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Abstract. In this note, we prove weighted resolvent estimates for the semiclassical Schrödinger
operator −h2∆ + V (x) : L2(Rn) → L2(Rn), n 6= 2. The potential V is real-valued, and assumed
to either decay at infinity or to obey a radial α-Hölder continuity condition, 0 ≤ α ≤ 1, with
sufficient decay of the local radial Cα norm toward infinity. Note, however, that in the Hölder
case, the potential need not decay. If the dimension n ≥ 3, the resolvent bound is of the form

exp
(
Ch−1− 1−α

3+α [(1− α) log(h−1) + c]
)

, while for n = 1 it is of the form exp(Ch−1). A new type

of weight and phase function construction allows us to reduce the necessary decay even in the pure
L∞ case.

1. Introduction and statement of results

Let ∆ ..=
∑n

j=1 ∂
2
j ≤ 0 be the Laplacian on Rn, n 6= 2. In this article, we study the semiclassical

Schrödinger operator

P (h) ..= −h2∆ + V : L2(Rn)→ L2(Rn), h > 0,

where V ∈ L∞(Rn;R). We assume either that V satisfies a radial α-Hölder continuity condition,
0 ≤ α ≤ 1, or that it is only L∞ but decaying. When n ≥ 3, we use
(r, θ) = (|x|, x/|x|) ∈ (0,∞)× Sn−1 to denote polar coordinates on Rn \ {0}.

When V is only L∞, we assume

|V | ≤ c1〈r〉−2m(r), (1.1)

for some

c1 > 0, 0 < m(r) ≤ 1, m(r)〈r〉−1/2 ∈ L2(0,∞), (1.2)

and where 〈x〉 = 〈r〉 ..= (1 + r2)1/2.
Since V ∈ L∞(Rn;R), by the Kato-Rellich Theorem, P (h) is self-adjoint L2(Rn)→ L2(Rn) with

respect to the domain H2(Rn). Therefore, the resolvent (P − z)−1 is bounded L2(Rn) → L2(Rn)
for all z ∈ C \ R, and we obtain

Theorem 1. Let n ≥ 3, m as in (1.2), c1 > 0 and E > 0. Then there are C > 0 and h0 ∈ (0, 1]
so that for all s > 1/2, there is Cs > 0 such that for all V ∈ L∞(Rn;R) satisfying (1.1),

g±s (h, ε) ≤ Cs exp
(
h−

4
3 (C log h−1 + Cs)

)
, ε > 0, h ∈ (0, h0], (1.3)

where

g±s (h, ε) ..= ‖〈x〉−s(P (h)− E ± iε)−1〈x〉−s‖L2(Rn)→L2(Rn). (1.4)
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Fall semester of 2019. J. Shapiro was also supported in part by the Australian Research Council through grant
DP180100589.
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When V has some radial α-Hölder regularity, 0 ≤ α ≤ 1, we need not assume that V decays
towards infinity. Instead, we suppose

V ∈ L∞, lim sup
y→0+

sup
r

|V (rθ)− V ((r + y)θ)|
|y|α

〈r〉3m−2(r) ≤ c2, θ ∈ Sn−1, (1.5)

for some c2 > 0. We also define

V∞ ..= lim sup
r→∞

sup
θ∈Sn−1

V (rθ), (1.6)

0 < δV ..= inf
{
y > 0 | sup

r

|V (rθ)− V ((r + y)θ)|
|y|α

〈r〉3m−2(r) > 2c2

}
, (1.7)

and for E > V∞,

RE,V ..= sup
{
r | sup

θ∈Sn−1

V (rθ) >
E + 3V∞

4

}
. (1.8)

Remark: Note that when α = 0 and (1.5) holds, V is still only L∞, but the magnitude of its
fluctuations are decaying faster than those in (1.1).

In this Hölder regular case, we obtain

Theorem 2. Let n ≥ 3, m as in (1.2), c2 > 0, RE > 0, CV ∈ R, E∞ ∈ R, and E > E∞. Then
there is C > 0 such that for all δ1 > 0, there is h0 ∈ (0, 1] so that for all s > 1/2, there is Cs > 0
so that for V ∈ L∞(Rn;R) obeying supRn V ≤ CV , V∞ ≤ E∞, δ1 ≤ δV , RE,V ≤ RE, and (1.5) for
some 0 ≤ α ≤ 1,

g±s (h, ε) ≤ Cs exp
(
h−1−σα(Cσα log h−1 + Cs)

)
, ε > 0, h ∈ (0, h0], (1.9)

where

σα :=
1− α
3 + α

.

In the one-dimensional case, (1.5) can be relaxed further to

lim sup
y→0

sup
x

|V (x)− V (x+ y)|
m0(|x|)

≤ c0, (1.10)

for some
c0 > 0, 0 < m0(r) ≤ 1, m0 ∈ L1(0,∞). (1.11)

We then define

0 < δ0,V
..= inf{y > 0 | sup

x

|V (x)− V (x+ y)|
m0(|x|)

> 2c0}. (1.12)

Then we have the following one dimensional result.

Theorem 3. Let n = 1, m0 as in (1.11), c0 > 0, RE > 0, CV , E∞ ∈ R and E > E∞. Then there
is C > 0 such that for all δ0 > 0, there is h0 ∈ (0, 1] so that for all s > 1/2, there is Cs > 0 so that
for V ∈ L∞(R;R) obeying δ0 ≤ δ0,V , supR V ≤ CV , V∞ ≤ E∞, RE,V ≤ RE, and (1.10),

g±s (h, ε) ≤ Cs exp
(
Ch−1

)
, ε > 0, h ∈ (0, h0]. (1.13)

Bounds on g±s are known to hold under various geometric, regularity, and decay assumptions.

Burq [Bu98, Bu02] showed g±s ≤ eCh
−1

for V smooth and decaying sufficiently fast near infinity,
and also for more general perturbations of the Laplacian. Cardoso and Vodev [CaVo02] extended
Burq’s estimate to infinite volume Riemannian manifolds which may contain cusps.

