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Abstract. We study the relationship between L∞ growth of eigenfunctions and their L2 con-
centration as measured by defect measures. In particular, we show that scarring in the sense of
concentration of defect measure on certain submanifolds is incompatible with maximal L∞ growth.
In addition, we show that a defect measure which is too diffuse, such as the Liouville measure, is
also incompatible with maximal eigenfunction growth.

1. Introduction

Let (M, g) be a C∞ compact manifold of dimension n without boundary. Consider the eigen-
functions

(−∆g − λ2
j )uλj = 0, ‖uλj‖L2 = 1 (1.1)

as λj → ∞. It is well known [Ava56, Lev52, Hör68] (see also [Zwo12, Chapter 7]) that solutions
to (1.1) satisfy

‖uλj‖L∞(M) ≤ Cλ
n−1
2

j (1.2)

and that this bound is saturated e.g. on the sphere. It is natural to consider the situations which
produce sharp examples for (1.2). In many cases, one expects polynomial improvements to (1.2),
but rigorous results along these lines are few and far between [IS95]. At present, under general
dynamical assumptions, known results involve o-improvements to (1.2) [TZ02, SZ02, TZ03, STZ11,
SZ16a, SZ16b]. These papers all study the connections between the growth of L∞ norms of eigen-
functions and the global geometry of the manifold (M, g). In this note, we examine the relationship
between L∞ growth and L2 concentration of eigenfunctions. We measure L2 concentration using the
concept of a defect measure - a sequence {uλj} has defect measure µ if for any a ∈ S0

hom(T ∗M \{0}),〈
a(x,D)uλj , uλj

〉
→
∫
S∗M

a(x, ξ)dµ. (1.3)

By an elementary compactness/diagonalization argument it follows that any sequence of eigen-
functions uλj solving (1.1) possesses a further subsequence that has a defect measure in the sense
of (1.3) ([Zwo12, Chapter 5],[Gér91]). Moreover, a standard commutator argument shows that
if {uλj} is any sequence of L2-normalized Laplace eigenfunctions, the associated defect mea-
sure µ is invariant under the geodesic flow; that is, if Gt : S∗M → S∗M is the geodesic flow,
(Gt)∗µ = µ, ∀t ∈ R.

Definition 1.1. We say that an eigenfunction subsequence is strongly scarring provided suppµ is
a finite union of periodic geodesics.

Theorem 1. Let {uλj} be a strongly scarring sequence of solutions to (1.1). Then

‖uλj‖L∞ = o(λ
n−1
2

j ).

We also have improved L∞ bounds when eigenfunctions are quantum ergodic, that is, their defect
measure is the Liouville measure on S∗M , µL.
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Theorem 2. Let {uλj} be a quantum ergodic sequence of solutions to (1.1). Then

‖uλj‖L∞ = o(λ
n−1
2

j ).

Theorems 1 and 2 are corollaries of our next theorem where we relax the assumptions on µ and
make the following definitions. Define respectively the flow out and time T flow out by

Λx :=

∞⋃
T=0

Λx,T , Λx,T :=

T⋃
t=−T

Gt(S
∗
xM).

Definition 1.2. Let Hn be n-dimensional Hausdorff measure on S∗M induced by the Sasaki metric
on T ∗M (see for example [Bla10, Chapter 9] for a treatment of the Sasaki metric). We say that
the subsequence uλj ; j = 1, 2, ... is admissible at x if

Hn( supp µ|Λx ) = 0. (1.4)

We say that the subsequence is admissible if it is admissible at x for every x ∈M .

We note that in (1.4) µ|Λx denotes the defect measure restricted to the flow out Λx; for any A
that is µ-measurable,

µ|Λx(A) := µ(A ∩ Λx).

In particular, µ|Λx should not be confused with the pushforward measure (rx)∗µ where rx :
S∗M → Λx is restriction.

