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ABSTRACT. We show that for the Lindblad evolution defined using (at most) quadrat-
ically growing classical Hamiltonians and (at most) linearly growing classical jump
functions (quantized into jump operators assumed to satisfy certain ellipticity con-
ditions and modeling interaction with a larger system), the evolution of a quantum
observable remains close to the classical Fokker—Planck evolution in the Hilbert—
Schmidt norm for times vastly exceeding the Ehrenfest time (the limit of such agree-
ment with no jump operators). The time scale is the same as in the recent papers
[HRR23a, HRR23Db] by Herndndez—Ranard-Riedel but the statement and methods
are different.

1. INTRODUCTION

In quantum mechanics a system is often described using a density matriz, that is a
positive operator of trace one on a Hilbert space. In this paper the Hilbert space will
be given by L?*(R™) so that the density operator is then

©) =Y pilwudu(@),  p;=0, Y pi=1, (wjuw) =3,
j j

If the system evolves according to the Schrédinger equation (ihd; + P)v(t) = 0, where
P is a self-adjoint unbounded operator on L*(R™) then (note the sign convention) the
density matrix evolves by the Schrodinger propagation of u;’s. That gives the following
equation:

LIPAL A(E) = eFOA(0) = PR A0) P (1.1)

BA(t) = LoA(t), LoA:=

This evolution clearly preserves density matrices. Gorini-Kossakowski-Sudarshan
[GKS76] and Lindblad [Li76] generalized this by showing (in the setting of matri-
ces and of bounded operators, respectively) that semigroups preserving the trace and
complete positivity are generated by operators of the form

LA :=—

mm

J
Z (LAL; — X(LiL;A+ ALIL;)), v >0. (1.2)
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The corresponding evolution equation is called the Lindblad master equation or the
GKLS equation and, following the long tradition which favours short northern Eu-
ropean names, we refer to £ as the Lindbladian — see [ChPal7] for a history of this
discovery and pointers to the literature. The operators L; are called jump operators
and they describe a dissipative (see (1.4) below) interaction of a system evolving ac-
cording to (1.1) with a larger “open” system. (Hence the term “jump” as L; describe
the effect of moving to that larger system.)

In this paper we will consider (1.2) with P and L;’s given by pseudodifferential
operators (see (2.1) for the notation a™(x, hD)), that is semiclassical quantizations of
classical observables, satisfying the following assumptions:

P =pY(xz,hD), |0°p(z,8)| < Cq, |a|>2, p=p,

1.3
Ly =5 (x,hD), [0°(2,8)| < Ca, la|>1, 1<j < (1.3)

If in (1.2), A = a“(x,hD), then the leading part of the semiclassical expansion of
LA (see the derivation in §5) is given by the action, Qa, of the following Fokker—Planck
operator

L0 : 7 7 hy <
+ 5 Z 204,43} — G Hy, + GHy,) + — > (HpHy, + Hy Hp).  (14)
g =1
Here, Hy:= 37 | O, fOr; — Or, f O, is the Hamiltonian vector field of f = f(x,¢), and
{f,g} = Hyg is the Poisson bracket. We note that H, is anti-selfadjoint with respect
to the standard measure on R™ x R". Since

% (2{@,!@} tiHy, + ¢ Hy, ) {Ej,é }+Bj, Bi=-Bj (1.5)
the self-adjoint contribution to the second term is given by the real valued function
1
pi= 5 > {44} (1.6)
j=1

It is interpreted as friction. Finally, the last term in (1.4) is self-adjoint and non-
negative. Assumptions (1.3) show that p is bounded (p € S(1) in the notation of
§2).

Example. Suppose J = 2n and {; = x;, {j,, = §; for j <n. Then

Q= Hy+ 57h(As + Ag). (1.7)

When v = 0 (that is, when we consider (1.1)) classical quantum correspondence in
the evolution is described using Egorov’s theorem — see [Zw12, Theorem 11.12, §11.5]
and references given there. Here we present it slightly differently — see Theorem 2 for
a general version — and consider propagation of coherent states:

(2mh) el 2hila—an)e/h,

770(960,50) = Hw(IO,EO)HB(R") =L
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The corresponding density operator is

Aou = ¢($07§0)<u7 1/}(330750)% Ay = a‘(l)v(% hD)?

ao(z,€) = 22 exp (—% ((Jc —x0)? + (€ — 50)2)> ) (18)
Using this notation we have for the solution of (1.1) with A(0) = af/(z, hD),
IA(t) = Op((exp tH,)"ao)|| z < Ce™*hz, (1.9)
where || ® || &, denotes the Hilbert—Schmidt norm and
I := sup sup [0“p(z, §)|. (1.10)

|a|=2 R2™

For a more precise version of I', under additional assumptions on p, in terms of Lya-
punov exponents of the flow of H, see [OlB023, Appendix C| and references given
there. For a relation between (1.10) and the flow see Lemma 3.1.

The estimate (1.9) is not optimal but it indicates the basic principle that the agree-
ment with classical evolution breaks down at times proportional to log(1/h), the Ehren-
fest time.

Motivated by recent papers [HRR23a, HRR23b] by Herndndez—Ranard-Riedel we
consider the question of an agreement with classical evolution for much longer times:
the quantum evolution is given by e** where £ is the Lindblad operator (1.2) and the
classical evolution by €9, where @ is the Fokker-Planck operator (1.4). The results
are shown in Theorem 1 for the special case of coherent states, and in Theorem 3
for the more general situation of initial condition in exotic symbol classes. We show
that agreement holds in Hilbert-Schmidt norms. The main advantage lies in an easy
characterization of Hilbert—Schmidt pseudodifferential operators and in the simplicity
of L? estimates for the Fokker—Planck evolution defined using (1.4).

