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Abstract. Motivated by the study of flat bands in models of twisted bilayer graphene

(TBG), we give abstract conditions which guarantee the existence of a discrete set

of parameters for which periodic Hamiltonians exhibit flat bands. As an application,

we show that a scalar operator derived from the chiral model of TBG has flat bands

for a discrete set of parameters.

1. Introduction

Existence of flat bands for periodic operators (in the sense of Floquet theory) has

interesting physical consequences, especially in the case of nontrivial band topol-

ogy. A celebrated recent example is given by the Bistritzer–MacDonald Hamiltonian

[BiMa11] modeling twisted bilayer graphene (see [CGG22] and [Wa∗22] for its math-

ematical derivation). A model exhibiting exact flat bands is given by the chiral limit

of the Bistritzer–MacDonald model considered by Tarnopolsky–Kruchkov–Vishwanath

[TKV19]. Both the Bistritzer–MacDonald model and its chiral limit depend on a pa-

rameter corresponding to the angle of twisting between two graphene sheets and, in

the chiral model, the perfectly flat bands appear for a discrete set of values of this

parameter. This follows from a spectral characterization of those magic angles given

by Becker–Embree–Wittsten–Zworski [Be*22]. Existence of the first real magic angle

was provided by Watson–Luskin [WaLa21], with its simplicity established by Becker–

Humbert–Zworski [BHZ22a]. That paper also showed existence of infinitely many,

possibly complex, magic angles.

The purpose of this note is to provide a simple abstract version of the spectral

characterization of magic angles given in [Be*22] (see also [BHZ22b, Proposition 2.2]).

In §3 we apply this spectral characterization of flat bands in a model to which the

argument from [Be*22] does not apply.

To formulate our result we consider Banach spaces, X ⊂ Y , and a connected open

set Ω ⊂ C. The result concerns a holomorphic family of Fredholm operators of index

0 (see [DyZw19, §C.2]):

Q : Ω× C→ L(X, Y ), (α, k) 7→ Q(α, k). (1.1)
1
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We make the following assumption: there exists a lattice Γ∗ ⊂ C, and families of

invertible operators γ 7→ W•(γ) : • → •, • = X, Y , γ ∈ Γ∗, such that

Q(α, k + γ) = WY (γ)−1Q(α, k)WX(γ), γ ∈ Γ∗. (1.2)

A guiding example is given by the chiral model of twisted bilayer graphene (TBG)

[TKV19], [Be*22], [BHZ22b]:

Q(α, k) := D(α) + k, D(α) :=

(
2Dz̄ αU(z)

αU(−z) 2Dz̄

)
, Ω = C,

2Dz̄ = 1
i
(∂x1 + i∂x2), z = x1 + ix2 ∈ C,

(1.3)

where U satisfies

U(z + γ) = ei〈γ,K〉U(z), U(ωz) = ωU(z), U(z̄) = −U(−z), ω = e2πi/3,

γ ∈ Λ := ωZ⊕ Z, ωK ≡ K 6≡ 0 mod Λ∗, Λ∗ :=
4πi√

3
Λ, 〈z, w〉 := Re(zw̄).

(1.4)

An example of U is given by the Bistritzer–MacDonald potential

U(z) = −4
3
πi

2∑
`=0

ω`ei〈z,ω
`K〉, K = 4

3
π. (1.5)

We note that a potential satisfying (1.4) is periodic with respect to the lattice 3Λ and

that we can take

Y := L2(C/Γ;C2), X := H1(C/Γ;C2), Γ := 3Λ.

(For the Fredholm property of D(α) + k : X → Y see [Be*22, Proposition 2.3]; the

index is equal to 0.) The operators W•(γ) are given by multiplication by ei〈γ,z〉, γ ∈ Γ∗,

with Γ∗ the dual lattice to Γ. (The operator is the same but acts on different spaces.)

