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Abstract. In the analysis of the h-version of the finite-element method (FEM), with fixed
polynomial degree p, applied to the Helmholtz equation with wavenumber k � 1, the asymptotic
regime is when (hk)pCsol is sufficiently small and the sequence of Galerkin solutions are quasioptimal;
here Csol is the norm of the Helmholtz solution operator, normalised so that Csol ∼ k for nontrapping
problems. The preasymptotic regime is when (hk)2pCsol is sufficiently small, and (for physical data)
one expects the relative error of the Galerkin solution to be controllably small.

In this paper, we prove the natural error bounds in the preasymptotic regime for the variable-
coefficient Helmholtz equation in the exterior of a Dirichlet, or Neumann, or penetrable obstacle (or
combinations of these) and with the radiation condition approximated either by a radial perfectly-
matched layer (PML) or impedance boundary condition. Previously, such bounds for p > 1 were
only available for Dirichlet obstacles with the radiation condition approximated by an impedance
boundary condition. Our result is obtained via a novel generalisation of the “elliptic-projection”
argument (the argument used to obtain the result for p = 1) which can be applied to a wide variety
of abstract Helmholtz-type problems.
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1. Introduction.

1.1. Informal statement of the main result. We consider the h-version of
the finite-element method (h-FEM), where accuracy is increased by decreasing the
meshwidth h while keeping the polynomial degree p constant, applied to the Helmholtz
equation.

Theorem 1.1 (Informal statement of the main result). Let u be the solution to
the variable-coefficient Helmholtz equation, with wavenumber k > 0, in the exterior
of a Dirichlet, or Neumann, or penetrable obstacle (or combinations of these) and
with the radiation condition approximated either by a perfectly-matched layer (PML)
or an impedance boundary condition. Let Csol be the norm of the solution operator,
normalised so that Csol ∼ k for nontrapping problems.

Under the natural regularity assumptions on the domain and coefficients, if

(1.1) (hk)2pCsol is sufficiently small

then the Galerkin solution uh exists, is unique, and satisfies

‖u− uh‖H1
k(Ω) ≤ C

(
1 + hk + (hk)pCsol

)
min
vh∈Hh

‖u− vh‖H1
k(Ω) ,(1.2)

‖u− uh‖L2(Ω) ≤ C
(
hk + (hk)pCsol

)
min
vh∈Hh

‖u− vh‖H1
k(Ω) .(1.3)

Furthermore, if the data is k-oscillatory (in a sense made precise below), then

(1.4)
‖u− uh‖H1

k(Ω)

‖u‖H1
k(Ω)

≤ C
(

1 + hk + (hk)pCsol

)
(hk)p;
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i.e., the relative H1
k error can be made controllably small by making (hk)2pCsol suffi-

ciently small.

The norm ‖ · ‖H1
k(Ω) in the bounds above is defined by

(1.5) ‖v‖2H1
k(Ω) := k−2 ‖∇v‖2L2(Ω) + ‖v‖2L2(Ω) .

The fact that, for oscillatory data, the relative H1
k error for the Helmholtz h-FEM

is controllably small if (hk)2pCsol is sufficiently small was famously identified for 1-d
nontrapping problems by the work of Ihlenburg and Babuška [25, 26]. The bounds
(1.2) and (1.3) have previously been obtained (i) for the Dirichlet obstacle problem
with impedance boundary conditions approximating the radiation condition [12, 40]
and (ii) for PML with constant-coefficients, no obstacle, and p = 1 [32].

The present paper proves the bounds (1.2), (1.3), and (1.4) assuming only that
the sesquilinear form is continuous, satisfies a G̊arding inequality, and satisfies certain
standard elliptic-regularity assumptions, therefore covering a variety of scatterers and
methods for truncating the exterior domain (to approximate the radiation condition).
Regarding the latter: in this paper we consider truncating with a PML or an imped-
ance boundary condition, but truncating with the exact Dirichlet-to-Neumann map
is also, in principle, covered by the abstract framework; see Remark 5.4 below.

1.2. Statement of the main abstract result. Let H ⊂ H0 ⊂ H∗ be Hilbert
spaces with H0 identified with its dual and H ⊂ H0 compact. Let a : H×H → C be
a continuous sesquilinear form, i.e.,

(1.6) |a(u, v)| ≤ Ccont ‖u‖H ‖v‖H and a(λu, µv) = λµ̄a(u, v) for all u, v ∈ H,

satisfying the G̊arding inequality

(1.7) <a(v, v) ≥ CG1 ‖v‖2H − CG2 ‖v‖2H0
for all v ∈ H

for some CG1, CG2 > 0. We assume further that Ccont, c, C and all the other constants
in this section are independent of k.

Assumption 1.2 (“Elliptic regularity” assumptions on a). Let Z0 = H0, Z1 =
H, and Zj ⊂ Zj−1 for j = 2, . . . , ` + 1 such that Zj is dense in Zj−1, and assume
that for all u ∈ H with

sup
v∈H, ‖v‖(Zj−2)∗=1

|a(u, v)| <∞,

u ∈ Zj and

(1.8) ‖u‖Zj
≤ C

(
‖u‖H0

+ sup
v∈H, ‖v‖(Zj−2)∗=1

|a(u, v)|
)
, j = 2, . . . , `+ 1.

Assume further that for any w ∈ H such that

sup
w∈H, ‖v‖(Zj−2)∗=1

|(<a)(u, v)| <∞,

w ∈ Zj with

(1.9) ‖w‖Zj
≤ C

(
‖u‖H0

+ sup
v∈H, ‖v‖(Zj−2)∗=1

|(<a)(u, v)|
)
, j = 2, . . . , `+ 1,
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where the sesquilinear form <a is defined by

(1.10) (<a)(u, v) := 1
2

(
a(u, v) + a(v, u)

)
.

Remark 1.3. Note that <a in (1.7) and (1.10) could be replaced by <(eiωa), so
long as one uses the same value of ω in both conditions. Remark 4.4 below describes
a situation where this is useful.

Given g ∈ H∗, suppose that u ∈ H satisfies

(1.11) a(u, v) = 〈g, v〉 for all v ∈ H.

Given a sequence of finite dimensional subspace {Hh}h>0 with Hh ⊂ H, the
sequence of Galerkin approximations of u, {uh}h>0, are defined by

(1.12) a(uh, vh) = 〈g, vh〉 for all vh ∈ Hh.

Example 1.4. For the Helmholtz equation outside a Dirichlet obstacle with PML
truncation and Ω the truncated exterior domain, H0 = L2(Ω), H = H1

0 (Ω), and
Zj = Hj(Ω) ∩ H1

0 (Ω). Assumption 1.2 is then elliptic regularity for the Helmholtz
PML operator and its real part, which both hold if the coefficients of the Helmholtz
equation are in C`−1,1, the PML scaling function is C`,1, and ∂Ω is C`,1 (see Lemma
4.7 below).

Theorem 1.5 (Abstract generalisation of the elliptic-projection argument).
Let a : H × H → C satisfy (1.6), (1.7), and Assumption 1.2. Suppose that

R∗ : H∗ → H defined by

(1.13) a(w,R∗v) = 〈w, v〉 for all w ∈ H, v ∈ H∗,

is well defined and let

(1.14) η(Hh) := sup
g∈H0,g 6=0

‖(I −Π)R∗g‖H
‖g‖H0

,

where Π : H → Hh is the orthogonal projection. Then the solution, u, to (1.11) exists
and is unique and there exist C1, C2, C3 > 0 such that if h satisfies

(1.15) η(Hh)‖I −Π‖Z`+1→H ≤ C1,

then the solution uh to (1.12) exists, is unique, and satisfies

‖u− uh‖H ≤ C2

(
1 + η(Hh)

)
min

wh∈Hh

‖u− vh‖H ,(1.16)

‖u− uh‖H0
≤ C3 η(Hh) min

wh∈Hh

‖u− vh‖H .(1.17)

If, in addition,

(1.18) ‖g‖Z`−1
≤ C ‖g‖H∗

for some C > 0, then there exists C4 > 0 such that if h satisfies (1.15) then

(1.19)
‖u− uh‖H
‖u‖H

≤ C4

(
1 + η(Hh)

)
‖I −Π‖Z`+1→H ;

i.e., the relative error in H can be made controllably small by making
η(Hh) ‖I −Π‖Z`+1→H sufficiently small.
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Theorem 1.5 includes the result that the sequence of Galerkin solutions are qua-
sioptimal with constant independent of k if η(Hh) is sufficiently small – with this the
so-called asymptotic regime (see the discussion in §1.3).

The bounds (1.16), (1.17), and (1.19) and the meshthreshold (1.15) in Theorem
1.5 all involve the quantity η(Hh), which measures how well solutions of the adjoint
problem are approximated in the space Hh. Bounds on η(Hh) are given in [37, 38, 36,
13, 6, 29, 19, 20, 3]; see the discussion in §1.3. The following bound on η(Hh) is proved
using the ideas in [6] (although the end result is phrased in a different way there); we
include it here both for completeness, and because it holds under the assumptions of
Theorem 1.5 (in fact, it only requires the regularity assumption (1.8) and not (1.9)).

