist a sequence rn → 0

8This formula is proved in [16] for semi-calibrated currents and in [19] for currents of
vanishing mean curvature; both cases apply here.

9To be precise, due to the fact that the metric is not flat, the mass ratio is almost

monotone, i.e.
M(C Br(x0))

r2
= R(r) + O(r) for a function R which is monotonically

non-increasing as r ↓ 0 and tends to the multiplicity at x0 as r ↓ 0, and a function O(r)
which is infinitesimal. The additional infinitesimal term O(r) does not affect the analysis
we need to perform.

10The multiplicity θ can be assumed to be positive by choosing the right orientation for
the approximate tangent planes to the current.

11See [8] page 141.
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and a rectifiable boundaryless current C∞ such that

Cx0,rn → C∞ in Flat-norm.

C∞ turns out to be a cone (a so called tangent cone to C at x0) with den-
sity at the origin the same as the density of C at x0 and calibrated by ωx0

(see [10] section II.5); being Jx0
-holomorphic, this cone must be a sum of

Jx0
-holomorphic planes, so C∞ = ⊕Q

i=1Di, where the Di’s are (possibly coin-
ciding) Special Legendrian disks. In particular, the multiplicity (the limit of
the mass ratio) θ is everywhere N-valued in our case.

An important question for regularity issues is to know whether this tan-
gent cone is unique or not, or, in other words, if C∞ is independent of the
chosen {rn}: the answer happens to be positive in our situation. We are
going to give a self-contained proof of it in the next section (theorem 4.1)
based on the tools from this section.

What kind of geometric information can we draw from the existence of
a tangent cone? The following lemma shows that, considering a blown-up
sequence Cx0,rn tending to one possible tangent cone C∞, we can fix a conic
neighbourhood of C∞, as narrow as we want, and if we neglect a ball around
zero of any radius R < 1 the restrictions of Cx0,rn to the annulus B1 \BR are
supported in the chosen conic neighbourhood for n large enough12.

Remark 3.1. It is a standard fact that two distinct sequences Cx0,rn and Cx0,ρn

must tend to the same tangent cone if a ≤ rn
ρn

≤ b for some positive numbers

a and b. See [14].

Lemma 3.1. Let C be a Special Legendrian cycle with x0 ∈ C and let 0 <
R < 1. With the above notations, let ρn → 0 be such that Cx0,ρn ⇀ C∞ =

⊕Q
i=1Di. Denote by AR the annulus {x ∈ B1(0), |x| ≥ R} and by Eε the set

{x ∈ B1(0), dist(x, C∞) < ε |x|}. Then, for any ε > 0, there is n0 ∈ N large
enough such that

sptCx0,ρn ∩ AR ⊂ Eε

for n ≥ n0.

proof of lemma 3.1. Arguing by contradiction, we assume the existence of
ε0 > 0 such that

∀n ∃xn ∈ sptCx0,ρn ∩ Ec
ε0
∩AR.

Recall that the sequence Cx0,ρn|xn| also converges weakly to the same tangent

cone C∞ since R ≤ ρn|xn|
ρn

≤ 1 (previous remark). From the monotonicity

12Recall that Cx0,r lives in a normal chart centered at 0.
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formula we have

M

(

Cx0,ρn|xn| B ε0
2

(

xn
|xn|

))

≥ πε20
4
.

By compactness, modulo extraction of a subsequence, we can assume that
xn
|xn|

→ x∞ ∈ ∂B1 ∩ Ec
ε0
. Then, since for n large enough B 3ε0

4

(x∞) ⊃

B ε0
2

(

xn

|xn|

)

, we get

M
(

Cx0,ρn|xn| B 3ε0
4

(x∞)
)

≥ πε20
4
.

Recall that, from the semi-calibration property, we have

M
(

Cx0,ρn|xn| B 3ε0
4

(x∞)
)

=
(

Cx0,ρn|xn| B 3ε0
4

(x∞)
)

(

id

ρn|xn|
∗
ω

)

;

moreover
id

ρn|xn|
∗
ω

C∞(B1)−→ ω0

as n → ∞, where ω0 is the constant 2-form ω(0). Putting all together, we
can write (the first equality expresses the fact that ω0 is a calibration for
C∞)

M
(

C∞ B 3ε0
4

(x∞)
)

=
(

C∞ B 3ε0
4

(x∞)
)

(ω0) =

= lim
n

(

Cx0,ρn|xn| B 3ε0
4

(x∞)
)

(ω0) = lim
n

(

Cx0,ρn|xn| B 3ε0
4

(x∞)
)

(

id

ρn|xn|
∗
ω

)

=

= lim
n
M
(

Cx0,ρn|xn| B 3ε0
4

(x∞)
)

≥ πε20
4
, (5)

which contradicts the fact that sptC∞ ∩B 3ε0
4

(x∞) = ∅.

We need some more tools from intersection theory. For the theory of
intersection and of the Kronecker index we refer to [8], chap.5, sect. 3.4. We
recall the definition of the index relevant to our case.

Let f : R5 × R5 → R5 be the function f(x, y) = x − y. The Kronecker
intersection index k(S, T ) for two currents of complementary dimensions S ∈
Rk(R5), T ∈ R5−k(R5) is defined under the following conditions:

sptS ∩ spt(∂T ) = ∅ and sptT ∩ spt(∂S) = ∅, (6)

which imply
0 /∈ f(spt(∂(S × T ))).
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Then there is an ε > 0 such that Bε(0) ∩ f(spt(∂(S × T ))) = ∅. By the
constancy theorem ([8] page 130) we can define the index k(S, T ) as the only
number such that13

f∗(S × T ) Bε(0) = k(S, T )JBε(0)K.

k(S, T ) turns out to be an integer.
For S, T as above, whenever the intersection S ∩ T exists (in that case,

S∩T is a sum of Dirac deltas with integer weights), then k(S, T ) = (S∩T )(1).
In particular, when S and T are standard submanifolds k(S, T ) just counts
intersections with signs as in the classical intersection theory.

In the following lemma we focus on a chosen sequence Cx0,ρn converging

to a possible cone C∞ = ⊕Q
i=1Di. For notational convenience we set Cn :=

Cx0,ρn B1(0) and C := C∞ B1(0), always assuming to be in a normal chart
with x0 at the origin.

Lemma 3.2. Let Cn ⇀ C in B1. Take Σ to be any 3-surface such that
Σ∩C ∩ ∂B1 = ∅. Then, for all n large enough, k(Cn,Σ) = k(C,Σ), where k
is the Kronecker index just defined.

proof of lemma 3.2. Define Tn := C−Cn. Tn → 0 in the Flat-norm of B1,
so we can write Tn = Sn + ∂Rn, with M(Tn) +M(Sn) → 0, where Sn ∈ R2

and Rn ∈ R3. From the hypothesis on Σ we can choose ε > 0 small enough to
ensure that Σ∩Eε∩AR = ∅, where Eε∩AR = {x ∈ B1, |x| ≥ R, dist(x, C) <
ε |x|}, for some suitable 0 < R < 1. For all n big enough, from lemma 3.1 , we
get that spt Tn∩AR ⊂ Eε; in particular, the condition (6) on the boundaries
of Σ and C is fulfilled and the intersection index k(Tn,Σ) is well-defined.

Denote by τaΣ, as in [8], the push-forward (τa)∗[Σ] of Σ by the translation
map τa, where a is a vector. The Kronecker index is invariant by homotopies
keeping the boundaries condition, so we can assume that all the intersections
we will deal with are well defined as integer 0-dim rectifiable currents: in
fact, for a fixed n, the intersection Tn ∩ τaΣ exists for a.e. a, and n runs over
a countable set. Obviously

k(Cn − C,Σ) = k(Sn,Σ) + k(∂Rn,Σ);

we are going to show that both terms on the r.h.s. are zero for n large
enough.

From [8] we have that (the index k counts the points of intersection with
signs)

k(∂Rn,Σ) = (∂Rn ∩ Σ)(1).

13We are using f∗ to denote the push-forward under f ; in [8] the notation is f♯.
The brackets JBε(0)K denote the current of integration on Bε(0).
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On the other hand,

∂Rn ∩ Σ = Rn ∩ ∂Σ − ∂(Rn ∩ Σ) = −∂(Rn ∩ Σ)

since ∂Σ = 0 in B1. So

∂(Rn ∩ Σ)(1) = (Rn ∩ Σ)(d1) = 0,

which implies k(∂Rn,Σ) = 0.
Consider now k(Sn,Σ) and recall that ∂Sn = ∂Tn. We have that spt∂Sn∩Σ =
∅ and sptSn∩∂Σ = ∅, so 0 /∈ f(spt(∂(Sn×Σ))) and this index is well-defined
and given by

f∗(Sn × Σ) = k(Sn,Σ)JBε(0)K,

where f : R5×R5 → R5 is f(x, y) = x−y and ε is such that Bε∩f(spt(∂(Sn×
Σ))) = ∅; thanks to lemma 3.1, ε can be chosen independently of n. So, for
a fixed ε, we have that

f∗(Sn × Σ) = k(Sn,Σ)JBε(0)K (7)

holds for all n large enough. By assumption we know that M(Sn) → 0,
therefore M(Sn × Σ) → 0 and M(f∗(Sn × Σ)) → 0 since f is Lipschitz; but
then, for ε fixed and k ∈ N, the only possibility for the r.h.s. of (7) to go to
zero in mass-norm is that eventually k(Sn,Σ) = 0 . So we can conclude that
k(Tn,Σ) = 0 for all large enough n.

Remark 3.2. If Q is the multiplicity at 0 and Σ = Σ0 such that Σ0 is transver-
sal to all Di that constitute the tangent cone C, then k(Ci,Σ0) = Q for i
greater than some i0. Once we have this, k(Ci,Σ) = Q also holds for any
3-surface Σ that can be joined to Σ0 via a homotopy during which we do not
cross ∂Ci, in particular for small translations τaΣ0.

4 Uniqueness of the tangent cone - easy case of

non-accumulation - Lipschitz estimate

The uniqueness of the tangent cone at an arbitrary point of the Special
Legendrian follows from the more general result proved in [16] for general
semi-calibrated integral 2-cycles. In this section, using the tools developed
in the previous sections, we will give a self-contained proof of this uniqueness
in our situation. The section then continues with proofs in the same flavour
of the two other results quoted in the title of the section.
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The following lemma (see left picture in figure 1) is stated separately since
it will be repeatedly recalled in the several proofs of this section. C is our
Special Legendrian current.

Lemma 4.1. Let p ∈ S5 and consider a polar foliation born at p, i.e. a
family (ΣX

p ) of 3-surfaces, for X varying in an open ball U of CP1 ∼= PH4
p .

For 0 < r < R , consider the open set

W = (∪X∈UΣ
X
p ) ∩ (BR(p)− Br(p)).

Assume that C W 6= 0 and that spt (∂(C W )) ⊂ ∪X∈∂UΣ
X
p . Then

k(C W,ΣX
p ) ≥ 1 for any X ∈ U .

Proof of lemma 4.1. The carrier of C W is just C ∩W , where C is the
carrier of the Special Legendrian current.

Define s : W → U to be the smooth function taking the value Y ∈ U at
points of ΣY

p ∩W . From slicing and intersection theory we have the following
facts.

• from [8], page 156, we know that the slice 〈C W, s = Y 〉 is well-
defined for H2 almost all Y ∈ U as a sum of Dirac deltas with integer
weights, supported on the finite set of points C ∩W ∩ s−1{Y } = C ∩
W ∩ ΣY

p . The weight of each Dirac delta is just the multipliciticy of
the Special Legendrian at that point, with a sign induced by the sign
of the intersection of the oriented tangent to C and the tangent to ΣY

p .
The sign is always positive in our case, due to the positive intersection
property of the foliation.

• recalling that 〈C W, s = Y 〉 = (C W ) ∩ ΣY
p , we have that, when

the slice 〈C W, s = Y 〉 exists, the Kronecker index k(C W,ΣY
p ) is

just 〈C W, s = Y 〉(1), the sum of the weights of the Dirac deltas that
appear in the slice. By the positiveness of intersections we then see
that, as long as (C W ) ∩ ΣY

p exists and C ∩W ∩ ΣY
p 6= ∅, the index

k(C W,ΣY
p ) is strictly positive.

Observe further that, as soon as we have a particular Y ∈ U for which
k(C W,ΣY

p ) ≥ 1, we can say the same for any other X ∈ U , thanks to
the hypotesis on the boundary of C: indeed the 3-surfaces ΣY

p ∩ W and
ΣX

p ∩W , for any X, Y ∈ U , can be connected by homotopy without crossing
spt(∂(C W )), therefore the intersection index stays constant.

In view of the observations made, it is enough to have the strict positive-
ness of k(C W,ΣY

p ) for just a single Y ∈ U in order to conclude the proof
of the lemma. Therefore we ask: is it possible that, for almost all X ∈ U
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p

W

∂(C W ) lives here

ΣA
p

Br(p)

BR(p)

W

ΣX
pU

a
C

parallel foliation
with direction Z at a
does not cross ∂(C W )

Figure 1: On the left: schematical view of the statement. C is dashed. Due
to the condition on the boundary of C W , for any ΣX

p with X ∈ U we must
find a strictly positive intersection index. On the right: the choice of the
parallel foliation near a.

the intersection C ∩W ∩ ΣX
p is empty? Let us analyse what should happen

in this case.

If for H2-almost all X ∈ U the forementioned interection is empty, we
would find by the coarea formula (see [8], Theorem 3, pages 102-103) that

∫

C∩W
JC
s dH2 =

∫

U

{
∫

s−1{X}
dH0

}

dH2(X) = 0,

where JC
s is the Jacobian of s relative to the approximate tangent of C.

The formula would imply that H2 almost everywhere on C ∩W it must hold
JC
s = 0, so that each approximate tangent to C must have at least a direction

in common with the tangent to ΣX
p : but thanks to the pseudo-holomorphic

behaviour from proposition 2 and the way the 3-surfaces are constructed,
this would then force, at almost all points of C ∩W , C to be tangent to the
3-surfaces ΣX

p .

It could be proved directly that this is impossible, since it would force C
to be made of a sum of Special Legendrian spheres (some of those building
up the 3-surfaces ΣX), and C would therefore have boundary on ∂Br and
∂BR, contradiction.

We prefer however to avoid the technicalities of that proof, and show just
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the content of the lemma: this can be achieved as follows.

We have seen that, if for H2-almost all X ∈ U it is true that C∩W ∩ΣX
p =

∅, then for H2 a.e. q ∈ C ∩W we must have TqC ⊂ TqΣ
X
p , for the unique X

such that q ∈ ΣX
p .

Take a point a ∈ C ∩W having density 1 with respect to H2. It exists
since C ∩ W is non-empty. Denote by ΣA

p the 3-surface born at p passing
through a.

Now take a 3-surface ΣZ
a born at a, where Z is a direction in CP1 ∼=

PH4
a taken such that ΣZ

a is transversal to ΣA
p and ΣZ

a ∩ ∂W is disjoint from
∪X∈∂UΣ

X
p , in particular disjoint from spt(∂(C W )). To ensure that, it is

enough to take ΣZ
a close enough to ΣA

p .
Take a parallel foliation of 3-surfaces ΣZ

w parallel to ΣZ
a . Choose this

parallel foliation such that all the ΣZ
w do not intersect spt(∂(C W )) (figure

1, picture on the right), which is ensured if these parallel 3-surfaces stay close
enough to ΣZ

a . Any small enough neighbourhood Va of a is foliated by these
parallel 3-surfaces ΣZ

w.

Claim: it is not possible that for H2-almost every 3-surface of the parallel
foliation it happens C ∩ Va ∩ ΣZ

w = ∅.
Indeed, if this were the case, we would find, by means of the coarea

formula as above, that H2-almost all of C∩Va is tangent to the 3-surfaces ΣZ
w

(remark that, no matter how small Va is, H2(C ∩ Va) > 0 since a has density
1).

But C ∩Va cannot simultaneusly be tangent to the ΣZ
w’s and to the ΣX

p ’s.
Indeed, ΣZ

a was chosen transversal to ΣA
p , so if Va is small enough, inside Va

we have that, by stability of the transversality, all the ΣX
p are transversal to

all the ΣZ
w. This proves the claim.

So we can find a H2-positive set of ΣZ
w such that C ∩ Va ∩ ΣZ

w 6= ∅. Now,
looking at the situation in the whole of W , for H2-almost all the ΣZ

w’s, the
intersection C ∩ ΣZ

w is well-defined and the Kronecker index k(C W,ΣZ
w) =

((C W ) ∩ ΣZ
w)(1) must be ≥ 1 due to the strictly positive contribution in

Va.
But ΣZ

w and ΣA
p can be joined by homotopy without crossing the bound-

ary of C W , therefore the index stays constant during the homotopy and
k(C W,ΣA

p ) ≥ 1. Again by homotopy, we find that for any Z ∈ U the index
k(C W,ΣX

p ) is a striclty positive integer, concluding the proof.

Uniqueness of the tangent cone. We start with the following:

Lemma 4.2. Take any point x0 of a Special Legendrian cycle C and be
Q its multiplicity. Then there exists a unique choice of n distinct Special
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Legendrian disks D1, ...Dn going through x0 such that any tangent cone at x0
must be of the form Tx0

C = ⊕n
k=1NkDk, for some Nk ∈ N \ {0} satisfying

∑n
k=1Nk = Q.

Remark 4.1. This result "almost" gives the uniqueness of the tangent cone.
What still is missing, is the fact that the multiplicities Nk are also uniquely
determined. This will be achieved in theorem 4.1.

proof of lemma 4.2. We work in a normal chart centered at the origin,
so that 0 has multiplicity Q. With a little abuse of notation, we will write
C Br(0) (for small enough r) meaning the current, restricted to the geodesic
ball of radius r, seen in the chart.

Argue by contradiction: take two tangent cones C(1)
∞ = ⊕n1

k=1N
(1)
k D

(1)
k and

C(2)
∞ = ⊕n2

k=1N
(2)
k D

(2)
k having distinct supports, and two blown-up sequences

{Cx0,ri} and {Cx0,ρi} converging to each of them. In this proof we denote
Cx0,r B1(0) simply by Cr, so

Cri ⇀ C(1)
∞ , Cρi ⇀ C(2)

∞ .

As the proof goes on, the reader might refer to figure 2 for a schematic
visualization of the objects involved.

Take a positive δ much smaller than the angular distance

̂
C

(1)
∞ , C

(2)
∞ := min

Di 6=Dj

̂
D

(1)
i , D

(2)
j >> δ > 0

(the distance is given by the Fubini-Study metric in CP1 ∼= PH4
0 and is strictly

positive by the contradiction assumption). Moreover assume, without loss of

generality, that the disk of C
(1)
∞ on which the minimum is achieved is D0, the

disk represented by [1, 0] ∈ CP1. In particular we are also assuming that D0

is not in the support of C
(2)
∞ . By abuse of notation we will write D0 ∈ C

(1)
∞

to express the fact that D0 is one of the disks that build up the cone C
(1)
∞ .