The self-adjoint Hamiltonian for the chiral model of TBG is given by

H(α) :=

(
0 D(α)∗

D(α) 0

)
, (1.6)

and Bloch–Floquet theory means considering the spectrum of

Hk(α) := e−i〈z,k〉H(α)ei〈z,k〉 : H1(C/Γ;C4)→ L2(C/Γ;C4),

Hk(α) =

(
0 Q(α, k)∗

Q(α, k) 0

)
, Q(α, k) = D(α) + k,

(1.7)

see [Be*22] (we should stress that it is better to consider a modified boundary condition

[BHZ22b] rather than Γ-periodicity but this plays no role in the discussion here).

A flat band at zero energy for the Hamiltonian (1.6) means that

∀ k ∈ C 0 ∈ SpecL2(C/Γ;C4) Hk(α) ⇐⇒ ∀ k ∈ C kerH1(C/Γ;C4) Hk(α) 6= {0}
⇐⇒ ∀ k ∈ C kerH1(C/Γ;C2) Q(k, α) 6= {0}.

(1.8)
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We generalize the result of [Be*22] stating that the set of α’s for which (1.8) holds,

which we denote by Ach, is a discrete subset of C and that (1.8) is equivalent to

∃ k ∈ C \ Γ∗ kerH1(C/Γ;C2) Q(k, α) 6= {0}. (1.9)

The key property in showing this is the existence of protected states [TKV19], [Be*22]:

∀α ∈ C, k ∈ Γ∗ dim kerH1(C/Γ;C2) Q(k, α) ≥ 2, dim kerH1(C/Γ;C2) Q(k, 0) = 2. (1.10)

This is replaced by the hypothesis (1.11). We use 1lK to denote the indicator function

of K.

Theorem 1. In the notation of (1.1) and assuming (1.2), suppose that there exists a

discrete set K ⊂ C such that for some m0 ∈ N and α0 ∈ Ω, we have,

dim kerQ(α0, k) = m0 1lK(k), dim kerQ(α, k) ≥ m0 1lK(k), k ∈ C, α ∈ Ω. (1.11)

Then there exists a discrete set A ⊂ Ω such that

kerQ(α, k) 6= {0} for α ∈ A and k ∈ C,

dim kerQ(α, k) = m0 1lK(k) for α ∈ Ω \ A and k ∈ C.
(1.12)

In view of (1.10) we see that (1.11) is satisfied for Q given in (1.3) with m0 = 2,

α0 = 0, Ω = C and K = Γ∗. For a direct proof see [Be*22, §3] or [BHZ22b, §2].

Remarks. Theorem 1 is valid under a weaker condition than (1.2). As seen in §2,

we need to control the dimension of kerQ(α, k) for every k using the dimension of

kerQ(α, k) for k in some fixed compact set. That some condition is needed (other

than holomorphy and the Fredholm property) can be seen by considering the simple

example of Q(α, k) = 1− αk, X = Y = C. In this case (1.11) is satisfied with α0 = 0

and K = ∅. Nevertheless,

dim kerQ(α, k) =

{
0 k 6= α−1

1 k = α−1

and (1.12) fails. We opted for the easy to state condition (1.2) in view of the motivation

from condensed matter physics.

2. Proof of Theorem 1

We first fix k0 ∈ C \ K and define

Ak0 := {{α ∈ Ω : Q(α, k0)−1 : Y → X exists}. (2.1)

Since α 7→ Q(α, k0) is a holomorphic family of Fredholm operators of index zero, and

kerQ(α0, k0) = {0}, we conclude that α 7→ Q(α, k0)−1 is a meromorphic family of
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operators and, in particular, Ak0 is a discrete set – see [DyZw19, §C.3]. Also, for

α /∈ Ak0 , k 7→ Q(α, k)−1 is a meromorphic family of operators and the multiplicity

m(α, k) :=
1

2π
tr

∮
∂D

Q(α, ζ)−1∂ζQ(α, ζ)dζ,

is well defined. The integral is over the positively oriented boundary of a disc D which

contains k as the only possible pole of ζ 7→ Q(α, ζ). For such D there exists ε > 0

such that

m(α, k) =
∑
k′∈D

m(α′, k′), if |α− α′| < ε. (2.2)

In particular for a fixed k ∈ C, α 7→ m(α, k) is upper semicontinuous. We now define

U := {α ∈ Ω \ Ak0 : ∀ k, m(α, k) = m0 1lK(k)}.

