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Abstract. Given an Euclidean domain with very mild regularity properties, we prove that there
exist arbitrarily small perturbations of the Dirichlet Laplacian of the form −(I + Sε)∆ with
‖Sε‖L2→L2 ≤ ε whose high energy eigenfunctions are quantum unique ergodic (QUE). Moreover,
if we impose stronger regularity on the domain, the same result holds with ‖Sε‖L2→Hγ ≤ ε for
γ > 0 depending on the domain. The method of proof is entirely probabilistic. A local Weyl law
for domains with rough boundaries is obtained as a byproduct of the proof.

1. Introduction

In quantum mechanics, the Laplace operator on a manifold describes the behavior of a free
particle confined to the manifold. The eigenvalues of the Laplacian (under suitable boundary
conditions) are the possible values of the energy of the particle and the eigenfunctions are the
energy eigenstates. The square of an energy eigenstate gives the probability density function for
the location of a particle with the given energy.

The subject of quantum chaos connects the properties of high energy eigenstates with the chaotic
properties of classical particles. The fundamental result is the quantum ergodicity theorem due to
Šnirel′man (1974), Colin de Verdière (1985), and Zelditch (1987) on manifolds without boundary
and generalized to manifolds with boundary by Gérard and Leichtnam (1993) and Zelditch and
Zworski (1993). The theorem states that if the classical dynamics within a manifold are ergodic,
then the microlocal lifts of almost all high energy eigenfunctions (in any orthonormal basis of
eigenfunctions) equidistribute in phase space. This phenomenon is known as quantum ergodicity.

The question of whether all (rather than almost all) high energy eigenfunctions equidistribute
in phase space has remained open. This property was christened quantum unique ergodicity by
Rudnick and Sarnak (1994), who conjectured that the Laplacian on any compact negatively curved
manifold is quantum unique ergodic (QUE). The conjecture was motivated by the fact that classical
particles on compact negatively curved manifolds are known to be strongly chaotic. Although the
Rudnick–Sarnak conjecture is still open, it is now known that quantum unique ergodicity is not
always valid, even if classical particles are chaotic; see Faure and Nonnenmacher (2004), Faure,
Nonnenmacher and De Bièvre (2003) and Hassell (2010). QUE has been verified in only a hand-
ful of cases where exact computations are possible; in particular for the Hecke orthonormal basis
by Lindenstrauss (2006), Silberman and Venkatesh (2007) and Holowinsky and Soundararajan
(2010). Anantharaman (2008) made partial progress towards the general Rudnick–Sarnak conjec-
ture by showing that high energy Laplace eigenfunctions on compact negatively curved manifolds
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have positive entropy. For a more comprehensive survey of results on quantum unique ergodicity,
see Sarnak (2011). For more on quantum ergodicity and semiclassical chaos, see Zelditch (2010).

In spite of the availability of counterexamples to QUE, it is believed that QUE is generically valid
for domains with ergodic billiard ball flow (see Sarnak (2011)). In other words, QUE is expected
to be true for almost all ergodic domains. There are at present no results like this.

The main result of this paper (Theorem 2.3) says that for any Euclidean domain satisfying some
very mild regularity conditions, there exists Sε : L2 → L2 with ‖Sε‖L2→L2 ≤ ε such that the pertur-
bation of the Laplacian (with Dirichlet boundary condition) −(I + Sε)∆ has QUE eigenfunctions.
In other words, Dirichlet Laplacians lie in the closure (in the H2 → L2 norm topology) of the set of
operators with QUE eigenfunctions. If we impose more regularity on the domain, then we can take
‖Sε‖L2→Hγ ≤ ε for some γ > 0. Thus, we can take this closure in the H2 → Hγ norm topology.
Furthermore, under a certain dynamical condition, we can take γ = 1. The required operator is
constructed using a probabilistic method (described briefly in Section 2.6) and it is then shown that
this random operator satisfies the required property with probability one. Notice that, although
we show that Laplacians are close in the operator norm to QUE operators, this is very far from
showing that one can perturb the domain to obtain a QUE Laplacian. Indeed, one should probably
not expect such a result to hold for arbitrary domains.

Our result is closely related to those in Zelditch (1992, 1996, 2014), Maples (2013) and Chang
(2015) where it is shown that certain unitary randomizations of eigenfunctions are quantum ergodic.
In effect, this shows that −Uk∆U∗k is quantum ergodic for Uk a random unitary operator. See
Section 2.5 for a more detailed comparison of the results.

2. Results

2.1. Definitions. Take any d ≥ 2 and let Ω be a Borel subset of Rd. Let Bt be a standard d-
dimensional Brownian motion, started at some point x ∈ Rd. The exit time of Bt from Ω is defined
as

τΩ := inf{t > 0 : Bt 6∈ Ω} . (2.1)

In this paper we will say that Ω is a regular domain if it is nonempty, bounded, open, connected,
and satisfies the following boundary regularity conditions:

(i) Vol(∂Ω) = 0, where ∂Ω is the boundary of Ω and Vol denotes Lebesgue measure.
(ii) For any x ∈ ∂Ω, Px(τΩ = 0) = 1, where Px denotes the law of Brownian motion started at x

and τΩ is the exit time from Ω.

Condition (ii) may look strange to someone who does not have a background in probabilistic
potential theory, but it is actually the well-known sharp condition for the existence of solutions to
Dirichlet problems on Ω (see page 225 in Mörters and Peres (2010)). It is not hard to see that if the
boundary of Ω is smooth enough, then Ω is a regular domain (see page 224 in Mörters and Peres
(2010)). Henceforth, we will assume that Ω is a regular domain and Ω will denote the closure of Ω.

Given any measurable function f : Ω → C, we denote by ‖f‖ the L2(Ω) norm of f . For such f
there is a natural probability measure associated with f that has density |f(x)|2 with respect to
Lebesgue measure on Ω. We will denote this measure as νf . Note that in the definition of ‖f‖ it

does not matter whether we integrate over Ω or Ω since Vol(∂Ω) = 0. We will denote the L2 inner
product of two functions f and g by 〈f, g〉.

Recall that a sequence of probability measures {µn}n≥1 on Ω is said to converge weakly to a
probability measure µ if

lim
n→∞

∫
Ω
fdµn =

∫
Ω
fdµ
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for every bounded continuous function f : Ω→ R. A probability measure that will be of particular
importance in this paper is the uniform probability measure on Ω. This is simply the restriction of
Lebesgue measure to Ω, normalized to have total mass one.

For every bounded sequence of functions {fn} ∈ L2(Rd), we can also associate a family of
measures in phase space, S∗Rd (the cosphere bundle of Rd), called defect measures, defined as
follows. Recall the notation Ψm(Rd) for the pseudodifferential operators of order m on Rd and Smphg

for the associated polyhomgeneous symbol classes (see for example Hörmander (2007)). Let

σ : Ψm → Smphg/S
m−1
phg

be the symbol map from Ψm(Rd) to the set of functions homogeneous in ξ of degree m. Let
χ ∈ C∞c (Rd) have χ ≡ 1 in a neighborhood of 0. For a ∈ C∞c (S∗Rd), let

ã(x, ξ) = a(x, ξ/|ξ|)(1− χ(ξ)) .

Define the distribution µn ∈ D′(S∗Rd) by

µn(a) = 〈ã(x,D)fn, fn〉
where 〈·, ·〉 denotes the inner product in L2(Rd) and D is the gradient operator. Not that the L2

boundedness of ã(x,D) implies that for every subsequence of {µn}n≥1 there is a further subsequence
that converges in the D′(S∗Rd) topology. Moreover, it can be shown that every limit point µ of
{µn}n≥1 in the D′(S∗Rd) topology is a positive radon measure, with the property that there exists
a subsequence {fnk}k≥1 so that for all A ∈ Ψ(Rd) with symbol compactly supported in x,

〈Afnk , fnk〉 →
∫
S∗Rd

σ(A)dµ ,

where σ(A) is the principal symbol of A. (See for example Burq (1997) or Chapter 5 of Zworski
(2012).) The set of such limit points µ is denoted by M({fn}n≥1) and is called the set of defect
measures associated to the family {fn}n≥1. We will writeM(fn) instead ofM({fn}n≥1) to simplify
notation. Note that while µn depends on the exact quantization procedure used to define a(x,D)
and the function χ, the set M(fn) is independent of such choices.

If H is a positive linear operator from a subspace of L2(Ω) into L2(Ω), we will say that a function
f belonging to the domain of H is an eigenfunction of H with eigenvalue λ if f 6= 0 and Hf = λf .
We will say that an eigenfunction f is normalized if ‖f‖ = 1.

Definition 2.1. Let H be a linear operator from some subspace of L2(Ω) into L2(Ω). We say that
H has QUE eigenfunctions if for any sequence normalized eigenfunctions {fn}n≥1 of H,

M(1Ωfn) =

{
1

Vol(Ω)
1Ωdxdσ(ξ)

}
(2.2)

where σ is the normalized surface measure on Sd−1.

In particular, notice that if (2.2) holds then for all A ∈ Ψ0(Rd),〈
A1Ωfn, 1Ωfn

〉
→ 1

Vol(Ω)

∫
S∗Rd

σ(A)1Ωdxdσ(ξ)

and hence that νfn converges weakly as a measure to the uniform probability distribution on Ω.
With this in mind, we define the weaker notion of equidistribution as follows.