Analogously we have D0 /∈ C
(2)
∞ . Choose ρi0 such that

(i) for j ≥ i0, ∂(C Bρj ) is contained in Eδ
2 , the δ-conic-neighbourhood of

C
(2)
∞ (possible by lemma 3.1);

(ii) k(Cρj ,Σ
[1,0]
0 ) = Q for any j ≥ i0. Remark that Σ

[1,0]
0 is transversal to

C
(2)
∞ . By homotopy, it also holds that k(Cρj ,Σ

X
0 ) = Q for any j ≥ i0

and any ΣX
0 with X ∈ CP1 in a δ-neighbourhood of [1, 0]. Indeed, the

homotopy keeps the condition of non-crossing boundaries expressed in
(6).
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0

W1

W2

δ

δ

∂(C (Bρi0
\Bρi1

)) is forced to live

ρi0

ρi1

ri1

C
(1)
∞

C
(2)
∞

ri1
2

here by point (i)

Figure 2: In the picture we have taken C
(1)
∞ to be Q times D0. C

(2)
∞ is a

different disk counted Q times. The horizontal and vertical directions should
be respectively thought of as [1, 0] and [0, 1]. The fifth direction should be
imagined as entering the picture. The dotted region corresponds to W2; its
subset W1 is shaded.

Choose now ri1 < ρi0 such that

(iii) denoting by Eδ
0 the δ-conic-neighbourhood of D0 and setting

W1 = (Bri1
\B ri1

2

) ∩ Eδ
0 ,

we have
C W1 6= 0;

this is true for i large enough since Cri ⇀ C
(1)
∞ ∋ D0.

Take now ρi1 <<
ri1
2

. Define

W2 := (Bρi0
\Bρi1

) ∩ Eδ
0 ⊃W1.

W2 is foliated by ΣX
0 as X varies in a δ-neighbourhood of [1, 0].

From (i), ∂(C (Bρi0
\Bρi1

)) is zero on W2 ∩ ∂BR and on W2 ∩ ∂Br.
From (iii) we know that C W2 6= 0.
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So we can use lemma 4.1 in the open set W2. Then, for almost all X in
the δ-neighbourhood of [0, 1], we have

k(C Bρi0
,ΣX

0 ) = k(C Bρi1
,ΣX

0 ) + k(C (Bρi0
\Bρi1

),ΣX
0 ) =

= k(Cρi1
,ΣX

0 ) + k(C W2,Σ
X
0 ) + k(C ((Bρi0

\Bρi1
) \W2),Σ

X
0 ) =

= Q + k(C W2,Σ
X
0 ) + k(C ((Bρi0

\Bρi1
) \W2),Σ

X
0 ) ≥ Q+ 1;

the last inequality follows from the positivity (≥ 0) of intersection in (Bρi0
\

Bρi1
) \W2 and the strict positiveness (≥ 1) guaranteed in W2. This contra-

dicts (ii).

Now that this "almost uniqueness" of the tangent cone is established, we
can improve lemma 3.1 as follows:

Lemma 4.3. Let {Dk}nk=1 be the uniquely determined disks on which any
tangent cone to C at x0 must be supported. Let us therefore write T = ∪kDk

for this well-determined support. Denote by Eε the cone {x ∈ B1, dist(x, T ) <
ε |x|}. Then for any ε > 0 there is ρε small enough such that for any ρ ≤ ρε

spt (Cx0,ρ B1(0)) \ {0} ⊂ Eε.

proof of lemma 4.3. The proof is similar to the one of lemma 3.1. Assume
the existence of ε0 > 0 and ρn → 0 contradicting the claim and argue as
in the proof of lemma 3.1. The only modification in the proof consists in
using the "almost uniqueness" of the tangent cone at 0 (lemma 4.2) instead

of the condition R ≤ ρn|xn|
ρn

≤ 1. If Cx0,ρn converges to the cone C∞ =

⊕n
k=1NkDk, then Cx0,ρn|xn| must tend to a limiting cone C̃∞ = ⊕n

k=1ÑkDk. So

the computation in (5) can be performed with C̃∞ instead of C∞, still leading
to a contradiction since the supports of C̃∞ and C∞ are the same.

Now we can complete the proof of the uniqueness of the tangent cone:

Theorem 4.1. The tangent cone at any point x0 of a Special Legendrian
cycle C is unique.

proof of theorem 4.1. With the result and the notations of lemma 4.2 in
mind, we only have to exclude that the multiplicities Nk may depend on the
chosen sequence that we blow-up.

Choose ε small enough to ensure that different ε-neighbourhoods

Ei
ε = {x ∈ B1, dist(x,Di) < ε |x|}, Ej

ε = {x ∈ B1, dist(x,Dj) < ε |x|}
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of different disks Di and Dj do not overlap, i.e. Ei
ε ∩ Ej

ε = ∅.
Rotate B1 in order to have that the family Σp := Σ

[0,1]
p is transversal to

all the disks Dk. Then, for p in a neighbourhood Bδ of 0 and for all small
enough r, the index k(Cr,Σp) is well-defined since lemma 4.3 ensures the
condition (6) of non-crossing-boundaries.

The key observation is that the rescaled Cr form a continuous (with re-
spect to r) family of currents (with respect to the flat-topology) and they
are always constrained in the Eε-neighbourhood given by lemma 4.3. Fix i:
the fact that the Ek

ε are well separated implies that, for any p ∈ Bδ,

∂(Cr Ei
ε) ∩ Σp = ∅, (Cr Ei

ε) ∩ ∂Σp = ∅.

Moreover, due to the mentioned continuity, as r → 0 the currents Cr Ei
ε

are all homotopic to each other, and these homotopies keep the condition (6)
between Cr Ei

ε and Σp Ei
ε.

Therefore k(Cr Ei
ε,Σp) must stay constant as r → 0, so there is a well-

determined Ni ∈ N such that k(Cr Ei
ε,Σp) = Ni. Then any limiting cone

C∞ must satisfy k(C∞ Ei
ε,Σp) = Ni, with the same proof as in lemma 3.2.

This means that C∞ Ei
ε = NiDi, so all the multiplicities Nk are uniquely

determined.

Easy case of non-accumulation. The following result solves the "easy
case" of non-accumulation of singularities of multiplicity Q to a singularity p
of the same multiplicity: this "easy case" arises when the tangent cone at p is
not made of Q times the same disk. We will see how to handle the "difficult
case" (tangent cone made of Q times the same plane) in sections 5 and 6.

Define the set SingQ of singularities of multiplicity (or order) Q of the
Special Legendrian cycle C:

SingQ := {p ∈ C : p is a singular point, θ(p) = Q}.

In the same fashion we will use the notation

Sing≤Q := {p ∈ C : p is a singular point , θ(p) ≤ Q}.

Theorem 4.2. For a Special Legendrian cycle C, assume x0 ∈ SingQ,
Tx0

C 6= QJDK, i.e. Tx0
C = ⊕m

k=1NkDk, where Dk are distinct Special Legen-
drian disks and m ≥ 2. Then ∃r > 0 such that

SingQ ∩Br(x0) = {x0}.
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proof of theorem 4.2. The proof uses techniques similar to those from
theorem 4.1. Take a normal chart with x0 = 0: by contradiction, assume
∃ xn → 0, with xn ∈ SingQ. Rename the Di’s so that D1 and D2 realize the

minimum γ of the angular distances D̂i, Dj. γ > 0 since T0C 6= QJDK and
γ ≤ π

2
since this is the maximum for the Fubini-Study metric.

Define ρn = 2|xn| and blow up about 0 using ρn as rescaling factors. Up
to a possible exchange of the roles of D1 and D2 and up to a subsequence, we
can assume xn

2|xn| → p ∈ D2∩∂B1/2. Rotate B1 to ensure that D1 and D2 are

contained in the 3π
4

-cone around D0
∼= [1, 0] and that Σ

[0,1]
p is transversal to

the disks {Dj}mj=1. The situation is schematically described in figure 3 (read
the caption for some heuristics of the proof).

Take α << γ; for all n large enough, thanks to lemma 4.3 we can ensure
that

spt(Cx0,ρn B1) ⊂ ∪m
i=1E

α
i ∪ {0}, (8)

where Eα
i denotes the cone of width α around Di. Thanks to the position of

D1 and D2, we can find a small enough ball U ⊂ CP1 centered at [0, 1] such
that for any X ∈ U we have that ΣX

p is transversal to the disks {Dj}mj=1 and
that ΣX

p ∩ spt(∂(Cx0,ρn B1)) = ∅.
In this situation, thanks to lemma 3.2, we know that for X ∈ U and for

all large enough n

k(Cx0,ρn B1,Σ
X
p ) = k(Tx0

C,ΣX
p ) =

n
∑

j=1

Njk(Dj,Σ
X
p ) ≤ Q. (9)

Let V be a ball strictly smaller than U with the same center and define

W := Eα
1 ∩ (∪X∈V Σ

X
p ).

At each yn choose an open ball Vn ⊂ CP1 ∼= PH4
yn so that, for n ≥ n0 large

enough,

(i) ∀ X ∈ Vn we have that ΣX
yn is transversal to the disks {Dj}mj=1 and that

ΣX
yn ∩ spt(∂(Cx0,ρn B1)) = ∅;

(ii) setting Wn := Eα
1 ∩ (∪X∈VnΣ

X
yn), it holds W ⊂ ∩n≥n0

Wn.

Properties (i) and (ii) can of course be achieved for yn close enough to p
and Vn perturbations of V .

Thanks to the convergence Cx0,ρn ⇀ Tx0
C ∋ D1, we can ensure that for

all n large enough
Cx0,ρn W 6= 0,
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D1

D2

W

3π
4

Σ
[0,1]
p

p

Eα
1

Eα
2

these ΣX
p do not

cross ∂(Cx0,ρn B1)

∂(Cx0,ρn W )
must live here

D0

∂(Cx0,ρn B1)

lives here

V

Figure 3: Situation inside the ball B1. To avoid confusion in the picture, we
imagine that yn coincides with p. The dotted region corresponds to W .
Heuristic idea of the proof : any ΣX

p , X ∈ V , should intersect Cx0,ρn with
multiplicity Q near p, since there we have a point of multiplicity Q. But
there is mass of Cx0,ρn in W and this portion must also give a strictly positive
contribution to the intersection index of Cx0,ρn and ΣX

p . But now there is too
much intersection.

which trivially implies Cx0,ρn Wn 6= 0. Wn is foliated by ∪X∈VnΣ
X
yn and

∂(Cx0,ρn Wn) ⊂ ∪X∈∂VnΣ
X
yn by (8). Then by lemma 4.1 we have that, for all

Y ∈ Vn,
k(Cx0,ρn Wn,Σ

Y
yn) ≥ 1.

On the other hand, recalling remark 3.2, for ε small enough it must hold
k(Cx0,ρn Bε(yn),Σ

Y
yn) = Q for all but finitely many Y ’s (we only have to

exclude the Y ’s that build up TynC). Since Wn ∩ Bε(y0) = ∅, we get

k(Cx0,ρn B1,Σ
Y
yn) ≥ Q+ 1

But then
k(Cx0,ρn B1,Σ

Y
p ) ≥ Q+ 1

by homotopy (by (i) and (ii) we do not cross the boundary of Cx0,ρn B1

during the homotopy). This contradicts (9).
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Relative Lipschitz-type estimate. The following theorem still uses
the same ideas and will be of central importance for treating the more delicate
case of a singular point p having a tangent cone that is Q times the same
plane. We can without loss of generality assume that the plane involved is
D0

∼= [1, 0]. The result shows the "continuous behaviour" of tangent cones at
points of multiplicity Q as they approach p (see figure 6 in the next section).

Theorem 4.3. Let x0 be a singular point of order Q of a Special Legendrian
cycle, x0 ∈ SingQ, with Tx0

C = QJD0K. Then ∀{yn} → x0 sequence of points
having multiplicity Q, the following holds:

TynC → QJD0K.

Remark 4.2. The convergence in the statement can of course be understood
in the Flat-sense for currents in the tangent bundle and what we are proving
is:

∀ ε ∃δ s.t. |x− x0| < δ and θ(x) = Q⇒ F((TxC −QJD0K) B1(x0)) < ε .

We give however a more concrete definition in terms of "angles" between
the disks.

We are going to speak of "the angle between D0 and Dp" although these
disks may lie in the horizontal hyperplanes at different points. More precisely:
let D0 ⊂ H4

x0
and Dp ⊂ H4

p be holomorphic disks for the respective J-

structures. Then we can define D̂p, D0 after identifying the two hyperplanes
according to the coordinates induced by the first parallel foliation, see (3)
in section 2 (we can assume, without loss of generality x0 = (1, 0, 0)), and
taking the distance in the Fubini-Study metric. The convergence in the
theorem above amounts of course to the fact that the angles between D0 and
the disks of TxnC go to 0.

In the same fashion we will speak of Σ̂X
p , D0 for some 3-surface born at

p, meaning the angle between X and D0 as just explained.

proof of theorem 4.3. Work in a normal chart centered at x0. Assume,
by contradiction, that there exists {yn} → 0 such that TynC 6→ QJD0K. Take
as rescaling factors ρn = 2|yn| and blow up about 0. Denote xn = yn

2|yn| and

keep denoting ⊕Q
i=1D

i
n the tangent disks at xn. Now, up to a subsequence,

for some α > 0, D̂i
n, D0 ≥ α > 0 and xn ∈ ∂B1/2 hold for all n. Choose

ε << α such that Eε
0 ∩ ∂B1 is disjoint from any Σp of the set {Σp | p ∈

Eε
0 ∩ ∂B1/2, Σ̂p, D0 ≥ α

2
}, see figure 4. For a large enough n

(i) Cx0,ρn B1 ⊂ Eε
0 ∪ {0} by lemma 4.3,
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(ii) k(Cx0,ρn B1,Σq) = Q ∀ Σq with Σ̂q, D0 ≥ α
2

and q ∈ D0 ∩ B3/4(0) by
lemma 3.2 and remark 3.2.

Notational remark: the n fulfilling (i) and (ii) is chosen once for all.
Therefore we are going to drop, in the rest of this proof, the index n from all
the objects related to xn, in particular we will denote by x the point xn it-
self, by TxC = TxCx0,ρn = ⊕m

i=1NiD
i
x (the total multiplicity is Q) the tangent

cone at xn and by Σi
x the 3-surface born at xn and containing Di

x. Moreover,
since the theorem is local, it is enough to look just at the dilated current
Cx0,ρn B1(0): by an abuse of notation we will write, during this proof, C
instead of Cx0,ρn B1(0).

From the contradiction assumption, at least for one index l, D̂l
x, D0 is

greater than a positive number very close to α.

Observe now the following: Take β << mini 6=j{α, D̂i
x, D

j
x}. Consider the

cone Eβ
x,l around Σl

x. It is not possible that spt(C Eβ
x,l) ⊂ Σl

x: indeed, this

would imply that the current C Eβ
x,l must escape the barrier Eε

0 (by remark

2.1, having no boundary in the interior of Eβ
x,l, C would have to coincide with

the Special Legendrian 2-sphere tangent toDl
x), which contradicts lemma 4.3.

So take p ∈ sptC ∩ Eβ
x,l, p /∈ Σl

x. Let ΣP
x = Σx,p be the 3-surface born

at x going through p; surely P̂, D0 ≥ 3α
4

. We are going to show now that,
up to tilting ΣP

x a bit, we can assume that it is transversal to C and the
intersection is well-defined and non-zero.

Take δ << D̂l
x,Σx,p and r << dist(x, p) in such a way that (see figures 4

and 5)

(iii) k(C Br(x),Σx,p) = Q (possible by remark 3.2, since Σx,p is transver-
sal to TxC),

(iv) C Br(x) ⊂ Eδ
x ∪ {x} (by lemma 4.3, with Eδ

x denoting the δ-conic
neighbourhood of TxC).

By homotopy (see the remark following lemma 3.2)

k(C Br(x),Σ
Y
x ) = Q

for all but finitely many Y ’s in a small ball around P in CP1 (the finitely
many Y ’s we have to exclude are those that are tangent to the disks Di

x, so
to ensure that ΣY

x is transversal to TxC). The ball should be chosen small

enough so that Ŷ, D0 ≥ α
2

and ΣY
x stays away from Eδ

x, so that these ΣY
x do

not cross ∂(C Br(x)), see figure 5.
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δ

Eε
0

∂C
is here

α

p

Σx,p

Eβ
x,l

Dl
x

x
Br(x)

0

Figure 4: The objects involved: with C, as in the proof, we mean Cx0,ρn B1.

We are going to apply lemma 4.1:

W = (∪YΣ
Y
x ) ∩ (B1(x) \Br(x))

is a foliated neighbourhood of p and we have boundary of C neither on
W ∩ ∂B1 (by (i)) nor on W ∩ ∂Br(x) (by (iv) and by the choice of the Y ’s).

So, for the Y ’s that we have chosen, if r is small enough, then

k(C,ΣY
x ) = k(C Br(x),Σ

Y
x ) + k(C (B1 \Br(x)),Σ

Y
x ) ≥ Q+ 1.

But, by homotopy, going back to the standard notations, we find that
k(Cx0,ρn ,Σ

Y
xn
) = k(Cx0,ρn,Σ

Y
w) for some w ∈ D0 ∩ B3/4(0) (identifying PH4

xn

and PH4
w). So we have contradicted (ii) .

The result just proved will be restated as a relative Lipschitz-type esti-
mate (for the multi-valued graph describing the current) in corollary 5.1.

5 Logical structure of the proof of theorem 1.1

and first part of the inductive step:

coordinates, PDEs and average

Having established the previous results, in this section we start the proof
of the regularity theorem 1.1, which will go on in the next sections.
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p

W

the Y ’s selected

δ

∂[C (B1 \Br(x)] is here

ΣP
x

Br(x)

x

Dl
x

on W ∩ ∂Br(x)

∂[C (B1 \Br(x)] = 0

Figure 5: Magnify around x: selection of W (shaded region).

Structure of the proof. The proof proceeds by induction. By the
monotonicity formula, the multiplicity function is upper semi-continuous on
the Special Legendrian C, therefore the set of points with multiplicity ≥ N ,
for N ∈ N is closed in C. Then, to achieve our result, a singular point q
with multiplicity Q being given, we only need to show that singular points
of multiplicity ≤ Q cannot accumulate onto q. The idea is hence to prove
this result by induction on the multiplicity Q: at each inductive step, we
will assume that we are working in a neighbourhood where Q is the maximal
multiplicity.