We note that α0 ∈ U and that Ω \ Ak0 is connected. Hence U = Ω \ Ak0 if we show

that U is open and closed in the relative topology of Ω \ Ak0 .
Let α ∈ U . We start by showing that for any compact subset K ⊂ C, there exists

εK > 0 such that

m(α′, k) = m0 1lK(k) = m(α, k) for all k ∈ K and |α− α′| < εK . (2.3)

To see this we note that for any fixed k ∈ C there exist Dk = D(k, δk), and εk > 0

such that that (2.2) holds for |α − α′| < εk. By shrinking Dk (and consequently εk)

we can assume that (here we use the discreteness of K)

Dk \ {k} ⊂ {K. (2.4)

Since K is compact, we can find a finite cover K ⊂
⋃N
i=1Dki . Then ki is the only

possible pole for k 7→ Q(α, k)−1 in Dki and for |α−α′| < εK := mini=1,...N εki , we have

m(α, ki) =
∑
k∈Dki

m(α′, k).

If ki /∈ K then, as α ∈ U , m(α, ki) = 0 and consequently m(α′, k) = 0 for k ∈ Dki ⊂ {K.

On the other hand, if ki ∈ K then,

m0 =
∑
k∈Dki

m(α′, k).

and since m(α′, ki) ≥ m0 (by the assumption (1.11)) we have m(α′, k) = 0 for k ∈
Dki \ {ki} ⊂ {K and m(α′, ki) = m0. Putting those two cases together, we have

m(α′, k) = m0 1lK(k) for k ∈ K and |α− α′| < εK as claimed in (2.3).

Now, to complete the proof that U is open, we use (1.2). Let K ⊂ C contain the

fundamental domain of Γ∗ and εK as in (2.3). Then, for all k ∈ C, there is γ ∈ Γ∗

such that k + γ ∈ K. Using (2.3), we have for |α− α′| < εK ,

m(α′, k + γ) = m(α, k + γ).
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But then, by (1.2) m(α′, k + γ) = m(α′, k), m(α, k + γ) = m(α, k), and hence

m(α′, k) = m(α, k) = 1lK(k).

Since k ∈ C was arbitrary, this implies α′ ∈ U .

To show that U is closed suppose that Ak0 63 αj → α /∈ Ak0 and m(k, αj) =

m0 1lK(k). Then, since α /∈ Ak0 , for every k ∈ C, there exist εk > 0 and Dk such

that (2.2) and (2.4) hold. In particular, for j large enough (depending on k),

m(α, k) =
∑
k′∈Dk

m(αj, k
′) =

∑
k′∈Dk

m0 1lK(k′) = m0 1lK(k).

Hence U is closed and open which means that U = Ω \ Ak0 .
Recalling the definition (2.1), we proved that

Ω \ Ak0 ⊂ {α : ∀ k, m(α, k) = m0 1lK(k)} ⊂ Ω \ Ak1 ,

for any k1 /∈ K. But this means that Ak0 is independent of k0 and for α ∈ A := Ak0 ,
Q(α, k)−1 does not exist for any k ∈ C. Since Q(α, k) is a Fredholm operator of index

0, this shows that kerQ(α, k) 6= {0} for all k. �

3. A scalar model for flat bands

One of the difficulties of dealing with the model described by (1.3), (1.6) is the fact

that D(α) acts on C2-valued functions. Here we propose the following model in which

D(α) is replaced by a scalar (albeit second order) operator. This is done as follows.

We first consider P (α) : H2(C/Γ;C2)→ L2(C/Γ;C2) defined as follows:

P (α) := D(−α)D(α) = Q(α)⊗ IC2 +R(α), Q(α) := (2Dz̄)
2 − α2V (z),

R(α) := −α
(

0 V1(z)

V1(−z) 0

)
, V (z) := U(z)U(−z), V1(z) := 2Dz̄U(z).