Definition 2.2. LetH be a linear operator from some subspace of L2(Ω) into L2(Ω). We say thatH
has uniquely equidistributed eigenfunctions if for {fn}n≥1 any sequence normalized eigenfunctions
of H, νfn converges weakly to the uniform probability distribution on Ω.
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2.2. The main result. Let −∆ be the Dirichlet Laplacian on Ω with domain F∆ (defined in
Section 3.3). The following theorem is the main result of this paper.

Theorem 2.3. Let Ω be a regular domain. Then for any ε > 0, there exists a linear operator
Sε : L2(Ω)→ L2(Ω) such that:

(i) ‖Sε‖L2→L2 ≤ ε.
(ii) −(I + Sε)∆ is a positive operator on F∆.

(iii) There is a complete orthonormal basis of L2(Ω) consisting of a sequence of eigenfunctions
of −(I + Sε)∆ that belong to F∆, and the corresponding eigenvalues can be ordered as
0 < λ1 ≤ λ2 ≤ · · · → ∞.

(iv) −(I + Sε)∆ has QUE eigenfunctions in the sense of Definition 2.2.

If Ω has smooth boundary, then for all γ < 1, there exist such an Sε : L2(Ω) → Hγ(Ω) with
‖Sε‖L2→Hγ ≤ ε. Moreover, if Ω has smooth boundary and the set of periodic billiards trajectories
has measure zero (see Section 3.4), then this holds for γ ≤ 1.

It would be interesting to see if a different version of this theorem can be proved, where instead
of perturbing the Laplacian, it is the domain Ω that is perturbed. Alternatively, one can try to
perturb the Laplacian by some explicit kernel rather than saying that ‘there exists Sε’. Yet another
possible improvement would be to show that a generic perturbation, rather than a specific one,
results in an operator with QUE eigenfunctions. Indeed, the proof of Theorem 2.3 gets quite close
to this goal.

2.3. Additional results. The techniques of this paper yield the following version of the local Weyl
law for regular domains.

Theorem 2.4. Suppose that Ω ⊂ Rd is a regular domain, where regularity is defined at the beginning
of this section. Let {(uj , µj)}j≥1 be a complete orthonormal basis of eigenfunctions of the Dirichlet

Laplacian on Ω. Then for A ∈ Ψ(Rd) with σ(A) supported in a compact subset of Ω and any E > 1,∑
µj∈[µ,µE]

〈
A1Ωuj , 1Ωuj

〉
=

µd

(2π)d

∫∫
1≤|ξ|≤E

σ(A)1Ωdxdξ + o(µd).

In order to state the next theorem, we need the following definition.

Definition 2.5. Let C0(S∗Ω) be the set of continuous functions on S∗Rd vanishing on (Rd \Ω)×
Sd−1. Let α : R+ → R+ be nonincreasing. Let {(uj , µj)}j≥1 be a complete orthonormal basis of

eigenfunctions of the Dirichlet Laplacian on Ω. Suppose that there exists A ⊂ Ψ(Rd) with

σ(A) := {σ(A)|S∗Rd : A ∈ A}
dense in C0(S∗Ω), such that for each A ∈ A ⊂ Ψ(Rd),∑

µj∈[µ,µ(1+α(µ))]

〈
A1Ωuj , 1Ωuj

〉
=

µd

(2π)d

∫∫
1≤|ξ|≤1+α(µ)

σ(A)1Ωdxdξ + o(α(µ)µd)

where σ(A) is the principal symbol of A. In this circumstance, we will say that the domain Ω is
average quantum ergodic (AQE) at scale α.

Theorem 2.4 implies that regular domains Ω are AQE at scale E for any E > 0. In Section 3.1, we
recall Weyl laws holding on smoother domains which imply that domains with smoother boundaries
are AQE at scale α(µ) = o(1). For γ ∈ [0, 2], let Fγ∆ denote the complex interpolation space
(L2(Ω),F∆)γ/2. Then the following theorem implies Theorem 2.3.
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Theorem 2.6. Suppose that Ω is a regular domain that is AQE at scale α(µ) = O(µ−γ) for some
2 ≥ γ ≥ 0. Then for any ε > 0, there exists a linear operator Sε : L2(Ω)→ Fγ∆ such that:

(i) ‖Sε‖L2→Fγ∆
≤ ε.

(ii) −(I + Sε)∆ is a positive operator on F∆.
(iii) There is a complete orthonormal basis of L2(Ω) consisting of a sequence of eigenfunctions

of −(I + Sε)∆ that belong to F∆, and the corresponding eigenvalues can be ordered as
0 < λ1 ≤ λ2 ≤ · · · → ∞.

(iv) −(I + Sε)∆ has QUE eigenfunctions in the sense of Definition 2.2.

A consequence of Theorem 2.3 is that −∆ has a sequence of ‘almost-eigenfunctions’ that are
equidistributed in the limit. This is the content of the following corollaries.

Corollary 2.7. Let all notation be as in Theorem 2.3. Suppose that Ω is AQE at scale α(µ) =
O(µγ) for some γ ≥ 0. Then there is a sequence of functions {fn}n≥1 belonging to F∆ and a
sequence of positive real numbers {αn}n≥1 such that ‖fn‖ = 1, αn →∞,

(−α−2
n ∆− 1)fn = oL2(α−γn ) ,

and

M(fn) =

{
1

Vol(Ω)
1Ωdxdσ(ξ)

}
.

Moreover, when Ω is AQE at some scale α(µ) = o(1), then there is a full orthonormal basis of
(slightly weaker) quasimodes that are QUE. In particular,

Corollary 2.8. Let all notation be as in Theorem 2.3. Suppose that Ω is AQE at scale α(µ) =
O(µγ) for some γ > 0. Then there is an orthonormal basis of L2, {fn}n≥1, belonging to F∆ and a
sequence of positive real numbers {αn}n≥1 such that ‖fn‖ = 1, αn →∞,

(−α−2
n ∆− 1)fn = OL2(α−γn ) ,

and

M(fn) =

{
1

Vol(Ω)
1Ωdxdσ(ξ)

}
.

2.4. Improvements on closed manifolds. Together with the analog of Theorem 2.3, a stronger
version of the Weyl law valid on compact manifolds without boundary (see Section 3.1), implies
the following corollary.

Corollary 2.9. Let (M, g) be a compact Riemannian manifold without boundary so that the set of
closed geodesics has measure 0. Then there is an orthonormal basis of functions {fn}n≥1 belonging
to C∞(M) and a sequence of positive real numbers {αn}n≥1 such that ‖fn‖ = 1 for each n, αn →∞,

(−α−2
n ∆g − 1)fn = oL2(α−1

n ) ,

and νfn → 1
Vol(M)dx. That is, fn are uniquely equidistributed.

Remark 2.10. Notice that if M has ergodic geodesic flow, then the set of periodic geodesics has mea-
sure zero and hence Corollary 2.9 applies and there is an orthonormal basis of oL2(α−1) quasimodes
that are equidistributed. In particular, being oL2(α−1) quasimodes implies that these functions re-
spect the dynamics at the level of defect measures, that is, defect measures associated to the family
of quasimodes are invariant under the geodesic flow. See Burq (1997) or Chapter 5 of Zworski
(2012) for details.
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2.5. Comparison with previous results. One can view the results here as a companion to those
in Zelditch (1992, 1996, 2014) and Maples (2013). In these papers, the authors work on a compact
manifold M and fix a basis of eigenfunctions of the Laplacian, {un}∞n=1. Their results then show
that for almost every block diagonal unitary operator

U = ⊕∞k=1Uk

(with respect to the product Haar measure) such that for all k dim RanUk <∞ and dim RanUk →
∞ at least polynomially in k, the basis {Uun}∞n=1 has

M(Uun) =

{
1

Vol(M)
dxdσ(ξ)

}
.

The recent work of Chang (2015) adapts the results of Bourgade and Yau (2013) in order to
generalize the measure used in the construction of the Uk (from Haar measure to Wigner meaures)
when M = S2 is the sphere.

One reformulation considers a certain basis of eigenfunctions for the operator −U∆U∗. By taking
Uk close to the identity, we may write

P̃ := −U∆U∗ = −(I + S̃)∆

where S̃ is small in L2 → L2 norm. While P̃ is quantum ergodic, it may not be QUE if there is
high multiplicity in the spectrum of −∆.

One can think of the results in the present paper as replacing the Uk by some nearly unitary
operator. By choosing these operators carefully, and employing the Hanson–Wright inequality in
place of the law of large numbers, we are able to use smaller windows than those in previous work, to
prove that the perturbation is regularizing under various conditions, and to show that the resulting
operator is QUE.

2.6. Outline of the proof and organization of the paper. In order to prove Theorem 2.3,
we first prove the local Weyl law for regular domains (Theorem 2.4). The key ingredient here is to
compare the heat trace for the Dirichlet Laplacian on Ω with the heat trace for the Laplacian on
Rd as in Gérard and Leichtnam (1993). Let k(t, x, y) and kD(t, x, y) be respectively the kernels of
et∆ and et∆D , where ∆ is the free Laplacian and ∆D the Dirichlet Laplacian. The key estimate in
proving Theorem 2.4 is

|∂αx (k(t, x, y)− k∆(t, x, y))| ≤ Cδt−Nαe−cδ/t, d(x, ∂Ω) > δ.