Theorem 1.6 (Bound on η(Hh)). Under the assumptions of Theorem 1.5, there
exists C > 0 such that
(1.20)

η(Hh) ≤ C
( b`/2c−1∑

j=0

‖(I −Π)‖Z2(j+1)→H + ‖(I −Π)‖Z`+1→H
(
1 + ‖R∗‖H0→H

))
.

Example 1.7. In §4 and §5 below we show how Helmholtz problems with the ra-
diation condition approximated by either a PML or an impedance boundary condition,
respectively, fit into the abstract framework of Theorems 1.5 and 1.6. In both these
cases, the norm of the adjoint solution operator, i.e., ‖R∗‖H0→H, is the same as the
norm of the solution operator of the original (non-adjoint) problem, which we denote
by Csol. Furthermore, with {Hh}h>0 corresponding to the standard finite-element
spaces of piecewise degree-p polynomials on shape-regular simplicial triangulations,
indexed by the meshwidth h,

‖(I −Π)‖Zm+1→H ≤ C(hk)m for 0 ≤ m ≤ p.

The meshthreshold (1.15) then becomes that (hk)2`Csol is sufficiently small. Recall
that ` is a parameter in the elliptic-regularity assumptions (Assumption 1.2). If the
polynomial degree p is taken to be ` then (1.15) becomes (1.1). The bounds (1.16) and
(1.17) then become (1.2) and (1.3), respectively.

1.3. Discussion of the context, novelty, and ideas behind Theorem 1.5.
The work of Ihlenburg and Babuška in 1-d. The celebrated work of [25, 26] studied

the h-FEM applied to the constant-coefficient Helmholtz equation in 1-d (a nontrap-
ping problem), and split the behaviour of the finite-element solutions as a function of
h into the so-called asymptotic and preasymptotic regimes.

The asymptotic regime is when h is small enough, as a function of k, for the
sequence of Galerkin solutions to be quasi-optimal uniformly in k, i.e.,

‖u− uh‖H1
k(Ω) ≤ C min

vh∈Hh

‖u− vh‖H1
k(Ω)

with C > 0 independent of k. [26, Theorem 3.5] showed that a sufficient condition to
be in the asymptotic regime is “hk2/p sufficiently small”, with later work (discussed
below) then showing that a sufficient condition for nontrapping problems (when Csol ∼
k) is “(hk)pk sufficiently small”, with this condition then indicated to be necessary
by numerical experiments. Therefore, the pollution effect for the h-FEM, i.e., the
fact that one needs h � k−1 to maintain accuracy, becomes less pronounced as p
increases.
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The preasymptotic regime is when the relative H1
k error is controllably small, uni-

formly as k →∞, provided that the data is k-oscillatory, in the sense that it satisfies
the bound (1.18) 1. [26, Corollary 3.2] used the explicit form of the Helmholtz Green’s
function in 1-d to prove that if (hk)2pk sufficiently small then the finite-element solu-
tion is in the preasymptotic regime, with the numerical experiments in [26, Table 2]
(for p = 1, . . . , 6) indicating that this condition is also necessary. [26] also studied the
phase difference between the exact and finite-element solutions (following [23, 43]),
with [26, Theorem 3.2] showing that the difference between the true wavenumber and
the numerical wavenumber is bounded by C(hk)2pk. Thus the condition “(hk)2pk
sufficiently small” also controls this phase difference; see also [1, Equation 3.5].

Error bounds in the asymptotic regime using the Schatz argument.. We now out-
line the argument that gives the condition “(hk)pCsol sufficiently small” for quasiop-
timality, with this argument also used in the proof of Theorem 1.5. We work in the
setting of Examples 1.4 and 1.7; i.e., the PML approximation to the Helmholtz exte-
rior Dirichlet problem, so that H0 = L2(Ω) and H = H1

0 (Ω). The G̊arding inequality
(1.7) is then

<a(w,w) ≥ CG1 ‖w‖2H1
k(Ω) − CG2 ‖w‖2L2(Ω) for all w ∈ H1

0 (Ω)

for CG1, CG2 > 0 (see Corollary 4.6 below). Combining the G̊arding inequality with
the Galerkin orthogonality

(1.21) a(u− uh, vh) = 0 for all vh ∈ Hh,

we find that, for all vh ∈ Hh,

‖u− uh‖2H1
k(Ω) ≤ C

−1
G1

∣∣a(u− uh, u− vh)
∣∣+ C−1

G1CG2 ‖u− uh‖2L2(Ω)

≤ C−1
G1Ccont ‖u− uh‖H1

k(Ω) ‖u− vh‖H1
k(Ω) + C−1

G1CG2 ‖u− uh‖2L2(Ω) ,(1.22)

where Ccont is the continuity constant of the sesquilinear form a. Therefore, (1.22)
implies that a sufficient condition for quasioptimality is that the L2 error is sufficiently
small relative to the H1

k error.
By the definition of R∗ (1.13) (recalling that H = H1

0 (Ω) here) and Galerkin
orthogonality (1.21), for any vh ∈ Hh,

‖u− uh‖2L2(Ω) = a
(
u− uh,R∗(u− uh)

)
= a

(
u− uh,R∗(u− uh)− vh

)
≤ Ccont ‖u− uh‖H1

k(Ω)

∥∥R∗(u− uh)− vh
∥∥
H1

k(Ω)
,(1.23)

and thus, by the definition of η(Hh) (1.14) (recalling that H0 = L2(Ω)),

(1.24) ‖u− uh‖L2(Ω) ≤ Ccontη(Hh) ‖u− uh‖H1
k(Ω) .

Combining this last inequality with (1.22), we see that a sufficient condition for qua-
sioptimality is that η(Hh) is sufficiently small. Schatz [42] was the first to use the
Aubin-Nitsche-type bound (1.24) with the G̊arding inequality, and thus the argument
above is often called the Schatz argument. The “adjoint approximability” concept,
and associated definition of η(Hh), was introduced by Sauter in [41].

1The relative error can only be small for a certain subclass of data, since, given a finite-
dimensional subspace Hh, one can choose data such that the solution v ∈ H is orthogonal to Hh.
Then ‖u− uh‖2H = ‖u‖2H + ‖uh‖2H ≥ ‖u‖

2
H.
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The bound

(1.25) η
(
Hh
)
≤ C

(
hk + (hk)pCsol

)
under sufficient regularity of the coefficients and obstacle has now been proved for a
wide variety of Helmholtz problems, with this bound sharp by the recent results of [17].
The bound (1.25) therefore gives the sufficient condition “(hk)pCsol sufficiently small”
for quasioptimality, with this condition observed sharp for nontrapping problems in,
e.g., [6, Figures 3, 5, and 8] for p = 1, 2, 3, 4.

For p = 1, the bound (1.25) can be proved using only H2 regularity of the
Helmholtz solution, with the condition “hk2 sufficient small” for quasiopimality ob-
tained for 1-d problems in [2, Theorem 3.1], [11, Lemma 2.6], [27, Theorem 3], and
[33, Theorem 3.2], 2-d problems in [35, Proposition 8.2.7], and variable-coefficient
problems in 2- and 3-d in [22, 21].

For p > 1 the bound (1.25) is proved by a judicious splitting of the solution in
[37, 38, 13, 36] for constant-coefficient problems and [6, 29, 19, 20, 3] for variable-
coefficient problems. All these papers apart from [6] make the constant C in (1.25)
explicit in p under suitably analyticity/smoothness assumptions on the obstacle and
coefficients, and thus give results about the hp-FEM (showing that quasioptimality
holds if hk/p is sufficiently small and p/ log k is sufficiently large). In addition, all these
papers apart from [6] split the solution into “high-” and “low-” frequency components.
In constrast, [6] instead expands the solution in a series whose terms increase with
regularity, and with only the remainder satisfying a bound involving Csol; see Lemma
2.2 below.

Bounds in the preasymptotic regime. Numerical experiments indicate that, at
least for nontrapping problems, the condition “(hk)2pCsol sufficiently small” for the
relative H1

k error to be controllably small is necessary and sufficient for 2- and 3-d
Helmholtz problems; see, e.g., [12, Figure 3]. Nevertheless, despite the fact that sharp
asymptotic error bounds have now been obtained for a variety of Helmholtz problems
in 2- and 3-d and for arbitrary p ∈ Z+, until now the sharp preasymptotic error bounds
were obtained only in the following cases.

1. p = 1, the constant-coefficient Helmholtz equation with an impedance bound-
ary condition [44, Theorem 6.1] or PML (and no obstacle) [32, Theorem
4.4], the variable-coefficient Helmholtz equation with truncation via the ex-
act Dirichlet-to-Neumann map [28, Theorem 4.1].

2. p ∈ Z+, the constant-coefficient Helmholtz equation with no obstacle and
an impedance boundary condition approximating the radiation condition [12,
Theorem 5.1],

3. p ∈ Z+, the variable-coefficient Helmholtz equation in the exterior of a Dirich-
let obstacle with an impedance boundary condition approximating the radi-
ation condition [40, Theorem 2.39].