Theorem 3. Let {uλj} be a sequence of L2-normalized Laplace eigenfunctions that is admissible
in the sense of (1.4). Then

‖uλj‖L∞ = o(λ
n−1
2

j ).

Remark 1.3: We choose to use the Sasaki metric to define Hn for concreteness, but this is not
important and we could replace the Sasaki metric by any other metric on S∗M .

Theorem 3 can be interpreted as saying that eigenfunctions which strongly scar are too concen-
trated to have maximal L∞ growth, while diffuse eigenfunctions are too spread out to have maximal
growth. However, the reason the adimissiblity assumption is satisfied differs in these cases. In the
diffuse case (see Theorem 2), one has µ|Λx = 0, so that the admissibility assumption is trivially
verified. In the case where the eigenfunctions strongly scar (see Theorem 1), µ|Λx 6= 0 but the
Hausdorff dimension of supp µ|Λx is < n; so again, (1.4) is satisfied. The zonal harmonics on the
sphere S2 lie precisely between being diffuse and strongly scarring (see section 4).

Observe that the condition µ is diffuse is much more general than µ = µL. One example for
which there are diffuse eigenfunctions which are not quantum ergodic is the mushroom billiard
[Gal14, Gom15] (see also [Riv13] for further examples).

1.1. Relation with previous results. Theorem 2 is related to [STZ11, Theorem 3], where the

o(h
1−n
2 ) sup bound is proved for all Laplace eigenfunctions on a Cω surface with ergodic geodesic

flow. However, in Theorem 2, we make no analyticity or dynamical assumptions on (M, g) what-
soever, only an assumption on the particular defect measure associated with the eigenfunction
sequence. Recently, Hezari [Hez16] gave an independent proof of Theorem 2.

In [SZ02], Sogge–Zelditch prove that any manifold on which (1.2) is sharp must have a self focal
point. That is, a point x such that |Lx| > 0 where

Lx := {ξ ∈ S∗xM | there exists T such that expx Tξ = x}
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and |·| denotes the normalized surface measure on the sphere. Subsequently, in [STZ11] the authors
showed that one can replace Lx by the set of recurrent directions Rx ⊂ Lx and the assumption
|Rx| > 0 for some x ∈M is necessary to saturate the maximal bound in (1.2). The example of the
triaxial ellipsoid with x equal to an umbilic point shows that latter assumption is weaker than the
former. Indeed, in such a case |Lx| = 1 whereas |Rx| = 0. Most recently, in [SZ16a, SZ16b], it was
proved that for real-analytic surfaces, the maximal L∞ bound can only achieved if there exists a
periodic point x ∈M for the geodesic flow. At such a point, all geodesics starting at (x, ξ) ∈ S∗M
close up smoothly after some finite time T > 0.

Together with our analysis, the results of [STZ11] imply that any sequence of eigenfunctions, {uλ}
having maximal L∞ growth and defect measure µ must have suppµ ∩ S∗xM 6= ∅ where |Rx| > 0.
However, as far as the authors are aware, the results there and in [SZ16a, SZ16b] do not give addi-
tional information about µ. On the other hand, under an additional regularity assumption on the
measure µ, Theorem 3 shows that µ|Λx is not mutually singular with respect to Hn. This implies
that the measure µ resembles the defect measure of a zonal harmonic. In a forthcoming paper,
the first author removes the necessity for any additional regularity assumption and gives a full
characterization of defect measures for eigenfunctions with maximal L∞ growth [Gal17]. Finally,
we note that unlike [SZ02, STZ11, SZ16a, SZ16b], the analysis here is entirely local.

Acknowledgemnts. J.G. is grateful to the National Science Foundation for support under the
Mathematical Sciences Postdoctoral Research Fellowship DMS-1502661. The research of J.T. was
partially supported by NSERC Discovery Grant # OGP0170280 and an FRQNT Team Grant. J.T.
was also supported by the French National Research Agency project Gerasic-ANR- 13-BS01-0007-0.