We prove this estimate using the relationship between killed Brownian motion on Ω with the
Dirichlet heat Laplacian together with the fact that Brownian motion has independent increments.
Because of this approach, we are able to complete the proof on domains which are only regular.

The next step is to show that a local Weyl law with a certain window implies the existence
of the desired perturbation Sε. The local Weyl law essentially says that when averaged over a
certain size window, say λ−γ , eigenfunctions are uniquely ergodic. In Section 5 we give a rigorous
meaning to this statement. In particular, we use a modern version of the Hanson–Wright inequality
from Rudelson and Vershynin (2013) (see Hanson and Wright (1971) for the original) to show that
random rotations (with respect to Haar measure) of small groups of eigenfunctions are uniquely
ergodic. Here, the size of the group allowed depends on the remainder in the local Weyl law. Thus,
the smaller the remainder, the smaller the required group of eigenfunctions.

In Section 6, we obtain the perturbation, Sε. In order to do this, we make a two scale partition of
the eigenvalues, λi = µ2

i , of the Laplacian. In particular, we divide the eigenvalues of the Laplacian
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into

Ln,j :=

{
λi | (1 + ε)n

(
1 +

εj

d(1 + ε)nγe

)
≤ λi < (1 + ε)n

(
1 +

ε(j + 1)

d(1 + ε)nγe

)}
,

0 ≤ n, 0 ≤ j ≤ d(1 + ε)nγe − 1

where γ is determined by the remainder in the local Weyl law. For each Ln,j we then make a
random rotation of the corresponding eigenfunctions and reassign the eigenvalues so that each new
eigenvalue, λ′i is simple and has

(1 + ε)n
(

1 +
εj

d(1 + ε)nγe

)
≤ λ′i ≤ (1 + ε)n

(
1 +

ε(j + 1)

d(1 + ε)nγe

)
.

Because of the fact that random rotations of eigenfunctions on the scale λ−γ are QUE, this results
in an operator that is almost surely QUE. The regularizing nature of the perturbation results from
the second scale in Ln,j . In particular, the larger γ, the more regularizing the perturbation.

The paper is organized as follows. Section 3 recalls local Weyl laws valid for more regular domains,
the functional analytic definition of the Dirichlet Laplacian, and some geometric preliminaries.
Section 4 contains the proof of Theorem 2.4. Section 5 presents the results on random rotations
of eigenfunctions. Finally, Section 6 finishes the proof of Theorems 2.3, 2.6 and Corollary 2.7.
Section 7 contains the adjustments necessary to obtain the improvements on manifolds without
boundary.

3. Preliminaries

3.1. Local Weyl Laws. We first recall some now classical local Weyl laws for domains Ω more
regular than those in Theorem 2.4. In this setting, we have the following version of the local Weyl
law (Duistermaat and Guillemin (1975), Safarov and Vassiliev (1997)).

Theorem 3.1. Suppose that Ω has smooth boundary. Let {(uj , µj)}j≥1 be a complete orthonormal

basis of eigenfunctions of the (Dirichlet) Laplacian on Ω. Then for A ∈ Ψ(Rd) with A having kernel
supported in a compact subset of Ω× Ω,∑

µj∈[µ,µE]

〈
A1Ωuj , 1Ωuj

〉
=

µd

(2π)d

∫∫
1≤|ξ|≤E

σ(A)1Ωdxdξ + O(µd−1).

In particular, Ω is AQE at scale µ−γ for any γ < 1. Moreover if the set of closed trajectories for
the billiard flow has measure zero, then∑

µj∈[µ,µ(1+µ−1)]

〈
A1Ωuj , 1Ωuj

〉
=

µd

(2π)d

∫∫
1≤|ξ|≤1+µ−1

σ(A)1Ωdxdξ + o(µd−1).

In particular, Ω is AQE at scale µ−1.

3.2. Manifolds without boundary. Let (M, g) be compact Riemannian manifold without bound-
ary. Then the Laplace operator is given in local coordinates by

−∆g :=
1√
|g|
∂i(
√
|g|gij∂j)

where |g| = det gij and g(∂xi , ∂xj ) = gij with inverse gij . The operator −∆g has domain H2(M)

and is invertible as an operator L2
m(M)→ H2

m(M) where Bm(M) is the set of functions in B with
0 mean. In this setting, we have the following version of the local Weyl law Safarov and Vassiliev
(1997).



8 SOURAV CHATTERJEE AND JEFFREY GALKOWSKI

Theorem 3.2. Let {(φj , µj)}j≥1 be the eigenfunctions of −∆g. Then∑
µj≤µ

|φj(x)|2 =
µd

(2π)d

∫
S∗xM

dξ + O(µd−1)

and if the set of closed geodesics has zero measure, then O(µd−1) can be replaced by o(µd−1).
Moreover, the asymptotics are uniform for x ∈M .

3.3. Functional Analysis. Recall our convention that ‖f‖ denotes the L2 norm of a function f
and 〈f, g〉 denotes the L2 inner product of f and g. We now recall the definition of the Dirichlet
Laplacian as a self adjoint unbounded operator on L2(Ω). Let H1

0 (Ω) denote the closure of C∞c (Ω)
with respect to the H1 norm where for k ∈ N,

‖u‖2Hk(Ω) :=
∑
|α|≤k

‖∂αu‖2.

Here for a multiindex α ∈ Nd,

∂α = ∂α1
x1
∂α2
x2
. . . ∂αdxd , |α| = α1 + α2 + . . . αd.

Then H1
0 (Ω) is a Hilbert space with inner product

(u, v) = 〈u, v〉+ 〈∇u,∇v〉 .
Define the quadratic form Q : H1

0 (Ω)×H1
0 (Ω)→ C by

Q(u, v) = 〈∇u,∇v〉 .
Then Q is a symmetric, densely defined quadratic form and for u, v ∈ H1

0 (Ω),

|Q(u, v)| ≤ C‖u‖H1(Ω)‖v‖H1(Ω), c‖u‖2H1(Ω) ≤ Q(u, u) + C‖u‖2.

Therefore by Theorem VIII.15 of Reed and Simon (1980), Q is defined by a unique self-adjoint
operator −∆ with domain

F∆ := {u ∈ H1
0 : Q(u,w) ≤ Cu‖w‖ for all w ∈ H1

0 (Ω)} .
This operator is called the Dirichlet Laplacian. We recall that:

Lemma 3.3. Suppose that Ω has C2 boundary. Then F∆ = H1
0 (Ω) ∩ H2(Ω) and in particular

(L2,F∆)θ ⊂ H2θ(Ω).

3.4. The billiard flow. Let Ω be a regular domain with smooth boundary. We now define the
billiard flow. Let S∗Rd be the unit sphere bundle of Rd. We write

S∗Rd|∂Ω = ∂Ω+ t ∂Ω− t ∂Ω0

where (x, ξ) ∈ ∂Ω+ if ξ is pointing out of Ω, (x, ξ) ∈ ∂Ω− if it points inward, and (x, ξ) ∈ ∂Ω0 if
(x, ξ) ∈ S∗∂Ω. The points (x, ξ) ∈ ∂Ω0 are called glancing points. Let B∗∂Ω be the unit coball
bundle of ∂Ω and denote by π± : ∂Ω± → B∗∂Ω and π : S∗Rd|∂Ω → B∗∂Ω the canonical projections
onto B∗∂Ω. Then the maps π± are invertible. Finally, write

t0(x, ξ) = inf{t > 0 : expt(x, ξ) ∈ T ∗Rd|∂Ω}
where expt(x, ξ) denotes the lift of the geodesic flow to the cotangent bundle. That is, t0 is the
first positive time at which the geodesic starting at (x, ξ) intersects ∂Ω.

We define the billiard flow as in Appendix A of Dyatlov and Zworski (2013). Without loss of
generality, we assume t0 > 0. Fix (x, ξ) ∈ S∗Rd and denote t0 = t0(x, ξ). If expt0(x, ξ) ∈ ∂Ω0, then



EIGENFUNCTIONS OF PERTURBED LAPLACIANS 9

the billiard flow cannot be continued past t0. Otherwise there are two cases: expt0(x, ξ) ∈ ∂Ω+ or
expt0(x, ξ) ∈ ∂Ω−. We let

(x0, ξ0) =

{
π−1
− (π+(expt0(x, ξ))) ∈ ∂Ω− , if expt0(x, ξ) ∈ ∂Ω+

π−1
+ (π−(expt0(x, ξ))) ∈ ∂Ω+ , if expt0(x, ξ) ∈ ∂Ω−

.

We then define ϕt(x, ξ), the billiard flow, inductively by putting

ϕt(x, ξ) =

{
expt(x, ξ) 0 ≤ t < t0,

ϕt−t0(x0, ξ0) t ≥ t0.

We say that the trajectory starting at (x, ξ) ∈ S∗Rd is periodic if there exists t > 0 such that
ϕt(x, ξ) = (x, ξ).

4. A local Weyl law on regular domains

Throughout this section and all subsequent sections, we will adopt the notation that C denotes
any positive constant that may depend only on the set Ω, the dimension d, and nothing else. The
value of C may change from line to line. In case we need to deal with multiple constants, they will
be denoted by C1, C2, . . .. From this point forward we will assume that

Vol(Ω) = 1 .