Remark. As was shown by Davies [Da77], the operator of the form (1.2) generates a
positivity preserving contraction on the Banach space of self-adjoint trace class oper-
ators provided that

J
Y :=iP - 1Y LiL
j=1

is the infinitesimal generator of a strongly continuous one parameter contraction semi-
group on L*(R™). In our case, this follows from the Hille-Yosida theorem and Propo-
sition A.2 (see the proof of Proposition 4.5 for a similar argument with %, playing the
role of L?).

As in [HRR23a, HRR23b] we make a strong non-degeneracy assumption:
HH* > cleon, Hi=[Hy, - Hy, Hy, -+ Hy | € Mooy (C). (1.11)
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This cumbersome looking condition corresponds to ellipticity of the second order op-
erator appearing in the classical Fokker—Planck equation (1.4) corresponding to (1.2)
— see example (1.7) and Remark 5 after Theorem 1. We also need a more technical
condition

0% Im £;||€;] 4+ | Im ¢;]]0%¢;| < Co, |a] > 2. (1.12)

With this notation in place we have a special case of Theorem 3 in §6:

Theorem 1. Suppose that L is given by (1.2), assumptions (1.3), (1.11), and (1.12)
hold and v < h™'. If, in the notation of (1.8), A(t) satisfies

BA(t) = LA(t), A(0) = Ay, (1.13)
then for some constant C,
IA(t) — a(t)¥ (2, hD)| z, < CeMoFCMIY(1 4 A)(1 + 47 2)h3, (1.14)

where
(0 — Q)a(t) =0, a(0) = ao, My := sup p.

Remarks. 1. When in (1.3) p is quadratic and ¢,’s are linear than the agreement of
the two evolutions is exact. This corresponds to the same phenomenon in the case of
Egorov’s theorem — see [Zw12, Theorem 11.9].

2. To see the reason for the powers of h, 7, and ¢ in (1.14) consider the simplest case
given in (1.7). The classical (Fokker-Planck) evolution is then

(0 — Hy — ?A,¢)a(t) =0, e:=+/7yh/2, a(t)=al(t,x§).

The solutions satisfy the following estimate (immediate if H, = 0), see Proposition
5.1:

> 0.0 a0z, < C Y e0ne) a0z, (1.15)

o] <k || <k
The key fact is that there is no dependence on ¢ — that is not the case for the evolution
by H, alone, see (3.7). The composition formula for pseudodifferential operators in
Lemma 2.2 shows that £ [a(t)¥(z,hD)] = (Qa(t))¥(x, hD) modulo terms quantizing
functions bounded by the size of (1+7)h?d3a(t). These can be estimated using (1.15)
where in the case of (1.8) and for |a| = 3,

L+ NI a2, < (L +1R% Y [1(0n.e)°a(0) ]2,
o <3 (1.16)

< C(L+7)(L+772)h,
To get (1.14) we write

A(#) — a(t)" (z, hD) = /0 =92 (La(#)" (z, hD) — (Qa(t))" (z, hD))ds,
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which together with (1.16) gives (1.14) with My + Chy = 0. We used here the fact
that in the example e'* is a contraction — in general there could be exponential growth
produced by the friction term; this is reflected by the exponential prefactor in (1.14).

3. The time scales appearing in (1.14), (6.1) and (6.2) agree with the time scales in
[HRR23a], as long as v < 1: Theorem 3.1 there gives the bound C' max(1, ’y’%)h%t for
the stronger trace class norm of the difference between quantum and clasical evolutions.
Since the semigroup is contracting on trace class operators, there is no exponential
growth even when friction is positive. We should stress however that Theorem 3
below applies to very general initial states A(0) of which Gaussian states or their
superpositions are an example.

4. The class of operators P satisfying (1.3) includes Schrodinger operator whose clas-
sical dynamics exhibits chaotic behaviour. In that case one expects optimality of
t ~ log(1/h) limit for classical-quantum correspondence for (1.1). For instance we
could take

p(@,€) = & + & + a7+ ap + Na)(wiws — 323),
where A € C>*(R?%;[0,1]) and A = 1 near 0.

5. Compared to the models used in the physics literature — see Unruh—Zurek [UnZu89]
for the pioneering discussion of the classical /quantum correspondence for open systems
— the ellipticity hypothesis (1.11) made in [HRR23a] and here is too strong. Rather
than (1.7), one should consider ¢; = z;, 0 < j < J = n so that the Fokker-Planck
operators is given by @ = H, + %thg. This would require more subtle subelliptic
estimates (see Smith [Sm20] for a recent treatment with an asymptotic parameter)
than (1.15). Gong—Brumer [GoBr99] showed numerically that for such operators with
chaotic classical dynamics for p, the classical /quantum correspondence persists for long
times.

This paper is self-contained except for some basic facts about semiclassical quantiza-
tion from [Zw12, Chapter 4]. It is organized as follows. In §2 we review the definition
of pseudodifferential operators and symbol classes. We introduce a new L2-based sym-
bol class which is natural for the study of Hilbert—-Schmidt operators, and show the
properties of the corresponding pseudodifferential calculus. In §3 we present a variant
of Egorov’s theorem with Hilbert-Schmidt norm and in §4 we prove mapping proper-
ties of e’*. §5 is then devoted to estimates on the Fokker-Planck evolution. A general
result about agreement of classical and quantum dynamics in Hilbert-Schmidt norm is
proved in §6. Finally, in Appendix 7, we review some properties of pseudodifferential
operators with quadratic symbol growth.

Acknowledgements. We would like to thank Simon Becker for pointing out reference
[Da77] which clarified the trace class properties of e and Zhenhao Li for helpful
comments on the first version of this paper. JG acknowledges support from EPSRC
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grants EP/V001760/1 and EP/V051636/1 and MZ from the NSF grant DMS-1901462
and the Simons Foundation under a “Moiré Materials Magic” grant. MZ would like to
thank Paul Brumer for introducing him, many years ago in the context of discussing
[GoBr99], to the problem of classical/quantum correspondence for Lindbladians. MZ
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of this paper.