2. A local version of 3

In the following, we will freely use semiclassical pseudodifferential calculus where the semiclassical
parameter is h with h−1 = λ ∈ Spec

√
−∆g. We start with a local result:

Theorem 4. Let {uh} be sequence of Laplace eigenfunctions that is admissible at x. Then for any
r(h) = o(1),

‖uh‖L∞(B(x,r(h)) = o(h
1−n
2 ).

Theorem 3 is an easy consequence of Theorem 4.

Proof that Theorem 4 implies Theorem 3. Suppose that u is admissible and

lim sup
h→0

h
n−1
2 ‖uh‖L∞ 6= 0.

Then, there exist c > 0, hk → 0, xhk so that

|uhk(xhk)| ≥ ch−
n−1
2

k .

Since M is compact, by taking a subsequence, we may assume xhk → x. But then d(x, xhk) = o(1)
and since u is admissible at x, Theorem 4 implies

lim sup
k→∞

h
n−1
2

k |uhk(xhk)| = 0.

�
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3. Proof of Theorem 4

In view of the above, it suffices to prove the local result: Theorem 4.

Proof. Fix δ > 0 and let ρ ∈ S(R) with ρ(0) = 1 and supp ρ̂ ⊂ (δ, 2δ). Let

S∗M(ε) := {(x, ξ); ||ξ|x − 1| ≤ ε}

and χ(x, ξ) ∈ C∞0 (T ∗M) be a cutoff near the cosphere S∗M with χ(x, ξ) = 1 for (x, ξ) ∈ S∗M(ε) and
χ(x, ξ) = 0 when (x, ξ) ∈ T ∗M \ S∗M(2ε). Let χ(x, hD) ∈ Oph(C∞0 (T ∗M)) be the corresponding
h-pseudodifferential cutoff. Also, in the following, we will use the notation

Γx := supp µ|Λx
to denote the support of the restricted defect measure corresponding to the eigenfunction sequence
{uhj} in Theorem 3.

Then, we have

uh = ρ(h−1[−h2∆− 1])uh =

∫
R
ρ̂(t)eit[−h

2∆−1]/hχ(y, hDy)uh dt+Oε(h
∞). (3.1)

3.1. Microlocalization to the flow out Λx. Set

V (t, x, y, h) :=
(
ρ̂(t)eit[−h

2∆−1]/hχ(y, hDy)
)

(t, x, y).

Then, by propagation of singularities,

WF ′h(V (t, ·, ·, h)) ⊂ {(x, ξ, y, η); (x, ξ) = Gt(y, η), ||ξ|x − 1| ≤ 2ε , t ∈ [δ, 2δ]}. (3.2)

Let bx,ε ∈ C∞0 (T ∗M) be a family of h-pseudodifferential cutoffs with symbols

bx,ε ∈ C∞0 ({(y, η) | (y, η) = Gt(x0, ξ) for some (x0, ξ) ∈ S∗x0M(3ε) with r(x, x0) < 2ε,
δ

2
< t < 3δ},

with

bx,ε ≡ 1 on {(y, η) | (y, η) = Gt(x0, ξ) for some (x0, ξ) ∈ S∗x0M(2ε) with r(x, x0) < ε, δ < t < 2δ}.

By wavefront calculus together with (3.2), it follows that for r(x(h), x) = o(1),

uh(x(h)) =

∫
M
V̄ (x(h), y, h) bx,ε(y, hDy)uh(y)dy +Oε(h

∞), (3.3)

where,

V̄ (x(h), y, h) :=

∫
R
ρ̂(t)

(
eit[−h

2∆−1]/hχ(y, hDy)
)
(t, x(h), y) dt.

