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Abstract

Distribution of Resonances in Scattering by Thin Barriers
by
Jeffrey Eric Galkowski
Doctor of Philosophy in Mathematics
University of California, Berkeley
Professor Maciej R. Zworski, Chair

This thesis contains a detailed study of the rates of wave decay for scattering by thin bar-
riers. Thin barriers are systems in which, except for a narrow region, waves do not interact.
This type of behavior is observed in physical systems including concert halls and quantum
corrals. A quantum corral is constructed by configuring individual atoms or molecules to
form a barrier which partially confines electrons to its interior. Here, the atoms produce a
potential which plays the role of the thin barrier. In the setting of concert halls, the walls
play the role of the barrier and produce partial confinement of sound waves.

Rather than studying thin barriers as systems with a finite width interaction region, we
imagine that the region is reduced to a single hypersurface in R? by taking a limit of barriers
whose width is decreasing and intensity is increasing. Specifically, we are interested in wave

equations
(0} + P)u=0 (0.0.1)

where P is an operator of the form
P = —Aagﬁ = —=A+0pgoR@V or P= —AaQ#;/ = —A+ 81,(539) X (Va,,),

Q) € R? and V an operator acting on L?(9€2) and varying with frequency. These operators
are used as models for leaky quantum graphs [26] and quantum corrals [5] 6, [18].

We approach the study of from the point of view of scattering theory introduced
by Lax-Phillips [46] and Vainberg [78]. Heuristically, one expects to have an expansion of

solutions to ((0.0.1)) of the form
u(t,z) ~ Z e~y (1) (0.0.2)

A€Res

where A runs over a discrete set of scattering resonances, Res C C. Hence the (negative)
imaginary parts of the resonances control the decay rate of solutions to (0.0.1). There are
two major steps in our analysis of —Apq s and —Apq s



1. identify the set Res with the presence of non-trivial solutions to certain transmission
problems and generalized non-selfadjoint eigenvalue problems.

2. understand the behavior of A € Res as | Re A\| = oc.

The first step is accomplished using methods similar to those for scattering by L po-
tentials (see for example [21, Chapter 2, 3]). The additional requirement is to understand
the free resolvent,

Ro(A) i= (—A = \*)7h

(meromorphically continued from Im A > 1) after restrictions to hypersurfaces that corre-
spond to the single, double, and derivative double boundary layer operators; respectively,

G\ f(x) = /m Ro(A)(,y) f(y)dS(y) N\ f(z) = Lﬂanyo(A)(w,y)f(y)dS(y)

0, DU f(x) = /8 00,04, B\ ) (1)dS ()

where x € 0f).

The second step relies on understanding the trapping properties of transmission problems,
that is, properties of light rays that are trapped in a fixed compact set for all time. One should
notice that unlike in the case of scattering with smooth coefficients, one expects light rays to
split into transmitted and reflected rays after interacting with 9€2. This behavior frequently
results in the presence of rays that are strongly trapped geometrically. However, even trapped
rays decay because, depending on the precise nature of the transmission, varying proportions
of the wave may be transmitted and reflected at each intersection with 0€). The precise
understanding of these phenomena in a transmission problem leads to a description of the
location of A € Res.

As discussed above, the identification of A € Res with the existence of solutions to
certain transmission problems is accomplished via a precise understanding of the boundary
layer operators G, N, and 9,D¢ at high energies. We first use restriction estimates for
eigenfunctions of the Laplacian to prove estimates on the boundary layer operators when
A has |[A| > 1. We also show that the estimates are sharp modulo a loss of log|A|. These
estimates are enough to prove that the resonances of —Apqs coincide with the existence
of nontrivial solutions to a transmission problem as well as the solutions to the generalized
eigenvalue problem

(I+G\V)p=0. (0.0.3)

Using a semiclassical adaptation of intersecting Lagrangian distributions from [49] and the
Melrose—Taylor parametrix from [47] we then give a complete microlocal description of the
boundary layer operators G and 0,Df in the case 02 is smooth and strictly convex. This
allows us to remove the log loss from our high energy estimates for G and 0,D¢ and to
identify the resonances for —Apq s with the existence of solutions to a transmission problem
as well as the problem

(I —0,DL(N)V)p = 0.



When discussing the distribution of resonances for —Apq s and —Apq 5, we work with
A = z/h with Rez ~ 1 and 0 < h < 1. We then obtain the following results on the
distribution of resonances.

The case of —Apq s

For very general 2, we show that there exists C' > 0 such that resonances satisfy
Imz>—Chlogh™!

provided ||V 22 < Ch™® for some a < 2/3. This allows us to prove an expansion of
the type for solutions to (0.0.1) with P = —Apqs. We then turn our attention to
the case 0f) is smooth and strictly convex where we can use the microlocal description of
G along with to understand transmission and reflection through the boundary. This
understanding yields a dynamical characterization of the size of the resonance free region
for V € C>(09Q) with |V| < h~%/3 that can be thought of as a Sabine law [61] and is of the
form

Imz > —Ryghlogh™, Rez ~ 1. (0.0.4)

We next show that the constant in ((0.0.4]) is optimal for generic V' € C'*(02) and generic
in the sense that for any constant r > Ry the number of resonances with

Imz > —rhlogh™!, Rez ~ 1 (0.0.5)

is unbounded as h — 0. Moreover, the bound ((0.0.4) is sharp for V' = Vp)h™® and Q =
B(0,1) C R% Finally, we give some upper bounds on the number of resonances in regions
given in (0.0.5).

The case of —Apq 5

In this case, we only consider 02 smooth and strictly convex. Then, for V' € C>°(9f2) with
ch® <V < Ch* and o > 5/6, we give a dynamical characterization of the resonance free
region that is of the form

3—2a

Imzz{_R”Wh asl (0.0.6)
—Ryqaahlogh™ a>1

Again, this bound can be thought of as a Sabine law for the ¢’ potential and we show that

it is sharp in the case that Q = B(0,1) C R* and V = Vjh® > 0. As far as the author is

aware, the example —Apq s is the only general class known to have resonances converging

to the real axis at a fixed polynomial rate.
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Chapter 1

Introduction

In this thesis, we seek to understand the scattering properties of thin barriers. One moti-
vation for this work is to describe the long-term behavior of waves in quantum corrals and
systems with similar properties. A quantum corral is a physical system that is assembled by
using a scanning tunneling microscope to move individual atoms into a corral shape which
partially confines electrons (see Figure . From our point of view, the important features
of quantum corrals are:

1. Electrons propagate with little interaction away from the narrow region where atoms
are placed.

2. The potential produced by the confining atoms is intense and localized to a thin region
hereafter referred to as the boundary.

3. The potential can vary along the boundary.

Another physical motivation for our study is propagation of sound waves in a concert
hall. Just as in the case of a quantum corral, sound propagation in a concert hall enjoys
the above properties. Moreover, the strength of the interaction with materials inside walls
varies as a function of the frequency of the interacting wave.

In order to model these systems, we imagine that, rather than a potential with support
inside a narrow boundary of finite width, the potential is actually supported on a hyper-
surface (see Figure . We replace the physical potential by a model potential V,,q ® or
where dr is the Hausdorff d — 1 measure on some hypersurface I' € R¢ as done by Heller [6]
and Crommie [18]. We then study the decay of solutions to

(07 + (—A + 6r ® Vinoa) Ju = 0, (1.0.1)

That is, we study a delta function potential supported on a hypersurface. In section [7.3] we
show that this model is an accurate approximation of the physical potential. This model is
also used to study so-called leaky quantum graphs. (See for example the summary article of
Exner [26].)
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Figure 1.1: This figure shows an image of a quantum corral taken using a scanning tunneling
microscope. The atoms produce the large spikes in the potential around the boundary of a
Bunimovich stadium. The smaller ripples are the wavefunction of an electron. One can see
that while most of the wavefunction is confined inside the corral, there are smaller ripples
in the exterior. This image is included from [@ with the permission of the authors.

o0

Figure 1.2: The left hand image shows the original interaction region shaded in grey. On
the right, we reduce to the case that the interaction region is a hypersurface.
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In one dimension —A has a four dimensional family of self-adjoint extensions from C2°(R\
{0}) (see for example the work of Seba [64]). There is a two parameter family of such
extensions for which the corresponding operator decouples into the the sum of a self-adjoint
realization of —A on (—o00,0) and one on (0,00), and so does not produce interesting new
behavior. The other two parameters correspond formally to

— A+ ad(x) + bd' (x)0,. (1.0.2)

Thus, all ‘transmissive’ self-adjoint realizations of single point interactions are given formally
by . Motivated by this in addition to the interest in ¢’ interactions in mathematical
physics |2, [28, [54} [64] and spectral theory |3, 44], as well as another model of leaky quantum
graphs [26], we study scattering resonances for the operator

- Aagﬁl = —-A + 5(/99 (%9 Vmod&, 5’39(11,) = —&,udS. (103)

a0
Because ([1.0.2)) represents all possible ‘transmissive’ single point interactions in 1 dimension,
we expect that combinations of the dpq interaction and the d), interaction represent all

possible ‘thin barriers’ supported on 9€2 in higher dimensions.
Solutions to ((1.0.1)) have resonance expansions of the form

u(t,x) ~ Z e "y, () (1.0.4)

zE€Res

where Res C C is a discrete set called the scattering resonances of the operator
— Ars = —A+ Vioa ® or. (1.0.5)
(See Section for a more precise statement.) Notice that solutions to the wave equation
(0} —Au=0, (t,2) ERXQ ulgxon =0

with Q a compact subset of R? also have expansions of the form where 2z € Res is
replaced by z an eigenvalue of the Dirichlet problem on 2. Thus, scattering resonances in
the non-compact setting are analogous to eigenvalues in the compact setting.

The real and (negative) imaginary part of z € Res respectively give the frequency and
decay rate of the associated resonant state and hence, resonances close to the real axis give
information about the long term behavior of solutions to . In their seminal works, Lax—
Phillips [46] and Vainberg 78] understood the relation between propagation of singularities
for the wave equation and the presence of scattering poles near the real axis. Through
, this gives control over the long term decay of waves. We use this relation in Chapter
[9 to demonstrate the existence of resonance with prescribed decay rates.

The scattering resonances of an operator, P, are defined to be the poles of the meromor-
phic continuation of the resolvent

Rp()\) = (P — 227!
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from Im A > 1. In order to give an expansion of the form (and hence prove exponential
decay for waves), we need to find a region free of resonances near the real axis. Since the set
of poles of the resolvent is discrete, it suffices to study resonances with | Re \| > C' and hence
to studying high frequencies. Because of this, our main intuition comes from the quantum-
classical correspondence: high energy waves inherit many properties of the corresponding
classical dynamics.

To describe the classical dynamics of a system we use the Hamiltonian formalism. In this
formalism, we let the Hamiltonian, p(z, &), give the energy of a particle at a given position,
x, and momentum, . The flow

Opa(t) = Ogp(x, &)
8t€(t) = - xp(xa€>

then describes the motion of a particle. In the theory of scattering by smooth compactly
supported potentials, the energy of the system can be described as the sum of the kinetic
energy, given by the momentum squared, plus the potential energy, given by the value of the
potential. (We have assumed that the particle has unit mass.) That is,

p(z, &) == €] + V(z). (1.0.6)

In such situations, it is easy to see that if the energy of a particle, F, is such that {V(z) < E'}
has a component which is isolated from infinity, then there are particles with energy F that
never escape to infinity. Such particles are referred to as trapped particles. Since such a
system produces confinement on the classical level, one expects decay of waves to result only
from tunneling effects and hence for the decay to be very slow. There has been an extensive
study of resonances for systems with various kinds of trapping (see for example the book of
Dyatlov—Zworski [21, Chapter 7] or the paper of Nonnemacher—Zworski [55] and references
therein).

When we work with a genuine wave or quantum system rather than the particle model,
there is no notion of exact momentum or position. Instead, we think of observables as
operators that come from quantizing classical properties. In particular,

where h represents the inverse of frequency and M,,, multiplication by ;. (For more precise
details on this quantization procedure see Chapter ) In particular, the quantization of the
Hamiltonian (1.0.6)) is

—h*A 4+ V(x).

We are interested P — A% for | Re \| > 1 and hence it is convenient to write A = z/h with
h < 1. This converts problems of the form

~A+ V()= (2/h)* = —h*A + h*V (z) — 2°.
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Since we want to study operators of the form
— A+ 6r @ Vigoa — A2 and — A — 8hq @ Vinoady — A2

we replace V(z) in ([1.0.6) with h?V0q ®dr  (or — &), ). Then we can think of a potential of
the form h?V;,,q @ dr as the distributional limit of a sequence of potentials {h*V, } C C>°(R?)
(see Section for a precise version of this idea). As n increases, V,, narrows and increases
in intensity. Because of the h? scaling, for each fixed n, the potential will not produce
confinement at any positive energy . However, as V,, increases without bound, we expect the
corresponding classical dynamics to approach the billiard ball flow (see Section . Thus,
if R4\ T" has a bounded component, we expect classical confinement at any energy E. Using
this naive analysis, we might expect very slow decay of waves at any frequency. However, as
the potential V,, narrows, tunneling effects decrease the strength of confinement. In fact, the
precise analysis of scattering by delta functions, Ar s, presented in this thesis shows that if
Vinod grows mildly with frequency, then the confinement produced is only slightly stronger
than that for V € C>°(R?). However, if V;,,q is allowed to depend strongly on frequency,
then we demonstrate that as a result of effects coming from paths z(t) nearly tangent to the
submanifold T, confinement can become much stronger than that for V'€ C2°(R?). Similarly,
if the potential is more singular than dr, then confinement becomes stronger than that for
V e C*(RY).

The main goal of this thesis is to understand the precise nature of the distribution of
resonances near the real axis for thin barriers and, as a by-product, to prove an expansion
of the form for —Ars. A key step in doing so is to relate the poles of Rp()) to the
existence of nonzero A-outgoing solutions to

(P = \)u=0. (1.0.7)
By A-outgoing we mean that there exist M > 0 and ¢ € C°(R?) with
u(z) = (Ro(M)@)(z),  for |z| = M
where, Ry(A), the free resolvent, is the meromorphic continuation of
Ro(\) == (—A = X3!

from Im A > 1. For the case of —Apq s this is equivalent to solving

((=A = A2)uy =0 in Q
(—A = X2)uy =0 in R4\ Q
ullag = u2|ag (108)

Oyur — Oyug +Vuy =0 on 0f)

| u2 is A-outgoing
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and for the case of —Apq g it is equivalent to solving

(=A = X)u; =0 in Q

(—A = M)uy =0 in R\

q Gvtr|oq = Oyuson : (1.0.9)
up —us +Vo,uy =0 on 00

| u2 is A-outgoing

We postpone the proof of these results to Chapters [7| and Equations of the form (|1.0.8)
and are called transmission problems and resonances for such systems have been
considered in other cases. For example, Popov—Vodev [58] and Cardoso—Popov—Vodev |13
14] consider the case of a transparent obstacle having differing wave speeds inside and outside
Q.

In order to gain some heuristic understanding of how resonances behave for —Ayq 5 and
—Ar s, we look to the case where 9Q = {x; = 0} C R%. We consider a plane wave with
frequency h~', e#‘®€ approaching x; = 0 from the left. (See Figure for a depiction of
the setup.) We are then interested in what fraction of the wave is reflected by the barrier
and what fraction is transmitted. Let Rs and Rs denote the reflection coefficients and Tj,
Ts the transmission coefficients.

By a formal computation, one can see that the appropriate transmission condition for
Vi(zy) is

uy (0,2') = u_(0,2") Opyu_(0,2") — 0pyui (0,2") + Vuy(0,2) = 0.

This leads to

_ hV T — 21&,
2i&, — hV’ ° T2, — BV

By a similar formal computation, one can see that the appropriate transmission condition

for =V ¢'(xq) is given by

Op s (0,2') = Opyu_(0,2")  u_(0,2") —uy(0,2") + VO, u' (0,2") =0

Rs (1.0.10)

which leads to ,
Vi& 2h

) = —— T/:—.
By =i —an "7 2n - Vig,

(1.0.11)

Since we want to consider waves with frequency equal to h~', we have that & € S9!,
When & is near 0, the plane wave travels nearly tangent to x;y = 0. Our first observation
is that as & — 0, Rs — 1 while Ry — 0. This reflects the fact that the normal derivative
to ' = {x; = 0} does not see frequencies that are tangent to I'. Thus, we expect glancing
(tangent) trajectories to contribute less to the resonances of —Ayq » than to —Ar 5.

To get a more quantitative heuristic for the resonances, we imagine solving the wave
equation

(0} = P)u=0, ulimo=1uo, Usl—o=0
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Vo(zy) —V ' (21)
1 <0 x>0 1 <0 x>0
e%<x7§> + R(Se_%<x7'£> T6€%<x7§> e%<x7£> _|_ Ré,e_%<x7£> T5/6%<x’§>

Figure 1.3: The setup for plane wave interactions. Here Rs and Rs are the reflection
coefficients and T and T are the transmission coefficients.

Ry
Ry

Rs

Figure 1.4: The figure shows the path of a wave packet along with the lengths between each
intersection (I;) and the reflection coefficient at each point of intersection with the boundary
(R;). After each reflection with the boundary, the amplitude of the wave packet inside
decays by a factor of R;. The time between reflections is given by [;.

where P is either —Ayq s or —Apgs with initial data ug a wave packet (that is a function
localized in frequency and space up to the scale allowed by the uncertainty principle) localized
at position 2y € Q and momentum & € S%!. Then our heuristic computations giving
and suggest that at each intersection of the billiard flow starting from
(20, &) with zg € Q, the amplitude inside of  will decay by a factor of R. Suppose that the
billiard flow from (x¢, &) intersects the boundary at (z,,&,) n > 0. Let [, = |2,41 — @] be
the distance between two consecutive intersections with the boundary (see Figure|l.4)). Then
the amplitude of the wave decays by a factor [, R; in time ) ., l; where R; = R(z;,&;).
The energy scales as amplitude squared and since the imaginary part of a resonance gives
the exponential decay rate of L? norm, this leads us to the heuristic that resonances should
occur at
hlog|R|?
z = — —
2 1

where the map ~ is defined by f = % Zf\il fi, A= zh7!, and Rez = 1. In the early 1900s,
Sabine [61] postulated that the decay rate of acoustic waves in a region with leaky walls
is determined by the average decay over billiards trajectories. The expression is a
precise description of this statement. In Chapters|8 and|10|we show that a version of
and hence a Sabine type law holds for both —Apq 5 and —Apq s under certain conditions on
the potential V' and the domain €.

(1.0.12)
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Equation (1.0.12]) suggest that the resonances of —Apqs lie in regions with Imz ~
hlogh~t. On the other hand, if we assume that V' ~ h® for o < 1 then we obtain for —Asq s
that Im 2z ~ h372%. Thus, the resonances for —Apqs are much closer to the real axis than
those for —Apq 5. Indeed, when written in terms of A, the resonances for —Apq 5 converge
to the real axis at a fixed polynomial rate while those for —Ayq s diverge logarithmically
from the real axis.

Outline of the Thesis

We begin in Chapter [2| by analyzing the model case of I' = dB(0, 1) C R? and V;,0q constant.
In this case, we are able to separate variables and solve in terms of Bessel functions
for both P = —Apq s and P = —Apq 5. This reduces the study of resonances to asymptotic
analysis of certain transcendental equations. The heuristic and the fact that Ry — 0
as & — 0, suggest that the slowest decay rates for —Apq s should come from non-glancing
wave packets. Thus, we also consider the 1 dimensional case for —Apq 5. Many of the results
in Chapter [2| are special cases of the more general theorems that we present in later chapters.
However, since we work with models where separation of variables is possible, we are able to
explore some regimes where the more general techniques fail to give satisfactory analyses.

Chapters [3| and [4] are devoted to a review of the geometric and analytical tools that are
used in the analysis of —Ar s and —Apq . In addition to this review, Chapter 4] develops
a notion of a sheaf-valued symbol that is sensitive to local changes of semiclassical order.
Finally, it adapts the Melrose-Uhlmann [49] notion of an intersecting Lagrangian distribution
to the semiclassical setting.

One of our main goals in Chapters [3| and [4]is to give a self-contained presentation of the
theory of semiclassical Fourier integral operators and Lagrangian distributions. We start by
reviewing local symplectic geometry in Chapter 3] We then review the basics of semiclassical
analysis in Chapter [4 In addition to this, Chapter [3| contains the necessary background on
the billiard ball map and flow.

The next major tool that is used in our analysis is the Melrose-Taylor parametrix [47].
The parametrix was developed to understand the wave equation near curved boundaries and
was adapted by Gerard and Stefanov—Vodev for use in the semiclassical Dirichlet problem
outside a strictly convex obstacle in |32, [69]. In Chapter |5| we adapt this construction to the
Dirichlet problem in the interior and exterior of a convex domain and to perturbative (Im z <
Mhlogh™') complex energies. We then use the semiclassical Melrose-Taylor parametrix to
give microlocal models for the exterior the Dirichlet to Neumann map near a glancing point
as well as for boundary layer potentials.

With these tools in place, we begin to analyze —Ar s and —Apq 5. We show in Chapter
that resonances of —Ar s occur at A for which there exist nontrivial solutions ¢ € L*(T)
to

(I+GN)V)p=0 (1.0.13)
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where G is the single layer operator. That is, the operator given by

GNI() = [ RN W)dSt). o0
r

Moreover, in Chapter (10| we will see that (except for d = 1 and A = 0) the resonances of

—Apas occur at A for which there exist nontrivial solutions ¢ € H'(99) to

(I -8, DNV )p =0 (1.0.14)

where 9, D/ is the derivative double layer operator. That is, the operator given by
ADINS () = [ 0,0, RN (w.)f0)dS(w), € o0
o9

Thus, our first step is to analyze the boundary layer operators G, N, and 8, D¢, which
we do in Chapter @ Here, we write N for the double layer operator given by

NS = [ 0, RN f@)asw). = e on

We first prove high energy estimates for these operators using restriction bounds for eigen-
functions and their derivatives. We then show that these bounds are nearly sharp (i.e. sharp
modulo a log A loss).

Our next task is to give a microlocal description of G and 0, Df. To do this we use the
semiclassical intersecting Lagrangians developed in Chapter [] to give a microlocal description
of the free resolvent. With this in hand, we are able to use the calculus of semiclassical Fourier
integral operators to give a microlocal description of G and 9,D¢ away from glancing i.e.
away from momenta ¢ that are tangent to the boundary. In the case that 2 is strictly
convex, we use the semiclassical Melrose-Taylor parametrix to understand G and 0, D/ near
glancing. Finally, we use this microlocal model to remove the log loss from the estimates for
G and 0, D/ in the case that €2 is strictly convex.

In Chapters [7], [§ and [9, we analyze the distribution of resonances for —Ars. Chapter
gives the formal definition of —Ar s when T is a finite union of subsets of C*' embedded
hypersurfaces. We then prove the meromorphic continuation of the resolvent for such an
operator and use the estimates on G from Chapter [6] to give a rough bound for the size
of the resonance free region. This simple bound along with some additional estimates on
R_A,; ; are enough to give a resonance expansion of the form for d oddﬂ. In Chapter
m, we also show that —Ar 5 is a good approximation to narrow but intense potentials.

In Chapter [ we restrict our attention to 2 strictly convex with smooth boundary and
perform a microlocal analysis of to give a dynamical characterization of the size of
the resonance free region for —Ayq 5. We also give some conjectures and numerical results.

For d even we do not expect to have an expansion of the for (1.0.4]) because of the failure of the strong
Huygen’s principle.
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Then, in Chapter [9, we show that the dynamical resonance free region from Chapter [§] is
generically sharp.

Finally, in Chapter [I0} we consider —Agq 5. We first give the formal definition of the
operator along with a proof of the meromorphic continuation of its resolvent. It is already
necessary to have some microlocal understanding of 9,D/ to give a proof of the meromorphic
continuation and so we restrict our attention to {2 with smooth boundary. Finally, further
restricting to 2 strictly convex, we give a dynamical characterization of the size of the
resonance free region for —Apq 5. This characterization is sharp when (2 is the unit disk R?
and V is constant.

Resonance free regions for —Ayq s are of the form Im A > —C(Re A\)™7 for some fixed
v > 0. As far as the author is aware, the operator —Apq s with 92 smooth and strictly
convex is the only general class of examples known to exhibit such behavior. The only other
specific example known is that of —Ap(1)s when V' depends strongly on frequency (see
Chapter [2)).

Appendix [A] contains a list of some of the notation used throughout this thesis.

Remark: Much of the work pertaining to —Ars is contained in the author’s previous
papers. The analysis of —Ar;s in Chapter [2| comes from [30]. Much of Chapter [7] comes
from Galkowski-Smith [31]. The estimates on G and N can be found in |31] and Galkowski-
Han-Tacy [37]. Much of the material pertaining to G in Chapter |§| as well as the material
in Chapters , , and |§| comes from Galkowski [29).
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Chapter 2

Model Cases

2.1 Introduction

In the present chapter, we seek to understand resonances for a model case. In particular,
we consider —Ayq s, —Apas, when Q = B(0,1) C R? and V is a constant depending on
h. In this case, we are able to separate variables and avoid most of the microlocal analysis
involved in obtaining the more general results. Separating variables reduces the existence of
resonances to the existence of a solution to one of an infinite family of transcendental equa-
tions. The symbols of the operators involved in the general analyses appear as asymptotic
limits of the Bessel and Airy functions in these equations.

Statement of results for the ¢ potential

For the purposes of this section, we define the resonances of —Apq 5 as follows: We say that
z/h is a resonance for —Apq s if there exists a nonzero z/h-outgoing solution, (ui,us) €

H*(Q) @ HE (RT\ Q) to

(—=h*A — 2Hu; =0 in Q
(—h?A — 2% uy = 0 in R4\ Q (2.11)
Uy = U on 02

O,u1 + Opug + VAyuy =0 on 02

where, 0, and 0,/ are respectively the interior and exterior normal derivatives of u at 0€2. In
Chapter [7, we show that having such a solution corresponds to having a pole R_a,, ; and
hence that these are indeed the resonances for —Aggq 5.

Denote the set of rescaled resonances for —Apq 5 by

A(h,d) :={z € B(h) : z/h is a resonance of — Ay s}

2.1.2
B(h) == [1 — ch¥* 1 + ch®*] + i[-Mhlog h™*, 0] (2.12)
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Remark: The power 3/4 can be taken to be any power > 0.

We assume throughout that V= h=*V; for a < 1, and Vj > 0 a constant independent
of h. The first theorem proves the existence resonance free regions for & < 1 and bands of
resonance free regions for 1 > a > 5/6.

Theorem 2.1. Let Q = B(0,1) C R? and V = h™*Vy > 0. Then for = € A(h,d) and all
€ > 0 there exists he > 0 such that for 0 < h < h,, when o < 5/6, there exists C,,y, such
that

—Imz > (C,y, — €)hlogh™. (2.1.3)

Moreover, when o > 5/6 then for all M > 0, there exists hpre > 0 such that for0 < h < he u,
either there exists N > 0 such that

| —Im zh?37% — Oy, v <€, or —Imz> Mh* 23

where
2
Cron = 21/2 3 A0
82V | A—(—(w )3 Ai' (= ()|
and —Cy is the N zero of Ai(s).

Remark: For a < 5/6, the constant in (2.1.3) will be computed using the more general
methods in chapter [§] It is equal to (1 — a)/2.

The next theorem shows that the resonance free regions above are sharp.

Theorem 2.2. For all N > 0, there ezists hg > 0 such that for h < hg, there ezist z(h) € A

with
Lehlogh™ — 2log 2 4+ o(h"/*) a<1
—Imz(h) =< Zlog <1+%) + O(h"/%) a=1
0
Cyy nh2723 4 o(h3a—4/3) 2/3<a<l

The proofs of Theorems 2.1 and [2.2{show that when oo < 5/6 the resonances closest to the
real axis come from modes concentrating away from glancing, while those for o > 5/6 come
from modes concentrating near glancing. Thus, the theorems show that glancing modes
decay slower than non-glancing modes for o > 5/6 while the opposite is true for « < 5/6
and gives a quantitative rate of decay for each type of mode.

Remark: When B(0,1) is replaced by B(0, R) we can use the same arguments that prove
Theorems and to find that the resonance free region for Q = B(0, R) and a > 5/6 is
given by —Im z > (Cpa/sy, —€)h?*~2/3. Hence the imaginary part of resonances from glancing
modes scale as £*? where k is the curvature.

We also give a lower bound on the number of resonances.
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Figure 2.1: When Q = B(0,1) C R? the boundary values of resonance states can be
expanded in a Fourier series Y a,e™”. We show the resonances for V' = 1 corresponding to
the n = 0, 10, 100, and 500 modes. The solid line shows the bound given by Theorem .

Theorem 2.3. For M large enough, there exists ¢ > 0 such that
#{z €[l —e1+¢€+i[-Mhlogh™',0]: z/h is a resonance of — Ayaqa} > ch™>.

Remark:We have an upper bound of the form Ch™2 by [66], [81], [82], and [83] together
with [31, Lemma 7.1](see also Lemma [7.4.1)).

We present the proofs of Theorems [2.1], 2.2], and 2.3 in Section [2.3]

Statement of results for the ¢ potential

As for the case of the ¢ potential, we make a preliminary definition of resonances in order to
present simple arguments in the case of the disk. In particular, we say that z/h is a resonance
of —Ayq s if there exists a nonzero z/h-outgoing solution (uy,us) € H?(Q) ® HZ (R\ Q) to

(—=h*A = 2%)u; =0 in Q
(—h*A — 2% )uy =0 in R4\ Q
Oy g = —0y,Us on 02

up —us + V9o, uy =0 on 0f)

(2.1.4)

As for the 0 potential, we show in Chapter [7| that having such a solution at z; corresponds
to R_a,, , having a pole at z.
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(¢c) a=0.9 (d)a=1

Figure 2.2: We show resonances for the circle with ReA ~ 10%, ¥, = 1 and several «.
The plots show Im A v Re A in each case. The red line shows the bound coming from non-
glancing modes. It is difficult to see the transition at « = 5/6 from logarithmic resonance
free regions to polynomial size resonance free regions because the change does not happen

until Re A ~ 10° (see Figure 2.3).

Denote the set of rescaled resonances by
A(h,0") :={z € B(h) : z/h is a resonance of — Apq 5}
B(h) :=[1 — ch¥* 1 + ch¥) +i[—~Mhlogh™*, 0]
We assume throughout the analysis of the ¢’ potential that V' = h*Vj for 0 < «, and

Vo > 0 a constant independent of h. The first theorem proves the existence of resonance free
regions.

Theorem 2.4. Let Q = B(0,1) C R? and V = h*Vy > 0, a > 2/3. There exists Cy, such
that for all z € A(h,d") and € > 0 there exists he > 0 such that for 0 < h < h,,

—Imz > (Cy, — €) k¥ (2.1.5)
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(c) o = 0.8733 (d) a =0.9333

Figure 2.3: We show resonances for the circle with ReA ~ 10% V5 = 1 and several a.
The plots show Im A vs. Re\ in each case. The dashed red line shows the (logarithmic)
bound for resonances coming from non-glancing trajectories and the black lines show the
first few (polynomial) bands of resonances from near glancing trajectories. Since the dashed
red line is above the black lines at o« = 5/6, it is necessary to go to still larger Re A to see
the transition. However, at a > 5/6, we start to see better agreement with the bands of
resonances predicted in Theorem

Remark: For o« > 3/4, the constant in (2.1.5) will be computed using the more general
methods in Chapter It is equal to V2.

The next theorem shows that the resonance free regions above are sharp.

Theorem 2.5. Let Q and V be as in Theorem[2.]]. Then there exists hg > 0 such that for
h < hy, there exist z(h) € A(h, ") with

(Vo2 + o(1)) k32 1/2<a<1

—Im z(h) = {(1 + 0(1))% log(l + 4h2—2a%—2) a>1

The proofs of Theorems and show that the resonances closest to the real axis
come from modes concentrating away from glancing. This is consistent with the fact that as
discussed after equations and in the introduction to this thesis, we expect
that the strongest confining effects for the ¢’ potential come from directions transverse to
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Figure 2.4: We show a plot of log(Re ) vs. log(—Im\) for ReA ~ 10° when o = 1 and
Vo = 1. The bands predicted by Theorem are shown by the black lines and the bound
for the non-glancing modes by the top red line.

the boundary. As such, we may also use a 1 dimensional model to understand the behavior
of resonances for a wider range of parameters.

Theorem 2.6. Let Q = (—1,1) CR and V = h*Vy > 0. Then for all z € A(h,d') and e >0
there exists hg > 0 such that for h < hy,

(V_2 — e) p3—2/e a<l1
—Imz > 0 S
T l(1-e)t 10g<1+4h a) a>1

Moreover, there exist z(h) € A(h, ") with

(Vo2 + o(1)) B3—2 a<1
~Imz(h) = (14 0(1))% 10g(1+4h22> a>1

We present the proofs of Theorems [2.4] 2.5], in Section [2.6]
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2.2 Asymptotics for Airy and Bessel Functions

We collect here some properties of the Airy and Bessel functions that are used in the analysis
of case case of the unit disk. These formulae can be found in, for example [56, Chapter 9,10]
and [84].

Recall that the Bessel of order n functions are solutions to
2y + 2y 4 (22 —nPy = 0.

We consider the two independent solutions H,(LI)(Z) and J,(z). The Wronskian of the two
solutions is given by

21
TZ

W (Jn, HDY = J,HW' () — JLHO () (2.2.1)

We now record some asymptotic properties of Bessel functions. Consider n fixed and
2z — 00

LNV2 o
Ju(2) = (2_) <€z(z—§7r—z7r) 4 eile=gm—im) 4 O(|z|—le|1mz|)>
Tz
9 1/2 ‘ o
Hy(@l)(z) — (_) <el(2—§7r—17r) 4 O(|Z|—le|lmz|)>
Tz
]' 1/2 1 n 1 . n 1
J,/L(Z) =1 (2—) (ez(z—aﬂ—zﬁ) _ 6_2(2_5”_1”) + O(|Z|—1€\Imz|))
Tz
! 2 1/2 ; n 1
Hr(ll) (Z) =1 <_> (61(27571'7171') + O(|Z|*1€|Imz|)>
mz
1 .
Jn(Z)Hn(Z) = g (61(2'27””7%71-) + 1 _|‘ O(’Z‘7162‘1m2|)) (222)
1 .
J;L(Z)H",”L(z) — _E (ez(Qz—nTr—%Tr) — 1+ O<|Z|—162|Imz\)> (223)
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Consider « fixed | Arga| < 7/2, z = secha, and n — oo

en(tanh a—a)

(27n tanh(ar))1/2

sinh(2a))/2
(0 = R e 0fn™))

n(a—tanh «)

In(nz) = (1+0(n™)

HOY (n2) = —i (;mtanh N (14 o(n™Y))
Y nz) = (22 7 st 1 1 on1)
™
Ju(nz2) HY () = _W(l +o(n)
J (nz)H Y (nz) = i%(l +o(n™Y)

18

(2.2.4)

(2.2.5)

Next, we record asymptotics that are uniform in n and z as n — oo. Let ¢ = ((z) be the

unique smooth solution on 0 < z < 0o to

a¢\? 122
<d_> N

with
lim ¢ = oo, lim ¢ =0, lim ( = —o0.
z—0 z—1 Z—00
Then
2
g(—g)?’/? = V2?2 — 1 — arcsec(z) l<z< o
2 14+v1—22
SO =1og (¥> V1= 22 0<z2<1
z
1— 2
: ZZ — V2 z—0
z
Let
21 J_

for s € R be the Airy function solving
Ai"(2) — zAi(z) = 0.

Then, A_(z) = Ai(e?>™/3z) is another solution of the Airy equation.

(2.2.6)

(2.2.7)

(2.2.8)
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For 2z fixed as n — oo

To(nz) = ( 4 )1 (%2/30 + O(Ei(5/3, 7/3)))

1 — 22

ey =200 ()T (AR 4o (5,73

1— 22

T (nz) = 2 (1;_;2)1/4 (7(12—730 + O(Ei(8)3, 4/3)))

z

HO (nz) — 27 (1 ;{’2) " (% +O(E_ (83, 4/3)))
To(n2)HO (nz) = 2¢~/3 <i) v (Ai(”Q/SOA‘(”MO +0(Ei_(8,2, m))) (2.2.9)

1_ .2 n2/3 3
, Se—m'/S 1 — 22 1/2 Az”(n2/3C)A’_(n2/3C) .
)Y () = S0 (L2 (AU o 3.2,
(2.2.10)

where
E_(a, ) = |A_(n*¢)In~" + |A_(n**¢)[n~"
Ei(a, B) = |Ai' (n*/*¢)[n= + |Ai(n~*/3¢)|n "
Ei_(a, B,7) = |AiA_|(n*3O)n~ + (|Ai'A_| 4 |Ai A" |)(n?2)nP + |Ai' A" (n*30)|n™

Finally, we record some double asymptotic properties for fixed n and z — oo with | Arg z| <
=20,

Jo(nz) = (1 f;)l (% + o(EF(1 ,5/3,3,1/3)))

HY(nz) = 2¢™/ (__%Q__>]/4 <fé—ﬁﬁfii§2‘+'0(l?i(1,5/3a371/3))>

1— 22 nl/3

J(nz) = -2 (1 - 22)1/4 (% + 0(Ei*(1,2/3,0 4/3)))

z 4¢
i/ _ 1/4 1 (n2/3
H e = 2 (12) (P v o as0.ay)

1/2 . /
To(nz) HO (nz) = 2¢-/3 (i) (AZ(”z/gi)ﬁg—W K9 +0(Bi*(3,2,1,2,2, 10)))
(2.2.11)

T O(E# (0, 5,0, 2,1,3>>)

(2.2.12)

B Qe—i/3 (1 _ 22)1/2 <Ai’(n2/3C)A’_(n2/3C)

nA/3
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E*(a,7, 8,6) = [A_(n**Q)||2| 72 n~" + |A_(n**Q)|[¢|"n~°
Ei* (o, 7, 8,6) = |A (n*Q)[|¢]™*n ™" + |Ai(n~*/3¢)|[¢|Pn°
Ei* (0,6, 8, €,7,p) = |AiA_|(n*PO)|C|™n ™" + (JAP A_| + [AiA”|)(n*3Q)|¢] P
+ AT A (n*30)||¢| T

We now record some facts about the Airy functions Ai and A_. The Wronskian of these
two solutions is given by

—7i/6
W(Ai, A_) = AiA (2) — A'A_(z) = - 5 (2.2.13)
T
Furthermore, for s € R, . R
Ai(s) = e ™/PA_(s) + e™/PA_(s)
and hence »
Im(e 5/ A_(s)) = — 22(3) (2.2.14)

The zeros of Ai(z) and Ai'(z) all lie on (—o0,0]. We use the notation —¢;, and —(j, to
denote the k" zero of Ai and Ai’ respectively.

Finally, we record asymptotics for Airy functions as z — oo in the sector |Argz| <
m/3 — . Many of these asymptotic formulae hold in larger regions, but we restrict our

attention to this sector. Let n = 2/32%/% where we take principal branch of the square root.
Then

€—7ri/6677 _a/2 e7ri/12ei77
A(2) = W(l +0(]z]777)) A (=2) = PN
—mi/6.1/4 n —5mi/12 1/4 i
(& zhe e z7he
A (z2) = ——"=—(1+0(|2|? A (=2) = ——F—F—=—
)= ol ()=
—1/4 ,—n
Ai(2) = =5 (1 + 0(|= ")
371/4 . . . ,
AZ(—Z) — (6“7*1”/4 + 6fm+z7r/4 + O(’Z‘73/2e|lmn|>)
2\/m
- (2.2.15)
Ail'(z) = — 14 0(]z| 73/
(2) = =5 7 (14 0
LA .y
Al/(—Z) (em—mr/4 o 6—177+z7r/4 + O<|z|—3/26|1m77|))

N
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: 1 -
Ai(2)A-(2) = 51+ 0(l4] 3/2)) (2.2.16)
/3 )
Ai(—z)A_(—2) = :W (1 —ie®™ + o(|2| /22 M) (2.2.17)
7T
57i/6 ,1/2
AV ()AL (2) = ——(1+ o(|z|73/?)) (2.2.18)
67ri/32,1/2 )
Ai'(—2)A (—2) = 0 (14 e + O(|z| 322 tml)) (2.2.19)
T

2.3 The § Potential

This section is organized as follows. In section [2.3| we reduce the problem of the existence of
resonances to finding solutions of a transcendental equation. In section , we demonstrate
the existence of the various resonance free regions in Theorem [2.1] Finally, in Section [2.5]
we show the existence of the resonances in Theorem and prove Theorem [2.3

Reduction to Transcendental Equations on the Circle
We now consider (2.1.1)) with Q = B(0,1) C R? and V = A=V, on 952. Then for i = 1,2,

;

—h20? — 9, — 92 — 22 )u; =0 in B(0,1)

—h202 — 29, — 92 — 2 up, =0 in R?\ B(0,1)
ui(1,0) = uy(1,6) : (2.3.1)
&ul(l, 0) — (7Tu2(1, Q) + VU1(17 Q) =0

| U2 18 z outgoing

Expanding in Fourier series, write u;(r,0) := > u;,(r)e™. Then, u;, solves

2

1
—h20? — h?=0, + pll 2 uin(r) = 0.
" r 72 ’

Multiplying by 72 and rescaling by @ = zh~'r, we see that u;,(r) solves the Bessel equation
with parameter n in the z variables. Then, using that u, is outgoing and u; € L?, we obtain
that

Uy n(r) = Kan(zh_lr) and  ug,(r) = CnH,sl)(zh_lr)

where J, is the n'® Bessel function of the first kind, and HY is the n't Hankel function of
the first kind.

To solve and hence find a resonance, we only need to find z such that the boundary
conditions hold. Using the boundary condition u;(1,60) = uy(1,6), we have K, J,(zh™ ') =
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C,H{Y (zh~1). Hence,
K, Ju(zh7Y)

B Hfll)(zh—l) .
Next, we rewrite the second boundary condition in (2.3.1) and use that V' = h=*Vj to get

> (Knzh T (zh7h) = Cozh P HY (2h7Y) + B VoK J (2h 7)™ = 0,

n

0

Then, since e are L? orthogonal, we have

Ja(zh™1)

K, | zh7 ' T (zh7Y) — 2h 7
< ) Hy (zh)

HWY (zh™1) + haVOJn(zhl)> =0, neZ.

Thus

KooV — Koot [ GRTD T
n 0 — n Hfll)(Zh,_l) Jn(Zhil) .

which can be written

W (J,, HY 2K,
h VoK, = K,zh™! ( e ) __ : 0 (2.3.2)
Jo(zh Y Hy ' (zh~Y) 7w (zh~Y)Hy ' (zh™1)

where W (f, g) is the Wronskian of f and g.
Then, without loss, we assume K, =1 or K,, = 0. Hence, we seek solutions z(h,n) to

_ T () HO (W 2By ) = 0. (2.3.3)

1 - n
21

The quantity nh~! is the tangential frequency of the mode u;,e™. In particular, the
wave front set, denoted WF}, (see Chapter [4| or [87, Chapter 4]), of ¢ has

WFy(e™) ¢ {¢ =nh mod o(1)}.

Thus, |n| < (1 —e€)h™! corresponds to modes concentrating near directions transverse to the
boundary, |n| ~ h~! are the glancing frequencies, that is directions tangent to the boundary,
and |n| > (1 + €)h™! corresponds to elliptic frequencies.

2.4 Resonance Free Regions

In this section, we demonstrate the existence of resonance free regions. In particular, we
prove Theorem . We write n = mh~! and assume that

| Im z| < Mymin(hlogh™t, h2272/3).
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Analysis for m > 1

We use the asymptotics (2.2.4) in (2.3.3)). It then reads for m™'z = sech(a),

h=*Vy -1
1 1+0 h))=0
T omh tanh(«) (14 0(m™h)) =0,

but for m large enough (independent of h when h is small enough), this clearly has no
solution since the second term has positive real part.

Analysis for m < 1

We use the asymptotics (2.2.11)) in ([2.3.3)). It then reads for ¢ = ((m™'2),

4 )”2 (Az’(n2/3<>A_<n2/3<>

1 —m—222 n2/3 737

1 — Th™ Ve omi/6 ( + 0(Ei* (3,2,1,2,2, %)) =0.

Now, since m < 1, m~'z — oo and hence ( — —o00 so we use (2.2.17)) to obtain

W=V

1+
2m (m—22% — 1)"/?

(1= B0 4 o 7 (¢ 2B IO 4 1)) — 0,

Since h < 1 and m(m~22% — 1)'/2 is bounded above and below as m — 0, such a solution
must have 3 (-0"* comparable to h*~! and hence

A2 = m?))
h2—2a‘/02

3h
—Im(—=0)3? = 22
m(—(¢) o, 108

1+ +o((I<] 7't + Im 2)h )

Then, using (2.2.7)), we have

Im(—¢)%? = % Im 2(1 + 0p,—0(1))

which gives
h 4
—Imz= ZlOg 1+h2Ta‘/02 (1+0m—>0(1))
Hence, choosing m small enough in a manner depending on § gives

Lemma 2.4.1. For all 6 > 0 there exists M , € > 0 and hy > 0 such that for 0 < h < hyg,
Rez € [I — Ch¥*, 1+ Ch*4), and n = mh™" with m < € or m > M there are no solutions
to (12.3.3]) with

h 4
—ImZS (1—5)110g <1+}L2TO‘V62) .
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Analysis for e <m < M

In this section, we consider the remaining values of m. First, we use (2.2.9) in (2.3.3) to
write

1/2 S02/3 2/3
—at, —bmi/6 ¢ Ai(n*°()A_(n*°()
L= 2mh™"Voe ™ (m) ( 23

+ 0(Ei_(3,2, %))) =0 (24.1)

where ¢ = ((m~'h). We first ignore the error term in (2.4.1)) and show that there are no
solutions with the appropriate bounds on Im . In particular, define h; := n~! and

. 12/31-a ¢ 12 - 2/3, —a
P = hl h m ‘/O—OCOO(hl h )

The fact that ® has uniform bounds for ¢ in the relevant region comes from the fact that
hih™' =m and € < m < M. Then, rewriting (2.4.1)) without the lower order terms, we have

1 — 2me ™0 (C)A_(hy 2C) Ai(h*/*¢) = 0. (2.4.2)
Notice that if o > 2/3 and Mh?>72® < |Re(| < Ch® or a < 2/3 and |Re(| < Ch® for any
d > 0, then the second term in (2.4.1)) is bounded above by 1 — e. Hence, (2.4.1)) has no
solutions and we need only consider the remaining Re (.
Analysis at glancing (m ~ 1)
We next analyze |(| < Mmax(hfﬁ(g_za), hf/?’). Let s = h1_2/3 Re (. then,

0<]s| < Mmax(h?/5(3_2a)_2/3, 1)

and
¢ = h¥3s +Im ¢ = h¥*s + o(min(hlog h™1, h22=2/3)).