2. SYMBOL SPACES AND QUANTIZATION

The operators introduced in §1 are defined using pseudodifferential operators which
are obtained by a Weyl quantization process: at first for a € S (R} x Rg) (here ./
denotes Schwartz functions, that is functions u for which 2*9°u are bounded for all
multiindices o and 3; . denotes its dual, the space of tempered distributions — see
[Zw12, Chapter 3]) we define

1

Op(a)u = a"(z,hD, h)u := @iy /a (UTT—i_y,f) e%@_y’@u(y)dydf. (2.1)

The Hilbert-Schmidt norm has a clean expression in terms of the symbol a (PDE
parlance for classical observables):

0(a) %, = trOp(a) Op(a) = s [ fata )P

This is in contrast with the trace class norm which does not have an easy characteri-
zation in terms of a and its estimates require L' norm of derivatives of a — see [DiSj99,
Chapter 9].

In this paper we consider different classes of symbols for which (2.1) remains valid
and has interesting composition properties (as an operator Op(a) : .¥ — % the
operator (2.1) is well defined for a € .#/(R?*") — see [Zw12, Theorem 4.2]). We first
recall the standard symbol class: for m : R?*" — [0,00) satisfying m(z)/m(w) <
C1+ |z —w)?,

a € Ss(m) = 0%z, h)| < Coh™m(z), 2= (z,&) € R™ (2.2)

When § = 0 we write S(m) and when m = 1, S;.
The next class corresponds to the conditions in (1.3): for smooth function on R*",
u(z,h) € Sy <= |0%u(z,h)] < Co, |a| >k, (2.3)

with constants C,, independent of h. The seminorms are given by the best constants
Chy.

In dealings with Hilbert—Schmidt operators it is natural to consider symbols whose
bounds are defined using L? norms. For smooth functions on C*°(R?*") depending on
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parameters h we define, for 0 < p < 1,
ae S — h3]|0%al ey < Cah 0. (2.4)

with the obvious seminorms. We note that the Sobolev embedding theorem and an
interpolation argument show that |[0%a| < C’ h=PUel+n+)+5 for any § > 0. Hence for
p = 0 the L? based spaces are contained in h2S(1) defined above, and in general

2 —o(n n
SE C hrrhtEg (1), (2.5)
It will also be useful to consider mixed spaces obtained by taking tensor products:

c(z,w) € S® 552 — h7 || supd2dPc(z, 0|2 < Cagh™™ 2w e R, (2.6)

We stress that we always demand that 0 < p < 1.

Remark Another choice of the norm could be given by sup, ||0%02¢(z, )|z and
both agree on products. The choice in definition (2.6) is motivated by the fact that
| f(w,w)| 2 < ||sup, |f(z,w)||r2 which does not work for the other choice.

For the properties of operators which are quantizations of a € Ss(m) see [Zw12,
Chapter 4]. The same methods apply to operators obtained from a € S and are
reviewed in the appendix. In particular we obtain spectral properties of operators
quantizing S). Since the properties of SPL2 and 0 < p < 1 are more unusual we
present them in this section. We start with

Lemma 2.1. Suppose that Q : R?® x R?" — R is a non-degenerate bilinear quadratic
form. Then, using definition (2.6),

hQD=.Dv) . g & SpL2 S S® Sf, (2.7)

s continuous and for every N
ihQ(Dz,Dy) T sen Q N(1-p) L2
e a—ea® Z<z) Q(D., Dy)fa(z,w) € h PS®S,, (2.8)

where sgn Q) is the signature of QQ considered as a quadratic form on R?™ x R?".

Proof. We denote by B the symmetric matrix corresponding to our quadratic form:
Q¢ w) = 3(B((w), (¢, w)). Fora € S(1) ® 552 C hPH+28(1) ® S,(1), hence the
expression

thQ(Dz,Duw)

c(z,w) :=e a(z,w)

makes sense as an element in .’ (to see this, we apply e.g. [Zw12, Theorem 4.17] with
for each fixed value of h) and by [Zw12, Theorem 4.8], for a € .,

det B|~3
oz w) = % /Rzn /Rzn en? 1) a2 4 2y, w + wy)dzduwy,
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where
p(z1,w1) = —5(B™(z1,w1), (21, wn)).

Since a € h7P"H*T35(1) ® S,(1), this integral can be understood in the sense of
oscillatory integrals and defines an element of . — see [Zw12, §3.6]. Recall also that
oscillatory integrals allow for integrations by parts.

Set v; = h™Pwy, and y € C*(R* x R*") with xy = 1 near 0 and supp x C B(0,1).
Then using the fact that w; — (21, w;) is linear, we obtain

| det B -
o) = W R2n Rznehl mepe i) a(z + z1,w + hPv)dz dvy,
|detB|_’

(21,01)
(27Th1 DES /R% /R%ehl PPN (21, v1)a(z + 21, w + hPvy)dzdoy

det B
’27fhl /‘) 2271 / / ent= p@(Zhvl (]' - X(zla Ul))a(z + 21, W + hpvl)dzldvl
RQn RQn

=:c1(z,w) + c2(2,w)

We start by considering c;. In this case, the integrand is compactly supported and we
may apply the method of stationary phase [Zw12, Theorem 3.16 and Theorem 3.17].
That gives

82‘1852(01(2,11) —e4sgnBZ <h1 p) ( (DZI,DUI) (z+z1,w+h’)v1)lzlzv1:0>>’

< Oxh=PN Z h’p“m' sup |02t (2 4 21w + hPvy)|
|81 |+]B2| <2N+4n+1 |Gz en)l<

= ONh(l_p)N Z Rag(Z,UJ),

|B1]+]B2|<2N+4n+1

with the estimates on the remainder provided by Sobolev’s embedding;:
|Ra5(2, w)|2 < h—Qp\Oc2| Z ||8§11+a1+718512+0c2+’y2a(2 + - w+ hp')H%Q(BRzn(O,l))'
v<2n+1
Hence, with B := Bgan (0, 1),
/]R?“ sup | Rap(z, w)|2dw < h=2le2! Z / N / sup|8a;1r?;r7 (2 4 21, w + hPv1) |Pdz1dordw

z v<2n+1

/h2p(72|+|ﬁz| ||Sup|aa+ﬂ+“/ (2, )|||22dz1dvy
B

<C YT ) sup 0 a(z, )