Basis of induction : Q=1 We are in an open set where all points of the
Special Legendrian C have multiplicity 1. Since C is minimal (H = 0) and
boundaryless, we can deduce the smoothness in this set straight from Allard’s
theorem, see [19]. We can however provide a self-contained argument here:
from theorem 4.3 we know that the tangent planes are continuous, therefore
C is a C1 current. A classical bootstrapping argument then leads to C∞

regularity.
Assumptions for the inductive step : Q-1 ⇒ Q. We are in an open
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ball B, where SingQ is a closed set (that could a priori have positive H2 -
measure) and C \SingQ is smooth except at the points Sing≤Q−1, which are
isolated in the open set C \ SingQ.
We are going to divide the proof of the inductive step into two parts:

♯1 : SingQ is made of isolated points in B, i.e. there is no possibility of
accumulation of singularities of multiplicity Q to another singularity p
of the same multiplicity;

♯2 : singularities of multiplicity ≤ Q−1 cannot accumulate onto a singularity
of multiplicity Q.

The proof of ♯1 will be achieved in this section and the next: we aim to
prove

Theorem 5.1. Let B5 be a ball in which the highest multiplicity for the
Special Legendrian cycle C is Q. Assume that Sing≤Q−1 is made of isolated
points in (C B5) \ SingQ. Then the set SingQ is made of isolated points in
B5.

Recall that there is an easy case of ♯1 that we already proved: indeed,
for p ∈ SingQ having a tangent cone that is not Q times the same disk, the
result is just theorem 4.2.

Therefore we only need to prove ♯1 if the tangent cone at p is QJDK.
As explained in the introduction, theorem 5.1 will be achieved after hav-
ing introduced a multi-valued graph that locally describes the Special Leg-
endrian current. In suitable coordinates the branches of the multi-valued
graph satisfy the elliptic system of PDEs (1), which is a perturbation of
the classical Cauchy-Riemann. Thanks to a W 1,2-regularity result for the
average of the multi-valued graph, we will translate the issue of accumula-
tion of singularities of multiplicity Q into a problem of accumulation of zeros
for a new multi-valued graph whose branches solve a PDE that is still a
perturbation of the classical Cauchy-Riemann. At this stage we will prove
5.1 by a unique continuation argument.

In the present section we provide the fundational steps for the unique
continuation argument:

• we find suitable coordinates in which the multi-valued graph satisfies
the PDEs (1);

• we study the regularity of the average of the multi-valued graph, show-
ing that it is W 1,2 on D2.
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The proof of ♯1 will then come to an end in the next section.

Coordinates. We are now going to choose appropriate coordinates to
guarantee later a W 1,2-type estimate. In order to do that, we will need the
result contained in the next lemma. First observe the following:

Remark 5.1. Due to the construction of Σ, given any 3-surface ΣX
q and for

any point p ∈ ΣX
q , then Tp(Σ

X
q ) ∩ H4

p is a complex line in H4
p . This can

be seen as follows: Tp(Σ
X
q ) ∩ H4

p is a two-dimensional subspace since ΣX
q is

transversal to H4
p ; moreover one of the Special Legendrian spheres foliating

(and building up) ΣX
q must go through p and it is tangent to H4

p .

Remark 5.2. In the construction of the 3-surfaces ΣX
q performed in section 2,

q was taken in a neighbourhood of the Special Legendrian 2-sphere L0. We
can parametrize this neighbourhood of L0 with a complex coordinate w such
that the point (1, 0, 0) ∈ L0 has coordinate 0. By abuse of notation we will
also write ΣX

w instead of ΣX
q when the point q ∈ L0 has coordinate w.

Lemma 5.1. There exist open neighbourhoods V, U of [0, 1] in CP1 so that
we can define14 the function:
d : B5

1 × V → B2
2 × U , given by d(p, Y ) = (w,X) s.t. ΣX

w contains p and
Y ⊂ TpΣ

X
w . Moreover, d is of class C1.

In other words, for any point p ∈ B5
1 and any almost vertical direction Y

there exist a unique point w ∈ L0 and direction X such that ΣX
w goes through

p with direction Y . Moreover this correspondence is C1.

proof of lemma 5.1. Take the following neighbourhood U of [0, 1] in CP1,
U = {[Z;W ] ∈ CP1 : |W | > 2|Z|}. Define the function

w̃ : B5
1 × U → B2

2

where w̃ = w̃(p,X) is the point in B2
2
∼= L0 ∩ B5

2 such that p ∈ ΣX
w̃ (w̃ is

uniquely defined since {ΣX
w } foliates B5

1 as the base point runs over L0). w̃
is a smooth function.
Recall remark 5.1. Denote by X̃ = X̃(p,X) ∈ CP1 the complex line15 in H4

p

such that X̃, as a 2-dimensional plane, is contained in the tangent to ΣX
w̃ at

p. X̃(p,X) is a smooth perturbation of X, since the contact structure in B5
1

is a smooth perturbation of the integrable structure C2 × R. Consider

D : B5
1 × U × B2

2 × U → C× CP1

14By B5
1 we mean the 5-dimensional ball of radius 1. Analogously for B2

2 , which we
implicitly identify with the disk in C of radius 2.

15Recall that CP1 ∼= PH4
p .
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D : (p, Y, w,X) → (w − w̃(p,X), X̃(p,X)− Y ).

The function D is C1 and we can compute its (w,X)-differential

∂D

∂(w,X)
=

(

1 ∂w̃
∂X

0 ∂X̃
∂X

≈ 1

)

and its determinant is non-zero, therefore, by the implicit function theorem,
the set {D = 0} can be described as a graph over B5

1 × V

(p, Y, d(p, Y ))

for some d ∈ C1 and V ⊂ U . The condition D(p, Y, w,X) = 0 expresses the
fact that ΣX

w goes through p with direction Y , thus d satisfies the statement
of lemma 5.1.

Before starting the proof of non-accumulation of singularities of order Q
to a singular point x0 having tangent cone of the form QJDK, we are going to
set coordinates so that the current and the leaves of the chosen foliation ΣX

have only isolated and at most countably many points of non-transversality.
Recall that a parallel foliation {ΣX

p } forX fixed, of the type constructed in
section 2, locally induces a system of 5 real coordinates around x0 = (1, 0, 0),
the first two, (s, t), lying in the space of parameters L0 (the chosen Special
Legendrian 2-sphere) and the remaining three in Σ, see lemma 2.2 and the
discussion about families of parallel foliations. We can also think of having a
complex coordinate on L0∩B5

2
∼= B2

2 rather than two real ones. This means,
for instance, that in this coordinates, if q ∈ L0 has coordinate z0 ∈ C, the
leaf ΣX

q is described by {(z0, b, c, a)}, as (b, c, a) describes to B3
2 ⊂ R3. In

the same vein, L0 is described by {(z, 0, 0, 0)} or by {(s, t, 0, 0, 0)}, where we
used respectively a complex and two real coordinates for L0 ∩ B5

2
∼= B2

2 .
In the coordinates so induced by {ΣX

p }, introduce the projection map π :
B2

2 × B3
2 → B2

2 sending (z, b, c, a) to z.
Now we want to choose a privileged direction X to ensure the transver-

sality announced above. Recall that we are working in a neighbourhood of x0
where the multiplicity is everywhere ≤ Q. Start with coordinates set in such
a way that x0 = 0, D = D0

∼= [1, 0] and the foliation we are using is given

by {Σ[0,1]
p }, and assume that we have blown up enough in order to ensure

that spt (C0,r B1) ⊂ Eδ ∪{0} for some small δ (lemma 4.3) and that TyC0,r

makes an angle smaller than δ for any y ∈ SingQ (theorem 4.3).
Recall lemma 5.1 and let S be the smooth part of the current C0,r where the
tangent planes are in V . Denote by π2 the projection π2 : B2

2 × U → U .
Define the following function ψ : S → CP1

ψ(p) := π2(d(p, TpS)).
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The tangent on S is a smooth function, thus, by composition, ψ is also
smooth. Therefore we can find a regular value X for ψ as close as we want
to [0, 1]. We choose then the coordinates induced by this ΣX , which we will
denote by {(z, b, c, a)} or by {(s, t, b, c, a)}, where z = s + it. They have the
property that the leaves ΣX

z are tangent to the smooth part of the current
only at isolated points {ti}∞i=1 (they can possibly accumulate on the singular
set). As for the singular set, the points of multiplicity up to Q − 1 are
also isolated singularities by inductive assumption, so we can assume that
there is transversality there up to picking a new X, again among the regular
values (only a countable set of X must be avoided). On the set SingQ the
tangent cone makes a small angle with the horizontal, thanks to the Lipschitz
estimate from theorem 4.3.

Multi-valued graph. With the coordinates just taken, denote by π
the projection onto D0

∼= {(z, 0, 0)}. Recall that we are also assuming to
have dilated the current about 0 of a factor r small enough to ensure that
Cr := C0,r B1 has support δ-close to T0C and that TyCr makes an angle
smaller than δ with T0C for any y ∈ SingQ.

We can now say that, by intersection theory, except on the countable set
{π(ti)}, the leaves intersect C transversally and positively; as explained in
remark 3.2, for some R < 1, ΣX

z intersect the current at exactly Q points
(counted with multiplicities) for a.e. |z| < R. We have thus defined a Q-
valued function

{bi, ci, αi}Qi=1(z) : DR → R3, or

{ϕi, αi}Qi=1(z) : DR → C× R,

with DR = {(z, 0, 0), |z| < R}, ϕj = bj+icj. Equivalently, we have a function
from DR into the Q-th symmetric product

SQ(C× R) =
(C× R)Q

∼ ,

where two Q-tuples are equivalent if one is a permutation of the other. When
using the notation {ϕi, αi}Qi=1 it should be kept in mind that the Q-tuples
are unordered, so the indexation is not global on DR.
The Q-valued function just constructed is L∞ since the current is contained
in a cone E2δ around DR.

Remark 5.3. Introduce the following notation:

A = DR \ π(SingQ), B = A \ π(Sing≤Q−1), G = B \ ∪∞
i=1{π(ti)}.

π(SingQ) is a closed set since we are working in a neighbourhood where
Q is the highest multiplicity and thanks to the inductive hypotesis, therefore
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A is open. B = DR \ π(Sing≤Q) is also open since Sing≤Q is a closed set.
G is open since we are taking away from the open set B a countable set of
isolated points that can only accumulate on the complement of B.
Observe that, locally on B, it is possible to give a coherent global indexation
of {ϕi, αi}Qi=1; i.e., for any point in B there is a small ball centered at this
point on which the multifunction is made of Q distinct smooth functions.

Average Define the average of the branches {ϕi, αi}Qi=1 by

Ψ̃ = (ϕ̃, α̃) :=

(

∑Q
i=1 ϕi

Q
,

∑Q
i=1 αi

Q

)

,

which is a single-valued L∞ function on DR. The next steps aim to prove
that this average is actually a W 1,2 function. This will be achieved with
theorem 5.2. The strategy is as follows:

• after writing the PDEs satisfied by the branches of the Q-valued func-
tion at smooth points, we will estimate that the W 1,2-norm on G is
finite and bounded by the mass of the current;

• we will successively extend the estimate to B and A by using the fact
that, in dimension two, the W 1,2-capacity of an isolated point is zero;

• eventually, thanks to theorem 4.3, we will conclude that (ϕ̃, α̃) is W 1,2

on the whole of DR.

PDEs As noted above, on the open set G the branches {ϕi, αi}Qi=1 are
locally smooth functions. We restrict ourselves to a small ball ∆ ⊂ G on
which they can be globally indexed and we are going to write the PDEs
satisfied by these Q functions coming from the fact that these (smooth)
pieces are calibrated by ω. Notice that also the derivatives of the Q branches
are well-defined functions. We are using coordinates (z, ζ, a) = (s, t, b, c, a),
where z = s + it, ζ = b + ic are complex and the others real. Recall that
Σ were built so that the coordinate vectors ∂

∂b
and ∂

∂c
are always tangent to

the 4-planes H4 of the horizontal distribution. Denote by J the J-structure
defined on these hyperplanes,

Jp : H
4
p → H4

p .

We can assume that each leaf Σz is parametrized in such a way that

J

(

∂

∂b

)

=
∂

∂c
, J

(

∂

∂c

)

= − ∂

∂b
. (10)
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Recall that we are assuming, without loss of generality, that the origin of
DR×R3 corresponds to the point (1, 0, 0) ∈ C3 (this can be done by rotating
S5 via a rotation in SU(3)). We also assume that (s, t) are such that ∂

∂s

and ∂
∂t

coincide respectively with ∂
∂x2 and ∂

∂x3 in C3 at the point 0, so ω(0) =
dx2∧dx3−dy2∧dy3 as a form in C3 is ds∧dt+db∧dc in the new coordinates.
Moreover,

∂

∂b
,
∂

∂c
,
∂

∂a
are always orthogonal to each other,

∂

∂b
,
∂

∂c
are also orthogonal to the unit fiber vector v (v = i

∂

∂r
in C3).

All the other scalar products of the16 coordinate vectors ∂
∂s
, ∂
∂t
, ∂
∂b
, ∂
∂c
, ∂
∂a

at a
point p are bounded by K ε, for an arbitrarily small ε, as long as we blow-up
of a factor r small enough, since they are orthogonal at the point 0 and the
structure is smooth.

Analogously, since the fiber vector at 0 is also equal to ∂
∂a

and orthogonal
to ∂

∂s
, ∂
∂t

, we have

−K ε ≤ 〈 ∂
∂s
, v〉, 〈 ∂

∂t
, v〉, 〈 ∂

∂s
,
∂

∂a
〉, 〈 ∂

∂t
,
∂

∂a
〉 ≤ K ε . (11)

Further, with ωr :=
1
r2
((rx)∗(ω)), for any l we have that ‖ωr−ω(0)‖Cl(B1) →

0 as r → 0. Remark that ωr calibrates the blown-up current Cr.
As we said before, each branch Ψj = (ϕj , αj) is a well-defined graph on
∆. We can focus on one precise branch, for a certain j ∈ {1, ..., Q}: the
parametrization of this smooth piece is

Λj(s, t) := (s, t, bj(s, t), cj(s, t), αj(s, t)),

with tangent vectors

∂Λj

∂s
=
(

1, 0,
∂bj
∂s
,
∂cj
∂s
,
∂αj

∂s

)

,
∂Λj

∂t
=
(

0, 1,
∂bj
∂t
,
∂cj
∂t
,
∂αj

∂t

)

. (12)

On each tangent space TpS
5 extend J to a linear map defined on the whole

of TpS
5

J : TpS
5 → TpS

5,

by setting J

(

∂

∂a

)

=
∂

∂a
(this is quite arbitrary). Introduce the following

notation for the coefficient of this map in the given basis:

J

(

∂

∂s

)

= ς
∂

∂s
+ λ

∂

∂t
+ η

∂

∂a
+ β

∂

∂b
+ γ

∂

∂c
,

16Throughout the section, K will always represent a constant independent of the chosen
∆ ⊂ DR.
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where ς, η, β, γ are small in modulus, say less than some K · r since they are
equal to 0 at the point 0, while |λ| is close to 1. These five functions depend
on the variables (s, t, b, c, a), but we will not explicitly write this dependence.
For the other coefficients of J , recall (10) and the extension of J done above.
The condition of being a Special Legendrian expressed by proposition 2 is
then given by the two relations valid at any point:

∂Λj

∂s
∧ ∂Λj

∂t
⊂ H4, (13)

J

(

∂Λj

∂s

)

= λ
∂Λj

∂t
+ ς

∂Λj

∂s
. (14)

The fact that the last two coefficients must be exactly λ and ς will be clear
in a moment. We explicit now (14), using (12):

J

(

∂Λj

∂s

)

= ς
∂

∂s
+ λ

∂

∂t
+ η

∂

∂a
+ β

∂

∂b
+ γ

∂

∂c
+
∂bj
∂s

∂

∂c
− ∂cj
∂s

∂

∂b
+
∂αj

∂s

∂

∂a
=

= λ
∂Λj

∂t
+ ς

∂Λj

∂s
= (15)

= λ

(

∂

∂t
+
∂bj
∂t

∂

∂b
+
∂cj
∂t

∂

∂c
+
∂αj

∂t

∂

∂a

)

+ς

(

∂

∂s
+
∂bj
∂s

∂

∂b
+
∂cj
∂s

∂

∂c
+
∂αj

∂s

∂

∂a

)

(from comparing the coefficients of ∂
∂s

and ∂
∂t

we can see why we needed λ
and ς in (14)). Identifying the coefficients of the coordinate vectors ∂

∂b
and

∂
∂c

in the first and third line of (15) leads to

{

−∂cj
∂s

+ β = λ
∂bj
∂t

+ ς
∂bj
∂s
,

∂bj
∂s

+ γ = λ
∂cj
∂t

+ ς
∂cj
∂s

.
(16)

Substituting the expression for
∂cj
∂s

given by the first line of (16) into the
second we get

∂bj
∂s

= λ
∂cj
∂t

+ ς

(

β − λ
∂bj
∂t

− ς
∂bj
∂s

)

− γ,

which implies
∂bj
∂s

=
λ

1 + ς2

(

∂cj
∂t

− ς
∂bj
∂t

+
ςβ − γ

λ

)

. (17)

Plugging this back into the first identity of (16) we get

∂cj
∂s

= − λ

1 + ς2

(

∂bj
∂t

+ ς
∂cj
∂t

− β + ςγ

λ

)

. (18)
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Let us now draw some conclusions from (13). We have to impose that
∂Λj

∂s

and
∂Λj

∂t
are always orthogonal to the vertical fiber vector v. Since the first

two components of
∂Λj

∂s
are fixed and equal (1, 0) and ∂

∂b
, ∂
∂c

are orthogonal to
v, (13) means

〈 ∂
∂s
, v〉 = −∂αj

∂s
〈 ∂
∂a
, v〉. (19)

Doing the same with
∂Λj

∂t
we obtain

〈 ∂
∂t
, v〉 = −∂αj

∂t
〈 ∂
∂a
, v〉. (20)

Since 〈 ∂
∂a
, v〉 is close to 1 (see (11)), we get

∣

∣

∣

∣

∂αj

∂s

∣

∣

∣

∣

,

∣

∣

∣

∣

∂αj

∂t

∣

∣

∣

∣

≤ K ε . (21)

We can rewrite17 equations (17), (18), (19) and (20) as































∂bj
∂s

= A
∂cj
∂t

+B
∂bj
∂t

+ C

∂cj
∂s

= −A∂bj
∂t

+B
∂cj
∂t

+ F

∇αj = h(s, t,Ψj) .