In lower regularity and n 6= 2, Datchev [Da14] showed g±s ≤ eCh
−1

, provided V, ∂rV ∈ L∞(Rn;R)
and have long-range decay. The second author [Sh19] obtained the same bound for n = 2, and
under the same assumptions, except with ∂rV replaced by ∇V [Sh19]. On the other hand, Vodev
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[Vo14] showed that, if n ≥ 3 and V ’s radial α-Hölder moduli are O(hν〈r〉−κ), where ν > 0, κ > 1,

and α ≥ 1− 2ν, then g±s ≤ eCh
−`

, where

` = max

{
0,

2(1− ν − α)

1− α

}
< 1.

If V ∈ L∞comp(Rn;R), n ≥ 2, it was previously shown [KlVo19, Sh17] that g±s ≤ eCh
−4/3 log(h−1).

This same bound was extended to short range potentials on Rn [Vo19a, Vo19b], and then to
short range potentials on a large class of asymptotically Euclidean manifolds [Vo20a]. If n = 1,

g±s ≤ eCh
−1

, even if V ∈ L1(R;R) [DaSh19].
Theorems 1 and 2 improve upon the existing literature in several ways. First, in the pure L∞

case (1.1), Theorem 1 reduces the required decay for V from that in [Vo19a, Vo19b]. While we
are still unable to obtain estimates when V is an arbitrary short range L∞ potential without an
additional loss of powers of h in log(g±s (h, ε)), the decay assumed in (1.1) appears to improve on
the existing literature by one order in r. Secondly, the assumptions for Theorem 2 (1.5) allow for
non-decaying potentials provided some control on the local oscillations of the potential V (even if
V is not Hölder continuous for any positive α). Finally, as the Hölder constant of the potential
varies between 0 and 1, the results interpolate between those in the L∞ and Lipschitz cases, with
the bound on g±s (h, ε) agreeing with the existing estimates at both endpoints.

Next, Theorem 3 seems to be the first semiclassical resolvent estimate in one dimension that does
not require V or ∂xV to belong to L1(R;R). Again, by imposing some condition on the oscillations
of V , we are able to handle even non-decaying potentials.

In dimension n ≥ 2, it is an open problem to determine the optimal h-dependence of the resolvent

for V ∈ L∞ or V satisfying (1.5). In contrast, it is well known that the bound eCh
−1

cannot be
improved in general. See, for instance, [DDZ15] and the references cited there.

To prove Theorems 1, 2 and 3, we adapt the Carleman estimates proved in [Vo19a] and [DaSh19].
In addition to the modifications necessary to take advantage of the Hölder regularity of V , the
main improvement in our argument is to determine ϕ and w from the logarithmic derivatives of
respectively ϕ′ and w. This dramatically simplifies the computations necessary to construct the
requisite phases and weights. See (2.9) and (2.10) for the main quantities one must estimate.

In the final stages of writing this note, we learned of the article [Vo20b], in which Vodev uses
a somewhat different weight and phase construction to study Hölder potentials analogous to ours.
However, the assumed decay in that article is stronger than what we need here. On the other hand,
Vodev’s article gives the local Carleman estimates necessary to handle dimension n = 2 as well as
the case where Rn is replaced by the exterior of a smooth obstacle.

2. Preliminary Calculations and Lemmata

As in most previous proofs of resolvent estimates for low regularity potentials, the backbone of
the proof is a Carleman estimate. We start from the identity

r
n−1

2 (−∆)r−
n−1

2 = −∂2
r + Λ,

where

Λ ..=
1

r2

(
−∆Sn−1 +

(n− 1)(n− 3)

4

)
≥ 0, (2.1)

and ∆Sn−1 denotes the negative Laplace-Beltrami operator on Sn−1. Then, we form the conjugated
operator

P±ϕ (h) ..= eϕ/hr
n−1

2 (P (h)− E ± iε) r−
n−1

2 e−ϕ/h

= −h2∂2
r + 2hϕ′∂r + h2Λ + V − (ϕ′)2 + hϕ′′ − E ± iε.

(2.2)
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Now, let Vh ∈ C∞((0,∞)r;L
∞(Sn−1

θ )) be a smoothed approximation to V , and define

Rh := V − Vh. (2.3)

For n ≥ 3 and u ∈ eϕ/hr(n−1)/2C∞comp(Rn), we define a spherical energy functional F [u](r),

F (r) = F [u](r) ..= ‖hu′(r, ·)‖2 − 〈(h2Λ + Vh − (ϕ′)2 − E)u(r, ·), u(r, ·)〉, (2.4)

where ‖ · ‖ and 〈·, ·〉 denote the norm and inner product on L2(Sn−1
θ ), respectively. The derivative

of F , in the sense of distributions on (0,∞), is

F ′ = 2 Re〈h2u′′, u′〉 − 2 Re〈(h2Λ + Vh − E)u, u′〉+ 2r−1〈h2Λu, u〉 − ((ϕ′)2 − Vh)′‖u‖2

= −2 Re〈P±ϕ (h)u, u′〉+ 2r−1〈h2Λu, u〉+ ((ϕ′)2 − Vh)′‖u‖2 + 4h−1ϕ′‖hu′‖2

∓ 2ε Im〈u, u′〉+ 2 Re〈(Rh + hϕ′′)u, u′〉.
Thus (wF )′, as a distribution on (0,∞), is given by

(wF )′ = w′F + wF ′

= w′‖hu′‖2 − w′〈(h2Λ + Vh − (ϕ′)2 − E)u, u〉
− 2wRe〈P±ϕ (h)u, u′〉+ 2wr−1〈h2Λu, u〉+ w((ϕ′)2 − Vh)′‖u‖2 + 4h−1wϕ‖hu′‖2

∓ 2εw Im〈u, u′〉+ 2 Re〈(Rh + hϕ′′)u, u′〉
= −2 Rew〈P±ϕ (h)u, u′〉 ∓ 2εw Im〈u, u′〉+ (2wr−1 − w′)〈h2Λu, u〉

+ (4h−1wϕ′ + w′)‖hu′‖2 + (w(E + (ϕ′)2 − Vh))′‖u‖2 + 2wRe〈(Rh + hϕ′′)u, u′〉.