(z,w)
v<2n+1
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In particular, this implies that

e (z,w) — e B Z (hl p) ( (D.,, Dy,)fa(z + 21, w + h"vl)> oy =21=0

is in h1PNS @ S,

We now consider the remaining term in ¢, ¢z, and note that on supp(l — x),
10021009 (21, v1)| > ¢((21,v1)). Hence, integration by parts (justified by the definition
of the oscillatory integral) yields, for N > 2n + 1,

plem VeI SUP Oz ) C2(, Iz

< CN/SUP // > Ao

|B1|+]B2| <N

<Cy /// D Azvy)) sup

1B1I+]B2|<N

(afh(hp@ )Bz (z+zl,w+hpv1)>

dzy dv1> dw

2
a(az,w)azﬂ1 (hpaw)62a(z + 2z, w + hpUl) ledl)ldU)

< Oy // Z <(Z1,’01) 2N+2n+1H8upa afh hPo ) v’)HiQd%dvl

|B1]+]B2|<N

<COv 3 |50 (h0u)a(z )

|Bil+|B2l<N 7

Hence, we have ¢, € hN=2001-0 G & SPL2 for arbitrary N and ¢ € S ® S/fz. The
argument also shows that that the map from a to ¢ is continuous, and (2.8) holds. [

We can now write the composition law for operators in SpL2 with Sy.
Lemma 2.2. Let 0< p <1,k >0, a € Sy),b e SL. Then,
Op(a) Op(b) = Op(c),

where ¢ has the following expansion: for N >k,

N-1 oy

j N(1-p) gL?
c(x, &) — JZ:; F (ZJ(D%Dg,Dy,Dn)Ja(;c,f)b(y,n)) \%zag e hN( p)Sp . (2.9)

Proof. Writing z = (z,£), w = (y,n), we have

Op(a) Op(b) = Op(e),  e(2) = ™A P=)a(2)b(w) .=,
where A(D., ) :== —10(D,, D¢, Dy, D,)). By Taylor’s formula

N-1
c(z.h) = 3 5 GhA(D)) (@(2)b(w))]smu + Rov(z,h)

£=0
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where

Ry (z,h) : ! )|/O (1 — )N 1 AD Gh A(D)N ((a(2)b(w))] 2 dt.

(N —1)!
For N > k,

A(D. )Na(2)b(w) € NS @ SE°.
Hence, Lemma 2.1 applies and ¢4P) : § Sf - 5S® S,fQ has uniform bounds in

t € [0,1]. Now, for e € S® SPL2, we have
105w, w)lpe < C Y 100 1e(z W)lw=-llz, < C Y [Isup|df, ez, )z

18]<la] 1BI<lal  ©

We conclude that Ry € h(l_”)NSpL2 which is (2.9). O

3. EGOROV’S THEOREM REVISITED

We give a variant of Egorov’s theorem which is analogous to Theorems 1 and 3 and
uses propagation of quantum observables in symbol classes Sf introduced in §2. In
fact, the proof of Theorem 3 follows the same strategy with improved estimates coming
from diffusion estimates: Lemma 3.1 below (see also (3.7)) is replaced by Proposition
5.1.

We start with a lemma relating the constant " in (1.10) to the properties of the flow
(see [Zw12, Lemma 11.11] for a slightly different version)

Lemma 3.1. Let ¢, := exptH, where p satisfies (1.3). Then
|0%pi(2, €)oo (m2n) < Coetlelt o e N |a| > 0. (3.1)
In the proof of Lemma 3.1 we use the following version of Gronwall’s inequality:

Lemma 3.2. Let I' € R and suppose that u : R — R is continuous and satisfies

u(t) <wo(t) + F/o u(s)ds. (3.2)
Then, .
u(t) <wo(t) + I‘/ eF=y(s)ds, t>0.

Proof. Define w(t) := [}

o u(s)ds. Then, w is continuously differentiable and satisfies

w'(t) <o(t) + Tw(t), w(0)=0.
Hence, conjugating by e 1" and integrating gives
t
w(t) < / P =)y (s)ds,
0

which, after substitution in (3.2), finishes the proof. O
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Proof of Lemma 3.1. The proof of (3.1) is an induction on |a|. The first step is the
case of |a| = 1. Since (d/dt)pr = Hp(p1),

d
7 (0%p1) = OHL(p1)0%0y,  0%p(0) = a. (3.3)

Since the entries of the matrix 0H, are bounded by I', integration gives
t
sup |0%plee <1 +I‘/ sup |0%pg e ds.
R2n 0 R2n
Lemma 3.2 then gives (3.1) for |a| = 1.

Now assume |a| = ¢ and suppose the estimate (3.1) is valid for all multiindices
with 1 < |5| < ¢. We differentiate (3.3), to find

(00 = OH, (20" 0+ ol0), (3.4)

where ¢(t) is a sum of terms having the form

G © 01 07y - 0%, gap € S(1),

for 1+ fr =aand 0 < |B;| < |a] =€ (j = 1,...,k). The induction hypothesis
implies supgzn |g()]se < Cellolltl Integrating as above, we obtain

t
Sup |0%p|pe < Cellolt 4 F/ sup |0%pg e ds.
R27 0 R2n

and we can use Lemma 3.2 to obtain (3.1). O

Theorem 2. Suppose that Ly is given by (1.1) with P satisfying (1.3) and 0 < p < 2.
If A(t) satisfies (in the notation of §2)