This does not result in any loss of generality since we may always rescale Ω with positive volume
to have unit volume. Let Bt be a standard d-dimensional Brownian motion, starting at some point
x ∈ Ω. Recall the definition (2.1) of the exit time τΩ from the domain Ω. We will need a few
well-known facts about this exit time, summarized in the following theorem.

Theorem 4.1 (Compiled from Proposition 4.7 and Theorems 4.12 and 4.13 of Chapter II in Bass
(1995) and Section 4 of Chapter 2 in Port and Stone (1978)). For any regular domain Ω (as defined
in Section 2), there exists a unique function p : (0,∞)× Ω× Ω→ [0,∞) such that:

(i) For any bounded Borel measurable f : Ω→ R and x ∈ Ω,

Ex(f(Bt); t < τΩ) =

∫
Ω
p(t, x, y)f(y) dy ,

where Ex denotes expectation with respect to the law of Brownian motion started at x.
(ii) p(t, x, y) is jointly continuous in (x, y).

(iii) There is a complete orthonormal basis (φi)i≥1 of L2(Ω) such that each φi is C∞ in Ω,
vanishes continuously at the boundary, and there are numbers 0 < µ2

1 ≤ µ2
2 ≤ · · · tending

to infinity such that

p(t, x, y) =
∞∑
i=1

e−
1
2
µ2
i tφi(x)φi(y) ,

where the right side converges absolutely and uniformly on Ω×Ω. Moreover, −∆φi = µ2
iφi

for each i.

Let µi be as in the above theorem. For each ε > 0 and λ > 0 define a set of indices Jε,λ as

Jε,λ := {i : λ ≤ µi < λ(1 + ε)} .

Let |Jε,λ| denote the size of the set Jε,λ. The following theorem is the main result of this section.
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Theorem 4.2. For any fixed ε > 0, Jε,λ is nonempty for all large enough λ and for A ∈ Ψ(Rd),
with symbol σ(A)(x, ξ) supported in Kx × Rd with Kx ⊂ Ω compact,

lim
λ→∞

∣∣∣∣ 1

|Jε,λ|
∑
i∈Jε,λ

〈
(A− Ā)1Ωφj , 1Ωφj

〉 ∣∣∣∣ dx = 0 .

where

Ā =

∫
S∗Rd

σ(A)(x, ξ)dλ

with dλ = 1Ωdxdσ(ξ) where σ is the normalized surface measure on Sd−1. Moreover,

lim
λ→∞

λ−d|Jε,λ| =
(1 + ε)d − 1

(4π)d/2Γ(d/2 + 1)
.

This theorem implies Theorem 2.4 since σ(A) is homogeneous of degree 0 and is a variant of
results that are sometimes called ‘local Weyl laws’, as in Zelditch (2010). However, we are not aware
of a local Weyl law in the literature that applies for a domain as general as the one considered here.
Our proof follows closely that in Gérard and Leichtnam (1993), but by using probabilistic methods
to obtain estimates on the kernel of et∆, we are able to weaken the regularity assumptions on the
domain.

Since we will have occasion to refer to both the Laplace operator on L2(Rd) and the Dirichlet
Laplacian in this section, we will denote them respectively by −∆Rd and −∆D. Theorem 4.2 will
follow from the following lemma

Lemma 4.3. Take A ∈ Ψ0(Rd) with symbol a(x, ξ) supported in Kx×Rd where Kx ⊂ Ω is compact.
Then for all t > 0, 1ΩA1Ωe

t∆D is trace class as an operator on L2(Ω) and

Tr(1ΩA1Ωe
t∆D)

Tr(et∆D)
→
∫
S∗Rd

a(x, ξ)dλ

where λ = 1Ωdxdσ(ξ) and σ is the normalized surface measure on Sd−1.

We first show how Theorem 4.2 follows from Lemma 4.3. We will need the following classical
Tauberian theorem (see for example Taylor (1981)). We give a probabilstic proof for completeness.

Lemma 4.4. Suppose that F : [0,∞)→ R is nondecreasing and for some A, γ > 0,∫ ∞
0

e−tαdF (α) ∼ At−γ as t→ 0+ .

Then

F (τ) ∼ Aτγ

Γ(γ + 1)
as τ →∞ .

Proof. Define

G(t) =

∫ ∞
0

e−tτdF (τ)

and let Yt be a random variable with

P (Yt ≤ α) =

∫ α
0 e−tτdF (τ)

G(t)
.

Then,

E
[
e−tθYt

]
=

∫∞
0 e−tθτe−tτdF (τ)

G(t)
=
G(t(1 + θ))

G(t)
.
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Next, let Zt = e−tYt and W be a Gamma random variable with shape parameter γ and rate
parameter 1. That is a random variable with density function

wγ−1e−w

Γ(γ)
, w ∈ [0,∞)

and V = e−W so that V has values in (0, 1] with density function

(− log v)γ−1

Γ(γ)
.

In the remainder of this proof we will have two occasions to use Carleman’s condition (proved by
Carleman (1922)) for the uniqueness of the solution to the moment problem. Carleman’s condition
says that if (m2k)k≥1 are nonnegative real numbers such that

∞∑
k=1

m
−1/2k
2k =∞ , (4.1)

then there can be at most one probability measure P on R such that∫
R
x2kdP (x) = m2k for all k.

A consequence of Carleman’s condition is that if {Xn}n≥1 is a sequence of random variables and X
is a random variable such that limn→∞ E(Xk

n) = E(Xk) for every integer k ≥ 1, and the numbers
m2k := E(X2k) satisfy Carleman’s condition (4.1), then Xn converges in distribution to X. In
particular, this is true whenever X is a bounded random variable, which is the case that we will
need. For a simple proof of Carleman’s theorem under a slightly stronger condition that suffices
for our purposes, see page 110 of Durrett (1996).

Notice that

E[V k] = (1 + k)−γ

and

lim
t→0+

E[Zkt ] = lim
t→0+

E[e−tkYt ] = lim
t→0+

G((1 + k)t)

G(t)
= (1 + k)−γ .

Hence, by Carleman’s theorem, Zt converges in distribution to V .
Now, let t = λ−1

F (λ)

G(t)
= E(Z−1

t ; e−1 ≤ Zt ≤ 1).

Then, as λ→∞,

E(Z−1
t ; e−1 ≤ Zt ≤ 1)→ E(V −1 ; e−1 ≤ V ≤ 1) =

1

Γ(γ)

∫ 1

0
wγ−1dw =

1

Γ(γ + 1)
.

So, using that G(λ−1) ∼ Aλγ as λ→∞, we have

F (λ) ∼ Aλγ

Γ(γ)
, λ→∞

as desired. �

The rest of this section is devoted to the proof of Lemma 4.3 and Theorem 4.2. We will freely
use the notation introduced in the statements of Theorem 4.1 and Theorem 4.2 without explicit
reference. First, note that the following corollary of Theorem 4.1 is immediate from the continuity
of p.



12 SOURAV CHATTERJEE AND JEFFREY GALKOWSKI

Lemma 4.5. Take any x, y ∈ Ω and let Ay,r be the closed ball of radius r centered at x. Then

p(t, x, y) = lim
r→0

Px(Bt ∈ Ay,r, t < τΩ)

Vol(Ay,r)
.

Proof. By assertion (i) of Theorem 4.1,

Px(Bt ∈ Ay,r, t < τΩ) =

∫
Ay,r

p(t, x, z) dz .

By assertion (ii) of Theorem 4.1,

lim
r→0

1

Vol(Ay,r)

∫
Ay,r

p(t, x, z) dz = p(t, x, y) .

The proof is completed by combining the two displays. �

The following lemma compares the transition density of killed Brownian motion with the tran-
sition density of unrestricted Brownian motion when t is small.

Lemma 4.6. Let

ρ(t, x, y) :=
1

(2πt)d/2
e−‖x−y‖

2/2t

be the transition density of Brownian motion. Take any x, y ∈ Ω and let δy, δx be respectively the
distance of y and x from ∂Ω. Then

|∂αy (ρ(t, x, y)− p(t, x, y))| ≤ Ce−δ
2
y/2t

td/2+|α| , 0 < t < δ2
y/(d+ 2|α|),

|∂αx (ρ(t, x, y)− p(t, x, y))| ≤ Ce−δ
2
x/2t

td/2+|α| , 0 < t < δ2
x/(d+ 2|α|),

where C is a finite constant that depends only on d, |α| and the diameter of the domain Ω.

Proof. Since τΩ is a stopping time, the strong Markov property of Brownian motion implies that
Xs := Bs+τΩ is a standard Brownian motion started from BτΩ that is independent of the stopped
sigma algebra of τΩ, which we will denote by FτΩ . Consequently, if Ay,r is the closed ball of radius
r < δy/2 centered at y, then for any s ≥ 0,

Px(Xs ∈ Ay,r | FτΩ) =
1

(2πs)d/2

∫
A(y,r)

e−‖z−BτΩ‖
2/2s dz .