By a standard stationary phase argument [Sog93, Chapter 5],

V̄ (x, y, h) = V+(x, y, h) + V−(x, y, h)

V±(x, y, h) = h
1−n
2 e±ir(x,y)/ha(x, y, h) ρ̂(r(x, y)) +Oε(h

∞),

(3.4)

where a(x, y, h) ∈ S0(1).

Then, in view of (3.4) and (3.3),
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uh(x(h)) = u+(x(h)) + u−(x(h)) +Oε(h
∞)

u±(x(h)) = (2πh)
1−n
2

∫
δ
2
<|y−x|<2δ

e±ir(x(h),y)/ha±(x(h), y, h)ρ̂(r(x(h), y)) bx,ε(y, hDy)uh(y)dy.

(3.5)

3.2. Further microlocalization along suppµ|Λx. Let Hn be the n-dimensional Hausdorff mea-
sure on the flow out Λx. By assumption, Hn(supp µ|Λx) = 0. In view of the microlocalization above,
we are only interested in the annular subset

Ax(δ/2, 3δ) := Λx,3δ \ Λx,δ/2.

By monotonicity of measure, we also have

Hn(supp µ|Ax(δ/2,3δ)) = 0

and so for any ε1 > 0, there exist n-dimensional balls B(rj) ⊂ Ax(δ/4, 4δ); j = 1, 2, ... with radii
rj > 0, j = 1, 2, ... such that

supp µ|Λx ⊂
∞⋃
j=1

B(rj), Hn
( ∞⋃
j=1

B(rj)
)
< ε1.

Note that for δ > 0 small enough, the canonical projection π : T ∗M → M restricts to a
diffeomorphism

π : Ax(δ/4, 4δ)→ {y ∈M ; δ/4 < r(x, y) < 4δ}.
Consider the closed set

K = π(supp µ|Ax(δ/4,4δ)) ⊂M
with open covering

G := π
( ∞⋃
j=1

B(rj)
)
, satisfying Hn(G) = O(ε1). (3.6)

By the C∞ Urysohn lemma, there exists χΓx ∈ C∞0 (M ; [0, 1]) with

χΓx |K = 1, suppχΓx ⊂ G.
(Note that χΓx depends on ε1, but we suppress this dependence to simplify notation.) Then,
starting from (3.5) we make the further decomposition

u+(x(h)) = I1(x(h), h) + I2(x(h), h) +Oε(h
∞) (3.7)

where

I1 := (2πh)
1−n
2

∫
δ<|y−x|<2δ

eir(x(h),y)/ha+(x(h), y, h)ρ̂(r(x(h), y))χΓx(y) bx,ε(y, hDy)uh(y)dy

I2 := (2πh)
1−n
2

∫
δ<|y−x|<2δ

eir(x(h),y)/ha+(x(h), y, h)ρ̂(r(x(h), y)) (1− χΓx(y)) bx,ε(y, hDy)uh(y)dy.

Here, both I1(x(h), h) and I2(x(h), h) also depend on the parameters ε1, ε > 0 although we suppress
this in the notation.
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To estimate I1, we note that since Hn(suppχΓx) ≤ Cε1, it follows that ‖χΓx‖2L2(M) ≤ Cε1 and

so by Cauchy-Schwarz,

|I1(x(h), h)| ≤ Cδ(2πh)
1−n
2 ‖χΓx‖L2(M) ‖bx,ε(y, hDy)uh‖L2(M) ≤ C ′δ ε

1/2
1 h

1−n
2 + oε,δ(1)

and in particular,

lim
ε1→0

lim
ε→0

lim sup
h→0

h
n−1
2 |I1(x(h), h)| = 0.