Q. A(t) = LoA(t), A(0) = Op(ag), ao€ S,

Then, for every N there exist Cy > 0 and a(t) € S%) such that for T given by (1.10)
and

I't 2
a(t) — (exptH,)*ag € h2_3pe3FtS£(2t) and
IA(#) = Op(a(t)) ]|z < Cne* RN, (3.6)

Proof. We define
Uo(t)b = (exp th)*b, 8tU0(t) = Hon(t), UO(O) = I,
and note that using the definition (3.5) and Lemma 3.1 we have

U(t—s): Sk, — Sk, (3.7)

p(s)
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To construct a(t) we start with ag(t) := Up(t)ag so that ag(t) € S[fé).
Op(ag(t)). Then, using Lemma 2.2 we obtain

Ao(t) = Opla(t)) = Op(Hyao(t)) = LoAo(t) + Opleo(t)), eolt) € hZeH1SE:

Set Ay(t) =

Suppose now that we found
a;(t) € hE3ihMtgli j=0,... N -1
such that, with Ay_, := Z;V:_Ol Op(a;(t)), we have
AN—I = E(]AN_l(t) + Op(eN(t)), €N<t> c h(273p)N€3NrtS£(2t).

Using ey we define
¢
an(t) :== —/ Uop(t — s)en(s)ds, Owan = Hpan —en, an(0) =0.
0

Then, using (3.7),
aN(t c h(273p)N63NFth(2t)’

)
and hence, with Ax(t) = Ay_1(t) + Op(an(t)), we have
An(t) = LoAn_1(t) + Op(en(t)) + Op(an(t))
= LoAn-1(t) + Op(Hpan(1))
= ﬁUAN<t) + Op(€N+1(t)), €N+1(t) S h(273p)(N+1)63(N+1)Ft5’§(2t).
Note that in the last line we used Lemma 2.2 to obtain the estimates on epy;. This
gives a = ).y aj;.
To compare Ay(t) := Op(a(t)) to A(t), we use the fact that e’ ® preserves the
Hilbert—Schmidt norm (see (1.1)):

t
P S/ He(t_s)ﬁo Op(€N+1(S))‘
0

This completes the proof 0J

|A(t) — An(t)

ds < h(2_3p)(N+1)€3(N+1)Ft.
5

4. THE SEMIGROUP GENERATED BY THE LINDBLADIAN.
We prove here that the Lindblad evolution is well defined in the space of Hilbert—

Schmidt operators. This is done under the assumption (1.3) alone.

To describe the action of £ on operators . — ., we identify such operators with
their Schwartz kernels in R” x R™ and consider

L: (R XR") = 'R xR"), Ly: S (R"xR") - 7 (R" x R"). (4.1)
As a consequence of Proposition A.2 below we show that with

D(L) = {A € L(L*(R")) : L1A € L (L*(R™))}, (4.2)
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the Lindbladian £ satisfies
L=1L, L=L
where L£§ : Z(R" x R") — .Z(R" x R") is the formal adjoint of L.
We start by describing the adjoint of L.

Lemma 4.1. The adjoint of the Lindblad operator L, L*, is given by
L'B=- + 21 Z L'BL, — L*L B+ BLL)),
with domain

D(L)Y={Ae % : LA L}
where for any A € %, L*A is defined as an operator . — .

13

(4.3)

Proof. By Proposition A.2 it is sufficient to compute the formal adjoint in the action
on operators .’ — .. Observe that, using cyclicity of the trace, for A, B : . — %,

<%[P, A, B> — tr (%[P, A]B*)

53

—tr (A(= £[P,B))") = (4, ~4[P, B,
(L;AL?, B) g, = tr (LjAL;?B*> - (AL;B*LJ) — (A, L'BL;) 4,
(LIL;A, B) g, = tr (L;L]-AB*> (AB Lr ) — (A, L'L;B) g,
and similarly for (AL} L;, B) «,

We next record some properties of £ and its adjoint.

Lemma 4.2. For A: . — .7,

2Re(LA, A) 4 Z” A%, + h<Z[L Li]A*, A%) g,

J

and

% g * v X
2Re<£ A7A>32 = _E Z |HL]7A]||.?¥’2 + E<Z[LJ7LJ]A7A>$2
J

J
Proof. First, observe that (1.2) and (4.3) show

(CA)* = LA*,  (LrA)" = L*A".

<(PA AP)B’ ) =i (A[P, B]*)

(4.4)

(4.5)
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Thus, we compute
2Re(LA, A) g, =tr((LA)A™ + A(LAY))

~ (%[P, AA" + A%[P, A7+ 25 (LALA + AL AL

J

’}/ * * * * * * * T %
— g L LAA + AL A" + AL A" + AA L;L,))
J

— tr (%[P, AJA* + A%[P, A*]>

i * Ak * T % * * * *
bt (LALA + ALA'L; = LLAA — AL LA").
J

Now,
tr ([P, AJA* + A[P, A*]) = tr (PAA* - AA*P> —0,
and
tr (L AL A + AL AL = L L;AA" = AL L;A")
— tr (= [Ly, A([L5, A])* + LAA Ly + AL; ;A" — L AA" — AL L;A")
= tr (= L3, ALy, A" + L5, L}]A" A).

Hence, (4.4) follows.

The computation for (4.5) is similar. Since the commutator part of £* has the same
form as that of £, we only need to compute

tr (LJALA" + ALA'L; — LL;AA" — AL LA
— tr ( — (L%, A)([LE, A + L AAL; — L;LjAA*)
_ ( (L, AL, A+ (L, L;]AA*),
and (4.5) follows. O

The next lemma will be used to control the second terms on the right hand sides of
(4.4) and (4.5).