(22)

Here A,B,C, F are smooth real functions of (s, t, bj(s, t), cj(s, t), αj(s, t))
with A(0, 0, 0, 0, 0) = 1, B(0, 0, 0, 0, 0) = C(0, 0, 0, 0, 0) = F (0, 0, 0, 0, 0) = 0,
so A is close to 1 and B,C, F are less than ε in modulus18. The R2-valued
function h is Lipschitz thanks to (21).

Complex PDE. We are going to rewrite the first two equations in
(22) in complex form, so we use the complex coordinate z = s + it, and
observe the function ϕj(z) = bj(s, t) + icj(s, t). The complex derivatives
∂
∂z

= 1√
2

(

∂
∂s

− i ∂
∂t

)

and ∂
∂z

= 1√
2

(

∂
∂s

+ i ∂
∂t

)

will be denoted respectively by ∂

and ∂. Compute the first equation in (22) plus i times the second:

∂ϕj

∂s
= (−iA +B)

∂ϕj

∂t
+ C + iF.

17Recall again that we are focusing on a chosen branch Ψj = (bj, cj , αj), which describes
a smooth piece of the multi-valued graph above ∆.

18ε is a positive number which can be assumed as small as we wish: it is of order r, the
rescaling factor that we used for the blow-up.
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Then

{ √
2 ∂ϕj = ((1−A)i+B)

∂ϕj

∂t
+ C + iF,√

2 ∂ϕj = (−(1 + A)i+B)
∂ϕj

∂t
+ C + iF.

(23)

We seek a function ν = ν1 + iν2 so that

(1− A)i+B = −(ν1 + iν2)(−(1 + A)i+B),

which rewrites, separating imaginary and real parts:

(

1 + A −B
B 1 + A

)(

ν1
ν2

)

=

(

1−A
−B

)

.

The matrix on the l.h.s. is a perturbation of 2 Id, and the vector on the
r.h.s. has norm bounded by ε, therefore we can invert the system and find
that there is a unique solution for ν = ν1 + iν2 whose norm is bounded by ε.
Then, setting µ = 1√

2
(1 + ν)(C + iF ) we can write, from (23),

∂ϕj + ν(z, ϕj , αj)∂ϕj + µ(z, ϕj , αj) = 0, (24)

with ν, µ : Cz×Cζ ×Ra → C smooth functions, ν(0) = µ(0) = 0, |ν|, |µ| ≤ ε.

The first two equations in (22), or equivalently equation (24), are pertur-
bations of the classical Cauchy-Riemann equations. Notice however that the
coefficients depend on s, t, bj(s, t), cj(s, t) and αj(s, t), and we need the third
equation in (22), to clarify the "α-dependence".

At this stage, we can estimate the L2-norm of the jacobian of Ψj using
(17), (18) and (21). Recall that the functions ς, η, β, γ are in modulus smaller
than K ε and λ is close to 1. The metrics in the base space ∆s,t and in the
target R3

b,c,a are perturbation of the standard euclidean metrics (at 0 they
coincide with them), so

|DΨj|2 ≤ K

(

∣

∣

∣

∣

∂bj
∂s

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂bj
∂t

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂cj
∂s

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂cj
∂t

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂αj

∂s

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂αj

∂t

∣

∣

∣

∣

2
)

≤

≤ K

(

∣

∣

∣

∣

∂bj
∂t

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂cj
∂t

∣

∣

∣

∣

2

+ Cε2

)

+Kε2 ≤ K

(

1 +

∣

∣

∣

∣

∂bj
∂t

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂cj
∂t

∣

∣

∣

∣

2
)

. (25)

The constant K obtained at the end only depends on the factor r that we
used for the dilation and is valid for any smaller r, moreover it is independent
of the chosen ∆. We can assume that K = 2, since this constant gets closer
to 1 as r → 0.
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W 1,2 estimate for the average. For Ψj = (bj , cj, αj) (we are still
focusing, locally on ∆, on a single smooth branch), consider (Ψj)

∗ ω0 =
(

1 +
∂bj
∂s

∂cj
∂t

− ∂bj
∂t

∂cj
∂s

)

ds ∧ dt and plug in (17) and (18):

(Ψj)
∗ ω0 ≥ 1+

λ

1 + ς2

(

∂cj
∂t

)2

+
λ

1 + ς2

(

∂bj
∂t

)2

−ε
∣

∣

∣

∣

∂bj
∂t

∂cj
∂t

∣

∣

∣

∣

−ε
∣

∣

∣

∣

∂bj
∂t

∣

∣

∣

∣

−ε
∣

∣

∣

∣

∂cj
∂t

∣

∣

∣

∣

≥

≥ 1

2

(

1 +

∣

∣

∣

∣

∂bj
∂t

∣

∣

∣

∣

2

+

∣

∣

∣

∣

∂cj
∂t

∣

∣

∣

∣

2
)

≥ 1

4

(

1 + |∇bj |2 + |∇cj |2
)

, (26)

where we used ε
∣

∣

∣

∂bj
∂t

∂cj
∂t

∣

∣

∣
≤ 1

2

(

ε
(

∂bj
∂t

)2

+ ε
(

∂cj
∂t

)2
)

and ε
∣

∣

∣

∂cj
∂t

∣

∣

∣
≤ 1

2

(

ε+ ε
(

∂cj
∂t

)2
)

,

the hypothesis on ς, η, β, γ, λ and (25) with K = 2 as said above.
Consider now ωr − ω0. Write this 2-form in the canonical basis in the coor-
dinates s, t, b, c, a. All the coefficients are smaller than ε in modulus, if r was
chosen small enough. Therefore

(Ψj)
∗ (ωr − ω0)

is a 2-form in ds ∧ dt whose coefficient comes from summing products of

derivatives of Ψj . As above, we can bound this coefficient by ε

(

1 +
∣

∣

∣

∂bj
∂t

∣

∣

∣

2

+
∣

∣

∣

∂cj
∂t

∣

∣

∣

2
)

.

Using this fact, together with (26) and the triangle inequality we have

∫

∆

(Ψj)
∗ ωr ≥

(

1

4
− ε

)
∫

∆

1 + |∇bj|2 + |∇cj|2.

Recalling (25) we can finally write the desired estimate:

∫

∆

|DΨj|2 ≤ K

∫

∆

(Ψj)
∗ ωr = K

∫

Ψj(∆)

ωr = K · H2(Ψj(∆)), (27)

with a constant K independent of the chosen ∆. We can therefore conclude,
recalling the notations taken during the inductive assumptions,

Lemma 5.2. On the set G =
(

DR \ Sing≤Q
)

\ ∪∞
i=1{π(ti)} it holds

Q
∑

i=1

∫

G

(

|Dϕi|2 + |Dαi|2
)

≤ K · H2(Cr) <∞

and therefore the average function Ψ̃ = (ϕ̃, α̃) is W 1,2(G) with norm bounded
by the mass of Cr (we already knew that it is L∞).
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The next considerations will allow us to extend this estimate for (ϕ̃, α̃) to
the set B = G∪∞

i=1{π(ti)}. One can do this in a straightforward way recalling
that the capacity of a point in R2 is zero. Anyway we also give a direct
proof. Rename for notational convenience qi = π(ti) and take B2

ρi
(qi) ⊂ B

balls centered at the qi’s so that
∑

i ρi ≤ δ, for δ chosen arbitrarily small.
Let ξ be any test-function in C∞

c (B). Then

∣

∣

∣

∣

∫

B
ϕ̃
∂ξ

∂s

∣

∣

∣

∣

≤
∣

∣

∣

∣

∣

∫

∪iBρi(qi)

ϕ̃
∂ξ

∂s

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∫

B\∪iBρi (qi)

∂ϕ̃

∂s
ξ

∣

∣

∣

∣

∣

+
∑

i

∣

∣

∣

∣

∣

∫

∂Bρi (qi)

ϕ̃ξ〈 ∂
∂s
, ν〉
∣

∣

∣

∣

∣

≤ Cδ2‖ϕ̃‖∞‖∇ξ‖∞ + ‖ϕ̃‖W 1,2(G)‖ξ‖L2(B) + Cδ‖ϕ̃‖∞‖ξ‖∞.
Since δ was arbitrarily small,

∣

∣

∣

∣

∫

B
ϕ̃
∂ξ

∂s

∣

∣

∣

∣

≤ ‖ϕ̃‖W 1,2(G)‖ξ‖L2(B).

We can do the same for the t-derivative. For α̃ things are even easier, indeed
α̃ is Lipschitz. Therefore the average function is W 1,2 on B with the same
norm as on G. We can do the same passing from B to A = DR \ SingQ:
again we have to add a (countable) set of points which are isolated in A, so
the same as above applies. Eventually we have proved

Lemma 5.3. On the set A = DR \ SingQ the average function Ψ̃ = (ϕ̃, α̃)
defines a W 1,2 map from A into C × R with norm bounded by the mass of
Cr.

The next step will establish the definitive result on the whole of DR.
The following corollary is basically a restatement of theorem 4.3 as a

relative Lipschitz estimate, in terms of coordinates in which the current
is seen as a multi-valued graph:

Corollary 5.1. Let x0 ∈ SingQ and Tx0
C = QJD0K, as before. Take co-

ordinates D2 × C × R so that x0 is at the origin and D0 is identified with
D2 × {0}.

Then ∀ ε > 0 ∃r = r(ε, x0) such that

∀x = (z, ζ, a) ∈ CQ := {p ∈ C : θ(p) = Q} and x′ = (z′, ζ ′, a′) ∈ sptC∩Br(x0)

we have the estimate |(ζ, a)− (ζ ′, a′)|C×R ≤ ε |z − z′|R2.

proof of corollary 5.1. The estimate for the third coordinate a is obvious.
We need to show that, identifying C ≡ R2,

|(ζ − ζ ′)|R2 ≤ ε |z − z′|R2.
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0

counted twice
D0 counted twice

Figure 6: An example for Q = 2, with the current sketched as two curves.
The tangents at points of multiplicity 2 flatten as they approach 0.

We are going to use theorem 4.3, which guarantees the continuity at 0 of
tangent cones at points in CQ. Choose r s.t. ∀x ∈ B2r(0) having multiplicity

Q the angular distance D̂0, TxC is less than ε
2
; we can also guarantee that

k(C B2r(0),Σ
X
w ) = Q (28)

for any w ∈ D0 ∩ B3r/4(0) and Y ∈ CP1 realizing D̂0, Y ≥ ε. Assume by
contradiction that we can find x ∈ CQ and y ∈ sptC, with x, y ∈ Br(0) for
which

|(ζ − ζ ′)|R2 > ε |z − z′|R2

holds. Then take Σx,y: this 3-surface is transversal to the current at x since
̂TxC,Σx,y >

ε
2

and we can tilt it a bit finding a ΣY
x transversal to C, with

T̂xC, Y > ε
2

and with a non-zero intersection, as already done in the proof of
theorem 4.3. Then

k(C B2r(0),Σ
Y
x ) = k(C Bρ(x),Σ

Y
x )+k(C (B2r(0)−Bρ(x)),Σ

Y
x ) ≥ Q+1,

for some small enough ρ << dist(x, y). Since D̂0, Y > ε, we can homotope
ΣY

x into a ΣY
w for some w ∈ D0 ∩ B3r/4(0) keeping it away from C on ∂B2r,

so we are contradicting the identity in (28).

Theorem 5.2. The average function Ψ̃ : DR → R3 is in W 1,2(DR).

proof of theorem 5.2. SingQ is a closed set (possibly with positive H2-
measure) and on F = π(SingQ) (still a closed set) Ψ̃ coincides with the Q
branches {Ψi}Qi=1. We know that the Lipschitz estimate of corollary 5.1 holds
for any couple of points x, y such that Ψ̃(x) ∈ SingQ. In particular, Ψ̃|F is
Lipschitz, it is therefore possible to extend it to a function u defined on the
whole of DR which is Lipschitz with constant K equal 3 times the Lipschitz
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constant of Ψ̃|F (see [7] sec. 2.10.44). Let δ be positive and arbitrarily small.
Take now a smooth compactly supported function σδ such that

σδ(x) =

{

1 if dist(x,F) ≤ δ
0 if dist(x,F) ≥ 2δ

and |Dσδ| ≤ k
δ

for some k > 0. Explicitly σδ can be defined as follows: take
a smooth bump-function χ on [0,∞), which is 1 on [0, 1) and 0 on [2,∞).

Set χr,y(x) = χ
(

|x−y|
r

)

for x, y ∈ C. Define

σδ(z) =
G

δ4

∫

{x:dist(x,F)≤ 3δ
2
}
χ δ

4
,z(w)dwdw,

the right normalization constant G depending on
∫∞
0
χ(t)t3dt. Introduce

Ψ̃δ := σδu+ (1− σδ)Ψ̃

and notice that, for any δ > 0, this function is W 1,2. Moreover, for x ∈
{dist(x,F) ≤ 2δ}, denoting by p ∈ F the point realizing this distance, from
corollary 5.1 and by the definition of u

|(u− Ψ̃)(x)| = |u(x)− u(p) + Ψ̃(p)− Ψ̃(x)| ≤ 2K|p− x| ≤ 4Kδ.

In the lines that follow, D denotes the partial derivative with respect to either
of the coordinates s, t; notice that, in order to control DΨ̃δ, we need to take
DΨ̃ only on the set {dist(x,F) ≥ δ} ( A, since elsewhere 1− σδ = 0, so we
can freely take derivatives.

DΨ̃δ = (Dσδ)u+ σδDu− (Dσδ)Ψ̃ + (1− σδ)DΨ̃ =

= (Dσδ)(u− Ψ̃) + σδDu+ (1− σδ)DΨ̃.

We can now compute

‖DΨ̃δ‖2L2(DR) ≤
∫

{δ≤dist(x,F)≤2δ}
|Dσδ|2|u− Ψ̃|2 +

∫

DR

|σδ|2|Du|2+

+

∫

{dist(x,F)≥δ}
|1− σδ|2|DΨ̃|2 ≤ c(K, k) + ‖DΨ̃‖2L2(A) ≤ c(K, k).

So the W 1,2-norm of the Ψ̃δ are uniformly bounded as δ → 0, therefore, by
compactness, we can find a sequence Ψ̃δn , δn → 0, which converges in L2
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and weakly* in W 1,2 to some ψ ∈ W 1,2(DR). On the other hand, from the
computation above,

|Ψ̃δ − Ψ̃| = |σδ(u− Ψ̃)| =







0 on F
≤ 4Kδ on {dist(x,F) ≤ 2δ} − F
0 on {dist(x,F) ≥ 2δ} ,

so Ψ̃δn converge uniformly to Ψ̃ on DR. Therefore H2-a.e. it holds ψ = Ψ̃
and theorem 5.2 is proven.

6 End of the proof of ♯1: unique continuation

In this section we will complete the proof of ♯1, the first part of the
inductive step, i.e. the fact that there is no possibility of accumulation among
singularities of equal multiplicity.

Hölder estimate. We are going to establish the following

Theorem 6.1. (Hölder estimate) For any small enough disk DR, there
exist constants C, δ > 0 such that, for any r ≤ R,

Q
∑

j=1

∫

Dr

|∇ϕj|2 ≤ Crδ. (29)

This easily yields
∫

Dr

|∇Ψ̃|2 ≤ Crδ. (30)

Remark 6.1. This decay implies that Ψ̃ is δ
2
-Hölder thanks to Morrey’s em-

bedding theorem, see [15] for instance.

Remark 6.2. The integral in (29) should always be understood as

Q
∑

j=1

(
∫

(Dr−F)\π(Sing≤Q−1)

|dϕj|2ds dt+
∫

F
|∇ ϕ̃ |2∇H2

)

,

where F = π(SingQ); recall that all branches agree with the average on F
and that Sing≤Q−1 is made of at most countably many points, isolated in
Dr − F .
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proof of theorem 6.1. Remark that the αj-s are Lipschitz thanks to (21);
therefore, once (29) will be established, (30) will follow immediately.

We are going to analyse the behaviour of the function

y(r) =

Q
∑

j=1

∫

Dr

|∇ϕj|2.

Remark that, with our choice of ∂ and ∂, it holds |∇ϕj |2 = |∂ϕj |2 + |∂ϕj|2.
We already showed in the previous section that, for any r small enough,
y(r) is finite, being bounded by the mass of the current in the cylinder
Zr = Dr × R3 = {|z| ≤ r}. Recalling that C is boundaryless,

(C Zr)(dζ ∧ dζ) = (∂(C Zr))

(

ζdζ − ζdζ

2

)

= i〈C, |z|, r〉
(

Im(ζdζ)
)

.

Denote by T the simple 2-vector describing the oriented approximate tangent
plane to the rectifiable set C; by definition

(C Zr)(
i

2
dζ ∧ dζ) =

Q
∑

j=1

∫

{ϕj ,αj}(Dr)

i

2
〈dζ ∧ dζ, T 〉dH2 =

=

Q
∑

j=1

∫

Dr−F
(|∂ϕj |2 − |∂ϕj|2)ds dt+

Q
∑

j=1

∫

SingQ

i

2
〈dζ ∧ dζ, T 〉dH2 =

=

Q
∑

j=1

∫

Dr−F
(|∇ϕj|2 − 2|∂ϕj |2)ds dt+

Q
∑

j=1

∫

SingQ

i

2
〈dζ ∧ dζ, T 〉dH2.

Recalling that the average ϕ̃ is W 1,2 and that the tangent plane at points
in SingQ is Q times the tangent to the average, we can rewrite this last term
as

Q
∑

j=1

∫

Dr−F

(

|∇ϕj|2 − 2|∂ϕj |2
)

ds dt+Q

∫

F

(

|∇ ϕ̃ |2 − 2|∂ ϕ̃ |2
)

dH2.

So we have
Q
∑

j=1

∫

Dr−F
|∇ϕj|2ds dt+Q

∫

F
|∇ ϕ̃ |2dH2 =

=

Q
∑

j=1

∫

Dr−F
2|∂ϕj |2ds dt+Q

∫

F
2|∂ ϕ̃ |2dH2 + 〈C, |z|, r〉

(

−1

2
Im(ζdζ)

)

.

(31)
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Now (24), which is satisfied by the smooth parts of {ϕj}Qj=1, i.e. on DR \ F
minus countably many points, gives

Q
∑

j=1

∫

Dr−F
|∂ϕj |2ds dt ≤ C1ε

2

Q
∑

j=1

∫

Dr−F
|∇ϕj|2ds dt+ C2r

2. (32)

Putting (31) and (32) together,

y(r) =

Q
∑

j=1

(
∫

Dr−F
|∇ϕj|2ds dt+

∫

F
|∇ ϕ̃ |2dH2

)

≤

≤ 3Q

∫

F
|∇ ϕ̃ |2dH2 +K1〈C, |z|, r〉

(

−1

2
Im(ζdζ)

)

+ C3r
2.