The bounds in Point 1 for p = 1 come from the so-called elliptic projection argument,
which proves error bounds under the condition “(hk)p+1Csol is sufficiently small”; i.e.,
the sharp condition when p = 1, but not when p > 1. The initial ideas behind this
argument were introduced in the Helmholtz context in [15, 16] for interior-penalty
discontinuous Galerkin methods, and then further developed for the standard FEM
and continuous interior-penalty methods in [44, 45].

The bounds in Point 2 used an error-splitting argument (with this idea called
“stability-error iterative improvement”, and used earlier in [16, 44]) together with the
idea of using discrete Sobolev norms in the duality argument. The bounds in Point 3
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for variable-coefficients were obtained by repeating the constant-coefficient arguments
in Point 2, but now keeping track of how the constants depend on the coefficients.

The elliptic-projection argument. Theorem 1.5 is proved by generalising the
elliptic-projection argument, allowing it to prove error bounds under the sharp condi-
tion “(hk)2pCsol sufficiently small” for p > 1. We therefore recap the main ideas of the
elliptic-projection argument here, and then we explain below how we generalise this
argument. Here, and in the rest of the paper, C is used for a constant, independent
of h and k, but dependent on p, whose value may change line by line.

The bounds (1.2) and (1.3) come from the bounds

(1.26) ‖u− uh‖H1
k(Ω) ≤ C

(
1 + η(Hh)

)
min
vh∈Hh

‖u− vh‖H1
k(Ω)

and

(1.27) ‖u− uh‖L2(Ω) ≤ Cη(Hh) min
vh∈Hh

‖u− vh‖H1
k(Ω)

and the bound (1.25) on η(Hh). Observe that, by the consequence (1.22) of the
G̊arding inequality, the bound (1.26) follows from the bound (1.27).

To prove (1.27), the elliptic-projection argument writes (1.23) as

‖u− uh‖2L2(Ω) = a
(
u− uh,R∗(u− uh)− vh

)
= ã

(
u− uh,R∗(u− uh)− vh

)
−
(
(1 + c−2)(u− uh),R∗(u− uh)− vh

)
L2(Ω)

,(1.28)

where

ã(u, v) :=

∫
Ω

k−2A∇u · ∇v + u v.

Let Π̃ : H1
0 (Ω)→ Hh be the solution of the variational problem

ã(wh, Π̃v) = ã(wh, v) for all wh ∈ Hh.

Since ã is coercive on H1
0 (Ω) and the continuity and coercivity constants of ã in

‖ · ‖H1
k(Ω) are independent of k, Π̃ is well-defined by the Lax–Milgram theorem and

(1.29)
∥∥(I − Π̃)v

∥∥
H1

k(Ω)
≤ C min

wh∈Hh

‖v − wh‖H1
k(Ω)

with C > 0 independent of k by Céa’s lemma. The definition of Π̃ implies the Galerkin
orthogonality

(1.30) ã
(
wh, (I − Π̃)v

)
= 0 for all wh ∈ Hh.

We now choose vh = Π̃R∗(u− uh) in (1.28) so that, by (1.30), for all wh ∈ Hh,

‖u− uh‖2L2(Ω) = ã
(
v − wh, (I − Π̃)R∗(u− uh)

)
−
(
(1 + c−2)(u− uh), (I − Π̃)R∗(u− uh)

)
L2(Ω)

.(1.31)

For the first term on the right-hand side of (1.31) we use the continuity of ã, (1.29),
and the definition of η(Hh) (1.14) to bound this term by

C ‖v − wh‖H1
k(Ω) η(Hh) ‖u− uh‖L2(Ω) .
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The second term on the right-hand side of (1.31) is bounded by

C ‖u− uh‖L2(Ω)

∥∥(I − Π̃)R∗(u− uh)
∥∥
L2(Ω)

.

Using the Schatz argument for ã, one can show that

(1.32)
∥∥(I − Π̃)R∗(u− uh)

∥∥
L2(Ω)

≤ Chk
∥∥(I − Π̃)R∗(u− uh)

∥∥
H1

k(Ω)

and then (1.29) and the definition of η(Hh) (1.14) imply that the second term on the
right-hand side of (1.31) is bounded by

(1.33) Chk η(Hh) ‖u− uh‖2L2(Ω) ,

which can be absorbed into the left-hand side if hk η(Hh) is sufficiently small, giving
the result (1.27).

The ideas behind the proof of Theorem 1.5. We generalise the elliptic-projection
argument based on the observation that if ã(u, v) = a(u, v) + (Su, v)L2(Ω) with S a
self-adjoint smoothing operator, then the second term on the right-hand side of (1.31)
is replaced by

(1.34)
(
u− uh, S∗(I − Π̃)R∗(u− uh)

)
L2(Ω)

(see (2.14) below). Using the Schatz argument for ã and the smoothing property of
S, the modulus of this term is bounded by

(1.35)
∥∥S∗(I − Π̃)R∗(u− uh)

∥∥
L2(Ω)

≤ C(hk)p
∥∥(I − Π̃)R∗(u− uh)

∥∥
H1

k(Ω)

(see (2.16) below). Provided that Π̃ still satisfies (1.29), the term (1.34) is therefore
bounded by

(1.36) C(hk)pη(Hh) ‖u− uh‖2L2(Ω) .

Comparing (1.32) and (1.35), and also (1.33) and (1.36), we see that this new argument
replaces the condition “hkη(Hh) sufficiently small” in the standard elliptic-projection
argument by the condition “(hk)pη(Hh) sufficiently small”, which is the condition
(hk)2pCsol sufficiently small” after using the bound (1.25) on η(Hh).

The challenge now is to ensure that the smoothing operator S is such that the
projection Π̃ is well-defined and satisfies (1.29). This is achieved in Lemma 2.1 below,
where a suitable S such that ã(u, v) = a(u, v) + (Su, v)L2(Ω) is coercive is construc-
ted. S is defined by an expansion in terms of the eigenfunctions of the (self-adjoint)
operator associated with the real part of the sesquilinear form a (defined by (1.10)).

2. Proofs of the main results (Theorems 1.5 and 1.6).

2.1. Construction of a regularizing operator that produces coercivity
when added to a.

Lemma 2.1. Suppose that a : H ×H → C satisfies (1.6), (1.7), and Assumption
1.2. Then there exists S : H0 → H0 self adjoint and c, C > 0 such that, with

(2.1) ã(u, v) := a(u, v) + 〈Su, v〉H0
,

(2.2) <ã(v, v) ≥ c ‖v‖2H for all v ∈ H,
8



(2.3) ‖S‖H0→Zj
≤ C, j = 0, . . . , `+ 1

and R̃ : H∗ → H defined by

ã(R̃f, u) = 〈f, u〉 for all u ∈ H, f ∈ H∗,(2.4)

is well defined with

(2.5) ‖R̃‖Zj−2→Zj ≤ C, 2 ≤ j ≤ `+ 1.

The proof of Lemma 2.1 uses the spectral theorem for bounded self-adjoint op-
erators, B : H → H∗, which we recap here. With H0 and H as in §1.2, let b be a
sesquilinear form on H satisfying b(u, v) = b(v, u), with associated operator B; i.e.,
b(u, v) = 〈Bu, v〉 for all u, v ∈ H. If b satisfies the G̊arding inequality (1.7) (with
a replaced by b) then there exist an orthonormal basis (in H0) of eigenfunctions of
B, {φj}∞j=1, with associated eigenvalues satisfying λ1 ≤ λ2 ≤ . . . with λj → ∞ as
j →∞. Furthermore, for all u ∈ H,

(2.6) Bu =

∞∑
j=1

λj〈φj , u〉φj

(where the sum converges in H∗); see, e.g., [34, Theorem 2.37]. Given a bounded
function f , we define f(B) : H0 → H0 by

(2.7) f(B)u :=

∞∑
j=1

f(λj)〈φj , u〉φj , so that ‖f(B)‖H0→H0
≤ sup
λ∈[λ1,∞)

|f(λ)|.

Proof of Lemma 2.1. Let P : H → H∗ be the operator associated with the
sesquilinear form <a defined by (1.10), i.e., (<a)(u, v) = 〈Pu, v〉 for all u, v ∈ H;
observe that P is self-adjoint. Since (<a) also satisfies the G̊arding equality satis-
fied by a (1.7), the spectral theorem recapped above applies. Let {λj}∞j=1 be the
eigenvalues of P, let ψ ∈ C∞comp(R; [0,∞)) be such that

(2.8) x+ ψ(x) ≥ 1 for x ≥ −λ1,

and let S := ψ(P), in the sense of (2.7).
We now use (1.9) to prove that S : H0 → Zj satisfying (2.3). Since ψ has compact

support, the function t 7→ tmψ(t) is bounded for any m ≥ 0. Thus (2.7) implies that,
for any m ≥ 0,

(2.9) ‖Pmψ(P)‖H0→H0
≤ Cm.