(2.5)

Using (2.1) when n ≥ 3, we will need

2wr−1 − w′ ≥ 0, (2.6)

to control the term involving Λ. It is the absence of this condition which allows for the improved
estimate in dimension one. Using (2.6) together with 2ab ≥ −(γa2 + γ−1b2) for all γ > 0, we find

w′F + wF ′ ≥ − 3w2

h2w′
‖P±ϕ (h)u‖2 ∓ 2εw Im〈u, u′〉+

1

3
(w′ + 4h−1ϕ′w)‖hu′‖2

+ (w(E + (ϕ′)2 − Vh))′‖u‖2 − 3(w(h−1|Rh|+ ϕ′′))2

w′ + 4h−1ϕ′w
‖u‖2.

(2.7)

In dimension n = 1, rather than the spherical energy (2.4), we use the pointwise energy

F (x) = F [u](x) ..= |hu′(x)|2 − (Vh(x)− (ϕ′(x))2 − E)|u(x)|2.
Exactly the same computations then lead to

w′F + wF ′ ≥ − 3w2

h2w′
|P±ϕ (h)u|2 ∓ 2εw Imuu′ +

1

3
(w′ + 4h−1ϕ′w)|hu′|2

+ (w(E + (ϕ′)2 − Vh))′|u|2 − 3(w(h−1|Rh|+ ϕ′′))2

w′ + 4h−1ϕ′w
|u|2.

Thus, the main goal of the estimates below will be to construct ϕ and w such that

(w(E + (ϕ′)2 − Vh))′ − 3(w(h−1|Rh|+ ϕ′′))2

w′ + 4h−1ϕ′w
≥ E − E∞

2
w′.

Putting

A(r) := (w(E + (ϕ′)2 − Vh))′, B(r) :=
(w(h−1|Rh|+ ϕ′′))2

w′ + 4h−1ϕ′w
,

our goal is thus, for K > 0 fixed and h small enough, to find w and ϕ such that

A(r)− K

2
B(r) ≥ E − E∞

2
w′(r). (2.8)
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Now, we will assume throughout that w′, ϕ′ > 0. Therefore, putting

Φ :=
ϕ′′

ϕ′
= (logϕ′)′, W :=

w

w′
=

1

(logw)′
, (2.9)

we calculate

A(r)− K

2
B(r) = w′(E + (ϕ′)2 − Vh) + w(2ϕ′ϕ′′ − V ′h)− K

2

(w(h−1|Rh|+ ϕ′′))2

w′ + 4h−1ϕ′w

= w′
[
E + (ϕ′)2 − Vh +W(2ϕ′ϕ′′ − V ′h)− K

2

(w(h−1|Rh|+ ϕ′′))2

w′2 + 4h−1ϕ′ww′

]
= w′

[
E + (ϕ′)2(1 + 2WΦ)− Vh −WV ′h −

K

2
W2 ((h−1|Rh|+ ϕ′′))2

1 + 4h−1ϕ′W

]
≥ w′

[
E + (ϕ′)2(1 + 2WΦ)− Vh −WV ′h −KW2h

−2|Rh|2 + (ϕ′′)2

1 + 4h−1ϕ′W

]
.

Finally,

A(r)− K

2
B(r) ≥ w′

[
E + (ϕ′)2(1 + 2WΦ−KWΦ2 min(W, h

4ϕ′ ))

− Vh −WV ′h −KWh−2|Rh|2 min(W, h
4ϕ′ )

]
.

(2.10)

The key improvement in this article is that, to prove the main estimates (3.5) and (4.4), we work
withW and Φ rather than directly with w and ϕ. This simplifies the calculations dramatically and
points the way to a new choice of phase function allowing us to weaken the decay requirements
on V . The condition (2.6) for n ≥ 3 translates simply to Φ ≥ r/2. The remainder of the article
focuses on constructing appropriate W and Φ such that (2.8) holds.

Before proceeding with the construction of W and Φ, we need a few elementary lemmata:

Lemma 2.1. Let

Φ(s) = − 1

s+ 1 + Φ1(s)
,

with

0 ≤ (s+ 1)−2Φ1(s) ∈ L1(0,∞). (2.11)

Then,

− log(r + 1) ≤
∫ r

0
Φ(s)ds ≤ − log(r + 1) + ‖(s+ 1)−2Φ1(s)‖L1(0,∞).

Proof. First, note that

log(r + 1) +

∫ r

0
Φ(s)ds =

∫ r

0

1

1 + s
− 1

s+ 1 + Φ1(s)
ds

=

∫ r

0

Φ1(s)

(s+ 1)(s+ 1 + Φ1(s))
ds.

Next, note that

0 ≤
∫ r

0

Φ1(s)

(s+ 1)(s+ 1 + Φ1(s))
ds ≤ ‖(s+ 1)−2Φ1(s)‖L1(0,∞),

which implies

− log(r + 1) ≤
∫ r

0
Φ(s)ds ≤ − log(r + 1) + ‖(s+ 1)−2Φ1(s)‖L1(0,∞).

�
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In the proof of Theorem 2, we will need to approximate V by smooth functions Vh. In the
case (1.1), we simply approximate V by 0, defining Vh ≡ 0. On the other hand, when we as-
sume (1.5), we make a non-trivial approximation to V . In the spirit of [Vo14, Section 2], let

χ ∈ C∞comp((0, 1); [0, 1]),

∫
χ(s)ds = 1, (2.12)

and define

V (rθ; γ) ..=

∫ ∞
0

V ((r + γs)θ)χ(s)ds = γ−1

∫ ∞
0

V (sθ)χ(γ−1(s− r))ds, 0 < γ ≤ 1.

Then set

Vh(rθ) ..= V (rθ;hρ),

for ρ > 0 to be chosen later, depending on α.