Applying Cauchy-Schwarz to I2 gives

|I2(x(h), h)| ≤ Cδ(2πh)
1−n
2 ‖(1− χΓx) bx,ε(y, hDy)uh‖L2(M),

and so,

lim sup
h→0

h
n−1
2 |I2(x(h), h))| ≤ C lim sup

h→0
‖(1− χΓx)bx,ε(y, hDy)uh‖L2 (3.8)

Taking ε→ 0+ on the RHS of (3.8), one gets

lim
ε→0

lim
h→0
‖(1− χΓx)bx,ε(y, hDy)u‖2L2 = lim

ε→0

∫
S∗M
|(1− χΓx)(y) bx,ε(y, ξ)|2dµ

≤ C
∫

Λx,4δ\Λx,δ/4
|(1− χΓx)(y)|2 dµ = 0

since by construction, for all ε1 > 0,

(1− χΓx)(y) = 0, ∀y ∈ π( supp µ|Λx,4δ\Λx,δ/4).

In particular, since the left hand side of (3.7) is independent of ε and ε1

lim
h→0

h
n−1
2 |u+(x(h))| = 0.

The analysis of u−(x(h)) is identical. �

4. The example of zonal harmonics

Let (S2, gcan) be the round sphere and (r, θ) be polar variables centered at the north pole p =
(0, 0, 1) ∈ R3. The geodesic flow is a completely integrable system with Hamiltonian

H = |ξ|2g = ξ2
r + (sin r)−2ξ2

θ , r ∈ (0, π) (4.1)

and Claurault integral p = ξθ satisfying {H, p} = 0. The associated moment mapping is P =
(H, p) : T ∗S2 → R2 and the connected components of the level sets are, by the Liouville-Arnold
Theorem, Lagrangian tori Λc indexed by the values of the moment map (1, c) ∈ P(T ∗S2).

The associated quantum integrable system is given by the Laplacian ∆g and the rotation operator
hDθ. The corresponding L2-normalized joint eigenfunctions are the standard spherical harmonics
Y k
m with

−∆gY
k
m = k(k + 1)Y k

m, hDθY
k
m = mY k

m.

These eigenfunctions can be separated into various sequences (i.e. ladders ) associated with different
values (∈ P(T ∗S2); specifically, the correspondence is given by c = limm→∞

m
k ). The eigenfunctions

with maximal L∞ blow-up are the sequence of zonal harmonics given by

uh(r, θ) = Y k
0 (r, θ) =

√
2k + 1

2π

∫ 2π

0
(cos r + i sin r cos τ)kdτ ; h = k−1, k = 1, 2, 3, ... (4.2)
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It is obvious from (4.2) that

|Y k
0 (p)| ≈ k1/2

and thus attains the maximal sup growth at p (similarily, at the south pole). At the classical level,
the zonals uh = Y k

0 concentrate microlocally on the Lagrangian tori Λ0 = P−1(1, 0). From the
formula (4.1) it is clear that away from the poles (where (r, θ) are honest coordinates),

Λ0 \ {±p} = {(r, θ, ξr = ±1, ξθ = 0), r ∈ (0, π)} ∼= S2 \ {±p}. (4.3)

The choice of ξr = ±1 determines the Lagrangian torus (there are two of them) and also, either
torus clearly covers the entire sphere. At the poles themselves, the projection πΛ0 : Λ0 → S2 has a
blowdown singularity with

π−1
Λ0

(±p) = S∗±(S2) ∼= S1. (4.4)

To see this, consider the behaviour at p (with a similar computation at −p). Rewriting the integral
in involution in Euclidean coordinates (x, y, z) ∈ R3 one has H = (xξy − yξx)2 + (xξz − zξx)2 +
(yξz − zξy)2 and ξθ = xξy − yξx. Setting H = 1, xξy − yξx = 0 and (x, y, z) = (0, 0, 1) gives

π−1
Λ0

(p) ∼= {(ξx, ξy) ∈ R2; ξ2
x + ξ2

y = 1}.

It is then clear from (4.3) and (4.4) that πΛ0 : Λ0 → S2 is surjective and a diffeomorphism away
from the poles (modulo choice of Lagrangian cover) and the fibres above the poles are S∗±(S2) ∼= S1.