By (1.9),

‖ψ(P)‖H0→Zj
≤ C`

(
‖ψ(P)‖H0→H0

+ ‖Pψ(P)‖H0→Zj−2

)
, j = 2, . . . , `+ 1,

so that, by induction and (2.9),

‖S‖H0→Z`+1
= ‖ψ(P)‖H0→Z`+1

≤ C`
d(`+1)/2e∑

j=0

∥∥Pjψ(P)
∥∥
H0→H0

≤ C`.
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We now show that ã satisfies (2.2). By the definitions of P and S, (2.6), (2.7),
and the inequality (2.8), for all v ∈ H,

<ã(v, v) = <a(v, v) + 〈ψ(P)v, v〉 = 〈(P + ψ(P))v, v〉 ≥ ‖v‖2H0
.

Since ψ ≥ 0, S is positive, and thus <ã(v, v) ≥ <a(v, v) for all v ∈ H, for any ε > 0
and for all v ∈ H,

<ã(v, v) ≥ ε<a(v, v) + (1− ε)<ã(v, v) ≥ εCG1 ‖v‖2H − CG2ε ‖v‖2H0
+ (1− ε)‖v‖2H0

,

so that, choosing ε = min( 1
2CG2

, 1
2 ), we have

<ã(v, v) ≥ CG1

2
min

(
1

CG2
, 1

)
‖v‖2H +

1

2
‖v‖2H0

;

i.e., ã is coercive. The existence of R̃ : H∗ → H satisfying (2.4) and ‖R̃‖H∗→H ≤ C
then follows from the Lax–Milgram theorem. Finally, to see that

‖R̃‖Zj−2→Zj
≤ C, 2 ≤ j ≤ `+ 1,

observe that, since S is self-adjoint and satisfies (2.3), for v ∈ (Zj−2)∗,

|a(R̃g, v)| = |ã(R̃g, v)− 〈SR̃g, v〉| ≤ |ã(R̃g, v)|+ |〈SR̃g, v〉|

≤ |〈v, g〉|+ ‖v‖(Zj−2)∗‖S‖H→Zj−2‖(R̃)∗‖H∗→H‖g‖H∗
≤ ‖v‖(Zj−2)∗(‖g‖Zj−2

+ C‖g‖H∗),

and the claim follows from (1.8).

2.2. Proof Theorem 1.5 using Lemma 2.1. We claim it is sufficient to prove
the bounds (1.16) and (1.17) under the assumption of existence. Indeed, by uniqueness
of the variational problem (1.11), either of the bounds (1.16) or (1.17) under the
assumption of existence implies uniqueness of uh, and uniqueness implies existence
for the finite-dimensional Galerkin linear system.

We next show that the bound (1.16) follows from (1.17). Now, by the G̊arding
inequality (1.7), Galerkin orthogonality (1.21), and (1.17), for any vh ∈ Hh,

‖u− uh‖2H ≤ C
[∣∣a(u− uh, u− vh)

∣∣+ ‖u− uh‖2H0

]
≤ C

[
‖u− uh‖H ‖u− vh‖H +

(
η(Hh) min

wh∈Hh

‖u− wh‖H
)2]

.(2.10)

The bound (1.16) on the error in H then follows by using the inequality 2ab ≤ εa2 +
b2/ε for all a, b, ε > 0 in the first term on the right-hand side of (2.10), and then using
the inequality a2 + b2 ≤ (a+ b)2 for a, b > 0.

We now prove (1.17) (using the ideas outlined in §1.3). By the definition of R∗,
Galerkin orthogonality (1.21), and the definition of ã (2.1)

‖u− uh‖2H0
= a

(
u− uh,R∗(u− uh)

)
= a

(
u− uh,R∗(u− uh)− vh

)
= ã

(
u− uh,R∗(u− uh)− vh

)
−
〈
S(u− uh),R∗(u− uh)− vh

〉
H0
.(2.11)

Let Π̃ : H → Hh be the solution of the variational problem

ã(wh, Π̃v) = ã(wh, v) for all wh ∈ Hh.
10



Since ã is continuous and coercive, with constants independent of k (see (2.2), (1.6),
and (2.3)), by the Lax–Milgram lemma and Céa’s lemma given k0 > 0 there exists

C > 0 such that for all k ≥ k0 and v ∈ H, Π̃ is well-defined with

(2.12)
∥∥(I − Π̃)v

∥∥
H ≤ C min

wh∈Hh

‖v − wh‖H .

The definition of Π̃ implies the Galerkin orthogonality

(2.13) ã
(
wh, (I − Π̃)u

)
= 0 for all wh ∈ Hh.

We now choose vh = Π̃R∗(u− uh) in (2.11) so that, by (2.13), for all wh ∈ Hh,
(2.14)

‖u− uh‖2H0

= ã
(
u− wh, (I − Π̃)R∗(u− uh)

)
−
〈
u− uh, S∗(I − Π̃)R∗(u− uh)

〉
H0

≤ C ‖u− wh‖H
∥∥(I − Π̃)R∗(u− uh)

∥∥
H + ‖u− uh‖H0

∥∥S∗(I − Π̃)R∗(u− uh)
∥∥
H0
.

By (2.12) and the definition of η(Hh) (1.14),
(2.15)∥∥(I − Π̃)R∗(u− uh)

∥∥
H ≤ C min

wh∈Hh

‖R∗(u− uh)− wh‖H ≤ Cη(Hh) ‖u− uh‖H0
.

We now claim that the bound (1.17) follows if we can prove that, for all v ∈ H,

(2.16)
∥∥S∗(I − Π̃)v

∥∥
H0
≤ C‖I −Π‖Z`+1→H

∥∥(I − Π̃)v
∥∥
H.

Indeed, we use (2.15) in the first term on the right-hand side of (2.14), and then (2.16)
with v = R∗(u− uh) in the second term on the right-hand side of (2.14) to obtain

‖u− uh‖2H0
≤ Cη(Hh) ‖u− wh‖H ‖u− uh‖H0

+ C‖I −Π‖Z`+1→H
∥∥(I − Π̃)R∗(u− uh)

∥∥
H ‖u− uh‖H0

.

By (2.15), the last term on the right-hand side is ≤ C‖I−Π‖Z`+1→H η(Hh)‖u−uh‖2H0

and (1.17) follows.
We now prove (2.16) by using the duality argument described in §1.3 (as part of

the Schatz argument). By the definition of R̃ (2.4) and Galerkin orthogonality (2.13),
for all wh ∈ Hh,∥∥S∗(I − Π̃)v

∥∥2

H0
=
〈
SS∗(I − Π̃)v, (I − Π̃)v

〉
H0

= ã
(
R̃SS∗(I − Π̃)v − wh, (I − Π̃)v

)
.

Then, by the bounds (2.5) and (2.3),∥∥S∗(I − Π̃)v
∥∥2

H0
≤ C min

wh∈Hh

∥∥R̃SS∗(I − Π̃)v − wh
∥∥
H

∥∥(I − Π̃)v
∥∥
H

≤ ‖I −Π‖Z`+1→H
∥∥R̃SS∗(I − Π̃)v

∥∥
Z`+1

∥∥(I − Π̃)v
∥∥
H,

≤ C‖I −Π‖Z`+1→H
∥∥SS∗(I − Π̃)v

∥∥
Z`−1

∥∥(I − Π̃)v
∥∥
H,

≤ C‖I −Π‖Z`+1→H
∥∥S∗(I − Π̃)v

∥∥
H0

∥∥(I − Π̃)v
∥∥
H

which implies the bound (2.16), and hence (1.17).
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Finally, we prove (1.19). By (1.11), (1.18), and the abstract elliptic-regularity
assumption (1.8), u ∈ Z`+1 with

‖u‖Z`+1
≤ C

(
‖u‖H0

+ ‖g‖Z`−1

)
≤ C

(
‖u‖H0

+ ‖g‖H∗
)
.

The variational problem (1.11) implies that

‖g‖H∗ = sup
v∈H∗,v 6=0

|a(u, v)|
‖v‖H∗

≤ C ‖u‖H ,

and thus ‖u‖Z`+1
≤ C ‖u‖H. The bound (1.16) then implies that

‖u− uh‖H ≤ C2

(
1 + η(Hh)

)
‖I −Π‖Z`+1→H ‖u‖Z`+1

and (1.19) follows.

2.3. Proof of Theorem 1.6. The following lemma is essentially [6, Theorem
2.6], rewritten in the abstract notation in §1.2.

Lemma 2.2. Under the assumptions of Theorem 1.5, let u = R∗g with R∗ defined
by (1.13) and g ∈ H0. Let um ∈ H, m = 0, . . . , b`/2c, be defined by

(2.17) ã(v, u0) = 〈v, g〉 for all v ∈ H,

and

(2.18) ã(v, um) = 〈Sv, um−1〉 for all v ∈ H, m = 1, . . . , b`/2c.

Then

(2.19) um ∈ Z2(m+1) with ‖um‖Z2(m+1)
≤ C ‖g‖H0

for m = 0, . . . , b`/2c − 1,

and

(2.20) ub`/2c ∈ Z`+1 with
∥∥ub`/2c∥∥Z`+1

≤ C ‖g‖H0
.