Thus,
D) AIA_ (R *P¢) — ®(h*s) AiA_(s) — B(h}>s)(AiA_) (s)iTm by */*¢| <
O(h:"™(s) 2 h™* (Im hy *°C)°) + O(Y*h™* Im CAiA_(hy *°C)
We obtain lower bounds on

f(s,h,h) =1 = 2me /0B (R} ) (A,Az'(s) + (A_Ai)(s)iIm h;mg) .

Letting o := e~ ™/ we have by (2.2.14) that

Ai?(s)

aA_(s)Ai(s) = Re(aA_(s))Ai(s) — i 5
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and
(A_Ai) (s)iTm hy *%¢ = (Ai(s)Ai'(s)+
i [Ai'(s) Re(A_(s)) + Ai(s) Re(aA”(s))]) Im hy /¢

Thus,

Im f = —27®(h;/’s) <—AZT(S> + (Aé'(s) Re(aA_(s)) + Ai(s) Re(aA’ (s))) Im hﬂ%)
and

Re f =1 — 27d(h?%s) Ai(s) <Re(aA_(s)) + Ai(s) Im h;2/3g) .

So, when

1-9¢ 1-96
|Ai(s)] < =7 , | Ai(s)| > ”
21 ®(hy""s) Re(aA_(s)) 27 ®(hy""s) Re(aA_(s))
then |f| > 6. Note that for o < 2/3, this condition is never satisfied. Thus, we need only
consider

1-9¢ 1-9¢
— < |Ai(s)] < » . (2.4.3)
27®(hy""s) Re(aA_(s)) 21®(hy"s) Re(aA_(s))
That is, using the fact that |Ai'(—s)| ~ c|s|'/* and |A_(—s)| ~ c|s|~'/4,
s = —Co+ O(h*hy ™). (2.4.4)

where —(j, is the k™ zero Ai(s).

Remark: For a < 2/3, notice that does not give us any additional information on
the location of s. However, it is easy to see that in this situation Im f > Ch®~?/3. Since
we need only consider small Re¢ when o« > 2/3, this implies that in the relevant region
|Im f| > ¢ and hence there are no solutions to in this region.

Now, |Im z| < Mymin(hlog h~!, h2*=2/3) implies that |Im ¢| < M;h?*~%/3. So, using the
fact that A_(—s) = O(|s|~'/*) and Ai'(—s) = O(|s|'/*) we see that there exists K = K (M)
such that if

: ni” 207, -2/3
inf |(Im¢ — > 0h™*h,

k<K (M) 87T2(I)(h?/3(—<k))2 Re(aA_(—Cx))>Ad'(—Ck)

then
| Tm f| > eh®hy />,

Finally, we account for the error terms. We have suppressed terms of the form
o(max(1, ="y min(hy* " B3 (log h™)?) 4 BS*P AiA_(h723¢)).

Together with (2.4.3)) the estimate |f| > ehahf/ % implies that there are no solutions to (2.3.3)
for |[Re (| < M max(h2*®2% p2/3) |Im (| < My min(h?*~2/3, hlog h~1), satisfying ([2.4).
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Asymptotic analysis in the hyperbolic (¢ < m < 1) and elliptic
(M >m > 1) regions

. 1/3
We need to analyze K > ]Re(] > h2/53 2) M. To do this, let Gao = ﬁ, and b =
21e~°™/6 Then if ¢ solves

G20 = —G1/2<1>G1/2( G PbAI(hTPOA_(WTPOGRY? + o(h?) G
and hence

1+ GY*ec*a o
= —GNPOG A (=GR P AR PO A_(RPO G — 1+ o(h?)GY .

Using for Re ¢ < —Mh?*/3, we have
(1+ G206 G20 = — GG (—iew C9Y7 (1 + o(h ¢7%2))GY 0.
G20 = (I + GGV GY20G 2 (—iew C9 (1 + o(hi C¥2)) G20,
For ¢ > th/g, we use (2.2.16) to obtain
(I + GGG = —GPG (0(h )G Y.

Hence,

G20 = —(I + GG ' GG o(hi ¢ 3 GY .
Remark: The analog of reflection operator in this setting is given by

—(I+ GGV 'GY PGy

To see that I + G1/2 1/2 + 0 observe that when Re( < —Mh?/3,

ihy*® , Im ¢
11 = | pla > ) = o(1
Re g eya| = M0 (Regios) = o)
and when Re ¢ > MA?/3,
h3
Re T > 0.

Now, since |Re(] > MR, 0(hi¢3/?) < 1 for M large. Hence, there are no zeros for
Re( > 0. For Re( < 0, there are no zeros of (2.4.2)) when

(I + G206 G2BGY2(1 + 0(h¢3/2))esn 9| < 1. (2.4.5)
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Let ( = s+ ¢Im (. Then
3/2 __ 3/2 - —1\3/2 _ 3/2 3 —1 2 -2
(=09 = (=521 = i (-5 = (=) (1= Simg(=9) + of(tm s~

and
(—Q)"? = (=s)"*(1 4 o(Im (s ™).

So,

7 m({(—s 1/2 _ —
|ty OV 2 T O m Rl T R,

Taking logarithms of ([2.4.5),

2Im ((—s)1/?
hi

h2

+o(h(¢3?) <.
iy e

O((Im )*hy ! |s|71/%) + log

2/3
2/5(3—2a),h%/

Thus, for —K < Re( = s < —M max(h; , there are no solutions with

log ‘1 FA(—s)h P2

hy
Im¢ < in —_—
K <s<— M max(p2/3G=20) 2/%) 4(—5)1/2

+0((Im ¢)*[s| ™" + Im ([s| ") + O(hi[s|7?).

Main Term Error
h3|s| '+
< h220 BB p2a—4/3(_ )1/2 -1 1
|S| 1 ( 8) "Sl mln(hQ(log h—l)Z7 h1h20¢—2/3
|s| > h?*2 = )1/2 log(1 — sh22=4/3p /%) h2s~2 4+ o(h*/3(log h™1)?)

: 2/5(3—2a) ;2/3
Thus, since we have |s| > M rnax(hl/ (3-2a ,hl/ ), the error terms are lower order and
hence

Im ¢ < log‘1—|—4 s\ o~ ‘

, hy
in —
—K<s<—MR2/P3729) 4(—s)1/?

So, for e <m < K, and |s| < h?°6=2%) there are no zeros of (2.3.3) for
Im ¢ < Cmin(MY2p?*=23 Chlogh™). (2.4.6)

Taking M large enough and h small enough, CM'/2h2*=2/3 ig larger than | Im (.
Our last task is to relate the imaginary part of z to that of ( when || < K. By ({2.2.6)
and ([2.2.8)), we have that

Im ¢
V2

e BT — BT 4 0()), Tmz = —ho

V2

(Re¢Im(). (2.4.7)
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More generally Imz ~ C'Im( + O(]Im([?) for |¢|] < M. Since we assume Rez € [1 —
Ch3*,1 4+ Ch*4], we have hy = h + O(h'*?) when |s| < h®. Together with (2.4), (2.4.6),
(2.4.7), Lemma [2.4.1) and the fact that

lim ®*(w) = (v2)~”

w—1

this completes the proof of the existence of resonance free regions of the sizes given in
Theorem 2.11

2.5 Construction of Resonances

In this section, we demonstrate the existence of resonances. That is, we prove Theorem [2.2]
We first prove the following analog of Newton’s method:

Lemma 2.5.1. Suppose that zy € C. Let Q = {z € C : |z — 2| < e(h)} and suppose
f Q2 — C is analytic. Suppose that

[f(z0)] < a(h), 10:f(z0)] = b(h), sup|0Zf(z)| < d(h).

Then if
a(h) +d(h)e(h)? < e(h)b(h) <c< 1 (2.5.1)
there is a unique solution z(h) to f(z(h)) =0 in Q.
Proof. Let )
f(z
g(Z) B azf(ZO)
e () | . dihgelh)
L 0.f(z d(h)e(h
ora(e)| = 1 - HE | < O
and
9(2) = 2] < o) = 2]+ sup 0.0l =l < 5127 + | Lt

Thus under the condition (2.5.1)), g : Q@ — € and
l9(2) = 9(z')] < sup [D:g(w)l|z — 2| < clz = 2]
we

Hence, g is a contraction mapping and by the contraction mapping theorem, there is a unique
fixed point of ¢ in Q and hence a zero of f(z) in . O
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Resonances at glancing

We now analyze n ~ h~! which correspond to glancing trajectories. In particular, for
a > 2/3, we construct solutions to ([2.3.3]) for 0 < h < hg with

Imz > Ch**2/3,

Let hy = n~!. Then, suppressing terms of size h2+2/ *h=e, we seek solutions to (2.4.2). Our
ansatz is

¢ =1+ ()
where —(}, is the k'™ zero of Ai(s). Then,

2/3
<I><c>A_<h;2/3<>Az'<h;2/3<>:( ey +Z h e )

k>1

(A_Az( Co)hy e+ A Ai'(—C)hy 4/324-2 (A-A)D( Ck) _2k/36k).

k!
k>3

Let € = ¢y + €; where ¢, = o(ey). Then, ignoring terms terms of size €2 and letting
b= 2me97/6 we have

1— b®(—RPC)A_ AT (=) Peg = 0.

That is,
2/3
nY

b®(—hy ) AL (—G) A ()

Then, using terms of size €3 and €;, we have

= CRPhen??

€) =

O(—hPG) A AP (~G)hy e
+ (=G AL AT (=GR + @ (kPG A A (=G))hy e = 0.

That is,
Wy (@(—hYP G AL AT (—Gohy P + @ (1P G) A AV (—G)h el
O(—hBC)A_AI(—G)

= —h; 2—j E g;(u 0(eohy 7))

€1 = —

_ h?/i”Al,(—Ck) 1 ) h_2/3
(¢(—hf/3ck))247r2e—5m/3Ai(—gk)(Az'/(_gk)y< +0leoh; 1))
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So, since by ([2.2.14))
Ai(s)

Im(e "/0A_(s)) = — 5

P Iin(e PP AL (=G,))

Ime = — 2/3 ) 1+0 eohl_z/?’
ST g )
2/3
= i (1 + o(eoh;2/3))

(D(—RT¢y))28m2(e=5mi/6)3 A3 (— ) Ail (—C)

Since b@(—hf/ 3(k)A_Ai’ (—Cx) # 0, repeating in this way we obtain an asymptotic expansion
for €(h) in powers of ho‘hl_Q/3 such that for { = —h?/ng + ¢e(h),

1= b®(¢)A_(hy *°¢) Ai(hy ¢) = o(h$°).

Let
F(Q) = 1= b(QA(h Q) Ai(hy *0).
Then, for ¢ = —h>"*Cx + O(h),
[f'(Q)] = eh™
and
£1(Q) < Chen P,
Thus, letting n = h™' + O(1) and using Lemma [2.5.1] there is a solution (o(h1,h) to
f(Co(h1, h)) = 0 with
Co = —h2PC + e(h) + O(h™).

Now, by the implicit function theorem (or Rouche’s theorem) f(¢) = a(¢) defines ¢ in a

neighborhood of (; for a small enough. Hence, since we suppressed terms of size hf/ % p

(2.2.9), we have that there is a resonance with

o(h*h=)

- 8/3
GGy o).

¢=Co+

Resonances normal to the boundary

Next, we consider n fixed relative to h. That is, we consider modes that concentrate normal
to 0B(0,1).
Using asymptotics (2.2.2)) in (2.3.3)), we have

hl—avo

1—— "0
2iz(h,n)

. 1, .
(621z(h,n)/h(n+§)m(1 + 0(hz(h,n)™)) + 1) = 0. (2.5.2)
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Let 2h1—V,
F(e,k,n,h) =1— 0 Zie/h 11)
(€K, h) ith(4k + 2n + 1) (e +1)
Then,
—ih _yimh(4k +2n+1)
k,n,h) = —— log |h** -1
60( 7n7 ) 2 2%
has

F(eo(k,n,h),k,n,h) =0, |0.F(e(k,n,h),k,n, h)|>ch*

Now, for 0 < ¢ and ch™' < k < Ch™! by (2.5.2), 2(h, k,n) can be defined by a solution
z(h, k,n) = Zt(4k + 2n + 1) + e(k,n, h) where

F(e,k,n,h) = 0(e*/"h/z +¢).
So, by the implicit function theorem there is a solution e satisfying

€(k> n, h) = 60(k7 n, h) + (86F<60(k7 n, h)’ k,n, h))ilo(hlia‘e?im/h(h/z + 60))
= eo(k,n, h) + O(h?).

Thus, for all € > 0 and 0 < h < h,, there exist z(h) € A with

Imz —=Yogh~t + Llog (v%) +o(h¥*) a<1 253
h —1log (1—|—Vi02> + O(h3/%) a=1

Remark: Note that the size of the error terms in comes from the fact that we allow
Rez e[l — C’h3/4, 1+ Ch3/4].

This completes the proof of Theorem [2.2]

Resonances Away from Glancing

Finally, we construct resonances coming from modes concentrating farther away from glanc-
ing but not normal to the boundary. In particular, we show the existence of modes concen-
trating h%/32¢/3 of glancing for (3 — 2)/4 < ¢ < 1. This will prove Theorem [2.3]

To do this, let w = (nh) "'z and ¢ = ((w). Then we first suppress the lower order terms

in (2.2.9) and solve (2.4.2). Using the asymptotics (2.2.17)), in (2.4.2) and letting n = hy*

we have

h1/3 N-1 ckh e N—-1 bkhlf
L= 2(—0)12 L+ Zl EZEN e 1+ Z (—C)3/2
j:

k=1

o (him B (—¢) BN/ 4 0¥ 2)) =0 (2.5.4)
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where ¢, and b, are real.
We make the ansatz

(—¢)%? = gwhl(élk —1)+e=m+e (2.5.5)

where we assume € = O(mh?) for some § > 0. Then,
OV =3 (14 et o(@/m?)) , (—=¢)=m23 (14 ——c+ 0o(2/m?) ). (2.5.6)
3m ’ 3m
and e O = gmre Multiplying (2.5.4) by (—¢)"/? and using
€" o
+ O(hf/z)’h M),

we have

N-1

h1/3<1> ' gkt . 3/2 bhk
(_C)I/Q - 5 (1 + Z 3k/2 - Z€3h1 - 1+ Z 3k/2

=1 =1

+O<h}h* (A m=™ + €)(1 + e’ ):o. (2.5.7)

Then, let €(h) = €y + ¢; where €; = O(egh®) for some § > 0. Using terms which do not
involve € and the exponential term,

3hyi 2m1/3i P = .
€0=—""1 log h——i—l—i—chhm — log 1+Zbkhm .

1/3
1/ P(m) k=1 k=1

Now, using

esir (ot — om0 (14 4—61 + 0(efh %) ) .
3hy

we can solve for an asymptotic expansion for ¢(h) in powers of hym ™! so that for (—(y)*/? =
m + e(h),

W30 ()i i G L e N bkt
BV VO R v A I | + N L e ] + k — O(h™).
(—¢o) 2 = (_C0)3k/2 §0)3k/2 (h>)

Then, since
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has
F/(m)] = clolh™ (141Gl *h) o[£ ()] < eGPt (1T+[G[2h*Y) (25.8)

when

n - ¢'?| < Ch.

Hence, Lemma implies the existence of a solution to f(n) = 0 that is O(h™) close to
(—Co)'/2. Next, by the implicit function theorem, f(n) = a(n) defines 1 as a function of a for
a sufficiently small. Thus, since

O (hh™*(hYm ™ + ¥)(1 + m'2h* 1)) + hih~*m?*®) = o(hih~"m*/?)
there exists a solution, z(k, h,n), to (2.3.3)) with

()2 = (=¢)2 + a((—Co)Y?,h)

]:}1].1S7

¢ = Co+ 0((—Co)"*R).
This shows that if m > ch'~?, we can solve for ¢ so that

¢ =G+ o(h?)
by choosing N large enough. Now,

3h Am?/3 _
Im(—¢o) = _8m11/3 log <h ) + 1) + 0(eghym™?)

2/3
1/ d2(m
Hence, we have constructed resonances with
3hy 4m?/3
Im¢ = log ( + 1) 4 0(eghym ™3 4 h2)
S\ P (m)

Because of the size of the lower order terms above, this construction only gives accurate
estimates on Im(—¢y) when § > (3a — 2)/4.
Thus, for § > 0, there exist resonances coming from modes concentrating h?/30=9) close

to glancing with

Ch2=2/3-0/3 (Ba—2)/4 < <3a—2

Imz~ < Ch 0=3a—2

Ch?3+9/3logh™! 3a—2<d§<1
Moreover, for each n with (1 — e)h™! < |n| < (1 4+ €)h™!, we have (1 — Ch¥*)nh~! <
Rew < nh™'(1 4 Ch**). Hence, Re( ranges over an interval of size Ch3/4. Together with

the construction above, this implies that for each such n we have at least ch~/* resonances
a fixed distance from glancing. Thus, for M large enough

#{z € A(h)} > Ch™/4,
This implies Theorem [2.3]
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2.6 The ¢ Potential

Reduction to Transcendental Equations on the Circle ¢’

We now consider (2.1.4) with Q = B(0,1) C R? and V = h®V; with V; > 0 and 0 < a. Then
fori=1,2,

( 2

—h?0? — 29, — 292 — 2% )u; =0 in B(0,1)

—h20? — 9, — 92 — 22 )uy =0 inR?\ B(0,1)

4 0u1(1,0) = Bus(1, 0) : (2:6.1)
ul(l, 0) — Ug(l, 9) —+ V@Tul(l, 9) =0

( U2 1s z outgoling

Expanding in Fourier series, write u;(r,0) := Y u;,(r)e™’. Then, u;,, solves
202 g2l o’
—h%0; —h*=0, + h*— — 2" | uin(r) = 0.
r r

Multiplying by 72 and rescaling by @ = zh~'r, we see that u;,(r) solves the Bessel equation
with parameter n in the x variables. Then, using that u, is outgoing and u; € L?, we obtain
that uy ,(r) = K, Ju(zh7'r) and ug (1) = CnH}(ll)(zh_lr) where J,, is the n*" Bessel function
of the first kind, and H is the n'® Hankel function of the first kind.

To solve and hence find a resonance, we only need to find z such that the
boundary conditions hold. Using the boundary condition 0,u;(1,6) = 0,us(1,0), we have

2h K, T (zh 1) = zh ' C HYY (zh1). Hence,
K, J(zh7)
=Y (zh)
Next, we rewrite the second boundary condition in (2.3.1)) and use that V = h®Vj to get

> (Kndo(zh™) = CoHD (2h ™) + h*Vo Kyzh ™' T, (zh™1))e™ = 0.

n
Then, since ™ are L? orthogonal, we have

J!(zh™1)

K, | J,(zh71) —
( T ey

Hr(bl)(zh_l) + ho‘%zh_lﬂl(zh_l)> =0, ncz.

Thus

I Jo(zh™1) B ]—]T(Ll)(zh—l)
" 0 " J!(zh=1) Hy’l(l)(zhfl) '
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which can be written

HY 2iK.
— h VK, = K, W, % ): Z"“D (2.6.2)
J! (zh~ )H (zh=1)  wzh=YJ!(zh=1)Hp ' (2zh~1)

where W(f, g) is the Wronskian of f and g.
Then, without loss, we assume K,, = 1 or K,, = 0. Hence, we seek solutions z(h,n) to

ZQ(h, n)h—2+av0

T
1
- 21

J'(hz(h,n)H'Y (R~ 2(h,n)) = 0. (2.6.3)

Resonance Free Regions for the Disk ¢

We write n = mh~! and assume that

| Im 2| < Mymin(hlogh™!, h*72%).

Analysis for m > 1

We use the asymptotics (2.2.5) in (2.6.3). Equation (2.6.3)) then reads for m~'z = sech(«),

22h~ 1V sinh(2a)

1
+ 4dm

(1+o0(m™'h)) =0,

but for m large enough (independent of h small enough), this clearly has no solution since
the second term has positive real part.

Analysis for m < 1

The asymptotics (2.2.12)) are not quite strong enough to make the analysis go through for
m < 1. Rather than proceeding to use higher order terms, we refer the reader to Chapter
where we treat the general case and, using the fact that WFy(e"™ %) c {|¢/| = m}, we
obtain

Lemma 2.6.1. For all 6 > 0 there exists M , € > 0 and hg > 0 such that for 0 < h < hy,
Rez € [1 — Ch3* 1 + Ch¥4, and n = mh™" with m < ¢ or m > M then there are no

solutions to (2.6.3)) with

1 1
—Imz < (1 —¢)min (V—O2h3_2a, §hlog h_1> :
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Analysis for e <m < M

In this section, we consider the remaining values of m. First, we use (2.2.10) in (2.6.3)) to
write

1—m222\ 2
=)

(Ai'(n*PO A (n*P¢) + m*Ph=Po(Bi_(8,2,%))) = 0. (2.64)

1 +7Th_2/3+a‘/026_57ri/6m2/3 (

where ¢ = ((m~'h). The error term can be estimated by
‘h74/3E2',(§, 2’ 1_3?))’ < C((h4/3<h72/3c>71/2 + h2/3 + h2<h72/3<=>1/2) _ O(h2/3).

We first ignore the error term in (2.6.4) and show that there are no solutions with the
appropriate bounds on Im . In particular, define h; =: n~! and

_ 1— (hht2)2\ " B
O := hy 7 pe (%) Vo = Ocee (hy 220%).

The fact that ® has uniform bounds for ¢ in the relevant region comes from the fact that
hih™' = m and € < m < M. Then, rewriting (2.4.1)) without the lower order terms, we have

1+ 2me ™0 (O) A (hy 2 C)Ai' (h*/*¢) = 0. (2.6.5)

Then, ignoring lower order terms in ([2.6.3), we show that there are no solutions to (2.6.5))
with the appropriate bounds on Im (. Notice that for a« > 2/3, and any § > 0 we need not
consider the region | Re (| < min(eh?~2% k%), since in this region |h* 234’ A’ | < 1.

Analysis at glancing (m ~ 1)

We first analyze the region very close to glancing. In particular, |¢| < ehi/ . By the obser-
vation at the end of the last section, we need only consider a < 1.
Let s = h; *Re (. then, 0 < |s| < eh~'/2 and

¢ =1 s+Im¢ = hs + o(h*2)
where we have used the fact that o < 1. Thus,

|D(C) AT A (h{?3¢) — B(h2s)Ai A (s) — ®(h%s)(Ai' A" ) (s)iIm hy 2/3¢| <
O(hy ()2 h* (Im ki *7°0)%) + 0(hy P *h* Tm ¢ (5)'1%)
We obtain lower bounds on

F(s,h,hy) i= 1+ 2me ™ /0@ (R3/%5) (A’_Az"(s) + (ALAi'Y(s)ilm hfmC) ‘
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Hence, letting o := e/ we have by (2.2.14) that

QA (5)A7(5) = Re(a A’ () Ai(s) — i A(5)

and

(@ A_A?Y (s)iTm by 3¢ = s (Ai(s)Ai(s)
+i [Ai'(5) Re(aA_(s)) + Ai(s) Re(aA”(s))]) Im hy /¢

Thus,

(A)*(s)

Im f = 27 ®(hY*s) (— + 5 (Ai(s) Re(@A_(s)) + Ai(s) Re(aA”_(s))) Im h;”%)

and

Ref::1-+2n¢(h??9/u%s)(Re@xAL(s»-+s/u%s)hnh;2“¢>.
So, when

1—90 1—90

1A(s)] < , or |Ai(s)| > 27T(I)(h?/33) Re(aA’ (s))

~ 270 (hY3s) Re(a A’ (s))

then |f| > §. Thus, we need only consider

1-5 ) 1—5
- e
21 (hy""s) Re(aA’ (s))

~ 21 ®(h%s) Re(ad’ (s))
Using ([2.6.6) together with ([2.2.15]), we obtain that

[t f] > e ()72

(2.6.6)

provided
h4/3—2a>s>—1/2 > Mh7/3_2a.

1/2

But, this is satisfied since we assume s < eh™'/%. Moreover, the terms we ignored are of size

O(h4—30¢<8>3/2+h7/3—a<8>1/2+ha)

so this implies that there are no solutions to (2.6.3)) for |Re (| < eh!/6.
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Asymptotic analysis in the hyperbolic (¢ < m < 1) and elliptic (K > m > 1)
regions

L —1/3, A
We need to analyze K > | Re (| > h'/%¢. To do this, let Da = M, and b := 2we5m/6,

Then, if ¢ solves (2.6.3)
D{*® = D*oDY* (- DA (PO A (h*P¢) DL + o(h*?)) DY@
and

(1- DY*oDY*)DY*®
= DX*oDY* (= D0 Ai (h PO AL (WO DR — 1+ o(hY?)) DY .

Using for Re( < —Mh2/3, we have
(1— DY*oDY*)DY?® = D2 DY (ieshi 9" (1 + o(hy ¢~3/?))) DY 2.
DX*® = (1 — DY*®DY*) " DYDY (e " (1 + 0(hi¢~4/2))) DY@,
Remark: The analog of the reflection operator in this setting is given by

(I — DY*®DY*)'DY*oDY?.

For ¢ > Mh%/?’, we use (2.2.19) to obtain
(I - DY*oD)*)DY*® = DY*®DY*(0(hi (%) DY*®.

Hence,
D{*® = (I - D*®D{*) ' D*®D*0(ln () D{*®.

To see that I — DY?®DY? # 0 observe that when Re ¢ < —Mh2/3,
Reihfl/gcb(—(’)l/z‘ — h'he0(Im ¢) = of1)

and when Re ¢ > MAh?/3,
—Reh; 0¢? > 0.

Now, since |Re(| > Mh2*, 0(hi¢3/?) < 1 for M large. Hence, there are no zeros for
Re( > 0. For Re( < 0, there are no zeros of (2.4.2) when

(I — DY?®DY*) ' DY26 DV (1 + 0(hy¢=3/2))e “9| < 1. (2.6.7)
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Let ( = s+ ¢Im (. Then

3/2 __ 3/2 - —1\3/2 _ 3/2 3- —1 2 -2
(=09 = (=5)4(1 = i (-5 = (=) (1= Silmg(=9) + of(m s~

and
(=% = (=9)"*(1 + o(Im s ™)),
So,

43 3/2 21Im ¢(—s)1/2 ) 21.1—1/27—
|€3h21( C) ! =€ : C;Ll : ((II]IC) ‘s‘ 1/ h‘l 1)
Y

and taking logarithms of ([2.6.7)),
-1/
Fa(—¢)"?
_ h—1/3( SRl

2Tm ¢(—s)/?

ha

+ o((Im C)th_1|s|_1/2) + log + O(h1C_3/2) < 0.

Thus,

. h 11.2/3 -2
R e A

+0((Im¢)?[s| " + O(Im Chih™* (=)~ (hah™%|s|/%) 1) + O(hi|s| ).

That is, since we have K > |s| > ehi/ﬁ and « > 2/3, the error terms are lower order and
hence

Im ¢ < min(Ch*"2* Chlogh™").

Together with the fact that Imm ™'z = —C'Tm ¢ + O((Im ¢)?), this completes the proof
of the existence of resonance free regions of the sizes given in Theorem [2.4]

2.7 Construction of Resonances

Resonances normal to the boundary

We consider n fixed relative to h. That is, we consider modes that concentrate normal to
0B(0,1).
Using asymptotics (2.2.3)) in (2.6.3)), we have

T — 14
e 5 i (et mm ol 1 g 02| the? T ) =0, (2.7.1)

Let z = 2(7(2n+ 4k + 1) + 4eh™") with 7k = h~" + O(1). Substituting this in to (2.7.1) and
ignoring the error term, as well as higher order terms in €, we obtain
7(2n + 4k + 1)h*Vj

F(e,k,n,h) =141 2 (e*e/m —1).
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Then,

8h=*
m(2n+4k+ 1)V

h —ih
co(k,n,h) = —%log 1+i - 2@ log [1+ i2h V5 (1 + o(h))]

has
F(eo(k,n,h),k,n,h) =0, |0.F(e(k,n,h), k,n, h)|>ch?
Now, for 0 < ¢ and ch™' < k < Ch™! by (2.7.1), z(h, k,n) can be defined by a solution
z(h,k,n) = Z(4k + 2n + 1) + e(k,n, h) where
F(e k,n,h) = 0(e/"h®|z| 7 4+ eh™179).

So, by the implicit function theorem there is a solution €; satisfying

6(k7 n, h) = Eﬁ(k’ n, h) + (aeF(EO(ku n, h)7 ka n, h))_lO(h_1+a62i60/h(h|z|_l + 60))
= ¢o(k,n, k) + O(h* + min(h*logh ™', h>~) = €y + o(Im €)

where the last equality follows from the fact that o > 1/2.
Thus, for all @« > 1/2 € > 0 and 0 < h < h,, there exist z(h) € A with

_— {—(1 + 0(1))Vy2p3-2a 12<a<1 (272)

—(1+0(1))2log (1 + 4n*72°V;?) + o(h¥/*) o >1

2.8 The 1-d case for the ¢’ potential

Consider —Apq s with Q = (—1,1) C R with v = h*Vj. We first compute the reflection
coefficient at a point x = zy from the left and the right. That is consider a solution to u to

. Then
e~ r<-—1
u=1<aeMt+ae™ —l<zr<l
T, e x>1

where A\ = zh~!. If we consider only the interface at z = 1, and assume for the moment that
ay =1,a_ =R, and T} =T then we must have

e — Re™™ = Te™ e+ Re ™ + T(—1+iVA)e™ = 0.
Hence,
= —— t T == .
2 —in" 2 iV
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That is, for the solution u, we must have a_ = Ra, and T = T'ay. On the other hand, if
we consider the interface at x = —1, then under a change of variables x — —x, we see that
ay = Ra_, and T_ = Ta_. So, there is a resonance if and only if R? = 1. That is,

sin —ANV?

— =1 YA NIV — N2V 2, 2.8.1
PENGE = e + 4i ( )

Now, a solution z to this equation has

th | " 4ihtme 422
2 = ——10 —
408 Vo Vi 22

B _%10 - 4h2—2a N 4ih1_a
- 8 V2[Rez)2 ' RezVy

) + Im z0(h* *(h' =) 7Y)

Ah2—20 ) 2
(Re2)217

4h2—2a
= og (14—
i Og( i <Rez>2vo2>

This gives the resonance free region from Theorem [2.6]
To show the existence of resonances, let

4
2—a/pl—a\—1 h

Imz(14+ o(h*~*(h"~*)77)) = —glog (1 +
h

F(z) = */M — 1 = 8ipl=oV 2t 4 16072072272,

g (g A6
T Ty Vorkh — V2(rhk)?

and let zp = ™£ 4 ¢y wiht ch™' < k < Ch™'. Then, F(z) = 0(Imeoh'~*(h'=*)"1(h?72%)),
|F'(20)] > Ch™*(h*72*) and for |z — 29| < Ch(logh™)7!, |F"(2)| < Ch™%(h*72*). Hence,
by Lemma we have a resonance z(k, h) with

Take

~ Jz0(k) + o(h73) a<l1
2k h) = {zo(k) +0o(h?logh™) a>1

This completes the proof of Theorem [2.6|if we let mhk/2 =1+ O(h).
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Chapter 3

Geometric Preliminaries

3.1 Local Symplectic Geometry

We give a brief review of the notation of symplectic geometry followed by a more detailed
review of the theory of Lagrangian submanifolds. For our purposes, we need consider only
symplectic geometry on R?? which we later identify with T*R?. We follow [87, Chapter 2],
[36, Chapter 5, 9], [41, Chapter 21] where one can find a more complete treatment.

Notation

For a point z € R? x R? we use coordinates (x,£) where z represents position and ¢
represents momentum. Similarly, we use w = (y,n) for another typical point. We then make
the following definitions

Definition 3.1.1. Let the one-forms dx; and d§; be dual to d,; and 0, respectively. Then
we define the canonical one form by

wi={dr =Y &du;.

The symplectic form is given by

0 i=dw=d{ Ndr = d&; A du;.

J

Then, letting (-, -) denote the usual inner product on R, we have that

U(va) = <€7y> - <$777>'

With this definition, ¢ is a non-degenerate, closed, antisymmetric two form.
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Definition 3.1.2. Let U, V be open subsets of R2¢. We say that a diffeomorphism x : U — V
is a symplectomorphism if it preserves o. That is,

K'o(z,w) = o(dkz,drw) = o(z,w).
If we write k(z, &) = (y(x, &), n(z,£)), we sometimes write this as
dn N dy = dé A dx.

Notice that if v : R — R? is a diffeomorphism, then it can be lifted to a symplectomor-
phism & : R? — R? by letting

k(@,6) = (v(x), (0v(x))'€).

We next define the notion of Hamiltonian vector fields which was alluded to in the
introduction.

Definition 3.1.3. Let f € C*(R??). Then the corresponding Hamiltonian vector field, H;
is given by
o(z,Hy) =df(z) forall z= (z,§).

With this definition,
Hy = (0 f, 0z) — (0f, Oc).
The Hamiltonian flow of f is defined to be the flow of the vector field Hy.

Definition 3.1.4. For f, g € C*(R%*), the Poisson bracket of f and g, {f, g} is given by

{fag} = Hfg = O-(afa ag) = <a§fv 8$g> - <axga8§f>

Lemma 3.1.5. The Poisson bracket satisfies the following identities:

(i) Jacobi’s identity
{f:{g,p}} +{g,{n, f}} +{h.{f,9}} =0.

(i1)
Hiypgy = [Hy, Hy).

We are able to reduce our study of symplectic geometry to that where o is as above by
Darboux’s Theorem:

Lemma 3.1.6. Let U be a neighborhood of (xo,&) and suppose n is a non-degenerate, closed
2-form. Then near (xo,&y), there exists a symplectomorphism k such that

K'n =o.
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Lagrangian Submanifolds

Definition 3.1.7. A Lagrangian submanifold, A, in R?*? is a d-dimensional submanifold such
that
O'|A = 0.

That is, for all z € A and uy, us € T, A,
o(uy,ug) = 0.

Our goal for the remainder of this section is to understand the local structure of La-
grangian submanifolds.

Lemma 3.1.8. Let A be a Lagrangian submanifold of R*?. For each point =z € A\, there exists
an open neighborhood, U C A and a smooth function ¢ : U — R such that in U,

w[,\:dgo.

Proof. Fix z € A. Then choose an open neighborhood U of 2z and a diffeomorphism v : U —
B(0,1) C R% Define p = v~ and «a := p*(w|s) defined on the open unit ball. Then we have

dov = d(p*w|a) = p*d(w|a) = 0.

Hence, by Poincaré’s Theorem [87, Theorem B.5] a = di for some ¢ : B(0,1) — R. Now,
let ¢ := ~*y. Then
dp = d(v"¢) = 7"dy =y = wlx.
[

Next, we show that for any (xg,&) € A, there is always a Lagrangian plane transverse
to Tizo,60)A- A Lagrangian plane is a hyperplane that is also a submanifold.

Lemma 3.1.9. Suppose that Ay is a Lagrangian plane. Then there exists a d x d matrix H
such that after changing coordinates (x,&) — (Hx, (H 1)), Ay takes the form

Ao = {(0,2", ¢, BE')} (3.1.1)

where B is a symmetric matriz and (', 2") € R¥ x R¥* js a splitting of coordinates for some
0 <k <d. In particular, {(z",&") = constant} is transverse to Ao in these coordinates.

Proof. Let L C R? be the projection of Ag. Then, after a change of coordinates in z, with
the corresponding change in &, L = {2’ = 0}. Let vy = (2, 0,0,&)) € Ay then by the form of
L, we have that x;, = 0. Hence,

U(UO’ (:L',g)) = < (/)lvxﬂ> =0, (ZE,f) € Ao
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and by the form of L, 2" € R%* is arbitrary. This implies £ = 0. Therefore, the map
Ao 2 (z,8) — (2”,&) € RY is bijective and

Ao ={(0,2",¢, Bx" + C¢'}.
To see that C' = 0, observe that
0=0((0, (&, C&)), (2,€)) = (C&,2"),  (x,€) € Ao.
Finally, B is symmetric since for all 2" ,y” € R¢*,
0=0((0,2",0,Bx"),(0,4",0, By")) = (Bz",y") — (By",2").

]

Remark: Let Ay := {(z, Az)}. with A a real symmetric matrix. Then A, is Lagrangian.
Moreover, when A is written as in , then we see that if Ax = (0, Dz"”), then A4 is
transverse to Ay if det(D — B) # 0. Hence there is always at least one A such that A4 is
transverse to Ag.

We next show that a Lagrangian submanifold can locally be written in terms of a gener-
ating function.

Lemma 3.1.10. Let (2/,2") € RFxRIF and (¢/,£") € RExREF be a splitting of coordinates.
Suppose that the Lagrangian plane {(z",&") = (z(,&})} is transversal to A. Then there exists
a neighborhood, U C R*, of (x4,&) and a smooth function o(x",€') such that

ANU = {0, 2", &, —0umip) : 2" €RTF ¢ cRFINT. (3.1.2)

Definition 3.1.11. We say ¢ a generating function for A near (xq, &) if ANU has the form
(3.1.2]).

Proof. Define 7 : R* — R* x R*™ by 7(«/,2",&,&") = (2", &'). Then d(r|s) : Tape)A —
Tl ey (R¥™F x R¥) is bijective. To see this, note that

ker(dnly,, . w20) = Tiopen (2", €) = (2, €4)}

{66

and by transversality

Twoeo)R* = Tiape) A + Timp.en { (2", &) = (20, £0)}-

Hence, by the implicit function theorem 7|, is invertible near (xg,&y) and there exists a
neighborhood U such that (2", ") can be used as coordinates pm U.
This implies that there exists a neighborhood U of (xg, &) and smooth maps

fiRTEXRY S RY, g RTF X RF 5 RTH
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such that
ANU = {(f(2",&),2", &, g(z", &) : 2" eRTF ¢ eR*}INU.

Using Lemma and the fact that w = {dx, we have that there exists ¢ = ¥(2”,¢’)

<5x"¢, d.]f,/) + <a§/¢a d€/> = W‘A = <g7 d.Z'”> + <§/7 6x”fd$” + a&’fd£/>
= <g + (aw”f)t£,7 d{L‘H> + <(8§’f)t€/a d§,>
= (g + 0o ([, &), da") + (0 ([, &) — f.dE)

So, putting
(p(xﬂa 5,) - <f($//7 5/)7 §/> - w(x//7 §/>
gives the result. O]

Finally, we show that except at the intersection of a Lagrangian submanifold, A with the
0 section, we can change coordinates to make & = constant transversal to A.

Lemma 3.1.12. Suppose that p € A C R? x R? does not lie in the zero section and that A
is a Lagrangian submanifold. Then there exist coordinates on RY such that {¢ = constant}
is transversal to A at p.

Proof. Since p does not lie in the zero section, we can choose coordinates (z1, ...x4) at 7,(p)
so that p = (z0,&) = (0,(0,...,0,1)). Then, Ag = T(4,¢,)(A) is a Lagrangian subspace of
R? x RY. Thus, by Lemma and the following remark, there exists a symmetric matrix
A such that Ay = {(x, Az)} is transversal to Ag at (z9,&p). Now, Ay = Ty, ¢ A, where
Ay = {(z,0:9)} and ¢(z) = zq + 3(Az,z). Let y; = 2, 1 < i < d—1 and y4 = p(z)
be new coordinates centered at xy. Then if the canonical coordinates associated to y are
(Y1,---Yd, M, -.-Ma), {n = constant} = A, is transverse to A at p. O

When we seek to understand Lagrangian distributions (Section 4.4]), what we have done so
far will allow us to handle the parts of the Lagrangian in compact subsets of the fiber. How-
ever, we also seek to understand distributions associated to certain unbounded Lagrangians.

For this, we define the radial compactification of T*R%, T"R% := T*R? U $*R? where
S*RY .= (T*Rd \ {0})/R+

and the R, action is given by (¢, (z,£)) — (z, t€). We identify T"R? with R% x R where R? =
R?1IS4. Here, a neighborhood of a point (g, &) € RY x S is given by V x (UN|¢| > K)
where V' is a neighborhood of xy and U is a conic neighborhood of &.

It is not hard to see that the symbol class which after multiplication by a suitable power
of [£| extends smoothly to T'R? is given by
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Definition 3.1.13. We say that a(x,0;h) € SP(R? x RY) is a classical Kohn-Nirenberg
symbol of order m, (denoted by either Sj?, (R?xRY) or S?(Rdxﬁjv)) if there exist M > 0 and

a;(z,0; h) € SI(R? x RY) homogeneous of degree j for |6 > M such that in a neighborhood
of R x SN=1 for all o, 3, M,

020y (a(x,&; h) — f: a;(z, b; h))

j=—M

< poUal B (gy =M —-1-15],

Remark: To see that there is indeed a difference between Sg* and Sg,;, consider the symbol
ex(EDloglél where y = 1 for €] > 1 and supp x C {|¢] > 1/2}.

When defining Lagrangian distributions, we will want a more general notion than that
of a generating function.

Definition 3.1.14. Let ¢(z,0) € C*°(R?¢x R\ {0}) be a smooth real-valued, homogeneous
degree 1 function on some open conic subset U, of R? x RX\ {0}. We call = the base variable
and 60 the oscillatory variable. Similar to |41, Section 21.2], we say that ¢ is a homogeneous
clean phase function with excess e if |dp| > 0 and

Cp = {(z,0) | O = 0} C Uy

is a C° manifold with tangent plane given by dygj, = 0. Then the number of linearly
independent differentials d(0y, ¢), ..., d(0y,¢) on C, is equal to L — e where e = dim C,, — d.
If e =0, We call ¢ a non-degenerate phase function.

Let ¢ € S'(R? XRL) be a smooth real-valued function on some open subset U,, of R? x @L,
(possibly intersecting the boundary). We say that ¢ is a clean phase function with excess
e if C,, is a smooth manifold with tangent plane given by dyj = 0, the number of linearly
independent differentials d(0y, ¢), ..., d(0y,¢) on C, is equal to L — e where e = dim C,, —d,

and if )
p~ Z ©j
j=—00

is the asymptotic expansion given in Definition |3.1.13] then ¢ is a clean homogeneous phase
function with excess e. If e = 0, We call ¢ a non-degenerate homogeneous phase function.

Lemma 3.1.15. Let ¢ be a clean phase function with excess e and j : C, — R*® j : (x,0) —
(x,0.p). Define
Ay = {(z,0x0(x,0)) | (x,0) € C,}. (3.1.3)

Then j is a fibration of C, with fibers of dimension e and A, is a Lagrangian submanifold.

Proof. Consider dj : TC, — TR*®. Let (d,,0y) € T(,4C,. Then,

P90z + pgg(0g) = 0.



CHAPTER 3. GEOMETRIC PRELIMINARIES 48

Also,
dj (02, 00) = (0, (Pl + ©4.00))-
So, if dj(d,09) = 0, then 6, = 0 and hence

/!
0o € ker 4'09’”) )
0 (90/9/0

Hence, dy lies in an e-dimensional subspace. So, changing coordinates in @ if necessary, there
exists a splitting of coordinates 6 = (¢',0") € RL=¢ x R¢ such that the map

7:0, 2 (2,0) v (2,0,0,0") € R*

has injective differential. Hence, shrinking the neighborhood of a point (xg, fp) if necessary,
J is a diffeomporphism from C, — A, x R® as desired.

Now, using these new coordinates, we can define a new phase function p; = p(z,6',6))
such that A, = A, near (zg,6p). Then, ¢y is a nondegenerate phase function and hence
J1:C, — Ay is a diffeomorphism.

To see that A, is Lagrangian, observe that, identifying C,, with A, the canonical one
form w has

d
W‘Cm - Z azjgodijm - (Z amjgpdxj + Z 893S0d9/j)|cw1
=1 J

= (dp)lc,, = d(eilc,,)
and hence dw|c,, = 0. O

Definition 3.1.16. If A, is given by (3.1.3), then we say that the clean phase function ¢
generates A,.

With the above definitions, it follows from Lemma that the function S(z,¢') :=
(@', &Y — p(x”,£') is a non-degenerate phase function generating A in U.

Finally, we define a class of Lagrangians to which we are able to associate distributions
in Section (.41

Definition 3.1.17. We say that a Lagrangian submanifold A C R2?*? is admissible at
(w0,&) € R? x S971 if there exists a neighborhood U of (x,&), a splitting of coordinates

(2/,2") € R x R¥* and a function H(z",¢') € ST (RF x R") such that
A N U = {(—8511‘[(.’1}//,5/),37”,5/, —8:,3//[-[(3:”,5')) : (x",é’) € W} N U

We say that A is admissible if it is admissible at (xg, &) for all (zg, &) € AN (R? x §4-1).

Remark: Notice that any Lagrangian which is conic outside of a compact set is admissible.
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Canonical Relations

Suppose that Uy, Uy C R?*® are open with symplectic forms o; and o, respectively. Let
1 Uy = U; be a symplectomorphism with x(y,n) = (z,£). Then the graph

G = {(z(y,n),&(y,n),y,m} C U x Uy (3.1.4)

is a Lagrangian submanifold of U; x U, with respect to the ‘twisted’ symplectic form o5 :=
mio1 — mhoe where m 1 Uy X Uy — Uy and ms : Uy X Uy — Uy are the two projections. We
often simply write o; for 7fo; when no confusion will arise. In this case, it is clear that m;|q
is a diffeomorphism.

Lemma 3.1.18. Suppose U, ,Us C R?** and A C U, x U, is Lagrangian with respect to o, — 04
with the property that m;|s are diffeomorphisms near (w,z). Then A can be written in the

form (3.1.4) near (w, z).

Proof. The fact that ma|s is a diffeomorphism implies that (y,n) € U, can be used as coor-
dinates on A. Lemma shows that there exists a splitting of coordinates (z/, (", y))
or ((z,v'),y") € R x R** (without loss, we assume (2, (z”,y))) and a smooth function
H(2",y,&) € C°°(R??) such that (taking into acount the fact that A is Lagrangian with
respect to oq — 09)

A= {<8§’Ha :L‘Ha €/a _ax”Hv Y, ayH) : ("L‘Hv Y, 5,) € RQd} N (Ul X UQ)
Then, since we know (y,7n) can be used as coordinates on A, the map
k:U; > (y,8yH) — (ang, 93”,5', —8x//H) el

is well defined. Similarly, m | a diffeomorphism shows that (z, &) can be used as coordinates
and hence that k is a diffeomorphism. To check that x is symplectic, we compute
dn N dy = (0;Hdy + 02, Hdx" + 83, HdE") A dy
= (02, Hdz") N dy + (95, HdE") A dy
and
d§ N dx = d€' N (0ZHAE' + 02eda” + O Hdy')
— (02, Hdz" + 0, Hd¢' + 0., Hdy) A dz”
= (02 H)' Y Ndy — dy A (05, H) da") + dE' A (O2ngda”) — dE' A ((0F 0 H )'da”)
= (82, Hde") N dy — dy A (82, Hdz") = dn A dy
O

It is natural to consider more general Lagrangian submanifolds that do not have ;|
diffeomorphisms and indeed have U; and U, with different dimensions. To this end, we
define:
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Definition 3.1.19. Let U; C R?¥* and U, C R?% be open with symplectic forms o, and o
respectively. Then a Lagrangian submanifold A C U; x U with respect to oy — 03 is called
a canonical relation from Us to U;. A canonical relation such that m; : A — U; are both
diffeomporphsims is called a canonical graph. A canonical relation is called admissible if A
is admissible.