Lemma 2.2. Suppose 0 ≤ α ≤ 1, V satisfies (1.5), and δV is as in (1.7). Then there exists Cχ > 0

depending only on χ so that, for all h ∈ (0, δ
1/ρ
V ],

Vh(rθ) ≤ sup
s∈[r,r+hρ]

V (sθ),

|V ′h(rθ)| ≤ Cχc2h
−ρ(1−α)〈r〉−3m2(r), |Rh(rθ)| ≤ c2h

ρα〈r〉−3m2(r).
(2.13)

Proof. First observe that

V (rθ; γ) =

∫ ∞
0

[V ((r + γs)θ)− inf
t∈[r,r+γ]

V (tθ)]χ(s)ds+ inf
t∈[r,r+γ]

V (tθ)

≤ ( sup
s∈[r,r+γ]

V (sθ)− inf
t∈[r,r+γ]

V (tθ))

∫
χ(s)ds+ inf

t∈[r,r+γ]
V (tθ)

= sup
s∈[r,r+γ]

V (sθ)

(2.14)

where in the third line we use implicitly that χ ≥ 0 and for s ∈ suppχ,
[V ((r + γs)θ)− inft∈[r,r+γ] V (tθ)] ≥ 0.

Next, from
∫
χ′dr = 0,

|V ′(rθ; γ)| =
∣∣∣∣γ−2

∫ ∞
0

V (sθ)χ′(γ−1(s− r))ds− γ−1V (rθ)

∫ 1

0
χ′(s)ds

∣∣∣∣
=

∣∣∣∣γ−1

∫ 1

0
[V ((r + γs)θ)− V (rθ)]χ′(s)ds

∣∣∣∣
≤
∣∣∣∣γ−1+α

∫ 1

0
sα

(V ((r + γs)θ)− V (rθ))χ′(s)

γαsα
ds

∣∣∣∣ .
In particular, by (1.5) and the definition (1.7) of δV , we have, for 0 < γ ≤ δV ,

|V ′(rθ; γ)| ≤ 2c2γ
−1+α〈r〉−3m2(r)

∫ 1

0
|sαχ′(s)|ds ≤ Cχc2γ

−1+α〈r〉−3m2(r). (2.15)

Finally, using (1.5) again,

|V (rθ)− V (rθ; γ)| =
∣∣∣∣∫ ∞

0
[V (rθ)− V ((r + γs)θ)]χ(s)ds

∣∣∣∣
=

∣∣∣∣∫ ∞
0

γαsα
V (rθ)− V ((r + γs)θ)

γαsα
χ(s)ds

∣∣∣∣
≤ c2γ

α〈r〉−3m2(r),

(2.16)
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for 0 < γ ≤ δV . The lemma is proved by setting γ = hρ, h ∈ (0, δ
1/ρ
V ], in (2.14), (2.15), and (2.16).

�

3. Proof of the main estimates (n ≥ 3)

Recall the definitions of Φ and W from (2.9), and put

ϕ(r) = h−σϕ0(r), σ ≥ 0, ϕ0(0) = 0, ϕ′0(0) = τ0 ≥ 1, w(0) = 0, w′(0) = 1, (3.1)

so that

Φ = (logϕ′0)′, W =
1

(logw)′
. (3.2)

We also set

σ =
1− α
3 + α

, ρ =
2

3 + α
. (3.3)

Finally, let

a = a0h
−M , a0 ≥ 1, M > 0. (3.4)

Each of the parameters σ, τ0, a0, and M will be fixed shortly.
The main result of this section is Proposition 3.1. In its statement and proof, we use C for a

positive constant that may change from line to line, but depends only on K, CV , c1, c2, E, E∞, RE ,
and m. We also reuse constants h0 ∈ (0, 1] and Cη > 0; they depend only on the same quantities as
C, except that h0 also depends on δ1 > 0, while Cη > 0 also depends on 0 < η < 1. In particular,
C and h0 are independent of α, h and η, and Cη is independent of α and h.

Proposition 3.1. Fix K > 0. Let V as in Theorem 1 or 2, σ and ρ be given by (3.3), E > E∞ and
0 < η < 1. Then there exist τ0 as in (3.1), a0 and M as in (3.4), radial functions W and Φ and
their corresponding w and ϕ determined by (3.1) and (3.2), and constants C,Cη > 0, h0 ∈ (0, 1] so
that

A(r)− K

2
B(r) ≥ E − E∞

2
w′(r), r 6= a, h ∈ (0, h0], (3.5)

ϕ0 satisfies,

|ϕ0(r)| ≤ C
[ 1− α

(1− η
2 )(3 + α)

log h−1 +
1

η

]
, (3.6)

and w satisfies

w(r) ≤ Cηh−
4(1−α)

(2−η)(3+α) , (3.7)

w′(r) ≥ (r + 1)−1−η, r 6= a, (3.8)

w(r)2

w′(r)
≤ Cηh−

4(1−α)
(2−η)(3+α) (1 + r)1+η, r 6= a. (3.9)

3.1. Small r region. We start by working with 0 < r ≤ a. Let ω ∈ C∞comp((−3/4, 3/4); [0, 1]) with
ω = 1 near [−1/2, 1/2]. In this region, define W and Φ by

W =
r(1 + ω(r))

2
, Φ = − 1

r + 1 + Φ1(r)
, 0 < r ≤ a. (3.10)

where Φ1(s) obeying (2.11) is to be chosen as needed. With these conditions on Φ1, by Lemma 2.1,

τ0

r + 1
≤ ϕ′0(r) ≤ e‖〈s〉

−2Φ1(s)‖L1 τ0

r + 1
, 0 < r ≤ a. (3.11)

In this region, we work separately on the cases (1.1) and (1.5),
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Case (1.1), α = 0: In this case, we have Vh = V ′h = 0, Rh = V , and V∞ = 0. Therefore, using
(1.1), (2.10), and (3.11),

A− K

2
B

≥ w′(E + h−2σ(ϕ′0)2(1 + r(1 + ω)Φ−K(8τ0)−1h1+σr(r + 1)(1 + ω)Φ2)

− CKτ−1
0 h−1+σr(r + 1)〈r〉−4m2)

≥ w′ 1

τ0(r + 1)2
(h−2στ3

0 (
1 + Φ1 − rω
r + 1 + Φ1

)− CKh−1+σm2)

+ (E −Kτ0e
2‖〈s〉−2Φ1(s)‖L1h1−σ)w′, h > 0.

