ANALYTIC HYPOELLIPTICITY OF KELDYSH OPERATORS

JEFFREY GALKOWSKI AND MACIEJ ZWORSKI

Abstract

We consider Keldysh-type operators, $P=x_{1} D_{x_{1}}^{2}+a(x) D_{x_{1}}+Q\left(x, D_{x^{\prime}}\right)$, $x=\left(x_{1}, x^{\prime}\right)$ with analytic coefficients, and with $Q\left(x, D_{x^{\prime}}\right)$ second order, principally real and elliptic in $D_{x^{\prime}}$ for x near zero. We show that if $P u=f, u \in C^{\infty}$, and f is analytic in a neighbourhood of 0 then u is analytic in a neighbourhood of 0 . This is a consequence of a microlocal result valid for operators of any order with Lagrangian radial sets. Our result proves a generalized version of a conjecture made in [Zw17], [LeZw19] and has applications to scattering theory.

1. Introduction

We consider analytic regularity for generalizations of the Keldysh operator [Ke51],

$$
\begin{equation*}
P:=x_{1} D_{x_{1}}^{2}+D_{x_{2}}^{2} . \tag{1.1}
\end{equation*}
$$

The operator P has the feature of changing from an elliptic to a hyperbolic operator at $x_{1}=0$. It appears in various places including the study of transsonic flows, see for instance Čanić-Keyfitz [CaKe96] or population biology - see Epstein-Mazzeo [EpMa13]. Our interest in such operators comes from the work of Vasy [Va13] where the transition at $x_{1}=0$ corresponds to the boundary at infinity for asymptotically hyperbolic manifolds (see [Zw16]), crossing the event horizons of Schwartzschild black holes (see [DyZw19a, §5.7]) or the cosmological horizon for de Sitter spaces. The Vasy operator in the asymptotically hyperbolic setting is given by

$$
\begin{equation*}
P(\lambda)=4\left(x_{1} D_{x_{1}}^{2}-(\lambda+i) D_{x_{1}}\right)-\Delta_{h\left(x_{1}\right)}+i \gamma(x)\left(2 x_{1} D_{x_{1}}-\lambda-i \frac{n-1}{2}\right), \tag{1.2}
\end{equation*}
$$

where $h\left(x_{1}\right)$ is a smooth family of Riemannian metrics in $x^{\prime}, x=\left(x_{1}, x^{\prime}\right) \in \mathbb{R}^{n}$ and $\gamma \in C^{\infty}\left(\mathbb{R}^{n}\right)$. The resonant states at resonant frequencies λ (see [DyZw19a, Chapter 5]) are the smooth solutions of $P(\lambda) u=0$.

For various reasons reviewed in $\S 1.3$ it is interesting to ask if in the case of analytic coefficients the resonant states are real analytic across $x_{1}=0$. That lead to [Zw17, Conjecture 2] which asked if $P(\lambda) u=f$ with u smooth and f analytic near $x_{1}=0$ implies that u is analytic near $x_{1}=0$. For $\gamma(x) \equiv 0$ and h independent of x_{1}, this was shown by Lebeau-Zworski [LeZw19] under the assumption that $\lambda \notin-i \mathbb{N}^{*}$.

Keldysh

Tricomi

Figure 1. A comparison of the Keldysh operator (1.1) and the Tricomi operator (1.5). The figures show the cylinder $\mathbb{R}_{x_{1}} \times \mathbb{S}_{\theta}^{1}$ where $\left(\xi_{1}, \xi_{2}\right)=$ $|\xi|(\cos \theta, \sin \theta)$ (this is the boundary of the fiber compactified cotangent bundle $\bar{T}^{*} \mathbb{R}^{n}$ - see [DyZw19a, \S E.1.3] - with the x_{2} variable omitted). The characteristic varieties, $x_{1} \cos ^{2} \theta+\sin ^{2} \theta=0$ and $\cos ^{2} \theta+x_{1} \sin ^{2} \theta=$ 0 , respectively, are shown with the direction of the Hamiltonian flow indicated. In the the Keldysh case, the two radial Lagrangians, $\Lambda_{ \pm}$, correspond to $\theta=\pi$ and $\theta=0$ respectively.