In order to generalize composition of functions, we can define a notion of composition
of relations. First, suppose that £ C Uy and R C U; x Us,, then R can be thought of as a
relation mapping £ — R(E) where

R(E):={(n €U, : (11,7) € R for some 1, € E} = (RN, ' (E)).

It is easy to see that if R is the graph of x, then R(F) = x(F). With this in mind, we see
that if Ry C U; x Uy and Ry C Uy x Us are relations, then Ri0R, can be defined as

RioRy := {(71,73) : (m,72) € Ry and (72,73) € Ry for some 75 € Us}.

This can also be written
R10R2 = 7T<R1 X R2 N (Ul X A(Ug) X Ug)) (315)

where 7 : Uy x Uy X Uy x Us — U; x Us is projection and A(U,) is the diagonal in Uy X Us.
We again note that if R; and R, are graphs, then RjoR;s is the graph of the composition.
Our next goal is to understand the composition of canonical relations. In general, such
compositions will not be canonical relations or even smooth manifolds. However, under
certain conditions on the intersection with the diagonal in (3.1.5]), we can guarantee that the
composition generates a new canonical relation. We first consider the linear case.

Lemma 3.1.20. Suppose that S; are symplectic vector spaces for i = 1,...3. Suppose that
Vi € 51 x Sy and Vo C Sy x S3 are Lagrangian subspaces. Then VioVs, is a Lagrangian
subspace.

We need the following simple lemma in the proof of Lemma [3.1.20
Lemma 3.1.21. Suppose S is a symplectic vector space and V C S is a linear subspace.
Thn
S = V—FVL/VﬂvJ_
18 a symplectic vector space with dimension
dim S’ = dim S — 2dim(V N V*) = 2dim(V + V+) — dim S.

where V1 is the symplectic complement of V.
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Proof. Let W =V + V=+ then Wt = Vin(VH: =V nVE Cc W. Now, w € W has
o(w,w') =0 for all w’ € W if and only if w € W+. So, ¢ is nondegenerate when restricted
to S’ and hence S’ is a symplectic vector space. To calculate the dimension, observe that
dim S’ = dim(V + V*) —dim(V nV*)
=dimV 4+ dimV+* — 2dim(V NV+) = dim S — 2dim(V NV+)

where we use the fact that dim V' + dim V+ = dim S which follows from the nondegeneracy
of 0. 0

Now, we prove Lemma [3.1.20]

Proof. We endow S; X Sy X Sy x S3 with the symplectic form ¢ := 01 — 091 4+ 092 — 03 Where
the o9; denote the lift of o5 from Sy to act on the appropriate copy of S5 in S7 x Sy X Sy x S3.
That is,

021(1)171)2,@37?14) = 02(02) 022(?11,112,7}3,7)4) = 02(?)3)-

Then
VioVy = m((Vi x Vo) N (S1 x A(Ss) x S3))
= (K x Va) N (81 % A(S2) X 55) /(17 % Vo) 1 ({0} x A(S5) x {0})-

Now, notice that A = {0} x A(Sy) x {0} is isotropic and, moreover, S; X A(Sy) x Ss is its
symplectic complement. Therefore, by the previous Lemma S’ = A+ / A is symplectic with
symplectic form the restriction of o (i.e. 0/ = o1 — 03). This implies that VjoV5 is isotropic
since V] x V5 is Lagrangian. To calculate the dimension, observe that

dim(V; x V5) +dim At = dim(V; x Vo N A*Y) 4+ dim(V; x V, + A1)

= dim((V; x V5) N A*) +dim S — dim((V; x V5) N A)
where we have used the fact that V; x V, is Lagrangian to see that (V3 X VQ)L = V] x Vs.
Thus,
dim(Viols) = dim((Vy x Vi) N A*) — dim((Vy x V3) N A)
= dim(V; x V3) + dim At — dim S

_dim(S5) - 2dim(A)  dim(S")
- 2 2

by the previous Lemma. Hence, VjoVj; is Lagrangian. O

Lemma 3.1.22. Suppose that U; C R?% are open sets endowed with the symplectic structure.
If A\ C Uy x Uy and Ay C Uy x Us are canonical relations for the symplectic for o1 — o9
and o9 — o3 respectively, and Ay x Ay intersects Uy x A(Us) x Us cleanly with intersection
A, then the projection m from A to Uy x Us has rank (dim U; 4+ dim Us)/2 and the range of
7 18 locally a Lagrangian submanifold with respect to o1 — o03.
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Proof. The clean intersection property shows that at a point v = (y1, 72, 72,73) € A,

T,YG =AN T'yl(Ul) X A(T/YQUQ) X T73U3 A= T( )A1 X T(’Y%’YB)AQ‘

V1,72

Then A is a Lagrangian subspace of
LU 8 T,U ©T,,Us © T Us

with symplectic form o7 — 091 + 099 — 03. Hence, Lemma [3.1.20] applies to show that the
range of the differential of 7 is a Lagrangian subspace. Hence, dm has constant rank and the
range of 7 is locally a Lagrangian submanifold. O

Finally, we understand how phase functions associated to canonical relations can be com-
bined. Throughout the discussion of relations we have been using the ”twisted” symplectic
form o1 — 09. However, it is often more convenient to think of the standard symplectic
structure on U; x Uy given by o1 + 5. If A is a canonical relation, then

N ={(z,&y,—n) : (z,&y,n) € A}

is Lagrangian with respect to the standard symplectic form. If we take a clean phase function
generating A’ it generates A by

When we say that a phase function defines a canonical relation G, we will refer to the formula
(3.1.6).

Eemma_3.1.23. Let V; C R% be open and Ay, Ay be canonical relations C T*Vl X T*Vg and
TVyx T Vs respectively parametrized locally by nondegenerate phase functions o(x,y,n),

9 cR" and U(y,z,7), T € @NQ, defined in neighborhoods of (zo, Yo, 0o) and (yo, 20, To) where
vp = ¥y = 0 and ¢, + 1, = 0. Suppose further that the composition AiolAy is clean at the
corresponding point, and

{(2,0) : (#,0,2,0) € M} N {(2,0) : (2,(,y,0) € Ay} NR? x S =) (3.1.7)
then
(z,2,y,0,7) = p(z,y,0) + ¥(y, 2,7)
is a clean phase function defining the composition where (y,0,7) are now the phase variables.

The excess of ® is equal to the excess in the clean intersection of Ay x Aoy with TV} X
A(T*Vy) x T* V.

Notice that y lies in a bounded open set, so asymptotic properties in y are irrelevant.
However, to match the definition of a phase function we use the parameters

(10 + [7)12,6,7) € R+

Then ® € ST (RE x R?% x EdﬁNﬁNz) follows from the corresponding facts for ¢ and .
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Proof. The non-degeneracy of ¢ and v gives that

C¢:{($,y,6) : 90,0:0} CT/J:{(y:Zﬂ—) : @/J;:O}

are locally manifolds with tangent planes defined by dyj = 0 and di. = 0. Then Lemma
3.1.15| shows that the maps

Co 3 (2,9,0) = (2,95, ¥, —p,) € Ay (3.1.8)
Cyp 2 (Y, 2,7) = (Y, ¥y, 2, —YL) € As (3.1.9)

are local diffeomorphisms. Hence we can use (z,v',0,vy",2,7) € C, x Cy as coordinates on
A1 x Ay and the tangent plane to A; x Ay is given by

{(dz,dy),, dy', —dp,,, dy", d,, dz, di)) « dpy = dip. = 0} (3.1.10)

Now, if X and Y intersect cleanly in a manifold X NY with excess e, then codim(X N
Y) + e = codim(X) + codim(Y) (see for example [41, Appendx C.3]). Thus the fact that
A oA, is clean translates to the fact that

A = {(%57?/777/,y”777”72,o S A1 X AQ : y/ = y,,n/ = 77”}

is a manifold of dimension n; + n3z — e where e is the excess of the composition. Then using
coordinates (x,y’,0,y",2,7) € C, x Cy, A is defined by

§=v(x,y,0), ¥ =y, n=-plz,y,0), n=n" (3.1.11)
77/ - 1/};<y//) ZJT)7 C - _w,;(yﬁyzy7—>* (3112)

Moreover, by the cleanness of composition together with (3.1.10) the tangent plane to A is
given by

{(dz, dy,, dy', —dpy, dy', dipr, dz, dy) = dypy = di, = dy), + dip = dy' — dy” = 0}.
(3.1.13)
We just need to show that

Co = {(2,y,2,0,7) : vy =1, =@, +¢, =0}
is a manifold with tangent plane defined by
dghy =0 i =0 d(g,+u}) =0

Then letting 7' = —¢), and 1" = ¢, along with (3.1.11)) (3.1.12)) (3.1.13) identifies Cy with
A. Moreover, the excess is given by dim A — dim V; — dim V3 = e.

Let w = y{|0)? + |7|>)}/? and
1
RN Y

j=—o00
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where ®; is homogeneous of degree j in (w,6,7). The final condition we need to check is
that ®; is a homogeneous phase function. The fact that Cs, is a smooth manifold with the
appropriate tangent plane and d(Jy, ®;) have the required properties follow from the previous
arguments applied to ¢; and ¥ where ¢; and 1, are respectively the homogeneous degree
1 parts of ¢ and .

Finally, we check |d®;| > 0. Using the fact that ¢ and ¢ are classical symbols, and y lies
in a bounded set, we can assume that (|0|? 4 |7|?)1/2 is large. Clearly, there is no difficulty
if 0y ¢ SM~1and 75 ¢ SN2~ Suppose without loss that 8, € SM 1. So,

© = @1 + O05-1(1).
We have
cld®| > 0,0] + [Doep| + |0y + Oy| (|6 + |7I*) V2 + 00| + |9,0)].

So, if at a point (z,0), 0,1 = g1 = 0, then [0,¢1] > ¢(f) > 0. Now, if |7| < |6|, then
clearly |d®| > C(0), so we assume || > C'6| and, reversing arguments, c|f| < |7| < C|6|.
So, we also use

¥ =11+ O0s1(1)
where 1; is homogeneous degree i in 7. Then, by (3.1.7), if

@r%‘ = z¢i = a64,01 = 3T¢1 =0,

then |0, + d,p| > C{|0|> + |7|*)1/2. Hence, |0,®| > C which implies |d®,| > ¢ > 0. O

3.2 The Billiard Ball Flow and Map

We need notation for the billiard ball flow and billiard ball map. Write
S*RY 90 = 00, LI OQ_ LI 08

where (z,£) € 09, if £ is pointing out of 0, (z,£) € 9Q_ if it points inward, and (z,£) € 9
if (z,€) € S*09Q. The points (x,&) € 08 are called glancing points. Let B*0S2 be the unit
coball bundle of 9 and denote by 7+ : 9Q. — B*0Q and 7 : S*RY|5q — B*0NQ the canonical
projections onto B*0f2. Then the maps 71 are invertible. Finally, write

to(x, &) = inf{t > 0 : exp,(z, &) € T*RY 50}

where exp,(z, &) denotes the lift of the geodesic flow to the cotangent bundle. That is, ¢, is
the first positive time at which the geodesic starting at (z,§) intersects 0S).

We define the broken geodesic flow as in |24, Appendix A]. Without loss of generality,
we assume to > 0. Fix (z,£) € S*R* and denote to = to(x, §). If exp, (z, &) € Qy, then the
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Rd

S*RY

Figure 3.1: The figure shows how the billiard ball map is constructed. Let ¢ = (z,§) € B*0).
The solid black arrow on the left denotes the covector ¢ € B;0f) and that on the right
£(B(q)) € By, (54952 The center of the left circle is z and that of the right is m,(8(q)).

billiard flow cannot be continued past ¢o. Otherwise there are two cases: exp, (z,§) € 0§
or expy, (z,§) € 9Q_. We let

(o 0) = | T P (.60)) € 00, il exp (3, €) € 00,
oo 7 (7 (expy, (2, €))) € 00, if exp, (z,&) € 00

We then define ¢;(x, &), the broken geodesic flow, inductively by putting

_Jexp(x,§)  0<t <ty
%m@_{%mmﬁ@tzm |

We introduce notation from [63] for the billiard flow. Let K be the set of ternary fractions
of the form 0.k1ks, ..., where k; = 0 or 1 and .S denote the left shift operator

For k € K, we define the billiard flow of type k, G : S*R? — S*R? as follows. For 0 < t < 1,

if k1 =
G (€)= { P11BE) TR =0 (3.2.1)
expy(x,€) if k=1
Then, we define G% inductively for ¢ > to by
Gil(2,§) = G (G (2,€)). (32.2)

We call G the billiard flow of type k. By [63, Proposition 2.1], G% is measure preserving.
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Remarks:

e In [63], geodesics could be of multiple types when total internal reflection occurred.
However, in our situation, the metrics on either side of the boundary match, so there
is no total internal reflection and geodesics are uniquely identified by their starting
points and k € K.

e In general, there exist situations where G% intersects the boundary infinitely many
times in finite time. However, since we work in convex domains, we need not consider
this situation.

Now, for k € K and T > 0, we define the set Orj C S*R? to be the complement of the set
of (x,&) such that one can define the flow G, for ¢ € [0, T]. That is, Oz is the set for which
the billiard flow of type k is glancing in time 0 < ¢ < T Last, define the set

Or = | Ok (3.2.3)

keK

The billiard ball map reduces the dynamics of G§ to the boundary. We define the billiard
ball map as in [34]. Let (x,¢') € B*0Q and (z,¢) = n-"(x,¢') € 9Q_ be the unique inward
pointing covector with m(x,&) = (x,&’). Then, the billiard ball map g : B*0Q — B*0NQ
maps (z,&’) to the projection onto T*9S) of the first intersection of the billiard flow with the
boundary. That is,

B (2,8) = m(expry () (2, §))- (3.2.4)

Remarks:

e Just like the billiard flow, the billiard ball map is not defined for (z,¢") € m(09Q) =
S*0€2. However, since we consider convex domains, § : B*2 — B*Q) and " is well

defined on B*9f).

e Figure |3.1| shows a how the process by which the billiard ball map is defined.

The billiard ball map is symplectic. This follows from the fact that the Euclidean distance
function |x—2'| is locally a generating function for 3; that is, the graph of £ in a neighborhood

of (0, &0, yo, o) is given by
{(z, —dulz —yl, y, dylz —y|) : (z,y) € 9 x 90}, (3.2.5)

We denote the graph of § by C,. For strictly convex €2, Cj, is given globally by (3.2.5)).
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Dynamics in Strictly Convex Domains

Let 02 be strictly convex near a point z and let v : [0,d) — 9 be a smooth geodesic
parametrized by arc length with v(0) = xy,. We are interested in how [¢'|, changes under
the billiard ball map for |£'|, close to 1. Our interest in this region comes from a desire to
understand how the reflection coefficients Rg.;, and Rs from and behave
when a wave travels nearly tangent to a strictly convex boundary.

We examine how the normal component to 92 changes under the billiard ball map.
Notice that for [£'|, sufficiently close to 1, the strict convexity of 0 at x implies that there
is a geodesic connecting xq to m,(3(xo)) which lies inside a small neighborhood of z,. (Here
7, denotes projection to the base.) Hence, we consider

Ac ((v(5) = 7(0)) - ¥(0) = (v(0) = 7(s)) - ¥(s)) _ (4(s) = 7(0)) - ((0) +v(s))

‘ [7(s) = ~(0)] N [7(s) = ~(0)]

Here | - | is the euclidean norm in R? and v is the inward pointing unit normal.
First, note that

V(s) = k(s)v(s), V(s)-7'(s) = —=k(s), A(s)-v(s)=0, [V (sl =lvs)ll =1

where k(s) is the curvature of 7. Then, expanding in Taylor series gives

A, [s+ 0(s2)] = [7’(0)5 +7"(0)2 +~4®(0)2 + o<s4)} : (3.2.6)

20(0) + V' (0)s + v(0) 5 + O(s*)]

Be, [1+0()] = [29/(0) - (0) + (7 - ) (0)s + (29(0) - (0) +3(7" - v') (0)) 5 + O(")|
B¢, = 2(K(0)1(0) = k(0)/(0)) - v(0) = 3K'(0)] 5 + O(s")
A, = (2K'(0) = 3K'(0))% + O(s®) = —k'(0)% + O(s%). (3.2.7)
Now, we have
1(s) = (0) (0)

k 2
(s Ay WO = e o).

Thus, if € is strictly convex, k(0) > ¢ > 0 and hence, if /1 — |{|2 =7, ¢s <7 < Cs. Using
(3.2.7), we have \/1 — |&(B(w0,¢"))|2 = r 4+ O(r?). Summarizing, we have

Lemma 3.2.1. Let Q C R? be strictly convex. Then, letting ¢ € B*0S) and denote
rim 1= @R,

72 (@) — ma(B) (@) =+ O(r?).

we have
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By the calculations above, the set of O(h¢) near glancing points is stable under the billiard
ball map. This also follows from the equivalence of glancing hypersurfaces [48]. Moreover,
we have the following lemma:

Lemma 3.2.2. Fiz ¢ > 0. Suppose that Q0 is strictly conver and (2',£') € T*0Q with
11— 1€'l,| = O(h?). Then, for N = 0(h~/?),

|1 1€'(8™ (" €))lg| = 0(he).
Proof. Suppose that |1 — [¢'|,| = 7. Then, by (3.2.7),
11— 1B, &)|| <7+ Cir* for r small enough

where C; > 0 is uniform in B*9Q. Let a,, = |1 — [&'(8"(«,£))|,| - Then, a,, < a,_1+CiaZ_,
Therefore, we need only examine the sequence

2
Ty = Tp1 + Ciz,,_y, x1 =Ch"

First, observe that if x; < Cjh¢, then,

T4 = 2;(1 + Cyz;) < CjhS(1 + CCLjhe) = C(j + 1)he (j i - (’;Cff) .
Therefore, for j < C1CT'h™, 25,1 < C(j + 1)h".
Now, we have
In _ ﬁ 1+Chzj) ﬁ (1+CCyjhe) < (14+CCy(n—1)h)" = (1 + (n = 1)2001h€>n1
S 2 e n—1

Aslong as (n —1)2 = 0(h™) and n — 1 < C;'C~'h™¢, we have z,, = ,0(1). O
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Chapter 4

Semiclassical Analysis

In this thesis, we view semiclassical analysis as a tool for studying links between classical and
quantum systems. In classical mechanics, observables take the form of functions a(zx,§) €
C>(T*R%) where the x and ¢ variables represent position and momentum respectively. When
these variables are quantized, we have the following relations

h
T =T, 57, — —,&Ci =: hDasl
1
where h represents the Planck constant and z; represents multiplication by x;. In this

setting, the simplest observables are those given by partial differential operators a,(z)(hD,)?.
Writing this using the Fourier transform gives

(a0 (2)(hD:)* f)(z) = F,* (aa(2)€%(Fa(f))(€))

where

Fuf ::/e_i<y7f>f(y)dy, Filf = (27T1h)d/ei<z’§>f(€)df

are the semiclassical Fourier transform and inverse Fourier transform. In order to quantize

more general observables, we can use the same formula, writing for a € C®(T*R?) (with
some additional conditions which we suppress for now),

(Opw(a)f)(x) = Fy,* (alz, ) (Fu(H))(E))- (4.0.1)

Such operators are called semiclassical pseudodifferential operators. The classical-quantum
correspondence states that the classical properties of systems should be correspond to high
energy behavior the of the quantum systems. In our setting, high energy corresponds to
h — 0 and as such we work to obtain error bounds in terms of functions of h.

In this chapter, we review the methods of semiclassical analysis which are needed through-
out the rest of the thesis. The theories of pseudodifferential operators, wavefront sets, and
the local theory of Fourier integral operators are standard and our treatment follows that in
[87] and [23]. We make a small generalization from conic Lagrangians to a certain class of
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Lagrangians satisfying an admissibility condition at the fiber radially compactified boundary
of T*M. Instead we impose a certain admissibility condition on the Lagrangians at infinity.
We consider the special case of semiclassical analysis on a compact manifold M. See [23] for
a treatment of the non-compact case. We introduce the notion shymbol from [29] which is
a notion of sheaf-valued symbol that is sensitive to local changes in semiclassical order of a
symbol. Finally, we consider a semiclassical version of the Melrose-Uhlmann [49] intersecting
Lagrangian distributions.

4.1 Pseudodifferential Operators on R

We first define semiclassical pseudodifferential operators on R? following [87, Chapter 4].

Symbols and Quantization

In order for (4.0.1) to be well defined (even for f € S, the Schwartz class), we must place
some assumptions on a € C*°(T*R?). In fact, we allow a to have some controlled dependence
on h.

Definition 4.1.1. Let a(z, & h) € C°(RY x RM) depend smoothly on h. Define the symbol
class ST'(RY x RM) for m € R and ¢ € [0,1/2] by

Sy (RN x RM) = {a(x, & h) + 0207 a(x, & h)| < Co gh™ U8 (¢ym=IATy (4.1.1)

We denote S5° := U, S5", S5 °° := N,,S5" and when one of the parameters ¢ or m is 0, we
suppress it in the notation. When we write S5 (T*R?), we identify T*R? with R? x R?. We
define two other symbol classes. We write a € S5”"P(RY x RM) if a satisfies and is
compactly supported in some h—independent set. For an open set U C RY, when we write
S§ioc(U x RM), we mean that the estimates in hold uniformly on compact subsets of
U.

Remark: This notion of a symbol is invariant under changes of variables and thus will be
useful in defining pseudodifferential operators on manifolds. (See Lemma 4.2.9)

With this definition of symbol, we can formally define quantization. Although
gives one notion of such quantization, it is easy to see that it is not the only one. In
particular, on the classical level € = &z, but clearly hD,x # xhD,., so we have some choice
in quantization procedure.

Definition 4.1.2. For a € SJ"(T*R?) and f € S, we define the semiclassical {-quantization
by

Opni(a)f = gy [ [ R altr + (1= . )y

The integral is defined in the sense of an oscillatory integral (see Lemma [4.1.3)
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Furthermore, we define the class of semiclassical pseudodifferential operators of order m
and class 6, U"(R?) by

VP (RY) := {A=Opps(a) + B : a € SP(T*RY),0<t <1, B=0p_pg=(h™)}.

Two particularly convenient quantizations are Opy /2, called the Weyl quantization,
where for real a, Opp1/2(a) is self-adjoint, and Opy, 1, called the standard quantization, where

formula (4.0.1]) holds.
Lemma 4.1.3. For a € S*(R* x R?), the map

1 gy, _
Al / / eH e a(z,y, & h) F(y)dydg (4.1.2)

1s bounded from & — & in the sense that each seminorm of Af can be controlled by a finite
number of seminorms of f.

Proof. Let
I— 1 —(hD,,&) + (hD¢,x — y)
L+ [§PP + [z —y]?

i

Then L(e#@¥€) = enl*=v&) and

4h (x —y,&)
Lt:—L+— ’ .
i (14 [§]2 + [z — y[?)?

Hence, L'(a(z,y,&h)f(y)) € S~ (R* x RY) with seminorms bounded by those with a
single derivative on f. So, integrating by parts finitely many times losing a finite number
of derivatives on f, we may assume a € Sy~ (R? x R9) for any large N. Then, letting K
denote the kernel of A,

K(z,y) := F, a(z,y, - h)(x —y).

Thus, fixing |a| and |3] and choosing N large enough, sup, , ‘(x —y)*0P K (, y)! < 00. Now,
(x) < C{x —y)(y). So, for any M,

/ (@) |08 K (2, ) f ()| dy < C / (z — )l () D2 K (2, ) () My < Cnpas

Remark: In section[d.4] we will use similar techniques to define semiclassical Fourier integral
operators (FIOs) on S.

O
The previous lemma gives

Corollary 4.1.4. For a € SP(T*R%), 0 <6 < 1/2 and 0 <t < 1, Oppi(a) : S — S is
continuous.
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When we impose additional decay on a, Opy¢(a) has better mapping properties.

Lemma 4.1.5. Suppose that a € S. Then Opyi(a) : &' — S continuously. Moreover,
the formal adjoint is given by Opny(a)* = Opyi(a). In particular, for real a Opy,i/2(a) is
formally self adjoint.

Proof. Observe that Opyps(a) has kernel
Ky(v,y) = F, (altz + (1= t)y, h))(z —y) €S.

Hence, Oppi(a)u = u(Ky(x,-)) € S as desired.
To see the second claim, we simply write distributional kernel of Opy, (a)*. O

Next we show that the definition of ¥} could have used any particular ¢t € [0, 1] and
that varying ¢ does not change Opy¢(a) by a principal order term. To do this, we need the
following useful lemma.

Lemma 4.1.6. Let () denote a nonsingular symmetric matriz. Define
31@DDYy (1) = F (eﬁ@g’@fh(w(f)) ().
Then, foru € S,

i det Q|12 i i 1
€7h<QD’D>u({B) _ ‘ (;W§)|d/2 e4sgn(Q)/e—2h<Q ly’y>u(x+y)dy.

Moreover, €2 QPP extends to Ss(T*RY, g) where
Ss(T*R%, g) == {a € C=(T*RY) : [0%a(x, )| < Ch™1*1g(z,£)}
and for all z,w, 0 < g(z) < C{w — 2)Ng(w).

Proof. First, assume that © € S. Then, using the Fourier transform of a complex exponential
(see, for example, [87, Chapter 3]), we have

_ [ det Q12
~(2wh)—42
_ |det@[1?
~(2wh)—42

6Z’sgnQ/e—2i}l(Q1(w—y)ax—y>u(y)dy
ej’sgnQ/e—;h(Q‘ly,wu(x+y)dy

as desired.
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To see that e (@P:D) extends to S5(T*R?, g), we break the integral into two pieces. Let
x € C®(R?*) have suppx C B(0,2). Suppose that a € S N Ss(T*R? g). Then, letting

w=(y,n), 2= (2,€), p(w) = (Q~'w,w) and
C = (2m) 7% det A| /2T 2@

we have,

eiTh(QD’D)a(Z) = C’h_d/ e a(z 4+ w)dw

R2d

= Ch / ¢ (x(w) + (1 — x(w))) a(z + w)dw =: A+ B

We first consider § < 1/2. To estimate A, we apply the principle of stationary phase to see
that

<OAY  sup  |0%07a(z + w)
ly|<d+2N-+1
lw]<2

< Cuh1o2g(2) (4.1.3)

o° (A - Nf Z—T (%(QD, D))k a) (2)

k=0

To estimate B, observe that |0p(w)| > Clw|, So, letting L := [0p|"2(d¢, hD), we have

(LYY (1 = x)al < Cyh™ (w) ™ S [0%a] < ORI (w) =MV g (2).

So, using

B = Ch_d/ei“”/h(Lt)M((l — x)a)dw

we have B = Og,(p+ra g)(h™).
Next, for 6 = 1/2, we rescale with w = h~'/?w. Then,

10°A| < C sup [0%(z + hY2w)| < CLh™1912g(2).

|w]<2
To estimate B, we integrate by parts as above to obtain the same estimate on B. O

Lemma 4.1.7. Suppose that A € V" and A = Opyi(as) for 0 <t <1, Then
ay(z,€) = "D Pelg,

Moreover, a; — ag € hl_z‘sSg”_l.
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Proof. We compute the kernel of Opy(a:), Ki(z,y)

K(z,y) = (2nh) / eh 190, (1 1 (1 — t)y, €)de

27rh (x—y,E)+(te+(1—t)y+(t—s)&* —w,z*)+ <§’5*)_<5*”7>)a5(w,n)dwdx*dﬁ*dfdn

27Th 2d/€7' —y+E*,£)—(E*,m)) s(tx+(1_t)y+(t_8)£*’n)d£*d€dn

(2mh) d/eixy" (sz+ (1 —s)y,n)dn
Next, observe that
hDya, = (Da, RDF, (eHI O F (a) (2", €)) (2,€).
= (hDy, hDg)a; = Ogn-1(h*"%)
Hence, integrating we have a; — as € h'=287 1. m

Now that we have this lemma in place, we focus on the Weyl quantization. By Lemma [4.1.7
the properties of other quantizations agree up to lower order terms.

Composition of Symbols

The main lemmas of pseudodifferential calculus demonstrate how two elements, A € ¥} (R?)
and B € UJ?(R?) behave when composed. In particular, up to lower order terms, the
composition is the quantization of the product of the symbols.

In preparation for this, we need to prove Borel’s Theorem for the asymptotic properties
of the classes SP*(T*RY).

Definition 4.1.8. Suppose that a; € S;* 7/ (T*R?) for j = 0,1,... and r(h) = o(1). We say
that a ~ > ria; in S; °(T*R?) if

N-1
a— Z rla; = Sgn—N(TN).
=0
In this case we call ag the principal symbol of a.
Lemma 4.1.9. Suppose that a; € Sy (T*R?) for j = 0,1,..., r(h) = o(1). Then there
exists a € ST (T*R?) such that

a~ Z ria; in Sy =(T*RY).

Moreover, if & ~ 3> 17a; then a — & = Og-e (r*).
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Proof. Let x € C°(R) such that x =1 on |z| < 1 and supp x C {|z| < 2}. Let ¢y =1 — x.
Let

= r((\r) )y (4.1.4)
§=0
where )\;, j = 0,1,... is some Sequence With Aj — oo to be chosen later. Notice that since

Aj — 00, only finitely many terms in are non-zero for any fixed h and &.
First, we estimate

|’Yz

< D> Y Gy TR (N a%ajHaal

Y1+72=08 k=1 a1+...ap="72
|O%| 1

0((Ar)

< Gt (2(Nyr) ()T IR0l

where we use the fact that 2(¢)~' > (\;r)™! > C(€)™" on supp d¢¥. Denote xo = 1 — x;.

Next, we estimate for |(«, 5)| < j,
P [08020((rA) 1 as] < Crasr? (gr)™HEB(R00r) ™€) A ot gy =il
(4.1.5)
< QCjaﬂrj—lh—(lal+lﬂl)5/\j—1<§>m—j—|ﬁ\+1
< i1y~ (la+18)8  gym—i-I5+1 (4.1.6)

where we choose \; > Cj,527% for |(a, B)] < J.
Fix |(«, 8)|. For N > |(«, §)| we estimate

N [e'e) N

00l (a =Y rlap)| < D r0R0fw((\r)THE a + D 050F (1= w((rh)HE))ay]
=0 j=N+1 §=0
=:A+B

Then, by (E1.6)

A< Z 273 pd =1 = (el HIBDS (eym=i+1=1B] < N p=(lal+IBN3 (gym=N=I8]
j=N+1

To estimate B, observe that on 7~ 1(¢) > 2\x, B = 0. So, consider r~1(£) < 2\y. Then

using (4.1.5)) and
<§>_12T)\N 2 17

we have

N
B < Z CjaﬂerrN<£>fNQN)\%h*(laHlﬁl)%@mfj < CNaﬁhf(\aHIB\)JTN<§>m7N7|g|.
7=0

For N < |(a, 5)], we need only estimate a finite number of additional terms in A and hence
we can obtain the result by adjusting constants. O]
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We now prove the main composition theorem

Lemma 4.1.10. Let A = Oppis2(a) € U (RY) and B = Opy12(b) € UF*(RY). Then
AoB = Opy,1/2(a#b) € W™ where

a#b = € 2 DT D§ Dy, Dn (b((L’, é)b(y7 77))

y=x

and for 6 < 1/2,

X skpk

a#b~ Y G0 (De, De. Dy D) al, €)b(y, )

in S5 (T*RY).
k._

y=x
n=¢
In particular,

h _
a#b = ab + Z{a, b} + Osgnl-‘rmg—Q(h,z(l 20)
h 3(1-25)
[A, B] = Oph,1/2 ;{CL, b} + OS;nl-!—mg—S(h )
Proof. We first assume that a,b € S. Then observe that the kernel of A, K4(z,y) has

Ka(z +t/2,y —t/2) = (27rh)d/ (z,8)e # (08 ¢

Hence, by the Fourier inversion formula

a(x, &) = /KA(x—i—t/Q,y—t/Q)e;L(t’@dt.

Thus AoB = Opy,1/2(c) where

c(x, &) = (27rh)_2d/eii“"a (W,n) b (uH—yT—t/Q’T) dndwd£dt

p=(x—w+t/2,n) +{(w—x+1t/2,7) — (t,&)

Then, usingn — &, 7 — &, (w—x+1/2)/2, and (w
a Jacobian factor of 22¢. Hence,

where

— o —1/2)/2 as new variables, introduces

c(x, &) = (wh)™* / 0 + 2, €+ mb(a + £,€ 4+ 7)er > T dzdndtdr
= 37D (a(, ©)b(y, m))v=s

n=¢
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This is defined on SP*(T*R?) since SP*(T*R?) C S5(T*R?, (€)™). Thus, we need to check that
the image lies in S5 ™2 (T*R?). Let

1
A(D) = 50(Ds, De, Dy, D).

Then
N jkpk
9(@,§) = c(z,§) - FA(D)Ka(x,g)b(y,77) . (4.1.7)
=
Then )
9(x,§) = C/o (1—t)N exp(thA(D))(hA(D))k(a(x,§)b(y,n))‘%zgg dt.
Now,
(hA(D))N'H(a(;p’f)b(y, 77)) e BbIN+1)(1-29) Z Sa(<§>m1—k<n>m2—N—1+k>

and exp(thA(D)) preserves these symbol classes. Hence evaluation at & = 7 proves the claim
since N is arbitrary. O

The following useful corollary demonstrates the pseudolocality of pseudodifferential op-
erators.

Corollary 4.1.11. Suppose that § < 1/2, a € SP(T*R?), b € SF(T*R?) and that supp a N
suppb = 0. Then,
Oph,l/?(a)oOphJ/Q(a) = q;(;OO(hOO)-

Next, we prove a lemma that will be useful when understanding how symbols change
under changes of coordinates

Lemma 4.1.12. Operators of the form ([£.1.2)) lie in W§*(R?). In particular, A = Opy1/2(a;)
for

z

ay(x,€) = e"P=Pa(z — 5

T+ g,f) e Sp(TRY).

z=

Proof. For a € §, we have

nw,§) = @ty [ [alo /2.0 4+ 2/2,C+ Qe HEdad.
But this is the definition of

eMP=Pa(z — = x4 )

z=0

which maps S7*(R?? x RY) to SI*(T*R%) by the same arguments used in the proof of Lemma
4.1. 10l [
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L? boundedness

The goal of this section is to prove that for a € S5(T*R?), Opn,1/2(a) is bounded on L? and
to give estimates on the norm of Opy1/2(a). As a first step, we show that

Lemma 4.1.13. Suppose that a € S. Then
| Opn1/2(a) || 222 < (27h) "> F(a)l| 11 mae)-

Proof. The kernel of a is given by

K(z,y) = (27Th)d/a (m ; y,f) er v g = (QWh)Qd/fh(a)(n, y — w)er vy

Thus,

/ K (2, y)|de < (20h) 2| Fola) 1. / K (2, y)|dy < (20h) )| Fo(a)] 1

and Schur’s test proves the lemma. O

To prove L? boundedness for symbols in Ss(T*R?), we use a partition of unity on T*R?
combined with the Cotlar-Stein Lemma [87, Theorem C.5] to exploit oscillations in the kernel
of Opy,1/2(a).

Let x € C°(T*R?) such that 0 < x < 1, suppx C B(0,2), and Y72 Xa = 1 where
Xa(:) = x(- — @). Then, for a symbol a, define a, = xoa and bys := a#ag. Following [87,
Theorem 4.22|, we start with h = 1.

Lemma 4.1.14. For h=1 and all N > 0 and multiindeces -y,

9bas(2)] < Cyla— Bz = S Py, (4.1.8)
Moreover,
||OP1,1/2(ba5)||L2—>L2 < Cn{a— /3>_N- (4.1.9)

Proof. Let ¢ € C>*(R*) with ¢ =1 on B(0, 1), and supp ¢ C B(0,2). We have that

boat2) = (=) [ [ )+ (1 = ()= = wi)as(: = wa)dundu
= A+ B

where ¢ = 20(wy, wq). Note that on supp ¢, |wy| + |we| < 2. So, if |a — | > 8 then A = 0.
Therefore |a — 8] < 8. Moreover, |z —w; —a| < 2 and |z — wy — f] < 2. So,

12z —a+ 6| < |z —wy —al+ |z — wy — B] + |wy| + |wa| < 8.
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Hence ([4.1.8]) is clear.

To estimate B, we use the same argument as in Lemma to see that
|07B| < Chry / (W) Mey (2 — wy)eg(z — wo)dwy dwsy
R2d JR2d

where supp ¢, C B(«,2) and suppcg C B(,2) and

sup |cqacs| < C sup |0%al. (4.1.10)
al<
Hence, on supp c,cs,
a—+
(a—=p5)+ (- T> < C{w).

Then the estimate (4.1.8)) follows.
We use Lemma [4.1.13] to prove (4.1.9)).

| F1(bagp)|| 11 = /<w>2d1 ‘fl(baﬁ)(w)<w>2d+l‘ d
< Clw) i D) bagll e < Cla— B)~

Finally, we prove L? boundedness for symbols in Ss(T*R?).
Lemma 4.1.15. Suppose that a € Ss(T*RY) with 0 < § < 1/2. Then,

|| Oph,1/2(a)||L2ﬁL2 <C Z h|a‘/2 sup |aaa|'

lal<Md

Proof. Let Ay = Opn,1/2(aa) and Bag = Opni/2(bag). Then, B.g = A} Ag. So, for h = 1,
Lemma [4.1.14] implies that

145 Al 22 + | Aa Al r2pe < Cla = B)N.

Hence,

supZ | Aa A5 + supZ [ALAsll < C
* B * B

and, since Opy,1/2(a) = Y, Aq, the Cotlar-Steim Theorem implies the result. Moreover, by
, the constants depend only on a finite number of derivatives of a.

To prove the estimate for i # 1 we rescale to h = 1. Let & = h~Y2z, £ = h1/2¢,
(%) = hiu(h'2%) ap(F,€) = a(h'/2%, h/2€). Then, ||i||z2 = ||ul|z2. Moreover,

h_4 T Uy~ .z ~
Oph71/2(a)u = W//ah (Zﬂ’€> €Z<x—y7§>a<g>d:&d£

= h_%Oleﬂ(ah)iZ(i)

IS
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So,

| Opw1jo(@)ullzz = [ (Opy1jpan®) (#)z2 < C sup [ alulzz < C sup b (0%l |ullz
la|<Md || <Md

O

Ellipticity

Throughout this thesis, we will be interested in inverting pseudodifferential operators. The
first lemma used to understand this is

Lemma 4.1.16. Suppose that m > 0, a € SP(T*RY) has |a| > e(&)™. Then for u € S,
d < 1/2, and h small enough,

Julls < €1l Opsyafayulls
Moreover, if m =0, then (Opn1/2(a))™ € Us(RY).
Proof. Let a as above. Then, b:=a~' € S;™(T*R?) and hence a#b,b#a € S5 with
b =1+ Og(pgay (%), b#a = 14 Og-1(puzay (A1),

That is,
Opn,1/2(a)o Opnasa(b) =1+ R, Opni/2(b)oOpnija(a) =1+ Ry

where R; = Op2_,72(h*~2°). Now, we have that I + R; is invertible by Neumann series. Thus,
[ullz2 = [I(1 + R2)™" Opn,/2(b)o Opn,ij2(a)ull 2 < C|| Opnaya(a)ul|e.

If m = 0, then a is bounded on L? and hence Opy,1/2(a) has a left and a right inverse. Thus,
it has an inverse (Opp1/2(a))™" = (I + R2) ™" Opp1/2(b). Now,

00 N-1
(4 Ro) ' = (~1)FRE = D (= 1) RS + 0y (WNU729),
k=0 k=0
Since N is arbitrary, (I + Ry)™' € ¥, and hence also (Opy,1/2(a))~" € U™ O

Now, we prove the Sharp Garding inequality as in [87, Theorem 4.32]
Lemma 4.1.17. Let a € S;(T*RY) with a >~ > 0. Then

(Opna2(a)u, u) > (v = CR' =) |u|Z,

for 0 < h < hy and u € L?.
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Remark: In fact more is true. The Fefferman—Phong inequality states that for such an a

<Oph71/2(a’)u7u> > (v — ChQ(l_%))HU”%?-

We follow [87, Theorem 4.32]. We first need the following calculus lemma.
Lemma 4.1.18. Suppose a € Ss(T*R?) has a > 0. Then, |0a] < Ch~%al/?,
Proof. Write

a(w + 2z) = a(w) + (Ja(w), z) + /0 (1 —t)(D*a(w + t2)z, z)dt

Then, using z = —Ada(w) and a > 0,

MNOa(w)* < a(w) + )\2/0 (1 —1)(0%a(w — Atda(w))da(w), Da(w))dt
< a(w) + %|8a(w)|2 sup |0%al < a(w) + Ch_25%|8a(w)|2

So, choosing A = C~1h? |9a(w)|? < 2Ch~%a(w) as desired. O
We now prove Lemma [.1.17]

Proof. Rewriting a = a — 7, we assume that v = 0. The idea of this proof is to use an h-
calculus. That is, we fix a small & and give symbol estimates that are uniform in & for h
small enough depending on h. In fact, we use slightly different symbol classes than those in

(4.1.1). We write
SP(R? x RY) = {a € C®(R* x RY) : (920 a| < Cogh™ 1A ()1,
The quantization and composition formulae for such symbols follow from slightly simpler

versions of those above that can be found in [87, Chapter 4].
In particular, we show that for h fixed small and A\ = h'=%°/h,

hl_%(a + )\)_1 € Egl/Q(T*Rd)
With this estimate, we will be able to invert a + A modulo a lower order term. First, note

that

|al

(a+N" =@+ > Cs 5kH(a+)\)_10’Bja.

k=1 a=p1++B4

18;1=1
Now, for |#| = 1, Lemma {4.1.18| implies
10%al(a + X)L < CAONTY2(AY2012) (o + N7 < ChoA Y2,
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Also, |0%a|(a + \)~' < Ch~9IFIN=1. Together, these imply that

k

H((a +N)19%a

j=1

< C R0l \—lal/2,

Hence, for A = h'~2/h,
bi=(a+ N\ €h/hHS H(TRY).
Since {a + A, (a + A\)~'} = 0, we have by Taylor’s formula,
(a+N#b(w) = ™ (a(w) + Nb(2)|,_,

=1+ /1(1 — 1) A D) (ih A(D))*(a(w) + N)b(2)]mwdt =: 1+ 7(w)

Now, for |a| = 2, h?0°b € h*hS, o(T*R?). Hence, using the fact that e*4(”) preserves
symbol classes, and |0%a| < Ch~%°, we have that for h small,

| Oph71/2(r)HL2~>L2 < Ch < 1.

This implies that Opy,1/2(b) is an approximate right inverse of Opp/2(a) + A. Similarly, it
is an approximate right inverse.
Together, this implies that for all 7 > 0, Opy1/2(a) + 7 has an inverse and hence that

Spec (Opn,1/2(a)) C [=A, 00).
Hence, [87, Theorem C.8§]
(Opnj2(a)u,w) > =Aullze = ~Ch'™|ull72
as desired. O

With this in place, we now improve the estimate in Lemma [4.1.15| (see also |21, Appendix

Lemma 4.1.19. Suppose that a € Ss(T*RY). Then there exists C > 0 such that

1 p—
| Opn,1/2(a)||r2p2 < sup la| + Ch3(1=29),
T*R

Moreover, if suppuga |a| > ¢ > 0, then

| Opn1/a(a)||zessr2 < sup |a| + Ch'™.
TRd
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Proof. Let Cy = supp.ga |a|. Write A = Opp1/2(a). Then A* = Opyp1/2(a). Hence, A*A =
Oph,l/?(a#a)v NOW7

Next, we apply the Sharp Garding inequality
Collullfe — | Aullz: = ((CF — A" A)u,u) > ~Ch'=*||u]2,

Hence,
[Au|72 < C3llull7> + CRU—2),

which implies both statements. [

Remark: In fact (see, for example [87, Chapter 13]) we have

sup |a| — Ch'™ < || Opy2(a)|lr2ze < sup |a| + Ch' ™%,

4.2 Pseudodifferential Operators on Manifolds

Up to this point, we have defined pseudodifferential operators acting on functions. However,
thinking of pseudodifferential operators acting on half densities leads to better invariance
properties. Moreover, when we move to Lagrangian distributions the only way to define an
invariant (even locally) symbol will be to use half densities.

Densities

We first recall the notion of a vector bundle over a manifold M.

Definition 4.2.1. A vector bundle (V,m) of dimension N over a smooth manifold M is a
smooth manifold V' and a smooth map 7 : V' — M such that

1. Forx € M, V, :=n(z) ~ CV.

2. For all x € M, there exists U, a neighborhood of = and a diffeomorphism ¢, called a
local trivialization such ¢ : 7= Y(U) — U x CV with

mop =n: 7 (U) = U. (4.2.1)

To specify a vector bundle V| it is actually enough to choose a set of transition matrices
(see for example 87, Section 14.1.2]). In particular, let {(~;,U;) : i € Z} denote an atlas for
M and {p; : i € Z} such that and ; : 7~ (U;) = U; x CV with property (4.2.1)). Then the

transition matrices are given by

Yi; = piop; € C(U; NU; GL(N, C))
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where GL(N, C) denotes the set of N x N complex, invertible matrices. Next recall that a
section of a vector bundle V' is a smooth map u : M — V such that mou = Id. We then
write u € C*(M;V).

We can now define the notion of s-densities.

Definition 4.2.2. The s-density bundle over M is the vector bundle of dimension 1 given
by choosing the transition functions

i () = | det d(y;0; 1) Pori(). (4.2.2)

It is denoted Q°(M).

Remark: As vector bundles Q°(M) ~ M x C. That is, C®(M; Q°(M)) = C>*(M).

We call sections of Q!'(M) densities, and sections of Q'/2(M), half densities. The im-
portant property of densities is that for u € C(M;Q'(M)), integrals of u are invariantly
defined.

The next lemma shows how s and ¢ densities relate to one another.

Lemma 4.2.3. Suppose that u € C®(M;Q%(M)) and v € C*(M;Q'(M)). Then, uwv €
C>°(M; Q*tH(M)).

Proof. We only need to check that uv satisfies the correct transition relations. Let ¢ :
;W (U;) — U; x C and ¢y : 7 (U;) — U; x C denote local trivializations of Q°(M) and

QY (M) respectively. Then, write ¢ ;(u) = (x,u;(x)) and @4 (v) = (2, v;(x)). Define (uv);(z) =
u;(x)v;(x). Then for x € U; N Uj,

uj(2) = [det O(y;00; )"ovi(z)us(x)  vj(x) = | det D(vj0n; )| ovi(z)vi(x)

Hence,
(wv);(x) = | det D(yj00; )" omi(w) (uv)i(2).
O

We say that u € C*°(M; Q' (M)) is positive on U C M if for all W € U open, [, u > 0.
By similar arguments to those above and the corresponding property for functions:

Lemma 4.2.4.
1. Foru € C®(M;QYM)) a positive density, we can define its r™ power

u" e C®(M; Q" (M)).