(3.12)

So, putting

Φ1 = max
[(r + 1)m2 + 4rω − 4

4−m2
, 0
]
, (3.13)

and then choosing τ0 = τ0(C,K,m) ≥ 1 large enough, we obtain,

A− K

2
B ≥ (E −Kτ0e

2‖〈s〉−2Φ1(s)‖L1h1−σ)w′ ≥ E

2
w′, 0 < r ≤ a, h ∈ (0, h0], (3.14)

for h0 = h0(K, τ0, E,m) ∈ (0, 1] small enough. This proves the claimed inequality (3.5) for
0 < r ≤ a.
Case (1.5), 0 ≤ α ≤ 1: Recall that RE,V and δV are given by (1.8) and (1.7) respectively. Because
RE,V ≤ RE , and δV ≥ δ1, the first estimate in (2.13) implies

sup
θ∈Sn−1

Vh(rθ) ≤ E + 3V∞
4

≤ E + 3E∞
4

=: Ẽ, r ≥ RE , h ∈ (0, δ
1/ρ
1 ]. (3.15)

Next, let ψ ∈ C∞comp((−1, RE + 1); [0, 1]) with ψ ≡ 1 on [0, RE ]. Then, supRn V ≤ CV and (2.13)
yield

Vh ≤ CV ψ(r) + Ẽ, h ∈ (0, δ
1/ρ
1 ].

Using (2.10), (2.13), and (3.15), we have the following modified version of the estimate (3.12)

for h ∈ (0, δ
1/ρ
1 ],

A− K

2
B

≥ w′
(
E + h−2σ(ϕ′0)2(1 + r(1 + ω)Φ−K(8τ0)−1h1+σr(r + 1)(1 + ω)Φ2)

− CV ψ − Ẽ − Ch−ρ(1−α)r〈r〉−3m2 − CKτ−1
0 h−1+2ρα+σr(r + 1)〈r〉−6m4

)
≥ w′

(r + 1)2

(
h−2στ2

0 (
1 + Φ1 − rω
r + 1 + Φ1

)− CKτ−1
0 h−1+2ρα+σ〈r〉−2m4

− Ch−ρ(1−α)m2 − CV (RE + 2)2ψ
)

+ (3
4(E − E∞)−Kτ0e

2‖〈s〉−2Φ1(s)‖L1h1−σ)w′.

By (3.3), we have 0 ≤ σ ≤ 1/3. Using also (3.13), and choosing τ0 = τ0(C,K,CV , RE ,m) ≥ 1 large
enough, we arrive at

A− K

2
B ≥ (3

4(E − E∞)−Kτ0e
2‖〈s〉−2Φ1(s)‖L1h1−σ)w′

≥ E − E∞
2

w′, 0 < r ≤ a, h ∈ (0, h0]

(3.16)

for h0 = h0(K, τ0, E,E∞, δ1,m) ∈ (0, 1] small enough. Here, to see that h0 is independent of α, we

observe that 1/2 ≤ ρ ≤ 2/3 and hence δ
1/ρ
1 ≥ min{δ2

1 , δ
3/2
1 }.
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3.2. Large r region. In the region r > a, we handle the cases (1.1) and (1.5) together, taking the
worst of the estimates on Rh, Vh, and V ′h. For notational convenience, set δ1 = ρ = 1 in the case

(1.1). Then if either (1.1) or (1.5) holds, for h ∈ (0, δ
1/ρ
1 ],

Vh(rθ) ≤ CV ψ(r) + Ẽ, |V ′h| ≤ Ch−ρ(1−α)〈r〉−3m2(r), |Rh| ≤ C〈r〉−2m(r).

Define W and Φ for r > a by

W =
(r + 1)1+η

2
, Φ = −1 + η

r + 1
, 0 < η < 1, r > a. (3.17)

Then,

ϕ′0(r) = ϕ′0(a)e
∫ r
a Φ(s)ds = ϕ′0(a)

(a+ 1)1+η

(r + 1)1+η
, r > a.

Therefore, from (3.11),

τ0(a+ 1)η

(r + 1)1+η
≤ ϕ′0(r) ≤ τ0e

‖〈s〉−2Φ1(s)‖L1 (a+ 1)η

(r + 1)1+η
, r > a. (3.18)

We have, using (2.10) once again,

A− K

2
B ≥ w′

[
E + h−2σ(ϕ′0)2[1− (1 + η)(r + 1)η − 8−1Kh1+σ(r + 1)1+ηΦ2(ϕ′0)−1]

− CV ψ(r)− Ẽ − Ch−ρ(1−α)(r + 1)1+η〈r〉−3m2

− CK(r + 1)1+ηh−1+σ+2ρα〈r〉−4m2(ϕ′0)−1
]

≥ −w′
[
C(1 + τ2

0 +Kτ−1
0 )h−2σ〈r〉−2+2η(a+ 1)−η − CV ψ(r)

]
+ (3

4(E − E∞)−Kτ0e
‖〈s〉−2Φ1(s)‖L1h1−σ)w′, h ∈ (0, δ

1/ρ
1 ].

Now, in (3.4), fix

M =
2σ

2− η
=

2(1− α)

(2− η)(3 + α)
. (3.19)

Then taking a0 = a0(C,K, τ0, E,E∞) ≥ 1 large enough,

A− K

2
B ≥ (3

4(E − E∞)− CV ψ +Kτ0e
‖〈s〉−2Φ1(s)‖L1h1−σ)w′

≥ E − E∞
2

w′, r > a ≥ RE + 1, h ∈ (0, h0],

(3.20)

for h0 = h0(K, τ0, E,E∞, δ1,m) ∈ (0, 1] small enough. Combining (3.14), (3.16), and (3.20) estab-
lishes (3.5) in either case (1.1) or (1.5).