Furthermore, with

(2.21) rm := u−
m−1∑
j=0

uj ,

(2.22)
rm ∈ Z2(m+1) with ‖rm‖Z2(m+1)

≤
(
1+‖R∗‖H0→H

)
‖g‖H0

for m = 0, . . . , b`/2c−1,

and

(2.23) rb`/2c ∈ Z`+1 with
∥∥rb`/2c∥∥Z`+1

≤
(
1 + ‖R∗‖H0→H

)
‖g‖H0

.

Proof. We first prove (2.19) by induction. By the definition of u0 (2.17), conti-
nuity and coercivity of ã, and boundedness of S (2.3), ‖u0‖H ≤ C ‖g‖H0

. Then, by
(1.8) with j = 2,

‖u0‖Z2
≤ C

(
‖u0‖H0

+ ‖g‖H0

)
≤ C ‖g‖H0

,

12



which is (2.19) with m = 0.
Assume that (2.19) holds with m = q. By the definition of uq+1 (2.18), continuity

and coercivity of ã, and boundedness of S (2.3),

(2.24) ‖uq+1‖H ≤ C ‖uq‖H∗ .

By (1.8) with j = 2(q + 1) and the definition of uq+1 (2.18)

‖uq+1‖Z2(q+1)
≤ C

(
‖uq+1‖H0

+ sup
v∈H, ‖v‖(Z2q)∗=1

|〈Sv, uq〉|
)
.(2.25)

By duality

‖S‖(Zj)∗→H0
≤ C j = 0, . . . , `+ 1,

and thus

(2.26) sup
v∈H, ‖v‖(Z2q)∗=1

|〈Sv, uq〉| ≤ ‖S‖(Z2q)∗→H0
‖uq‖H0

≤ C ‖uq‖H0
.

Combining (2.25), (2.26), and (2.24), we find that

‖uq+1‖Z2(q+2)
≤ C

(
‖uq+1‖H0

+ ‖uq‖H0

)
≤ C ‖uq‖H .

Using (2.19) with m = q, we obtain (2.19) with m = q + 1, and the induction is
complete.

If ` is odd, i.e., ` + 1 is even, then this establishes both (2.19) and (2.20) since
2(b`/2c + 1) = ` + 1 (i.e., the highest-order case is even, and can be reached by
increasing the regularity at each step by two). If ` is even, i.e., ` + 1 is odd, then
the argument above establishes (2.19). The bound for ub`/2c (i.e., (2.20)) then follows
from elliptic regularity, using that ub`/2c−1 = u`/2−1 ∈ Z` ⊂ Z`−1 (i.e., at the last
step, we only increase the regularity by one).

For the proof that rm ∈ Z2(m+1) and satisfies (2.22), observe that the definition
of rm (2.21) and the definition of um (2.18) implies that r0 = u and

ã(v, rm) = 〈Sv, rm−1〉 for all v ∈ H, m = 1, . . . , b`/2c.

The proof of (2.22) is then very similar to the proof of (2.19), with the first step being
that, by (1.8), the fact that u = R∗g, and the definition of R∗ (1.13),

‖r0‖Z2
= ‖u‖Z2

≤ C
(
‖u‖H0

+ ‖g‖H0

)
≤ C

(
1 + ‖R∗‖H0→H

)
‖g‖H0

.

Proof of Theorem 1.6 using Lemma 2.2. As in Lemma 2.2, given g ∈ H0, let u =
R∗g. By (2.21),

‖(I −Π)R∗g‖H ≤
b`/2c−1∑
j=0

‖(I −Π)‖Z2(j+1)→H ‖uj‖Z2(j+1)
+ ‖(I −Π)‖Z`+1

∥∥rb`/2c∥∥Z`+1

so that, by the bounds (2.19), (2.20), and (2.23),

‖(I −Π)R∗g‖H ≤ C
( b`/2c−1∑

j=0

‖(I −Π)‖Z2(j+1)→H

+ ‖(I −Π)‖Z`+1→H
(
1 + ‖R∗‖H0→H

))
‖g‖H0

;

the result (1.20) then follows from the definition of η(Hh) (1.14).
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3. Elliptic-regularity results. This section collects the elliptic-regularity re-
sults that are used to verify that Assumption 1.2 holds for Helmholtz problems with
truncation of the exterior domain either by a PML (in §4) or an impedance boundary
condition (in §5). Let

Lu = −k−2∇ · (A∇u)− c−2u,

with associated sesquilinear form

a(u, v) =

∫
Ω

(
k−2(A∇u) · ∇v − c−2u v

)
,

where Ω be a bounded Lipschitz domain with outward-pointing unit normal vector
n. The conormal derivative ∂n,Au is defined for u ∈ H2(Ω) by ∂n,Au := n · (A∇u);
recall that ∂n,Au can be defined for u ∈ H1(Ω) with Lu ∈ L2(Ω) by Green’s identity;
see, e.g., [34, Lemma 4.3].

Assumption 3.1. For all x ∈ Ω, Aj`(x) = A`j(x) and

<
d∑
j=1

d∑
`=1

Aj`(x)ξkξj ≥ c|ξ|2 for all ξ ∈ Cd.

Theorem 3.2 (Local elliptic regularity near a Dirichlet or Neumann boundary).
Let Ω be a Lipschitz domain and let G1, G2 be open subsets of Rd with G1 b G2 and
G1 ∩ ∂Ω 6= ∅. Let

(3.1) Ωj := Gj ∩ Ω, j = 1, 2, and Γ2 := G2 ∩ ∂Ω.

Suppose that A satisfies Assumption 3.1, A, c ∈ Cm,1(Ω2), Γ2 ∈ Cm+1,1, u ∈ H1(Ω2),
and Lu ∈ Hm(Ω2) for some m ∈ N, and either u = 0 or ∂n,Au = 0 on Γ2. Then

(3.2) ‖u‖Hm+2
k (Ω1) ≤ C

(
‖u‖H1

k(Ω2) + ‖Lu‖Hm
k (Ω2)

)
.

Proof. In unweighted norms, this follows from, e.g., [34, Theorems 4.7 and 4.16];
the proof in the weighted norms (4.11) is very similar.

Theorem 3.3 (Local elliptic regularity for the transmission problem). Let Ωin

be a Lipschitz domain, and let Ωout := Rd \ Ωin. Let G1, G2 be open subsets of Rd
with G1 b G2 and G1 ∩ ∂Ωin 6= ∅. Let

Ωin/out,j := Gj ∩ Ωin/out, j = 1, 2, and Γ2 := G2 ∩ ∂Ωin.

Suppose that A satisfies Assumption 3.1, A|Ωin/out,2
, c|Ωin/out,2

∈ Cm,1(Ωin/out,2), Γ2 ∈
Cm+1,1, uin/out ∈ H1(Ωin/out), and Lu ∈ Hm(Ωin/out,2) for some m ∈ N. Suppose
further that

uin = uout and ∂n,Auin = β∂n,Auout on Γ2

for some β > 0. Then

‖uin‖Hm+2
k (Ωin,1) + ‖uout‖Hm+2

k (Ωout,1)

≤ C
(
‖uin‖H1

k(Ωin,2) + ‖uout‖H1
k(Ωout,2) + ‖Luin‖Hm

k (Ωin,2) + ‖Luout‖Hm
k (Ωout,2)

)
.

(3.3)
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Proof. In unweighted norms, this is, e.g., [10, Theorem 5.2.1(i)] (and [34, The-
orems 4.7 and 4.16] when β = 1); the proof in the weighted norms (4.11) is very
similar.

Theorem 3.4 (Local elliptic regularity for the impedance problem). Let Ω be a
Lipschitz domain and let G1, G2 be open subsets of Rd with G1 b G2 and G1∩∂Ω 6= ∅.
Let Ωj and Γ2 be defined by (3.1). Suppose that, for some m ∈ N, Γ2 ∈ Cm+1,1,
u ∈ H1(Ω2), and ∆u ∈ Hm(Ω2), and (k−1∂n − i)u = 0 on Γ2. Then

(3.4) ‖u‖Hm+2
k (Ω1) ≤ C

(
‖u‖H1

k(Ω2) +
∥∥k−2∆u

∥∥
Hm

k (Ω2)

)
.

Proof. When m = 0, the result can be obtained from [7, Lemma 4.1] by multiply-
ing by k−2 to switch to weighted norms, and using that the trace operator has norm
bounded by Ck1/2 from H1

k to L2 (which can be obtained from, e.g., [39, Theorem
5.6.4] since the weighted norms there are, up to a constant, the weighted norms (1.5)).

The proof that (3.4) follow for m > 0 is then standard and can be found e.g.
in [14, §6.3.2, Theorem 5]. We repeat it here in the context of impedance boundary
conditions for completeness.