(3.1)

If we think of P (α) as a semiclassical differential system with h = 1/α (see [DyZw19,

§E.1.1]) then Q(α) is the quantization of the determinant of the symbol of D(α) and

R(α) is a lower order term. We lose no information when considering P (α) in the

characterization of flat bands (1.8):

Proposition 1. If P (α, k) := e−i〈z,k〉P (α)ei〈z,k〉 then

kerH1(C/Γ)(D(α) + k) 6= {0} ⇐⇒ kerH2(C/Γ) P (α, k) 6= {0}. (3.2)

In particular α ∈ Ach if and only if k ∈ SpecL2(C/Γ) P (α, k) for some k /∈ Γ∗ (which

then implies this for all k).

Proof. We note that P (α, k) = (D(−α) + k)(D(α) + k) and that

D(−α)− k = −R(D(α) + k)R, R

(
u1

u2

)
(z) =

(
u2(−z)

u1(−z)

)
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and hence

kerH1(C/Γ)(D(α) + k) = R kerH1(C/Γ)(D(−α)− k).

Since D(α) is elliptic, the elements of the kernels above are in C∞(C/Γ) and hence H1

can be replaced byHs for any s – see [DyZw19, Theorem 3.33]. Hence if kerH2 P (α, k) 6=
{0} then either kerH2(D(α)+k) = kerH1(D(α)+k) 6= {0} or kerH1(D(−α)+k) 6= {0}.
If k /∈ Γ∗ then the equivalence of (1.9) and (1.8) gives the conclusion. �

We now consider a model in which we drop the matrix terms in (1.1), the definition

of P (α), and have Q(α) act on scalar valued functions. The self-adjoint Hamiltonian

corresponding to (1.6) is now given by

H(α) :=

(
0 Q(α)∗

Q(α) 0

)
, Q(α) := (2Dz̄)

2 − α2V (z), V ∈ C∞(C),

V (x+ γ) = V (x), γ ∈ Λ := ωZ⊕ Z, V (ωx) = ω̄V (x), ω := e2πi/3.

(3.3)

The potential is periodic with respect to Λ, and hence the usual Floquet theory applies:

H(α, k) :=

(
0 Q(α, k)∗

Q(α, k) 0

)
, Q(α, k) := (2Dz̄ + k)2 − α2V (z),

SpecL2(C) H(α) =
⋃

k∈C/Λ∗
SpecL2(C/Λ)H(α, k),

(3.4)

where SpecL2(C/Λ) H(α, k) is discrete and is symmetric under E 7→ −E. Just as for the

chiral model of TBG, a flat band at zero for a given α means that

∀ k ∈ C 0 ∈ SpecL2(C/Λ;C2) H(α, k) ⇐⇒ ∀ k ∈ C kerH2(C/Λ;C) Q(α, k) 6= {0}.

As in the chiral model, we take WX(γ) = WY (γ) = ei〈γ,z〉, γ ∈ Λ∗, the dual lattice to

obtain (1.2). Theorem 1 shows that as in the case of (1.6) this happens for a discrete

set of α ∈ C:

Theorem 2. For H and Q given in (3.3) there exists a discrete set Asc ⊂ C such that

kerH2(C/Λ;C) Q(α, k) 6= {0} for α ∈ Asc, k ∈ C,

dim kerH2(C/Λ;C) Q(α, k) = 1lΛ∗(k) for α /∈ Asc.
(3.5)

This is an immediate consequence of Theorem 2 once we establish (1.11) with m0 = 1

(and α0 = 0). The kernel of Q(0, k) = 2(Dz̄ + k)2 , on H2(C/Λ) is empty for k /∈ Λ∗

and is given by Cei〈k,z〉, when k ∈ Λ∗. This gives the first condition in (1.11). The

second one is provided by

Proposition 2. For all α ∈ C and k ∈ Λ∗, dim kerH2(C/Λ;C) Q(α, k) ≥ 1.
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Proof. The proof is essentially the same as that of [BHZ22b, Propositions 2.1] and it

uses symmetries of H(α) in (3.3): for u ∈ L2(C/Λ;C2),

Lγu(z) := u(z + γ), γ ∈ Λ, C u(z) :=

(
1 0

0 ω̄

)
u(ωz), W u =

(
−1 0

0 1

)
u,

LγH(α) = H(α)Lγ, CH(α) = H(α)C , C Lγ = LωγC ,

W H(α)W = −H(α), LγW = W Lγ, C W = W C .