2. Suppose that v € C®(M;QY(M)) is positive on U. Then for all u € C®(M;Q*(M)),
and x € CX(U), there exists f € C°(U) such that xu = fv®.
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Next, we show that for every coordinate patch U, there is a positive density.

Lemma 4.2.5. Let U C M be a coordinate patch with coordinates x*. Then |dx| := |dz' A
- Ndx?] is a positive density on U.

Proof. This follows from the fact that the transition functions for dz' A --- A dx? are given
by

i () = det (y;09; ) ovi()
and that for W e U,

/|dac1/\---/\dxd|:/ day - dzg = |4(W)] > 0.
w ¥(W)

]

The second property in Lemma together with Lemma show that to define an
operator on s-densities, it is enough to define it on those of the type f|dz|®.

A positive density, v, exists by combining a partition of unity argument with Lemma
4.2.50 Hence, after fixing such a v, we can identify s-densities with functions. In particular,

C(M; (M) = {uw® :u € C(M;C)}.
Finally, we define pull-backs for densities and functions.
Definition 4.2.6. Let F': M — N be a C* map between two manifolds.
1. We define the pull-back F* : C*°(N;C) — C*(M;C) by u + uokF.

2. For M and N both of dimension d, we can define the pull-back F* : C*°(N;Q*(N)) —
C>®(M;Q°(M)). Let U and V be coordinate patches on N and M respectively. Then,
on for u € C*®(M) supported in U N F~1(V),

u(y)|dy|® — uw(F(z))|det OF |°|dx]|®.

where |dy| and |dz| denote the Lebesgue measure in the x and y coordinates respec-
tively.

Remark: This definition of pull-backs for s-densities is consistent with their transition
functions.
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Operators Acting on Half Densities on R?

For this section, we return to the case of M = R where there is a canonical density given
by Lebesgue measure. Throughout this section, we identify C>=(R%; QY/2(R9) with C*(R?)
using this density. That is, we write v = u(x)|dz|"/2.

We assume v : R? — R? is a diffeomorphism equal to the identity outside a compact
set and denote the new variables by z; = ~y(x). We define the pull-back of a function u by
writing u in the x, variables. That is, v*u; = u or

wn(21) = wr (7(2)) = u(z).

The problem that we want to correct is the fact that L? norms of functions are not invariant
under coordinate changes i.e.

/]ul(xl)IQd:zrl #/]u(m)ﬁdw.

To do this, we use the notion of a half-density from above.
If v is a half-density, then |u|? is a density and hence can be integrated. Moreover, letting

uy = y'u,
/ g ? = / uf?

and hence the L? norm of an element u € C=°(R%; QY2(R%)) is well-defined.

Definition 4.2.7. We define L*(R%; Q'Y2(R?)) to be the completion of C>®(R?; QY2(R?))

with respect to the norm
1/2
||u||L2(Rd;Ql/2(Rd)) = (/ |U|2) .
Rd

It is then clear that +* : L?(R?; QY2(R?)) — L?(R%; QY2(R?)) is an isometry.
For an operator A : C®°(R% QY2(R?)) — C°(R% QV2(RY)) or A : L2(R% QV2(RY)) —
L*(R%; QY2(R?)) we define the pull-back by v~' of A by

A= (vH Ay

v

Integral kernels also fit nicely into the theory of operators acting on half densities. In
particular, for K € S'(R*?), K (x,y)|dx|*/?|dy|*/? acts as an integral kernel on half densities.
That is,

Atuldsl ) = [ G ldal g Putlay =
Ra

Lemma 4.2.8. Let K be the kernel of an operator A acting on half densities. Then, the
kernel of A, is given by K. -1(x1,y1)|dx1|"?|dy,|V/? where

K1 (z,91) = K(2,9)|0y(2)| 7107 (y) 72,
x1 =7(x), y1 =(y) and |0y(z)| = | det Oy(z)|.

K(x,y>u<y>dy) da] 12

R2d
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Proof.
A1 (w|day ['2)

() / K ()| da] | dy] 2 (us|dys | )
()" / K (2, y)|da| 2| dy[us (+(9)) |0 () [/2|dy| 2

</K 2, y)ur (v(y))107(y )Il/"‘dy> ] /2

as desired. O

It is often useful to think of operators acting on functions as acting on half densities. In
particular, if A has kernel K(z,y) acting on functions, then we can think of A as having
kernel K (z,y)|dz|'/?|dy|'/? when acting on half densities.

Pseudodifferential Operators and Changing Variables

Our first step is in understanding how pseudodifferential operators behave under changes of
variables is to see that the symbol classes ST(T*R?) are invariant.

Lemma 4.2.9. Suppose that v : R? — R? is a smooth diffeomorphism with
[0%9] +10%v7'] < Ca
for all . Then if a € SP*(T*RY), its pullback by the lift of v to T*R?
va(@,§) = aly™ (@), 07(v(2))6)
lies in S (T*RY).
Proof. Define b(z,€) := a(y~'(x),&). Then,
Jov*a = chp (070¢b)

where || + |o| < |a| and |o| = |p|. Hence,

020070 =Y Coopuen (07 D)
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with |y| + |o| < |al, |o| = |pl, |k| = |Al, [v| = 18], v > k, p > A. Now, it is clear that
b € ST (T*RY). So, we have the estimate

1020077 a] < 3 ey~ HHILH-IRD (gymt -l
< Caﬁh—5(\al+lﬂ\)<5>m—lﬁ\
Hence, v*a € S§*(T*RY). O

Next, we show that v*a is the notion of pull-back that, up to lower order terms, corre-
sponds to changing variables and applying a pseudodifferential operator. In particular,

Lemma 4.2.10. Suppose that a € ST(T*R?) and v as in Lemma . Then
Opn,1/2(a)y-1 = Opn1ja(7*a) + Ogm-2gay (h* )

as operators acting on half densities. Moreover,
Opn,1/2(@)5-1 = Opn,1/2(7*a) + Ogm-1(gay (A7)

as operators on functions.

Proof. For simplicity of notation, we write from now on that vy(z) = z; and v(y) = y;. The
kernel of Opy 1/2(a),-1 acting on half densities is given by

_ T+ il _ _
Ko onn) =t [ (T52€) ek 0 delon o) ion 0]

Lemma [4.1.12 shows that there exists a; € SP*(T*R?) such that

1+ Y
2 )

Kyfl (3717?/1) = (QWh)_d/al < 51) €%<I1_yl’€1>d£1.

Let x € C>®(RY) with xy = 1 near 0. Define

Ky-i(z1,y1) = Ky (21, y1) (X (21 — 1) + (1= x(z1 —w1))) =1 A+ B.

Letting L = %, using Le# @v8) = en#=v4) together with the fact that a € S (T*R%),

|z
we see that B is a kernel of the form

B = (2mh)~* / b(a,y, €)er @) de

with b € h>S;*°(T*R?). Hence, Lemma [4.1.12| shows that B is the kernel of an operator in
hoeW s> (RY). In particular, A = Opy1/2(a1 + Og-o0 (gay ().
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Thus, we need only consider A. We compute a; up to terms of Osgnfz(hz(k%)). To do

this, write
Ay, 1) = (27Th)d/a1 (M’&) e%(’v(x)*v(y),&)dfl.

Since we are working near x; = y;, we are working near x = y and hence Taylor expansion
around x = y, give accurate representations in the region of interest. In particular, the
Taylor expansion of v around x—;y =: z(x,y) gives

r—Yy
2

r—y
2

1) =) + () Y+ SO~y ) + (Fly) o~ )

1) = 9(2) —09(2) 5L+ L) — ), — ) — (F(y, )7~ )

where F(z,y) = O(]z — y|?). This implies that

v(@) = v(y) = (07(2) + O(|lz — yI*)) (z — y) =: g(z,y)(z — y)

and
Y(@) +9(y) = 27(2) + O(|z — ).
So, changing variables with & = ((g(z,y))™ 1),

A= (2mh) / bz, 1, €)| det glz, y)|~Let DE W 0@ ge (4.2.3)
where
b(w,y,€) = ar (¥(2), (97(2))) 7€) + o(h~°|z —y)e ¢ S5
Moreover,
| det g(z, y)|* = [det 0(2)|* + O]z — y|*)
and

| det 9y(2)[> = | det Dy (y)|| det Dy ()] + (A(2), z — y) + O]z — y|*).

But since z is symmetric under switching = and y, and the term involving A(z) is odd under
switching « and y. Thus A(z) = 0. Finally, notice that

g(@,y) " (v(x) = v(y) =z —y.
All together this implies that

A= (2rh)™ / b(a,y, €)er @V de| det Oy (y)| /2| det Dy(x)| Y/

where b still has the same form. To verify that the O(h=°|z — y|?)ST(R?? x RY) term gives
an error of Osgn72(T*Rd)<h2736 ), we integrate by parts twice using L from above.
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Together, with Lemma this implies that

a1((2), ((07(2))")'€) = al2,€) + Ogm-2(pupay (h*~)

as desired.
For operators on functions, we need to replace |det dy(z)|~'/2 by |det dy(y)|~*/2. This
introduces an error of size |z —y| and hence we have the second statement in the lemma. [

Definition of Pseudodifferential Operators on Manifolds

We now have the tools in place to define pseudodifferential operators on a compact manifold
M as in [87, Chapter 14].

Definition 4.2.11. For ¢ < 1/2, we say a linear operator A : C*°(M) — C>®(M) is a
pseudodifferential operator of order m and type 6 and write A € V(M) if

1. There exists an m € R such that for each coordinate patch U,, there exists a, €
Sm(T*R?) such that

pA(Yu) = 7" Opnajala,) (v (Yu)
for all ¢, € C*(U,) and u € C>(M).
2. For all oy, o € C°(M) with supp ¢; Nsupp ¢e = 0, and any N,
©1Aps = O~ (ay—un () (h°).

Next, we show the existence of a symbol and sub-principal symbol for pseudodifferential
operators acting on half densities. We say that a € Sy*(T*M) if for all coordinate maps
v, v*a € SP(T*R?). By Lemma this does not depend on the particular choice of
coordinates.

Lemma 4.2.12. There exist maps
o WP (M) — SPT*M) [p-2sgm (e ar)

and

Opy = S§*(T*M) — V(M)
such that o0(A1Ay) = 0(Ay)o(A2) and

7(Op(a)) = [o] € SPTM) /-2y ag).
Moreover, there exists a map

oy : \Ifé\/[(m) . h1—255g”—1(T*M)/h2—465g1—2(T*M)
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such that
A= Opn(o(A) +01(A)) = O\I/gnf2(h2_36). (4.2.4)

The maps o and oy are called respectively the principal and sub-principal symbol maps.

Proof. First, assume that U C R? and B : C°(U) — C*°(U) such that for ¢, € C=(U),
©By € UI(R?). Then, we show that

B = Opy,1/2(a) + Bo (4.2.5)

with a € S§},.(U x R?) and for V € U, and all N, By : H- (V) = HY(U) = 0(h™).
Let 1; be a locally finite partition of unity on U. Then, write B = ij ;B We have
that 1; By, = Opp1/2(aji) for some aj, € SP(T*RY) with aji(z,£) = 0 if = ¢ supp ;.
Let
J = {(j,k) : supp; Nsupp ¥y # 0}

Then define a := Z(j,k:)e] a;,. Then we have

By =B —Oppip(a) = Y ;B
(G.k)¢ET

Hence, by the local finiteness of the partition, the fact that v; By € ¥5(R?), and Corollary
4.1.11| By has the required property.

Now, for each coordinate chart (v,U,), and ¢, € C*(U,), 1, A has the same properties
as B above. Hence, defines an a, € Sy*(T*U,). Now, if U,, NU,, # 0, then as
operators on half densities, Lemma shows that

(a’% - av2)|U»ylﬂU»yQ € h2_35)Sgl_2(T*(UW1 N Uw))'

To define the symbol map, we use a partition of unity ¢., subordinate to the coordi-
nate charts (v;,U,,), and write a = ), ¢, .a,,. Then a is well defined as an element of

Sém(T*M)/hQ(l—%)Sg”—?(T*M) and hence we have defined ¢ and o;.

Finally, we define the quantization procedure, Opy. To do this, let >, ¢? = 1 be a
partition of unity subordinate to U,,. Then write

Opn(a) = Z ©i(7:)* Opn1y2(a) (v, ) i

where

ai(x,§) = a(y; ' (2), (97, (2))'€)-
Then, (4.2.4) follows from Lemma [4.2.10{ and the composition properties follow from those
of Weyl quantization. [
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Remark: If we use Opy ¢ for ¢ # 1/2, then the subprincipal symbol can still be defined, but
the map o involves certain derivatives of the map o.

It is now easy to check the analogs of Lemmas [4.1.16] and [4.1.19] for pseudodif-

ferential operators on manifolds.

4.3 Microlocalization

It is often useful in our analysis to think of decomposing functions and operators into pieces
that are localized both in frequency and space. However, this is not strictly speaking possible.
Instead, we develop the notions of wave-front set and microsupport in order to decompose
into pieces that are almost localized to certain locations of phase space.

Wave-front Sets and Microsupport

If A: C®(M) — C>(M) is a properly supported operator we say that A = Oy-(h™) if A
is smoothing and each of the C°°(M x M) seminorms of its Schwartz kernel is O(h™).
We define the radial compactified contangent bundle 7" M := T*M U S* M where

SM = (T"M\{0}) /g,

and the Ry action is given by (¢,(x,§)) — (x,t€). That is, S*M is the fiber at infinity
of T*M. Letting | - |, denote the norm induced on 7*M by the Riemannian metric g, a
neighborhood of a point (zo, &) € S*M is given by V x (U N ||, > K) where V' is an open
neighborhood of zy and U is a conic neighborhood of &.

Microlocalization of Pseudodifferential Operators

For each A € Wk(M), we have A = Opy(a) + Og-(h™) for some a € S¥(T*M). Define the
semiclassical wavefront set of A, WFy, ¢(A) € T M, as follows.

Definition 4.3.1. A point (z,£) € T" M does not lie in WFy, ¢ (A), if there exists a neighbor-
hood U of (z,€) in T° M such that each (z, £)-derivative of a is O(h®(€)~>°) in UNT*M. As
in [4], we write WFp, g (A) = WF] (A) UWF} ;(A) where WF} 4 (A) = WFy g(A) N T*M
and WF} (A) = WFy g (A) N.S*M.

Remark: It is clear from the definition that WFy, ¢(A) is closed.

Operators with compact wavefront sets in T M are called compactly microlocalized; these
are operators of the form Opyp(a) + Oy-(h>) for some a € S;"P(T*M). We denote by
WP (M) the class of all compactly microlocalized elements of W¥(M). As before, we put
Weemp(M) = U®™P(M). Compactly microlocalized operators should not be confused with
compactly supported operators (operators whose Schwartz kernels are compactly supported).

We need a finer notion of microsupport on hA-dependent sets.
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Definition 4.3.2. An operator A € WU (M) is said to be microsupported on an h-
dependent family of sets V(h) C T*M, if we can write A = Opy(a) + Oy-=(h™), where for
each compact set K C T* M, each differential operator 0“ on T*M, and each N, there exists
a constant C, vk such that for h small enough,

sup  |0%(x, & h)| < Canih?.
(z,£)eK\V (h)

We then write MSy, gw(A) C V(h).

Remark: Notice that since we are working with A € U™ (M) for 0 < § < 1/2 we have
a € SP"P(T*M) and a can only vary on a scale ~ h~°. This implies that the set MS}, y(A)
will respect the uncertainty principle.

Combining with Lemma[4.1.12] we can see that change of variables formula for the
full symbol of a pseudodifferential operator contains an asymptotic expansion in powers of
h consisting of derivatives of the original symbol. Thus definition does not depend on
the choice of coordinate maps in the quantization procedure Opy. Moreover, since we take
§ < 1/2,if A € U"™P(M) is microsupported inside some V (h) and B € W%(M), then AB,
BA, and A* are also microsupported inside V' (h). This implies the following.

Lemma 4.3.3. Suppose that A,B € W (M) and MSpy(A) N MS,w(B) = 0. Then

It follows from the definition of the wavefront set that for A € U"™ (2,£) € T*M does
not lie in WF}, y(A) if and only if there exists an h-independent neighborhood U of (x, £) such
that A is microsupported on the complement of U. However, A need not be microsupported
on WFy(A). It will be microsupported on any h-independent neighborhood of WF},(A).
Finally, it can be seen by Taylor’s formula that if A € U"™P(M) is microsupported in V' (h)
and ¢’ > 0, then A is also microsupported on the set of all points in V' (h) which are at least
h?" away from the complement of V'(h).

Microlocal Ellipticity

In Section [4.1] we defined the notion of ellipticity for A € W(R?). It is useful to have a
notion of microlocal ellipticity for pseudodifferential operators.

Definition 4.3.4. We say that (z,£) € T M is in the elliptic set of P € W(M) if there
exists a neighborhood U of (z,¢) and a constant C' > 0 such that |o(P)| > C(£)™ in U. We
write (x,&) € ell(P).
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Remark: It is clear from the definition that ell(P) is open.
We have the following analog of the estimates in (see also [22, Section 2.2])

Lemma 4.3.5. Suppose that P € UP(M) and A € V' (M) with WFy, 5(A) C ell(P). Then
there exist Q; € W' ~™(M) such that

In particular, for each s € R and u € H;’;er/ there exists C' > 0 such that for all N >0,

[ Aul

my < C||Pul

bt + O] v

Proof. By composing with appropriate powers of (hD), we may assume that m = m/ = s = 0.
Let p € Ss(T*M) be such that P = Opy(p) + Oy-(h>). Define ¢y = z%' Then qg € Ss(T*M).
Then, by Lemma |4.1.10| together with the definition of wave-front set,

A= Opy(@o)P + h'"A,.

where A; € U;'(M) with WF(A;) C ¢(P). Then, by induction, there exist ¢; € ¥;” such
that
Aj = Oph(qJ)P + h1_26Aj+1.

with A; € U7 (M) and WFy(A;) C £(P).
Now, by Borel’s lemma the exists ¢ € Ss(T* M) such that
§~ Z =20,
J

Hence,

A= Opn(g)P + O\I/(;W(hoo)-

The construction of )5 follows analogously.
To obtain the estimate, simply take L? norms of

Au = QPu + O\I,é—oo(hoo)u

to obtain
[Aullz2 < C|[Pullr2 + O(h™)|[ull v

as desired. O
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Microlocalization of Distributions and Operators

An h-dependent family u(h) € D'(M) is called h-tempered if for each open U compactly
contained in M, there exist constants C' and N such that

()l g ) < CRY

Definition 4.3.6. For a tempered distribution u, we say that (x¢, &) € T*M does not lie
in the wavefront set WFy,(u), if there exists a neighborhood V' of (zy, &) such that for each
A€ U (M) with WFL(A) C V, we have Au = Og(h™). As above, we write

WFy(u) = WFL (u) UWFS (u)
where WF! (u) = WFy,(u) N S*M.

By Lemma [4.3.5] (z9,&) ¢ WFy(u) if and only if there exists A € (M) elliptic at
(20, &) such that Au = Oge(h™). The wavefront set of u is a closed subset of T M. Tt is
empty if and only if u = Ogee(ar)(R™).

Lemma 4.3.7. For u tempered and A € VE(M), WFy,(Au) C WFy, ¢ (A) N WFy ().

Proof. First, suppose that (x¢,&) ¢ WF, w(A). Then let x € S(IT*M) have x = 1 near
(wo,&0) and supp x N WFy, ¢(A) = 0. Then Opy xA € ¥;°*°(M) and hence Opy, x(Au) =
Oce (h*°) which implies (x¢,&y) ¢ WF,L(Au).

Next, suppose that (zg,&) ¢ WF,(u) and let x € S(T*M) have xy = 1 near (z,&p) and
supp x C V where V is as in the definition of WFy,(u). Then WF}, ¢(Opn(x)A) C V. Hence,
Opn(x)Au = Oce (h™) and (xg,&y) ¢ WEFL(Auw). O

Next, we prove that C°(M) is dense in D'(M) in a way compatible with the wavefront
set. Moreover, we give another characterization of wavefront set. (For the microlocal case,
see |40, Section 8.3].)

Lemma 4.3.8. Let V C R be an open set. For a tempered distribution u € D'(V), (zo,&) ¢
WEFy, (u) if and only if there exists a neighborhood U of x¢ and a neighborhood W of & such
that for x € C*(U),

[Fr(xu)(€)] < Cyh™ (€)™, e W (4.3.1)

Moreover, for all $ € C°(V)) and W closed neighborhood in Re (the radial compactification
of RY) with
WFyL(u) N (supp o x W) =0 (4.3.2)

there exists u; € C°(V) with u; - u € D'(V) and

sup  sup V(Y| Fu(duy) ()] < oo, N=1,2,...
7 EEW ,h<hp
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Proof. Suppose that (z9,&)) ¢ WFy(u). Then there exists W a neighborhood of (¢, &) such
that for all A with WFL(A) C W, Au = Oge(h™). Take x; € C(V) with x; = 1 near z,
and y, € C*®(R?) with yo = 1 in a neighborhood of &, and such that supp x1(z)x2(§) C W.
Let x(z, &) = x1(x)x2(§). Then,

Fn(Opn(x)u) = x2(&)Fa(xau)(€) + 0(h>(€)™7) = O(h>(£)"™).

Hence (4.3.1)) holds.
For the converse, suppose (g, &) has (4.3.1]). Suppose that W; € W is a neighborhood of

& and U; € U aneighborhood of zy. WF,(A) € UxWj. Let x; € C°(U) and xo € C* (W)
with y1x2 = 1 on WF(A) and supp x1x2 C U x Wi. Then,

Au = AOpp(x1x2)u + Og= () = Oc=(h™).

Let ¢ and W as in (4.3.2). Let x; € C°(V) with x; = 1 on any compact set in V for j
large enough and 0 < ¢; € C°(R?) with

/@mz1

and supp ¢; + supp x; C V for j large enough. Define u; := (x;u) * ¢; € C(V) for j large
enough. Then we have u; = u € D'(V) and u; € C(V). Now, take ¢ € C°(V) and a
neighborhood W; with interior containing W such that

WFy(u) N (suppy x Wi) = 0.
Then for j large enough, ¢u; = ¢w; with w; = ¢; * (Yu). Hence,
[ Fhws| = [Fa(@3) || Fn(du)| < | Fr(du)] = O(RF(E) ™), £ W
O

As for pseudodifferential operators, we need a finer notion of microlocalization on h-
dependent sets

Definition 4.3.9. A tempered distribution w is said to be microsupported on an h— depen-
dent family of sets V/(h) C T*M if for § € [0,1/2), A € U (M), and MS, ¢(A) NV =0,
WFy(Au) = 0.
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Remark: As with MSy, ¢, MS;, respects the uncertainty principle because we are testing
with operators A € W5*™P(M) and these operators vary only on scales ~ h~.

Next, we define microlocalization for operators. Although this can be (almost) equiva-
lently defined in terms of the microlocal properties of the distributional kernel of an operator
we do not do so. Instead, we choose to define it in terms of how the operator transports the
wave-front set of a distribution.

An h- dependent family of operators A(h) : S(M) — S'(M’) is called h-tempered if there
exists N > 0 and k € Z*, such that

Definition 4.3.10. For an h-tempered family of operators, we say that (zo,&o, yo,m0) €
T"M' x T"M does not lie in the wavefront sett WF,,'(A) if there exists a neighborhood
V' of (o, &0, Y0,M0), such that for each By € W(M') and By, € V(M) with WF}, ¢(B;) X
WF}, ¢ (Bs) C V and all u(h) tempered distributions, we have WF}, (B AByu) = (0.

Definition 4.3.11. A tempered operator A is said to be microsupported on an h-dependent
family of sets V(h) C T*M x T*M', if for all 6 € [0,1/2) and each B; € W (M’) and
B, € \115(M) with (Msh’\p(Bl) X MSh7\I](B2)) nv = (Z), we have WFhI<BlAB2) = (). We then
write MSy'(A) C V(h).

Remarks:
e With the definitions above, we have for A € U*(M),
WEY(A) = {(z, & 2,8) : (z,) € WFLe(A)}-
In addition, we have that if A € W5 then MSy, ¢(A) C V(h) if and only if
MSy'(A) € {(z,&,2,8) : (z,8) € V(h)}.

Since there is a simple relationship between WF}, ¢ and WF},, as well as MS; ¢ and
MSy,, we will only use the notation without ¥ from this point forward and the correct
object will be understood from context.

e Notice that if K is the distributional kernel of an operator A, then

WFh(K) = {(x757y777) : <x7€ay7 _77) € WFh,(A)}
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Wavefront-set Calculus

In Section [4.4f we need some facts about the calculus of wave-front sets which we present here.
Since the wave-front set is a local object, we restrict ourselves to considering R?. We follow
[4, Section 3.1}, [36], Section 7] and [40} Section 8.2] to develop the wavefront set calculus.

Lemma 4.3.12. Suppose that X C R™ and Y C R™ are open. Suppose that u € D'(X) and
v € DY) are tempered. Then the map (u,v) = u®v from D'(X) x D'(Y) - D'(X xY)
1s well defined and

WFy(u ® v) € WFy(u) x WFy(v) U (WFS (u) x suppv x {0}) U ({0} x suppu x WF} (u)

Proof. For u € C*(X) and v € C*(Y), we define u ® v by

(u®v,p) = /U(x)v(y)so(x,y)dxdy-

Hence,
Fiulu® 0)(E.m) = Fu(u)(€)Fu(0) () (433)
and
(u® v, ) = (2nh) " / () (€) F(0) (1) Fl0) (€, )y (4.3.4)

Let v € D'(X) and v € D'(Y) with v; — w and v; — v, u; € CX(X), v; € C2(Y).
Then |Fp(uj)] < Ch™M(&)™M and |Fy(v2)] < Ch~™ (n)~™. Hence, the right hand side of
(4.3.4) with u; and v; replacing u and v converges by the dominated convergence theorem.
Moreover, if we replace u and v by pu and v with ¢ € C*(X) and ¥ € C°(Y), then the
right and side of is well defined and we see that the limit of (u; ®v;, ¢) is independent
of the sequences u; and v;. Together with a partition of unity, this defines u ® v.

The wave front set condition follows from a partition of unity argument together with

the fact that (4.3.3)) holds for u € £'(X) and v € E'(Y). O

First, we recall the definition of the pull-back of a function and the push-forward of a
distribution.

Definition 4.3.13. Let f: X C RY - Y C R be an C* map and u € C®(Y). We define
the pullback of uw by f, written f*u to be uof. Then f*: C*(Y) — C*(X).

Definition 4.3.14. Let f: X C RY — Y C RM be a proper C* map. For u € D'(X) we
define the pushforward of u by f, written f,u, to be the distribution in D’(Y") that has for
pe (),

(feu, @) == (u, [*p).

The next lemma extends the definition of pullbacks to certain classes of distributions.
(We follow [40, Theorem 8.2.4])
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Lemma 4.3.15. Let f : X CRY =Y C RM be an C® map. Denote the set of normals of
the map by

Ny ={(f(z),n) € Y x 71 (df,)'n = 0}.
Then the definition of pullback can be extended to u € D'(Y') tempered with

Ny N WF} (u) = 0.
Moreover,
WEL(f*u) C {(z, (df)'n) € T X : (f(x),n) € WFy(u)} =: f* WFy(u).

Proof. We start by considering u € C°(Y). Then, for x € C(X),

(Fux) = o) [ Fiw) o (i (45

where

o) = [ xtajeitson.

Let 29 € X, yo = f(20), and 'y = {n : (yo,n) € WF},(u)}. Choose a closed neighborhood,
V, of I'y, such that

(dfy(z0))n#0, neV. (4.3.6)
Next, let Y be a compact neighborhood of yy such that V' is a neighborhood of I'; for all
y € Yp. Finally, choose X a compact neighborhood of z( such that f(X,) C Y, and
holds for all z € X and ¢ € C°(Y)) with ¢ =1 on f(X)).

With these choices is valid for v € C*(Y) when u is replaced by pu. Now,
A(f(x),m) = (dz, (df.(2))n) and for = € suppy and 7 € V, |g| < C|(duf(z))'n]. Hence,
integration by parts gives for all N and n € V, |I,(n)| < Cxh¥(n)™". Let u; € C*(Y) and
u; = w in D'(Y') with

sup sup  h=V(€) Y| Fy(uy) ()] < oo. (4.3.7)
i &¢V h<ho

(such a sequence exists by Lemma [4.3.8]) Since u is tempered, |Fj(¢u;)| < Ch=M(n)M.
Thus, the dominated convergence theorem shows that

(5. x) — (20h) ™ / Fulu)(m) I (m)dn

independent of the sequence u;. We define this limit to be f*u.
Now, to get the wavefront set condition, let v; = x f*u;. Then, pairing v; with e~ (@)
gives

Fi())(€) = (2mh) ™ / o) () L, €)ely
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where

L(n,¢) :/X(x)eﬂf(z)’m—(z,s)dx'

Redefine T'y, = {n : (y,n) € WFy(u)}. Then let W be a neighborhood of (d,f(z0))'Ty,-
Then, adjusting V' and Xj if necessary, we may assume for x € Xgandn € V, d,f(z)n € W.
Then,

(dof (@)'n =&l Z c(lEl+ ), z€Xo, neV, (¢W.

So, integrating by parts, we have
1L, &) < Chh™{nl + €)™Y, €¢W, neV.
Next, use integration by parts with only (z, ) treated as a phase to obtain

1L (n,§)] < Cn(m™ (&)™ n¢V.
So, for £ ¢ W,

Ful07)(6)] < Ch¥( / (el + ™My + &) / (o) ()] () V.

Rd\v

But,by (4.3.7), N
sup  sup A7) | Fn(v)(§)] < o0
J f%Wh<ho

which, together with a partition of unity implies the wavefront set condition. O

Lemma 4.3.16. Let f : X C RY =Y C RM be a proper C* map. Then
WEL(fou) C {(2/,n) € T'Y : there exists (x,€) € WFy(u) with &’ = f(z), (df.(x))'n = €}.

Proof. This lemma follows from arguments similar to those at the end of Lemma
together with the fact that for v € £'(X),

Fal ) (€)(fo, x(y)e #09) = (27Th)_N_M/fh(U)(C)Ix(C,E)dC

where
LG, 6) = / ©(y)et EO= WO+ @) qynda

Suppose A : S(Y) — S’(X). We denote

WFIhIX(A) .= {(,&,y,n) : there exists y € Y with (z,&,y,0) € WFL'(4)}
WFil;,(A) .= {(z,&,y,n) : there exists x € X with (,0,y,7) € WFi'(A)}

Together, Lemma {4.3.12, 4.3.15, and [4.3.16[imply the following corollary
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Corollary 4.3.17. Let the operator A have properly supported Schwartz kernel
KeD (X xY).
Suppose that WFLL (A) N WFi (u) = 0. Then Au € D'(X) is well defined and
WEFL(Au) € WFy/ (A)(WFy (1) UWFL (A))
where WFy'(A) acts as a relation on sets.

Proof. The Corollary follows from forming K ® u, pulling back to the diagonal, and pushing
forward by the map 7, : X x Ay — X. m

4.4 Lagrangrian Distributions and Fourier Integral
Operators

We now define the notion of semiclassical Lagrangian distribution. Note that throughout
this section manifolds are compact. This restriction can be removed by placing assumptions
on properness of operators along with replacing Sobolev spaces by local Sobolev spaces.

Definition of Lagrangian Distributions

We start by defining

Definition 4.4.1. Suppose that ¢ is a clean phase function with excess e (see definition

3.1.14) in an open neighborhood of (zg,6y) € R? x R and a € S (R4 x RY) supported
where ¢ is defined. Then we define I.(a, ¢) by

I.(a,p) = (27rh)_(d+2N_26)/4/e’i“"(’”’e)a(x, 0)do
where the integral is interpreted in the sense of oscillatory integrals (see Lemmal4.4.4). When
e =0, we write I(a, ¢).
Then we have the following proposition

Proposition 4.4.2. Let A C T R? be an admissible Lagrangian submanifold and let v e A.
Let ¢ be a nondegenrate phase function in an open neighborhood of (xg,0;) € R? x @N,

N € Ny such that A = A, in a neighborhood of v. If a € S;n+(d_2N)/4(]Rd x RY) such
that suppa € V, then define u = I(a,p). Then if (2',2"),(€,&") € R¥*F x RF and A =
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{0 H(2",&"), 2", &, =0 H(x", &)}, there exists a constant A depending only on ¢ and H
such that

B%H(x”,g’)fh ( )( //751)
(27Th) (d—2k)/4 (.CI] 9) 2 sgn(@)’det CI)‘*% e h17257(d72k)/4Sgn+d/4*k/2*1 (441)

where (' (x”,£),0(x",£")) is determined by Opp(x,0) =0, Opp(z,0) =&, 2", and
" "
= (*”ff;w’ “0%"’) .
Pour Poo

A — SO(Q:(:L_Il,gl)’ 9(1_1/,5/)) _|_ H(I”,g/) _ <£C/(£C”,€I), £/>

is constant in (z",§).

In particular,

Moreover, if o1 € S*(R XRNI) is another nondegenerate phase function such that A, =

A, in a neighborhood of v, then there exists b € Ser (@ 2N1)/4(Rd RM) such that I(a,p) =
I(b, 1) + Ocee (h™®). Finally, WFy(I(a,¢)) C A,.

To prove this Proposition, we use a few lemmas on oscillatory integrals. First, we give a
precise version of the principle of nonstationary phase.

Lemma 4.4.3. Suppose that K @ X C R? and u € CX(K), f € C*®(X). Suppose further
that f is real valued with |0f] > ¢ >0 on K. Then,

/ u(z)e™! @ dy

where C' depends on the compact set K and || f||cr+1.

wk

<C Z sup [0%ul|0 f|1*1=2*

el <k

Proof. We proceed by induction. The statement for & = 0 is clear. Let L = w™! %f ];?. Then,

Le™f = ¢/ Hence, integration by parts gives

/ u(z)e™ dr = / L (u(z))e™ dz = iw™ / 1 370, fgiﬁf; e

So, by the induction hypothesis,

/u(x)eiwfdx

To complete the proof, we show that

k—1

<O |ludflof]

pn=0

k

w af“u\72k+2.

cn

12
OF[udfIOf] 2 ew < Iluller[of[F.

k=0
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For 1 = 0, this is clear, so we proceed by induction. Let N = 0f]? and w = udf|0f| 2
Then, Nw = udf. Hence, applying 9“ to this equation and estimating using the induction
hypothesis, we have, using Lemma [4.1.18

Nllwllex < Oy puir N[t [[ullen— + flullgu-2 + . .- Jlul[co
+ [ fllerlfullon + [lulleu— + -+ + [lul[co)
< Gl fopr NPl + [fullon—2 + - flulleo
+ N”ZHUHW + [lullou-1 + -+ [ufloo)

Cll s Z el e V12

Using the definitions of N and w, this completes the proof of the lemma. n

Lemma 4.4.4. Let U ¢ RExR" be open. Suppose that o € SY(U) is a clean phase function
with excess e as in Definition|3.1.14). Suppose that V &€ U. Then the map

avs I,, € D'(RY)
where
Low) = [ Liag)u
for a € S (V) extends uniquely to a linear map from \J, 5 S5(V) — D'(R?).
Proof. Let x € C°(R%) have y = 1 on B(0,1) and supp y C B(0,2). Define
Xo =x(2770) = x(27770), v>0, xo=Xx
Then, Y, is a partition of unity with
supp x, C {271 < |9] < 2"t}
Observe that for a € SE(V)
10505 xw (B)a(x, 0)] < h=00HNC 5 (0) 17, (2,0) € V

with uniform constant in v. This, together with the fact that at most two y, are nonzero
imply that ° x,a — ain S¥ (V) for k' > k. Thus, any extension with the required properties

must have
E , xuaw

and hence we consider
Iy,a(u) = (27h) M / eH9@0) o (0 0)xo (0)u(x)dOda

= (27rh)_M2L”/eifufMff@)a(x,wQ)X(H)u(x)dex



CHAPTER 4. SEMICLASSICAL ANALYSIS 94

where w = 2”. Define f,(x,0) = (= w9) . Then, since ¢ is a phase function (in particular since
it has a polyhomogeneous expanswn with top order term a homogeneous phase function),

sup sup |05gfu] < Clo, inf inf |0f,] > ¢ > 0.

w>1 supp w>1supp x

Now, we have that
|0%a(z, 2"0)| < CMp~0lelgvm

for 1/2 < || < 2. Hence, by Lemma [1.4.3

| La(w)] < CM2WEFm=RRI=08 N ™ qup [97u].

o] <k

Choosing k large enough shows that the sum in v converges and hence that u — I, ,(u) is
a distribution (of order k). O

We now prove Proposition [4.4.2]

Proof. Lemma shows that I(a, ) is a well defined distribution and, if a has compact
support in x, then so does I(a, ®).

Let v = (z0,&). Then, by Lemma [3.1.10| or the definition of admissible, we can assume
that

Ay = {0 H (2", &), 2", &, =0 H(2", &) : (2",€) € W} (4.4.2)

for some W an open neighborhood of (x7,&)). Consider
e 1 Fy o (I(a, 0))(€) = (2mh)~@H2N/A / e (P@OHHE" =) g (1 0)dfda’. (4.4.3)
and use stationary phase to evaluate the integral. The exponent has a critical point if

90;3’(1‘7 0) = 5/7 90,9 =0.

Hence, (z,§) € A, and o’ = Ha(2",&'), " = —H.,(2",£'). Since ¢ is a nondegenerate phase
function and A has the form (4.4.2), the maps

C={(x,0);p, =0} (z,0) — (x,¢,) €A and A > (z,¢) — (2", &)

are diffeomorphisms (see Lemma . In particular, this implies that j : Cy, 3 (z,0) —
(", ¢l,) is a diffeomorphism and hence dy!, = dy, = dz” = 0 implies do = df = 0. That
is, ® is nonsingular. Now, since ¢ € S(R? x KN), |det ®|71/2 € SW=R/2(U) where U is
a neighborhood of C,, and hence a(x,0)|det ®|~1/2 € Sm+4/4=k/2(J). Since A has the form
, it is not hard to see that this remains true for the restriction to C, regarded as a
function of (2”,¢’) (see, for example [42, Lemma 25.1.6]).
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For (2",¢&') ¢ W, integration by parts shows that
et Fyar(I(a, 0))(€') = O(RZ(E) ™).

Now, suppose 2" € 7W where 7 : W C R4* x R¥ — R?* is the usual projection. Then if
71(2") is bounded the diffeomorphicity of j together with integration by parts with respect
to 6 shows that the integral over |0| > 1, in I(a,p) is O(h>*(£’)~>°). On the other hand, if
7~1(2") is unbounded, then

10, 0(2,0)] > Clo], |6] > M. (4.4.4)

Define ¢p € C*°(R) with ¢» = 1 on R\ ((—=2,2)) and ©» = 0 on (—1,1). Then, letting
Jar (@) = (2!, 2", 0) — (o', &) /(¥ (|€])I1E'] + ¥(]0])]|0]). Then f is bounded in C*° and for
(x,0) € suppa, shows that

|f (2] = (€' = Clon /(€' + 16]) 01/1¢l < 1

[f/ (2] = (Cal] =€) /CI€" + 16]) €l/101 < 1.

Thus, applying Lemma with w = (|¢’'| 4 10]). we have

‘/ RO N (p g)dz| < ONBV (€] + 10 10] > Cl¢] or |€] > O] (4.45)

Now, choose y € C®(RY). with x =1 on |f| < C. Then,
G%H( x" € /thl( )z " 5/) . U(x/l’é-/) _ O(hoo<£l>—oo)
where

Ula",) = (2nh) (2 [ A0 C (0 (€)a(z, ).

Near the point (xg,6y) € Cy, C, 3 (x,0) — (2", 0¢) is a diffeomorphism and hence write
x=ux(z",£) and 0 = 0(z",&’). Then, differentiating the phase with respect to (z”,¢’),

ax//é'/((p(x(m//7gl)’ 9(:6//75/)) + H(.T//7£/) o <xl(x//7§1>7£/>) — 0

Thus, on C,, the critical value of the phase is a constant A depending on the choice of ¢
and H parametrizing A.
Changing variables, letting t = (¢) and ' = £'/t, 0 = t0, we have

U( 5) (27Th (d+2N)/4 / / (P(z t9)+H(z tn’) —(a ’77,>)X<0)a($’ t&)tng;’dH

Now, there is only one critical point in the support of the integrand and using stationary
phase, since x = 1 in a neighborhood of the stationary point, the leading term is

(o) 4 aa, 0)e T O et |V
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The n'* term will then have a factor of A"t ™™ and a linear combination of up to 2n derivatives
of a(x,t0) with respect to z and 0. Hence, it is in h*(d*%)/“”(kmSgl+d/4_k/2_n and we have
an asymptotic expansion for ex @ &) F, . (u) (2", €").

Now, let ¢, € ST (R x KM) be another nondegenerate phase function parametrizing A
in a neighborhood of 7. We seek to find a symbol b so that I(a, ) = I(b, ) + Oce(h*). we
use the first part of the proposition to write

b = Fo(0) (2", €)eRH") g r(araR) gt/ i=hse pay

having support in a small neighborhood of (x,&)). Let v € S*(R? x EL) be defined in a
neighborhood of (g, 6y) with 1(x,0) = 0,4 on C,. Then let
bo(z,0) = (27h) Y *vor(x, H)G_iA/he_”i/4sgnq>| det ®|Y/2 € Sgnﬂn_?M)M.

Then, define ug = I(bg, ¢1). Then it follows that

w—ug=1I(a, @), ap €h7PgmTd=2N)/4=1

Repeating these arguments, we get an asymptotic sum
i(1— m~+(n—2M)/4—j
bNZbJ’ b; € W12 8" ( )/4—j

such that I(a, ) = I1(b, 1) + Ocee (h>).
To see the wavefront set condition, suppose (x9,&) ¢ A, (thought of as a subset of

R? x Ed) and let U x V be a neighborhood of (zg,&) such that U x V. N A, = 0. Then let
X € C*(U) and consider

Frn(x(@)lop)(&) E€V.

Then, by the same (even slightly simpler) arguments used to get (4.4.5)), we can reduce to
considering

BIE) = (2mh) 42Vt [ cHoe0-e0D (@)af,0)x(0)€) dbd
Hence, integration by parts proves that

B(&) = o(h=({§)™>), eV

Next we give a lemma relating the microsupports of I(a, p) and a.

Lemma 4.4.5. Suppose that a € S5°"P(U,) with suppa is contained in some h-dependent
compact set K(h) € U, and v < 1/2. Then,

MSy(I(a,¢)) C E(h)
E(h) :={(x,0xp(x,0))| there exists (y,w) € K(h) N C, with d((x,0), (y,w)) < h"}.
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Proof. Suppose that (z9,&) ¢ E. Then, consider
Fux((w = 20)h™") L) (§) = (2mh) M1 / er A= Da(z, 0)x((x — xo)h")dbda

where y € C®(RY). But, since (7¢,&) € E. |d(¢ — (x,€))] > h7. Hence, integration by
parts after adding a cutoff x(e71 (£ — &)h™7), gives a gain of h!~7~™max(%9)  Hence, repeated
integration by parts gives the result. O

Definition 4.4.6. Let A € T M be an admissible Lagrangian. We say that u € I7*(A) if
WFL(u) C Aandify € Aand o € SY (V) for V C M xR isa non-degenerate phase function

so that A, = A in a neighborhood, U of ~ then there exists a € Sg”“d*QNW(M x RY) such
that WFy(u — I(a,¢)) NU = 0.

It will be important also to consider the case that ¢ is only a clean phase function when
we analyze the composition of Fourier integral operators. To this end, we prove

Proposition 4.4.7. Let A ¢ T'R? be an admissible Lagrangian submanifold and let v e A.
Let o be a clean phase function with excess e in an open neighborhood of (xg,0y) € R4 XECHN,

N € Ny such that A = A, in a neighborhood of . If a € Sg'LJr(d_QN_ge)/A‘(Rd x RY) such that
suppa € V, then

I(a,p) = (27Th)_(d+2N_26)/4/efi‘p(x’e)a(x, 0)do (4.4.6)
has I(a, @) € IF*(N). Moreover, if (2, 2"),(€,£") € Rk x R* and
A={(0xH(",&), 2", ¢, 0 H(z",{))},
then then there exists a constant A depending only on ¢ and H such that
IO T (w) (@, €)
_ (27Th)—(d—2k)/4/ a(x, 9)6%Aei%sgn(<})’ det @\_%dé” c h1—26—(d—2k)/4Sgn+d/4fk/271.
e (4.4.7)

Here Corey = {(2/,2",0) + ¢p = 0,0p0(x,0) = &'} and § = (0',0") is a splitting of
coordinates so that Cin ey 3 (,0) — 0" has bijective differential and

1 /!
P = gpx’:{:’ SOx’@’
- Vi " N
Porwr Poror

A — (10(1,(1,//’5/’ 9//)7 el(x//’SI’ 9//)’ 9//) + H(.’L'/,’&/) _ <x/<$//’ 6/7 9//)7€/>'

Moreover,

Conversely, if u € I§*(A), u can be written in the form I(a, ) in a neighborhood of any point

(z0,&0) € A.
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Proof. We simply address what must be changed from Proposition [£.4.2] First, we still have
(4.4.7)), so we need only consider U(z”,¢'). Now, C,, is locally a manifold of dimension e + d
and by Lemma the map C, > (z,0) — (2", ¢.,) has a fiber C(y ) over (z",7') where
¥’ = He(2",tn) and " = —H.,(2",tn). Now, since dy, = d¢’, = dz” = 0 on the tangent
space to C(yn ), we can split the § variables into (¢',6”) with the required properties. Then

the Hessian of w — (a',n’) with respect to (2/,6') is not zero and applying the

principle of stationary phase in these variables together with the fact that
7\p(x//’ él, 0//) — SO('/L'(:C”, é—/’ 9//)’ 9/(:{31/7 é—/, 9//)7 6//) + H(I//, 5/) o <ZE/($//, 5/, 9//)7 £/>
has ¢, = 1y, = 1}, = 0 proves the proposition. O

We now define the principal symbol of a distribution u € I§*(A). Let ¢(x,0) be a non-
degenerate phase function. Define a d-form d, on C, by

dpo ANd(Op,0) N+ Nd(Ogyp) =dxy N--- Ndxg NdOy A ... dby.

Then if A\;,...,\; are coordinates on C, extended to smooth functions in an open neigh-

borhood of a point in Cy, d, = fdA\; A--- A dNg where

= (e (G %))
%9 90/9/0 '

Notice that d, does not depend on the choice of A, but does depend on the choice of coor-
dinates (x;). Now, we assume that

Ay ={(0gH (2", ), 2", &, =0 H (", &)}
and use (2”,¢’) as local coordinates on Cy,. Then, since & = 0,,¢, we have that
d, = (det ®) 'drpy A Adeg ANdéy A ... dEy,
where @ is as in Proposition [£.4.2] Now, define the density
|dp| = | det @ Hdapr A ... dog Adéy A ... dEg|.