We now prove that if the bound holds for m = q, then it holds for m = q + 1
(assuming the appropriate regularity of the coefficients and the domain). Without
loss of generality, we can change coordinates and work with U := B(0, s) ∩ {xd > 0}
and V := B(0, t) ∩ {xd > 0} for some 0 < t < s. In these coordinates

Lu := (−k−2aij∂xi
∂xj
−k−2(bi∂xi

−c))u = f, (−k−1∂xd
−i)u = 0 on {xd = 0}∩U.

Suppose that for some q ≥ 0, for any 0 < t < s,

(3.5) ‖u‖Hq+2
k (V ) ≤ Ct

(
‖u‖L2(U) + ‖f‖Hq

k(U)

)
.

Now suppose that f ∈ Hq+1
k (U) and a, b, c ∈ Cq+1,1(U), and let W := B(0, r)∩{xd >

0} with t < r < s. By (3.5),

(3.6) ‖u‖Hq+2
k (W ) ≤ C

(
‖u‖L2(U) + ‖f‖Hq

k(U)

)
,

and, by interior elliptic regularity, u ∈ Hq+3
loc (U).

The next step is to bound tangential derivatives of u: let |α| = q+ 1 with αd = 0
(so that ∂αx is a tangential derivative). Let

f̃ := L
(
k−|α|∂αx u

)
so that f̃ = [L, k−|α|∂αx ]u+ k−|α|∂αx f

(where [A,B] := AB − BA) and, by (3.6) and the fact that the coefficients of L are
Cq+1,1(U),

(3.7) ‖f̃‖L2(W ) ≤ C
(
‖u‖Hq+2(W ) + ‖f‖Hq+1

k (W )

)
≤ C

(
‖u‖L2(U) + ‖f‖Hq+1

k (U)

)
.

Furthermore

(−k−1∂xd
− i)k−|α|∂αx u|xd=0 = k−|α|∂αx

[
(−k−1∂xd

− iu)|xd=0

]
= 0,

so that, by the analogue of (3.5) with q = 0 and U replaced by W , (3.6), and (3.7),∥∥k−|α|∂αx u∥∥H2
k(V )

≤ C
(∥∥k−|α|∂αx u∥∥L2(W )

+
∥∥f̃∥∥

L2(W )

)
≤ C

(
‖u‖L2(U) + ‖f‖Hq+1

k (U)

)
.
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Therefore, by the definition of α,∥∥k−|β|∂βxu∥∥L2(V )
≤ C

(
‖u‖L2(U) + ‖f‖Hq+1

k (U)

)
for all |β| = q + 3 with βd ∈ {0, 1, 2}.(3.8)

To prove that the bound (3.5) holds with q replaced by q + 1, i.e.,

‖u‖Hq+3
k (V ) ≤ C

(
‖u‖L2(U) + ‖f‖Hq+1

k (U)

)
,

it is sufficient to prove that∥∥k−|β|∂βxu∥∥L2(V )
≤ C

(
‖u‖L2(U) + ‖f‖Hq+1

k (U)

)
for all |β| = q + 3 with βd ∈ {0, . . . , q + 3}.

We therefore now prove by induction that if

(3.9)
∥∥k−|β|∂βxu∥∥L2(V )

≤ C
(
‖u‖L2(U) + ‖f‖Hq+1

k (U)

)
for any |β| = q + 3 with βd ∈ {0, . . . , j} for some j ∈ {2, . . . , q + 2}, then (3.9) holds
for |β| = q + 3 with βd = j + 1. Combined with (3.8), this completes the proof.

We therefore assume that |β| = q + 3 with βd = j + 1. Then, putting β = γ + δ
with δ = (0, . . . , 0, 2) and |γ| = q + 1, and using that u ∈ Hq+3

loc (U), we have

(3.10) k−|γ|∂γLu = addk−|β|∂βu+Bu in V,

where
Bu =

∑
|α|≤q+3, αd≤j

aαk
−|α|∂αx u.

By the induction hypothesis (3.9),

‖Bu‖L2(V ) ≤ C
(
‖u‖L2(U) + ‖f‖Hq+1

k (U)

)
.

Dividing (3.10) by add, taking the L2(V ) norm, and using that 1/add is bounded, we
have

‖k−|β|∂βu‖L2(V ) ≤ C
(
‖u‖L2(U) + ‖f‖Hq+1

k (U)

)
;

i.e., we have proved that (3.9) holds for |β| = q + 3 with βd = j + 1, and the proof is
complete.

4. Theorem 1.5 applied to the PML problem.

4.1. Definition of the PML problem.
Obstacles and coefficients for Dirichlet/Neumann/penetrable obstacle problem.

Let Ωp,Ω− ⊂ BR0
:= {x : |x| < R0} ⊂ Rd, d = 2, 3, be bounded open sets with

Lipschitz boundaries, Γp and Γ−, respectively, such that Γp ∩ Γ− = ∅, and Rd\Ω− is

connected. Let Ωout := Rd\Ω− ∪ Ωp and Ωin := (Rd\Ω−) ∩ Ωp.
Let Aout ∈ C0,1(Ωout,Rd×d) and Ain ∈ C0,1(Ωin,Rd×d) be symmetric positive

definite, let cout ∈ L∞(Ωout;R), cin ∈ L∞(Ωin;R) be strictly positive, and let Aout

and cout be such that there exists Rscat > R0 > 0 such that

Ω− ∪ supp(I −Aout) ∪ supp(1− cout) b BRscat
.
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The obstacle Ω− is the impenetrable obstacle, on which we impose either a zero
Dirichlet or a zero Neumann condition, and the obstacle Ωin is the penetrable obstacle,
across whose boundary we impose transmission conditions.

For simplicity, we do not cover the case when Ω− is disconnected, with Dirichlet
boundary conditions on some connected components and Neumann boundary con-
ditions on others, but the main results hold for this problem too (at the cost of
introducing more notation).

Definition of the radial PML. Let Rtr > RPML,− > Rscat and let Ωtr ⊂ Rd be a
bounded Lipschitz open set with BRtr

⊂ Ωtr ⊂ BCRtr
for some C > 0 (i.e., Ωtr has

characteristic length scale Rtr). Let Ω := Ωtr ∩Ω+ and Γtr := ∂Ωtr. For 0 ≤ θ < π/2,
let the PML scaling function fθ ∈ C3([0,∞);R) be defined by fθ(r) := f(r) tan θ for
some f satisfying
(4.1){
f(r) = 0

}
=
{
f ′(r) = 0

}
=
{
r ≤ RPML,−

}
, f ′(r) ≥ 0, f(r) ≡ r on r ≥ RPML,+;

i.e., the scaling “turns on” at r = RPML,−, and is linear when r ≥ RPML,+. We
emphasize that Rtr can be < RPML,+, i.e., we allow truncation before linear scaling
is reached. Indeed, RPML,+ > RPML,− can be arbitrarily large and therefore, given

any bounded interval [0, R] and any function f̃ ∈ C3([0, R]) satisfying{
f̃(r) = 0

}
=
{
f̃ ′(r) = 0

}
=
{
r ≤ RPML,−

}
, f̃ ′(r) ≥ 0,

our results hold for an f with f |[0,R] = f̃ . Given fθ(r), let

(4.2) α(r) := 1 + if ′θ(r) and β(r) := 1 + ifθ(r)/r.

and let
(4.3)

A :=


Ain in Ωin,

Aout in Ωout ∩BRPML,− ,

HDHT in (BRPML,−)c
and

1

c2
:=


c−2
in in Ωin,

c−2
out in Ωout ∩BRPML,− ,

α(r)β(r)d−1 in (BRPML,−)c,

where, in polar coordinates,
(4.4)

D =

(
β(r)α(r)−1 0

0 α(r)β(r)−1

)
and H =

(
cos θ − sin θ
sin θ cos θ

)
for d = 2,

and
(4.5)

D =

 β(r)2α(r)−1 0 0
0 α(r) 0
0 0 α(r)

 and H =

 sin θ cosφ cos θ cosφ − sinφ
sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0


for d = 3 (observe that then Aout = I and c−2

out = 1 when r = RPML,− and thus A and
c−2 are continuous at r = RPML,−).

We highlight that, in other papers on PMLs, the scaled variable, which in our
case is r+ifθ(r), is often written as r(1+iσ̃(r)) with σ̃(r) = σ0 for r sufficiently large;
see, e.g., [24, §4], [4, §2]. Therefore, to convert from our notation, set σ̃(r) = fθ(r)/r
and σ0 = tan θ.

Let

(4.6) H := H1
0 (Ω) or {v ∈ H1(Ω) : v = 0 on Γtr},
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with the former corresponding to zero Dirichlet boundary conditions on Ω− and the
latter corresponding to zero Neumann boundary conditions on Ω−.

Definition 4.1 (A variational formulation of the PML problem). Given G ∈
(H)∗ and β > 0,

(4.7) find u ∈ H such that a(u, v) = G(v) for all v ∈ H,

where

(4.8) a(u, v) :=

(∫
Ω∩Ωout

+
1

β

∫
Ω∩Ωin

)(
k−2(A∇u) · ∇v − c−2uv

)
.