We introduce two orthogonal subspaces of L2(C/Γ):

L2
j := {u ∈ L2(C/Γ) : Lγu = u, γ ∈ Λ, C u = ω̄ju}, j = 0, 1.

Then the standard basis of C2 satisfies ej ∈ L2
j and H(0)ej = 0. Using W we see that

the spectrum of H(α) on L2
j (with the domain given by H2(C/Γ) ∩ L2

j) is symmetric

under E 7→ −E. Since 0 is a simple eigenvalue of H(0)|L2
j
, j = 0, 1 and the eigenvalues

of H(α)|L2
j

are continuous in α, 0 remains an eigenvalue for all α. That means that

kerH2 Q(α, 0) is at least one dimensional. The same argument applies at all k ∈ Λ∗ by

conjugation with ei〈z,k〉. �

Remarks. 1. The proof of Theorem 1 also shows the following spectral characteriza-

tion of Asc: if

Tk := (2Dz̄ + k)−2V, k /∈ Λ∗, (3.6)

then

α ∈ Asc ⇐⇒ ∃ k /∈ Λ∗ α−2 ∈ SpecL2(C/Λ) Tk

⇐⇒ ∀ k /∈ Λ∗ α−2 ∈ SpecL2(C/Λ) Tk,
(3.7)

Using the methods of [BHZ22a] one can show that for V (z) = U(z)U(−z) with U

given by (1.5) (or for more general classes of potentials described in [BHZ22a]), trT pk ∈
(π/
√

3)Q, p ≥ 2. Together with a calculation for p = 2 (as in [Be*22]) this shows that

|Asc| =∞. With numerical assistance one can also show existence of a real α ∈ Asc.

2. We can strengthen Proposition 2 as in [BHZ22b, Proposition 2.3]: there exists a

holomorphic family C 3 α 7→ u(α) 6≡ 0, such that u(0) = 1 and Q(α, 0)u(α) = 0.

4. Numerical observations

The spectral characterization (3.7) allows for an accurate computation of α’s for

which (3.3) exhibits flat bands at energy 0. For large α’s however, pseudospectral

effects described in [Be*22] make calculations unreliable. The set (shown as •) Asc ∩
{Reα ≥ 0} where Asc is given in Theorem 2 looks as follows (for comparison we show

the corresponding set, Ach, for the chiral model ◦):
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The real elements of Asc are shown as •. They appear to have multiplicity two.

An adaptation of the theta function argument [DuNo80], [TKV19], [Be*22], [BHZ22b,

§3.2] should apply to this case and the evenness of eigenfunctions in Proposition 2 shows

that they have (at least) two zeros at α ∈ Asc. That implies multiplicity of at least 2.

This is illustrated by an animation https://math.berkeley.edu/~zworski/scalar_

magic.mp4 (shown in the coordinates of [Be*22]). When we interpolate between the

chiral model and the scalar model, the multiplicity two real α’s split and travel in

opposite directions to become magic α’s for the chiral model: see https://math.

berkeley.edu/~zworski/Spec.mp4.

One of the most striking observations made in [TKV19] was a quantization rule for

real elements of Ach with the exact potential (1.4): if α1 < α2 < · · ·αj < · · · is the

sequence of all real α’s for which (1.8) holds, then

αj+1 − αj = γ + o(1), j → +∞, γ ' 3
2
. (4.1)

The more accurate computations made in [Be*22] suggests that γ ' 1.515.

In the scalar model (3.3) with V (z) = U(z)U(−z) where U is given by (1.4) we

numerically observe the following rule for real elements of Asc:

αj+1 − αj = 2γ + o(1), j → +∞, (4.2)

where γ is the same as in (4.1).
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