Lemma 4.3. Let Cy € R and suppose that E : . — L? is a self-adjoint operator on
L*(R") satisfying E < Cy. Then, for B: . — .,

(EB.B) < CollBI% (4.6)
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Proof. To see this, observe that exists an L2-orthonormal basis uj and \; > 0,

BB =Y i @u (f@9)() = fle.g).
J
We also note that if A; > 0 then u; € ¥/ C D(E). Then,

<EB, B>$2 = (EBB") = Y {EBB"w; u;)i2 = Y My{(Buy, ;)
J J

<Co Y A= CollBl%,

J

which is (4.6). O
Next, we provide an estimate

Lemma 4.4. Suppose that, as a bounded self-adjoint operator on L*(R™) (see (1.6))

< 2Mh
Zj:[Lj,Lj]g o (4.7)

Then, for A: . — %" and X\ > 0,
MAlz < (£ =M =NAllz, Az < (£ =M= NA| 4, (4.8)

Proof. Observe that by Lemma 4.2, and Lemma 4.3
’y * * *
2Re{(L— M = M)A, Az, < —2M|Allz, —2M | All, + 2 (D [L;, L)A7, A7)

- 2
J

< —2M|All -
Hence,
2M|Allz, < [2Re{(L — M — M)A, A) 2| <2[(L = M — NA[ %Al 2,

from which the first estimate in (4.8) follows. The argument for the second estimate
is identical. O

Proposition 4.5. Suppose that (4.7) holds. Then the operator L with domain D(L) :=
{Ae % : LA L} generates a strongly continuous semigroup

et L= L and || gz <M t>0.

Proof. By Proposition A.2, or rather its proof (see (A.4)), for A € D(L) there exists

a sequence of operators A,, : ./ — % such that A, 2, A and LA, BNy Hence,
for A e D(L) and A > 0, Lemma 4.4 gives

NAllz, = A Jim [ 4,
< lim [[(£ — M~ M)Az = (£~ M~ XAl

T n—oo
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Similarly, for A € D(L*), we have A, : " — % such that A, 0 A and LA, EZN
L*A. This implies that for A € D(L*), and A > 0

MAllz, < I(£7 =M = X)Al| .
In particular, (L — M — \)™': % — D(L) exists and satisfies,
H(‘C - M- )‘)_1||$2—>$2 < >‘_17 A > 0.

The Hille-Yosida theorem then implies that £ — M generates a strongly continuous

HL=M) gatisfying

semigroup e
e gz <1,
from which the proposition follows. 0

We conclude this section by showing how condition (4.7) is related to a lower bound
on the friction (1.6)

Lemma 4.6. Let

J
My :=supp, = %;%,@}- (4.9)
Then there is Cy > 0 such that (4.7) holds with
M = ~vMy + Cyh, (4.10)
for 0 < h < 1. Furthermore, if p =0, then (4.7) holds with
M = Coh*y (4.11)

for0 < h < 1.

Proof. Since (1.3) shows that p € S(1), the first estimate is a straightforward appli-
cation of sharp Garding inequality for the class S(1) — see [DiSj99, Theorem 7.1] or
[Zw12, §4.7.2]. When p = 0, we use that [L;, L}] = Op(4:{¢;,{;} + h’e) for some
e € S(1) and hence the second estimate follows. O

5. THE CLASSICAL DYNAMICS

It will be convenient now to rewrite the Lindbladian as

LA= %[P, Al + % (154, L3] + [Lg, AL]])
J

Our first goal is to motivate the classical Fokker—Planck equation (1.4) from the evo-
lution equation for L.

Observe that for 0 < p < 1, and a € SPLQ,

h _  h_ -
LjA = Op(ﬁja + Z{gj, a} + h2_2p61>, 141‘/;< = Op(aéj + Z{a, g]} + h2_2p62),
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with e; € SpLQ. Hence for a € 552

LA =Op(H,a) + % S Op((244),4;}a — €;Hy a + [Hya)
J

5.1)

L (

+ % S~ Op(H;, Hyya + Hy Hy,a) + h**(1 + ) Op(e),
J

with e € SPLQ. Heuristic arguments in the physics literature — see [HRR23a] and the
discussion and references given there — suggest that the natural classical evolution
should be given by the equation up to the diffusion term 3 ; Hg He; + Hy  Hy, which is
a non-positive differential operator acting on the classical observable a (see (1.7) for a
striking example). Hence as the generator of the classical flow (a form of Fokker—Planck
operator) we take @ € Diff*(R?") given by

_ _ h
Q= H,+ %2(2{@,@} — {;Hy, + (;Hy,) + % > (Hy He, + Hi Hy,).
- j

The key estimate for evolution by @ is given as follows. We need here the additional
technical assumption (1.12). To state the next estimate we recall the definition of
semiclassical Sobolev norms:

e [+ PP ROPAC a(0) = [u(eas, (5.2)

[l

Proposition 5.1. Suppose that (1.12) holds, and v < h™'. Let U(t) : L*(R*") —
L3(R*") be defined by

(0, — Q)U(t) =0, U0)=1d. (5.3)
Then, for all s > 0, there is C' > 0 such that for all t > 0,

1U(@)]

s < CeM(1 4 tye), (5.4)

where My is given in (4.9), the norms are defined in (5.2), and

e :=+/7h. (5.5)

If, Zj{éj,@} = 0, that is there is no friction (1.6), then
U z—ms < C. (5.6)
Remark. The estimates (5.4) and (5.6) do not address the smoothing effect of the

evolution by (5.3). Obtaining quantitative estimates seems to require stronger assump-
tions than (1.3) and we restrict ourselves to that case.
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Proof. Recall from (1.4) and (1.5) that @ is given by H, +~>_; B; + p plus a second
order divergence form operator and the first two terms are anti-selfadjoint. Hence, for
u € H?,

_0 hy
Re(Qu, u) Z {4, 4}, u) Z [ H e ullZ> + [ Heullz) -

We start with an estimate on the solution, v, to
M9, — Q) (e (1)) = (9 — Q + Moy)v(t)
We have
(f,v) = Re((0: — Q@ + Mov)v, v)
= 0ol + (Mo — 3 2405, L1y, )+ L ST ool + 1 Hioll)