When

(4.9) G(v) :=

(∫
BRPML,−∩Ωout

+
1

β

∫
Ω∩Ωin

)
c−2gv

for g ∈ L2(Ω+) with supp g ⊂ BRPML,− , the variational problem (4.7) is a weak form
of the problem

(4.10)

k−2c2out∇ · (Aout∇uout) + uout = −g in Ωout,

k−2c2in∇ · (Ain∇uin) + uin = −g in Ωin,

uin = uout and ∂n,Ain
uin = β∂n,Aout

uout on ∂Ωin,

either uin = 0 or ∂n,Ain
uin = 0 on ∂Ω−,

and with the Sommerfeld radiation condition approximated by a radial PML ((4.7) is
obtained by multiplying the PDEs above by c−2

in/outαβ
d−1 and integrating by parts).

Using the fact that the solution of the true scattering problem exists and is unique
with Aout, Ain, cout, cin,Ω−, and Ωin described above, the solution of (4.7) exists and
is unique (i) for fixed k and sufficiently large Rtr − R1 by [30, Theorem 2.1], [31,
Theorem A], [24, Theorem 5.8] and (ii) for fixed Rtr > R1 and sufficiently large k by
[18, Theorem 1.5].

For the particular data G (4.9), it is well-known that, for fixed k, the error
‖u−v‖H1

k(BRPML,−\Ω) decays exponentially inRtr−RPML,− and tan θ; see [30, Theorem

2.1], [31, Theorem A], [24, Theorem 5.8]. It was recently proved in [18, Theorems 1.2
and 1.5] that the error ‖u− v‖H1

k(BRPML,−\Ω) also decreases exponentially in k.

4.2. Showing that the PML problem fits in the abstract framework
used in Theorem 1.5. Recall that H is defined by (4.6) and let H0 = L2(Ω). We
work with the norm ‖ · ‖H1

k(Ω) (1.5) on H, and use below the higher-order norms

(4.11) ‖v‖2Hm
k (Ω) :=

∑
0≤|α|≤m

k−2|α| ‖∂αv‖2L2(Ω) .

The rationale for using these norms is that if a function v oscillates with frequency k,
then |(k−1∂)αv| ∼ |v| for all α; this is true, e.g., if v(x) = exp(ikx · a). We highlight
that many papers on the FEM applied to the Helmholtz equation use the weighted H1

norm |||v|||2 := ‖∇v‖2L2(Ω) +k2 ‖v‖2L2(Ω); we work with (1.5) instead, because weighting

the jth derivative with k−j is easier to keep track of than weighting the jth derivative
with k−j+1.

We first check that the sesquilinear form a (4.8) is continuous and satisfies a
G̊arding inequality, with constants uniform for ε ≤ θ ≤ π/2− ε.
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Lemma 4.2 (Bounds on the coefficients A and c). Given A and c as in (4.3), a
scaling function f(r) satisfying (4.1), and ε > 0 there exist A+ and c− such that, for
all ε ≤ θ ≤ π/2− ε, x ∈ Ω, and ξ, ζ ∈ Cd,

|(A(x)ξ, ζ)2| ≤ A+‖ξ‖2‖ζ‖2 and
1

|c(x)|2
≥ 1

c2−
.

Proof. This follows from the definitions of A and c in (4.3), the definitions of α
and β in (4.2), and the fact that fθ(r) := f(r) tan θ.

Continuity of a (1.6) with Ccont := max{A+, c
−2
− } then follows from the Cauchy-

Schwarz inequality and the definition of ‖ · ‖H1
k(Ω) (1.5).

Assumption 4.3. When d = 3, fθ(r)/r is nondecreasing.

Assumption 4.3 is standard in the literature; e.g., in the alternative notation
described above it is that σ̃ is non-decreasing – see [4, §2].

Remark 4.4. As noted above, the variational problem (4.7) is obtained by multi-
plying the PDEs in (4.10) by c−2

in/outαβ
d−1 and integrating by parts (as in [9, §3]). If

one integrates by parts the PDEs directly (as in, e.g., [24, Lemma 4.2 and Equation
4.8]), the resulting sesquilinear form satisfies Assumption 1.2 after multiplication by
eiω, for some suitable ω (see Remark 1.3), without the need for Assumption 4.3.

Lemma 4.5. Suppose that fθ satisfies Assumption 4.3. With A defined by (4.3),
given ε > 0 there exists A− > 0 such that, for all ε ≤ θ ≤ π/2− ε,

<
(
A(x)ξ, ξ

)
2
≥ A−‖ξ‖22 for all ξ ∈ Cd and x ∈ Ω+.

Reference for the proof. See, e.g., [20, Lemma 2.3].

Corollary 4.6. If fθ satisfies Assumption 4.3 then

<a(w,w) ≥ A−‖w‖2H1
k(Ω) −

(
A− + c−2

min

)
‖w‖2L2(Ω) for all w ∈ H.

Let R : L2(Ω) → H be defined by a(Rg, v) = (g, v)L2(Ω) for all v ∈ H; i.e., R
is the solution operator of the PML problem. The definition of a and the facts that
(with the matrices H and D defined by (4.4), (4.5)) H is real and the matrix D is
diagonal (and hence symmetric) imply that a(u, v) = a(v, u) for all u, v ∈ H, and thus
Rg = R∗g. We therefore let

(4.12) Csol := ‖R‖L2(Ω)→H = ‖R∗‖L2(Ω)→H .

We highlight that (i) Csol is bounded by the norm of the solution operator of the true
scattering problem (i.e., with the Sommerfeld radiation condition) by [18, Theorem
1.6], (ii) Csol ∼ k when the problem is nontrapping (with this the slowest-possible
growth in k), and (iii) an advantage of working with the weighted norms (4.11) is that
Csol in fact describes the k-dependence of the Helmholtz solution operator between
Hm
k and Hm+2

k for any m.

Lemma 4.7 (The PML problem satisfies Assumption 1.2). Suppose that, for
some ` ∈ Z+, Aout, Ain, cout, cin ∈ C`−1,1 and fθ ∈ C`,1 on the closures of the domains
on which they are defined, ∂Ω is C`,1, and fθ satisfies Assumption 4.3. Let

(4.13) Zj =
{
v : vout ∈ Hj(Ω ∩ Ωout), vin ∈ Hj(Ωin)

}
∩H
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with norm

(4.14) ‖v‖2Zj
:= ‖vout‖2Hj

k(Ωout∩Ω) + ‖vin‖2Hj
k(Ωin) .

where the “out” and “in” subscripts denote restriction to Ωout∩Ω and Ωin, respectively.
Then a defined by (4.8) satisfies Assumption 1.2 and given ε > 0 and k0 > 0 there

exists C > 0 such the bounds (1.8) and (1.9) hold for all k ≥ k0 and ε ≤ θ ≤ π/2− ε.
Proof. First observe that Assumption 3.1 is satisfied by the definition (4.3) of A.

Since

sup
v∈H, ‖v‖(Zj−2)∗=1

|a(u, v)| = ‖Lu‖Zj−2
,

the bound (1.9) holds by combining Theorem 3.2 (used near Γ− and Γtr) and Theorem
3.3 (used near Γp) and using the fact that, by Green’s identity, for u ∈ H1

0 (Ω) with
Lu ∈ L2(Ω) and ∂n,Ain

uin = β∂n,Aout
uout on ∂Ωin,

‖uin‖H1
k(Ωin) + ‖uout‖H1

k(Ωout)

≤ C
(
‖uin‖L2(Ωin) + ‖uout‖L2(Ωout)

+ ‖Luin‖L2(Ωin) + ‖Luout‖L2(Ωout)

)
(so that the H1

k norms on the right-hand sides of (3.2) and (3.3) can be replaced by
L2 norms). Since the operator associated with the sesquilinear form <a is(

L+ L∗

2

)
u = −k−2∇ ·

(
A+A

2
∇u
)
−
(
c−2 + c−2

2

)
u

and the matrix A is symmetric, this operator also satisfies Assumption 3.1. The
bound (1.8) then holds by a very similar argument.

4.3. Theorem 1.5 applied to the PML problem.

Assumption 4.8. Given p ∈ Z+, (Hh)h>0 are such that the following holds.
There exists C > 0 such that, for all h > 0, 0 ≤ j ≤ m+1 ≤ p+1, and v ∈ H∩H`+1(Ω)
there exists Ih,pv ∈ Hh such that∣∣vout − (Ih,pv)out

∣∣
Hj(Ωout∩Ω)

+
∣∣vin − (Ih,pv)in

∣∣
Hj(Ωin)

≤ Chm+1−j(‖vout‖Hm+1(Ωout∩Ω) + ‖vin‖Hm+1(Ωin)

)
.(4.15)

where the “out” and “in” subscripts denote restriction to Ωout∩Ω and Ωin, respectively.

Assumption 4.8 holds when (Hh)h>0 consists of piecewise degree-p polynomials
on shape-regular simplicial triangulations, indexed by the meshwidth; see, e.g., [8,
Theorem 17.1], [5, Proposition 3.3.17].