If o, and ¢y parametrize A, near (z9,%), a1 € Sm+d QN)/4(R x RY), and I(ag, p) =

I(ay, ¢1), then shows that

Alalldwl‘l/Z — e%A2a2|dg0 |1/2 17 (sgn ®2—sgn 1) mod hl—ZCY‘Sv;n-l-d/‘l—l(QI/Q)7

where we have noted that |d&;|'/? is homogeneous of degree 1/2.

Now, in order to handle the fact that d, depends on the coordinates (z;), we consider u =
I(a, ) as a 3-density distribution. That is, in new coordinates (Z;), @() = |Dz/DZ|"?u(z),
but then

A(F) = (2mh)— 2/ / HEE0 G (5 0)do
o(Z,0) = p(z,0), a(z,0) = |Dx/Di:|1/2a(:L‘,0).
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But, |d,| = |Dz/Dz||ds|, so N }
e%A&|d¢‘l/2 = e%AaldSO’l/Q (448)

and hence is invariant under local coordinate changes. Finally, notice that an (m x m)
nonsingular matrix has has signature congruent to m mod 2 Hence,

sgn®y —sgn®; =0 mod 2.

We now define the Maslov bundle (see also [41, Chapter XXI]) £ over A to be the complex
line bundle with transition functions

61% (sgn @Y —sgn @)

in A,, N Ay, associated to a change of phase functions and

61% (sgn @, 9—sgn @, 9)

associated to a change of local coordinates. We have thus proved the following lemma

Lemma 4.4.8. If A is exact, i.e. o|y = du|y, there exists a bijective map
o Ign(A)/hl—Q(S[gn(A) N Sgn+d/4(Ql/2 ® £)
called the symbol map.

Remark: The exactness of A is used to fix a choice of A in (77).

Fourier Integral Operators

Let A be a Lagrangian submanifold of T*M; x T* M, (with symplectic form oy + 05). Then
we define the canonical relation

C:A/ - {(I7€7y7 —"7) : (35;572/;77) € A}

Notice that if A : C°(M;) — D'(M,) is a linear operator with kernel K € I"™(M; x My, A)
and suppose that A C T*Y \ {0} x T*X \ {0} then

WE(Au) € C(WFy(u))
by Corollary [4.3.17. With this in mind we define Fourier integral operators.

Definition 4.4.9. Suppose M; and M, are compact manifolds and C" C T*M; x T* M,
is an admissible Lagrangian submanifold. Then the set of operators with Schwartz kernels

K € If*(M; x My; C) is the set of Fourier integral operators of order m and class § associated
to C.

Notice that if A € I"(M; x My, C), then its adjoint A* € IT(My x My, C~') and the
symbol of A* is the conjugate of that of A in any local coordinates.
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Composition

We now study the composition of two Fourier integral operators under certain assumptions on
the composition of their associated relations. Let C' be a canonical relation on T My x T M,.
Then, define

Cur, = {(x,6) € 9T My : (2,€,y,0) € C}
Cas, = {(y.n) € 0T My : (2,0,y,n) € C}

Then we have the following proposition

Proposition 4.4.10. Suppose that Ay € IJ" (My x My, Cy) and Ay € I3 (My x Ms, Cy)
such that Cy1oCy is clean with excess e and that (Cy)y, N (Co)y, = 0. Then AjAy €
h_e/21?1+m2+6/2(M1 X M3, Cy0Cy) and its symbol at v € C = C10Cy is given by

0<A1A2) = (27Th)_e/2/ O'(Al) X O'(AQ)
o,
C., is the fiber over v of the intersection of Cy x Cy with T* My x A(T*Msy) x T*Ms.

Proof. We can reduce to the local situation by use of a partition of unity, so we assume
M,; =R% and

Ai(z,y) = (27Th)(d1+d2+2Nl)/4/ei‘p(“’y’e)m(fc,y,@)de
Ay(x,y) = (27rh)—(d2+d3+2N2)/4/ei‘ﬁ(y,z,q—)aQ(y?Z’T)dT

where ¢ and ¢ are nondegenerate phase functions in neighborhoods of (xg,yo,6y) € My X

My x @Nl and (Yo, 20, 70) € My ><_M3 X RLVQ respectively. Moreover, ¢ parametrizes C in a
neighborhood of (zo, {0, Yo, M) € T M, x T M, and ¢ parametrizes Cs in a neighborhood of
(Yo, Mo, 20, Co) € T M, x T Ms. Hence, we have

©p=0, ¢ =%&, %:—770 at (2o, Yo, o)
£=0, d=m. FL=—C at [y zm)

Sm1+(d1+d2—2N1)
4§

Moreover, the amplitude a; € /* has support in a small neighborhood of

(20, Y0,60) and as € Sglﬁ(dﬁdrm?)/[l has support in a small neighborhood of (yo, 20, 70)-

When A; are rapidly decreasing, we can write
Az, z) = (27rh)_(d1+d3+2(d2+Nl+N2))/4/eiq)(“”’z’y’ef)a(x,z,y,@,T)dydOdT (4.4.9)

where

O(x,2,9,0,7) = p(x,y,0) + ¢(y, 2,7)
a(x,z,y,0,7) = a1 (z,y,0)as(y, z, 7).



CHAPTER 4. SEMICLASSICAL ANALYSIS 101

By Lemma (3.1.23] we have that ® is a clean phase with excess e parametrizing C' = C0(5 in
a neighborhood of (xg, 20, Yo, 0o, T0). So, once we reduce to a region where a is a well behaved
symbol, Proposition Will show that A; A, € h*e/215m1+m2+6/2(M1 x Ms, C).

Notice that ajas is not immediately a symbol since differentiating with respect to 6 or 7
only improves the symbol by (8)~! or (7)~! respectively rather than (|0 + |7])~'. To remedy
this, we show that the integral over the region where 6 and 7 are not of the same
magnitude or both bounded is residual. Notice that (C)a N (C2)a, = 0 implies that either
no # 0 or at least one of 1y, 6y ¢ S? 1. If either 7y or 6, is bounded, then clearly a;a, has

the required symbol property. Thus, we can assume 79 # 0. Since o € S*((M; x My) x @Nl)
and ¢ € S (M, x M) x R™?),

QO(JT, Y, 9) = 901(1', Y, 9) + OSO(]')
Qb(y, <, T) - ¢1(y7 <, T) + OSO(]'>
where ¢; and ¢, are homogeneous of degree 1 in # and 7 respectively. Thus, since ¢ and

¢ are non-degenerate phase functions, we may assume that a; and as have small enough
support in the base variables so that there exists M with

|0yp] > C16] on suppay N{|0] > M}
|0,¢| > C|7| on suppas N {|7| > M}.

Hence, there exists C' > 0 such that if 9, + 0,¢ = 0 and (z, z,y,6,7) € suppa, then
O,7)cU={0,7) : 10| +]|7] <2M} or {C7'|7| < |0 <C|r|}.

Hence, integration by parts in y shows that up to an Og=(h™) term, we can replace a
by b = x(0,7)a where suppx C U. Then the symbolic properties of a; imply that b €
S;m+m2+(d1+d3_2(Nl+N2_d2))/4. Now, take w = ({(|0)? + |7|))V?)y,0,7) € RETN+N2 a5 new
parameters. Then,

|Dw/D(y. 8. 7)] = (6] + [*)"/2) .

Hence,
b(z,z,y,0,7)D(y,0,7)/Dw € §mtmet(ditds=2(NitNotd2)) 4 (N r s M, 5 RE2TN1HN2),

Now,
B(z,z) = (2mh)~(d+dst2(dat Ni4N2)) /4 / eh*bdyddr (4.4.10)

has A1 Ay = B + Og(h*) and by Lemma m B depends continuously on a; for a; in any
symbol class and the equality remains true for a; rapidly decreasing. Thus Proposition [£.4.7]

A Ay € h_e/zlgn1+m2+e/2(M1 x My, C) as desired. Note that the factor h=¢/? comes from the
prefactor in (4.4.6).
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To compute the principal symbol, we split the (y, 8, 7) variables into (-)" and (-)” variables
so that ® is nondegenerate in (y',¢,7") and the e variables (y”, 6", 7") parametrize the sets
C., where v = (z,¢,2,() € C. More precisely, we should do this for the w variables, but
the invariance of the symbol under changes of coordinates shows that this is irrelevant. Let
By gn -» denote the kernel obtained when we integrate only in (v/,¢,7') in (4.4.9). The
definition of the symbol of A; and A then show that o(A;) x o(Asz) is equal to |dy"d0”dr" |
times By gv -» and hence the formula gives the result where we note that the (27h)~%/?
comes from the prefactor in (4.4.6)). O

Combining this theorem with Lemma 4.1.19|immediately gives us the following corollary

Corollary 4.4.11. Suppose that A € I(M, x My, C) where C'is locally a canonical graph.
Then
||A||L2—>L2 < sup |0(A)| + O(h1/4(1—25))'

Moreover, if |0(A)| > C, then A is invertible with inverse A~' € I9(My x My, C™1).

Proposition [4.4.10] gives us a good way of calculating with FIOs. However, in certain
cases, the symbol of A; may vanish on m5(C5) and hence this proposition does not give good
information. Rather than studying the general case, we study the particular example which
arises most often in applications. That is, the case of A; a pseudodifferential operator with
symbol vanishing on the range of Cs.

Lemma 4.4.12. Let P € V™ (M;) with principal symbol p = o(P). Suppose that C is a
canonical relation from T*My to T*M;y such that o(P) vanishes on the projection of C' to
T*M,. Then if A € If" (My x My,C"), PA € K2 [+ =Y (M, x My, C") with symbol

i_lh,CHpU(A) + O'1(P>O'(A)
Here Hy, has been lifted to T*M; x T*Ms.

The Lie derivative of a € Q%(M) along a vector field X, denoted Lx(a) is given by

d

Lxa = E@Pt)*ahzo

where ¢ is the flow of v. Then, in local coordinates, write a = u|dx|®. Then (¢')*a = u|dz|"
where

u(X) = u(¢' (2))(De' () / Dx)".
Hence,
Lx(uldx|®) = ((X, 0u) + k(div X)u) |dz|". (4.4.11)

Proof. We need only argue locally, so assume that A = C” is given by

A = {(8§/H, Z'/I, 5/, —3qu, an/H, y//, ?7/7 _8y”H>}
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where H = H(z", &, y",n') € SHRI k1 x R™ x Re—k2 x R]Q).
Then, letting
(,0(33, 5/7 Y, 77/) - <$/, €,> + <y,7 77/> - H(JI”, 5,7 y//7 T],>

generate A, the kernel of PA is given by
PA = (2rh) [ by (o )2, Qalu, o€

where p = (dy + do + 2(ky + k2))/4 and p is a full symbol of P. Then, as in the proof of
Proposition we can restrict our attention to the region where the oscillatory variables
(¢,&',n') are all bounded or have comparable size. Thus, assuming without loss that a has
compact support in w, we may apply the principle of stationary phase in the (w, () variables.
The phase function ® is given by

(I)(LE, Y, w, §/7 n,’ C) = <.f17 - w, <> + @(wa Sla Y, 77/)

Hence
aqu = (f/ — gl, —C” — 8w//H) s 8CQ> =T —w
and

C/ C// w/ wl/ CI C// w/ w//
¢’ 0 0 —I 0 ¢’ 0 0 -7 0
2 _ ¢ 00 0 —1 svy C" 0 @2H 0 T
e = w | =1 0 0 0 (0°®)" =y —1 0 0 0
w'\ 0 —-I 0 -90*H w”\ 0 - 0 0

Hence sgn(9?®) = 2d; and

PA —_ <2ﬂ_h)ﬁu / e%((x/,£/>+<y/7n/>,H(x//,fl,y//ﬁl))b(x//’ y//7 f/’ ﬁ/)df/dn/

b~ > W Agp((a + w) /2, Qa(w”,y", &)

J

r=w,

('=¢ ,("=—0,uH

where Aj; is a differential operator of order 2j. Write p = o(P) + 01(P) + Ogm-2(h?). Then
o(P) vanishes on C, so we can write

b=(c(P)+ o1(P))(x, (&, =0 H))a(z",y", &\ 0')
+ hAy0 (P)((x +w)/2, Q)a(w”, y", &1 ) (o= + osgn+m/+<d1+d2>/4,2(h2‘45) (4.4.12)
—hby + by + hbs
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where v = (x, (&', =0 H(2", & ,y",1n))). Now, because of the simple nature of the phase, we
can see that (see for example [40, Theorem 7.7.5] )

Ao = 5, (@) D.D) =i (D, D) - 50 HDer, D))

So, letting pg := o(P), we have

b= (5 (D2 DY) = @ H () Der D) a + (Durala). Do) )

Since py vanishes on C,
po(z, &) = (¢, 2" — Og H) + (¢",&" + O H)
Denpy = —iq” Dypo=—iq¢ on C
<Dx/, Dg/)])g = —i(D&/, q') + i(aleDx/, q/> — i<a§//§/HDx/, q”) on C'
<Dx//, D5u>p0 = i<a§2/x/,HD5//, q’) — i<Da¢//, q”) — i<a§,,HD£u, q”) on C
<AD§//, Dg//)])o = —i(ADgl, q"> — i(Athu, q”> A - M(dlfkl)x(d1*k1) on C
Using this for b3 gives on C,
1
b3 = (q”, Dx//a> + 5 [(Df/ - 8§,HD:C/ - 852/$//HD§/, q,ﬂ a

1
+ 5 [0 HDy + Do — 02, H D, )]

so, integrating by parts gives
/e’i“’l;l = /h_l(aq',hDge;ﬁ") = /(—Dgl,aq’(x, ({',—aan)»e%“’ = /e’is"bl
b1 = —(q', Dg/a> - <D5/, q') + <8§,m,,HD§~, q’>

So, combining, we have on C'

b1 + b3 = <q", Dx//a> — (q', Dg/&) (4413)
1
+ 5 [Dx/’ + 35//§/HD11 — 8323//HD£//, q”> - <.D£’ + ag/HDz’ — 8§/x//HD§/, q/>:| a

The symbol of A is a(z”,&,y",n')|dx"d€¢' dy" dn'|"/? with (2", ¢, y", ') parametrizing C.
Now, since pg zero on C, H), is tangent to C' and hence in the (2”,¢',y”, 1) coordinates

HPO - <a§”p07 ax”) - <8x’p07 a§’>>’ x’:ang = <q”> a'):”> - <q/7 a§/>’ x’:ang

5”2—3,.//H 5”=—8w//H
Liy,0(A) = ((q”, Opra) — (¢, Ogra) + ;dlv( ») ) | de' dy" dn |1/ (4.4.14)
div(Hy) = (Do + Opng HOw — 0 //Hag// " — <8§/ + 8§,H8 )= O3 HOer,q)  (4.4.15)

So, recalling (4.4.11)) and comparing ) with ( and (4.4.14), we have the result.
O
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4.5 Shymbol

In Chapters [6] and [§] we will need to compute symbols of operators whose semiclassical order
may vary from point to point in 7*M One can often handle this type of behavior by using
weights to compensate for the growth. However, this requires some a priori knowledge of
how the order changes. In this section, we will develop a notion of a sheaf valued symbol,
the shymbol, that can be used to work in this setting without such a priori knowledge.

Let M be a compact manifold. Let 7 (7*M) be the topology on T*M. For s € R, denote
the symbol map

Oyt hIWPMP s pS GOmP /sl =20 gomp,

Suppose that for some N > 0 and 6 € [0,1/2), A € h" VU™ (M). We define a finer notion
of symbol for such a pseudodifferential operator. Fix 0 < ¢ < 1 — 2. For each open set
U e T(T*M), define the e-order of A on U

IS(U) :=sups+1—2§

8686

where
S.:={s€€eZ : thereexists xy € CF(T*M), x|v =1, 05(Opn(x)AOpn(x))|v =0} .

Then it is clear that for any V' € U there exists y € C°(U) with x = 1 on V such that
Opn(x)A Opn(x) € WA TE™ (M)

Give T(T*M) the ordering that U < V if V C U with morphisms U — V if U < V.
Notice that U < V implies I5(U) < I5(V'). Then define the functor F§ : T(T*M) — Comm
(the category of commutative rings) by

FIZ(U) _ hIZ(U)Sgomp(MﬂU/hIZ(U)“_%Sgomp(M)\U [;(U) + 00 |
{0} I4(U) = o0
pIa(V)—15(0) I (V
P —vy= T L) £
I5(V) =0

Then F is a presheaf on T*M. We sheafify Fy, still denoting the resulting sheaf by F'§,
and say that A is of e-class F'. We define the stalk of the sheaf at ¢ by F'i(q) := lignqu Fq(U).

Now, for every U C T(T*M), 15(U) # oo, there exists xy € C°(T*M) with yy =1 on
U such that o 1) (Opn(xv)A Opn(xv))|r # 0. Then we define the e-shymbol of A to be the
section of Fy, 6, (A) : T(T*M) — Fj(-), given by

e (4) i {af;,w)(of)h(w Opn(xe))ly T4(U) # o0
- o I5(U) =00’

Define also the e-stalk shymbol, 6¢(A), to be the germ of 6°(A) at ¢ as a section of F'§.
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Now, define I§(q) := sup ey I4(U). We then define the simpler compressed shymbol

~ * € ~ 0 I‘Z(q) - m
G(A) : T*M — I—l hIA(q)(C/hIE(Q)+1*25(C by °(A)(q) := {lim a5 (A)(q) I5(q) <oo”
p qeU
(4.5.1)

The limit in (4.5.1)) exists since if I§(g) < oo, then there exists U > ¢ such that for all
V cU, I5(V)=15(U). This also shows that it is enough to take any sequence of U, | ¢. It
is easy to see from standard composition formulae that the compressed shymbol has

5(AB)(q) = 5°(A)(9)5(B)(q), A€ h NUL™ and B € h™ MW,
Moreover,

o“([4, Bl)(q) = —ih {5°(A)(q),5°(B)(q)} -

The following lemma follows from Proposition [4.4.10|combined with the definitions above:

Lemma 4.5.1. Suppose that A € U™ and let T be a semiclassical FIO associated to

the symplectomorphism k with elliptic symbol t € Ss. Then for 0 < N independent of h
(AT)y := (T*A*)N (AT)Y has

N

5<((AT)x)(q) = H <|'O“_E(A)t|2oﬁi(q) Lo <hI§‘i(ﬂ’“(q))+1—25>> '

=1

Proof. Fix g € T*M. Let x;, € CZ° have x; =1 on B, (
D := Opn(xx)(AT) N Opn(xx). We have that

1) and supp xx C By (2) . Then let

D = Opu(xx)(BT)n Opn(xk) + Ogeome (h™)

where B; = Opy(¥r.i)Ai Opn(¢r) and ¥y; = 1 in some neighborhood of 5%(g) and is sup-
ported inside a neighborhood Uy ; of 5°(q) such that Uy, | q. Then the result follows from
standard composition formulae in Proposition [4.4.10] O

Now, since € > 0 is arbitrary, we define the semiclassical order of A at q by 14(q) :=
sup,. 5(q) with the understanding that f = 0(h!4(@) means that for any ¢ > 0,

[f(q)] < G2t~

Furthermore, we suppress the € in the notation 6¢(A)(¢) and denote the compressed shymbol,
7(A)(q), again with the understanding that for any € > 0,

5(14)((1) c hIA<q)_€(C/hIA(q)+1*26*€C.
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4.6 Semiclassical Intersecting Lagrangian
Distributions

We follow [49] to construct intersecting Lagrangian distributions in the semiclassical regime.

Definitions

A pair (Ag, A1) where Ag C T*X is a Lagrangian manifold and A; C T*X is a Lagrangian
manifold with boundary, is said to be an intersecting pair of Lagrangian manifolds if AgNA; =
OA; and the intersection is clean:

T/\(AO) N TA(Al) = T)\(8A1) for all A € 8/\1

Two such pairs (Ag, A1) and (Af, A}), with given base points A € 9A; and X € JA] are said
to be locally equivalent if there is a neighborhood V' of A and a symplectic transformation
X : V — T*X such that x(A) =X, x(AgNV) C Ay and x(A;NV) C A}. Then, we have the
following lemma [41, Theorem 21.2.10 and remark thereafter].

Lemma 4.6.1. If Ay, Ay C M, and A, Ay C M are two pairs of intersecting Lagrangians
with dim M = dim M and dim Ay N Ay = dim Ay N Ay then (A1, As) is locally equivalent to
(A1, Ay).

We associate spaces of distributions to the pair (/~X ]\1) of intersecting Lagrangian man-
ifolds, where Ag = T¢RY Ay = {((21,2'),€) € T*R?: 2/ = 0,& = 0,2, > 0}.

Remark: One can also associate distributions to intersecting Lagrangians with intersections
of various dimensions as in 35|, but we do not pursue that here.

Definition 4.6.2. For § € [0,1/2), denote by I7*(R% Ay, A;) the subspace of C>°(R?) con-
sisting of functions u which can be written in the form u = u; +uy with uy € hl/zlgn_lﬂ(]\o)
and

uy(z) = (2rh) G/ / / e (=) €h) a(s,x,€)déds =: J(a), (4.6.1)
Rd

1
mtsTa

&

where a € S; has compact support in x.

Remarks:

e (4.6.1)) is well defined as an oscillatory integral and as such depends continuously on a
in the topology of S¥"', for any m/ > m + T —1d

e We show in Lemma that functions of the form (4.6.1) are microlocalized on
A UA;.
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Lemma 4.6.3. If u € I*(R% Ay, Ay), then
WFy(u) C Ag UA,. (4.6.2)

Suppose v < 6 and B € S, is a zeroth order pseudo-differential operator with MSy,(B) NAy =
0 then Bu € I™(R% Ay). If MSL(B) N Ay = 0 then Bu € B2 I V2 (R4 Ay) ).

Proof. Let 7 : R x R? — R? be the projection off the first factor, then u = 7, (H(s)u) where
H is the Heaviside function and

(s, z) = (2mh)~ 3d+2)/4/6h((:v1 N+ ED (s, x, €)dE.

We now use the standard bounds on wavefront sets for pullbacks, tensors, and pushforwards
(see Lemmas [4.3.12} |4.3.16| and [4.3.15)) to obtain (4.6.2]).
Now, suppose B € 9. Then,

Bler™9a(x,€)) = er9 (Ba)

defines a continuous linear map B : S§* — S§". In particular, B can be applied under the
integral sign in (4.6.1]). This shows that Bu; is of the same form with a replaced by Ba.

Observe that since uy € hl/QIgn_l/Q([\o), Buy = Oces (h°). Then, if MS,(B) N Ag = 0, we
can assume, by disregarding an Oce (h™) term, that for some € > 0, B(a) = 0 in |z| < eh.
Choose p € C=(R) with p(s) = 1in s > 1e, pu(s) = 0in s < 1e. From the definition of
semiclassical Lagrangian distributions (see Section [2.3])

— (2h)- G2/ / / eH @) (1705 (Ba) (s, @, €)dEds

is an element of I7"(R; Ay). To show that Bu is also in this space, we need to verify that
Bu—vl _ (27Th)(3d+2)/4/ /ei((ms)§1+<x”§'>(1_u<h58))B(a)d§d8 _ Ocoo(hoo). (463)
0

The operator
L= (a1 = 8)? + o'[") (@1 — $)hDe, +a'hDe]
satisfies Lexp(+((z1 — 5)& + (2/,€))) = exp(+((z1 — 5)& + (¢/,€’))) and has coefficients in
h=7S, on the support of (1 — p)Ba. Then, follows from integration by parts. Thus,
Bu € I (R% A,).
Now, suppose that MSy,(B) N Ay = 0. Then we can assume, with a replaced by Ba that
a=0if |2/|* + & < h? and x; > —eh?. Thus, the operator

M = (2" + &) (2'hDg — & hD;)

has coefficients in h~7S, on supp a provided 21 > —eh?. Since exp(+((z1 — )& + (2/,&)))
is an eigenfunction of M with eigenvalue 1, integration by parts gives
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Bu = (2’/Th) 3d+2)/4/ /62((x1_8)§1+<x,75l>)]\/[t(B(I)dgds
0

- i e —1&Ba(0,z, )
1 (2nh)! (3‘”2)/4/@}1(’”’5) S| > dE (4.6.4
( ) (|€1|2+ |$/|2) £ ( )

The second term in (1.6.4) is a distribution in /277" "*(R% Ay). Then, iterating this

process, we have for any k € N,

Bu — (2rh)~(3d+2)/4 / / en (@=a+ @) (VEBadeds

1 -
lies in hi_vlgn_lﬂ(Rd; Ag). Since (M*)*Ba € h*1=9 857k 'we conclude that

1 ~
Bu € h2 I V2(RY Ay).

Next, we show that a need not be allowed to depend on s.

Lemma 4.6.4. Suppose u = J(a) for a € S§*. Then there exists b; = b(x,n) € S§*7 such

that
N-1

u—Y_J(b;) € WNOINRYE Ao, Ay).

J=0

Proof. By Taylor’s theorem at y; = s, there exists by such that

|a(yl> yla S, 77) - bo(y, 77)‘ = O(h_a(yl - S))

Then, integrating by parts with respect to 7; in the formula for J(a — by) gives that

J(a—by) = h'"°J(c)

m—141/2—d/4

with ¢ € S . So, repeating this process gives the Lemma. O

Finally, we show that an element of I7*(R%; Ao, Ay) can be written as a Lagrangian dis-
tribution with singular symbol.

Lemma 4.6.5. Suppose that u = J(a) where a = a(y,n) € S™. Then,

= (2mh) 3= 2)/4/ ia(y, )dn+o ~(h>).



CHAPTER 4. SEMICLASSICAL ANALYSIS 110

Proof. Observe that by the Paley-Wiener theorem,

fm) = / ¢ hmds
0

is holomorphic in Im7; < 0. So, we can take limits from 7, in the lower half plane to obtain
h

i(m —140)

This gives the result. 0

fm) =

General Lagrangians

Suppose that (Ag, A1) is an intersecting pair of Lagrangian manifolds in a C* manifold X
with dim X = d and dimAgNA; =d—1and AgNA; € T*X. Given A € AgNAq, by Lemma
we can find a local parametrization of the the intersecting pair. Therefore, we define

Definition 4.6.6. I}"(X; Ao, A1) consists of those C*° % densities, © on X which are modelled
microlocally on Definition [£.6.2] We say that u € I§*(X; Ag, A1) if there exist distributions
uy € hY2IM(Ag), uy € I7"P(Ay \ OAy), a finite set of parametrizations x; : V; — T*R?
reducing (Ao, Ay) locally to normal form, zeroth order Fourier integral operators F} associated
to Xj_l and distributions v; € I3*"P(R% Ao, A1) such that

U — Uy — Uy — ZF]-UJ- = Ogs(h™).
J

Remark: Recall that for open A, all u € I°"P(A) are compactly microlocalized inside A.
Thus, I;°"P(A1\OA1) consists of distributions which are compactly microlocalized away from

OA;.

To show that these distributions are well defined, we need to show that if x is a canonical
transformation on R? which leaves both A and A, invariant and F is a properly supported
zeroth order Fourier integral operator associated to x, then Fu € I (R?; Ao, A;) provided
u is in this space. We will actually prove something stronger. Let /~\§l/ C T*R?, /~\§l c TR,
i=0,1.

Lemma 4.6.7. Suppose that d,d’ > 2 and T" is a canonical relation such that Foj\g/ C ]\g,
oAy C A? and the compositions are transversal. Let F € 1°™(T'). Then

F IR AL AYY — 150" (R A, A9). (4.6.5)
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Proof. We can always decompose F' by using a microlocal partition of unity and so assume
that ToAd = A¢ and ToA? = A¢ in the region of interest. Suppose that

w = (2mh) @42/ / h / eh =t ) g (s 4y mdnds,
0
Fv = (27rh)_(d+d/+2L)/4/ei‘z’(’”’y’e)b(:z:,y,@)v(y)dyd@,

where ¢ non-degenerate phase function defining I'. Then,

Fu= (27rh)_(d+4d,+2L+2)/4/ / {/ei¢(x’y’s’6’")badydn} dfds (4.6.6)
0

with ¢ = ¢(z,y,0) + (y1 — s)m + (¢, 7). Now, note that d,i) = 0 if and only if y; = 5,9, =
. =ya =0, dyyp = 0 if and only if n = —d,¢ and

¢ 1
2
Oyt = < Z} 0)
which has determinant 1.

Thus, by stationary phase,

Fu= (27rh)_(d+2L+2)/4/ /ei¢(”’(s’0)’9)c(x,s,9)d9d$.
0

Notice that Fof\gd’/) = Al(-d) implies that

d9¢:0:>y:0¢>x:()
dop =0, = ¢, =0= ¢, =0,2"=0,21 >0
d9¢207¢;1:0:>¢;1:07y/:()'y120'

Since we have assumed that the compositions ToA? is transversal o(z, s,60) = é(z, (s,0), )
is non-degenerate and since ToA? = A¢,

dop =0,s=02=0,dyp =0 .6.
dop=0,dsp=0&2"=0,dy,0=0,71>0,dgp =0 (4.6.8)

Since away from s = 0, u € [°™(A;), we may work in a small neighborhood of s = 0.
Suppose that there exists {(s;,x;,60;)}52, such that s; — 0, s;,z; # 0, dep(x;,x;,0;) =
0. Then, since ¢ has compact support, we may assume that (z;,0;) — (x,0). But, ¢ €
C*. Therefore, dyp(x,0,0) = 0 and hence x = 0 by and we may also work in a
neighborhood of x = 0.

Suppose that 9%p/90060(0,0,6) # 0. Then there exist i, j such that 9%¢/06,00;(0,0,6) #
0. Suppose i = j. Then 9%p/06%(0,0,0) # 0 and we can use stationary phase to eliminate



CHAPTER 4. SEMICLASSICAL ANALYSIS 112

the 6; variable. Therefore, we may assume that 9%p/962(0,0,0) = 0 for all ¢ and 6 in dyp = 0.
Suppose that i # j. Then, since 9%¢/3%0;(0,0,0) = 0 for all i, we may use stationary phase
in the §; and 6; variables. Now, observe that if 9*¢/90060(0,0,6) # 0 then the same is true
in a neighborhood of s =0, x = 0.

Hence, reducing the size of the neighborhood of (0,0) if necessary and using stationary
phase we can reduce the number of @ variables, L, until %@ /90060 = 0 at (0,0, é) Then, by
and the fact that ToAd" is transverse L = d and det(0%¢/dxd0) # 0. Therefore,

Fu = (27rh)(3d+2)/4/ /efi‘z’(x’(s’o)’e)c(x,s,@)d@ds,

ZC’ﬂ x; — sa;(x,s,0)),

where C' is invertible. Now, we want to show that there is a change of variables § = ©(x, s, ),
s = sT(x,s,0) where T' > 0 such that F'u is of the form (4.6.1]).
First, replace 6; by . Cji0; to reduce ¢ to

o(x,8,0) =0 -z — sax,s,0).
Now, write o = «(0,0,0) + x - 5(z, s,0) + sy(x,s,0) and let §; = 0; — sB;. Then,
o(r,5,0) =02 —sa(f) + s*y(z,s,0).

Now, reads

Oa 50y
“06, " ° o8,

T — =0, —ad)+ %(527(95, 5,0)) =0 (4.6.9)
if and only if 2’ = 0, d,,¢ = 0, and x; > 0. But, using , we have that s # 0 implies
x1 # 0 and hence 1 > 0. Thus, da/96; > 0 and on the surface S, defined by . Hence,
s and 0" = (0y,...,04) can be taken as coordinates. Moreover, for i > 2, ; = 0 on S so
that differentiating with respect to s in the first equation of and setting s = 0 gives
Ja/00' =0 on a = 0. But, da/06, # 0, so

a(f) = (61 — p(0'))B(0).

Now,
Oa op

0.< - = B(0) + 5-(61 = p(0).

But, on o =0, 6, — p(#') = 0 and hence § > 0. Then, since § = 0 implies & = 0, § > 0. We
also have that dp/06¢' = 0 on o = 0 since

da 0B
=55 = g0~ P(0) +5( )89,
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But, for every ¢ there is a 6; such that 6, — p(f’) = 0 and hence a = 0. Therefore,
Op/00' =0 and p = C;. Hence, by relabeling 6; = 0; — C4, and s = s, we have

o =10 2+x,C — 50, + s°y(z,5,0).

and, using (4.6.8), and setting s = 0, ¢; = 0, we have dp/dx; = 6, + C; = 0. Therefore,
(1 = 0 and we have
o =0-x— 350, +s°y(x,s,0).

Relabeling v = a and repeating the argument gives for any fixed k that
o(r,5,0) =20 — 0, + s"y(x,s,0).

Now, we apply the method used by Hormander [39] to show that ¢ is equivalent to
¢(z,s,0) = x -0 — sh; under a change of phase variables preserving s = 0 and s > 0.

The map
dp Oy ¢
: 0 -, =, =
x: (e 80) = (‘” 0z’ 90" Os
is injective and, x(z,s,0) = (z,0,(x; — s,2),—01) + O(s*). Hence x has a left inverse
W(r,&,m,0) such that, on the surface n, = 1, ¥(x,0,(21,7'),0) = (x,0,0) to high order.
Let k! (z,s,0) = ¥(z,0, (x; — s,2'), —0;) and put ¢ = k*p. Then k : S — S and & is equal
to the identity to high order at s = 0.
Now, write

k(z,s,0) = (z,t(x,s,0),n(x,s,0)).
Then,

9y =4, 9p = (21 — s,2), ¢ = —0,.

Ox (z,8,0)=(z,t,n) a0 (z,8,0)=(z,t,n) s (z,8,0)=(x,t,n)
Hence, by (#.6.8) on S
r1—s=0, =0, 6, =0.

Therefore, on 6, = 0, 953 = 0 and hence 9,,9 = 0. Thus, (¢ — ¢)(z1,2',21,0,0) = 0. That
is, ¥ — ¢ vanishes on S. Note also that we have on S that

ox’
Y ou
and we have 9(¢) — ¢) = 0. Hence ) — ¢ vanishes to second order on S.

Thus,

o = 0, — Oy =0 = Do,

(x,s,0) — d(x,s,0)=2-A-Z,

where Z = (11 — 5,2, —0,) = (0¢/001,00/00',0¢/ds) and A vanishes at s = 0. We need to
find a coordinate change (5,0) = (s,0) + B(x,s,0) - Z such that ¢(z,s,0) = ¢(z,5,0) and
B =0 at s = 0. Since

o(x,5,0) = ¢(x,5,0)+Z-B-Z+Z-B-G-B-Z
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where G is a matrix depending smoothly on x, 8, s and B, it suffices to choose B as the
unique small solution of B+ BGB = A. Then we have that B = 0 at s = 0 since A =0
there. Thus the phase functions ¢ and ¢ are equivalent.

m

Now, the symbol calculus follows from [49]. We include the relevant results in the semi-
classical setting.

First, suppose \g € dA; and choose hq, ..., hy_1 functions whose differentials are linearly
independent on JA; near )\g. Choose also f,g such that f = 0 on Ag, f > 0 on Ay \ OA4,
df(No) #0, g =0 on Ay, dg(Xo) # 0, and {f, g} (o) < 0. Let a € C®(Ag \ dA1; Q/2) such
that if g € C°°(Ap) vanishes on 0A; then ga € C*(Ay). Then write

a=g 'rldhi A+ Adhg_y A dg|"?
and define
Ra :=r|dhy A -+ Ndhg_y N df|V*{g, f}7V2
Then [49, Section 4] shows that R is independent of the choice of h;, g, and f as above.
Definition 4.6.8. We define the symbol class
S5 (Mo U Ax) © RY2SEMP (Mg \ A3 QM2) X SEP (A QM2)
as the subspace consisting of those sections (a,b) such that for all g vanishing on 0A;,
ga € C®(Ag) and blgp, = e™/*(2m)/2h"1/2R(a).
Then we have the following [49, Theorem 4.13]

Lemma 4.6.9. The following sequence is exact:

0 s hlfzélgomp(Ao, Ay) = I (Ag, A) S5 (Ag U Ay) — 0.

Remark: Here o is the usual symbol map for Lagrangian distributions applied to each
component Ay \ OA; and A; separately.

We need the analog of |49, Propositions 5.4 and 5.5 in the semiclassical setting. First,
we characterize the appearance of transport equations. The following lemma follows from

Proposition

Lemma 4.6.10. Let P € V" (X) be a properly supported pseudodifferential operator such
that p := o(P) vanishes on the part Ay of an intersecting pair (Ao, A1) of Lagrangians. Then
foru € I (X; Mo, Ay), Pu= f+g, f€hV2M™ V(X Ay), g € 211X Ay, Ay)
and

o(9)n, = (—=ihLp, + p1)o(u)|a,

where Ly, is the Lie action of the Hamilton vector field H, and p, is the subprincipal symbol
of P.



CHAPTER 4. SEMICLASSICAL ANALYSIS 115

Second, we need the asymptotic summability of the spaces I§"(X; Ag, A1).

Lemma 4.6.11. Assume that u; € W10 (X: Ny, Ay) for j =0,1,... then there exists
u € I§*(X; Ao, A1) such that for every N there exists N' > 0 large enough such that

N/

U—Zuj c hNCN(X).

=0

Finally, we need the following analog of [49, Proposition 6.6]. Define the characteristic
set of P,
Y(P)={veT"X :o(P)(v) =0}.

We say that P € V" is of real principal type if, letting p := o(P) and p; := o1(P), the
subprincipal symbol, p is real,

dp(q) # 0 for g € X(P)

and Imp; > 0. We say that P € U} is elliptic if there exists M > 0 such that for [{| > M,
o (P)| > Clg|™.

Lemma 4.6.12. Let P € V(X)) be elliptic and of real principal type. Then let
Ao ={(z,&,2,-§) e T" X x T* X},

and AS be the H, flow out of Ao N 3E(P) with orientation e. Assume that exp(tH,) is non-
trapping on Y(P). Then there exists u € h™Y2I;™(X x X; Ao, AS), such that for each
KeM,

Plu+v)=0(y,y') + Opyco (™) for (y,y') € K x K.

In particular, we have take
o(u) = (a(P)7',r) € h285™(Ag U Ay; Q')
where r solves
hlpr+ipir =0, 7lon, = ™4 (2m)2h 2 R(xo(P)™) (4.6.10)

and where py 1s the subprincipal symbol of P.
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Remark: Lemma gives us the kernel of a right parametrix for Pu = f.

Proof. First, let x € C°(T*M x T*M) have y =1 on Af and x; € C°(M) have x; =1 on
K. Then, since WF,(Opp(1 — x)) N A = 0, there exists v € I;™(Ag) such that

Pv = (1-0pa(x)(y, v )x1(¥)x1(y") + Oprcee ().

In particular, v is the kernel of a pseudodifferential operator V' € W™ (X).
We now solve Pu = Opy(x)0(y, ¥ )x1(y)x1(y') + Op o= (h>®). To do so, we proceed
symbolically. Suppose that ug € h™/2I"™(X x X; Ay, A$). Then we have

Pug = fo+ g0, fo € I""(Ag), go € W22 (X x X5 Ag, AS).
Now,

o(fo) = o(P)a(uo)|a,-
Thus, writing p = o(P), we have

o (uo)lanoas =~ o (Opa(X)d(y, ¥ X1 (¥)xa () € S5 (Ao \ DAT).

Thus, using the fact that x =1 on A,

o (uo)lon, = e™/*(2m) 20 PR(p™ o (5(y, v )x1 (W) xa ()

and hence
a(g0)|a, = (—thLp, + p1)o(uo)

where p; is the subprincipal symbol of P. Thus, o(gy) = 0 on A; yields the transport
equation
hLp,o(uo) + ip1o(ug) = 0 on Ay.

Under our assumptions, [20, Section 6.4] gives that this equation has a unique solution. Then
since Imp; > 0 and o(ug)|a, € S5™", we have that for ¢ € IAS, uo|asnr-x € h™/255".

Thus, for (y,y') € K,

Pug = 8(y, ) x1()x1(y') = fr + g1 € B 2L (Ag) + B2 I (X A, AS).
Finally, let xo € C2°(M) have x2 = 1 on supp x1. Then relabel uy = x2(y)x2(y")uo. Now,
we proceed iteratively to find u; € h/U=2071/2[MP (X Ay AS), given f; € hIA2) PP (Ay),
and g; € R 20HY/2=20 WP (X 5 X5 A, AS), such that o(u;)|a, = P10 ()| 0s
hLp,o(u;) 4 ipio(u;) = io(g;) on AT

As above, the transport equation has a unique solution satisfying the initial condition

o(ug)loa, = e™/*(2m) 2R 2 R(p~ o ().
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Then, letting
u ~ Z U
gives that for (y,y') € K x K
P(u+v) =6(y,y") + Opr—sc (h™)

as desired. Then simply relabel v = u + v. O]
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Chapter 5

The Semiclassical Melrose—Taylor
Parametrix

Let © C R? be strictly convex with smooth boundary. We construct parametrices for
(—=h*A — 2)u=0in Q;, ulog = f (5.0.1)

where ) = Q and Q, = R%\ Q, and f is microlocalized near glancing.

We give a construction similar to that in |32, Appendix A.IL.3] and [77, Chapter 11] in Qy
and adapt the results there to the case of {; using methods similar to those in [47, Chapter
7]. Throughout, we assume z =1+ iImz, —Chlogh™ <Imz < Chlogh™'.

Remark: To obtain Re z # 1, we simply rescale h in the resulting parametrices.

Define €(h) and p(h) by
h < e(h) := max(h, |Im z|) = O(hlog h™") w(h) == Imz.

We construct parametrices in a neighborhood of glancing where the size of the neighborhood
will depend on €(h).
In particular, if x € C2°(R), x = 1 in a neighborhood of 0. Then, let zy € 9, 6 > 0 and
define
|§/’g —1

Xf{v(%f) =X (W) X0~z — o))

where | - |, denotes the norm induced on the 702 by the euclidean metric restricted to the
boundary. Then xfﬂ localizes microlocally near a glancing point (xq,&p). We construct an
operator H such that

(—h*A —2)Hf = Oc=(h™®)  in
Hf = O0pn(X2")f + Oce(h™®)  in a neighborhood of z, € A (5.0.2)
H f is outgoing if §2; = 25
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In fact, we need to construct two such operators H, for gliding points and H, for diffractive
points corresponding to {2, and €2, respectively.

We are able to construct the operators Hy in the entire region | Im z| < Chlogh™!. Then,
using the arguments in [69, Appendix A.5], we show that H; is Og(h™) close to the true
solution operator.

On the other hand, while we are still able to construct the operator H, in the entire
region |Imz| < Chlogh™!, it is not possible to show that H,f is close to the solution to
in Q; when |Imz| = O(h*). This is due to the presence of Dirichlet eigenvalues on
the real axis. When |Im z| > Ch* for some M, we can invert the Dirichlet problem to show
that H,f is Oce(h™) close to the solution to (5.0.1]). Despite the fact that H, may not be
close to the solution operator near Im z = 0, we are able to use it to construct a microlocal
model for boundary layer operators even when |Im z| = O(h™).

5.1 Semiclassical Melrose—Taylor Parametrix for
Complex Energies

Following [47, Chapter 7] and [52], the ansatze for our constructions will be Fourier-Airy
integral operators [51] of the form:

B F = (2wh) "% / [g0A_(h™23p) + ik g A" (=2 p)|A_(h=%3a) e F, F(€)dE,
(5.1.1)

ByF := (2rh) %! / (g0 Ai(h 23 p) + ih' 2 g  Ai' (W23 p)]| Ai(h =2 2a) ~Lel/ " F F(€)dE.
(5.1.2)

where F' and f will be related below, plgq = a, p, 8 € C™ solve certain eikonal equations,
go , g1 solve transport equations, and Ai is the solution to —A”(s) + sA = 0 given by

1 [, :
Ai(s) / ci(st+t3/3) 1y

T or

—0o0

for s real, and A_(z) = Ai(e*™"/3z). Finally, 6sq will parametrize the canonical transforma-
tion reducing the billiard ball map for glancing pair {z € 9Q} and {|¢|> — 1 = 0} to that for
the Friedlander normal form

QFriea := {xq =0} C T*R? and Priiea = {&3 —xq+ & =0} C T*RY  (5.1.3)

The Hamiltonian flow for this system is shown in Figure [5.1]
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& <0 & =0 & >0

Zq

= 2=

Figure 5.1: The figure shows several trajectories of the Hamiltonian flow for the Friedlander
model. When &; = 0, the trajectory is tangent to the boundary z; = 0 and hence is glancing.
When, & < 0, the billiard ball map takes the upper intersection with x4 = 0 to the lower.
This corresponds to the hyperbolic region. Finally, when & > 0, the trajectory does not
intersect the boundary and hence this corresponds to the elliptic region.

The Friedlander Model

As a first, step, we consider the Friedlander model. This toy example guides us when we
consider the general case. The Friedlander model is given by

P = (hD,,)> —x4+hD,, — 00 ={xys=0}.

Suppose that
(P—ip)u=0  ulpo=f (5.1.4)

Then, taking the semiclassical Fourier transform in the 2’ variables gives
(_h2a§d — X4+ 51 - iu)Fh,x’u(xda 5/) =0 ‘Fh,x’u(oa 5/) = fh(f)(é-I)
The solution to this problem for p = 0 is

A(h™2/3(— i
u=(2rh)y e [ | A(h(—2732;; )it 7 )€

where A is a solution to the Airy equation. Let py := —z4 + & and 6y = (2/,£'). Now,
suppose that g = O(hlogh™1) # 0. We could simply replace py by —x4 + & — i, however,
because the function Ai has zeros on the real axis, it is more convenient when we consider
the general case to make a perturbation of #, and py so that uniformly in p, po|s,—0 has
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nonzero imaginary part. To do this, we compute

’L

P(A(h23p)et®) = [(8,,8)% — p(Dsyp)? + 08 — wa] A(h™2p)et?
— i1? [204,00,,0 + Oy, p) A (W7 p)er?

So, we seek to find 6 and p solving the model eikonal equations

(02,0)* — p(Ouyp)? + 000 — Tg = i
20,,005,0 + Oy, p =0

We find p ~ > oo pne(h)" and 0 ~ > 0,e(h)" where py and 6 are as above, 0, =
On(z,& 1), and p, = pp(x, &, ). Then, we solve for p,,, 0, successively by solving transport
equations of the form

Zaxde()axdgn - Q,OOaxdeaxdpn - pn(axdp0)2 + 81’1071 = Fl
andpoaxdgn + 2axd908xdpn + lepn = F2

where F) and F, depend on 6,, and p, for m < n.
In the next section, we construct solutions to these equations with p;(z1,0,&") = 7. With
these solutions in hand w will solve (5.1.4]) up to O(h™).