The general case was proved by Zuily [Zu17] under the same restriction on λ. His proof was an elegant adaptation of the work of Baouendi-Goulaouic [BoGu81], BolleyCamus [BoCa73] and Bolley-Camus-Hanouzet [BCH74].

In this paper we prove this result for generalized Keldysh operators with analytic coefficients (1.3). In particular, we do not make any assumptions on lower order terms:

Theorem 1. Suppose that $U \subset \mathbb{R}^{n}$ is a neighbourhood of 0 ,

$$
\begin{equation*}
P:=x_{1} D_{x_{1}}^{2}+a(x) D_{x_{1}}+Q\left(x, D_{x^{\prime}}\right), \quad x=\left(x_{1}, x^{\prime}\right) \in U, \tag{1.3}
\end{equation*}
$$

has analytic coefficients, $Q\left(x, D_{x^{\prime}}\right)$ is a second order elliptic operator in $D_{x^{\prime}}$ with a real valued principal symbol. Then there exists a neighbourhood of $0, U^{\prime} \subset U$, such that

$$
\begin{equation*}
P u \in C^{\omega}(U), \quad u \in C^{\infty}(U) \Longrightarrow u \in C^{\omega}\left(U^{\prime}\right) . \tag{1.4}
\end{equation*}
$$

We will show in $\S 1.1$ that this result follows from a more general microlocal result valid for operators of all orders satisfying a natural geometric condition.
Remarks: 1. In the statement of the theorem 0 can be replaced by any point at which $x_{1} \geq 0$ and U^{\prime} can be replaced by U provided we include a bicharacteristic convexity condition. That follows from propagation of analytic singularities - see [Ma02, Theorem 4.3.7] or [HiSj18, Theorem 2.9.1]: since there are no singularities near $x_{1}=0$ there will be no singularities on trajectories hitting $x_{1}=0-$ see Figure 1.
2. The result is false for the Tricomi operator

$$
\begin{equation*}
P:=D_{x_{1}}^{2}+x_{1} D_{x_{2}}^{2} . \tag{1.5}
\end{equation*}
$$

This can be seen using results about propagation of analytic singularities (unlike (1.3) this operator can be microlocally conjugated to $D_{y_{1}}$ - see Figure 1) but is also easily demonstrated by the following example:

$$
\begin{equation*}
u(x):=\int_{0}^{\infty} A i\left(\tau^{4 / 3} x_{1}\right) e^{i \tau^{2} x_{2}} e^{-\tau} d \tau, \quad P u=0, \quad u \in C^{\infty}\left(\mathbb{R}^{2}\right) \tag{1.6}
\end{equation*}
$$

Here, $A i$ is the Airy function which satisfies

$$
A i^{\prime \prime}(t)+t A i(t)=0, \quad\left|\partial_{t}^{\ell} A i(t)\right| \leq C_{\ell}\langle t\rangle^{\frac{\ell}{2}-\frac{1}{4}}, \quad t \in \mathbb{R}, \quad \ell \in \mathbb{N}, \quad A i(0)>0
$$

We then have

$$
D_{x_{2}}^{k} u(0)=A i(0) \int_{0}^{\infty} \tau^{2 k} e^{-\tau} d \tau=A i(0)(2 k)!
$$

and u is not analytic at 0 .
3. Results similar to (1.4) have been obtained in the setting of other operators. In addition to the works [BoCa73],[BCH74] cited above, we mention the work of BaouendiSjöstrand [BaSj76] who considered a class of Fuchsian operators generalizing

$$
\begin{equation*}
P=|x|^{2} \Delta+\mu\left\langle x, D_{x}\right\rangle+\lambda \tag{1.7}
\end{equation*}
$$

In the case of (1.7), (1.4) holds for any $\lambda, \mu \in \mathbb{C}$ and [BaSj76] established (1.4) for more general operators satisfying appropriate conditions.
4. The operators (1.3), (1.5) and (1.7) are not C^{∞} hypoelliptic, that is, $P u \in C^{\infty} \nRightarrow$ $u \in C^{\infty}$. The study of operators which are C^{∞} hypoelliptic but not analytic hypoelliptic has a long tradition with a simple example [HöI, §8.6, Example 2] given by