By corollary 5.1, |∇ ϕ̃ | is bounded by a small constant on F , so

y(r) ≤ K1〈C, |z|, r〉
(

−1

2
Im(ζdζ)

)

+K2r
2. (33)

The slice of the current with |z| = r exists as a rectifiable 1-current for a.e.
r, as explained in lemma 1 of [8], page.152. On the set DR \ F , the multi-
valued graph is smooth except at a countable set of isolated points. For
all but countably many choices of r, ∂Dr will avoid this set.For a.e. r the
current 〈C, |z|, r〉 is described by the same multi-valued graph {ϕj}. This
multi-valued graph, being one-dimensional, can be actually described as a
superposition of honest W 1,2 functions as follows:

(i) ∂Dr∩F = ∅: for such a r, {ϕj} is smooth on ∂Dr, then, starting from any
point in the multigraph, we can follow the loop and we will eventually
come back to the same point after a certain number n of laps, n1 ≤ Q.
Then we can define the function g1 to be equal ϕj on an interval I1 of
length 2πn1r, and g1 has the same value at the endpoints of I1. Then
do the same, starting from a point that was not covered yet by g1. This
procedure leads to the construction of K smooth functions gk, K ≤ Q.
By [6], page 164, gk are W 1,2 for a.e. r, since it is the restriction of a
W 1,2 function to a line.

(ii) ∂Dr ∩F 6= ∅: in this case the set ∂Dr −F , being open in ∂Dr, must be
an at most countable union of open intervals ∪i(ai, bi). Then ∂Dr∩F =
∪i[bi, ai+1]. On each (ai, bi) we can give a coherent labelling to the {ϕj},
while on the [bi, ai+1] all the branches agree. Then we can write the
multi-valued graph as a superposition ofQ functions gi. Each gi isW 1,2:
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in fact, on each (ai, bi) we can use the result from [6] again, and therefore
for a.e. r, gi|∂Dr−F is W 1,2. Then we can get that gi ∈ W 1,2(∂Dr) by
the same argument that we used to prove theorem 5.2 by means of the
Lipschitz property from theorem 4.3, which holds on ∂Dr ∩ F .

Then, using Hölder’s and Poincaré’s inequalities, we can write (in the follow-
ing computation λk denotes the average of gk on Ik and the fourth equality
is justified by

∫

Ik
dgk = 0, which comes from the fact that gk takes the same

value at the endpoints of Ik):

∣

∣∂(C Zr))(ζdζ)
∣

∣ =
∣

∣〈C, |z|, r〉(ζ ∧ dζ)
∣

∣ =

∣

∣

∣

∣

∣

Q
∑

j=1

(
∫

∂Dr−F
ϕjdϕj +

∫

∂Dr∩F
ϕ̃ dϕ̃

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

k

∫

Ik

gkdgk

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∑

k

∫

Ik

(gk − λk)dgk

∣

∣

∣

∣

∣

≤
∑

k

(∫

Ik

|gk − λk|2
)

1

2
(∫

Ik

|∇gk|2
)

1

2

≤
∑

k

Knkr

(
∫

Ik

|∇gk|2
)

≤ KQr

Q
∑

j=1

(
∫

∂Dr−F
|∇ϕj|2 +

∫

∂Dr∩F
|∇ ϕ̃ |2

)

.

(34)
The function y(r) is weakly increasing in r and absolutely continuous, being
an integral; therefore it is a.e. differentiable and, thanks to (33) and (34),
satisfies at a.e. r (we can assume k > 1) the inequality

y(r) ≤ kry′(r) + cy2.

By setting υ(r) = y(r)− c
1−2k

r2, we turn the inequality into

υ(r) ≤ krυ′(r).

This yields
υ(ρ) ≤ Cρ

1

k

and then, adding c
1−2k

r2, we get the desired estimate for y(r):

y(r) ≤ Crδ,

for some δ := 1
k
> 0.

Unique continuation argument: this will conclude the proof of ♯1 and
is inspired to the techniques used in [21], and before by Aronszajn in [2]. For
this section we are going to describe our current by a multi-valued graph
DR → C2, by setting the fourth (real) coordinate equal 0. So we have a
multi-valued graph {ϕj(z), αj(z)}Qj=1, with α purely real. The average ϕ̃(z),
is a W 1,2, Hölder (and bounded) function, α̃(z) is Lipschitz.
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Lemma 6.1. There exists a constant K such that, if R is small enough,
there exists a W 1,2 and C1,δ solution w(z) : DR → C to the equation

∂w + ν(ϕ̃, α̃)∂w = 0 (35)

that is a perturbation of the identity, precisely it satisfies

|w(z)− z| ≤ KR|z|.

proof of lemma 6.1. For a function u defined on the whole of C, we seek w
of the form w = χR(1+u(z))z, where χR is a radial, smooth cut-off function
equal to 1 on DR and 0 on the complement of D2R. The requests on w can
be translated as follows

∂̄u+ χRν(ϕ̃, α̃)∂u+ χR
ν(ϕ̃, α̃)

z
(1 + u) = 0,

|u| ≤ KR.

It is very important at this stage to observe that ν(ϕ̃,α̃)
z

is an L∞ function
thanks to the Lipschitz estimate of corollary 5.1, although it need not be
continuous; so there is some constantK (independent of R) such that ν(ϕ̃,α̃)

z
≤

K (still from corollary 5.1 we actually know that this constant goes to 0 as
R goes to 0). The solution u will be found by a fixed point method.

Consider the19 space H = {f ∈ W 1,2(C) such that ∇f ∈ L2,λ}, for some
λ > 0 to be chosen later. By a result due to Morrey, these functions are
λ
2
-Hölder; they also decay at infinity, therefore they are bounded. H is a

Banach space with the norm whose square is

‖f‖2H = ‖f‖2L∞ + ‖∇f‖2L2 + ‖∇f‖2L2,λ =

= sup
C

|f |2 +
∫

C

|∇f |2 + sup
x0∈C,ρ>0

1

ρλ

∫

Bρ(x0)

|∇f |2.

Define the functional P on H that sends f to P(f)

P(f)(z) =
1

2πi

∫

C

χRν(ϕ̃, α̃)∂f + χR
ν(ϕ̃,α̃)

ξ
(1 + f)

ξ − z
dξdξ̄

19Here we make use of the Morrey space

L2,λ :=

{

g : C → R : ‖g‖2L2,λ := sup
x0∈C,ρ>0

1

ρλ

∫

Bρ(x0)

|g|2 < ∞
}

.
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(all the functions in the integral are functions of ξ). For any fixed z, the
integral is finite: this can be seen as follows, by breaking it up as a series
of integrals over annuli An(z) centered at z with outer and inner radii re-
spectively R

2n
and R

2n+2 (all the constants we are calling K are independent of
R);

∑

n

2n+2

R

∫

An(z)

|χRν(ϕ̃, α̃)∂f |+
∣

∣

∣

∣

χR
ν(ϕ̃, α̃)

ξ

∣

∣

∣

∣

+

∣

∣

∣

∣

χR
ν(ϕ̃, α̃)

ξ
f

∣

∣

∣

∣

≤

≤ KR
∑

n

2n

R

(
∫

An(z)

|χR|
)

1

2
(
∫

An(z)

|∂f |2
)

1

2

+
∑

n

KR

2n
+
∑

n

KR‖f‖L∞

2n
,

(36)

where we used || ν(ϕ̃,α̃)
z

||L∞(DR) ≤ K; thanks to the finiteness of ‖∇f‖2
L2,λ we

can bound the first term in the following way:

∑

n

2n
(
∫

An(z)

|χR|
) 1

2
(
∫

An(z)

|∂f |2
) 1

2

≤ R
∑

n

(
∫

An(z)

|∂f |2
) 1

2

=

= R
∑

n

Rλ/2

2
nλ
2

(

(

2n

R

)λ ∫

An(z)

|∂f |2
)

1

2

≤ KR‖∇f‖L2,λ . (37)

Note that
|P(0)| ≤ KR

and from the computations in (36) and (37) we also see that

‖P(f)−P(0)‖L∞ ≤ KR‖f‖H . (38)

Also observe that, since we only need to integrate on ξ ∈ B2R(0), for |z| ≥ 4R

we have |ξ − z| ≥ |z|
2

, so |P(f)| is bounded by KR2

|z| (‖∇f‖L2 + ‖f‖L∞).

P(f) is in W 1,2 (we will shortly show that P(f) ∈ H) and solves

∂̄(P(f)) = −χRν(ϕ̃, α̃)∂f − χR
ν(ϕ̃, α̃)

z
(1 + f), (39)

since 1
z−ξ

is the fundamental solution for the operator ∂̄; in fact, 1
z−ξ

=
∂
∂z
(ln |z − ξ|), and ∂̄∂ = i∆, compare [9], page.17.
Therefore, what we are looking for is a fixed point for P in H . Observe

that P is an affine functional, therefore, to show that it is a contraction in
H , it will be enough to show

P(0) ∈ H,
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‖P(f)− P(0)‖H ≤ k‖f‖H,
for any f and for some 0 < k < 1. From (39),

‖∂̄(P(f)−P(0))‖L2 ≤ KR(‖∇f‖L2 + ‖f‖L∞)

and, since P(f)−P(0) decays at infinity as 1
|z| , we can integrate by parts to

get

‖∇(P(f)−P(0))‖L2 = K‖∂̄(P(f)−P(0))‖L2 ≤ KR(‖∇f‖L2+‖f‖L∞). (40)

The fact that

‖D(P(f)− P(0))‖L2,λ ≤ KR(‖Df‖L2 + ‖f‖L2,λ)

follows from equation (39) by theorem 5.4.1. in [15], page. 146.
The last estimate, together with (38) and (40), implies

‖P(f)−P(0)‖H ≤ KR‖f‖H .

Similarly we can show that P(0) ∈ H , with ‖P(0)‖H ≤ KR. If R is small
enough (recall that ν

z
≤ K independently of R), we have a contraction and

by Caccioppoli’s fixed point theorem we have the existence of a unique fixed
point u for P and

‖u‖L∞ ≤ 2KR.

So we have a Hölder function w = z(1 + u) solution to (35). Since ν(ϕ̃, α̃)
is Hölder-continuous of exponent δ thanks to theorem 6.1, by means of a
Shauder-type estimate w is C1,δ.

Remark 6.3. Observe that |w(z)−z| ≤ KR|z| implies that at 0, ∂w ≈ 1, ∂̄w ≈
0, with perturbations of order KR. By taking R smaller if necessary, we can
assume, since w is C1,δ, that ∂w and ∂̄w stay as close as we like to 1 and 0
in BR.

Core of the proof of theorem 5.1. We are now ready to complete
the proof of non-accumulation, which will go on until the end of this section.
Take the function G : C3 → C3 given by

G(z, ζ, a) = (z, ζ − ϕ̃(z), a− α̃(z)),

and consider the pushforward Γ := G∗C. The map G is proper (if K is com-
pact, G−1(K) is closed by continuity and bounded since the average function
is L∞) and W 1,2: this gives that the pushforward is well-defined and com-
mutes with the boundary operator. The point here is that the W 1,2 function

57



0

0

C

Γ = G∗(C)

Figure 7: A sketch for a 3-valued graph. The average is the dotted line in the
first picture. By subtracting it, we get a new 3-valued graph: the points of
multiplicity 3 are turned into zeros. The new 3-valued graph still represents
a boundaryless current, thanks to the W 1,2-estimate on the average.

G, from a domain in R2 into R3, can be approximated by C1 functions Gε as
ε → 0 so that the minors DGε converge weakly in L1 to the minors of DG
(see [8], pages 232-233 Propositions 2 and 3). This implies that ∂Γ = 0 and
that the current Γ is described by the multi-valued graph

{σj , τj} = {ϕj − ϕ̃, αj − α̃}. (41)

From (24), the smooth parts of {σj} solve

∂σj + ν(ϕ̃, α̃)∂σj +

Q
∑

k=1

Sk
j σk +

Q
∑

k=1

T k
j τk = 0, (42)

with |T k
j |, |Sk

j | ≤ K(1 +

Q
∑

i=1

|∇ϕi| +
Q
∑

i=1

|∇αi|). Therefore, by the Hölder
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estimate in theorem 6.1, |T k
j |, |Sk

j | are in L2(DR). As for {τj}, from (19) and
(20) we have that

∇αj(z) = h(z, ϕj(z), αj(z)),

for a smooth R2-valued h, so

∂τj =

Q
∑

k=1

Ak
jσk +

Q
∑

k=1

Bk
j τk ,

with Ak
j , B

k
j bounded; for ∂τj we have a similar equation, since the τj are real

(so the equation we wrote actually contains the whole information on the
two real derivatives). Putting them together (we keep writing A,B although
these coefficient are different)

∂τj + ν(ϕ̃, α̃)∂τj +

Q
∑

k=1

Ak
jσk +

Q
∑

k=1

Bk
j τk = 0, (43)

with Ak
j , B

k
j bounded.

Observe that singularities of order Q in C have the property that all the
branches coincide at those points, therefore they are zeros of the multi-valued
graph {σj, τj}.

Assume by contradiction the existence of a sequence of singular points in

SingQ accumulating onto 0.

Then we can take N points qn ∈ F = π(SingQ) which lie in Dr, with
N as large as we want and r < R arbitrarily small and {σj , τj}(qn) = 0, for
n = 1, ..., N . In the estimates to come, one should always pay attention to
the fact that the constants obtained must not depend on the chosen N and
r, unless otherwise specified.

Define the function

g(z) := ΠN
i=1(w(z)− w(qi)),

with the w obtained in the previous lemma. Then g is a C1, W 1,2 function
and it solves on DR

∂g + ν(ϕ̃, α̃)∂g = 0.

Take F : C3 → C3

F (z, ζ, a) =

(

z, χr(z)
ζ

g(z)
, χr(z)

a

g(z)

)

, (44)

where χr is a radial, smooth cut-off, 1 onBr, 0 on the complement ofB2r, with
gradient bounded by K

r
; we are going to analyse the pushforward F∗(G∗(C)).
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First observe that, on any set of the form DR \ ∪N
i=1Bδ(qi) for δ as small as

we want, F is a C1, Lipschitz and proper function. Set

Aδ := (DR \ ∪N
i=1Bδ(qi))× C× C;

we can restrict Γ to Aδ, writing Γδ := Γ Aδ, and then the pushforward
∆δ := F∗(Γδ) is a well defined i.m. rectifiable current with finite mass, and
it can develop boundary only on (∪N

i=1∂Bδ(qi))× C× C. Now we will prove

Lemma 6.2. Sending δ → 0, we can define the pushforward ∆ := F∗(Γ) =
F∗(G∗(C)) on the whole of DR × C× C, and ∆ is a boundaryless current of
finite mass. Then we can rewrite the following relation

∆(dζdζ̄) = ∂∆(ζdζ̄)

as a standard integration by parts formula, where both integrals are finite:

∫

B2r(0)

∑

j

∣

∣

∣

∣

∂̄

(

χrσj
g

)∣

∣

∣

∣

2

=

∫

B2r(0)

∑

j

∣

∣

∣

∣

∂

(

χrσj
g

)∣

∣

∣

∣

2

. (45)

Remark 6.4. Formula (45) is the only thing we will need in the sequel. The
finiteness of the integrals was not clear in the analogous formula used in [21].

Remark 6.5. In this formula ∇
(

χrσj

g

)

is understood to be 0 on the set

F = π(SingQ). The reason for this will be clear during the proof. On the
complement DR \ π(SingQ) the gradient is well-defined since the functions
are smooth except at the isolated points π(Sing≤Q−1).

proof of lemma 6.2. From what we said before, ∆ can develop boundary
only on (∪N

i=1qi)×C×C. Moreover, ∆ is described by the multi-valued graph

{

χrσj
g

,
χrτj
g

}Q

j=1

. (46)

From theorem 4.3, this multi-valued graph is bounded on DR, indeed we
only have to check it at the points qi: on some neighbourhood of a chosen
qk, thanks to corollary 5.1,

|σj(z)| = |σj(z)− σ(qk)| ≤ K|z − qk|.

By Lagrange’s theorem, if the mentioned neighbourhood was chosen small
enough (its size should be much smaller than the distances between the qi’s),
then g(z) ≈ ΠN

i=1(z−qi); more precisely, K1Π
N
i=1|z−qi| ≤ |g(z)| ≤ K2Π

N
i=1|z−
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qi| withK1, K2 close to 1 (the perturbation is due to the perturbations ∂w ≈ 1
and ∂w ≈ 0). Therefore

|σj(z)| ≤ K{qi}|g(z)|,

where K{qi} is a constant that depends on the choices of r and the set {qi}
(more precisely the constant is of order Πi 6=j |qi − qj |−1). This will not be
problematic, all that matters to us is the fact that

{

χrσj
g

,
χrτj
g

}Q

j=1

is bounded. We further observe that, thanks to the equation solved by g, the
multi-valued graph

{

σj
g
,
τj
g

}Q

j=1

satisfies, on DR \ F ,

∂

(

σj
g

)

+ ν(ϕ̃, α̃)∂

(

σj
g

)

+

Q
∑

k=1

Sk
j

(

σk
g

)

+

Q
∑

k=1

T k
j

(

τk
g

)

= 0, (47)

∂

(

τj
g

)

+ ν(ϕ̃, α̃)∂

(

τj
g

)

+

Q
∑

k=1

Ak
j

(

σk
g

)

+

Q
∑

k=1

Bk
j

(

τk
g

)

= 0, (48)

with the coefficients A,B, S, T as above.
Step 1: ∆ has finite mass. Remark that the closed set F = π(SingQ) is

included in {z : ∀i σi(z) = τi(z) = 0}. The integer multiplicity rectifiable
current ∆δ possesses a.e. on F \ ∪N

i=1Bδ(qi) an approximate tangent plane
that must be horizontal, i.e. it must be the plane (z, 0, 0). Indeed, this is true
at any point of density 1 of the set {z : ∀i σi(z) = τi(z) = 0} \ ∪N

i=1Bδ(qi),
as can be seen from the definition of tangent plane (see [8] page 92).