Theorem 4.9 (Existence, uniqueness, and error bound in the preasymptotic
regime for the PML problem). Suppose that, for some ` ∈ Z+, Aout, Ain, cout, cin ∈
C`−1,1 and fθ ∈ C`,1 on the closures of the domains where they are defined, ∂Ω is
C`,1, fθ satisfies Assumption 4.3, and β > 0. Let Csol be defined by (4.12), and as-
sume that {Hh}h>0 satisfy Assumption 4.8. Given ε > 0 and p ∈ Z+ with p ≥ `,
there exists k0 > 0 and Cj , j = 1, 2, 3, 4, such that the following is true for all k ≥ k0,
ε ≤ θ ≤ π/2− ε, and Rtr > R1 + ε.

The solution u of the PML problem (4.7) exists and is unique, and if

(4.16) (hk)2`Csol ≤ C1
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then the Galerkin solution uh, exists, is unique, and satisfies

‖u− uh‖H1
k(Ω) ≤ C2

(
1 + hk + (hk)`Csol

)
min

wh∈Hh

‖u− vh‖H1
k(Ω) ,(4.17)

‖u− uh‖L2(Ω) ≤ C3

(
hk + (hk)`Csol

)
min

wh∈Hh

‖u− vh‖H1
k(Ω) .(4.18)

If, in addition, g ∈ Hp−1(Ω) ∩H (with H defined by (4.6)) with

(4.19) ‖g‖Hp−1
k (Ω) ≤ C ‖g‖H∗

for some C > 0, then there exists C4 > 0 such that if h satisfies (4.16) then

(4.20)
‖u− uh‖H1

k(Ω)

‖u‖H1
k(Ω)

≤ C4

(
hk + (hk)`Csol

)
(hk)`.

Theorem 4.9 is most interesting when p = `, i.e., the polynomial degree is the
smallest possible covered by the theorem. In this case, (4.16) becomes the condi-
tion (1.1), and the bounds (4.17), (4.18), and (4.20) become (1.2), (1.3), and (1.4),
respectively.

Proof of Theorem 4.9. By the results in §4.2, a defined by (4.8) satisfies the as-
sumptions of Theorem 1.5. By (4.15), the definition of ‖·‖Zj

(4.14), and the definition
(4.11) of the weighted norms, ‖I − Π‖Zm+1→H ≤ C(hk)m. This bound along with
Theorem 1.6 and (4.12) imply that

η(Hh) ≤ C
( b`/2c−1∑

j=0

(hk)2j+1 + (hk)`Csol

)
.

If hk ≤ C, then η(Hh) ≤ C(hk + (hk)`Csol); the result then follows from Theorem
1.5 and the fact that if the condition (4.16) holds, then hk ≤ C (since Csol ≥ Ck).

5. Theorem 1.5 applied to the impedance problem.

5.1. Definition of the impedance problem. Let Aout, Ain, cout, cin,Ω−,Ωin,
and Ωtr be as in §4.1. Let

A :=

{
Ain in Ωin,

Aout in Ωout ∩ Ω,
and

1

c2
:=

{
c−2
in in Ωin,

c−2
out in Ωout ∩ Ω.

Let

(5.1) H := {v ∈ H1(Ω) : v = 0 on ∂Ω−} or H1(Ω),

with the former corresponding to zero Dirichlet boundary conditions on Ω− and the
latter corresponding to zero Neumann boundary conditions on Ω−.

Definition 5.1 (Variational formulation of the impedance problem). Given G ∈
(H)∗ and β > 0,

(5.2) find u ∈ H such that a(u, v) = G(v) for all v ∈ H,

where

(5.3) a(u, v) :=

(∫
Ω∩Ωout

+
1

β

∫
Ω∩Ωin

)(
k−2(A∇u) · ∇v − c−2uv

)
− ik−1

∫
Γtr

uv.

The solution of this variational problem exists and is unique by, e.g., [22, Theorem
2.4].
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5.2. Showing that the impedance problem fits in the abstract frame-
work used in Theorem 1.5. The proofs that the sesquilinear form a is continuous
and satisfies a G̊arding inequality are very similar to those for the PML problem in
§4.2 (in fact, they are simpler because there is no PML scaling parameter in which
the bounds need to be uniform).

Lemma 5.2 (The impedance problem satisfies Assumption 1.2). Suppose that,
for some ` ∈ Z+, Aout, Ain, cout, cin ∈ C`−1,1 on the closures of the domains on which
they are defined, and ∂Ω is C`,1. With Zj and its norm defined by (4.13) and (4.14),
a defined by (5.3) satisfies Assumption 1.2 and given k0 > 0 there exists C > 0 such
the bounds (1.8) and (1.9) hold for all k ≥ k0.

Proof. This is very similar to the proof of Lemma 4.7. The regularity assumption
(1.8) follows by combining Theorem 3.2 used near ∂Ω−, Theorem 3.3 used near ∂Ωin,
and Theorem 3.4 used near Γtr. The regularity assumption (1.9) follows by combining
Theorem 3.2 used near ∂Ω−, Theorem 3.3 used near ∂Ωin, and now Theorem 3.2
(with Neumann boundary condition) used near Γtr. Indeed, near Γtr, the operator
associated with (<a) is −k−2∆−1 with Neumann boundary conditions (coming from
Aout = I and cout = 1 near Γtr and the fact that no boundary condition is imposed
on Γtr in H (5.1)).

5.3. Theorem 1.5 applied to the impedance problem.

Theorem 5.3 (Existence, uniqueness, and error bound in the preasymp-
totic regime for the impedance problem). Suppose that, for some ` ∈ Z+,
Aout, Ain, cout, cin ∈ C`−1,1 on the closures of the domains where they are defined, ∂Ω
is C`,1, and β > 0. Let Csol be defined by (4.12), and assume that {Hh}h>0 satisfy
Assumption 4.8. Given p ∈ Z+ with p ≥ `, there exists k0 > 0 and Cj , j = 1, 2, 3, 4,
such that the following is true for all k ≥ k0.

The solution u of the impedance problem (5.2) exists and is unique, and if (4.16)
holds then the Galerkin solution uh, exists, is unique, and satisfies the bounds (4.17)
and (4.18). If, in addition, g ∈ Hp−1(Ω) ∩ H (with H defined by (5.1)) with (4.19)
for some C > 0, then there exists C4 > 0 such that if h satisfies (4.16) then the bound
(4.20) holds.

Given Lemma 5.2, the proof of Theorem 5.3 is very similar to the proof of Theorem
4.9.

Remark 5.4 (Imposing the exact Dirichlet-to-Neumann map on Γtr). With the
exact Dirichlet-to-Neumann map imposed on Γtr, the Helmholtz sesquilinear form is
continuous and satisfies a G̊arding inequality (see, e.g., [37, Lemma 3.3 and Corollary
3.4]). To apply Theorem 1.5 to this problem, one therefore only needs to check the
elliptic-regularity assumptions of Assumption 1.2. Using Theorems 3.2 and 3.3, this
boils down to knowing the analogue of Theorem 3.4 with the impedance boundary
condition replaced by k−1∂nu = DtNu (for (1.8)) and also k−1∂nu = (DtN+DtN∗)u/2
(for (1.9)). When m = 0 (i.e., the lowest-order regularity shift covered in Theorem
3.4), the first of these regularity results is given by [28, Theorem 6.1]. To prove this
result for m > 1 one would need to make an argument similar to that in the proof
of Theorem 3.4 except that, because DtN and DtN∗ do not commute with tangential
derivatives, one would need to obtain two additional estimates: 1) estimates on u
with nontrivial boundary data, e.g., when k−1∂nu − (DtN)u = g ∈ Hs

k and 2) trace
estimates for u that are needed to bound, e.g., [T,DtN]u where T is a vector field
tangent to the boundary. The same strategy could also be used to handle higher-order
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impedance boundary conditions.
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[27] F. Ihlenburg and I. Babuška, Dispersion analysis and error estimation of Galerkin finite
element methods for the Helmholtz equation, Int. J. Numer. Meth. Eng., 38, Issue 22 (1995),
pp. 3745–3774.

[28] D. Lafontaine, E. A. Spence, and J. Wunsch, A sharp relative-error bound for the Helmholtz
h-FEM at high frequency, Numerische Mathematik, 150 (2022), pp. 137–178.

[29] D. Lafontaine, E. A. Spence, and J. Wunsch, Wavenumber-explicit convergence of the hp-
FEM for the full-space heterogeneous Helmholtz equation with smooth coefficients, Comp.
Math. Appl., 113 (2022), pp. 59–69.

[30] M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML
equations, Computing, 60 (1998), pp. 229–241.

[31] M. Lassas and E. Somersalo, Analysis of the PML equations in general convex geome-
try, Proceedings of the Royal Society of Edinburgh Section A: Mathematics, 131 (2001),
pp. 1183–1207.

[32] Y. Li and H. Wu, FEM and CIP-FEM for Helmholtz Equation with High Wave Number and
Perfectly Matched Layer Truncation, SIAM J. Numer. Anal., 57 (2019), pp. 96–126.

[33] C. H. Makridakis, F. Ihlenburg, and I. Babuška, Analysis and finite element methods for
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