J J

i v(0) = (5.7)

Hence,

Oullv]lZ: il Z | Heyull7e + [[Hgullf2) < 21(f,0)].
For T' > 0 the ellipticity hypothesis (1.11) then gives

T T
hry
Jo(T) e+ vhe [ 190lEs < WD + 5 [ 3 (1ol + |1 Heolfe)
0 0 -
J

., (5.8)
2 [ 1A Ol 0Ol + ool
Now let u solve
(0 — Q+ Myy)u =0, u(0) = wup.
Then, applying (5.8), we obtain
T
lu(T) |72 +C/O leVu(®)|[F2ds < [luoll7z, &= /b, (5.9)

To proceed by induction let us assume that for £ > 0

> o HL2+/ > ) u®li:

0<|a|<k 1<]a|<k+1 (51())

<O Y (=) uollzz + CTyelluol 7.
1BI<k
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We now set

- 1 _
Q=) il 4}, Q2= > (~Hy + GHy),

J j
1
Qs = Z(ngng + Hy Hy).
J

so that

(O — Q + Mo)0%u = [Hp, 0%Ju+7[Q1, 0"Ju + 7[Q2, 0%Ju + Yh[@s, 0°u, (5.11)
@Q(O) = 8o‘u0. '
We have the following estimates on the commutators appearing on the right hand side:
I[Hp, OTulle <C Y N0%ullie, @1, 0°Tulle < Cllul|pz,
1<]8|<]af (5.12)
Qe 0l < C Y N10%ullre, Qs 0Tulle <C Y 1107l
1<B<]al 1<p<|el+1

It is important here that in the estimates not involving @)1, we have |$| > 1 on the right
hand sides. To obtain the estimate on commutators with @2, we use assumption (1.12).

Applying (5.8) to (5.11) and using (5.12) we obtain

T
3 ||aau(T)||§2+mh/o S IVoruladt

lo|=k+1 lor|=k+1
T
<c[ 3 (X 1l taluli b S 0% ulie) 07l e
O laj=k+1 1<|8|<k+1 1<|8/|<k+2
+ > 0ullE
|o|=k+1
T
<o X (X Whletah Y 107l [0 ul st
O |aj=k+1  1<|B|<k+1 |8 |=h-+2
+ > 10%uoll: + CT|uoll7.
|o|=k+1

Young’s inequality (2ab < §~a®+ 6b*) allows us to move the highest order terms from
the right hand side to the left hand side and that gives

T
3 ||8°‘u(T)||%g—|—cvh/0 S Vol

lor|=k+1 |a|=k+1

T
<c[ 3 Wuadt+ Y [0l + CTfuo]
0

1<|B|<kA+1 la|=k+1
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We now use the inductive hypothesis (5.10) (with £ = /vh < 1) to obtain

S e u(Rs + o / S 1(20) ultuds

|or|=k+1 |Bl=k+2

<o Y lﬁl/ 10 uladt+ S 1(e0)uoll2

1<|8|<k+1 la|=h+1
+ CTve" ||uol 72

<o X Y 160 wllE + CTvM o)

1<|B|<k+1 || <|B]
+ > 1(€0)*uollFe + CTYe* |lug| 7
|a|=k+1
<C Y Ie0) ugll 2 + CTe|uol 3.
|a|<k+1

Combined with the inductive hypothesis this shows that (5.10) holds with % replaced
by £+ 1.

Returning to (5.7) we see that (5.10) gives (5.4). When Zj{?j,éj} = 0 then we
can take My and ()3 = 0 in the proof and that gives (5.6) (note that in this case @4
vanishes and hence the last term on the right hand side of (5.10) does not appear). O

6. AGREEMENT OF QUANTUM AND CLASSICAL DYNAMICS

We now obtain an accurate approximation to the solution of the Lindblad master
equation which is a far reaching strengthening of Theorem 1 in §1.

Theorem 3. Suppose that L is given by (1.2), assumptions (1.3), (1.11), and (1.12)
hold, h?*=1 <~ < h™! for some 0 < p < % There is Cy > 0 such that if A(t) satisfies
(in the notation of §2)

QA(t) = LA(t), A(0) = Op(ag), ao€ SE",
then, for every N there exist Cy > 0 and a(t) € ng such that
IA(E) — Op(al(®)l 22 < CyeMrHComt(1 1 5)2N+22+1 a3+,

i 6.1
alt) — U(t)ao € eMPHRE(1 4 4)(1 4 1970)7SE, oy
where U defined by (5.3).
If Zj{fj,lz-} = 0, that is there is no friction (1.6), then
4 = Op(a(t) 1, < One ™ (1+) ¥ v gD,

a(t) — U(t)ag € K (1 + 4)S%°,
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Proof. Define ay(t) := U(t)ap, with U given in (5.3). Then, (5.4) gives
ao(t) € eM(1 4 thh)S£2, uniformly in ¢ > 0.
t)). Then, using Lemma 2.2 as in the derivation of (5.1), we obtain

Set Ap(t) := Op(ag
Ap(t) = Op(ao(t)) = Op(Qao(t)) = LA(t) + Op(eo(t)),

(
lo(t)
where
eo(t) € W73 (1 + 7)™ (1 + t42h) S
Suppose, by induction that we have found
a;(t) € MR 4y (1 4ty ISE j=0,... N ~1

such that, with Ay_; := ij;(]l Op(a;(t)), we have

Ay_1 = LAy_1(t) + Op(en(t)),
with

en(t) € eMEV (1 4 192 h)NRCTIIN (1 4 4)N G

Using ey we define t

an(t) = — / Ut — s)en(s)ds.
Then, '

ay(t) € MN8N (1 L )N (1 4 t'th)N+1SpL2,
and hence, with Ay (t) = Anx_1(t) + Op(an(t)), we have
An(t) = LAN_1(t) + Op(en(t)) + Op(an(t))

= LAN_1(t) + Op(Qay(t))

= LAN(t) + Op(en4a(t)),
with

eni1 € eM(wttN(l _I_/V)N+1h(2—3p)(N+1)(1 +t72h)N+1)S§2.