$$
P=D_{x_{1}}^{2}+x_{1}^{2} D_{x_{2}}^{2}+D_{x_{3}}^{3} .
$$

For more complicated cases, references, and connections to several complex variables, see Christ [Ch96] and for some recent progress and additional references, BoveMughetti [BoMu17].
1.1. A microlocal result. We make the following general assumptions. Let P be a differential operator of order m with analytic coefficients:

$$
\begin{equation*}
P:=\sum_{|\alpha| \leq m} a_{\alpha}(x) D_{x}^{\alpha}, \quad a_{\alpha} \in C^{\omega}(U), \quad p(x, \xi):=\sum_{|\alpha|=m} a_{\alpha}(x) \xi^{\alpha}, \tag{1.8}
\end{equation*}
$$

where U is an open neighbourhood of $x_{0} \in \mathbb{R}^{n}$. We make the following assumptions valid in a conic neighbourhood of $\left(x_{0}, \xi_{0}\right) \in T^{*} \mathbb{R}^{n} \backslash 0: p$ is real valued and there exists a conic Lagrangian submanifold Λ, such that

$$
\begin{equation*}
\left(x_{0}, \xi_{0}\right) \in \Lambda \subset p^{-1}(0),\left.\quad d p\right|_{\Lambda} \neq 0,\left.\quad H_{p}\right|_{\Lambda} \|\left.\xi \cdot \partial_{\xi}\right|_{\Lambda} \tag{1.9}
\end{equation*}
$$

Here $\|$ means that the two vector fields are positively proportional, that is the Lagrangian is radial (the positivity assumptions can be achieved by multiplying P by ± 1). Except for the analyticity assumption in (1.8) these are the assumptions made in Haber [Ha14] and Haber-Vasy [HaVa15].

Theorem 1 follows from the following microlocal result. We denote by WF the $C^{\infty}{ }_{-}$ wave front set and by WF_{a} the analytic wave front set - see [HöI, §8.1] and [HöI, §8.5,9.3], respectively.

Theorem 2. Suppose that P and $\left(x_{0}, \xi_{0}\right) \in T^{*} \mathbb{R}^{n} \backslash 0$ satisfy the assumptions (1.8) and (1.9). Then for $u \in \mathscr{D}^{\prime}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}(u), \quad\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}_{\mathrm{a}}(P u) \Longrightarrow\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}_{\mathrm{a}}(u) \tag{1.10}
\end{equation*}
$$

The proof is based on the theory of microlocal symbolic weights developed by Galkowski-Zworski [GaZw19b] and based on the work of Sjöstrand - see [Sj96, §2] (and also $[\mathrm{HeSj} 86]$ and $[\mathrm{Ma02}, \S 3.5]$). With this theory in place we can use escape functions, $G, H_{p} G \geq 0$, which are logarithmically bounded in ξ (hence the C^{∞} wave front set assumption on u allows the use of such weights) and which tend to $\langle\xi\rangle$ in a neighbourhood of $\left(x_{0}, \xi_{0}\right)$. The normal form for p constructed in [Ha14] (following much earlier work of Guillemin-Schaeffer [GuSc77] which was based in turn on Sternberg's linearization theorem [St57]) was helpful in the construction of the specific weights needed here. We indicate the method of the proof in §1.2.

Proof of Theorem 1. Under the assumptions of Theorem 1 the characteristic set of P over $x_{1}=0$ is given by (in $\left.T^{*} \mathbb{R}^{n} \backslash 0\right)$

$$
p^{-1}(0) \cap\left\{x_{1}=0\right\}=\left\{\left(0, x_{2}, \xi_{1}, 0\right): \xi_{1} \in \mathbb{R} \backslash 0 ; x_{2} \in \operatorname{neigh}_{\mathbb{R}^{n-1}}(0)\right\}=\Lambda_{+} \sqcup \Lambda_{-},
$$