3.3. Determination of w and ϕ0. Lemmas 3.2 and 3.3 complete the proof of Proposition 3.1.

Lemma 3.2. With W determined by (3.10) and (3.17), and with initial conditions as in (3.1), we
have

w =


r 0 < r ≤ 1

2 ,
1
2e

∫ r
1/2

2
s(1+ω(s))

ds 1
2 < r ≤ a,

w(a)e
2
η

((a+1)−η−(r+1)−η)
r > a,

(3.21)

and the estimates (3.7), (3.8), and (3.9) hold.

Proof. Recalling the definition (3.2) of w in terms of W, for 0 < ε < r,

w(r) = w(ε)e
∫ r
ε

1
W(s)

ds
. (3.22)
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Now, if 0 ≤ r ≤ 1/2, W(r) = r, therefore,

w(r) =
w(ε)

ε
r, 0 < ε ≤ r ≤ 1

2
.

Sending ε→ 0+ and using w′(0) = 1, w(0) = 0, we have

w(r) = r, 0 ≤ r ≤ 1
2 ,

as claimed. The remaining formulae for w in (3.21) now follow easily from (3.22) with ε = 1/2.
To see (3.7), note that w′ = w/W ≥ 0, so we need only compute lim supr→∞w(r). For this,

observe that ω ≡ 0 on r ≥ 1. Therefore, for 1 ≤ r ≤ a,

w(r) = w(1)r2.

In particular, since

w(1) ≤ 1

2
e
∫ r
1/2 2s−1ds

= 2,

w(a) = w(1)r2 ≤ 2a2. Thus (using a ≥ 1),

lim sup
r→∞

w(r) = lim sup
r→∞

w(a)e
2
η

((a+1)−η−(r+1)−η)

≤ 2a2e
2
η

(a+1)−η ≤ Cηa2 ≤ Cηh−
4(1−α)

(2−η)(3+α) ,

as claimed.
For (3.8), we first note that w′(r) = 1 on 0 ≤ r ≤ 1/2. Then, using 0 ≤ W ≤ (r + 1)1+η/2, we

compute

w′(r) =
w(r)

W(r)
≥ (r + 1)−1−ηe

∫ r
1
2

1
W(s)ds ≥ (r + 1)−1−η, r ≥ 1

2
, r 6= a.

Finally, to see (3.9), we observe using (3.7),

w2

w′
=Ww ≤ Cηh−

4(1−α)
(2−η)(3+α) (r + 1)1+η.

�

Lemma 3.3. With Φ given by (3.10) and (3.17), and with initial conditions as in (3.1), we have

ϕ′0(r) =

{
τ0e
−

∫ r
0

1
s+1+Φ1(s)

ds
0 < r ≤ a,

ϕ′0(a) (a+1)1+η

(r+1)1+η r > a.
(3.23)

and the estimate (3.6) holds.

Proof. The formula (3.23) follows directly from (3.2), (3.10) and (3.17). Then, by (3.11) and (3.18),

0 ≤ ϕ′0(r) ≤

 τ0e
‖〈s〉−2Φ1(s)‖

L1

(r+1) 0 ≤ r ≤ a
τ0e
‖〈s〉−2Φ1(s)‖L1 (a+1)η

(r+1)1+η r > a.

Using that a = a0h
−M , with M as in (3.19), we have, for h ∈ (0, 1],

|ϕ0(r)| ≤
∫ a

0

τ0e
‖〈·〉−2Φ1(·)‖L1

s+ 1
ds+

∫ ∞
a

τ0e
‖〈·〉−2Φ1(·)‖L1

(a+ 1)η

(s+ 1)1+η
ds

≤ τ0e
‖〈·〉−2Φ1(·)‖L1 [log(a+ 1) +

1

η
]

= τ0e
‖〈·〉−2Φ1(·)‖L1 [log(a0h

− 2(1−α)
(2−η)(3+α) + 1) +

1

η
]

≤ τ0e
‖〈·〉−2Φ1(·)‖L1

[ 1− α
(1− η

2 )(3 + α)
log h−1 + log(a0 + 1) +

1

η

]
.

(3.24)
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�

4. The one dimensional case

The key feature we exploit in the one dimensional case is the disappearance of the term involving
the operator Λ (see (2.1)). This removes the requirement that W ≥ r/2, allowing much more
flexibility in the choice of weight function (see (4.9) below).

In one dimension we are also able to simplify the approximation of the potential. For V obeying
(1.10), and χ satisfying (2.12), we take

Vh(x) ..=

∫ ∞
−∞

V (x+ hy)χ(y)dy.

We again define Rh := V − Vh. The following lemma, whose easy proof we omit, gives bounds on
Vh, V ′h and Rh in one dimension.

Lemma 4.1. Suppose V satisfies the assumptions of Theorem 3. Then there exists Cχ > 0 de-
pending only on χ so that, for all h ∈ (0, δ0,V ],

Vh(x) ≤ sup
y∈[x,x+h]

V (y), (4.1)

|V ′h(x)| ≤ Cχc0h
−1m0(|x|), (4.2)

|Rh(x)| ≤ c0hm0(|x|). (4.3)

Similar to the n ≥ 3 case, the constants C > 0 and h0 ∈ (0, 1] which appear in the ensuing
estimates may change from line to line, but depend only on K,CV , c0, E, E∞, RE , δ0 and m0. The
constant Cη > 0 may also depend on 0 < η < 1. In particular, C and h0 are independent of h and
η, and Cη is independent of h.