Let us observe the action of ∆δ on dζ ∧ dζ̄. By the observation we just

made, this action gives 0 on F , therefore we can extend ∇
(

χrσj

g

)

to be 0 on

F \ ∪N
i=1Bδ(qi) (compare remark 6.5). With this understood we can write:

∆δ(dζ ∧ dζ̄) =
∫

B2r\∪N
i=1

Bδ(qi)

∑

j

d

(

χrσj
g

)

∧ d
(

χrσj
g

)

=

=

∫

B2r\∪N
i=1

Bδ(qi)

∑

j

∣

∣

∣

∣

∂̄

(

χrσj
g

)∣

∣

∣

∣

2

−
∣

∣

∣

∣

∂

(

χrσj
g

)∣

∣

∣

∣

2

. (49)
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By (47) and the triangle inequality |a− b|2 ≥ |b|2
2
−|a|2 we get, recalling that

|ν| ≤ ε, (the integrals in the following lines are performed on an arbitrary
measurable set disjoint from ∪N

i=1Bδ(qi)):

∫

∑

j

∣

∣

∣

∣

∣

Q
∑

k=1

Sk
j

(

σk
g

)

+

Q
∑

k=1

T k
j

(

τk
g

)

∣

∣

∣

∣

∣

2

=

∫

∑

j

∣

∣

∣

∣

∂

(

σj
g

)

+ ν(ϕ̃, α̃)∂

(

σj
g

)∣

∣

∣

∣

2

≥

≥
∫

∑

j







∣

∣

∣
∂
(

σj

g

)∣

∣

∣

2

2
− ε2

∣

∣

∣

∣

∂

(

σj
g

)∣

∣

∣

∣

2






=

=

∫

∑

j

(

1

2
+ ε2

) ∣

∣

∣

∣

∂

(

σj
g

)∣

∣

∣

∣

2

+ ε2
∑

j

(

∣

∣

∣

∣

∂̄

(

χrσj
g

)∣

∣

∣

∣

2

−
∣

∣

∣

∣

∂

(

χrσj
g

)∣

∣

∣

∣

2
)

=

=

∫

∑

j

(

1

2
+ ε2

) ∣

∣

∣

∣

∂

(

σj
g

)∣

∣

∣

∣

2

+ ε2∆δ(dζ ∧ dζ̄) =

=

∫

∑

j

(

1

2
+ ε2

) ∣

∣

∣

∣

∂

(

σj
g

)∣

∣

∣

∣

2

+ ε2∂∆δ(ζ ∧ dζ̄). (50)

Notice that the first term at the beginning of the last chain of inequalities
is finite, from the condition on the T ’s and S’s, and the fact that σk

g
, τk

g
is

bounded.
Let us restrict to a small ball Bλ(qi): we will show that

lim
ρ→0

∫

Bλ(qi)\Bρ(qi)

∑

j

∣

∣

∣

∣

∂

(

σj
g

)∣

∣

∣

∣

2

is finite; the global finiteness on DR will follow since the qi’s are finite and
there are no poles elsewhere. In a first moment we are going to construct a
sequence ρn ↓ 0 for which M(∂∆ρn) is equibounded. Since ∆ρ = F∗(Γρ) and
||∇F ||L∞(Bλ(qi)\Bρ(qi)) ≤ K

ρ
, from [8], page 134, we get

M(∂∆ρ) ≤
K

ρ
M(∂Γρ). (51)

Moreover, from slicing theory, see Prop. 2 in [8], page 154,

1

(λ/n)2

∫ λ
n

0

M(∂Γρ)dρ =
1

(λ/n)2

∫ λ
n

0

M(〈Γ, |z|, ρ〉) ≤ 1

(λ/n)2
M(Γ (Bλ

n
(qi)×C2))
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and this is bounded as n→ ∞ by the monotonicity formula, since the tangent
is horizontal at (qi, 0, 0) and the multiplicity of this point is Q. Then

1

(λ/n)

∫ λ
n

0

M(∂Γρ)dρ ≤ K
λ

n
,

so by the mean-value theorem there is λ
4n

≤ ρn ≤ λ
n

such that

M(∂Γρn) ≤ 2
1

(λ/n)

∫ λ
n

0

M(∂Γρ)dρ ≤ 2K
λ

n
≤ 8Kρn.

Now (51) yields that M(∂∆ρn) are equibounded.
As observed above,

σj

g
is L∞, therefore the function ζ is bounded on ∆,

so there is some constant which bounds uniformly in n

|∂∆ρn(ζdζ̄)|.

This yields, together with the inequality (50) used with δ = ρn on the set
Bλ(qi) \Bρn(qi),

lim
ρn→0

∫

Bλ(qi)\Bρn (qi)

∑

j

∣

∣

∣

∣

∂

(

σj
g

)∣

∣

∣

∣

2

<∞;

consequently

lim
ρ→0

∫

Bλ(qi)\Bρ(qi)

∑

j

∣

∣

∣

∣

∂

(

σj
g

)∣

∣

∣

∣

2

<∞,

since this integral is a monotone function of ρ, so the limit must exist and it
is enough to check in on a sequence. Once we have the finiteness of

∫

DR

∑

j

∣

∣

∣

∣

∂

(

σj
g

)∣

∣

∣

∣

2

,

using |∆ρn(dζ ∧ dζ̄)| = |∂∆ρn(ζdζ̄)| < ∞ again, by (49) we also get the
finiteness of

∫

DR

∑

j

∣

∣

∣

∣

∂

(

σj
g

)∣

∣

∣

∣

2

.

This implies that the Jacobian minors of
σj

g
are in L1, so the finiteness of the

mass can be obtained by the Area formula20, see [8] page 225.

20Recall that it is enough to apply the Area formula to the smooth parts of the current
∆ that are above DR \ F . The rest of the current lies in F , which has finite measure.
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Step 2: ∆ has no boundary. As said above, we only have to exclude
boundary terms localized at the points qi. As before, we restrict ourselves to
∆ Bλ(qi)×C2. During this step, we will keep denoting this current by ∆.
To simplify things, we will test ∂∆ only on the 1-forms χρ(z)ζdζ̄, which is
needed for the integration by parts formula (45); the proof for other 1-forms
is similar21. Since the possible boundary in the interior of DR is localized
only in qi × C2, the result will be the same for any ρ.

∂∆(χρ(z)ζdζ̄) = ∆(dχρ ∧ ζdζ̄) + ∆(χρdζ ∧ dζ̄).

From the previous step,

|∆(χρdζ ∧ dζ̄)| ≤
∫

B2ρ(qi)

∑

j

∣

∣

∣

∣

∇
(

σj
g

)∣

∣

∣

∣

2

→ 0

for ρ→ 0. Let us now analyse the first term:

∣

∣∆(dχρ ∧ ζdζ̄)
∣

∣ =

∣

∣

∣

∣

∣

∫

B2ρ(qi)\Bρ(qi)

∑

j

∂χρ
σj
g
∂̄

(

σj
g

)

∣

∣

∣

∣

∣

≤

≤
∫

B2ρ(qi)\Bρ(qi)

K

ρ

∥

∥

∥

∥

σj
g

∥

∥

∥

∥

L∞

∣

∣

∣

∣

∇
(

σj
g

)∣

∣

∣

∣

and by Hölder’s inequality

≤
∥

∥

∥

∥

σj
g

∥

∥

∥

∥

L∞

K

ρ
2ρ

(

∫

B2ρ(qi)

∑

j

∣

∣

∣

∣

∇
(

σj
g

)∣

∣

∣

∣

2
) 1

2

.

This integral goes to 0 as ρ → 0 thanks to the previous step. So there is no
boundary term at any of the qi when we test on the one form ζdζ̄.

We are now ready to finish the proof of non accumulation started before
lemma 6.2: recall that we assumed, by contradiction, the existence of N
points qn ∈ F = π(SingQ) which lie in Dr, with N as large as we want and
r < R arbitrarily small and {σj , τj}(qn) = 0, for n = 1, ..., N . From Leibnitz
rule and (47)

21For the reader who is familiar with the support theorem for Flat-currents (see [8]
page 525), we remark that the absence of boundary can be obtained by showing, via an
approximation argument, that ∂∆ is a Flat 1-current. The quoted theorem then implies
that ∂∆ = 0.
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∫

B2r

∑

j

∣

∣

∣

∣

∂̄

(

χrσj
g

)∣

∣

∣

∣

2

≤ Kr−2
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j

∣

∣

∣

∣

σj
g
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∣

∣

∣

2
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|χr|2
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∣

∣
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(
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g
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∣

∣

∣

2

= Kr−2

∫
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j

∣

∣

∣

∣

σj
g

∣

∣

∣

∣

2

+
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∂

(
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g
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∣

∣

∣

2

+

+K
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(
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Q
∑
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Q
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j

(

∣

∣

∣

∣

χr
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g

∣

∣

∣

∣

2

+

∣

∣

∣

∣

χr
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g

∣

∣

∣

∣

2
)

.

Now, using |ν| ≤ ε and (45) (notice that the previous lemma and the fact
that {σ

g
, τ
g
} is bounded guarantee the finiteness of all terms),

∫

B2r

∑

j

|ν(ϕ̃, α̃)|2
∣

∣

∣

∣

χr∂

(

σj
g
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∣

∣

∣

2

=
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j
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∣

∣
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∣
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∣
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∣
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∣

2

.

Putting all together, with a further use of (45) on the l.h.s., we get
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g
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∣
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∣
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+
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.

Similarly, from (48), and using the analogous partial integration
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∣
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,

we get
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j
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∣
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Set now v := max
j

{∣

∣

∣

∣

χr
σj
g

∣

∣

∣

∣

,

∣

∣

∣

∣

χr
τj
g

∣

∣

∣

∣

}

. This function is W 1,2: indeed, this

is true on D2r \ π(Sing≤Q), since it is the maximum of W 1,2 functions; then
by arguments already used,

• π(Sing≤Q−1) are isolated points so we can extend the W 1,2 estimate to
D2r \ π(SingQ);

• then we extend to D2r \ (∪N
i=1Bδ(qi) ∩ F) for any arbitrarily small δ,

thanks to the fact that v = 0 on on SingQ \ {qi};

• finally, sending δ → 0, to the whole of DR since the qi are isolated.

Also observe that, by the Cauchy-Schwarz inequality, |∇(|v|)| ≤ |∇v|, so

∫
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,

so (52) and (53) imply
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v2.

Recall that
(

1 +
∑Q

i=1 |∇ϕi|2 +
∑Q

i=1 |∇αi|2
)

is L1 by theorem 6.1 (Hölder

estimate); then, by lemma 5.4.1. in [15], we get the existence of δ > 0 such
that the last term can be bounded by

∫
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Q
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|∇αi|2
)

v2 ≤ Krδ
∫
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|∇v|2,

so we can write

r2
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;

now, since v ∈ W 1,2
0 (B2r), by Poincaré’s inequality
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Since
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2
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≤ 2Qv2 by definition of v, and χr = 1 on Br,

the last inequality implies the following Carleman-type estimate
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∣
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∫
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∣

σj
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∣

∣
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∣
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+

∣
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∣

τj
g

∣
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∣

2
)

, (54)

with K independent of r and the cardinality N of the set {qi}. Assume that
the {qi} were chosen much inside Dr, say in Dr/4. Then, from the definition
of g, if r was chosen small enough (which doesn’t influence K), on the l.h.s.

of (54) g ≤
(

3r
4

)N
, while on the r.h.s. g ≥

(

3|z|
4

)N

, so we get

∫

Br/4

∑

j

|σj |2 + |τj |2 ≤ K

∫

B2r\Br

(

r

|z|

)2N
∑

j

|σj |2 + |τj |2;

letting N go to infinity, we can make the r.h.s. as small as we wish, which
implies

∫

Br/4

∑

j

|σj|2 + |τj|2 = 0,

i.e. all the branches of the multigraph describing our original current must
agree with the average on a neighbourhood of 0. But then this average must
be itself a Special Legendrian counted Q times, therefore it must be smooth
in this neighbourhood thanks to the basic step of the induction. We have
therefore completed the proof of ♯1.

7 Proof of ♯2: non-accumulation of lower-order

singularities

To complete the proof of the inductive step, we have to exclude the pos-
sibility of accumulation of points in Sing≤Q−1 to a singularity of order Q.

Let x0 ∈ SingQ; from theorem 5.1 (and recalling the monotonicity for-
mula) we can assume that we work in a ball B5 centered at x0 such that all
the points of C in this ball are of multiplicity at most Q and

B5 ∩ SingQ = {x0}.

By the inductive assumption, the other singularities in B5 are isolated and
of multiplicity ≤ Q− 1.
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Thus we can take local coordinates about x0 in such a way that C is given
by a Q−valued graph over D2 that we denote by

{(ϕj(z), αj(z))}j=1···Q ,

where z = x + iy is the coordinate in the Disk D2, ϕi ∈ C and αi ∈ R and
where for all j ∈ {1, · · · , Q} it holds (ϕj(0), αj(0)) = (0, 0).

Assumption on the multiplicity. In order to simplify the exposition,
we assume that all smooth points of C B5 have multiplicity exactly 1. The
following argument shows that there is no loss of generality in doing so22.

If a smooth point p has multiplicity M ≥ 2, it must have a neighbourhood
all made of smooth points of equal multiplicity M . Take the maximal of such
neighbourhoods and denote it by U . This smooth submanifold, counted once,
constitutes an i.m. current U in B5, whose smooth points have multiplicity
1, possibly having singularities located at the same points where the singular
points of C were.

We claim that U is a boundaryless current. Let us prove it. Let {qi}
be the at most countable singularities of C of order ≤ Q− 1, possibly accu-
mulating onto 0. First of all, from the maximality of U we can deduce that
the topological boundary ∂U inside the smooth 2-dimensional submanifold
(C \ {0}) \ ∪qi is empty. This implies that ∂U must be supported at the
singularities. Thanks to this, we can localize U to a neighbourhood V 5

i of
each isolated singularity and we can exclude the presence of boundary at
each qi as follows. By abuse of notation we keep denoting by U the localized
current.

We will write Bλ for the ball B5
λ(qi). For almost any choice of λ > 0,

the slice of U with ∂Bλ exists as a 1-dimensional rectifiable current of finite
mass and it is the same current, with opposite sign, as the boundary of
Uλ := U (V 5

i \Bλ). Moreover from slicing theory we have

∫ λ

0

M(∂Uλ)dλ ≤M(U Bλ) ≤ M(C Bλ).

From the monotonicity formula and by the mean value theorem, we get the
existence of a sequence {λn} → 0 of positive real numbers such that

M(∂Uλn) ≤ Kλn,

which implies that ∂Uλn ⇀ 0. On the other hand, Uλn ⇀ U since M(U −
Uλn) =M(U Bλn) → 0, therefore ∂Uλn ⇀ ∂U and we get ∂U = 0.

22This assumption is not really needed to perform the proof presented in this last section,
however it makes it less technical.
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Once we have excluded the presence of boundary located at the singular-
ities qi, we can perform the same argument to exclude boundary located at
0. So U is boundaryless23.

The current C−(M−1)U is thus still a Special Legendrian cycle and has
exactly the same singularities as C; it is therefore enough to prove the result
about non accumulation for this Special Legendrian “subcurrent”, in order to
get in for C. Starting now from C − (M − 1)U , we can inductively repeat
the argument and get to the desired assumption of having multiplicity 1 at
all smooth points.

We still denote by π the map on C which assigns the coordinate z. With
the assumption just discussed, the singularities of order ≤ Q− 1 are located
exactly at the points π−1(zl) for which zl 6= 0 and

∃j 6= k s.t. (ϕj(z0), αj(z0)) = (ϕk(z0), αk(z0)) . (55)

As recalled at the beginning of this section, we are working under the as-
sumption that the points in (55) form a discrete set in D2 \ 0, therefore at
most countable. Away from them, each branch j of the multiple valued graph
satisfies a system24 of the form







∂zϕj = ν((ϕj , αj), z) ∂zϕj + µ((ϕj, αj), z)

∇αj = h((ϕj , αj), z),
(56)

where ν and µ are smooth complex valued functions on R5 such that ν(0) =
µ(0) = 0 and h is a smooth R2−valued map on R5.

To complete the proof of the main result we need to show

Theorem 7.1. With the previous notations, let 0 be a singular point of
multiplicity Q of the Special Legendrian cycle. If we are working under the
(inductive) assumption that all the other singularities are of order ≤ Q − 1
and are isolated in B5\{0}, then there is no accumulation at 0 of singularities
of the form (55).

23An alternative argument to exclude boundary located at the singular set, is to use
an analogous approximation Un of U obtained by "cutting out" smaller and smaller balls
around the singular set and show that ∂Un is a Cauchy sequence in the Flat-norm, therefore
obtaining that ∂U is a Flat 1-dimensional current. The support theorem (see [8] page
525) tells us that a non-zero Flat 1-current cannot be supported on a set of 0-Hausdorff
dimension, therefore ∂U = 0.

24These are the equations we derived in (22) and (24). With respect to the notations in
sections 5 and 6, we are changing here the signs of the functions ν and µ.
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The proof of the theorem 7.1 we are giving below is inspired by the
homological type argument in [21], pages 85-86. The heuristic idea has been
given in the introduction: we want to find a function that is able to “detect”
the presence of isolated singularities when its topological degree is observed.
Global bounds on the degree imply that it is impossible ho have a sequence
of isolated singularities in Sing≤Q−1C accumulating onto 0.

In view of this ideas, we are now going to analyse the structure of the
Special Legendrian current in a neighbourhood of an isolated singular point
q.

The structure of an isolated singularity. Recalling our assumption
on multiplicities, given an isolated singular point q in C, for a small enough
radius ρ, C B5

ρ(q) can be represented as

C B5
ρ(q) = ⊕N

k=1Lk, (57)

where each Lk is either a smooth Special Legendrian embedded disk, or an
immersed one branched at q; N is bounded by the multiplicity of q in C and
Lk 6= Ll if k 6= l.

We give a brief description of the reason why this is true. Consider the
slice 〈C, |p−q| = ρ〉: this is a smooth, one-dimensional, boundaryless current
γ, so it is made of several smooth simple closed curves γi, each one counted
with multiplicity 1.

Each γi can be obtained as the image of a circle (ρ cos t, ρ sin t) ⊂ R2 ≡ C
through a smooth simple map. By the smoothness assumption on all points
of γi, we can get a smooth parametrization from an annulus in C to a subset
of C contained in a corresponding annulus. Take the maximal extension:
since there are no other singularities, this must be a smooth simple map
from Bρ \ {0} into (C Bρ) \ {q}.

By a removable singularity theorem, this map can be extended smoothly
in 0. There is no real need to invoke such a theorem: the extension to 0
is obviously continuous, and it is indeed smooth by standard elliptic theory.
Thus get a smooth map from Bρ into C Bρ; repeat the same argument for
all connected components i’s. A mass comparison shows that this procedure
must cover the whole of C Bρ.

Remark 7.1. For each branched disk Lk in (57), we have a smooth parametriza-
tion from D2 ⊂ C into R5, with a critical point at 0. Just like in section 5,
by using (2), the calibrating condition for the Special Legendrian yields that
the parametrization is a pseudo-holomorphic curve 25.