5.2 Eikonal and Transport Equations

First, we consider a general differential operator

P(z,hD) = a;i(x)hD;hDy + > bj(x)hD; + c(x)

with aj; = ay; applied to (5.1.1)) and (5.1.2). Then, for A an Airy function, we have, letting
fj denote 0;f, and p, = h=%3p

hD; (QA(Ph)G%Q) — 0;9A(pn)er’ — ihg; A(pn)et? —ih"?p;g A’ (py)er’
hDyhD; (QA(/)h)ﬁH) = [(0k8; — pjprp)g — ih(0kg; + 059 + Ojug) — WP gji] A(pp)er
— B3 (0500 + piO)g — ih(gipr + pigr + pjng)] A'(pr)e ™
) — 0,94 (pn)er? — ihg; A'(pn)er? —ih ™2 pipg A pn)er’
) = —ih 2 [(0;p1 + Okps)py
—ih(g;pep + Grpip + Pikpg + piprg)] Alpn)er’
+ [(0;6 — piprp)g — ih(Bkig + 0;9k + Org;) — h*gje] A'(pn)er’
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So,
({adf,dO) — pladp,dp) + (b,dO) + ¢)go
—ih(2(adb, dgo) — Ps8go + (b,dgo)) + h?*Pago
. (2<6Ld9, dp> + <b7 dp>)go i
— iR/ (i 6
" [—m<2<adp, dgo) - <P2p>go>] o
—ih(2p{adp,dg,) + {adp, dp)gy — p(Pap)g1) "
({adf,dO) — p{adp, dp) + (b,dO) + ¢)g;
—ih(2(adf, dg,) — (P20)g1 + (b, dg1)) + h*Pag

P(goA(pp)et?) = [

P(ih" g A" (pp)er?) =

+ ’ihl/g A/(ph)e%ﬁ

where a;, = aji(z), P» = h™?(P — (b,hD) — ¢(x)) and (-,-) denotes the euclidean inner
product.
Now, applying P under the integral in ((5.1.1)) and (5.1.2)) gives the eikonal equations

(adb, dd) — p(adp, dp) + (b,df) +c =0 (5.2.1)
2(adf, dp) + (b, dp) = 0 o
Writing
ot =0+ g(—p)3/2, (5.2.2)

3
the eikonal equations are equivalent to p(x,d¢*) = 0. Now, suppose that p has the form
> o Pn€(R)™ and 6 has the form )~ -, 0n€(h)" and

g~y gl (@, & ph.

Then the transport equations have the form

2(adfo, dgs”) + 2po(adpo, dgi™) + (b, dgg") + (adpo, dpo) g™ — Pabogs” — po(Papo)gy”
= FIM(Q P gl[m]<[n]’ :u) :
2(adpo, dgt") — 2(adbo, dgi™) — (b, dg}") = (Papo)gi’” + (Pabo)gi™ = F3™" (6. p, 9™~ 1)
(5.2.3)
More generally, we consider transport equations of the form

{2<ad00, dgo) + 2po(adpy, dgr) + (b, dgo) + (adpo, dpo) g1 + B1go + poBagi = Fi (5.2.4)

2(adpy, dgo) — 2(adby, dg1) — (b,dg1) + Bago — Big1 = I
Then, these equations are equivalent to

2(adp*, g*) + (b, dg*) + GFg* = F* (5.2.5)
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where
9" = g0 (=po)" 00 G* =B F (—po)'* B, F*=F T (=py)'*F,.

We use the equivalence of glancing hypersurfaces to construct solutions of the eikonal
equations near a glancing point. In particular, let p(x, &) be the symbol of P(z,hD) and B
a hypersurface in M. Let P = {p(x,&) =0} and Q = {(z,§) : * € B} be a pair of glancing
manifolds at m = (x0,&) € PN Q. That is, if ¢(z,{) = q(z) is a defining function for @

dp and dq are linearly independent at m
{pad=0  Ap{pad}#0  {a{ept} #0

Then the equivalence of glancing hypersurfaces (see for example [41, Theorem 21.4.8]) gives
the existence of neighborhoods V' of m and U of 0 and a symplectomorphism « : U — V
reducing P and @ to the normal form (5.1.3)). Since Q is the lift of a hypersurface to T*R,

this also induces a symplectomorphism
Koy —T'B ~:={,n) € TR : (y,ya,n,n4) € U for some ny}

such that kg intertwines the billiard ball map on 7B with that on T™Qpyieq-
We assume further that H,, is not tangent to T,R? at x = w(m). This allows us to
conclude that

k5(dn;), j=1,...d—1 are linearly independent on 7 B. (5.2.6)

To see this, observe that the projection of H, onto T B is not tangent to 7, B. This image
is the direction of the Hamilton vector field on the fold set and hence it follows that J,, is
not tangent to

H =k, (T:B).

T

Observe that H is Lagrangian and hence dn; # 0 on H. Hence, there exists a symplectic
change of coordinates on leaving (yi, ;) fixed such that dn; j =1...d — 1 are independent
on H and therefore that holds. This transformation can clearly be extended to leave
QFriea and Pryieq fixed.

Now, consider

YiP = MxR™  P3pe (n(p),m(x7'(p)), - naa (k7 ()

Lemma 5.2.1. The map Y s a fold at m. Moreover, the fold set meets Qrriea transverally
at gd =0.

Proof. Let ¢ € C*°(M) be a defining function for B. Then dgq # 0 on P near m. Thus, we
need only consider the restriction of Y to the intersection of P and (). That is,

Y':PNQ— BxR"™ Y =Y|png.

But, the map from PNQ to T* B is a fold and Y” is this projection composed with replacement
of the fiber variables by n; 7 = 1,...d — 1 which has bijective differential. Hence, Y’ and Y’
are folds with the desired properties. O
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The construction of solutions to the eikonal equations near a glancing point now follows
from [47, Proposition 4.3.1] which we include here.

Lemma 5.2.2. Let p be the (real) principal symbol of a differential operator with C*° co-
efficients in a neighborhood of B C R with defining function x4. If P and Q form a
glancing pair at m then there exist real functions 6y and pg smooth in a neighborhood, 32, of
m(m) x {0} € R? x R4 such that

po=m on XN (B xR
0|p parametrizes kg, the reduction of P and @ to normal form

d.0,,0, j=1...d—1 are linearly independent on %
po 1S a defining function for the fold

and py and 0y solve the eikonal equations (5.2.1)) in pg < 0 and in Taylor series on B.

Proof. Let

Ay={peP:Y(p)=(n): 1 R}
Then, A, are Lagrangian submanifolds foliating P near m. To see that they are Lagrangian,
observe that

I{_l(Af') = {((y/anl + 772)7 (77,777d)) : y/ eUC Rd_land eV C R}

and hence is Lagrangian.
This implies that the canonical one form, w = £dx| Ay is closed and hence there exists ®
a smooth function on P such that

d(®|s,,) = wla, for 7' near n

and hence p(z, d®) = 0.

In fact, since ® is the integral of a one form, it is locally unique up to a normalization
on each A,,. We fix this normalization by choosing 7" C P a submanifold of dimension d
transverse to the fibration by A,s and contained in the fold of Y. We then insist that ®|; = 0.
Now, since Y is a fold

Y(P) = {m < waf (x,n)} (5.2.7)
with f(m) # 0. Then, since Y is a fold and A, is Lagrangian, by [41, Theorem 21.4.1]
2
d=Y*(h + g(_P0)3/2> (5.2.8)

where 0y, po : Y(P) — R are smooth and pg is a defining function for the fold. Moreover,
the odd part of ® vanishes to second order at the fold since ® is the integral of a smooth
1-form.

Next, we show that py = n;. Notice that this is independent of the choice of the reduction
to normal form, x and the choice of T'. Fix k and suppose that &; and ®, are two smooth
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solutions of p(z,d®) = 0 corresponding to different submanifolds 7} and 7,. Then, let
w = ®; — ®,. w is constant on each leaf of A,, and hence is a function of only n'. Observe
that the involution defined by Y preserves A,y and hence the Y odd (and even) part of w is
a function of only n. But this implies that the Y odd part vanishes identically. Hence, since
0 is Y even, pe, = pa,.

Observe that over B, the involution map of Y is just the projection of P N Q to T*B
and the function ® pulls back under x to a solution to the same problem for the model case.
Together, these imply that the odd part of ® restricted to the boundary is independent of
the choice of T" and k and hence is the same as for the model case.

Next, observe that 0p, — e, is a function of only n’. Hence, 0,(0p, — 0s,) = 0. But,
as in the previous paragraph, at the boundary B, ® pulls back under s to a solution of
p(z,d®) = 0 for the model problem and hence 97,,,x*0|p = I. In particular,

dy 0,0 are linearly independent for j =1...d -1

Now, by construction
Ay =A{(z, 0:2(z, 7))}
and k! (z,0,P(x,n)) = (y(z, 0. P(x,n )) ' (ya —m)"?) when (yq —m) > 0. Now, on B,
this holds for 7; < 0 and 9,P(x,n )|B = Y*H Now, if k(y,n) = (z,£), then, using that x
is a symplectomorphism, we have (8—y)t = 85 Therefore,

Ay
%(ZE, amq)(l’, 7]/))|B - (afj:pe)tlB

Thus,

y = 0,00 ) + f(n)
and hence, using that ry is symplectic, we have that f = ;¢ and hence by adjusting the
normalization 7', we can arrange that 0| generates kg.

At this point, we have solved the eikonal equations p(z,d¢™) = 0 with ¢ having the
correct form in the region py < 0.This is a region of the form . Our last task is to
extend these solutions so that the eikonal equations continue to hold in Taylor series at B
and py = 0.

By the Malgrange preparation theorem, we can write

p(ZL’, 5) = p/[(fd - CL(I,S))Q - b(l‘agl)]?

where p’ is nonvanishing near m, a,b are real, and ¢ = (§,...&;). Thus, we can drop p’
when solving p(x, dp*) = 0. Then, by the glancing hypothesis on p and ¢ along with H, not
tangent to the fiber at x = m(m),

Ci=a, b=0, deb#£0 atm



CHAPTER 5. THE SEMICLASSICAL MELROSE-TAYLOR PARAMETRIX 126

with b = 0, 24 = 0 the glancing surface. Then, p(z, d¢*) = 0 becomes
B, — a(z, 0p®) = £ (b(x,0,0%)">  in py < 0. (5.2.9)

Then, extending pg and 6, to smooth real valued functions across py = 0 gives solutions to
(5.2.9) in Taylor series at py = 0. We write ¢7 for the extended functions. Then,

00, 0F — (@, B dt) F (b, 0wdt)"” = es (5.2.10)

with ex = 0 in pg < 0 and vanishing to all orders at py = 0. Then to solve (5.2.9)) to all
orders at x4 = 0, we add to ¢; function

¢2 ~ Z Iggk(xlv f)
k=1

with ¢9 vanishing in py < 0. Then, by (5.2.10), we can solve for the g successively as
functions vanishing in py < 0 and ¢+ = ¢T + ¢5 solves the required problem. O]

In addition, by two applications of [47, Section 4.4] (one for the real part and one for the
imaginary), we have the following lemma.

Lemma 5.2.3. Forc,d € S and by € C, By, By, Fy, Fy € C* there exist gy, g1 € S in p <0
solving (5.2.4) Moreover, the equations (5.2.3)) can be solved in Taylor series at py = 0 and
y =0 and we can arrange that ¢g1((0,2"),&) = cgo + d and go((0,0),0) = by..

Proof. We saw in ([5.2.5)) that (5.2.4) is equivalent to
2(ad, ¢, dog™) + (b, dg™) + GFg™ = F*

where g*, G*, and F'* are smooth in x,¢ and (—py)'/2. Hence, pulling back by Y, this lifts
to
2(ad,®,dg) + (b,dg) + Ga=F  on P.

Then, reinterpreting this as an equation on each A,/, z can be used as coordinates on A,y
and hence
H, = 0:p0, = 2(ad®, 0,) + (b, 0y)

and hence 2(ad®, -) + (b, ) is the vector field H,. That is, our equation becomes
H,g+ Gg — F. (5.2.11)
We can reduce our problem to solving H,u = 0 by first solving
H,ay + Gay = F a;(m) =0

and
Hya=G', a(m)=0
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and writing
a—a; = exp(—a)u.

Then, the equation H,u = 0 just reduces to evenness of u under the involution generated by
projection from the manifold of bicharacteristics for P to PN Q.

Our goal is to solve (5.2.11)) with
g1 =cgo+d go(m) = bo.

Let Z denote the involution on P N () coming from projection to 7*B. Then this amounts
to

lg]o = clg]e + d, where vo = %(Zév —v)pyt vp = %(Z&v +v).
After reducing to Hyu = 0, we have changed the boundary condition to
lexp(—a)uo = clexp(—a)ulg + € u(m) = by
where €’ is some Z even function. Now, observe that
[vw]e = [v]pw]e + pylvlow]o
So, we can write our boundary condition as
uo = cug + f

where ¢’ and f are Zp even. Then, after applying x to reduce to normal form, we have by
[47, Proposition 2.8.2] there exists such a function u.

This solves the transport equations in py < 0. The extension to py > 0 follows as in the
proof of Lemma [5.2.2]

O
Full Phase and Amplitude Functions for the Dirichlet
Parametrices
We now specialize to the case P = —h?A — z and work in a neighborhood of the boundary

00 of the for O = [0,a) x U with coordinates (y,z’) and U an open set in 092. Notice that
in these coordinates,

—h*A = {a(y, 2 )YhD,hD) + h{b(y, "), hD)

and hence that h(b(y, "), hD) term can be moved into the right hand side of the transport
equations without difficulty.
By the results of Lemma (or |77, Chapter 11], and [32, Appendix A.II]), we have
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Lemma 5.2.4. There exist 0y, py € C™ solving (5.2.1)) for P = —h?*A — 1 for pg < 0 and
((y, "), &) near ((0,x3),&) and in Taylor series at po = 0 and y = 0. Moreover,

d,0¢,0 are linearly independent for j=1...d -1 (5.2.12)
0
ﬂ<0, po=0op ony=>0
dy

where g 1= poly=o = & and by|y—o parametrizes the reduction of the billiard ball map to that

for the normal form (5.1.3)) (i.e. k).

Now that we have constructed phase functions for z = 1, we will correct them to obtain
solutions of (5.2.1) to O(h>). To do this, let

z=1+ipu, 0 =00+ One(h)" =6, +0

n>0

p=pot Y puc(h)" = po+p

n>0

where 0y and py are the solutions found above. Then,

in =(2(adby, d0") — 2po{adpy, dp) — p'(adpy, dpo) + (b, db"))
+ ({add’, d0") — 2p'(adpo, dp’) — poladp’, dp')) — p'{adp’, dp’)
0 =(2(adby, dff) + 2ad®’, dpo) + (b, dg')) + (2(ads’, dp'))

where we have grouped terms according to homogeneity in €(h). Note that if Imz = o(h),
we have artificially introduced a perturbation of size h to p and 6.
Then, equating powers of €(h), and letting

9<n:{9m:m<n}7 p<n:{pm:m<n}a
we have that

2<6Ld90, d9n> + 2p0<ad:007 d<_pn)> + (_pn)<adp0> de) + <b7 den) = Fn(‘9<n7 P<n, /L)
2(dbn, dpo) — 2(dbo, d(—pn)) — (b, d(—pn)) = Gn(O<ns P<n, 1)
(5.2.13)
These equations are of the form ([5.2.4) with —p,, playing the role of g;. Thus, appealing to

Lemma [5.2.3) we can take p;((0,2'),£) = i. For n > 1, Lemma [5.2.3] implies that (5.2.13))

can be solved with p,((0,2'),£) = 0. Putting this together, we have

Lemma 5.2.5. Let 6y and py be the functions guaranteed by Lemma|5.2.4. Then there exist
0,p € S solving

(adf,df) — p(adp, dp) + (b,df) = z + O(h>)
2(d6, dp) + (b,dp) =0
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n po < 0 and in Taylor series at pg = 0 and y = 0. Moreover,

prpot+ > pue(h) O~ O+ One(h)"

n>0 n>0

with pp, 6, € S, po, 0o Teal valued, Im 6, > 0 and p|,—o = a 1= & + ie(h).

Remark: In this way, we arrange

a(g) =& +ie(h).

Now, to solve for the amplitudes gy and g;, we expand them as formal power series in h".

Then, the successive terms solve equations also of the form (5.2.4) (in particular, (5.2.3)).
Since the inhomogeneities do not appear in the equations for g, there are solutions with
boundary condition g([JO]((O, x'), €) areal valued elliptic function and g&‘” = 0. Then, for n > 0,

we have solutions with ¢! ((0,'),¢) = 0.

Semiclassical Fourier-Airy integral Operators

Before proceeding, we give the necessary results on semiclassical Fourier-Airy integral oper-
ators following [77, VIIL.6 and X.2] as well as [47, Chapter 6]. We denote h=2/3a = ay, and
h=%p = py.

We make the following basic assumptions throughout this section. Let Q C R? be strictly
convex and U be a neighborhood of xq € 0. Suppose that ch™ < e¢(h) < Chlogh™! and
let p, 0, € C*°(U) and go, g1 € S5°""(U). Suppose that 0y, po € C°(U;R). Suppose further
that p = po + €(h)p', 0 = 0y + €(h)0’ with plag =: a,

d0cbp #0, 0O,p <apg<0incase (0.1.1), J,p>ag > 0in case (5.1.2). (5.2.14)
with |Im p'| > ce(h) and ¢, p' € C(U;C),
6 =6, + 0(e(h)), Im6:((0,0),0) = 0.

Next, assume « = ap(&) + €(h)d/(§) with ag € C®(0;R) and o = i + O(e(h)). Then,
assume that F' € & with

MSy(F) € T*U( ) {|a0| < min [7 (%) ,’y] } : (5.2.15)

The fact that (5.1.1)) and (5.1.2)) are well defined follows from the fact that gy and ¢
have compact support and that |Im p/| > 0.

Remark: We could take o/ = —i + O(e(h)), but this would change the wavefront relations
in Lemma [5.3.1] In particular, for (A_.Ai)~'.
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Preliminary Estimates on Airy functions and multipliers

We start by recalling some preliminary estimates and asymptotics for Airy functions. We
have

A_(z) = E_(2)e2PDY | Arg(2) — 71/3] > 6 (5.2.16)
where, letting w := ¢™/3 Z_(2) := Z(2w?) € S7V/* = has [77, Section X.1]
E(z) = 24 Z(—l)kak2_3k/2
k=0

where a; > 0 and ap = (24/7)"'. and we take the branch of z'/? at Arg(z) = 7 with
(1)¥/2 = 1. We also write A, (z) = A_(z) for another solution to the Airy equation. The
asymptotics for Z(z) can be differentiated a finite number of times to obtain asymptotic
expansions for A% ().
Next, recall
Ai(z) = E(z)e_2/323/2 . |Arg(z) — 7| > 0. (5.2.17)

Moreover,

Ai(z) = wA,(2) + WA_(2). (5.2.18)
So, using the asymptotics ((5.2.16)) and the analogous asymptotics for A, we have

Ai(z) = wE, (2)e 23D L g (2)ePED | Arg(2) — 71| < 6 (5.2.19)

where 2, (2) = Z(20?).
Define
Al (2) A (2)

Pilz) = Ai(2) 0-(2): A(2)

We will need the following lemma (we follow the proof given in [80, Lemma 3.1]).

Lemma 5.2.6. Let ¢; be as above. Then there exists § > 0 such that

()2 4+ |Tmz2|™! |z2| >6,Rez <0

|¢i(2)| < C {(z>1/2

otherwise

and
()72 4 | Tm 2|~ H(2)™! |2| >6,Rez <0

(z)71/2 otherwise

|¢i(2)| 7! < C{

Proof. Since ¢; is meromorphic and bounded above and below at z = 0, there exists ¢y > 0
such that for |z| < zp, 0 < ¢ < |¢;| < C. For |Arg(z) — 7| > 0 and |z| > 1, the estimates
follow from the asymptotics . Thus, we need to consider the regions €y < |z| < M
and | Arg(z) —w| < 6.

First, we consider the region ¢y < |z| < M.
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Let —¢; ~ C15%/% be the zeros of Ai(z) and —(} ~ C5j*? be the zeros of Ai'(z). Recall
that both ¢; and C]' are positive and real for all j. Now, Ai and Ai’ are entire of order %
Therefore, we can use the Hadamard factorization theorem to write

Ai(z) = %254 H (1 + Ci) eié, Ai'(z) = eF35 T H (1 + g) e 5
j J j J

Hence taking the logarithmic derivative of Ai and Ai’ respectively,

1 1 1 1
i(2) = Cy + - — ) =04+ ) —— ——.
¢i(2) = Co Zj:z+gj ? 2¢; (2) = Cs Zj:erCj 7

Since (; are real and positive,

_ [ Imz|™' Rez<0
+ ¢t < =:
26l s {C’|Z|1 Rez >0 ()

where and ¢; > 2|z|, |z + ¢;|7' < 2|¢;|7". Thus,

2|z| 00
(G| < [Cal + D (2 +GIT) + 12 D =+ GG
Jj=1 J=22|

<O+ [2](alz) + 1+ Z G17%)) < Cal(z)

J

since €y < |z| < M. By an identical argument,
|2ll6s] 7" < Calz)

in this region.
Now, we consider the remaining region. Let |z| > 1 with | Arg(z)| < 0. First, using
(5.2.18]), we have that

9i—2) = ﬁigig (1 - wf;_l’ii)z)) (1 " %:)2)) 1_ (5.2.20)
7 - 45 (1 ALY (10 A EY

Thus, to estimate ¢; and ¢; !, we proceed by obtaining estimates on A, and A_. Defining
¢ = 22%2, we have

Im¢ =Imz(Re2)2(1 4+ 0(5),  |[Im(| > Cs|Im z||2|"/2.
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Now, let
Bi(2> — Zl/4eﬂFi7r/1QE( +ir/3 )

Di(z) — :tiZ_l/46:Fm/12 (:FZZ E( +7i/3 ) _’(eim/?’))

where = is as in ([5.2.16)) so that

Ay (—z) = 27412 B, (2)eFC Al (—2) = TFiz' /412D, (2)eT. (5.2.21)
Then
Bi(z) = byt ihi(™ 0((?), —2BL(2) = 20 +0(¢)
Di(z) = doidi¢ ™ +0(C?), —2Dl(z) = ii’”—dlc* o(¢™?)

where b; > 0, d; > 0 and

) 3bob1‘ | 5/2(1 + 0(5) + O(|z|—3/2)) >0

+1Tm (Bi(z)BgE(z)
+Im (Di(z)m> =

We first seek to show that £|A_(—z)| < £|A,(—2)| in £Im z > 0. To this end, define

Sad _
= 7R+ 0(0) + 0(2 %)) > 0.

fa(7) = |By(a+i7)|* — |B_(a +i1)|%.
Then,
fulr) = 21m (By(a+ ir)Bi(a +i7) — B_(a+i7)BL(a;7) ) > 0,

So taking a = Rez and using the fact that |A (Rez)| = |A_(Rez)|, we have fr..(0) =0
and fL,,(7) >0 for 0 <7 <dRez and Rez > 1. This implies

+|Bi(2)| > £|B_(2)| +Imz>0 (5.2.22)
An identical analysis with the function
9a(T) = |Dy(a+i1)]* — |D_(a +i7)?

gives
+|Di(2)| > £|D_(2)] +Imz>0 (5.2.23)

We now restrict our attention to Im 2z > 0 and hence Im { > 0 since the other region is

similar. By (5.2.21)) and ([5.2.22))

‘A_(—z) B B_(2)| _

_ D_(z)
Ai(=2) Bi(z)|

D, (z)

—2Im ¢ _ ,—2Im(

S €—2Imc

p—21Im¢ ’A,<_2)
I A

(5.2.24)
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Now, the asymptotics (5.2.16|) imply that
Al (—2)
Ai(=2)

<C. (5.2.25)

0 < c(2)? < ’

§C<z)1/2 0<e< ‘ﬁigig

So, using | Im ¢| > Cs|Im z||2|'/? together with using (5.2.24) and (5.2.25) in (5.2.20)) gives

o CE® O
~ 1—e2m¢ = min(1,2Im()
~1/2 |Z|*1/2
(=)' <O 2 <C
|6i(=2)[7 < 1—e2Mm¢ = " min(1,2Im ()

|0i(—2) < Clef? + O Im 2|

< <z>_1/2(1 + | Im z]_1<z>_1/2).

]

The following bounds on products of Airy functions will be useful in our construction of
H, and Hy

Lemma 5.2.7. Let a be as in (5.2.15) and oy, = h=?/3a.. Then for v small enough and
o < y(he(h)™")?
we have for Reay, < —0
Ch™2e(h) < ClITmay| < |Ai(ay)A_ ()] < C
clan)'? < | AT (an) AL (an)| < Clan)'/?
c(| Tm e | an) ™ 4 (an) )7 < fian)| < [Tmay| ™ < Ch*Pe(h) ™!
clan)? < |o_| < Clap)'?
and for Reay > —6
ChY3 < |Ai(ap)A_(ap)| < C
o Im ap| " ap) ™t + (an) ~2) 7 < AT (an) AL (an)| < Clag)'/?
clan)'’ < |oi(an)| + o (an)| < Clan)'/?.
Proof. First observe that
ch™2Pe(h) < |Imay| = 0(h~%3e(h)) < § (5.2.26)

thus, either |ay| < 6. or |[Imay| < |ap.

The upper bounds for Ai(ay)A_(ap) and Ai'(ay)A_(ay,) follow directly from the asymp-
totics (5.2.16)), (5.2.17)), and together with the analyticity of these functions.

In order to estimate (A_Ai)~!', we use the Wronskian to write

Al(z) Al(z) W(ALA)(z) e
A_(2)  Ai(z)  Ai(2)A_(2)  21Ai(2)A_(2) (5.2.27)
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Thus, to estimate |A_Ai|~! it is enough to estimate ¢; and
A/
P

Similarly, to estimate (A" A7')~!, we use the Wronskain to write

A(x) Al W(ALA)(E) i/

A (z)  Ai(z)  Ai()A_(z)  21Ai(2)A (2)
By Lemma there exists d > 0 such that

| Tm 2|~ + (2)Y/2 |2| > 6,Rez <0
i <(C
= {<z>1/2 otherwise
(o) < o L@ I 2 26, Rez <0
Z a ()12 otherwise '

and, since . .
¢_(Z> — e27rz/3¢i(e27rz/32>

we also have

o)) < ¢ [ (Tmem el + (V) Je] 28
=0 2] <6
,1/2+|Im62m/32|—1<2>71 |Z| >0
- -1 <C <Z> - .
lo_(2)|7 < {<Z>—1/2 otherwise

Now, by (5.2.26)), either |a,| < & or [Im e*™/3z| > §, so we can estimate

C(Ozh>1/2 < |o—_(an)| < C’(ah)l/2

|9il(an) < {

| Im oy | ™' + {ap)? Reay <0, ]ay] > 6

{ap)1/? otherwise

67 () < {

(o) 12 otherwise

Next, we have

and hence

—-1/2

h2
(1+ |apn])~V% > <h—2/3 (»VW + Ce(h))> >y~ V2p728¢(h) > | Tm oy

134

(5.2.28)
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provided that v is small enough. This implies
(an)? < [Tmay|™!
and hence gives the desired estimates O]

Define the Airy multipliers:
(A_Ai)\F = (2nh) 0+ / [Ai(an) A_ ()] e =€ F, (€ e,
(A_ANF = (2rh) %! / Aion)A_ () e @SV FLF(€)de

(@©)F i= (2h) " [ 61(an)e =R (e

() F = (27Th)_d+1/¢Zl(Oéh)e“z’thhF(é)dé

(@©)F i= (2t 41 [ o (@n)e =€ F P Q)

(=N F = (2wh) ! / &~ (ap)e' VM FLF(€)dE..

Then the following estimates follow from Lemma [5.2.7 (see also [47, Proposition 5.3.10])

Lemma 5.2.8.

(A-Ai) ™" = Oz oy (h777) - A Ai = Oy (1)
(AZA) ™ = Oy (W*Pe(h)™!), ALAY = Oy (h1°)
®; = Opz sz (h%) @71 = Oy (BPe(h) ™)

d_ = OHgﬁHi(h_l/g) Pt = Omz sz (1).

Proof. This follows from the estimates in Lemma [5.2.7] O

Estimates for Fourier-Airy Integral Operators
Estimates for (5.1.2) type Fourier Airy Integral operators

To analyze the action of (5.1.2)), we follow the analysis given in [47, Chapter 6]. We work in
a neighborhood of the boundary 09 of the form O = [0,a) x U with coordinates (y, z") and
define the symbol classes

Definition 5.2.9. We say p(y,2’,&;h) € a(h)S, s, if

| Dy D, (hDe) ply, ', & )| < a(h)heeI=o1o=E,
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Write BoF := Bzo(A;A_)"'F where
BsF := (2wh)~*! /[goAi(ph) + ihY3 g Ai (pp)] A (ap) e/ Fy F(€)dE. (5.2.29)

Then all that remains is to analyze Bs.

To analyze Bs3, we break it into several pieces that can be handled using the theory
of Fourier integral operators with singular phase. Let py, pe, p3 have suppp; C [C,0),
supp p2 C (—2C,2C), supp p3 C (—oo, —C| with p; + p2 + ps = 1 and let ¢; = 1 — p3 where
C > 1 will be chosen later.

We first examine the case where Re oy, > —2C.

Lemma 5.2.10.
yin(ph)Af(Oéh)%(Re Oéh) c hQ/ngCE(h)/h51/3,2/3,1

yjAz"(ph)A, (Oéh)(h(Re Oéh) € ece(h)/hhflmﬁ/?’j51/3,2/3,1
for 3 > 0.
Proof. We first consider the term involving p;. By We have that

A_(ap) = E_(ah)62/3a3/2/h if Rea >0, Ai(pn) = E(ph)e_(z/g)p3/2/h if Rep > 0.
Thus, since py > ag + cy,
Ai(pn) A (on)p1(Re ap) = pr(Re an) = (ap)Z(pp)e” A 2= 2)/h

Write
pi(Rear) = x7(an)x3(pn)

where X1, x2 are supported in Re s > 1/4 and equal to 1 for Re s > 2. This is possible since
a < p— Cy+ 0(h=%3¢(h)). 1t suffices to show that x1(an)=_(an) € Si/z0, X2(pn)E(pn) €
51/3,2/3,2/37 and

Xl(Re O(]—L)XQ(RG ph)e—(2/3)(p3/2—a3/2)/h & €Ce(h)/h51/372/371. (5230)

The first two estimates follow from elementary estimates on =.
To prove ((5.2.30[), we apply the chain rule:

D];DﬁrDge_@/?’)(p?’/?_a?»/z)/h
= " CDB DI DY (W (0% — o/?)) ... DE D DI (h ™ (2 — (12))e= 2/ =)

where the sum is over > v, =7, >. i =, > k; = k. Note that (5.2.14]) implies that for y
small on supp x1 (o) x2(pn)

Re(p*? — a®?) > Cy*?, Rea > 0.
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Hence,

|DkDﬁ,Dg(p3/2 _ a3/2)e*%(p3/2*a3/2)| < efcy:’/z/heCe(h)/hC|p|3/2fkflﬁlflvl k>0
y -z — ) }

2

|D§D2(p3/2 - 043/2)|e_3h(f’3/2—03/2) < 06—093/2/h606(h)/h|p|3/2—|ﬁ|—h\ 8>0,
(2 — a0 < = e (o2 o fir2b).
But, on supp x1(Reay)xa(Re pr), Ch?3 < a < p. Thus,

|DkDB,Dg(p3/2 — a/2)em AP =0 i < Ceelh) [y =2/3(k Bl =3/2-])
v <

Now, for the term involving p,, we have
Ai(pn)p2(Re ap), hl/SAi(Ph)p2(Re ap) € ece(h)/hsl/gz/:s,y

To see this observe that on ps(Reay)pa(Rep) we have |pol,|ao] < Ch*? and hence the
main term in the exponential phase is bounded independently of h. Moreover, since Re pg >
oo + Cy, |y| < h*? so the second statement follows. On pa(Re ay)p1(Re pp), we estimate as
above.

The estimate for terms involving Ai’ follows from the fact that

Ai'(z) = E(z)e” /¥
where Z = 0(z%/*). This completes the proof of the lemma. O

Next, we analyze the case where o) < —C'. Write
B5 F = (2wh) ! / [0 Ai(pn) + i g1 AT (pn)|A- (an)ps (o)’ Fy Fde.

We have similar to [47, Section 6.3]
Lemma 5.2.11. The operator defined by

i(z,¢’)

h }_hFdf,

AS(F) = (2mh) 4! / A_(an)paan)e

15 a Fourier integral operator with singular phase.
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Remark: For a treatment of semiclassical Fourier integral operators with singular phase see

Section

Let
DG = /[goAi(Ph) +ih'3 g1 A (pn) )" F G (€)dE

where G € &'. Then Bs = DoA=.

Hence, we only need to analyze D. We decompose D using ps3(Re p) and ¢;(Re(pr)) and
write the resulting operators D := Dy + Ds.

Then, using the same analysis as in Lemma [5.2.10| we have

Lemma 5.2.12. For j >0,

PbAi(pn)qr(Re py) € W2/ eWIMG, a1,
PoAT (p)q1(Re p) € h™ /6231 CMng, oy sy,

Finally,
Lemma 5.2.13.
(2mh) ! / [90Ai(pn) + ih'> g1 Al (p) |/ FuG(€)ps(pn)dé = BT + B~
with

B* = w¥(2mh) " / (0= (pn) + 0 gy = (o) T (1) FuG€)dé

where Z+(pp) € S1/3,2/3,2/3, éi € h71/651/3,2/3,2/3-
Proof. By (5.2.19) we have
Ai(py) = w5+(ph)e—(2i/3)(—ﬁ)3/2/h + @B (ph)€(2i/3)(_p)3/2/h, Rep < 0.

Similarly for Ai’. Thus, the lemma follows from symbol estimates on =, and =.. O]

Estimates for (5.1.1) type Fourier Airy Integral operators

The analysis of ((5.1.1]) is similar to that of ((5.1.2)). This time, we decompose Bj into pp, < —C
and pp, > —2C. We have

Lemma 5.2.14. For j > 0,

YA (pn)A_(an) ' q1(Repy) € PR OR2I3 G gy s,
v A (pn)A_(an) 1 (Repp) € 6ce(h)/hh_1/3h2/3j51/2,3/2,1-
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Proof. Since py < ay — Cy and |Rep| < ch?? on supp pa(Repy), we may analyze terms
involving only p; instead of ¢;.

By (5.2.16)), we have

A(pn) _ E-(pn) 2/3(0%2=ad/%) [h _ =-(pn) 213000/ 2 =ag/) h+0(e(h) /)
A_ (Ckh) =_ (ah) =_ (Ckh)
We have that py < ag — cy. Therefore, the estimates follow as in Lemma [5.2.10 n
We have

Lemma 5.2.15.

(AS)'F = (27rh)_d+1/(A_(ah))_lpg(Re ap) FrpFdé

18 a Fourier integral operator with singular phase.
Moreover, (A_(ay))~! is bounded on supp ¢;. Then, similar to above, we have

Lemma 5.2.16.
(2mh) =+ / [90A_(pn) + ih' g1 A" (o))" FuG(€)ps(pn)dE = B~
with

B~ = w(2rh) " /[905—(Ph) + i P g i (py) |l s () FLG(E)dE

where Z_(pn) € S1/3.2/3.2/3; =€ h_1/651/3,2/3,2/3~

Together with Lemma |5.2.14] and the fact that A_(ay,)~" is bounded on supp ¢;(Re ay),
this shows that on supp ps(Re pp), (5.1.1)) is a Fourier integral operator with singular phase.

Verification of the properties ([5.0.2))

We now prove that using the phase and amplitudes constructed in the previous section that
(5.0.2) is satisfied. First, we construct F' so that the boundary conditions are satisfied. We
have that g;|aq = 0 and plsq = a. Hence, restricting ((5.1.1)) or (5.1.2)) to 02 gives

BF|oq = (2nh) ! / gei® /1 F, P (€)de

where 0, = 0|sq and g = golaq. Now, d,0¢,0 are linearly independent and hence 6 is a
phase function. Fix § > ¢; > 0. Then, since e(h) = 0(hlogh™'), en™? ¢ S, and shrinking

the neighborhood on which we work if necessary
sup ’eﬁE(h)e | < Ch_él-

inf [ereMo'|
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Thus, J := Blsq is a semiclassical Fourier integral operator that is invertible by the symbol
calculus of FIOs. Hence, we just need to take F' = J~! f to obtain the appropriate boundary
conditions where J~! is a microlocal parametrix for J. Thus, we let H; = B;J ! and
H, = ByJ~'. We need to verify that if

MSy(f) € {11€'ly — 1] < n(h) < 1},
then
MSL(J 7' f) € {|&] < Cn(h)},

but this follows from the fact that 6 parametrizes the reduction of 92 and [£]* = 1 to the
normal form ([5.1.3]) combined with the wavefront set bound (4.4.5)).

After a change of variables near xy, we may assume that locally ©; = {y < 0} and
Qy = {y > 0}. with = = (y,2).
Diffractive points

Now, we have that

(=h*A = 22 By F = (2mh) ! / [ajgg’;)) +bj((£:)) /"

where a ~ > aj,hie(h)™ and b ~ Y b; mh7e(h)™ such that

j,m bm =0 f < 07
G 01 o P (5.2.31)
@jm,0jm = O(y"), for any (z,&) and all n > 0.

Thus, for diffractive points, by Lemma [5.2.14
(—=h?A — 2*)B1F = Oge(h*)

as desired.

Gliding Points

For gliding points, the verification is more complicated because py may become positive
away from the boundary. The case when oy > 0 are taken care of by Lemma and the
estimates . Suppose that oy < 0, but pg = 0 at y;. Then, since the eikonal and
transport equations can be solved in Taylor series at pg = 0 and pg > a9+ C'y, we have that
@iy bjm = Cjmah? pfy, but by Lemma , for ag < 0 and pg > 0, such an integrand is
O(h*) as desired. Hence, we also have

(=h?A — 22)ByF = Opee (h™)

in the gliding case.
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5.3 Microlocal description of H,;, H, and the Airy
multipliers

In we need the following microlocal characterization of the operator A_.Ai similar to
that in [47, Theorem 5.4.19]

Lemma 5.3.1. The Airy multipliers have wavefront set bounds as follows:

WEFy/(A_Ai) UWFy (A_Ai')

{ WEFy' (A Ai) UWEY (A AY)
WE ((A-Ai) ™) C U Csn N EL =: CF

E.={6#0U{r, >y, 0=y, 2<i<d, £E=n,& =0}

where Cgn is the relation generated by " and graph(ld) denotes the graph of the identity
map.

} C CgUgraph(ld) =: G,

Remark: Note that Cp° = U,,>¢Csn

Proof. We have that oy, = h=2/3(& + e(h)a/(€)) where £, is dual to y. First, fix § > 0 and
suppose that ¢, € S°(R?) is a cutoff function with (&) =0, |&] <&, and ¥(§) =1, |&| >
20. Then, we show that WF},'(¢(hD)A_Ai) C C,, WFy ((¢(hD)A_Ai)~") C Cp°. Write
¥ =: 1, + 1 where supp ¥+ C {£& > 0}. Then, in |Argz| < €,

A_(2)Ai(z) =Z_E
with =_= an elliptic symbol. Hence,

VA (an)Ai(an) = 4 E-(an)=(an)
Uy (A (ap)Ai(on)) ™ = e E- (an)E(ap) ™

and ¥, (A_A;), ¥, (A_Ai)~! are classical pseudodifferential operators. Thus, we have
WEY (Y A_Ai) , WEFy (v, (A_Ai)~') C graph Id.

Now, for the term involving 1_, we use the asymptotic expansion of Ai and A_ to write in

|Argz — 71| < €, AiA_(2) = w=, (2)2_(2) + WE2 (2)eY/31="* Thus,

P_(§)A_Ai(ay) = ay exp (%i(—fl - e(h)a')3/2> + as (5.3.1)

where a; € h'/3S7Y/2. Therefore v A_Ai € h*/*I1°(C, N {|&1| # 0}) since ¢ = (z —y,&) +
%(—51)3/ 2 parametrizes 3 for the Friedlander model and the o/ term is a symbolic pertur-
bation since e(h) = O(hlogh™!). Identical arguments give the wavefront set bound from

AL A
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Similarly, using [47, Section 5] or simply expanding in power series,
V(A0 M) = Y avexp (5ri(—& — e(h)a'))?”
3h

where for any S'/2? seminorm, || - ||g1/2,

> lagllgie < CRTVE.

k>0

Thus,
o (A_AD) T e hTAIVI(RY Ce N {|&] # 0}).

Now, by Lemma [5.2.10]
Ai(ah)A_(ozh)ql(Re Oéh) S ece(h)/hsl/gg/g,l.

Thus,
hDZ AiA_ ()i (Re (D)) = O(h\/3)eCeh/h,

So, if b is the kernel of AiA;q(Re(ay(hD))), then
(z; — ;)" = O(h\BI/S)eCe(h)/h.
Hence, for any N > 0, taking |3| large enough and using that €(h) = O(hlog h™1).,
(2 — 4:)"'b = o(h™).
But, x; — y; is elliptic away from z; — y; = 0. Hence,
WF} (A_Aig; (Re(an(hD))) C graph (Id).

But on supp(1l — ¢1), the asymptotics ([5.3.1)) hold and we have studied this wavefront set.
Next, observe that 9, (A_A;(ay)) ™" = 0 for 2 < j < d. Hence,

WFh,((AfAZ)il) C {1'2 =Y2,...Tq = yd}

The sign condition on z; follows from the fact that (A_A;(h=2/3¢, +ie(h)))~" is holomorphic
in Im & > 0. Hence, by the Paley-Weiner theorem [40, Theorem 7.3.8]

supp[(A_.Ai) ()] C {z; > 0}.
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Remark: This is where we use the assumption o’ = i+0(e(h)) rather than o/ = —i4+0(e(h)).

We need the following characterization of WF},'(Hy) [69, Appendix A.3]

Lemma 5.3.2.

Ey,m) € Ty x T*OQ -

€] =1, (z,€) in the outgoing ray from (y,n)

Proof. We decompose the operator into pieces where Re p > —2Ch%*? and Rep < —Ch?/3.
When Rep > —2Ch?/?, Lemma [5.2.10 shows that in the interior of Q;, Hy = 0(h™). When
Rep < —Ch?3, Lemmas|5.2.15| and [5.2.16{show that H,J is a Fourier integral operator with
singular phase

v=0-3 [~ ()"

Thus it has WFy,'(HyJ)|o, C Cy where Cy = {(z, V1), Vetb, £)}. But, this parametrizes the
outgoing geodesics ([77, Section X.4], [47, Section 6.5]).
Now, at 09, H, is a microlocally invertible Fourier integral operator with phase 6,(2’,§) —
0(y',€). Hence, on 09
WFh/(Hd)|3Q C graph Id.

]

Similar arguments together with the wavefront set bound on (A_.A47)~! show |47, Section
6.5],

Lemma 5.3.3.

o) € T*0 x T*09) -
WFh/(Bgejil) C { (.Tf § Yy T]) 1 X }

€] =1, (z,€) is in an outgoing ray from a point (y,n)

z, 6, y,n) € T x T*0Q : [¢] =1,
WFh,<Hg)C{ (x,€,9,7m) ) €] }

(x,€) is in an outgoing ray from U,>oS™((y,n))
Proof. We first prove wave front set bounds on operators of type (.2.29)) decompose the
operator into pieces where Rep > —2Ch*? and Rep < —Ch?3. When Rep > —2Ch*/?,

Lemma [5.2.10[shows that in the interior of Qy, B3 = 0(h>). When Re p < —Ch?/3, Lemmas
[5.2.11f and |5.2.13| show that Bj is a Fourier integral operator with singular phase

V=02 (=)~ (~a)""].

Thus it has
WF (Bs)]o, C Cy, where Cy :={(x, Vb, Vb, &Y.
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But, this parametrizes the outgoing geodesics (77, Section X.4], [47, Section 6.5]).
Now, at 0f2, Bs is a microlocally invertible Fourier integral operator with phase #,. Hence,
on Jf)
Wy (Hy)|oa C graphld.

Combining this with the wavefront relation for (A_.Ai)~ completes the proof of the lemma.
[

5.4 Parametrix for diffractive points

We follow [69] to show that the parametrices H,; constructed above are Oce (h*°) close to the
exact solution near 9€2. We have that for f microsupported near a glancing point (yo, 19)

(—h*A - 2)Hyf = KfinU, Hyfloo = f + Sf. (5.4.1)

Here K = Os/—,coc(h*°) and S = Opr—ce<(h™). Let x € C§° have suppx C U and x =1 in a
neighborhood of 9f).
Define B
Hd = XHd — Ro(XK — [th, X]Hd>

Then Hj is z outgoing and has (—h?A — 2)Hy = 0. Next,
(Haf)loo = f +Sf = yRo(XK [ + [=h*A, x| Haf).

The last term is the only potentially problematic term. However, since WFy,([—h%A, x])
is away from 092, H; and Ry are outgoing, and € is convex, this term is Oge(h™) when
restricted to a neighborhood of 0f).
Thus, writing
R =8 —yRy(xK + [-h*A, x]|Ha),

we have that the exact solution operator is given by Hy = Hy(I + R)™" where I + R is
invertible for h small since R is Oc(h™). Hence, we have

Lemma 5.4.1. Then the solution operator for the exterior Dirichlet problems is given by
Ha = xHa — Ro(XK — [P*A, x]Ha) + Oc= (h).
In a neighborhood, U of 0N, this is

Hd|U = XHd|U + Ocoo(U)(hoo).
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Dirichlet to Neumann Maps in the Diffractive Case

Using the parametrices constructed above, we construct a microlocal representation of the

Dirichlet to Neumann map near glancing. In order to do this, we simply take the normal

derivative of H from the previous section. That is, let v/ denote the inward unit normal to
Q,

Al (h 2/3 )

) _ —d+1 13 AL 7a)

0l = 21 [ (g4

The new symbols gj and g} have g} = 0,90 + ih™'go0,0 + ih™'g1pd,p and ¢} = 0,191 —
ih= 1990, p+h~1g,0,.0. By construction g, vanishes at the boundary and, moreover 9,/p # 0
with Vp = 0,,pv/. Hence, 0,,60 =0 by (5.2.1]). So, we have

) e /hF, Fde.

96 = 0w 9o g1 = —ih™ goOyip + Our gy (5.4.2)
Now, gy € S and g; € h~'S with g elliptic and hence we have

1

@ﬁﬁ?/%ﬂwﬂﬂo@:Jmm

Zh1/3 / 2/3 10 h o
27Th d— 1/ A h 2/3 b f F(f)df = th C@_(F)

with C' € ¥ elliptic, B € ¥, and ®_ the operator defined by

o -

FuF =: ¢o_(an) Fipk.
Hence, microlocally,
Ny = J(h7?3C®d_ + B)J . (5.4.3)

A simple nonstationary phase argument shows that WF,'(®_) C graphId. This together
with the microlocal model (5.4.3) implies the following bounds for the exterior Dirichlet to
Neumann maps near glancing.