The main result of this section is

Proposition 4.2. Fix K > 0 and let V satisfy the assumptions of Theorem 3. Let E > E∞ and
0 < η < 1. Then there exist functions W,Φ : R → [0,∞), and corresponding functions w and ϕ0

determined by and (3.2), along with C, Cη > 0 and h0 ∈ (0, 1] such that

A(x)− K

2
B(x) ≥ E − E∞

2
w′(x), h ∈ (0, h0], (4.4)

and
|ϕ(x)| ≤ C, (4.5)

and w satisfies,

w(x) ≤ 1, (4.6)

w′(x) ≥ Cηe−C/h(|x|+ 1)−1−η, (4.7)

w(x)2

w′(x)
≤ Cη(|x|+ 1)1+η. (4.8)

Proof. We assume without loss of generality that m0(|x|) ≥ (1 + |x|[log(|x|+ 1)]2)−1. Then, put

Φ = − 2

|x|+ 1
, W =

δh

m0
. (4.9)

for δ > 0 to be chosen later. We replace the initial conditions (3.1) with

w(0) = e−
1
δh

∫∞
0 m0(s)ds, ϕ(0) = 0, ϕ′(0) = τ0 ≥ 1,

where we fix τ0 below. We find

ϕ′ =
τ0

(|x|+ 1)2
, w = e

− 1
δh

∫∞
|x|m0(s)ds

.
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Recall from (2.10) that

A− K

2
B ≥ w′(E + (ϕ′)2(1 + 2WΦ−KWΦ2 min(W, h

4ϕ′ ))

− Vh −WV ′h −KWh−2|Rh|2 min(W, h
4ϕ′ )).

(4.10)

Let ψ ∈ C∞comp(R; [0, 1]) with ψ ≡ 1 on |x| ≤ RE and suppψ ⊆ (−RE − 1, RE + 1). Then, by (4.1),

Vh ≤
E + 3V∞

4
≤ E + 3E∞

4
, |x| ≥ RE ≥ RE,V .

Combining this with (4.2), (4.3), the choice of Φ and W in (4.9), and (4.10), we have

A− K

2
B ≥ w′(E + τ2

0 (|x|+ 1)−4(1− 4hδm−1
0 (|x|+ 1)−1 −Kτ−1

0 h2δ2m−2
0 (|x|+ 1)−2)

− CV ψ − E+3E∞
4 − Cδ − CKτ−1

0 δ2),

for h ∈ (0, δ0]. First taking τ0 =
√

max(CV , 1)(RE + 2)4, and then taking δ > 0 small enough
(depending on C, K, E, E∞, τ0, and m0), we obtain

A− K

2
B ≥ E − E∞

2
w′, h ∈ (0, δ0].

To obtain the estimates (4.5), (4.6), (4.7), and (4.8), observe

ϕ = τ0 sgn(x)

(
1− 1

|x|+ 1

)
,

and

w′ =
m0(|x|)
δh

w(x),

and note that m0(|x|) ≥ Cη(|x|+ 1)−1−η.
�

5. Carleman estimates

Our goal in this section is to prove the Carleman estimates needed to establish (1.3), (1.9) and
(1.13). As above, we use C > 0 to denote a constant that may change from line to line, but depends
only supV , c1, c2, E, E∞ RE and m (n ≥ 3) or supV , c0, E, E∞, RE , and m0 (n = 1). Besides
depending on the same quantities as C does, h0 ∈ (0, 1] depends only on δ1 (n ≥ 3) or δ0 (n = 1),
and Cη > 0 depends only on 0 < η < 1. So in particular, C,Cη, and h0 are independent of α, h
and ε ≥ 0.

Lemma 5.1. Let 0 < η < 1 and suppose that the assumptions of one of Theorem 1, 2, or 3 hold.
Then with ϕ and w and h0 ∈ (0, 1] as in the statement of Proposition 3.1 and 4.2 respectively in
n ≥ 3 and n = 1, we have

‖〈x〉−
1+η

2 eϕ/hv‖2L2 ≤ CηeC/h‖〈x〉
1+η

2 eϕ/h(P (h)− E ± iε)v‖2L2 + Cηe
C/hε‖eϕ/hv‖2L2 . (5.1)

for all ε ≥ 0, h ∈ (0, h0], and v ∈ C∞comp(Rn).

Remark: Throughout the proof of Lemma 5.1, we abuse notation slightly. In dimension n ≥ 3,
we put ‖u(r)‖ = ‖u(r, ·)‖L2(Sn−1

θ ), while we put ‖u(x)‖ = |u(x)| when n = 1. When n ≥ 3,
∫
r,θ

denotes the integral over (0,∞)× Sn−1 with respect to the measure drdθ, while
∫
r,θ denotes

∫
R dx

when n = 1.
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Proof. Since 〈x〉−(1+η)/2 ≤ 1, without loss of generality, we may assume 0 ≤ ε ≤ 1.
The proof begins from (2.7). Then, applying (3.5) or (4.4), it follows that for h ∈ (0, h0],

w′F + wF ′ ≥ − 3w2

h2w′
‖P±ϕ (h)u‖2 ∓ 2εw Im〈u, u′〉+

1

3
w′‖hu′‖2 +

E − E∞
2

w′‖u‖2. (5.2)

Now we integrate both sides of (5.2). For n ≥ 3, we integrate
∫∞

0 dr and use

wF, (wF )′ ∈ L1((0,∞); dr), and wF (0) = wF (∞) = 0, hence
∫∞

0 (wF )′dr = 0. In dimension n = 1,
we instead integrate

∫
R dx and observe that

∫
R(wF )′dx = 0. Using also (3.7), (3.8) and (3.9) when

n ≥ 3, or (4.6), (4.7) and (4.8) when n = 1, yields, for h ∈ (0, h0],∫
r,θ

(r+ 1)−1−η (|u|2 + |hu′|2
)
≤ CηeC/h

∫
r,θ

(1 + r)1+η|P±ϕ (h)u|2 + εCηe
C/h

∫
r,θ
|u|2 + |hu′|2. (5.3)

Moreover,

Re

∫
r,θ

(P±ϕ u)u =

∫
r,θ
|hu′|2 + Re

∫
r,θ

2hϕ′u′u+

∫
r,θ

(h2Λu)u

+

∫
r,θ
hϕ′′|u|2 +

∫
r,θ

(
V + E − (ϕ′)2

)
|u|2,

(5.4)

and ∫
r,θ
hϕ′′|u|2 = −Re

∫
r,θ

2ϕ′hu′u. (5.5)

These two identities, together with the facts that Λ ≥ 0 and |V + E − (ϕ′)2| ≤ eC/h for h ∈ (0, 1],
imply, ∫

r,θ
|hu′|2 ≤ eC/h

∫
r,θ
|u|2

+
γ

2

∫
r,θ

(r + 1)−1−η|u|2 +
1

2γ

∫
r,θ

(r + 1)1+η|P±ϕ (u)|2, h ∈ (0, 1], γ > 0.