where $\pm \xi_{1}>0$ on $\Lambda_{ \pm}$. These two components are Lagrangian and conic and $\left.H_{p}\right|_{\Lambda_{ \pm}}=$ $-\left.\xi_{1}^{2} \partial_{\xi_{1}}\right|_{\Lambda_{ \pm}}$is radial. Since $P u \in C^{\omega}(U)$ we have $\mathrm{WF}_{\mathrm{a}}(P u) \cap\left\{x \in U: x_{1}=0\right\}=\emptyset$ and hence Theorem 2 shows that $\mathrm{WF}_{\mathrm{a}}(u) \cap \Lambda_{ \pm}=\emptyset$. On the other hand, ([HöI, Theorem 8.6.1]), $\mathrm{WF}_{\mathrm{a}}(u) \cap\left\{x_{1}=0\right\} \subset p^{-1}(0) \cap\left\{x_{1}=0\right\}=\Lambda_{+} \sqcup \Lambda_{-}$. Hence $\mathrm{WF}_{\mathrm{a}}(u) \cap\left\{x_{1}=\right.$ $0\}=\emptyset$ and, since singsupp ${ }_{\mathrm{a}} u=\pi \mathrm{WF}_{\mathrm{a}}(u), u$ is analytic near $x_{1}=0$.
1.2. A proof in a special case. To indicate the ideas behind the proof we consider P given by

$$
P=x_{1} D_{x_{1}}^{2}+D_{x_{2}}^{2}+a D_{x_{1}}, \quad a \in \mathbb{C}
$$

and a very special u :

$$
\begin{equation*}
u=e^{i \tau x_{2}} v\left(x_{1}\right), \quad v \in \mathscr{S}(\mathbb{R}), \quad P u=e^{i \tau x_{2}} f\left(x_{1}\right), \quad e^{\left|\xi_{1}\right|} \widehat{f} \in L^{2}(\mathbb{R}) \tag{1.11}
\end{equation*}
$$

This assumption is a stronger version of the assumption that f is analytic. We consider a family of smooth functions $G_{\epsilon}\left(\xi_{1}\right)$ satisfying

$$
\begin{equation*}
0 \leq G_{\epsilon}\left(\xi_{1}\right) \leq \min \left(\frac{1}{\epsilon} \log \left(1+\left|\xi_{1}\right|\right),\left|\xi_{1}\right|\right) \tag{1.12}
\end{equation*}
$$

In view of (1.11),

$$
\left\|v_{\epsilon}\right\|_{L^{2}(\mathbb{R})} \leq C_{\epsilon}, \quad\left\|f_{\epsilon}\right\|_{L^{2}(\mathbb{R})} \leq C_{0} \quad v_{\epsilon}:=e^{G_{\epsilon}\left(D_{x}\right)} v, \quad f_{\epsilon}:=e^{G_{\epsilon}\left(D_{x}\right)} f
$$

where C_{0} is independent of ϵ. We then consider

$$
P_{\epsilon}:=e^{G_{\epsilon}\left(D_{x}\right)}\left(x_{1} D_{x_{1}}^{2}+a D_{x_{1}}+\tau^{2}\right) e^{-G_{\epsilon}\left(D_{x}\right)}=x_{1} D_{x_{1}}^{2}+i G_{\epsilon}^{\prime}\left(D_{x_{1}}\right) D_{x_{1}}^{2}+a D_{x_{1}}+\tau^{2} .
$$

We have $P_{\epsilon} v_{\epsilon}=f_{\epsilon}$, and

$$
\begin{aligned}
\operatorname{Im}\left\langle P_{\epsilon} v_{\epsilon}, v_{\epsilon}\right\rangle_{L^{2}(\mathbb{R})} & =\left\langle G_{\epsilon}^{\prime}\left(D_{x_{1}}\right) D_{x_{1}}^{2} v_{\epsilon}, v_{\epsilon}\right\rangle_{L^{2}(\mathbb{R})}+\left\langle(\operatorname{Im} a+1) D_{x_{1}} v_{\epsilon}, v_{\epsilon}\right\rangle_{L^{2}(\mathbb{R})} \\
& =\left\langle\left(\xi_{1}^{2} G_{\epsilon}^{\prime}\left(\xi_{1}\right)+(\operatorname{Im} a+1) \xi_{1}\right) \widehat{v}_{\epsilon}, \widehat{v}_{\epsilon}\right\rangle_{L^{2}\left(\mathbb{R}_{\xi_{1}}\right)},
\end{aligned}
$$

where we took $d \xi_{1} /(2 \pi)$ as the measure on $L^{2}\left(\mathbb{R}_{\xi_{1}}\right)$. Let $\chi \in C^{\infty}(\mathbb{R} ;[0,1])$ satisfy $\left.\chi\right|_{t \leq 1}=1,\left.\chi\right|_{t \geq 2}=0$ and $\chi^{\prime} \leq 0$. We define