Note that in the last line we used Lemma 2.2 to obtain the estimates on eyy;. This
gives a = ) .y a;.

We next use Proposition 4.5 and Lemma 4.6 to compare A(t) and Ay(t):

1A() = Ax ()], < /Ot\

< CNe(M0+Clh)’yt(1 + ,V)N+1tN+lh(273p)(N+1)(1 + t’yzh)NH.

ds

"% Op(en1(s)) P

2

Finally, to obtain (6.1) observe that for any Cy > Cf,
eC’lh'yt(l +t,y2h)N+1 S Cngiwt(l +’7)N+1-

The stronger version under the assumption that Zj{ﬁj,?j} = 0 follows from the
stronger estimates in (4.11) and (5.6). O
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APPENDIX: OPERATORS WITH QUADRATIC SYMBOL GROWTH

We start with the composition formula of operators quantizing symbols in Sy where
that space was defined in (2.3).

Proposition A.1. Suppose that a; € Sy, j = 1,2. Then Op(a1) Op(az) = Op(b),
where for any N > max(ky, k),
N1y ¢
b(a,&h) = (—,J(Dx,Dg,Dy,Dn)> a1 (2, €)as (Y, ) |lamyemn € BV So, (A1)

0N
— 0\ 20

where o is the standard symplectic form on R?".

Remark. Note that b in the statement of the proposition is not necessarily in an S
class since they are not closed under multiplication.

Proof. We observe that Sy C S(my), mi(z,§) = (1 + |z| + |[§])*. Hence [Zwl12,
Theorem 4.18] applies and, writing z = (z,&), w = (y,n),
bz, h) = exp(ihA(D)) (@) (£)as(w))|cw,  A(Ds) = —50(Ds, De, Dy, D).

By Taylor’s formula,

b(z,h) = %(ihA(D))Z(al(Z)az(w))|z=w + Ry (z,h)
where !
1 N—1_ithA(D) (; N
Rn(z,h) : m(l — t)yNLhAD) R A(D))N ((a1(2)ag(w))] 2 0-

For N > max(ki, ks), A(D)Nay(2)az(w) € So(R%%,) and since ¢ 4@P) . Sy (R*") —
S(R*) (with uniform bounds for 0 < ¢ < 1 — see [Zw12, Theorem 4.17]) we conclude
that Ry € h" Sy(R?") which is (A.1). O

We now present a general spectral result following the proof of a special case in
[H695] (see the example in [Zw12, §C.2.2]):
Proposition A.2. Suppose that p(x,£) € C°(R? x RY) satisfies
0°p(2,§)| < Ca, o] 22, (A.2)
and define
Nyu = p"(z, D)u, D(N,):=.7(R"),
Myu = p*(x, D)u, D(M,):= {u e L*R?) : p"(x, D)u € L*(R")},

where in the case of u € L*(RY) C '(R?) we consider p”(x, D)u € 7' (RY). Then
M, s closed and
M,=N,, M= M,. (A.3)

p
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Proof. We recall that p“(z,D) : %" — %" is continuous and hence, if u; — u and
pY(x,D)u; — v in L? then u; — w in %’. Consequently, v = p“(z,D)u € L?
u € D(M,) and M,u = v. This shows that M, is closed.

To show that M, is the closure of N, we have to show that for any u € D(M,) there
exists a family u. € .¥ such that u. — u and

p¥(x, D)u, — p*(x,D)u in L* as ¢ — 0. (A.4)
To construct u. we take y € C>°(R?*?) equal to one in Bz« (0, 1), and put
u. = xY(r,D)u € .7, Xe(x,€) = x(ew,ef), u.—u in L*
Then pYu. = x¥p u. + [p¥, x¥]u. and as x¥p“u — p% in L? we need to show that
[p¥(z, D), x¥(x,D)Ju — 0 in L* , &— 0. (A.5)

To see this we note that [Zw12, Theorem 4.18] and the two term Taylor expansion of

GiAD) o
give

[p" (2, D), xe(x, D)] = af (x, D), ac(x,§) = i{xe,p}(z, &) + b (x, D),

where

be(x,€) ::/0 (1—¢) (e PV GAD))? (p(x, €)X (y.n) — Py, M)X=(2,€))) lomye—ndt,

and A(D) := o(D,, D¢; Dy, D,). In view of (A.2), |0°p| < C(1+|z|+1¢]), for |a| =1,
and hence

{x-,p}(@, &) = ¢ Z (0n,p(2,€) (06, x) (e, 6€) — e, p(x, £) (0, X) (€, €€))

is uniformly bounded in the symbol class S(1) as € — 0. The same assumption also
shows that |0%b.| < C,e? for all a. Hence, [Zw12, Theorem 4.23] gives

I[p" (x, D), xc(x, D)]||z2r2 < C, uniformly as ¢ — 0. (A.6)
We now choose ¢ € C*(R™) supported in Bga(0,1), equal to one near 0, and put
.(x) = 1(ex). Then
{xe pHz, () = 0,
so that the bound on b, and [Zw12, Theorems 4.18 and 4.23] give
I[p™ (2, D), X7 (2, D)= ()| 212 < Ce.
Since 1.u — u in L?, this and (A.6) give (A.5).

It remains to show the last assertion in (A.3). For that we recall that v € D(M}) if
and only if there exists C' = C(v) such that for all u € D(M,)

(Myu,0) < Clull 2. (A7)
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For uw € ¥ C D(M,) we have (Myu,v) = (u,p"(x, D)v), where p¥(z, D)v € . and
(A.7) implies that p¥(x, D)v € L*. Hence M} C Mj. Since M is closed, N5 C N =
N» = M. Tt follows that My = Ny C M* and that M» = M. O
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