(5.6)

To finish, we substitute (5.6) into the right side of (5.3), recall 0 ≤ ε ≤ 1, and then choose γ > 0
small enough (depending on h but independent of ε), to get∫

r,θ
(r + 1)−1−η(|u|2 + |hu′|2) ≤

Cηe
C/h

∫
r,θ

(1 + r)1+η|P±ϕ (h)u|2 + εCηe
C/h

∫
r,θ
|u|2, h ∈ (0, h0].

(5.7)

Since

2−
1+η

2 ≤
(
〈r〉
r + 1

)1+η

,

(5.1) is now an easy consequence of (5.7).
�

6. Resolvent estimates

In this section, we deduce the resolvent estimates in Theorems 1, 2 and 3 from the Carleman
estimate (5.1). This same argument has been presented before, see, e.g., [Da14, Sh17, Sh19, Vo19a,
Vo19b]. But we include it here for the reader’s convenience and for the sake of completeness.

The constants C, h0, and Cη continue to have the same dependencies as in Section 5.
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Proof of Theorems 1, 2 and 3. Since increasing s in (1.4) decreases the resolvent norm, to prove
(1.3), (1.9) and (1.13), we may assume without loss of generality that 0 < 2s− 1 < 1.

Fix η = 2s − 1. When n ≥ 3, let σ = σα be as in (3.3). Let ϕ, w, and h0 ∈ (0, 1] be
as in Proposition 3.1 (n ≥ 3) or as in Proposition 4.2 (n = 1). Then, Lemma 5.1 holds. Put
Cϕ = Cϕ(h) ..= 2 maxϕ. By (5.1), for some C,Cs = Cη > 0,

e−Cϕ/h‖〈x〉−sv‖2L2 ≤ CseC/h‖〈x〉s(P (h)− E ± iε)v‖2L2 + εCse
C/h‖v‖2L2 , (6.1)

for all v ∈ C∞comp(Rn), ε ≥ 0, and h ∈ (0, h0]. Moreover, for any γ > 0,

2ε‖v‖2L2 = −2 Im〈(P (h)− E ± iε)v, v〉L2

≤ γ−1‖〈x〉s(P (h)− E ± iε)v‖2L2 + γ‖〈x〉−sv‖2L2 .
(6.2)

Setting γ = C−1
s e−(C+Cϕ)/h, and using (6.2) to estimate ε‖v‖2L2 from above in (6.1), we absorb the

‖〈x〉−sv‖L2 term that now appears on the right of (6.1) into the left side. Multiplying through by

2eCϕ/h, and applying (3.6) (n ≥ 3) we arrive at

‖〈x〉−sv‖2L2 ≤ Cseh
−1−σα( Cσα3−2s

log(h−1)+Cs)‖〈x〉s(P (h)− E ± iε)v‖2L2 , ε ≥ 0, h ∈ (0, h0]. (6.3)

In the case (n = 1), we apply instead (4.5) to obtain

‖〈x〉−sv‖2L2 ≤ CseCh
−1‖〈x〉s(P (h)− E ± iε)v‖2L2 , ε ≥ 0, h ∈ (0, h0]. (6.4)

The final task is to use (6.3) and (6.4) to obtain the corresponding resolvent estimates to show

‖〈x〉−s(P (h)− E ± iε)−1〈x〉−sf‖2L2

≤ Cseh
−1−σα( Cσα3−2s

log(h−1)+Cs)‖f‖2L2 , ε > 0, h ∈ (0, h0], f ∈ L2, (n ≥ 3)

‖〈x〉−s(P (h)− E ± iε)−1〈x〉−sf‖2L2

≤ CseCh
−1‖f‖2L2 , ε > 0, h ∈ (0, h0], f ∈ L2, (n = 1)

(6.5)

from which Theorems 1, 2 and 3 follow. To establish (6.5), we prove a simple Sobolev space estimate
and then apply a density argument that relies on (6.3).

The operator

[P (h), 〈x〉s]〈x〉−s =
(
−h2∆〈x〉s − 2h2(∇〈x〉s) · ∇

)
〈x〉−s

is bounded H2 → L2. So, for v ∈ H2 such that 〈x〉sv ∈ H2,

‖〈x〉s(P (h)− E ± iε)v‖L2 ≤ ‖(P (h)− E ± iε)〈x〉sv‖L2 + ‖[P (h), 〈x〉s]〈x〉−s〈x〉sv‖L2

≤ Cε,h‖〈x〉sv‖H2 ,
(6.6)

for some constant Cε,h > 0 depending on ε and h.
Given f ∈ L2, the function 〈x〉s(P (h)− E ± iε)−1〈x〉−sf ∈ H2 because

〈x〉s(P (h)− E ± iε)−1〈x〉−sf = (P (h)− E ± iε)−1f + [〈x〉s, (P (h)− E ± iε)−1]〈x〉−sf
= (P (h)− E ± iε)−1f + (P (h)− E ± iε)−1[P (h), 〈x〉s](P (h)− E ± iε)−1〈x〉−sf.

Now, choose a sequence vk ∈ C∞comp such that vk → 〈x〉s(P (h)− E ± iε)−1〈x〉−sf in H2. Define

ṽk ..= 〈x〉−svk. Then, as k →∞,

‖〈x〉−sṽk − 〈x〉−s(P (h)− E ± iε)−1〈x〉−sf‖L2

≤ ‖vk − 〈x〉s(P (h)− E ± iε)−1〈x〉−sf‖H2 → 0.

Also, applying (6.6),

‖〈x〉s(P (h)− E ± iε)ṽk − f‖L2 ≤ Cε,h‖vk − 〈x〉s(P (h)− E ± iε)−1〈x〉−sf‖H2 → 0.
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We then achieve (6.5) by replacing v by ṽk in (6.3) and sending k →∞.
�

References
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