Theorem 5.1. Let Ny denote the Dirichlet to Neumann map for the exterior of Q). Let x €
CX(R). Fiz 0 < e < 1/2 and let X. = Opn(x(h™¢||€'|; — 1|)). Then for |Imz| < Chlogh™,

|NoXe|| 22 < polte/2,

Remark: Note that one can let 0 < e < 2/3 if we apply the second microlocal calculus of
[65].
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5.5 Relation with exact operators in gliding case

In the gliding case, we cannot make a simple wavefront set argument to show that H, is
h*° close to the exact solution operator. Instead, we focus on constructing functions that
are used in section to produce microlocal descriptions of boundary layer operators and
potentials near glancing. In particular, we examine operators of the form flg := B3J ! where

BaF i o [(aodiln) + i A7 () A- (an)eh =9 5 (F) ()

(2wh)~
Let (yo,m0) € S*02 be a glancing point. Then we have that there exists U a neighborhood
of yo in €2 such that for ¢ and v small enough and v with

v=1on{ly -yl <8 |n—mol <6, |Inly — 1| < yh’e(h)~?}
supp ¥ C {|y — yo| < 26, [n —mo| < 261, |In]y — 1| < 2yh%e(h)~?}

{( WA —2)Af =Kf
Agf|m = JAIA_J ! Opn()f+ Sf

where K = Opr(aq)—cow)(h™) and S = Op/_,c=(90)(h>). Now, shrinking ¢ if necessary, we
assume that B(yo,30) C U. Now, fix x € C*(2) supported in U with x = 1 on B(yo, 20).
Then, using the wavefront set bound on Bg, we have that shrinking 0 again if necessary,
WFh(A ) Nsupp dx = (. So, defining A, := xH,, we have

(—h*A = 2 Ay f = XK f + [F°A XA, f = Ky f
Agf’ag = X:]AZ.Afjil Oph(w)f + XSf
= JAIA_J 7 Opn()f + Sif

where K| = Op(an)—c=()(h™) and Si = Opr(aa)—ce=(a)(h™).
Similarly, there exists B, = yB,J ' with

ByF = : a+l /(goAi(Ph)+ihl/?’glAi'(Ph))A/_(ah)eie(x’g)fh(F)(f)df

(2mh)~
such that

Bgf|@Q = JAZA/_J_l Oph(@b)f + ng

where Ky = OD/(@Q)%COO(Q)(}LOO) and Sy = Opl(ag)ﬁcw(ag)(hw).
Note also that with v the outward unit normal to €2,

O, A, floa = —J(W*B3CAI' A+ BAIA_ )T Opn(¥)f + Saf
0, Byflog = —J (R *3CAI' A + BAIA )T Opn(¥) f + Suf

where S; = Opr(aa)»c=@0)(h™) and B,C € ¥ are as in (5.4.3). Then we have,

{ (—h?A — 22)B,f = K, f
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Lemma 5.5.1. Near a gliding point, there exist operators A; , i = 1,2 so that
((=h*A=2")Ai,f = Kif in Q
Arglog = JAIA_J " Opu(¥) f + S, f
Aggloo = JAIALT ™ Opy () f + Sa, f
Oy Arglog = —J (W *PCAIA_ + BAIA_) T Opy(¥) f + Siuf
\ D, Aggloa = —J (W YPCAI A+ BAIA )T Opp(¥)f + Sou f

where Kz = OD/(aQ)_)Coo(Q)(hoo) and Sz‘f = OD’(@Q)—)COO(E?Q)(hOO)'

5.6 Wave equation parametrices

Let Q C R? be a strictly convex domain with smooth boundary. Let Q; = Q and Q, = R?\ Q.
In order to handle the glancing region, we construct microlocal parametrices for

U] = Uy on 0f)

Oy uy + Opus = f on OS.

That is, we construct H such that if f has wavefront set in a small conic neighborhood
of (to, xo,70,&0) € T*(R x 0R2) over which a glancing ray passes, then

(0F —A)Hf € C°()

(Hif — Haf)|oo € C>(09) (5.6.1)
O Hif + 0, Hof — [ € C®(00)

Hf e C™ t<0

First, the wavefront set property for f implies that f is C'* outside of a compact set in t.
Hence, by [40, Theorem 6.24], the solution when f is replaced by x(t)f differs only by a C*>
function. Thus, without loss of generality, we assume that f has compact support.

We will use the construction in Section To pass from the parametrix for —h2A — 22

toa (5.6.1), set z =1, h =771, and rescale ¢ — ¢'r.
That is, letting

Hyf(xh) = (2mh) =4+ / gz, €y, 1)y, W)dyde’

Hf(z,7) = (2nr 1)~ /g(:v,Tﬁ',y,T1)f(y,7'1)dyd§’.

We then have that H acts on functions f with wavefront set in €77 = 1] < € and is
O(7~*°) on functions with wavefront set away from this set. That is, H acts on functions
with wavefront set in a conic neighborhood of glancing. Then,

H:=F ' HF._,
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is the desired parametrix.

5.7 Semiclassical Fourier integral operators with
singular phase

We now define the semiclassical analog of Fourier integral operators with singular phase. We
follow the treatment in the homogeneous setting given in [77, Section VIL.6] (For another
treatment of Fourier integral operators with singular phase in the homogeneous setting, see
[47, Appendix D].).

Throughout this section, we assume that U C R is open and ¢ € C*(U) is a nondegen-
erate phase function with the caveat that, letting v be a boundary defining function for U
and 0 < a < 1, it only has

p e C(U) |DIDg | < CogyMHO 71 it o] 4 18] > 2. (5.7.1)
Then, let a € S5(U) have
suppa C {y > ch’}, suppacU (5.7.2)

where ¢ > 0 and 0 < b < 1. Here, we allow 0 € [0,).
A Fourier integral operator with singular phase ¢ is an operator Au defined by

Au(z) = (2mh) ™ / al, )er PO~y (y)dyde.

Since a has compact support, this operator is well defined. We need to prove the following
lemma.

Lemma 5.7.1. Let ¢ have (5.7.1) and a € S5 have (5.7.2)). Let A be a Fourier integral
operator with singular phase ¢. Then

WFh/(A) - {(xv 8$S0($a 5)7 ga ag(p(l‘, 5)}

Proof. To see this, consider

(x(2)e #@0 Au) = (2mh)™ / u(y)x(z)a(z, £)er*@Ev0 dydade

where ®(z,&,y,0) = ¢(x,§) — (y,€) — (x,0). Then, away from d,¢ = O¢p = 0, there exists
L such that Lex® = e#®. By (5.7.1]) we have

(LYY= Y hrAL(x,&)D].

0<|o|<k
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Here, A% has
|DIDERF AE| < BF(1 4 4o (lob=lal-I8]),

Thus, on supp a,
|hkA’;‘ < Chk(l + h(af(k7|a|))b) < Chk(l*b)+ab+|o\b.

Thus,
|(Lt)ka| < Z Chk(l—b)+a,b+|cr|b—6|o\) < hkmin(l—b,b—é)'

0<|o|<k

Since 0 < b < 1, this gives the result. m
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Chapter 6

Boundary Layer Operators

In Chapters [7] and [I0] the existence of resonances for —Ap; and —Apq s will be related
to a certain equation involving boundary layer operators of the Helmholtz equation. In
this Chapter we prepare for the analysis of these equations by understanding the classical
boundary layer potentials from a semiclassical point of view. We first review some of the
classical theory of boundary layer potentials. We then proceed to prove (nearly) sharp high
frequency estimates on layer potentials using L? estimates on restrictions of quasimodes and
their derivatives to hypersurfaces. We then give a microlocal description of the single and
derivative double layer operators for domains with smooth boundary away from glancing.
In the process, we give a description of the free resolvent as a semiclassical intersecting
Lagrangian distribution. Finally, in the case that the domain is strictly convex, we use the
Melrose-Taylor parametrix from Chapter [5| to give a microlocal description of the single and
derivative double layer operators near glancing. As a consequence of the microlocal models
for the single layer potential and derivative double layer potential, we improve the nearly
sharp estimates on these operators to sharp estimates in the case the the domain has smooth,
strictly convex boundary.

6.1 Classical Layer Potential Theory

We review here some facts about boundary layer potentials in the context of the Helmholtz
equation. We start by considering Im A > 0. Then,

(—=As = X*)Ro(N)(,y) = 6,(w).

Moreover, the equality continues analytically through Re A > 0 to C in the case that d is
odd and to the logarithmic cover of C\ {0} if d is even.
Let

Sf(x) = / Ro(\x.y)dS(y),  Df(x) = / O, Ro(Mx.y) [(0)dS(y) = ¢ 0
o0 o0
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be respectively the single and double layer potential. We prove the following lemma similar
to |76, Propositions 11.1, 11.2]

Lemma 6.1.1. Let Q € R? be open with smooth boundary. For x € Q, let vi(x) and v_(x)
denote limits respectively from x € Q and x € R\ Q. Then for z € Q,

(SF)2(x) = G (@), (Df)s(w) = F5 /(@) + N f(a)
(0,8 ) () = i% F(a)+ N* f(a)

where for x € 0X,
Gf(x) = / RoN(@.y)f(0)dS(y)  Nf(x) = / By, Ro(N)(, ) F(5)dS ()
o0 oN
N#f(x) = /a D Ri(N)(.) f(5)4S ()

and 0,, denotes the outward unit normal derivative to 0S) at x.
We call G the single layer operator and N the double layer operator-

Proof. We start by considering a general pseudodifferential operator P(z, D). Let S € £'(R?)
denote the surface measure on 02 and make a local change of coordinates so that 02 = {z; =
0} with QN U = {z; <0} NV. Then, for f € D'(0R), letting = (x1,2’) and y = (y1, )

Pla, D)(#5) = (2m)™° // GG Y (0 ¢ ) 1)y dEdE,
= Q($1>9€/7 D/)f

where

q(z1,2',¢) = (27?)_1/emglp(xl,x/,é“)d&. (6.1.1)

Now, suppose that p € Sg;. Then, for m < —1, (6.1.1) is absolutely integrable and hence
continuous at x1 = 0. On the other hand, if m > —1, we can write

p~ Y Cl, ) +& — oo
j=—00
Then, by for example [76, Chapter 3] (or Lemma [6.6.2) ¢ is smooth away from z; = 0 and,
if ¢V (z,¢') = (—1)7C%(z,&) for j > —1, there is a jump discontinuity at x; = 0.
Now, we apply this to S and D. Note that the (homogeneous) symbol of Ry()) is [£|~2

so we immediately obtain that there is no jump for S.
On the other hand, let L be a vector field equal to 9, on 0f2. Then,

Df = Ro(ML*(fS),  0.5f = LRo(A)(f5S)
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where L* = —L — (div L). So, the symbol of RyL* is —|¢| %i(v(x),&) and that of LRy is

1€]7%i(v(x), €). Then, writing

€ = Tv(2)|*ilv(@), € £ Tv(z))

we see that +Cy(z,&)™! = i. Computing the integral (6.1.1)) with p = —|£|%*i&; gives the
constant $% for D and, since the symbols are related by multiplication by —1, i% for

0,S.
Now, suppose that Im A > 0 and that u solves
(=A = Mu(z) =0 x € S
Then, using Green’s formula and the fact that Ry(\)(z,y) = Ro(A)(z,y),

u(z) x el

S0, _
o 0 x ¢S

o0 — Duloq = {

So, taking limits from inside and outside €2 in (6.1.3]), we have

1
G@,,iu+§u—Nu:u Gal,iu—§u—Nu:O.

That is,
1 -
GO,u = U + Nu.

Next, apply 0,, to (6.1.3)) and take limits from inside and outside 2 to obtain

1 ~ 1 -
§@Viu + N#0,,u — (0,,Du), = 0,,u — §8Viu + N#9,u — (0,,Du)_ = 0.

That is,
1 .
(0,,Du)+ = —§8Viu + N#0,,u.

On the other hand, suppose that u solves
(A= X)u(r)=0 2¢Q  u is \outgoing.
Then, using Green’s formula and the fact that Ry(\)(z,y) = Ro(A)(z,y),

x €N

0
So, D = _
Ulon + Duloo {u@;) +¢ 0

So, taking limits from inside and outside 2 in (6.1.7]), we have

1 ~ 1 ~
G&,ﬂu—éu—l—]\/u:o Ga,,eu+§u—|—]\/u:0.

]

(6.1.2)

(6.1.3)

(6.1.4)

(6.1.5)

(6.1.6)

(6.1.7)
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That is,
1 N
GO, u = S~ Nu. (6.1.8)
Next, apply 0,, to (6.1.7)) and take limits from inside and outside (2 to obtain
1 ~ 1 -
§8l,eu + N#0,.u+ (0, Du)y =0 - 58,,@11 + N*0, u+ (8,,Du)_ = 0,,u.
That is,
1 .
(0,,Du)y = —éf)l,eu — N*9,,u. (6.1.9)

Now, let f € C*(9€) and u; be the unique solution to (6.1.2)) with w;|9gq = f. Then
the interior Dirichlet to Neumann Map is given by N; : f — 0,.u;. If u, solves with
ueloq = f, then the exterior Dirichlet to Neumann Map is given by N, : f — 0, ue.

Next, suppose that v; is the unique solution to with 0,,v; = f. Then the interior
Neumann to Dirichlet Map is given by Dy, : f + v;|sq. Finally, suppose that v, solves
with d,,v. = f. Then, the exteriror Neumann to Dirichlet Map is given by Dy, : f — ve|aq-

Then (6.1.4)) (6.1.5]) (6.1.8)) and combined with density of C*° in distributions give
the following

Lemma 6.1.2. Let G, N, and N# be as in Lemmal6.1.1. Then for Im A > 0,
1 ~ 1 ~
G/\/Z-:§I+N GAQ:§I—N.

Moreover, 0,,D has no jump across 0€) and

0,Dl = (0,,D)+ = (—%I + N#) N; = (—%1 — N#) N,
where
O, DU f(x) = /a 00, FoN) ) () ).
Finally,

1. - 1 -
0,D(Dy, = =51 + N#, 0,DIDy, = =51 - N#,

We call 0, DY the derivative double layer operator.
Now let Im A > 0 and fix h € C*°(092) and suppose that u(z) = Sh. Then ulsgq = Gh
and hence 9,,u = N;Gh, 0,,u = N.Gh. On the other hand, taking limits from inside and

outside €2 and using Lemma [6.1.1], we have

1 1 -
Oyu = (51 + N#> h O,u= (51 - N#> h.
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Similarly, if we let u(z) = Dh. Then, d,,u = 0,D¢h and (u); = Dn,0,Dlh, (u)- =
—Dn,0,Dlh. On the other hand, taking limits from inside and outside €2, and using Lemma

[6.1.1] we have

(u), = (—%H N) B () = (%H N) h

Again, using the density of C* in D', we have proven

Lemma 6.1.3. Let G, N, and N# and 0, D{ be as in Lemma and Im A > 0. Then

1 - 1 -
/\/}G:§I+N# Nerﬁl—N#.
Moreover,
1 - 1 -
Dn,0, DIl = —51 + N, Dn,0, Dl = —51 — N.

Now, to see that Lemmas|6.1.2|and [6.1.3| hold for A in the domain of Ry()), observe that
computing symbols as in Lemma @l (see also Lemma for G and 9, D/, we have that
G € U ! elliptic and 9,D¢ € Wl elliptic. Thus, G and 9, D¢ are meromorphic families
of Fredholm operators on the domain of Ryg(A). Now, Lemma together with Lemma
[6.1.3] imply that G and 9, D{ are invertible for Im A > 0. Thus, the meromorphic Fredholm
theorem implies that they have meromorphic inverses. This implies that N;, N, Dy,, and

Dy, are meromorphic families of operators. Hence, we have

Proposition 6.1.4. For X in the domain of meromorphy of Ro(\),
1 ~ 1 ~
GM:§I+N G./\/’ezéf—N

1 . 1 N
MG:§]+N# A@G:§I—N#

Moreover, 0,,D has no jump across OS2 and
1o 5 L, 5
5’,,1)5 == (8,,Z'D)i - —51 + N M = _QI - N Ne.

Furthermore

1. - 1
0,DIDy, = =51 + N#, 0,DIDy, = =51 - N#

1 ~ 1
Dn,0,Dl = —51 + N, Dn,0, Dl = —51 — N.
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6.2 Quasimode Estimates

We next prove a restriction estimate for quasimodes for the Laplacian. In particular, we
show

Lemma 6.2.1. Let U @ R? be open withT € U a CY' embedded hypersurface. Suppose that
|l 2@y =1 and
(=h?A — 1)u = 0p2(h).

Ch=/4
< 6.2.1
[ullL2ry < {Ch—1/6 e C?', curved ( )

Then for 0 < h < hy,

In the setting of smooth Riemannian manifolds with restriction to a submanifold, these
estimates along with their LP generalizations appear in the work of Tataru [75] who also
notes that the L? bounds are a corollary of an estimate of Greenleaf and Seeger [33]. Such
LP generalizations were also studied by Burq, Gérard and Tzvetkov in [10]. Semiclassical
analogues were proved by Tacy [73] and Hassell-Tacy [38]. These estimates were generalized
to the setting of restriction to smooth submanifolds in Riemannian manifolds with metrics
of CM! regularity by Blair [9]. In making a change of coordinates to flatten a submanifold
the resulting metric has one lower order of regularity, thus the estimates of [9] do not apply
directly to C''' submanifolds, and so we include here the proof of the L? estimate on C!!
hypersurfaces of Euclidean space. The estimate with h='/6 for curved C?*! hypersurfaces
does follow from [9], so we consider here just the case of a general C™! hypersurface.

We now prove Lemma [6.2.1]

Proof. We derive (6.2.1]) from a square function estimate, Lemma|6.2.2] The estimate (/6.2.2)

is a characteristic trace estimate for solutions to the wave equation, but the proof more closely
resembles that of dispersive estimates for the wave equation. Our proof of Lemma [6.2.2] is
inspired by [9], although the analysis here is simpler since we work on Euclidean space, and
seek only L? bounds on the restriction of eigenfunctions.

Let x € C*(U) have x =1 on I'. Then, we have

(—=h*A —1)xu = Op2(h).
Moreover, letting ¢ € C°(R%) have ¢ =1 on 7/8 < |[£] < 5/4, suppv C {3/4 < |€] < 3/2},
and using the fact that (—h?A — 1) is elliptic on supp(1 — ¢), we have
(1 = $(hD))xu = O ().
Hence,
11 = ¢(hD))xull2ry = O(A'/?).
Thus, we need only consider ¢)(hD)xu. Now, let v = ¢ (hD)xu. Then

cos(tv/—A)v = cos(tr)v + /0 cos((t — )V —A)sin(sr)Er~'ds
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where

(—A —r?)v = E = 0pa(r).

Then, Minkowski’s integral inequality together with Jensen’s inequality and (6.2.2) imply
that

for f with f(f') supported in %r < €] < %r. Since v = ¥ (hD)xu, E has the required Fourier
support property with » = 1/h, the proof of (6.2.1)) is then completed by the following,.

Lemma 6.2.2. Suppose that 1 > 1 and f € L*(RY), and f(é) is supported in the region
Sp< g < 3r. If F e CHHRTTY) s real valued, with ||V F ||~ < o, and F(0) =0, then

(f

Proof. Given a function F, such that sup, |F.(2') — F(z')] < r~!, then (6.2.2) holds if we
can show that

1 4 1 )
(/0 H(cos(h/ﬁ)f)(a:/,ﬂ(x’))‘LQ(Rd_17dx,)dt> < Cr1| f]l 2y - (6.2.3)

< OT1/4||f||L2(Rd)

/0 (cos((t — s)V=R)f) (', F('))

L2 (Rdil,dxl) L4([071D

1

4 1 L
L2(Rd—1 dg') dt> < Cra ||fHL2(Rd) . (622)

(cos(tv/=8)7) &, F(a")|

=

This follows from the fact that (6.2.3), together with the frequency localization of f and
translation invariance, implies the gradient bound, uniformly over s € R,

(f

We will take F,. to be a mollification ofdthe O function F on the r—2 spatial scale.
—1
Precisely, let F,. = ¢,1/2 x F', where ¢,1/2 = 7“7@5(7’%]7/), with ¢ a Schwartz function on R~!
of integral 1. Then

PN

4

Ds (cos(t\/z)f) (o, F.(2') + 5)

5
(RI-1 da") dt) < Crilfllzaces -

L2

1

sup |Fp(z') = F(2')| <Cr™t,  sup [VF(z') = VE(2')| < Cr72,

and F, is a smooth function with derivative bounds

la|—2

sup |0 F.(2")| < Cr 2

o] > 2. (6.2.4)

In establishing (6.2.3) we may replace cos(tv/—A) by exp(ity/—A), the bounds for
exp(—ity/—A) being similar. Let

Tf(t, ') = (exp(itvV—A) f) (2, F.(2))).
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We deduce bounds for T : L*(R%) — L([0, 1], L*(R*"!)) from bounds for TT*. Precisely, let
K, (t — s,z — y) denote the kernel of the operator

p(r7'D)exp(i(t — s)V—A), D :=—i0,

where p is a smooth function supported in the region 1 < [¢| < 2. Tt then suffices to show

that
1
‘ / /Kr(t —s, (" =y F.(2") - Fr(y’))) f(s,y)dy'ds
0 L4([0,1],L2(Rd~1))
1
S CTQ ||f||L4/3([0,1],L2(Rd71)) (625)

since this implies || T7T* f|| (0,1, 22(d-1)) < CT%||f||L4/3([0’1]7L2(Rd71)), and hence (6.2.3). We
recall the Hardy-Littlewood-Sobolev inequality,

_1
I1t172 * fllzswy < Cllf s -

Translation invariance in ¢ then shows that (6.2.5)) is a consequence of the following fixed-time
estimate, for || < 1,

< Cra |t 73| fllpgary . (6.2.6)

L2 (Rd* 1)

If [t| < r~', where we recall r > 1, then ([6.2.6) follows by the Schur test, since if |¢t[r < 1
then for any N > 0

'VjW“f—%E@@—mefwmy

Kot —y)l < Oyr'(Ltrfz—y) "

We thus restrict attention to [¢| > r~!, where we establish using wave packet tech-
niques that were developed to prove dispersive estimates for wave equations with C1! coef-
ficients; see [68].

To prove for a given ¢ with [t| > 7!, we make an almost orthogonal decomposition
K, =, Kj of the convolution kernel K,.(¢,-). This decomposition is based on dividing the

frequency space into essentially disjoint cubes of sidelength ~ r%|tl’%. On each of these
cubes the phase of the wave operator is essentially linear in the frequency variable, and
hence each term K; behaves as a normalized convolution operator in x.

We fix ¢ with [¢] € [, 1], and let § = r2|¢|~2 . Let n; count the elements of the lattice
of spacing ¢ for which |n;| € [37,2r], and write

pr7€) =D Q4(9).

where @); is supported in the cube of sidelength ¢ centered on 7;, and the following bounds
hold on the derivatives of ();, uniformly over r, ¢ and j,

108Q;(8)| < Coo 1ol (6.2.7)
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We then write K, (t,z) =Y Kj(x), where we suppress the dependence on r and ¢, and set

Kj(z) = (2m)™ / e et Q1 (¢) de .

The multiplier ¢|¢| — t|n;|~!(n;, &) satisfies the derivative bounds (6.2.7) on the support of

Q;, hence we may write

O+ 0 (£) = i@+t ng |~y €) Q;(8),

with Qj having the same support and derivative conditions as ;. Consequently, we may
write

Kj(w) = 64 e/ mit ity (§(z + ¢ |ns| ~'ny))
where x; is a Schwartz function, with seminorm bounds independent of j. We let
K;(@'y) = K;(a' =y, F(2') = F(y))) -
It follows from the Schur test that
1K || 2 (ra—1)—s p2ra—1) < C'6.

To handle the sum over j we establish the estimate

[~ Tk % T — -N
1EG K ([p2spe + 1K Kill 22 < Cn (1467 m —myl) (6.2.8)

from which the bound (6.2.6) follows by the Cotlar-Stein lemma. Since K; and K + have
similar form, we restrict attention to the first term in (6.2.8).
The kernel (K;K})(2',2") has absolute value dominated by

(KK (2, )| < 052d/(1+5|w+tlnj|‘1nj—y|)_N(1+5|2+t|m|‘1m—y|)_Ndy’ (6.2.9)

where we use the notation y = (v/, F,.(¢/)), and similarly for z and =z.
Suppose that |(1;)n] > %1|77j|. Then since |F,(2') — F.(y')] < %|a:’ — /],

|2+t |7t — o'+ 10[Fo (@) + E |7 () — B ()| > 58,
hence (6.2.9)) and the Schur test leads to the bound
IKGK; || r2sre < Cn 62 (1+6¢) -,

which is stronger than (6.2.8) since |n; —n;| < 6r. The same estimate holds if |(n;),] > 1[m;].
We thus assume that |(n;),| < ¥|n;], and similarly for 7;. Consider then the case where
|(n7; — n;)n| > |(mi —n;)’|. Then we have

1
Ay = il )| > —— A7 = nel " ma)' |
| (|31 m; — il 77)!_2”\/5\(\77]\ nj — |ml"'m)'|
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and since 31 < |n;,|n;] < 2r,
1
A7 = Il ni)n| = —= e — sl
[l ™5 = Il 000l = =7 s = ]

Then since [VF,| < £,

_ _ _ _ 5
|2 — 2"t (|| g — Il Th)' [0 | F(2) = B (2) At (s | g — sl ™ i) > 150 =i,

hence and the Schur test show that ||K;K7 |22 < Cy62(1 + 67 n; — ni])_N as
desired.

We thus consider the case that |(n; — 7:)n| < |(n; — 7:)'|. In this case we need use the
oscillations of the kernels to bound || K;K}| z2—2. Up to a factor of modulus 1, the kernel
(K;K?)(«,2') can be written as

52d / e~y =) —iFr (y") (nj—ni)n X ((5(x +¢ |77j|—177j _ y)) E((S(Z +¢ ’m’—lm _ y)) dy

where again y = (y/, F,(y')), and similarly for z and z. Since [VF,(y)| < 55, and |(n;—n;)n| <
|77;~ —n}|, we have
15 = i+ VE) (15 = mi)al = 5I0j — mil -
Using the estimates (6.2.4), and that re < 0, an integration by parts argument dominates
the kernel (K;K})(2, ") by
2d -1 -N -1 —-N _1 -N ,,
0* (140 m; — mil) /(1+5Ix+t|m| np—yl) (Lol +tnl T —yl) T dy

which leads to the desired norm bounds, concluding the proof of (6.2.§)), and hence of Lemma

6.2.2 O
Lemma then implies Lemma [6.2.1] ]

We also want the corresponding restriction estimates for normal derivatives which we
include without proof.

Lemma 6.2.3. Let U € R? be open with I’ @ U a C™ embedded hypersurface. Suppose that
|l 2@y =1 and
(—h*A — 1)u = 0p2(h).
Then for 0 < h <1
10,ull 2y < Ch™! (6.2.10)

where 0, 1s a choice of normal derivative to I

Estimates of this type first appear in the work of Tataru [75] in the form of regularity
estimates for restrictions of solutions to hyperbolic equations. Semiclassical analogs of this
estimate were proved in Christianson-Hassell-Toth [17] and Tacy [72].
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6.3 Estimates on the Single, Double and Derivative
Double Layer Operators

Next we give semiclassical estimates for the double and single layer operators and derivative
double layer operator. The estimates on single layer operators appear in [31, Theorem
1.2], and those for double layer operators appear in [37] but we repeat them below for the
convenience of the reader.

Let v : HY”™ — L2(T') denote restriction to T for a C*! embedded hypersurface I and
v*: L3(T) = Heore “(R%) its dual. Then v* is the inclusion map f — fér where dp is d — 1
dimensional Hausdorff measure on I". Then when I' = 90, G above can be written

G =vRyY". (6.3.1)

Because of this, we redefine the single layer operator to be given by (6.3.1)
Similarly, if we assume that I' = 02 and L is a vectorfield equal to 0, on I', then

8,DU(N) = yLRy(A)L*v*. (6:3:3)

and we redefine the derivative double layer operator to be given by . Here we interpret
v as a limit from either inside or outside 2 as in Lemma [6.1.2] Note that we cannot quite
define N by

YRo(A)L™"

since there is a jump across Q. However, we can bound N by obtaining bounds on

(Ro(\) L™ f,7"g)-

If d =1 then dr is a finite sum of point measures, and from the formula Go(\, x,y) =
—(2i\) 'Yl we see, using the notation of Theorem [6.1| below, that

IG)|2 )2y < C A THePrmN= g =1, (6.3.4)
In higher dimensions, we establish the following theorem:

Theorem 6.1. Let I' C R? be a finite union of compact subsets of embedded C*' hypersur-
faces. Then G(X) is a compact operator on L*(T') for X in the domain of Ry(\), and there
exists C' such that

(6.3.5)

A=z log(\) log(\~1) ePr(ImX) - d—9
Gl < {C ()~ Tog(A) log(A-1) ePrtm- |

C (\)"2 log(\) ePrm») - d>3,

where Dr is the diameter of the set I', and we assume —mw < arg A < 27 if d is even.
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If T can be written as a finite union of compact subsets of strictly convex C*' hyper-
surfaces, then for some C and all A in the domain of Ro(\) the following stronger estimate
holds

C(\)73 log(A) log(At) ePrmN- g — 9,
C (A3 log(\) ePrm)— d>3

IGN) |2y 2@y < { (6.3.6)

Here we set (\) = (24 |A[%)2, and (Im \)_ = max(0, — Im \) . Compactness follows easily

by Rellich’s embedding theorem, or the bounds on Gy(A, z,y) in Section The powers %

and % in and , respectively, are in general optimal. This follows from the fact
that the corresponding estimates for the restriction of eigenfunctions are the best possible.
The logarithmic divergence at A = 0 for d = 2 in both and arises from similar
divergence for Ry(A). The factor of log(\) in the estimates, which arises from our method
of proof via restriction estimates, is likely not needed. For I' contained in a hyperplane,
the estimate for d > 3 holds without it, and it does not arise in our direct proof of
for d = 2. We also expect that estimate holds for subsets of strictly convex
OY! hypersurfaces, but do not pursue that here.

In the case that Im A > |A|2, respectively Im A > |A|3, the above bounds can be improved
upon.

Theorem 6.2. Let I' C R? be a finite union of compact subsets of embedded C** hypersur-
faces. Then there esists C' such that for 0 < arg A <,

C ImA) =t log(A™1), d=2,

G| 2y <
1G22y 22y < {O<Im/\>—17 d

Next, we give estimates on the double layer operator

Theorem 6.3. Let Q € R? and 02 be Lipschitz and piecewise smooth. Then there exists g
such that for |A| > Ao,

N 200) 1200 < C (A)F Tog{A)ePatm - (6.3.7)
Moreover, if OS2 is a finite union of compact subsets of curved C* hypersurfaces, then
N 200) 1200 < C ()¢ Tog(A)ePatm - (6.3.8)
Finally, we give estimates for the derivative double layer operator
Theorem 6.4. Let Q @ RY and OS2 be smooth. Then there exists \g such that for |\ > Mo,
18, DL 11100y 12(00) < C (A) log(ApePadmN)- (6.3.9)
In sections [6.4] and [6.4] we show that the exponents on () in Theorems and [6.4] are

sharp. However, if we impose the condition that {2 is convex with piecewise smooth, ol
boundary, then we expect that N is uniformly bounded in .



CHAPTER 6. BOUNDARY LAYER OPERATORS 162

Bounds on Green’s function and estimates on G for d = 2

We conclude this section by reviewing bounds on the convolution kernel Go(\, x, y) associated
to the operator Ro(A). It can be written in terms of the Hankel functions of the first kind,

_d—2
2

Go(Az.y) = Ca A (N —yl)~ = Hy? (N — )

for some constant Cy. If d > 3 is odd, this can be written as a finite expansion

d—2
Cd?]

Go(\, z,y) = X2 eyl —
j:% ()"33 - y’)J

For x # y this form extends to A € C, and defines the analytic extension of Ry(\). In
particular, for d > 3 odd we have the upper bounds

v =y, v =yl < AT,

[Go(A, z,y)| S {‘ i3 (6.3.10)

1—-d
e AT o —yl 7, e -yl > AT
If d > 4 is even, the bounds (6.3.10]) hold for Im A > 0, as well as for the analytic extension

to —m < arg\ < 27w, For —m < arg A < 27 this follows by the asymptotics of Hy(ll)(z); see
for example [1, (9.2.3)]. To see that it extends to the closed sector, we use Stone’s formula
(see [21]),

G i7r/\ — Ga(\ _ 1 )\d72 iNz—y,w) d
0(6 ,CL’,y) 0( axay) - 2 (27T>d_1 -1 € W

= Cy A" (N2 — y])_% Ja_ (Alz —yl)

where €™ indicates analytic continuation through positive angle 7, and where dw is surface
measure on the unit sphere S¥~! C R¢. This holds in all dimensions for A > 0, and hence for
the analytic continuation. The bounds then follow from the asymptotics of J,(z) and
the bounds for Im A > 0. We also note as a consequence of the above that, for A € R\ {0},
and any sheet of the continuation in even dimensions,

Go(e™™ A, 2,y) = Go(A, 2, y) = mi (sgn A)* [\ (2m) ™ 0es (2 — ), (6.3.11)
where dga—1 denotes surface measure on the sphere €] = |A\| in R, and

36 = [ 9 g(o)do.
If d = 2, one has the bounds, see |1, (9.1.8)-(9.2.3)],

| log(Alz —y[) [, |z =yl < 3N,

6.3.12
il PR L R I T TP\ ( )

Go(A z,y)| S {
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Using the above asymptotics, we give an elementary proof of estimate (6.3.5)) of Theorem
for d = 2. Indeed, we can prove the following stronger result, which holds on subsets of
Lipschitz graphs.

Theorem 6.5. Suppose that d = 2, and that I" is a finite union I' = Uj I'; where each T';
1s a compact subset of a Lipschitz graph. Then for —m < arg A\ < 2m, with 1-dimensional
Hausdorff measure on I,

C (N2 log(A™!) (Im A) 2 || fllery, TmA >0,

C(\)72 log(A™!) e PrIm A || | oy, Tm A < 0.

Proof. The following kernel bounds hold by , since |x — y| is bounded above,
(Go(A, z,y)| < C e ™Ml ()72 Tog(A™!) |z — y| 72 .

|G\ fllz2@ry < {

By the Schur test and symmetry of the kernel, the operator norm of G(\) is bounded by the
following

sup / Go(A, )| dor(y)
x I

where o is 1-dimensional Hausdorff measure, which equals arclength measure on each I';.

First consider Im A < 0. Then e~ ™MNz=yl < e=PrImA for o T'. After rotation, we can
write I'; as the graph y, = Fj(y;) for y; in a compact set K, and with uniform Lipschitz
bounds on Fj. Then on I'; we have do(y) ~ dy;, and

sup/ |x—y|*% do(y) < C’sup/ |21 —yl‘*% dy, < C’D}(/f.
T T, K

T j

For Im A > 0, we use instead the bound

sup/ e~ mMz—yl |, y1|_% dyr < C; (Im A)‘é .
K

T j

Summing over finitely many j then yields the desired bounds over T'. m

Proof of the Theorems

We start by proving a conditional result which assumes a certain estimate on restriction of
the Fourier transform of surfrace measures to the sphere of radius r.

Lemma 6.3.1. Suppose that for I' @ R? any compact embedded C*> hypersurface, and some
a, >0,

JITTR P8¢l = e < Colr e (6.3.13)
/ ForPS(IE] — r)de < Crlr|f]a. (6.3.14)
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with 28 < 1. Let I'y, T'y @ R ben compact embedded C™ hypersurfaces. Let L be a vector
field with L = 0, on T'y for some choice of normal v on I'y and ¢ € CX(R) with ¢ =1 in
neighborhood of 0. Then define for f € L*(T'y), g € L*(T'y)

QS(f.9) = / RoN @A D) for)g00s . QP(fg) = / Ro(A\)(¢(A" D)L (f6r,))d0r,
D, g) = / Ro(AN)((A" D)L (£6r,) 3(g0rs)

Then for Im A > 0,

QS (f:9)] < Crir, (NP logN [ fll 2oy 191 222y (6.3.15)
QY (f.9)] < Cry (N og V| Fll 2oy 19l 2 (6.3.16)
QS (£, 9)| < Cry im0 og (M f Il 2 gl 2y - (6.3.17)

Proof. We follow [31] [37] to prove the lemma. First, observe that due to the compact
support of fdr,, (6.3.13) and (6.3.14) imply that for I' € R,

[ ¥R @ atel ) < ¢ 6 (6:3.18)
[IveTm@| a6 =) < ¢ 0Pl (63.19)

Now, gor, € H2<(R%), L}(gdr,) € H™3/2¢(R%) and
Ro(\)(@(AT'DI)L*(for,)) € CF(RTY),  Ro(\)(¥(A'|DI)) for,) € C*(RY).  (6.3.20)

For |A| < 2, the bounds (6.3.15) and (6.3.16)) follow from (6.3.20) and gor, € H—2~<(R%) and
the analyticity of Ry(\) in the upper half plane. Therefore, we need only consider || > 2.
By Plancherel’s theorem,

[ for /5\ For, 5
1 (5 s (5
Thus, to prove the lemma, we only need estimate
1.y FEGE)
/W)\ 1|§|)|€|Q—_>\2 (6.3.21)

where by (6.3.13), (6.3.14), (6.3.18), and (6.3.19)

1F aqso-1y + I VeF | pagsa-1y < C)H I fllzamy.s
1G | 2(so-1) + [VeGll o se-1) < C{r)llgll ey
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Consider first the integral in (6.3.21]) over ||£] — |A|| > 1. Since [[£[> = A?| > ||¢]*> —
by the Schwartz inequality, (6.3.13)), and (6.3.14]) this piece of the integral is bounded by

R G I
(AT < S — F(r0) G(r0)dS(0)dr
As—lAllzl DT e €] — Masfr— Az 72— A2 g (r8) G{r8)dS 6)
< Ol gz / ()P |2 — AP | dr
MIX>|r—|A][>1
< O o gl oy X5 / I — A dr
M|XZ>|r—|)|>1

< C AP og [ lLzz gl e (6.3.22)

Remark: The estimate (6.3.22]) is the only term where the log appears.
Next, if ImA > 1, then ||¢[* — A?| > |A|, and by (6.3.13), (6.3.14)

F(§)G(©)
| /§| INI<1 €]2 — A2 &

< CINF2 T Fll 2oyl 2y

Thus, we may restrict our attention to 0 < ImA < 1 and |[¢| —|A|| < 1.
We consider Re A > 0, the other case following similarly, and write

1 1

S ES |§| Velog(le] =4,

where the logarithm is well defined since Im(]¢| — ) < 0. Let x(r) = 1 for |r| < 1 and vanish
for |r| > 2. We then use integration by parts, together with (6.3.13), (6.3.14)), (6.3.18), and

(6.3.19) to bound

1
‘ [ X1 = 1) g O GO - Veloa(lel = X e | < €N oo gl

Now, taking 0; = do = a gives (6.3.15)), and taking é; = a and dy = 3 gives (6.3.16)) and
taking d; = 0 = 3 gives (6.3.17)). ]

Remark: Note that the estimate on Q§ holds uniformly in 1 and so putting in the cutoff
1 is unnecessary. However, so that the presentation of all of the estimates are similar, we
include the cutoff here.

We now prove the estimates ) and m

Lemma 6.3.2. LetT' € R? be a compact C1* embedded hypersurface. Then estimate (6.3.14])
holds with 38 = 1/4. Moreover, if T is curved and C*', then (6.3.14) holds with 3 = 1/6.
Finally, if T' is C™ then for L = 0, on I, estimate (6.3.13) holds with o = 1.
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Proof. Let A : H*(R?) — H*"1(R?). To estimate

[1aGE @ PaE - ),

write

(A (Fo0) (€)5(1€] - 1), / / A (F(2)60)8(€] — )o@ e dude = / FAT,gdn
where
T — / 5(1€] — r)$(E)e @ de. (6.3.23)

For x € C®(R?), xT¢ is a quasimode of the Laplacian with eigenvalue A = r in the sense
of Lemma with A = r=!. Thus, we can use the restriction bounds for eigenfunctions
found their to obtain estimates on T'¢.

To prove (6.3.14)), let A = I. Then, by Lemma m

IXTé| L2y < ri IXT' 9| 12 (ra), (6.3.24)

and if I' is curved then
IXT3-@| L2y < ré IXT'®|| 2(ma)- (6.3.25)
Next, we take A = L to obtain m Observe that

xLT,¢ = LxT,¢ + [x, L|T.¢

with [x, L] € C*(R%). Therefore, [y, L|T,¢ is a quasimode of the Laplacian with eigenvalue
T,

Hence, using the fact that L = 9, on I' together with Lemma [6.2.3] we can estimate
LTé.

INET 0|y < IEXT b2y + NL Tl ey < CrllXTrdsgeay- (6.3.26)

To complete the proof of the Lemma, we estimate ||x7'¢| r2ga). We have that

IXT ¢l L2ray = [|X * g6 ([€] — 1) L2(r)-

Therefore,

2
I 98(1¢] = s = [ / (€= mgn)dn| de

< llglI75 ga- // X (& —n)|Pdnd¢

< gz sp / /S o, On(lel =) Ndndg < Cllgll7s ger,.

Combining this with (6.3.24)), (6.3.25)) and (6.3.26)) completes the proof of the Lemma. [
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Next, we obtain an estimate on the high frequency component of N and 8, D¢. We start
by analyzing the high frequency components of the free resolvent.

Lemma 6.3.3. Suppose that |z| € [E—0, E+0| Let ¢ € C°(R) with ) =1 on [-2E% 2E?].
Then for x € C(RY).
XRo(z/h)x(1 = (|hD])) = B
where B € h*W~2(RY) with
272
P2 (1 —¢(l€]))
B) = .
)=

IfImz > 0, then x can be removed from all of the above statements.

Proof. Let xo = x € C®(R?) and y, € C>*(R?) have x, = 1 on suppy,_ for n > 1.
Let vp = ¥ € C®(R) have ¢p = 1 on [—2E? 2E?], let ¢, € C>*(R) have ¢, = 1 on
[—3E?%/2,3E%/2] and supp ¥, C {t,_1 = 1} for n > 1. Finally, let ¢, = (1 — 1,,). Then,
h™*xRoxe1(|hD])(—=h*A — z) = h™*x Rox
((=R*A = 2)xp1(IhD]) + [xe1(|hD]), —=h*A - 2])
= (X*@1(|hD]) + h*x Roxa[xp1(IhDI), =h*A — 2])
= (ei(hD))
+h™ xxaRoxapa(|hD)) [xe1 (|ADI), =h*A — 2] + 0ce= (1))
Now, by Lemma there exists Ay € h2U~2(R?) WFy,(4y) C {supp ¢o}, such that
h=2@i(|hD])(=h*A = 2)A = @(|hD]) + Oy-= (h*)
and Ay has
h?e(|hD])
G
Composing h=2x Roxe1(|hD]) on the right with Ay, we have
XRoxe(|hD]) = x*Ao + xx1Roxipz(Ih D)) [xpr(|hD]), =h*A = 2]h™ Ag + Ocee (h*°)
= x*Ao + xx1Rox19205-1(h) + Ocs (h™)

O'(AQ) =

Now, applying the same arguments, there exists A, € h2¥U~2(R?) such that

XnROXnQanhDD = X?LAn + Xn+1R0Xn+1(Pn+2(|hDDO\I’—1 (h) + OC'.?"(hoo)~
Hence, by induction
XRoxe(|hD]) = B € h*U2(R7),
with ) s
R = (e
€]? — 22
as desired. O

o(B)
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Now, let 4+ : H3(Q*) — H*=1/2(0Q), s > 1/2 denote the restriction map where QF = Q
and O~ = R?\ Q. Then we have

Lemma 6.3.4. Let M > 1 and v € C*(R) with ¥ = 1 for |§] < M. Suppose that 052 is
a compact embedded C hypersurface. Then there exists \g > 0 such that for |A| > \g and
ImA>0,

YRo(N) (1 = (A THD))Y" = Opza0) 200y (1A 7). (6.3.27)
VRN = D(IATHDN) LY = Op290) - 12(50) (1) (6.3.28)
LRy (1 — (A" DI L™ = O o2 (1A]). (6.3.29)

Moreover, for |\ > X, and x € C=(R?)

YRo(MX(L = (I DN = Or2o0)-22(00) (A7)
Y RoMN)X(1 = (N[ DI) L™y = Orz(a0)-12(00) (1)-
YFLRo(A)X(1 = ([N [D]))L*y" = O on)-r200) (IA]).

Proof. Let h™! = |\ and x = 1 on 2. For Im A > 0, we take Y = 1 and for arg\ €
[—7,0] U [, 27], x € C=°(R?Y). Then by Lemma [6.3.3]

xRo(A)x(1 — ¢ (hD)) € R*¥2. (6.3.30)
Note that for s > 1/2, « is a semiclassical FIO and

_ —-1/2
Y = Oppe iy s 11200y (B 72). (6.3.31)

The bounds ((6.3.27) and the corresponding bound in the lower half plane follow from
(6.3.30)) and composition with v and ~*.

Remark: Note that we only apply v : H,ll/2+6 — L? = 0(h'/?) in the case of ((6.3.27) and
hence this bound is valid for " only C11.

The strategy for obtaining the bounds (6.3.28)) and (6.3.29) is to compare N and 9, D¢ at
high frequency with the corresponding operators for A = i. Note that xRo(¢)x(1—v(|hD])) €
h2W¥~2. For Im A > 0, we consider

Ap = X(Ro(N) = Ro(1))x(1 = (|hDI)) = h=*xRo(X) Ro(i)x(1 — ¥ (|AD))).

Hence, Aj, € h?¥~4. Let

By, == yA L™y, Cp :=~vLA,L*v".

Then, using (6.3.31)) and the fact that L, L* = Op._,z=-1(h™"), we have that B, = Opz—z2(1)
and C), = OL2_>L2(]'L71>.
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Now, by [76], Section 7.11]

V* Ro(i)x(1 = ¢(|hD]))L*y :H*(99) — H*(0Q)
Y*LRo(i)x(1 = ¢(|hD)) Ly :H*(09) — H*~'(99)

for 0N a smooth hypersurface. Hence,
Y Ro(AN)x(1 = ¢(|hD)) Ly = v Ro(i)x(1 — & (|hD)) L*y + YLB L™y = Opa_yp2(1)
and
VFLRy(\)x(1 = (|hD]) Ly = y*LRy(i)x(1 — & (|AD])) Ly + y*LC,L*Y" = Opnyp2(h7).
O

Taking 02 = (J,I'; and applying Lemmas and Lemma m finishes the proof of
Theorems and [6.4] for Im A > 0.

Our final task is to extend the estimates into the lower half plane.

Lemma 6.3.5. Suppose that for |\| > Ao and for X in the upper half plane,

[@A(f, 9) < C{N* (log(N) Il fllallglls

where Q is one of QF, QY, QIP. Then for |\| > X and Im\ < 0, if d is odd and for
arg A\ € [—m, 0] U [m, 27] if d is even

[Qx(f, )] < O (log(X))7e”2 A £l allg |5

where Dgq is the diameter of §2.