The defect measure µ associated with the zonals is

dµ = |dθ1dθ2|,
where (θ1, θ2; I1, I2) ∈ R2/Z2×R2 are symplectic action-angle variables defined in a neighbourhood
of the Lagrangian torus Λ0 [TZ03]. One can choose one of the angle variables θ1 ∈ S∗p(S2) to
parametrize the circle fibre above p (a homology generator of the torus). Then, by the Liouville-
Arnold Theorem, the geodesic flow on the torus Λ0 = {I1 = c1, I2 = c2} is affine with

θj(t) = θj(0) + αjt, αj =
∂H

∂Ij
6= 0.

It is then clear that

µ(Λp,δ) =

∫ 2π

0
dθ1 ·

∫
|t|<δ

α2dt ≈ δ 6= 0

and suppµ|Λp = Λp. Therefore, this case violates the assumption in Theorem 3 and that is of
course consistent with the maximal L∞ growth of zonal harmonics.

The analysis above extends in a straightforward fashion to the case of a more general sphere of
rotation [TZ03].

5. Eigenfunctions of Schrödinger operators

Consider a Schrödinger operator P (h) = −h2∆g + V with V ∈ C∞(M ;R) on a compact, closed
Riemannian manifold (M, g) and let uh be L2-normalized eigenfunction with

P (h)uh = E(h)uh, E(h) = E + o(1), E > minV, ‖uh‖L2 = 1. (5.1)

Any sequence uh of solutions to (5.1) has a subsequence uhk with a defect measure µ in the sense
that for a ∈ C∞0 (T ∗M)

〈a(x, hD)uh, uh〉 →
∫
T ∗M

adµ.

Such a measure µ is supported on {p = 0} and is invariant under the bicharacteristic flow Gt :=
exp(tHp).
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In analogy with the homogeneous case, we define for x ∈ M respectively the flow out and time
T flow out by

Λx,V :=

∞⋃
T=0

Λx,T , Λx,T,V :=
T⋃

t=−T
Gt(Σx)

where
Σx = {ξ ∈ T ∗xM | |ξ|2g + V (x) = E}.

Definition 5.1. Let Hn be n-dimensional Hausdorff measure on {|ξ|2g + V (x) = E} induced by
the Sasaki metric on T ∗M . We say that the sequence uh of solutions to (5.1) is admissible at x if

Hn( supp µ|Λx,V ) = 0. (5.2)

With these definitions we have the analog of Theorem 3

Theorem 5. Let B ⊂ V −1(E) be a closed ball in the classically allowable region and µ be a
defect measure associated with the eigenfunction sequence uh. Then, if the eigenfunction sequence
is admissible for all x ∈ B in the sense of (5.2),

sup
x∈B
|uh(x)| = o(h

1−n
2 ).

Proof. In analogy with the homogeneous case [CHT15, Lemma 5.1], we have

ρ(h−1[P (h)− E]))(x, y) = h
1−n
2 a(x, y, h)e−iA(x,y)//h +R(x, y, h)

where A(x, y) ∈ [(2C0)−1ε, 2C0ε] for some C0 > 1 and is the action function defined to be the
integral of the Lagrangian L(x, ξ) = |ξ|2g − V (x) along the bicharacteristic in {p = E} starting at
(y, η) and ending at (x, ξ). For (x, y) in a small neighborhood of the diagonal, there is a unique such
η satisfying this condition. The remainder R(x, y, h) = O(h∞) pointwise and with all derivatives.
The proof then follows using the same argument as in the homogeneous case. �
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E-mail address: jtoth@math.mcgill.ca


	1. Introduction
	1.1. Relation with previous results

	2. A local version of 3
	3. Proof of Theorem 4 
	3.1. Microlocalization to the flow out x
	3.2. Further microlocalization along supp|x

	4. The example of zonal harmonics
	5. Eigenfunctions of Schrödinger operators
	References