Consequently,

Px(Bt ∈ Ay,r, t ≥ τΩ) = Px(Xt−τΩ ∈ Ay,r, t ≥ τΩ)

= Ex(Px(Xt−τΩ ∈ Ay,r | FτΩ) ; t ≥ τΩ)

= Ex
(

1

(2π(t− τΩ))d/2

∫
A(y,r)

e−‖z−BτΩ‖
2/2(t−τΩ) dz ; t ≥ τΩ

)
,

where the term inside the expectation is interpreted as zero if t = τΩ. Dividing both sides by
Vol(Ay,r), sending r to zero, and observing that the term inside the above expectation after division
by Vol(Ay,r) is uniformly bounded by a deterministic constant, we get

lim
r→0

Px(Bt ∈ Ay,r, t ≥ τΩ)

Vol(Ay,r)
= Ex

(
1

(2π(t− τΩ))d/2
e−‖y−BτΩ‖

2/2(t−τΩ) ; t ≥ τΩ

)
.
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Now note that

Px(Bt ∈ Ay,r)− Px(Bt ∈ Ay,r, t < τΩ) = Px(Bt ∈ Ay,r, t ≥ τΩ)

and

lim
r→0

Px(Bt ∈ Ay,r)
Vol(Ay,r)

= ρ(t, x, y) ,

and by Lemma 4.5,

lim
r→0

Px(Bt ∈ Ay,r, t < τΩ)

Vol(Ay,r)
= p(t, x, y) .

Combining all of the above observations, we gt

ρ(t, x, y)− p(t, x, y) = Ex
(

1

(2π(t− τΩ))d/2
e−‖y−BτΩ‖

2/2(t−τΩ) ; t ≥ τΩ

)
.

Now note that any derivative of the term inside the expectation (with respect to y) is uniformly
bounded by a deterministic constant that does not depend on y or t. Therefore derivatives with
respect to y can be carried inside the expectation. Consequently,

Tρ(t, x, y)− Tp(t, x, y) = Ex
(

1

(2π(t− τΩ))d/2
T (e−‖y−BτΩ‖

2/2(t−τΩ)) ; t ≥ τΩ

)
.

If t ≤ δ2
y/(d+ 2|α|), an easy verification shows that∣∣∣∣ 1

(2π(t− τΩ))d/2
T (e−‖y−BτΩ‖

2/2(t−τΩ))

∣∣∣∣ ≤ C

(t− τΩ)d/2+|α| e
−‖y−BτΩ‖

2/2(t−τΩ) ,

where C depends only on d, |α| and the diameter of the domain Ω. Another easy calculation shows

that the map u 7→ (2πu)−d/2−|α|e−β
2/2u is increasing in u when 0 < u ≤ β2/(d + 2|α|). Therefore

if τΩ < t ≤ δ2
y/(d+ 2|α|), then

1

(t− τΩ)d/2+|α| e
−‖y−BτΩ‖

2/2(t−τΩ) ≤ e−δ
2
y/2t

td/2+|α| .

Noticing that p(t, x, y) = p(t, y, x) (for example, by Theorem 4.4 in Chapter II of Bass (1995)) and
ρ(t, x, y) = ρ(t, y, x), this completes the proof of the lemma. �

Proof of Theorem 4.2 from Lemma 4.3. By Lemma 4.3, we have that

Tr(1ΩA1Ωe
t∆D)

Tr(et∆D)
→
∫
S∗Rd

a(x, ξ)dλ, t→ 0+. (4.2)

Since {φj}j≥1 is an orthonormal basis of L2(Ω),

Tr(1ΩA1Ωe
t∆D) =

∑
j

e−tµ
2
j
〈
A1Ωφj , 1Ωφj

〉
. (4.3)

By Lemma 4.6 and the assumption that Vol(Ω) = 1,

Tr(et∆D) =
∑

e−tµ
2
j =

∫
Ω
p(2t, x, x) ∼ (4πt)−d/2 →∞, t→ 0+. (4.4)

Putting (4.2), (4.3), and (4.4) together we have that∑
j

e−tµ
2
j
〈
A1Ωuj , 1Ωuj

〉
∼ (4πt)−d/2

∫
S∗Rd

a(x, ξ)dλ.
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Now, assuming that σ(A) ≥ 0, and adding a regularizing perturbation C ∈ Ψ−1 if necessary, so
that 1Ω(A+ C)1Ω ≥ 0, we may apply Lemma 4.4 with

FA(τ) =
∑
j

1µj≤τ
〈
(A+ C)1Ωφj , 1Ωφj

〉
.

More precisely, we apply it with

F̃A(τ) =
∑
j

1µj≤
√
τ

〈
(A+ C)1Ωφj , 1Ωφj

〉
and rescale so that

FA(τ) ∼ τd

(4π)d/2Γ(d/2 + 1)

∫
S∗Rd

a(x, ξ)dλ.

Now, C : L2(Rd)→ L2(Rd) is compact. Therefore,
〈
C1Ωφj , 1Ωφj

〉
= o(1), and hence∑

1µj≤τ
〈
C1Ωφj , 1Ωφj

〉
= o(τd)

and hence ∑
j

1µj≤τ
〈
A1Ωφj , 1Ωφj

〉
∼ τd

(4π)d/2Γ(d/2 + 1)

∫
S∗Rd

a(x, ξ)dλ. (4.5)

Taking An = χn(x) with χn ∈ C∞c (Ω) and χn → 1, we see that

#{µj : µj ≤ τ} ∼
τd

(4π)d/2Γ(d/2 + 1)
. (4.6)

Subtraction of two formulae like (4.5) and (4.6) yields the desired asymptotics. �

The proof of Lemma 4.3 requires one further lemma.

Lemma 4.7. We have

(4πt)d/2 Tr(Aψet∆Rdψ)→
∫
S∗Rd

σ(A)dλ as t→ 0+

and there exists ε > 0, t0 > 0, so that for 0 < t < t0,

|TrAψ(et∆D − et∆Rd )ψ| ≤ ε−1e−ε/t .

Proof. The kernel K(t, x, y) of Aψet∆Rdψ is given by

K(t, x, y) = (2π)−d
∫
a(x, ξ)

∫
ei〈x−w,ξ〉−|w−y|

2/4t(4πt)−d/2ψ(w)ψ(y)dwdξ

= (2π)−2d

∫
a(x, ξ)

∫
ei〈x,ξ〉e−|ξ−η|

2te−i〈y,ξ−η〉ψ̂(η)ψ(y)dηdξ.

So, changing variables so that ξ
√
t = ζ,

(4πt)d/2 Trψeit∆Rdψ = π−d/2td/2(2π)−d
∫
a(x, ξ)

∫
e−|ξ−η|

2tei〈x,η〉ψ̂(η)ψ(x)dηdξdx

= π−d/2(2π)−d
∫
a(x, ζt−1/2)

∫
e−|ζ−η

√
t|2ei〈x,η〉ψ̂(η)ψ(x)dηdζdx
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Now, since ψ ∈ S, we can use the dominated convergence theorem and let t→ 0+ to obtain

lim
t→0+

(4πt)d/2 Trψeit∆Rdψ = π−d/2(2π)−d
∫
σ(A)(x, ζ)

∫
e−|ζ|

2
ei〈x,η〉ψ̂(η)ψ(x)dηdζdx

= π−d/2
∫
σ(A)(x, ζ)

∫
e−|ζ|

2
ψ(x)ψ(x)dζdx

= π−d/2
∫
σ(A)(x, ζ)

∫
e−|ζ|

2
dζdx

where we have used that ψ ≡ 1 on suppσ(A). Now, since σ(A) is homogeneous of degree 0 in ζ,
this is equal to

π−d/2Vol(Sd−1)

∫
S∗Rd

σ(A)(x, ζ)dλ

∫ ∞
0

e−r
2
rd−1dr =

∫
S∗Rd

σ(A)(x, ζ)dλ.

For the second claim, we use Lemma 4.6. Let g(t, x, y) denote the kernel of ψ(et∆D − et∆)ψ. Then

Tr(Aψ(et∆D − et∆Rd )ψ) =

∫
Ω

(Ag)(t, x, x)dx.

Now, ‖A‖Hs→Hs ≤ C for all s. Taking m > d
2 , and letting δ = 1

2d(suppψ, ∂Ω),

|(Ag)(t, x, x)| ≤ ‖A‖Hm→Hm

∑
|α|≤m

sup
x,y
|∂αx g(t, x, y)| ≤ C e

−δ2/4t

td/2+m

for each t < δ2/2(d+ 2m). �

We are now ready to prove Lemma 4.3.

Proof of Lemma 4.3. Since 1ΩA1Ω : L2(Ω) → L2(Ω), and et∆D is trace class, 1ΩA1Ωe
t∆D is trace

class. Let ψ ∈ C∞c (Ω) with ψ ≡ 1 on suppσ(A). Then,

ψA = A− (1− ψ)A, Aψ = ψA+ [A,ψ].

But, (1− ψ)A, [A,ψ] ∈ Ψ−1 and hence 1Ω(1− ψ)A, 1Ω[A,ψ] are compact on L2(Rd) and have

‖1Ω(1− ψ)A1Ωφk‖+ ‖1Ω[A,ψ]1Ωφk‖ → 0, k →∞.

In particular,

Tr(1ΩA1Ωe
t∆D)

Tr et∆D
∼ Tr(ψAψet∆D)

Tr et∆D
=

Tr(Aψet∆Dψ)

Tr et∆D
, t→ 0+.

By Lemma 4.7, the proof of Lemma 4.3 is now complete. �

5. Concentration of random rotations

Let u1, . . . , un be an orthonormal set of bounded functions belonging to L2(Ω). Let Q be an
n× n Haar-distributed random orthogonal matrix. Let qij denote the (i, j)th entry of Q. Define a
new set of functions v1, . . . , vn as

vi(x) :=
n∑
j=1

qijuj(x) .
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Then v1, . . . , vn are also orthonormal, since

〈vi, vj〉 =

〈
n∑

k,l=1

qikqjluk, ul

〉
=

n∑
k,l=1

qikqjl 〈uk, ul〉

=
n∑
k=1

qikqjk =

{
1 if i = j ,

0 otherwise.