Proof. We first consider d odd. Let ||f||4 =1 and ||g||z = 1. Let x =1 on 2. Then consider
F() = PPN (log ) PQa(f.9), 1Al 2 Ao, ImA <0

where log A is defined for arg A € (7/2,57/2). Then, |F(A)| < C on R\ [—Xg, Ag)-
Lemma [6.3.4] shows that

YRoM)X (1 = (N DD)Y" = Opesr2 (A7)
YERy(A)x(1 — (A D)) L*y* = Opa_y2(1)
YELRo(A)X(1 = (AT D[)) L™y = Oy p2(|A])

For all s

INBo(N) x|l e rzs < CA)~LePxImA)-

where D, = diam(supp x) is the diameter of supp x. Moreover,

Y(IATIDI) B — B = o(|A1Y).
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So, there exists N > 0 such that

9L R (A D)L s + I Ro (N D)L
+ Y RoM Xt (A " D)y [l 1212 < CA)NePrm -

Letting supp x — €2, we see that |F'(\)| has at most polynomical growth in the lower half
plane. Thus, the Phragmén-Lindel6f theorem shows that |F(\)| < C.

When d is even, we note that the assumed bounds hold for arg A = 27 and |\| > A\g. This
follows since Ry(Ae™) — Ry(\) satisfies the same bounds as Ry(A) for arg A = 0. Moreover,
Ro(Ae*™) — Ry(Ae™) = Ro(Ae™) — Ro(A). Thus, we apply the Phragmén-Lindel6f theorem on
the sheet 7 < argz < 27. Using a similar argument, we can apply the Phragmén—Lindelof
theorem on —7m < arg A < 0. ]

Applying Lemma together with Lemmas [6.3.1], [6.3.2| and |6.3.4] implies Theorems

6163 and 6.4
We conclude this section with the proof of Theorem [6.2] The estimates for 0 < Im A < 1
follow from Theorem so we consider ImA > 1. To do this, we establish bounds on

Qx(f, g) defined by

5rf5r9
€]z — x2

First consider the case that f = g and I' is a graph z,, = F'(z’). We then have uniform
bounds

NOSOE

)P de' < C |1

sup

n

We use the lower bound ||¢]* — A?| > |A||Im A| to dominate

/|£ |<2|A| Hf‘Q (£>‘ | de < C(tmA)™ HfH112(F

For [£,] > 2|\ we have ||§|2 — /\2} > |€,)? , hence

7 1) B
/€n|>2l,\ ‘|§|2 ‘ |d§ ™ ”fH%Q(F)

The case f # g and I' a finite union of graphs then follows by a partition of unity argument
and the Schwarz inequality. O]
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6.4 Sharpness of the Estimates for A € R

Sharpness for the single and derivative double layer operators

We now show that the estimates on G and 9, D¢ in Theorems [6.1] and [6.4] are sharp modulo
the log losses when A € R with [A\| > 1.
First, observe that for A > 0, the spectral measure dF, has

‘ , i1 _—
7T’LdE/\ = R()(€”r>\)(£l§',y) - Ro(—A)(ZE,y) = éw /d €Z<x Y >dw (641)
ga-1

Thus,
AdENA" = C4AT\TY A"

where T} is the operator in (6.3.23). By [10], [38], [72] the estimates (6.3.24)), (6.3.25]), and
(6.3.26]) are sharp and hence

1
2 I' general
dExy" >
|[vdEx\y ||L2(F)ﬁL2(F) = { i T curved

and
|V LAEAL™ Y| 1 00y 22 (99) = C(A).
Putting this together with (6.4.1]) gives that for A € R,

CN~
CN~

I’ general
; 10, DL 1 90y - 12(80) = C(N)

(TSN

G >
| ”LQ(FHLQ(F) - { I' curved

as desired.

Sharpness for the double layer operator

We next show that there exist smooth embedded hypersurfaces I' such that for A € R with
Al > 1,
- C(\)Y* T general
N > .
[Ny ey 2 {C’()\)l/G I’ curved

Similar estimates and examples in the flat case are given in |15, Theorems 4.6, 4.7] in
dimension 2. In the curved case, they prove an estimate || N||z2ry > CAV/S.

The idea will be to use a family functions which is microlocalized at a point ((2',0),¢’) €
T*T such that [¢'| < 1 and the geodesic

{(@",0) + (", V1= [&]?) : t € R}

is tangent to I' at some point away from (z’,0).

(6.4.2)
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Flat case

Let
Fl = {(x17x27x/) eRd : 1/2<x1 <3/27x2:()7’x/| < 1}

[y = {(z1,20,2") €ER? : 2y = 0,23 + |2/)* < 1}.
Let x € C°(R41) have x > 0, ||x|/ze = 1, and x(0) > 1/2. That is
/X(a:Q,x’)ded:c' >1/2.
Then, denote by x» := x(MA7(z2,2")) and observe that

Ixallze = CarA=t=0772, /X,\daizdx' > Oy A=

where M > 0 will be chosen later and v > 1/2.
Now, let I' € RY be a smooth embedded hypersurface such that I'y UTy C I'. Suppose
also that f € L*(T") is supported on I'y. Then,

Nl = [ (0B @ = ) )y
1)
Now, for |z — y| > ¢,

T =Y, ) e o - -
(%ij{(x—y) :Cd)\d 1Me Alz—y| ()\ (d 1)/2|w—y|(d 1)/2+O(()\|x—y|) (d+1)/2)).

(6.4.3)
We will consider xy as a function in L?*(T'y). Thus, since for x € T'y and y € Ty, |z — y| > ¢,
we consider

i/\‘x—y| .
(d-1)/2 € (x —y, 1)
4 /r |z — y|(@+1)/2 xa(y)dy.
2

We are interested in obtaining lower bounds for the L? norm on I'y. In particular, let ¢ €
C>*(R) with ¢(z) = 1 for |z| < 1. Then, let 5 1(2) = P (MXV|z]) and Py 2(2) = P(MA?|z]).
We estimate

u=1ya(x1 — 1)¢>\,1(~T,))\(d_1)/2/

Iy

ei)\\a:fy\ <I — v, Vy)
|ZE _ y|(d+1)/2 X)x(y)dy

on I'y. For z € I'y Nsupp a1 (2" ) 2(x; — 1) and y € supp x»
=14+ 0\?), |zv—y|=21(1+0N?)) (6.4.4)

Hence, we have

ei)\xl
ulp, = Cathaa(wy = Dora ()N V2o / (14 O((N'*"YM2) + o((M A7) ) xady
Ty
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and on |z/| < M1\,
ulr, (z1,2") > CPra(r1 — 1)>\(d1)/2/XAdy > Ol D2y

So,
ull7z ) > C’/ 2 () — DATTI20-D7 > o xd-1-Gd-d1-72)

Flﬂ|l’"<c)\77
Thus, using elementary estimates on the remainder terms
1-(3d—4)y—79

~ d—
INxAll = Cllull = A=

Hence,

[l
Thus, choosing v = 1/2, 75 = 0 and M large enough,

INXAl = CAxa

as desired.

Curved case

In order to obtain the lower bound in the curved case, we will need to arrange to hypersur-
faces, I'; and T'y parametrized respectively by ~, o : B(0,¢) C Rt — R such that

(@) = o)l = [7(0) = o(0)] + O(Jz1 — ") + (=" — 3/ |*)

where # = (x1,2') € R47L. To do this, let 7 : (—¢,€) — R? be a smooth unit speed curve
with curvature x(t) = ||7”(¢)|| and normal vector n(t) = v"(t)/k(t). We assume £(0) # 0

and x'(0) # 0. Then, let o(t) be the loci of the osculating circle for 4(¢). That is,

)
a(t) =A7(t) + Wt)

Finally, define
V(@) = Fan) +n(@)l2' P 2),  o@) = (6(x) + 7/ (@)|2, 2).
Then we have
(y) = o@)* = () — @) + o2 + [y ") + |2" = y/'*.
Let d(z1,91) = [¥(y1) — o(21)|. Then,

82,1d(ac1,x1) == 8§1d(x1,$1) =0.
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Figure 6.1: We show an example of a curve 74 and its loci of osculating circles, 7.

Hence,
d(xy,y1) = d(xy, 21) + O]z — uil?)

and we have near r =y = 0,
Y(y) = o(2)] = [7(0) = o(0)| + O(z1 — w1 [*) + o(|'|* + [y'*).

Moreover,
(0(x) —(y), v)
v (y) — ()]

Now, with x € C%°(R41), let

=1+ 0(lz —y|).

X\ = X(M(/\’Ylajl’ )\721,/)).
Then,
Il zeqa-ty = Card™ T2 / dyda’ > Cy A= @2,
B(0,¢)

Next, define x»1 € L*(I'1) by xa1(7(y)) == xa(y) and x»2 € L*(I'2) by xa2(0(z)) = xa(x).
Then

Iz s xovellczes) > CHX)\HLQ(Rdl)a/ X)\,la/ Xa2 > C'/ X (6.4.5)
I T2 B(0,¢)

Moreover, for x, y € supp xa

V(y) — o(z)] = [7(0) = o (0)] + O(M (AT + A7),

)
(o(x) =v(y),vy) L v
W) o) TN AT

(6.4.6)
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Hence, choosing 71 = 1/3 and 72 = 1/2 and M large enough, using (6.4.5)), (6.4.6)) in
(6.4.3) we have

2@ Nxaillzary > CAF 7 57 %
which implies
||NX)\,1||L2(F2) > C)‘%||X/\,1||L2(r1).
All that remains to show is that I'y and I'; can be chosen so that they are curved. To see

this, let 4 be a unit speed reparametrization of ¢ — (¢t + 1, (¢ +1)?). (This example is shown
in Figure ) Then, a parametrization of I'; is given by

(t,2") — ((t +1,(t+1)%) + (=20 +1),1) \x’\z,x'>

1+ 4(t+1)2

and a parametrization of I'y is given by

(t,2') — ((—4(t+ 133t +1)* + %) + <11’jz(jj)l))2|x’|2,x’> :

Then, a simple calculation verifies that near (0,0) these surfaces are curved. Hence, letting
I' be a curved hypersurface containing I'; and I'y completes the proof of the estimate (6.4.2))

6.5 Microlocal Description of the Free Resolvent

We have already analyzed the high frequency components of the free resolvent in Lemma
6.3.3l In this section, we analyze the remaining kernel of the free resolvent as a semiclassical
intersecting Lagrangian distribution (see Section [4.6)). In particular, we prove

Theorem 6.6. Suppose that a,b >0, M >0, and v < 1/2. and
z € [a,b] x i[~Chlogh™', Mh'™7]

with Rez = E + O(h'=7). Then for x € C°, the cut-off free resolvent, xRo(z/h)x, is given
by
XRo(Z/h)X = KR + KA + Osfﬁcgo (hoo),

where Kg has kernel K(z,y) € h3/26%(1mz)*DXI§°mp(]Rd; Ao, A1) with D, = diam(supp x),
Ao = {(z,& 2, —€) € T*R? x T*RY} and Ay = {exp, AgN {|¢| = E} : t >0},
and K € hQ\I/;Q. Moreover, for any x1 € C2° with x1(§) =1 on || < 1 we can take

Im z|z—y|

o (T D)) = (€N (@R (¢l — B2) ™ |do A dg] 2
h3/2€ﬁi(Rez7E)\x7y|E(d73)/26(fd+3)7rz‘/4271/2ﬂ_1/2|x . y|7(d71)/2x<x)x<y)’dy A dx|1/2>

and
o(Ka) = (1= xa1 ()X (@)h* (¢ — E*)~
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Proof. We now prove Theorem [6.6] Recall that in the context of Fourier integral operator
relations we denote a point in T M x T M’ by (x,&,y,n). By Lemma [4.6.12, for Ch'~7 >
Imz > 0, |[Rez — E| < Ch'™, and each M > 0 there exists an operator U that is z/h
outgoing with kernel K(z,y,z/h) € hglsomp(Rd; Ao, Ay) + h*W? where
Ao :=A{(z,§2,—¢) rz € R%, £ € TH(RY)},
Ay = {(expy(2,€), 2, =€) 1w € R, [¢] = E,1 > 0}
such that for all x, x2 € C(B(0, M)) with x5 =1 on supp ¥,
X2(=A = (2/R))Ux = X + Oproycz (h™),
(A = (2/P)*)x2Ux = X + [~ A, xo]Ux + Oprsoe ().
Hence, since for Im 2z > 0, Ro(z/h) = Ogs_ygs+2(h™') and WFy,(Ry) C Ag U Ay, we have
for Im z > 0 and x € C2° with supp x C B(0, M),
XU(z/h)x = xRo(z/h)x + Oprscee (h).

In order to prove Theorem and analyze GG, we need to compute the symbol of yUy.
First, define P := —A—2%/h? = Opy1/2(h2(|¢|*—2?)). Then, for any § > 0, P has principal
symbol

pi=o(P)=h"*(|¢] — E?)

and sub-principal symbol
o1(P) :=h 22(E — 2) : —h™*2w,

as an operator in W2,
Then, by Lemma [4.6.12] we have that

ro(z, &, 2, —€) == o(U)|sonrp0,r) = P o (8)|dx A d€|M? = h*(|¢]> — E*) 7" |dx A dg|*?.

Remark: Moreover, we see that in any coordinates each term in the full symbol of U], has

the form s (2)e
aleo Qo
a(%f) = |’£|‘20_ B2

where a(z) € C*

Next, we compute 1 = 0(Ro)|a,nr+B0,R)xT*B(0,R)- Again, by Lemma {4.6.12] we need to
solve

thTl + ipﬂ"l =0

7’1|8A1 — 6m’/4(27r)1/2h—1/2R<T0)

where H,, is the Hamiltonian flow of p. Using that exp(tH,)(x, &) = expyy,-2(z, ), we have
ri(exp,(z, &), @, =€) = <P/ (2m) V2RV 2 R (rg) (x, €, w, =),



CHAPTER 6. BOUNDARY LAYER OPERATORS 177

So, all that remains is to determine R(rg)(x,&, x, —&). But, taking g = |£]* — E? and f =

(r —y,§), gives
ro = h2(12&4|V%g) " |da A dE' A dg|M>?.

Hence,
2

h

{g, Y712 |dx A dE A df|V? = |da A dE' A (Edx — Edy + (z — y)dE) V2

2
21&421¢]

Now, parametrizing of Ay near £ = (0,...,0, E) by (y,&’,t) using the map

D(y.¢.0) = (y+ (& VE = 1EF), (¢ VE = TEF) .y (¢, VET — €F))
gives
dx AN dE' N dy; = Edy N dE' A dt.

Hence, using \/%de Adt = d,uséfl(g) A dt,

2

(B2 —[¢'?)

! ! h2 _
R(ro)(y, &' t) = 5 1 dy A dE' A dt|M? = E|E Ldy A d“s;i:l(@ A dt[V2.

Thus,
1 . .
r1(y, 0,t) = §eﬁw°tEem/4(27T)1/2h3/2|E_1dy A dMS%—l(g) A dt|V?

and parametrizing A; by (y,x) (instead of (y,&’,t)) for y # x gives

Ed=3)/2

T1($,y) _ 2|x — y|(d_1)/26,§wo|m—ye(—d+3)m/4<2ﬂ>1/2h3/2|dy A dx|1/2.

Here, the extra e ™(¢=2)¥/4 results from reparametrizing by « instead of ¢/, t.

Now, taking xy € C°(R?), we have that R, := xRox : L? — L? continues meromorphi-
cally to C for d odd and to the logarithmic covering space of C\ {0} for d even. We show
that for —Chlogh™! <Imz,

Rx c h3/2€(lmz),DX/h]’<;omp<Rd;AoaAl) + h2\11_2 + OD’—)CgO(hOO>-

Moreover, we show that the principal symbol of R, is the analytic continuation of that for
Imz > 0.

To do this, we need the following analog of the three line lemma and semiclassical maxi-
mum principle (|74, Lemma 4.2], [70, Lemma 5.1]).

Lemma 6.5.1. Suppose that f(z, h) is analytic in

D(h) == [E — 5w(h), E + 5w(h)] + i[—a(h), a(h))].
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Let S(h) = w(h)a™t. Assume that S(h) — oo and suppose that |f(z,h)| < My(h) on
[E — 5w(h), E+ 5w(h)] +ia(h),
and Mz(i, h)|a_§1m£\41(h) on D(h) with logmax(My(h), M1(h)) = o(S(h)?). Then, |f(z,h)] <
CM, > M, > for
2 € [E —2w(h), E 4 2w(h)] + i[—a(h), a(h)] =: D(h).

Proof. We follow the proof of |74, Lemma 4.2]. First, define

g(z,h) = (ma?)~V/? / -

Then |g(z, k)| is holomorphic in D(h), |g(z,h)| > C in D(h), |g(z,h)| < C in D(h), and
lg(z, h)] < Ce 5™ on D(h) N |Rez — E| > 4w(h).

)2 )0 |z —E| > 3w(h)
o2 i (x)dr  where y(x) = {1 o E| < 20(h)

(z

Let i(z—ia) i(z+ia)
F(z,h) :=g(z,h) f(z,h)M, > M, > .
Then |F(z,h)] <1 on 0D by our assumptions. By the maximum principle |F'(z,h)| < 1 on
D. Together with the properties of ¢g(z, h), this gives the result. ]

Since for Im z > 0, we have that x(Ry — U)x = Op—c(h*), in order to apply Lemma
to our situation, we need to bound x(Ry — U)x for Imz < 0. In particular, we show
that for Im z < 0, there exists N > 0 such that

U - OHsﬁHs+2(h_Ne%DX(ImZ)7>.
Let ¢p € C°(R) have ¢y = 1 on |s| < 2. Then by Lemmas |4.6.3) and 6.3.3]
V(B — U)x(1 = 9(|hD])) € B0 = o(h™)prcre.

Now, x¢(|hD|)Ux € h3/2et/hPxIm=)-Jcomp  Thys, we see from the definition of an intersect-
ing Lagrangian distribution (Definition [4.6.6)) that there exists N > 0 such that

1

Xw(|hD|)UX — OD’—)CgO(h_NGhDX(ImZ)*)_

This together with standard bounds on the free resolvent (see for example |11, Theorem 1.2],
[21, Chapter 3]) gives that

X(Ro — U)X = Opr_yge (W Nen Px(ima)—y,
By Lemma with
a(h) = Chlogh™, w(h)=h'", My=0(h®), M, =h NePxmz)-/h
we have that for |Im z| < Chlogh™!
X(Ro—U)x = OD'%Cgo(hooeDXamz)*/h) = Opryoe (B). (6.5.1)
O
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6.6 Microlocal Decomposition of G and 0,Df Away
from Glancing

Decomposition of GG

Recall that G(z) = vRo(z/h)y* where 7 denotes restriction to 02 and Ry(\) denotes the free
outgoing resolvent of —A — A2, We have that ~ is a semiclassical Fourier integral operator
of order 0 associated to the relation C' C T*99Q x T*R? given by

C={(x,6,2,6): 2 €00 EcTRY € =&, + & with &, € NI (0Q), & € Tr0Q}.

Thus, v* is a Fourier integral operator of order 1/4 associated to the relation C~1 C T*R? x
T*0%) given by

Cl={(z,&,2,8) 0 €00, € TIRY, € =&, + ¢ with &, € N2 (09), & € Tr00Q}.
Then v € h~Y4(1°(C)) and v* € h=/4(I1°(C~')) have symbols given by
oc(Y)|e1r = 2rh) V4 dy AdE]Y?, and  o(v)|e = (2rh) VA dx A dn|'2.

When Q is convex, we decompose G(z) into three parts: Ga, Gp, and G,. Ga is a
mildly exotic pseudodifferential operator of order —1. G is a semiclassical FIO of order
—1 associated to the billiard ball map. G, is an operator Gy microsupported in an A
neighborhood of $*9€) x S*0S2 intersected with the diagonal of T*9€) x T*0f).

We now decompose G as claimed above. We begin by showing that the composi-
tions Co(A;)oC~! are clean away from the diagonal or away from S*0f. First, consider
Co(NAg)'oC~. We need only work locally, so we assume that 90Q = {(2/,'(2') : 2’ € U}.
Then,

C={,& @, T()),(VD(Z) &) +7(=VID(2'),1)) : Te R, 2" € U}.
TC = {(51/, (55, (51/, VF(Q?/) : 5x/>,
(8¢, VI(2') - 6¢) + (0,6, - O°TE) + 7(=0°T(2') 04, 0) + 6,(—=VI(2'), 1))}

and C~! and TC~! are obtained by reversing the roles of 79 and T*R¢. Then, it is easy
to check that C'oAq is clean (indeed, even transverse) and given by CoAg = C. Now, without
loss of generality, we can assume that VI'(y') = I'(y/)0. so

A= (Cx C™HN (TN x A(T*R?) x T*09Q)
= {7 (¥,0),(n.0) +7(0,1),5,n)}
TA={(6,,6,(6,,0),((d,,0) + (0,6,0°Tn) + 6.(0,1) + 7(=9°T(2')d,0))}.



CHAPTER 6. BOUNDARY LAYER OPERATORS 180

Remark: Since we intersect with the diagonal in these formulae, we have suppresed one of
the pairs in T*R¢.

On the other hand B = TC x TC~ N (T(T*0Q x A(T*RY) x T*99Q)) at (v, 1, (v, 0), (n,0) +
0(0,1),9',n) is given by

B = {(0u, ¢, (3,,0), (6,,0) + (0,6,0°Tn) + o(—=9°T(y')d,/,0) + 5,(0,1).5,,6,)}

where

(6, 0) + (0,0,,0°T'n) + o(=0°T'(y)dy, 0) + 65(0, 1)
= (0, 0) + (0,00,0°I'n) + 0(=0"T'(y')0r, 0) + 0-(0, 1)

and d,, = d,-. But, since (0, 1) is linearly independent from 7,0%, this implies that ¢, = J,
0; = 0, and hence the composition is clean.
Now, recall that

A ={(z 4+t & x,8) - £€ ST t>0)

we consider or £ ¢ T*0Q Thus,
TN, = {(51’ + t(;g + 0:€, 55, Oz, 55) : 55 S Tgsd_l}

To see that T(A; x C71) N T(T*R? x A(T*R?) x T*0RQ) is transverse at ((y/,['(y')) +
6, &, (v, T'(Y')), &y, m) where § —n € N;0Q, we choose 0, = a(=VI'(y'),1) and §; = B¢.
Then for any v € R? v = B¢ + §¢ for some 8 € R and §; € TS . Moreover, any w € R?
can be written w = 6,y + a(—VI'(y'), 1) for some 0, € T,,02 and a € R Thus,

T(A x C7Y + T(T'R x A(T*R?Y) x T % 0Q) = T(T*R? x T*R* x T*R* x T*0Q
and the composition is transverse. Now

AoC™ = {((y, DY) + t€,&,9/,m) : t>0£ €571 € —ne NyoQY
T(AoC™Y) = {((0y, VT(Y)) + 6:& + t0¢, 0¢, 6y, 0y 0y = dmSe , 0 € TeST '}

Now, if ¢ > 0, it is clear that any vector w € R? can be written w = §;£ + td¢. On the other
hand, if t = 0, but § ¢ T0S2, then we have that w can be written as

w = (8,, V() - 6,) + B,E.

Moreover, parametrizing 02 near a point z in the intersection with C' by (2/,I'1(2')), w can
be written

w = (54 + T(—82P1(5m/7 0) + (57(—VF1<1’,), ].)



CHAPTER 6. BOUNDARY LAYER OPERATORS 181

for 6, € T'T;00. So, an identical analysis to that for the composition on the right by Cct
gives that CoAjoC™! is transverse away from the diagonal as well as at the diagonal, but
away from T™0€.

Since 092 € R?, we may take y = 1 on € in Theorem . Then by composing relations,
using Lemma m, and observing that the composition is transverse, we see that for —3/2 <
S,

Ryy* € WP (RY x 0€; AgoC ™, AjoC ™) + B2 (Mg0C ™) + O(h™) 90y s 0o (-
(6.6.1)
Remark: This implies that the single layer potential has the above decomposition.

We have that C' composes on the left with A;oC'~! transversally. However, C' composes on
the left with AgoC~! only cleanly. Thus, we cannot apply Lemma in this case to obtain
YR, v* = vRyy*. Note also that Proposition does not apply directly to the composition
forming C'oAgoC~! since (C)ga N (AgoC~!)ga is nonempty. Instead we microlocalize away
from the intersection of the two Lagrangians and use the following lemma combined with
more detailed analysis near fiber infinity.

Lemma 6.6.1. Suppose that O) is smooth and A € I°°P(R? x 9Q; AgoC 1, AjoC~1). Then
YA = A; 4+ Ay + R € h VA2 (Cop 0O 1) + B7V/AOR TP (CloNgoC ™) + R

where R is microlocalized on an h® neighborhood of the intersection of S0 x SO with
the diagonal. Moreover, the symbol As can be computed using Proposition[4.4.10 in the sense
that

o(Ay) = (2mh) 3/t / o (AG(RD])) o1 |d (v, €]

where 1) is supported h° away from |¢'| = E and the integral is interpreted as a distributional
PaAITING.

Proof. By lemmal4.6.3| we need only consider an h° neighborhood of the diagonal intersected
with S*R%| 50 x S*RYsq. Let x € C°(R) with x = 1 near 0. Let

Ay(z,y) = x(lz — y|/B")x(lx — yl/p°) Az, )
Ay(z,y) = (1 — x(lz — yl/D")x(|lz — y|/p°) Az, y)

where A(z,y) is the kernel of A. Then, we can write for B € U,(09Q)

ByAy(z,y) = Ch‘M/ oMYl (1~ (Jw — y|/h7))b(a, )a(w, y)dwd.

Rd—1xRd

But, since d,,|w — y| — 1 as w — y, we have that the phase is nonstationary with gradient
bounded below by ch? if b is supported h° away from |n| = E. Hence, integrating by parts we
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lose at most h” and gain h'~°, so when v < 1 — §, we obtain a kernel in Oge (h°°). Similarly,
we have the same result for A,B.

Next, consider A;. Then, let B be microlocalized h? away from |n| = E, the kernel of
BA; can be written

ByAi(a,y) = (2rh) 4 [ [ etlemmmseoni 0PSBy oo, € dgandr
0
Then, using Lemma [4.6.5| evaluating the ¢ integral as a distribution, we have
VA () = ~2i(2h) I [ R Dy p)alin+ )l + € - E - i0) e,

n € T,09Q and v, is the unit normal to 9 at z. Note that since ||n|—E| > ch® (£2+|n|*—E—
i0)~! € h™9/28" as a distribution in &,. We are working in a small neighborhood of |¢| = E, so
we can assume that the integrand is compactly supported in &,. Now, (z—y,v,) = O(|z—y/|?)
and |x —y| = O(hY) with v > 1/2. So, we obtain an accurate representation using the Taylor
expansion of e#(®¥#+&) Then, a typical term is of the form

i - z/Sv J .
ai(anh) 4 [ eitemsm BB oo+ ) ol + L — B = i0) ey,

So, integrating by parts 2j times in 7, we gain h%*. Integrating in &, gives the result. O

Now, let ¢ € C°(R) with ¢ = 1 near 0 and let 0 < e < 1/2. Then, writing R, (x,y) for
the kernel of R,, define

By(z,y) = By(,y)(1 = (0w = y[)) + Ry, ) (b (Jz — yl)) =: Ba(,y) + Ra(2, ).
Then, recalling that G' := vRyv*,

G = YRy + 1 Ray* (1 — w(h~ (D], — E))) + 1Ry 0(h~(IhD)y — E)) = G + Ga + G,

(6.6.2)
We will see that in spite of the difficulty at fiber infinity, Ga is still a pseudodifferential
operator. As in Section [6.1] to interpret Ga appropriately, we must view ~y as one of two
objects, T for the limit from inside € and v~ for that from outside . In Lemma we
saw that G is independent of the choice of 4*, so we choose 7.

Lemma 6.6.2. Suppose A € V'(RY). Choose coordinates so that O = {x4 = 0} and let a
have A = Opy(a) for a € S5 (T*R?Y). Suppose further that

a(y,§) ~ Y Cixly. &l &a— +oo

j==o0

and for j > =2, C; . = (=1)7C;_. Then, y£Ay* € 11 (90Q).
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Moreover, for such operators A, the symbol calculus contained in Proposition ap-
plies in the sense that

o(7 Ay) = (20h) ! / o(A) (2, € — vaa)des

where v, s the outward unit normal to OS) and the integral is interpreted as the sum of
residues in +=Im&y; > 0 if o(A) is not integrable.

Proof. Let
Zj_—l 7, +(y 5) AR
§PP+1

q(y,&) =

min(—2,m)

and 7 = a — ¢. Then, r € S . Now, Av* has kernel

(2mh)~ // #@alat @ =y (€)1 (y, €)dEgdE' .

The integral in involving r in &; is well defined at x4 = 0 since |r| < C|&;72 for |&,] large.
Moreover, since for m < —1,

/ (&) mdea < (€)™ / (Eale) Yy < (€
v* Opno(r)y € h*1W?in(_1’m+l)(8Q).

Now, consider ¢g. In this case, we must take a limit as x4 — 0 from above or below since
the integral is not apriori well defined. Consider

= (2nh) ! [ e, €)dsa € SR).
Let fi € C*(R4) and write
u(h) = o)t [ [ et o) f(wideadsy
(2mh)~ / / er s (€N (1 = (hd,)?)" (q(y, €) f(a))daadéy (6.6.3)

— (2h)"! / / it (e oy €)(1 — (hdsy))* fdEaday (6.6.4)
zq 712 _ Zr'nz—l er‘r(y/a §/>(j:7’ V |§/|2 + 1)j
+ h I&- ‘ +1 !/ 2k J
‘ WIEE 1 il 1 1

— ii/ejFxhd\/ﬁ’QJrl Z;n:—l Cj,+(y/>§/)(iim)j
" £2i\/I¢T2 + 1

(1= (h0Z,)* fdza

(6.6.5)

f(za)drq
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Since q(y, &) grows polynomially in &;, we use Jordan’s lemma to obtain (6.6.5). Now, let
fn— 60 fn € CP(Ry). Then, we have

i G0 ) i EF 1Y

lim wu(zg) = € h gyt
Jim u(za) = £ +2i/]€ + 1 ’
So, we have that 4* Opy, o(q)y* € A=W (99Q) as desired. O

Now, by Lemma for the purposes of understanding the compositiong vRyy* near
the diagonal and away from S*0S2, we can view Ryy*(1 —¢(h™“(|hD’'|, — E))) as a pseudod-
ifferential operator.

Applying Lemmas and we have that away from glancing or the diagonal,
vRoy* is composed of a Fourier integral operator, G g, associated with the relation

o (r(expy (2,6, 7,)
" (@8 € BUOQ, (2,6) € M (@, &), £ > 0, exp,(2,€) € SpRaq [
and a pseudodifferential operator Ga. Here 7 is orthogonal projection SER%|s5q — B50Q
and SER? and B3OS are respectively the cosphere and coball bundles of radius E.

Remark: Note that in the case € is strictly convex, Cj is parametrized by Sg where

Be(x,§) = (mpof(x,{'/E), Emeofi(x,{' [ E)).

Next, observe that by (6.6.1)), when we compose yR,, on the right by v*, the remainder term
is Opz_,ce (h™) as desired.
Putting this together, we have

G(z) = Gal(z) + Gp(2) + Gy(2) + Op2_yc0 (R™)

where G a is pseudodifferential, G5 is a Fourier integral operator associated with the relation
Cy, and G, has MS,(Gy) C Uy, x U, NV}, where Uy, is an h¢ neighborhood of S0 and V},
is an h¢ neighborhood of the diagonal of 02 x 9% lifted to T*0€). Moreover, if € is strictly
convex, G g is associated to the billiard ball map.

Next, we compute the symbols of Go and Gg. Using Lemmas [6.6.1and [6.6.2| we have

o(Ga) = (27rh)_1/2a(7)/roo(7*)d§d = (27rh)‘1/h2 (J€” - (E+z'0)2)_1d§d.

-1
/ (53 — /B - |§’!§+z‘02) deq =i (B” = |¢2) 7"

Here we take the branch of the square root such that /a is positive on a > 0. This choice
is unambiguous since Arg(E” — |¢']2) € {0,7}. Thus,

5(Gn) = o(@concr = ih (2B~ 1€13)
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Remark: Note that the symbol of G is the same as that if we had naively applied Propo-
sition [4.4.101

Note also that using the transversality of the intersection CoA;0C~1, Proposition 4.4.10
gives that

hE(de)/26(7d+3)7ri/4€% Rewolz—y|
o~y

I“ﬁzlw*yIGB)’C{) — dy A dz|'?, (z,y) € 00 (6.6.6)

ole
Then, assuming that € is strictly convex so that C} is parametrized by (g, we have by
composing symbols (see also [34, Proposition 6.1]) that
Lemma 6.6.3. Let ¢ = (y,n) € B;02. Then G has symbol

Im

O'(GBG h

“OPul@BE @) (h=(|hD|, — E))|ey
het Rewol(q,ﬂE(q))<p(h—5(\n(q)\g - E))

- 1/2
B~ In(Ba@) BV — gy (667

X € C®(R) has x =0 near 0 and p =1 — x.

Proof. To convert from (6.6.6) to (6.6.7]), we reparametrize by (y,n). That is, we write |d¢’|
in terms of |dy|. Observe that by (3.2.5) n = Ed,|y — z| on Cs. Thus, we compute

Y+ Zsiei — (z+ Ztie;) ) |dx|

where ¢; and e} (i = 2,...,d) are respectively orthonormal bases for T;0Q and T;0%.
Without loss of generality, we assume that

2

(952015]-

dn| = B9~ det (

t=0
s=0

vy = (1,0,0...,0), vy = (cos fB,sin 3,0, ...0)
y=(0,0,0,...,0), r=(ry,re,rs0,...0)=r

Then we choose as our orthonormal bases e; = e; ¢+ = 2,...d where e; is the standard basis
and

ey = (—sin 3, co0s 3,0,...,0), e, =e¢; fori=3...d
Next we compute derivatives of w = w(sa,. .., Sq,t2, ..., tq)
w=|(tasin 8 —ry,89 — 19 —tacos 3,83 — 13 — t3,84 —tgy. .., 8q — tq)]

A long but straightforward computation gives

52 —|r|*cos B + ra(ry cos B — sin Bry)  r3(recos B — sin Bry) 0
ad = |r| 73 ror —|r* +r? 0
05;0t: [t=0 N 23 3 2
R 0 0 —|r|*T
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) | — ’r‘7d+1
t=0
s=0

= |z =y~ B2 B2 — nf2y [B? — |¢/(Be(0)) 2

This matrix has

0*w
det ( 8si8tj

7?2 cos 3 + ri7re sin 8
r[?

= e[~ 0.y — 2] |0, |z — y]]

O

Remark: If ) is strictly convex, then the cutoff away from the diagaonal in R; causes Gp
to be microlocalized h¢ away from [{'|, = E and hence Ggp(h™“(|hD'|,— E)) = G+ 0(h™).

Now, to understand N = ~TRoL*~* +% Id and 0, D¢ = vL Ry L*~v* microlocally away from
glancing, we only need to compute the symbols of the various pieces since the geometry of
the situation is identical to that for G. For 9, D¢, it is irrelevant whether we choose y* or 7~

since we have verified that there is no jump at 0Q in Lemma . Write N = ~T RoL*~*.
Then for N, we write

N =R L'y + 7 By (1= (h(|hD'|y — E))
+ 7 R L™y (b~ |hD'|, — E)
~ ~ ~ 1
Also, write
9,Dl = yLR\L*y* + v LRy L*y*(1 = ¢(h™(|hD'|, — E))
+ 7 LR, Ly (b |hD'|, — E)
=:0,Dlp + 0,Dlx + 0,DY,

The symbol of 0,D{p is given by

-~ Im 2

o(Npe n

Iz—y\) —
,L'E(d+1)/2e(fd+3)m'/4€% Rewp|z—y|
2 — 47

and using the computations from Lemma [6.6.3

dy, |z — y||dy A dx]l/Z

_ie%Rewol(q,ﬁE(Q)) (E'2 — |§/(Q)|52))1/4

7 Imz0op, (1, —
7(Npe b o) = —— e B

dq'/?.

Then, the symbol of 0,D¢g is given by

Im 2

U(&,DEBe h

\x—yl)
_h—1E(d+1)/2e(—d+3)m/4€% Rewp|z—y|
2w — @72

dy, |z —y|d,, |z — y||dy A dz|*/?
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and using the computations from Lemma [6.6.3

(8, Dlpe = Omi@fp(@)) —

Wl eh Rewoll@ o) (B2 — |¢(85(q))[2)M/4 (B2 — € (a) )1/4d 12
5 .

To analyze Na and 9, D0, write
Ry L™y (1 = p(h™(|hD'| = 1)))(,y)

ey [ et SR IR 4y, - B

and

LRy L*y*(1 = (R (|hD'] = 1)) (=, y)

— (97h) ¢ %a: Y,€) <€,1/x><f,l/y>—|—p2(l‘yf)

Y ('], — E)))dE
where the p; are polynomial in £. Then, in appropriate coordinates
RoL™y* (1 = (h™(|hD'| = 1)))(z,y)

= (mny* [ ebevo i FRLY S (i, - E))ae

and
LRy L™y (1 = yp(h™(|hD'| — 1)))(z,y)

. —d L(g—y £) 53 + p(z,y,§) . s
= oyt [ ekt STRGIEL( — p (i, - E))de
Hence, the relevant parts of Ry L*~* and LRy L*v* satisfy the requirements of Lemma [6.6.2
When we compute the symbol of v Ry L*~*, we obtain % which is exactly the % Id appearing
in (6.6.8). Hence, we can compute symbols to obtain:

For the case that € is strictly convex, we summarize the result of this decomposition in
the following Lemma

Lemma 6.6.4. Let Q C RY be strictly convex with 0Q € C*. Then for all 1/2 > €,v > 0,
and z = E + O(h'™) with Tm z > —Chlogh™'. Then
G(z/h) == Ga(2) + Gp(z) + G4(2) + Oprcee (R™)
(2/h) = Na(2) + Np(2) + Ny(2) + Opro=(h)
0,DU(z/h) := 0,Dla(2) + 0,Dlp(2) + 0,Dly(2) + Opr—coo (h™)
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where Ga € hi=3Ut N € R1=2UL 9,Dln € WL and Gp € - 5ema)-da/h[omP (),
Np € em2)-da/h[©mP (O - and 9, Dl € h~telm=)-da/h [P () are FIOs associated to [

where § = max(e,y). Moreover,

. (q,p) € BROQ2 x BLOS) :
MSy'((+)B) © { min(E — [€'(q)lg, E = 1€ (q)ly, g, p)) > Che}
» (q,p) € T*OQ x TN :
MSy'((+)g) © { max(|E — |€(q)|y], |E — € ()], (g, p)) < che}

ih i E e
o(Ga) = ———r, 0(0,Dlp) = :
N ’

he% Rewol(q,82(q))

Im 2z
(G re i OPnl(a.86(2)) — dql/Q,
(Gs )= 5B G DV (B — [
ot Rewol(q,BE(q) (2 _ |¢f 2\1/4
o (N e Opntasp@)y — il Coted Ol dq'’?,
2(E% — [¢'(Br(q))2)/4
J(E),,DEBeh?LZ Oph(l(qﬁE(Q)))) _
ek Renl@3e @) (B2 — |6/ (B (a)) ) (B2 — [€ @)
5 .

where we take \/Z = \/|z]e2 283 for —7 /2 < Arg(z) < 37/2.
Remarks:

e The change in this Lemma when () is only assumed to be convex is that we lose
restriction on [¢'|, and ||, in MS,'(Gp) and thus must use for the symbol of
G near glancing points and away from the diagonal.

e The microsupports of the various components of G are shown graphically in Figure

6.2

6.7 Boundary layer operators and potentials near
glancing

In this section, we complete the microlocal descriptions of the boundary layer operators using
the Melrose-Taylor parametrix constructed in Appendx [f
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Figure 6.2: We show the wavefront relation for each of the pieces in the decomposition of G
(or 0, D). The formulae for these wavefront sets are contained in Lemmas We label
the elliptic, glancing, and hyperbolic regions by £, G, and H respectively. The top, middle,
and bottom pictures correspond to Gp, G, and G respectively. In the left copy of T0(2,
we show the wavefront set of each operator in the fiber over y € 9€2. The right copy of T*0f2
shows how each operator maps the wavefront set in the fiber over y. Note that the curve
shown in the right copy of T*0Q for WF}'(Gg) continues outside of the portion of T*9
shown.
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Estimates for a simple transmission problem

We start by proving estimates for the following transmission problem. Let 23 =, Qy =
R\ ©, and u = u11q, ® uslg,. Suppose that x € C®(R?) with xy = 1 on Q; and

(—h2A — 2*)u; = h*x fi in €,
— Uy = o)

o= a on (6.7.1)
Oy, u1 + Opyus = go on 0f2

us is z/h outgoing
Then, it is easy to check that as a distribution,
(=h*A — 2%)u = h*(f + L*590 @ g1 + daq ® ga)

where f = 1q, f1 ® 1o, f> and L is a vector field with L|sq = 0,,. Thus, applying h™2Ry(z/h)
to this equation shows that for z/h in the domain of Ry(z/h), has a unique solution
given by

u = R()Xf + ngg + Dggl.

Hence 1
u1|og = YRof + Ggo — 3% +Nagi
1 .
u2|aQ = WR()f + Ggg + -1 + Ngl

L (6.7.2)
Oy u1|oa = Y0, Ro f + 392 + N*gy 4+ 0,Dlg

1 3
OuyUaloa = Y0, Ro f + 592~ N#gy — 0,Dlg,

To obtain an L? estimate on u, we simply apply standard resolvent estimates (see for example
[21, Chapter 3]),
IXRo(2/)Xl gy reve < ChePxma)=/n, (6.7.3)

So

HXUHLQ(Rd) < CeDX(Imz)_(hHXfHLQ(Rd) + hl/zHQhHm(aQ) + hl/2”92HL2(8Q))-

To upgrade this to estimates on u; in H*(£2;), we observe that for y; € C®(R?) with
x1 =1 on x, and x, € C®(R?) with x, = 1 on supp x1,

(=h*A — 2%)x1u = [x1, PP Alu+ h*(xf + L*6p0 @ g1 + doa @ g2)
x1u = X2Ro(0)(h*([x1, R*A] + 2%x1)u + xf)
+ x2DL(0)g1 + x25¢(0) g2
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and for k > —1, DL(0) : H*3/2(0Q) — H*2(Q)) @ H2(Q,) and S0(0) : H*1/2(0Q) —
Hk+2(91) D Hk+2(92), XRU(O)X : Hk(Ql) D Hk(QQ) — Hk+2(91) D Hk+2(Q)2. (See [25,
Theorems 9, 10]) So,

|| 20,y + (X102 || Hr+2(00)
< 2 (| vy + Bl e @n) + (xauall @) + Rllxatsll e )
+ XSl ey + |91l mer1r200) + |92l ars200)

Using the description G, N, and 9, D¢ at high energy in Lemmas as psuedodiffer-
ential operators, we have for ¢ € C®(R) with ¢ =1 on [-2E, 2E],

1Gullgy < (1 = & (|hD])Gull g + [ ([h D) Gul g
< Bl s+ Gl

INull g < (1= »(IRD)Null g + [0 (|hD) Nl ¢
< lull g + [Nl 2

|8 *ull g < [1(1 = 9(ADD)O,DE*ul e + [0(1AD)O D ul
< lull e + [N Fu]| 2
10, Dlul| g < ||(1 = ¥ (|hD)))0, Dlul| gr + || (|RD])0, Dlul|

< W full e + 10, Dlul| 2.

Together with (6.7.3) and Theorem [6.1] this implies the estimates

Lemma 6.7.1. Suppose that z/h is in the domain of Ry, x € C>°(R?) with x = 1 on
and u € L} (RY) is the solution to (6.7.1). Then

u = R(]Xf + SEQQ + Dggh

(6.7.2) holds and for any e >0, k > —1/2, m > 0, there exists hg > 0, C, Ny > 0 such that
for 0 < h < hy,

HulHH}’f”(Qﬂ _'_ ”Xu2|’HZ+2(Q2) + HUIHH:-F%(aQ) + HU2HH:+%(89)

|0, )+ 10l

"5 (90 "5 (60)

Dy (Im z) _

< Chem (If gy + g2l ery
h

)

)+ Hgl

(90 | H:+% (99)
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Microlocal Description of G and S§¢ near glancing

Now, let u solve (6.7.1) with f; = 0 and g; = 0 and g, = g microlocalized sufficiently close
to a glancing point (2’,¢) so that the parametrices from Appendix [5 can be constructed.
In particular, let (yo,70) € S*02 and

Y=1on{ly—yo| <9, |n—mno| <é, l[nly — 1] <~vh%€(h)>. (6.7.4)
supp ¥ C {|y — yo| < 26, |n — no| < 204, ||n|, — 1| < 2vh%e(h) > (6.7.5)

and suppose that g = Opy(¢)g + Op-=(h™)g.
Recall that by Lemmas|5.4.1and (5.4.3|) a microlocal description of the exterior Dirichlet
to Neumann map, N>, is given by

Nog = J(h2BCD_ + B)J g+ Op-=(h™)g (6.7.6)
where C' € VU is elliptic, B € ¥, ®_ is the Fourier multiplier

/_ h_2/3Oé Y] ,
d_(u) = (2rh) 4 / Weh@ v ude’. (6.7.7)

where,
&) =& +ie(h) with ch < e(h) = O(hlogh™).

Let AiA_, Ai'A_, AiA" , and Ai’ A’ be the Fourier multiplies obtained by replacing j—/: in
by AiA_, Ai'A_, AiA’_, and Ai’A’_ respectively.

Let g = h233-1JC g and ¢y = h*33- JAIA_C~'J g where 8 = 5°. Then, let
wy = Ay 4q1 where A; is as in Lemma and wy = Haqe where H, is the solution operator
to

(=h*A — 2HHaqe =0 in RY\ Q
Hagzloa = g2
Haqo z/h outgoing

Then, by Lemma and ((6.7.6)),

wilga = walag = K387V JAIA_C I g+ Oy (B™). (6.7.8)
and
&,wl + 81,2w2 (679)
=B (CAIA_CT' + BAIACTH = CAI/A_C™H = BAIA_C™) J 'y
=B J(CAT'TA- — LA )C™) T g+ Og-=(h™)g (6.7.10)

= JCC7'J7 g+ Og-=(h™)g = g + Og-=(h™)g
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where we have use the Wronskian for the Airy equation to reduce (6.7.10)).

Thus, (43 — wy, ug — ws) solves with
Xl ey @ay + (91l o) + 1925 60) = O]9l -~
for any N. Hence, u = w + Ogwioc(h™) and we have that
Gg = JB 'R PAIA_CT T g4 Og-=(h™)g (6.7.11)
for any Im z = O(hlog h™!). Moreover,
Slygla = h*3B71 AL, JC™ T g + Oprany o) (h)g (6.7.12)

Lemma 6.7.2. Suppose that o € L*(0S)) and there exists ¢ > 0 such that MSy(p)