25The term pseudo-holomorphic curve is commonly used for a map taking values in
an almost-complex manifold, so an even-dimensional manifold with an almost complex
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By elliptic theory and conformality, as explained in section 6 of [13],
one can change coordinates diffeomorhically and find that, in the new co-
ordinates, the parametrization is of the form (wI , f(w)) for w ∈ D2 ⊂ C,
f : D2 → R3, I ∈ N, I ≥ 1, f(w) = o(|w|I). However, we are not going to
make use of this result.

Relative difference of branches around an isolated singularity.
The following discussion is needed to understand the behaviour of the differ-
ence functions ϕi − ϕj and αi − αj for i 6= j in a small neighbourhood of an
isolated singularity q; let zl = π(q) and be M the multiplicity of q. Choose
a neighbourhood centered at q, having a cylindrical form B2

ρ × B3
ρ, with ρ

small enough so that C (B2
ρ × B3

ρ) is discribed as a M-valued graph above
B2

ρ(zl), namely
{(ϕj(z), αj(z))}j=1···M .

Remark that (ϕj(zl), αj(zl)) coincide for all j = 1, ...,M , while for z 6= zl
we have (ϕj(z), αj(z)) 6= (ϕi(z), αi(z)) whenever i 6= j (this follows from the
assumption on multiplicities taken at the beginning of this section).

Above any z ∈ B2
ρ(zl)\{zl}, consider the difference vector ((ϕi−ϕj)(z), (αi−

αj)(z)) ∈ R3 for any choice of i 6= j. The tail and head of this vector will
belong respectively to some Lk and Ll, possibly with k = l. Observe that,
moving this vector by continuity for z 6= zl, this condition on head and tail
will be preserved with the same k and l; remark that if k = l the difference
vector is joining two points of the same branched disk, while if k 6= l it is
joining points belonging to different disks. In figure 8, picture on the left,
there is an attempt to visualize this in the case of a single branched disk (so
k = l) that gives rise to a 2-valued graph locally around the branch point.

For any fixed choice of (k, l) ∈ {1, ..., N} × {1, ..., N}, we are now going
to analyse the functions ϕi − ϕj and αi − αj for i 6= j s.t.

(ϕi, αi) belongs to a branch of Lk and (ϕj, αj) to a branch of Ll, (58)

with particular interest to the behaviour of the difference vector when it
evolves as described above.

This means that, in the discussion that follows, leading to lemmas 7.2
and 7.3, we need to focus only on the disks Lk and Ll of (57).

structure J on the tangent bundle (on each tangent J2 = −Id). So here there is an abuse
of terminology, since our parametrization takes values in R5 with a J that is defined on
the 4-dimensional hyperplanes of the contact distribution. However we can extend J to
R5 × R by setting that the vertical vector of R5 (orthogonal to the hyperplanes) is sent
into the extra direction added. This gives an almost complex structure on R6, we can look
at the parametrization as R6-valued, so that it becomes pseudo-holomorphic.
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From the second equation of the Special Legendrian system (56), taking
differences, we get locally

∇(αi − αj) = F · (ϕi − ϕj) +G · (αi − αj), (59)

where F,G are bounded functions of (z, ϕi(z), ϕj(z), αi(z), αj(z)) depending
on the derivatives of h; so they satisfy |F |, |G| ≤ K0 < ∞. Take a positive
t < 1

4K0
. In the ball {|z − zl| ≤ t)}, consider the point w where |αi − αj |

realizes its maximum, taken over all possible choices of i 6= j satisfying (58).
Along the segment I joining zl to w, we can coherently label αi, αj , ϕi and
ϕj as smooth functions with αi(zl) = αj(zl) and ϕi(zl) = ϕj(zl). It makes
then sense to integrate the equation (59) above along the segment I and get

(αi − αj)(w) =

∫ t

0

(F |I)(s)(ϕi − ϕj)(s)ds+

∫ t

0

(G|I)(s)(αi − αj)(s)ds

for t = |w| ≤ t.

Notational convention: remark that we are using k, l for the fixed choice
of disks in (57); for the branches of the M-valued graph describing C (B2

ρ ×
B3

ρ) we use, instead, the letters i, j. In the present discussion, we are
going to denote by ||αi − αj ||L∞(B2(zl,t))

the quantity sup{|αi − αj|(z) :
z ∈ B2(zl, t) and i 6= j are as in (58)}. An analogous convention holds for
||ϕi − ϕj||L∞(B2(zl,t))

.

Thus taking the L∞-norm over all possible choices of i 6= j satisfying (58)
with the fixed choice of (k, l), we have

||αi − αj ||L∞(B2(zl,t)) = |αi − αj |(t) ≤
≤ K0t||ϕi − ϕj ||L∞(B2(zl,t)) +K0t||αi − αj ||L∞(B2(zl,t));

this implies

||αi − αj ||L∞(B2(zl,t))
≤ 1

2
||ϕi − ϕj||L∞(B2(zl,t))

,

with i and j as prescribed in (58). Choosing t smaller at the beginning, we
can get an arbitrarily small constant instead of 1

2
: therefore

||αi − αj||L∞(B2(zl,t))

||ϕi − ϕj||L∞(B2(zl,t))

→ 0 as t→ 0. (60)

For i 6= j as in (58), we introduce the following multivalued graph on
{|z| ≤ 1}, with ρ > 0:

(

Θρ
ij(z),Ξ

ρ
ij(z)

)

=

(

(ϕi − ϕj)(zl + ρz)

||ϕi − ϕj||L∞(B2(zl,ρ))

,
(αi − αj)(zl + ρz)

||ϕi − ϕj ||L∞(B2(zl,ρ))

)

.
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Remark 7.2. This multi-valued graph has either one or two connected com-
ponents. The former case happens when k = l, the latter when k 6= l. In the
latter case, however, the two connected components are symmetrical with
respect to (z, 0, 0): one of them is just minus the other. Of course, this hap-
pens when we take ϕi − ϕj and then ϕj − ϕi. So we can basically assume to
be always dealing with a unique connected component.

We are interested in the behaviour of
(

Θρ
ij(z),Ξ

ρ
ij(z)

)

as ρ→ 0.
Thanks to (60), both Θρ

ij and Ξρ
ij are smaller or equal than 1 in modulus;

more precisely Ξρ
ij goes uniformly to 0 as ρ→ 0 and |Θρ

ij| always realizes the
value 1 by definition. From (56) and (59), the branches of this multivalued
graph solve locally on {0 < |z| ≤ 1} equations of the following type:

{

∂Θρ
ij(z) + ν(zl + ρz)∂Θρ

ij(z) + ρS(ρz)Θρ
ij(z) + ρT (ρz)Ξρ

ij(z) = 0
∇Ξρ

ij(z) = ρF (ρz)Θρ
ij(z) + ρG(ρz)Ξρ

ij(z),
(61)

with F,G ∈ L∞ and S, T ∈ L2.
We prove now:

Lemma 7.1. As ρ → 0 the multi-valued graph
(

Θρ
ij(z),Ξ

ρ
ij(z)

)

converges
uniformly to a multi-valued graph (Θij(z), 0), where Θij is holomorphic in

the variable w =

√

1

1 + |ν(zl)|2
z + ν(zl)

√

1

1 + |ν(zl)|2
z and homogeneous,

i.e. there is τ ∈ Q such that, for any λ ∈ (0,∞) it holds Θij(λz) = λτΘij(z).

proof of lemma 7.1. All the multivalued graphs of the sequence are pinched
at 0. By an argument similar to the one used in theorem 6.1, we can de-
duce a uniform Hölder estimate on

(

Θρ
ij(z),Ξ

ρ
ij(z)

)

independent of ρ. By
Ascoli-Arzelà’s theorem, as ρ → 0, we can extract a subsequence converg-
ing uniformly to a multi-valued graph (Θij(z),Ξij(z)) and, as we said above,
Ξij(z) ≡ 0.

To complete the proof, we need to prove that this limit is unique, homo-
geneous and holomorphic in w.

In a way reminiscent of the discussion preceeding 7.1, the unique con-
nected component of (z, (ϕi − ϕj)(zl + ρz), (αi − αj)(zl + ρz)) (always with
i 6= j as in (58)) can be smoothly parametrized by a map from the unit disk
D2 ⊂ C into D2 × C× R.

This can be achieved as follows. When the difference vector (ϕi−ϕj, αi−
αj)(zl+ρ0z) (observed as an object in C×C×R) evolves by continuity with
a fixed ρ0 as in figure 8, it comes back to the starting position after that the
projection of its tail onto the first C-factor has made I laps, for some integer
I that depends on the branching order of Ll and Lk. So we can parametrize
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the multi-valued graph (z, (ϕi − ϕj)(zl + ρ0z), (αi − αj)(zl + ρ0z)) restricted
to ∂D2 × C × R as a smooth curve from ∂D2 into C × C × R of the form
(zI , φlk(z), alk(z)). Now, by the smoothness of the current out of the isolated
singularity, this map can be extended to a smooth map (zI , φlk(z), alk(z))
from D2 \ {0} into C × C × R, describing {(z, (ϕi − ϕj)(zl + ρ0z), (αi −
αj)(zl + ρ0z)) : |z| ≤ 1} on (D2 \ {0})× C× R.

By a standard computation we can translate (61) into a first order system
for (φlk, alk) of the schematic form

{

∂φlk(z) + ν̃(z)∂φlk(z) + S̃(z)φlk(z) + T̃ (z)alk(z) = 0

∇alk(z) = F̃ (z)φlk(z) + G̃(z)alk(z) = 0
, (62)

with C1,σ coefficients (0 < σ < 1) and |ν̃| small. Elliptic regularity yields
that the extension of (zI , φlk(z), alk(z)) to D2, which is obviously continous
at 0, is actually at least C2.

Moreover, after the linear change of coordinates z → w

w =

√

1

1 + |ν(zl)|2
z + ν(zl)

√

1

1 + |ν(zl)|2
z ,

and by taking the ∂w-derivative of the first equation, we get an inequality of
the form

|∆̃φlk|(w) ≤ K|Dφlk|(w) +K|φlk|(w),
where K is a positive constant and ∆̃ is an elliptic second order operator
that coincides with the Laplacian for w = 0. By elliptic theory, the function
f(ρ) := ‖φlk‖L∞(B2

ρ)
cannot have derivatives at 0 all vanishing, see theorem

1.1 and corollary 1 on page 41 of [13] (this theorem is basically due to Hart-
man and Wintner).

Fix z ∈ ∂D2 ⊂ C. Then, since f(ρ) is just ‖ϕi − ϕj‖L∞(B2(zl,ρ)), we can
write

Θij(z) := lim
ρ→0

Θρ
ij(z) = lim

ρ→0

(ϕi − ϕj)(zl + ρz)

f(ρ)
(63)

and

Θij(λz) := lim
ρ→0

Θρ
ij(λz) = lim

ρ→0

(ϕi − ϕj)(zl + ρλz)

f(ρ)
. (64)

This blow-up can be equivalently expressed in terms of φlk. What we
are looking for in (63) and (64) are respectively Φlk(z) := limρ→0

φlk(ρz)
f(ρ)

and

Φlk(λz) = limρ→0
φlk(λρz)

f(ρ)
. As we saw above, the function f is smooth and it

is not possible that all of its derivatives at ρ = 0 vanish.
It is then enough to restrict to the segment joining zl to z and apply De

L’Hopital’s theorem to compute the two limits: we get that there is k ∈ N,
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namely the first integer such that f (k)(0) 6= 0, for which Φ(λz) = λkΦ(z).
This immediately gives Θij(λz) = λτΘij(z) for τ = k

Q
and the uniqueness of

the limit.
Moreover, it is not difficult to see that the convergence Θρ

ij → Θij is more
that just uniform: indeed, the gradients are equibounded and equicontinuous,
so we can pass (61) to the limit and get that (Θij(z),Ξij(z)) must solve,
locally on {0 < |z| ≤ 1},

{

∂Θij(z) + ν(zl)∂Θij(z) = 0, with |ν(zl)| << 1,
∇Ξij(z) = 0.

(65)

Therefore, since (Θij(0),Ξij(0)) = (0, 0), from the second equation we recover
once again (Θij(z),Ξij(z)) must be of the form (Θij(z), 0). Consider now the
equation for Θij: again with the linear change of complex variable z → w,
we can deduce that Θij solves

∂

∂w
Θij(w) = 0;

thus Θij is holomorphic w.r.t. the variable w. We will also say that it is
almost-holomorphic in z.

The fact that Θij is holomorphic in w and homogeneous implies that Θij

is always non-zero on ∂D2. Indeed, if we had a zero on y ∈ ∂D2, Θij would
be zero on the whole segment joining 0 to y: recalling that there is a unique
connected component and by holomorphicity we would then get that Θij is
zero on the whole of D2, contradicting that its L∞-norm is 1.

Lemma 7.2. Fix (k, l) ∈ {1, ..., N}×{1, ..., N}; for i 6= j s.t. (ϕi, αi) belongs
to a branch of Lk and (ϕj , αj) to a branch of Ll (possibly with k = l), the
following holds: for any δ > 0 there is ρ > 0 small enough, s.t.

|z − zl| < ρ⇒ |αi − αj|2
|ϕi − ϕj |2 + |αi − αj|2

(z) < δ.

In particular, for |z − zl| < ρ and z 6= zl, we have ϕi − ϕj 6= 0 for i 6= j.

proof of lemma 7.2. By contradiction, if for some δ > 0 and a sequence

zn → zl we had
|αi−αj |2

|ϕi−ϕj |2+|αi−αj |2 (zn) ≥ δ, the sequence

(

Θ
|zn−zl|
ij (z),Ξ

|zn−zl|
ij (z)

)

could not converge to a limit of the form (Θij(z), 0).
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Lemma 7.3. Fix (k, l) ∈ {1, ..., N} × {1, ..., N}; by lemma 7.2, for ρ small
enough and for i 6= j s.t. (ϕi, αi) belongs to a branch of Lk and (ϕj, αj) to a
branch of Ll (possibly with k = l), it makes sense to compute the degree of

ϕi − ϕj

|ϕi − ϕj|

on the closed curve γ = Ll∩π−1{|z−zl| = ρ}. This degree is strictly positive.

proof of lemma 7.3. See figure 8 for a visual explanation. γ is a closed,
connected curve; orient it so that its projection π(γ) on C winds positively.
Fix then, with an arbitrary starting point on γ, any determination of the
vector ϕi − ϕj and let it evolve along γ in the given direction, keeping its
tail on the curve; meanwhile, its head will move along a closed curve in Lk,
which could be either the same or a different curve. In the former case we
are staying inside the same branched disk Ll, in the latter we are dealing
with two different disks Lk and Ll. In any case, the vector will eventually
come back to the initial one after having run, possibly more than once (say

I times), over the whole of γ. We then get a smooth map
ϕi − ϕj

|ϕi − ϕj|
from a

multiple cover γ ⊕ ...⊕ γ of γ to S1. The multiple cover is homeomorphic to
S1, so it makes sense to consider the degree of the S1-valued map

ϕi−ϕj

|ϕi−ϕj | on

γ ⊕ ... ⊕ γ. Introduce the multi-valued graph ϕi − ϕj for i, j in the Lk and
Ll involved. This multi-valued graph has a unique connected component (or
two symmetrical ones). By lemma 7.1

ϕi − ϕj

|ϕi − ϕj|
(zl + ρz) =

Θρ
ij

|Θρ
ij|
(z) → Θij

|Θij|
(z)

uniformly, so it must contribute with a strictly positive degree on γ⊕ ...⊕γ if
ρ was small enough, since so happens Θij, which is almost-holomorphic.

Some heuristics. Roughly speaking, with lemmas 7.2 and 7.3 we have
found out that, by observing the relative differences between branches, we
can somehow “count” the points in Sing≤Q−1.

Indeed, locally around each q ∈ Sing≤Q−1, we have functions defined
via the relative differences of branches that are able to catch the presence
of p by producing a strictly positive integer contribution when the degree is
observed.

However, both in the definition of these functions
ϕi−ϕj

|ϕi−ϕj | and in the proof

of the strict positiveness of the degree, we made a key use of the structure
(57) of C around an isolated singularity q. This allowed us, locally around q,
a “separation of the branches”: we were able to focus just on the disks Ll and
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γ

S1

C

C× R

|z − zl| = ρ

start from here

Figure 8: On the left, an attempt to represent γ = π−1{|z − zl| = ρ} in
the case of a two-valued graph in C × C × R. We observe the evolution of
the difference vector joining points above the same z ∈ {|z − zl| = ρ} ⊂ C:
as the tail of the difference vector runs along γ, we keep track (picture on
the right) of the normalized difference vector projected on the second C-
factor an observe how it winds around S1. If we are around an isolated
singularity, then we find that the represented map from γ to S1 has strictly
positive degree. In this particular picture, after having run once along γ the
normalized difference vector winds once positively around S1.

Lk involved in the evolution of the difference vector. With the use of PDEs
and parametrizations, we were lead to the results on Θij and to the control
on the degree.

Moreover we have produced a way to “count’ singularities with func-
tions that are only defined close enough to the singular point itself. As we
get further from the singularity it might happen that the difference vector
(ϕi − ϕj, αi − αj)(z) has zero C-component, so we cannot construct a global
function that counts singularities by looking only at ϕi − ϕj .

With the notations taken at the beginning of this section, we are thus
lead to the following questions:

• can we produce a similar function that is well-defined in a whole neigh-
bourhood of 0 ∈ D2 and whose degree still detects the presence of
points in Sing≤Q−1?
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• can we find a lower bound for the degree of this function, to allow a
homotopy argument as sketched in the introduction?

Remark that we have no information about the structure of C around
the origin, unlike it happened in the situation (57). A natural candidate
function on D2 to collect the information on the degree of the difference
between branches would be (Πi 6=j(ϕi − ϕj),Πi 6=j(αi − αj)). However this
function does not solve any appealing equation.

To overcome this difficulty we are going to introduce a new 2-dimensional
space π∗C that is modelled on the current C but allows to observe the relative
difference of branches without having to separate them and, most important,
with the use of this new space we will be able to write equations for the
difference of branches: this will be crucial in answering the second question.

More precisely, due to dimensional reasons rooted in the problem, we will
produce a function u on the space π∗C × R taking values in C × R: this
function will mimic the behaviour of the difference vector when we are close
enough to an isolated singularity.

Recalling the heuristic ideas from the introduction, we can see that the
technical reason is that we need a function u that vanishes exactly at the sin-
gular points and for which we can take the degree of u

|u| : since the difference of
branches is naturally an element of C×R, we need to add an extra-dimension
to π∗C in order to have a notion of topological degree.