We will refer to v1, . . . , vn as a random rotation of u1, . . . , un. The goal of this section is to prove
the following concentration result for random rotations.

Theorem 5.1. Let ui and vi be as above. Let A : L2(Ω) → L2(Ω) be a bounded operator. Then
for any 1 ≤ i ≤ n and any t > 0,

P
(∣∣∣∣〈Avi, vi〉 − 1

n

n∑
i=1

〈Aui, ui〉
∣∣∣∣ ≥ t) ≤ C1 exp

(
−C2(‖A‖) min{t2, t}n

)
,

where C1 depends only of d and Ω, and C2(‖A‖) depends on d, Ω and the operator norm, ‖A‖.

The key ingredient in the proof of Theorem 5.1 is the Hanson–Wright inequality, due to Hanson
and Wright (1971), for quadratic forms of sub-Gaussian random variables. The original form of the
Hanson–Wright inequality does not suffice for our objective. Instead, the following modern version
of the inequality, proved recently by Rudelson and Vershynin (2013), is the one that we will use.

Define the ψ2 norm a random variable X as

‖X‖ψ2 := sup
p≥1

p−1/2(E|X|p)1/p .

The random variable X is called sub-Gaussian if its ψ2 norm is finite. In particular, Gaussian
random variables have this property.

Let M = (mij)1≤i,j≤n be a square matrix with real entries. The Hilbert–Schmidt norm of M is
defined as

‖M‖HS :=

( n∑
i,j=1

m2
ij

)1/2

,

and the operator norm of M is defined as

‖M‖ := sup
x∈Rn, ‖x‖=1

‖Mx‖ ,

where the norm on the right side is the Euclidean norm on Rn. Rudelson and Vershynin’s version
of the Hanson–Wright inequality states that if X1, . . . , Xn are independent random variables with
mean zero and ψ2 norms bounded by some constant K, and

R :=

n∑
i,j=1

mijXiXj ,

then for any t ≥ 0,

P(|R− E(R)| ≥ t) ≤ 2 exp

(
−C min

{
t2

K4‖M‖2HS

,
t

K2‖M‖

})
, (5.1)

where C is a positive universal constant.
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Proof of Theorem 5.1. Fix 1 ≤ i ≤ n. Define

Ai := 〈Avi, vi〉 , B :=
1

n

n∑
i=1

〈Aui, ui〉 .

By a simple symmetry argument,

E(qijqik) =

{
1/n if j = k ,

0 otherwise.

Therefore

E(〈Avi, vi〉) =
∑
jk

E(〈Aqijuj , qikuk〉) =
∑
jk

E(qikqij) 〈Auj , uk〉

=
1

n

n∑
j=1

〈Auj , uj〉 = B.

(5.2)

Let qi be the vector whose jth component is qij . Since Q is a Haar-distributed random orthogonal
matrix, symmetry considerations imply that qi is uniformly distributed on the unit sphere Sn−1.
Now recall that if z is an n-dimensional standard Gaussian random vector, then z/‖z‖ is uniformly
distributed on Sn−1, and is independent of ‖z‖. Therefore if ri is a random variable that has the
same distribution as ‖z‖ and is independent of qi, then the vector riqi is a standard Gaussian
random vector. Let wij := riqij , so that wi1, . . . , win are i.i.d. standard Gaussian random variables.
Define

A′i := r2
iAi =

n∑
j,k=1

wijwikhjk .

Let H Be the matrix with (j, k)th entry

hjk = 〈Auj , uk〉

so that

Ai =
∑
j,k

qijqikhjk.

That is, the operator ΠAΠ, written in uj coordinates where Π denotes orthogonal projection onto
span{uj : 1 ≤ j ≤ n}. Then, with the standard Euclidean norm on Rn,

‖H‖ ≤ ‖A‖

(recall that ‖A‖ is the operator norm on L2). Moreover,

‖H‖HS =
√
‖H∗H‖Tr ≤

√
‖H∗H‖‖In×n‖Tr ≤ ‖A‖

√
n.

Therefore by the Hanson–Wright inequality (5.1),

P(|A′i − E(A′i)| ≥ t) ≤ 2 exp

(
−C(‖A‖) min

{
t2

n
, t

})
, (5.3)

where C(‖A‖) is a constant that depends only on d, Ω and A. Again note that by the Hanson–
Wright inequality,

P(|r2
i − n| ≥ t) ≤ 2 exp

(
−C min

{
t2

n
, t

})
. (5.4)



18 SOURAV CHATTERJEE AND JEFFREY GALKOWSKI

Next, note that

|Ai| ≤ ‖A‖L2→L2‖v‖2 = ‖A‖L2→L2

n∑
j,k=1

qijqik 〈uj , uk〉 (5.5)

= ‖A‖L2→L2

n∑
j=1

q2
ij = ‖A‖L2→L2 . (5.6)

Finally, observe that

E(A′i) = nE(Ai) . (5.7)

Combining (5.2), (5.3), (5.4), (5.6) and (5.7) we get

P(|Ai −B| ≥ t) ≤ P(|nAi −A′i| ≥ nt/2) + P(|A′i − E(A′i)| ≥ nt/2)

≤ P(|(r2
i − n)Ai| ≥ nt/2) + P(|A′i − E(A′i)| ≥ nt/2)

≤ P(|r2
i − n| ≥ nt/2K) + P(|A′i − E(A′i)| ≥ nt/2)

≤ C1 exp
(
−C2(‖A‖) min{t2, t}n

)
,

which concludes the proof of the theorem. �

6. Construction of the perturbed Laplacian

Let Ψ = (ψi)i≥1 be a complete orthonormal basis of L2(Ω). Let Λ = (λi)i≥1 be a sequence of
real numbers. For s ≥ 0, let Fs(Ψ,Λ) be the Hilbert space consisting of all f ∈ L2(Ω) such that
the norm

‖f‖2Fs(Ψ,Λ) :=

∞∑
i=1

〈λi〉2s | 〈f, ψi〉 |2 <∞ .

Here 〈λ〉 := (1 + |λ|2)1/2. For s < 0, Fs(Ψ,Λ) := (F−s(Ψ,Λ))∗ is the completion of L2(Ω) with
respect to ‖ · ‖Fs(Ψ,Λ). For any f ∈ F(Ψ,Λ) := F1(Ψ,Λ), the series

TΨ,Λf :=

∞∑
i=1

λi 〈f, ψi〉ψi

converges in L2(Ω) = F0(Ψ,Λ). When Ψ and Λ are clear from context, we will sometimes write
Fs instead of Fs(Ψ,Λ).

Lemma 6.1. Let TΨ,Λ be as above. Let Λ′ = (λ′i)i≥1 be another sequence of real numbers. Let
ε ∈ (0, 1) and γ ≥ 0 be numbers such that for all i,

|λ′i − λi| ≤ ε 〈λi〉
1−γ .

Then ‖ · ‖Fs(Ψ,Λ′) is equivalent to ‖ · ‖Fs(Ψ,Λ), and for all s ∈ R, TΨ,Λ′ − TΨ,Λ : Fs(Ψ,Λ) →
Fs−1+γ(Ψ,Λ) with

‖TΨ,Λ′ − TΨ,Λ‖Fs(Ψ,Λ)→Fs−1+γ(Ψ,Λ) ≤ ε.

Proof. Since 〈λ′i〉 ≤ (1 + ε) 〈λi〉, we have ‖ · ‖Fs(Ψ,Λ′) ≤ C‖ · ‖Fs(Ψ,Λ). On the other hand since
〈λi〉 ≤ 〈λ′i〉 /(1− ε), so ‖ · ‖Fs(Ψ,Λ) ≤ C‖ · ‖Fs(Ψ,Λ′).

Next, let f ∈ Fs(Ψ,Λ) with s ≥ 1. Then

(TΨ,Λ − TΨ,Λ′)f =
∑
i

(λi − λ′i) 〈f, ψi〉ψi.
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Therefore,

‖(TΨ,Λ − TΨ,Λ′)f‖2Fs−1+γ(Ψ,Λ) =
∑
i

〈λi〉2s−2+2γ |λi − λ′i|2| 〈f, ψi〉 |2

≤
∑
i

〈λi〉2s−2+2γ ε2 〈λi〉2(1−γ) | 〈f, ψi〉 |2

≤ ε2
∑
i

〈λi〉2s | 〈f, ψi〉 |2 ≤ ε2‖f‖2Fs(Ψ,Λ) .

The density of F(Ψ,Λ) in Fs(Ψ,Λ) for s ≤ 1 implies that the result extends to s ∈ R. This
concludes the proof of the lemma. �

Lemma 6.2. Let Ψ and Λ be as above. Let L be the set of distinct elements of Λ. For each ` ∈ L,
let I` be the set of all i such that λi = `. Assume that |I`| is finite for each `. Let Ψ′ = (ψ′i)i≥1 be
another complete orthonormal basis, such that for each ` ∈ L, the span of (ψ′i)i∈I` equals the span
of (ψi)i∈I`. Then for all s, Fs(Ψ′,Λ) = Fs(Ψ,Λ) and TΨ′,Λ = TΨ,Λ.

Proof. Take some ` ∈ L. Let n = |I`|. Rename the elements of (ψi)i∈I` as ξ1, . . . , ξn and the
elements of (ψ′i)i∈I` as ξ′1, . . . , ξ

′
n. By assumption, n is finite. Since the span of (ξ′i)1≤i≤n equals the

span of (ξi)1≤i≤n, there is a matrix Q = (qij)1≤i,j≤n such that for each i,

ξ′i =
n∑
j=1

qijξj .

By orthonormality of ξ1, . . . , ξn and ξ′1, . . . , ξ
′
n,

n∑
k=1

qikqjk =
〈
ξ′i, ξ

′
j

〉
=

{
1 if i = j ,

0 otherwise.

Therefore Q is an orthogonal matrix. Thus, for any f ∈ F(Ψ,Λ),

n∑
i=1

〈
f, ξ′i

〉
ξ′i =

n∑
i=1

( n∑
j=1

qij 〈f, ξj〉
)( n∑

k=1

qikξk

)

=

n∑
j,k=1

( n∑
i=1

qijqik

)
〈f, ξj〉 ξk =

n∑
j=1

〈f, ξj〉 ξj .
(6.1)

For any function g : R→ R, (6.1) gives∑
i∈I`

g(λi)
〈
ψ′i, f

〉
ψ′i = g(`)

n∑
i=1

〈
ξ′i, f

〉
ξ′i

= g(`)
n∑
i=1

〈ξi, f〉 ξi =
∑
i∈I`

g(λi) 〈ψi, f〉ψi .

Taking L2 norms of both sides with g(x) = 〈x〉s and g(x) = x respectively we see that Fs(Ψ′,Λ) =
Fs(Ψ,Λ) and TΨ′,Λ = TΨ,Λ. �

Lemma 6.3. Suppose that Λ has |λi| > c > 0 with |λi| → ∞. Let γi := 1/λi and Γ := (γi)i≥1.
Then F(Φ,Γ) ⊃ L2(Ω) and the range of TΦ,Γ is contained in F(Φ,Λ). Moreover, TΦ,ΛTΦ,Γ = I.
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Proof. If f ∈ L2(Ω), then clearly f ∈ F(Φ,Γ) since γi → 0 as i → ∞. Thus F(Φ,Γ) ⊃ L2(Ω).
Next, note that

TΦ,Γf =
∞∑
i=1

γi 〈f, φi〉φi ,

which implies that for any i,
〈TΦ,Γf, φi〉 = γi 〈f, φi〉 . (6.2)

Therefore
∞∑
i=1

λ2
i | 〈TΦ,Γf, φi〉 |2 =

∞∑
i=1

λ2
i γ

2
i | 〈f, φi〉 |2 =

∞∑
i=1

| 〈f, φi〉 |2 = ‖f‖2 .

This proves that the range of TΦ,Γ is contained in F(Φ,Λ). A similar argument using (6.2) shows

that for any f ∈ L2(Ω),

TΦ,ΛTΦ,Γf =

∞∑
i=1

λi 〈TΦ,Γf, φi〉φi

=
∞∑
i=1

λiγi 〈f, φi〉φi =
∞∑
i=1

〈f, φi〉φi = f .

This completes the proof of the lemma. �

Now let Φ = (φi)i≥1 be the complete orthonormal basis from Theorem 4.1, and let Λ = (λi)i≥1

be defined as λi = µ2
i , where µi’s are the numbers from part (iii) of Theorem 4.1.

Lemma 6.4. Let TΦ,Γ be as in Lemma 6.3. Then F(Φ,Λ) = F∆ and TΦ,Γ∆f = −f .

Proof. Let g ∈ F∆ the domain of ∆. Then g =
∑∞

i=1 〈g, φi〉φi and

∆g = −
∞∑
i=1

µ2
i 〈g, φ〉φi ∈ L2.

Therefore g ∈ F(Φ,Λ) and ∆g = −TΦ,Λg. Now, suppose that f ∈ F(Φ,Λ). Then,

| 〈f,∆g〉 | =

∣∣∣∣∣∑
i

〈f, φi〉µ2
i 〈g, φi〉

∣∣∣∣∣ ≤ ‖f‖F(Φ,Λ)‖g‖.

Therefore, since ∆ is self-adjoint and F∆ is dense in L2, f ∈ F∆. Hence, F∆ = F(Φ,Λ) and
TΦ,Λ = −∆. Together with Lemma 6.3, this implies the lemma. �

Remark 6.5. Lemma 6.4 is also an easy consequence of the spectral theorem applied to the Dirichlet
Laplacian.

We are now ready to construct the perturbed Laplacian and finish the proof of Theorem 2.6 (and
hence, also of Theorem 2.3).

Proof of Theorem 2.6. Let {µ2
i }i≥1 be the eigenvalues of −∆ and let Λ = {µ2

i }i≥1. Let γ̃ = γ/2.
Fix ε ∈ (0, 1) and take i ≥ 1. Then either λi < 1+ε or there exist positive integers n, 0 ≤ j ≤ Nn−1
where

Nn := d(1 + ε)nγ̃e (6.3)

such that

(1 + ε)n
(

1 +
jε

Nn

)
≤ λi < (1 + ε)n

(
1 +

(j + 1)ε

Nn

)
.
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In the first case, let λ′i = λi. In the second, let

λ′i = (1 + ε)n
(

1 +
jε

Nn

)
.

Note that

|λi − λ′i| ≤ ε(1 + ε)−nγ̃(1 + ε)n ≤ ε(1 + ε)−1+γ̃ |λi|1−γ̃ .
Therefore, by Lemma 6.1, for s ≥ 0

Fs(Φ,Λ′) = Fs(Φ,Λ)

and for s ≥ 1− γ̃ and ε small enough,

‖TΦ,Λ′ − TΦ,Λ‖Fs→Fs−1+γ̃ ≤ 2ε.

Let L be the set of distinct eigenvalues in Λ′. For each l ∈ L, let Il be the set of i such that λ′i = l.
Then by Definition 2.5, |Il| < ∞ for all l. For each l, let (φ′i)i∈Il be a random rotation of (φi)i∈Il .
Then, by Lemma 6.2,

TΦ,Λ′ = TΦ′,Λ′ , Fs(Φ,Λ′) = Fs(Φ′,Λ′).
Now, for each l ∈ L,

l = (1 + ε)n
(

1 +
jε

Nn

)
for some n, j or 0 < l < (1+ ε). Denote this set of l with 0 < l < 1+ ε by L< and let I< := ∪l∈L<Il.
Let (λ′′i )i∈I< be an arbitrary set of distinct real numbers with

(1− ε)λ′i ≤ λ′′i < λ′i.

For l /∈ L<, let (λ′′i )i∈Il be an arbitrary set of distinct real numbers with

(1 + ε)n
(

1 +
jε

Nn

)
≤ λ′′i < (1 + ε)n

(
1 +

(j + 1)ε

Nn

)
.

Then for any i,

|λ′i − λ′′i | ≤ ε|λ′i|1−γ̃

and hence

Fs(Φ′,Λ′′) = Fs(Φ′,Λ′) = Fs(Φ,Λ′) = Fs(Φ,Λ)

and

‖TΦ′,Λ′′ − TΦ,Λ′‖Fs→Fs−1+γ̃ ≤ ε.
Thus,

‖TΦ′,Λ′′ − TΦ,Λ‖Fs→Fs−1+γ̃ ≤ 10ε.

Now, let

Γ = {λ−1
i }i≥1.

and G := TΦ,Γ. For convenience, write T = TΦ,Λ and T ′′ = TΦ′,Λ′′ .

Then by Lemma 6.3, G is bounded on L2(Ω), has range in F(Φ,Λ), and satisfies TG = I.
Therefore, the operator

S := (T ′′ − T )G

maps L2 into F γ̃ . We will show that S satisfies the three assertions of the theorem. Note that
the construction of S is random; what we will actually show is that S satisfies the conditions
with probability one. This will suffice to demonstrate the existence of an S that satisfies the
requirements.
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First, notice that

‖Sf‖F γ̃ = ‖(T ′′ − T )Gf‖F γ̃ ≤ 10ε‖Gf‖F ≤ Cε‖f‖.

Now, by Lemma 6.4, F∆ = F , therefore F γ̃ = (L2(Ω),F∆)γ̃ , the complex interpolation space of L2

and F∆. Hence (i) holds.
Next, note that by Lemma 6.4 for f ∈ F∆, −G∆f = f. Therefore, for f ∈ F∆,

(I + S)∆f = (I + (T ′′ − T )G)∆f = T ′′G∆f = −T ′′f.

That is, −(I + S)∆ = T ′′ on F∆. This proves part (ii) of the theorem. Part (iii) of the theorem
follows from the fact that {φ′i} is an orthonormal basis for L2(Ω) and each φ′i is a linear combination
of finitely many φi which have φi ∈ Fs∆ for all s.

It remains to show that the eigenvalues of T ′′ are equidistributed. For this, recall that

l = (1 + ε)n
(

1 +
jε

Nn

)
for l large enough and hence

Il =

{
i : (1 + ε)n

(
1 +

jε

Nn

)
≤ λi < (1 + ε)n

(
1 +

(j + 1)ε

Nn

)}
.