The core of the proof of theorem 7.1 will be lemma 7.5, where we bound
from below the degree of u

|u| . Lemma 7.4 is a restatement of lemma 7.3 in
terms of the new space π∗C × R and of the function u. These two results
together allow the homological argument that yields theorem 7.1.

Proof of the non-accumulation. Denote by π∗C the following subset
of R3 × R3 ×D2 :

π∗C :=







ξ = (ζ1, ζ2, z) ∈ R3 × R3 ×D2 s.t. ∃j, k ∈ {1 · · ·Q}

satisfying ζ1 = (ϕj(z), αj(z)) and ζ2 = (ϕk(z), αk(z))







.

By an abuse of notation we will also write ζ1 = (ϕ1, α1) and ζ2 = (ϕ2, α2),
moreover26 we denote z = π(ξ) - i.e. π is extended naturally to π∗C.

Observe that C ⊂ π∗C as the result of the identification of C with the
points (ζ1, ζ2, z) such that ζ1 = ζ2. Away from these points, π∗C \C realizes a

26Here ζi (i ∈ {1, 2}) will always be an element of R3 of the form (ϕj(z), αj(z)); it
should not be confused with the complex coordinate ζ in Cz ×Cζ ×Ra used in sections 5
and 6, which will anyway not appear in this section.
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smooth 2-dimensional oriented submanifold of R3×R3×D2 with local chart
given by z.

On π∗C we define the function

d(ξ) := |ζ1 − ζ2| =
√

|α1 − α2|2 + |ϕ1 − ϕ2|2 ,

which is smooth and non-zero on π∗C \ C. On π∗C \ C we define

∆(ξ) :=
|α1 − α2|2

|α1 − α2|2 + |ϕ1 − ϕ2|2
.

Let φ be a smooth non negative compactly supported function satisfying

φ(s) =







1 for s < 1,

0 for s > 2.

For 1 > δ > 0 we denote φδ(·) = φ(·/δ).
Let δ < 1 be a regular value of the function ∆ on π∗C \ C we define a

stretching-contracting map

Sδ : R3 −→ R3

in the following way : Sδ is axially symmetric about the z−axis, |Sδ(x, y, z)| =
|(x, y, z)| and the following conditions are satisfied:

Sδ(x, y, z) =



















Sδ(x, y, z) = sgn(z) (0, 0,
√

x2 + y2 + z2) if
z2

x2 + y2 + z2
> δ,

Sδ(x, y, z) = (x, y, z) if
z2

x2 + y2 + z2
<
δ

2
,

with a smooth join for δ
2
≤ z2

x2+y2+z2
≤ δ chosen so to ensure det(DSδ) > 0.

Denote by N the following 3-dimensional manifold:

N := {(ξ, t) ∈ (π∗C \ C)× R} .

Set

D = Dδ :=
1

√

1
δ
− 1

.

Observe that D > 0 has been chosen in particular in such a way that

D−1 |α1−α2| ≤ |ϕ1−ϕ2| ⇐⇒ ∆(ξ) ≤ δ ⇐⇒ φδ(∆(ξ)) = 1 . (66)
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At this stage we are going to make a short digression to choose a suitable
value for δ < 1 (besides the requirement that δ be a regular value of ∆),
which will be kept throughout the rest of the section.

Let R be the radius of D2. Denote by Br, for r ≤ R, the part of π∗C \C
above the set {|z| < r}, Br := π−1(B2

r (0)). For any δ < 1, express the set
{∆ > δ} as the union of its connected components, i.e. {∆ > δ} = ∪iA

i
δ.

We are going to prove the following claim: there exist δ < 1 and r < R s.t.

∀i and ∀r ≤ r Ai
δ ∩ ∂Br 6= ∅ ⇒ Ai

δ ∩ ∂BR = ∅. (67)

To prove the claim, we argue by contradiction: assume the existence of
sequences δn → 1, rn → 0 for which we can always find a connected com-
ponent intersecting both ∂Brn and ∂BR. Then we can choose C1 curves γn,
parametrized by arc length, joining ∂Brn to ∂BR and staying inside the cor-
responding connected component. Up to a subsequence, by Ascoli-Arzelà’s
theorem, we can assume the existence of a uniform limit curve γ, joining 0
to ∂BR. The function ∆ is greater than δn on the image of γn, therefore

δn → 1 ⇒ ∆ ◦ γ ≡ 1 ⇒ |ϕ1 − ϕ2| → 0 as n→ ∞.

The limit curve γ could a priori be merely continuous and not C1. We can
write, from (59), for any n and for any t in the domain of γn:

|α1 − α2|(γn(t)) ≤ |ϕ1 − ϕ2|(γn(0)) +K0

∫ t

0

|α1 − α2|(γn(s)) ds.

Sending to the limit as n→ ∞

|α1 − α2|(γ(t)) ≤ K0

∫ t

0

|α1 − α2|(γ(s)) ds,

thus α1 − α2 is identically 0 on the curve γ; here ϕ1 − ϕ2 also vanishes and
therefore the image of γ is a line of singularities, contradiction. Thus the
claim is proved. End of the digression.

Now, for the δ just chosen, take any positive r ≤ r arbitrarily small and
such that π−1(∂B2

r (0)) does not intersect the set of zl satisfying (55). Let

ε0 := inf

{

d(ξ)√
1 +D2

; ξ ∈ (π∗C \ C) ∩ π−1(∂B2
r (0))

}

.

By the assumption on r, ε0 > 0.
Let ε > 0 be a regular value less than ε0 for the function |ϕ1−ϕ2|. Denote

by g the following function on π∗C \ C :

g(ξ) :=
ϕ1 − ϕ2

max{|α1 − α2|, Dε}
.
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Observe that since (C B5) \ {0} is assumed to be a smooth Special Leg-
endrian curve and since (ϕj(0), αj(0)) = (0, 0) for all j, |ϕ1 − ϕ2|−1({ε}) is
a smooth compact curve in π∗C \ C for any regular value ε > 0. Observe
moreover that since ε < ε0 we have that

(π∗C \ {ξ ; ∆(ξ) > δ}) ∩
(

|ϕ1 − ϕ2|−1({ε})
)

∩ π−1(∂B2
r (0)) = ∅ . (68)

Define the open set U in π∗C \ C made of the connected components of
{∆ > δ} that intersect Br = π−1(B2

r (0)) (and therefore not ∂BR thanks to
(67)).

For any fixed r ≤ r, choose ε small enough as follows: firstly, ε < ε0;
secondly, take

ε < min
{

|ϕ1 − ϕ2|(ξ) : ξ ∈ ∂ (U ∩ (BR \Br)) \ ∂Br ⊂ ∂U
}

.

The minimum on the r.h.s. is strictly positive. Indeed, if it were 0, then
either we would have a singular point that realizes it, or a smooth point where
∆ = 1. In the former case, lemma 7.2 tells us that there is a neighbourhood
of the singularity where {∆ < δ

2
}, therefore it cannot be a boundary point

of U , since in U we have ∆ > δ. In the latter case there ought to be a
neighbourhood where {∆ > δ}, so it could not be a boundary point.

Finally define the open set in π∗C \ C

Σε,r = ({|ϕ1 − ϕ2| < ε} ∩ Br) ∪ U.

Σε,r has the following properties:

(i)
zl ∈ π(Σε,r) ⇒ zl ∈ π(Br), since there are no singularities in U

due to lemma 7.2;

(ii)

p ∈ ∂Σε,r ⇒
{

|ϕ1 − ϕ2|(p) = ε
∆(p) ≤ δ

or

{

|ϕ1 − ϕ2|(p) ≥ ε
∆(p) = δ

,

so |g| ≡
√

1

δ
− 1 = D−1 on ∂Σε,r.

Thus δ and ε have been chosen in such a way that ∂Σε,r is a closed smooth
compact curve in π∗C \ C which is included in the level set |g|−1({D−1}).
Remark that ∂Σε,r is obtained by homotopy from the loop π−1{|z| = r}
without crossing any singularity of C ⊂ π∗C.
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On N we define the map v given by

v : N −→ S2

(ξ, t) −→ (g(ξ), α1 − α2 + t φδ ◦∆(ξ))
√

|g(ξ)|2 + |α1 − α2 + t φδ ◦∆(ξ)|2
.

Observe that |g(ξ)|2+ |α1−α2 + t φδ ◦∆(ξ)|2 = 0 implies that |ϕ1−ϕ2| = 0.
If α1 − α2 6= 0 then φδ ◦ ∆(ξ) = 0 and hence we would have |α1 − α2| = 0
which is a contradiction. Hence v is well-defined smooth map on N . Finally
define the S2-valued map u by

u := Sδ ◦ v : N → S2.

On the complement of Σε,r the map v simplifies to

v(ξ) =
(g(ξ), α1 − α2 + t)

√

|g(ξ)|2 + |α1 − α2 + t|2
. (69)

From the definition of Sδ, for any two-form ω on S2 we have hence that, on
N\(Σε,r×R), (Sδ◦v)∗ω = 0 for |t| > 1/ε (Assuming without loss of generality
that d(ξ) is bounded by 1 on π∗C). Hence the degree of u restricted to any
closed compact curve in the complement of Σε,r times R is well defined since
in N \ (Σε,r × R) we have u∗ω 6= 0 only on a compact set.

The rest of the section is occupied with the proof of the following two
lemmas, which will imply by a simple homotopy argument that can be found
at the end of the section, that the number of zl is uniformly bounded and
theorem 7.1 will be proved.

Lemma 7.4. For any zl as in (55) and for ρ > 0 small enough

∫

π−1(∂B2
ρ(zl))×R

u∗ω ≥ 1, (70)

where ω is an arbitrary 2−form on S2 such that
∫

S2 ω = 1.

Lemma 7.5. Under the previous notations, there exists a constant K ∈ R+

independent of r and ε such that (the indexes of the two-form are to be
understood mod 3)

∫

∂Σε,r×R

u∗

(

3
∑

i=1

xj dxj+1 ∧ dxj−1

)

≥ −K . (71)

82



proof of lemma 7.5. This constitutes the core of the proof of theorem 7.1.
Recall that |g(ξ)| ≡ D−1 on ∂Σε,r. Denote λ the following function on

Σε,r × R
λ(ξ, t) :=

√

D−2 + (α1 − α2 + t)2 .

We additionally denote by w the following C×R-valued map27 on Σε,r ×R :

w(ξ, t) :=
(g(ξ), α1 − α2 + t)

λ
.

Observe that w = v on ∂Σε,r × R.
First we claim that

∫

Σε,r×R

|(Sδ ◦ w)∗(dx1 ∧ dx2 ∧ dx3)| dH2 dt N < +∞ . (72)

We now prove the claim (72). We write on one hand

S∗
δ (dx

1 ∧ dx2 ∧ dx3) = det(DSδ)(y) dy
1 ∧ dy2 ∧ dy3

and locally on the other hand

w∗(dy1 ∧ dy2 ∧ dy3) = λ−3df 1 ∧ df 2 ∧ d(α1 − α2 + t)+

+λ−2 dλ−1 ∧
(

f 1 df 2 − f 2 df 1
)

∧ d(α1 − α2 + t)+

+λ−2 (α1 − α2 + t) df 1 ∧ df 2 ∧ dλ−1,

(73)

where28 locally f(z) = f 1(z) + if 2(z) := g1(ξ(z)) + ig2(ξ(z)). Observe now
that the following 3- and 2-forms are zero

df 1 ∧ df 2 ∧ d(α1 − α2) ≡ 0 and dλ−1 ∧ d(α1 − α2 + t) ≡ 0 . (74)

Hence (73) becomes, from the definition of λ,

w∗(dy1 ∧ dy2 ∧ dy3) = λ−3df 1 ∧ df 2 ∧ dt

−λ−5(α1 − α2 + t)2 df 1 ∧ df 2 ∧ dt

= λ−5 D−2 df 1 ∧ df 2 ∧ dt.

(75)

We rewrite

w∗(dy1 ∧ dy2 ∧ dy3) = i

2
λ−5 D−2

[

|∂zf |2 − |∂zf |2
]

dz ∧ dz ∧ dt . (76)

27Sometimes we will also look at w as a R3-valued map.
28g1 and g2 denote respectively the real and imaginary part of g.
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We first estimate the following integral :
∫ +∞

−∞
det(DSδ)(w(ξ, t)) λ

−5dt ≤ Cδ

∫ +∞

−∞

dτ

(D−2 + τ 2)
5

2

≤ Cδ. (77)

Observe that

|∇f | ≤ ε−1D−1|∇(ϕ1 − ϕ2)|+ ε−2D−2|ϕ1 − ϕ2||∇(α1 − α2)| . (78)

Since
∫

D2

∑Q
j=1(|∇ϕj|2 + |∇αj|2) < +∞ combining (74), (77) and (78) we

obtain the claim (72).

We now establish the lower bound (71). To that purpose we compute an
equation for f .

From the equations in (56) we deduce that locally






















∂z(ϕ1 − ϕ2) = ν(ϕ2, α2) ∂z(ϕ1 − ϕ2) + [ν(ϕ1, α1)− ν(ϕ2, α2)] ∂zϕ1+

+µ(ϕ1, α1)− µ(ϕ2, α2),

∇(α1 − α2) = h(ϕ1, α1)− h(ϕ2, α2).
(79)

We have that

∂zf =
∂z(ϕ1 − ϕ2)

max{|α1 − α2|, Dε}
− f 1|α1−α2|>Dε

∂z|α1 − α2|
max{|α1 − α2|, Dε}

, (80)

where 1|α1−α2|>Dε is the characteristic function of the set where |α1 − α2| >
Dε. Inserting now (79) in (80) we obtain

∂zf = ν(ϕ2, α2)
∂z(ϕ1 − ϕ2)

max{|α1 − α2|, Dε}
+

[ν(ϕ1, α1)− ν(ϕ2, α2)]

max{|α1 − α2|, Dε}
∂za1

+
µ(ϕ1, α1)− µ(ϕ2, α2)

max{|α1 − α2|, Dε}
− f 1|α1−α2|>Dε

∂z|α1 − α2|
max{|α1 − α2|, Dε}

.

(81)

From (81) we deduce

∂zf = ν(ϕ2, α2) ∂zf + ν(ϕ2, α2) f 1|α1−α2|>Dε
∂z|α1 − α2|

max{|α1 − α2|, Dε}
+

+
[ν(ϕ1, α1)− ν(ϕ2, α2)]

max{|α1 − α2|, Dε}
∂za1 +

µ(ϕ1, α1)− µ(ϕ2, α2)

max{|α1 − α2|, Dε}
−

−f 1|α1−α2|>Dε
∂z|α1 − α2|

max{|α1 − α2|, Dε}
.

(82)
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Using now the second equation in (79) we obtain the existence of a constant
K0 > 0 such that

|∇(α1 − α2)| ≤ K0 [|ϕ1 − ϕ2|+ |α1 − α2|] . (83)

This later fact gives

∣

∣

∣

∣

∇(α1 − α2)

max{|α1 − α2|, Dε}

∣

∣

∣

∣

≤ K0 [|f |+ 1] . (84)

Combining (82) and (84) we obtain the following bound : there exists K1 > 0
and K2 > 0 such that

|∂zf − ν(ϕ2, α2) ∂zf | ≤ K1 [|f |+ 1] |∂zϕ1|+K2

[

|f |2 + 1
]

. (85)

From (76) we have that

∫

Σε,r×R

(Sδ ◦ w)∗(dx1 ∧ dx2 ∧ dx3) =

=

(

∫

π(Σε,r)

D−2
[

|∂zf |2 − |∂zf |2
] i

2
dz ∧ dz

)

(
∫ +∞

−∞
det(DSδ) ◦ w λ−5 dt

)

.

(86)
Since det(DSδ)(y) ≥ 0 on R3,

η(z) :=

∫ +∞

−∞
det(DSδ) ◦ w λ−5 dt ≥ 0 .

Moreover we also have the following bound given by (77)

η ≤ CD = Cδ . (87)

Using (85) we then deduce the following lower bound:

∫

Σε,r×R

(Sδ ◦ w)∗(dx1 ∧ dx2 ∧ dx3) ≥

≥
∫

π(Σε,r)

D−2
[

1− ν2(ϕ2, α2)|∂zf |2
]

η
i

2
dz ∧ dz−

−C̃δ

∫

π(Σε,r)

[

4(K1)
2(|f |+ 1)2 |∂zϕ1|2 + 4(K2)

2 (|f |2 + 1)2
] i

2
dz ∧ dz .

(88)
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Using the fact that |f(z)| = |g(ξ)| ≤ D−1 on Σε,r, and that, for r small
enough |ν(ϕ2, α2)| < 1/2, we obtain the existence of a constant Kδ such that

∫

Σε,r×R

(Sδ ◦ w)∗(dx1 ∧ dx2 ∧ dx3) ≥

≥ −Kδ

∫

D2

Q
∑

j=1

[

|∇ϕj|2 + 1
] i

2
dz ∧ dz ≥ −K,

(89)

with K > 0 independent of r and ε.
Recall now that w = v on ∂Σε,r × R. Then by Stokes theorem

∫

Σε,r×R

(Sδ◦w)∗(dx1∧dx2∧dx3) =
∫

∂Σε,r×R

(Sδ◦w)∗
(

3
∑

i=1

xj dxj+1 ∧ dxj−1

)

=

=

∫

∂Σε,r×R

(Sδ ◦ v)∗
(

3
∑

i=1

xj dxj+1 ∧ dxj−1

)

.

This is the desired lower bound (71) and lemma 7.5 is proved.

proof of lemma 7.4. The result follows straight from lemma 7.3. Observe
that, by lemma 7.2 and by homotopy, the degree computed there is the same
as the degree of the function

ϕi − ϕj

Dε
=

ϕi − ϕj

max{|αi − αj |, Dε}
= g

on the loop {|φi − φj| = ε} around zl. By the same computation performed
in (86) (we can take without loss of generality ω =

∑3
i=1 x

j dxj+1 ∧ dxj−1),
since the degree of g is exactly

∫

π(Σε,r)
D−2 [|∂zf |2 − |∂zf |2] i

2
dz ∧ dz, we get

that the degree of Sδ ◦ w is strictly positive.

proof of theorem 7.1. We argue by contradiction. If we had countably
many singularities of the form (55) accumulating onto 0, around each such
singular point, on π−1(∂B2

ρ(zl))×R, we would have a strictly positive degree
for u, thanks to lemma 7.4. Let us observe, however, the degree of u on
∂Br × R; this is the same as the degree of u on ∂Σr,ε × R, since these
two 2-surfaces are homotopic and we do not cross any singularity during
this homotopy (see (ii) on page 64 and recall that u is smooth out of the
singularities). Choosing r smaller and smaller, we must then have, under the
contradiction assumption, that the degree of u on ∂Br × R goes to −∞ as
r → 0, which contradicts lemma 7.5.
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