Then since λi = µ2
i , Il may be alternately expressed as

Il = {i : µ ≤ µi < µ+} ,

where

µ := (1 + ε)
n
2

√
1 +

jε

Nn
, µ+ := (1 + ε)

n
2

√
1 +

(j + 1)ε

Nn
.

Now,

r+ :=
µ+

µ
=

√
1 + (j+1)ε

Nn√
1 + jε

Nn

= 1 +
ε

2Nn
+ O(ε2N−1

n ).

Then since Ω is AQE at scale α(µ) = O(µ−2γ̃) and N−1
n ≥ cµ−2γ̃ ,

lim
l∈L, l→∞

1

|Il|

∣∣∣∣∣∣
∑
i∈Il

〈
(A− σ(A))1Ωφi, 1Ωφi

〉∣∣∣∣∣∣ = 0 (6.4)

for A ∈ A ⊂ Ψ(Rd), where

σ(A) =
1

Vol(1 ≤ |ξ| ≤ 1 + r+)

∫∫
1≤|ξ|≤1+r+

σ(A)(x, ξ)1Ωdxdξ =

∫
S∗Rd

σ(A)(x, ξ)1Ωdxdσ(ξ) .

Note that we have used that σ(A) is homogeneous of degree 0.
Now, by Theorem 5.1, for any A ∈ A and t ∈ (0, 1),

P

∣∣∣∣∣∣〈A1Ωφ
′
i, 1Ωφ

′
i

〉
− 1

|Il|
∑
i∈Il

〈
A1Ωφi, 1Ωφi

〉∣∣∣∣∣∣ ≥ t
 ≤ C1 exp(−C2(‖A‖) min(t2, t)|Il|).
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So,

P

max
i∈Il

∣∣∣∣∣∣〈A1Ωφ
′
i, 1Ωφ

′
i

〉
− 1

|Il|
∑
i∈Il

〈
A1Ωφi, 1Ωφi

〉∣∣∣∣∣∣ ≥ t
 ≤ C1|Il| exp(−C2(‖A‖) min(t2, t)|Il|).

The Weyl law implies that ∑
l∈L
|Il| exp(−C2(‖A‖) min(t2, t)|Il|) <∞

and hence we have, using the Borel–Cantelli lemma that

P

∣∣∣∣∣∣〈A1Ωφ
′
i, 1Ωφ

′
i

〉
− 1

|Il|
∑
i∈Il

〈
A1Ωφi, 1Ωφi

〉∣∣∣∣∣∣ ≥ t for infinitely many i and l with i ∈ Il

 = 0.

Thus, by (6.4) for all δ > 0,

P
(

lim sup
i→∞

∣∣∣〈A1Ωφ
′
i, 1Ωφ

′
i

〉
− σ(A)

∣∣∣ ≥ δ) = 0.

The fact that A is dense in C0(S∗Ω) and C0(S∗Ω) is separable then implies that M(φ′i) =
{1Ωdxdσ(ξ)}.

Now, suppose that f ∈ F∆ is an L2 normalized eigenfunction of T ′′. Then

0 = ‖T ′′f − λf‖2 =
∑
i

(λ′′i − λ)2|
〈
f, φ′i

〉
|2.

Hence, since f 6= 0, λ = λ′′i for some i. Thus, for any j〈
φ′j , f

〉
=

1

λ′′i

〈
φ′j , T

′′f
〉

=
1

λ′′i

∑
k

〈
φ′j , φ

′
k

〉
λ′′k
〈
φ′k, f

〉
=
λ′′j
λ′′i

〈
φ′j , f

〉
.

Hence 〈φ′j , f〉 = 0 or λ′′j = λ′′i . But for j large enough, λ′′i 6= λ′′j for i 6= j and hence f = φ′i and T ′′

has equidistributed eigenfunctions.
Notice also that this implies that for {fn}∞n=1 the eigenfunctions of −(I+S)∆ with −(I+S)∆fn =

α2
nfn, and n large enough, fn = φ′nj and hence

−(I + S)∆fn = T ′′fn = α2
nfn.

Consequently,

‖Sfn‖ = ‖(T ′′ − T )G∆φ′nj‖ = ‖(T ′′ − T )φnj‖ ≤ Cε 〈αn〉
−γ . (6.5)

This completes the proof of both Theorem 2.3 and Corollary 2.8. �

Proof of Corollary 2.7. By Theorem 2.3, there exists a sequence of linear operators {Sn}n≥1 such
that

‖Sn‖L2→Fγ/2∆

→ 0

and −(I+Sn)∆ is positive and has QUE eigenfunctions for each n. This implies the existence of an
orthonormal basis of L2(Ω), {fn,k}∞k=1 and αn,k such that ‖fn,k‖ = 1 for each n and k, α2

n,k → ∞
as k →∞, and

(I + Sn)∆fn,k = −α2
n,kfn .
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Without loss of generality, ‖Sn‖ < 1. Then the series

(I + Sn)−1 =

∞∑
k=0

(−1)kSkn

converges in the space of bounded linear operators on L2(Ω). Moreover,

(I + Sn)−1 − I = −(I + Sn)−1Sn

Therefore, by (6.5)

‖ −∆fn,k − α2
n,kfn,k‖ = ‖α2

n,k(I + Sn)−1Snfn,k‖
≤ α2

n,k‖(I + Sn)−1‖L2→L2‖Snfn‖

≤ C
〈αn,k〉2−γ

1− ‖Sn‖L2→L2

.

Dividing both sides by α2
n,k completes the proof. �

7. Improvements on closed manifolds

In order to prove Theorem 2.3 on a manifold M with Vol(M) = 1, we work with L2
0(M), the

set of 0 mean functions in L2 to remove the 0 eigenvalue of the Laplacian. Let {(λi, φi)}∞i=1 be the
eigenvalues and eigenfunctions of −∆g. Then with TΦ,Λ and TΦ,Γ as above, the proof of Theorem 2.3
for M proceeds as above.

We now prove Corollary 2.9. For this, we need to use the full strength of Theorem 3.2.

Proof of Corollary 2.9. Let γ = 1, γ̃ = 1/2. Then return to (6.3), where we replace Nn with

Nn := d(1 + ε)n/2eβn
where βn ∈ N has βn → ∞ slowly enough. We then proceed as in the proof of Theorem 2.3
until (6.4). At this point we need to show that there exists βn → ∞ slowly enough so that for
‖f‖L∞(M) ≤ 1,

lim
l∈L,i→∞

1

|Il|

∣∣∣∑
i∈Il

〈
(f − f)φi, φi

〉 ∣∣∣ = 0

where

f =

∫
M
fdVol.

First, observe that

λi = µ2
i , µ := (1 + ε)

n
2

√
1 +

jε

Nn
, µ+ := (1 + ε)

n
2

√
1 +

(j + 1)ε

Nn
,

Il = {i |µ ≤ µi < µ+ } .
Note also that by Theorem 3.2,∑

µ1≤µj≤µ2

|φj(y)|2 =
(µ2 − µ1)µd−1

2

(2π)d
Vol(Sd−1) + g(µ2, µ, x)

where

lim
µ2→∞

‖g(µ2, µ1, x)‖L∞x,µ1
µ−d+1

2 = 0.
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Therefore, integrating, we have

#{µ1 ≤ µj ≤ µ2} =
(µ2 − µ1)µd−1

2

(2π)d
Vol(Sd−1) +

∫
g(µ2, µ, x)dx

and ∣∣∣∣∣
∑

µ1≤µj≤µ2
|φj(y)|2

#{µ1 ≤ µj ≤ µ2}
− 1

∣∣∣∣∣ ≤ C‖g(µ2, µ1, x)‖L∞x,µ1
µ−d+1

2 (µ2 − µ1)−1

Thus, taking µ1 = µ and µ2 = µ+, we have

µ2 ∼ (1 + ε)n/2, µ2 − µ1 ∼ (1 + ε)n/2
ε

(1 + ε)1/2βn
.

Therefore, taking βn →∞ slowly enough so that

lim
n→∞

‖g(µ, µ+, x)‖L∞x,µ1
µ−d+1

+ (µ+ − µ)−1 = 0

gives that uniformly for ‖f‖L∞ ≤ 1,

lim
l∈L,i→∞

1

|Il|

∣∣∣∑
i∈Il

〈
(f − f)φi, φi

〉 ∣∣∣ = 0.

Then, using the fact that f ∈ C∞(M) with ‖f‖L∞(M) ≤ 1 is dense in the unit ball of the dual
space to finite radon measures, that this space is separable, and following the proof of Theorem
2.3 from (6.4) shows that for all ε > 0, there exists S : L2(M) → H1(M) so that ‖S‖L2→H1 ≤ ε,
−(I + S)∆g has equidistributed eigenfunctions, {(fn, αn)}∞n=1, and by (6.5) ‖Sfn‖ = o(α−1

n )‖fn‖.
Therefore,

−(I + S)∆fn = α2
nfn.

Now,

(I + S)−1 =
∞∑
k=0

(−1)kSk, (I + S)−1 − I = −(I + S)−1S.

Therefore,
(−∆− αn)fn = −α2

n(I + S)−1Sfn
and hence,

‖(−∆− α2
n)fn‖ ≤ |α2

n|‖(I + S)−1o(α−1
n )‖fn‖

= o(αn)‖fn‖

Dividing by α2
n completes the proof of the corollary. �
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