$$
G_{\epsilon}\left(\xi_{1}\right)=\left(1-\chi\left(\xi_{1}\right)\right) \int_{0}^{\xi_{1}}\left(\chi(\epsilon t)+(1-\chi(\epsilon t))(\epsilon t)^{-1}\right) d t
$$

which satisfies (1.12) and $G_{\epsilon}^{\prime} \geq 0$. Moreover, for $\xi_{1} \geq M \geq 2$ and $\epsilon<1 / M$,

$$
\xi_{1}^{2} G_{\epsilon}^{\prime}\left(\xi_{1}\right) \geq \xi_{1}^{2} \chi\left(\epsilon \xi_{1}\right)+\epsilon^{-1} \xi_{1}\left(1-\chi\left(\epsilon \xi_{1}\right)\right) \geq M \xi_{1}
$$

Hence, by taking $M=\max (-\operatorname{Im} a+1,2)$, and $\epsilon<1 / M$,

$$
\begin{aligned}
\left\|f_{\epsilon}\right\|\left\|\widehat{v}_{\epsilon}\right\| & \geq \operatorname{Im}\left\langle P_{\epsilon} v_{\epsilon}, v_{\epsilon}\right\rangle=\left\langle\left(\xi_{1}^{2} G_{\epsilon}^{\prime}\left(\xi_{1}\right)+(\operatorname{Im} a+1) \xi_{1}\right) \widehat{v}_{\epsilon}, \widehat{v}_{\epsilon}\right\rangle \\
& \geq\left\|\widehat{v}_{\epsilon}\right\|^{2}-\left\|\left(1+\left|\xi_{1}\right|(|\operatorname{Im} a|+1)\right) \widehat{v}_{\epsilon} \mid \xi_{1} \leq M\right\|\left\|\widehat{v}_{\epsilon}\right\| \geq\left\|\widehat{v}_{\epsilon}\right\|^{2}-C_{1}\left\|\widehat{v}_{\epsilon}\right\|,
\end{aligned}
$$

where $C_{1}:=(|\operatorname{Im} a|+1) e^{M}\|v\|_{H^{1}}$ is independent of ϵ. This implies that

$$
\left\|\widehat{v}_{\epsilon}\right\| \leq\left\|f_{\epsilon}\right\|+C_{1} \leq C_{0}+C_{1}
$$

Letting $\epsilon \rightarrow 0$ gives $\left\|\left.e^{\xi_{1}} \widehat{v}\right|_{\xi_{1} \geq 0}\right\| \leq C$. A similar argument applies to $\xi_{1} \leq 0$ which shows that

$$
e^{\left|\xi_{1}\right|} \widehat{v} \in L^{2}
$$

and consequently that $u(x)=e^{i x_{2} \tau} v\left(x_{1}\right)$ is analytic.
In the actual proof, the Fourier transform is replaced by the FBI transform (2.1) and its deformation (2.5) defined using a suitably chosen G_{ϵ} satisfying (1.12) (see Lemma 3.1 which is the heart of the argument). One difficulty not present in the simple one dimensional case is the localization in other variables. It is here that the C^{∞} normal forms of [St57],[GuSc77] and [Ha14] are particularly useful. It is essential that no analyticity is needed in the construction of G_{ϵ}.
1.3. Applications to scattering theory. As already indicated in [Zu17] analyticity of smooth solution to the Vasy operator (1.2) implies analyticity of resonant states and of their radiation patterns. We review this here and, in Theorem 3, present a slightly stronger result.

For a detailed presentation of scattering on asymptotically hyperbolic manifolds we refer to [DyZw19a, Chapter 5]. To state Theorem 3, let \bar{M} be a compact $n+1$ dimensional manifold with boundary $\partial M \neq \emptyset$ and let $M:=\bar{M} \backslash \partial M$. We assume that \bar{M} is a real analytic manifold near ∂M. A metric g on M is called asymptotically hyperbolic and analytic near infinity if there exist functions $y^{\prime} \in C^{\infty}(\bar{M} ; \partial M)$ and $y_{1} \in C^{\infty}(\bar{M} ;(0,2)),\left.y_{1}\right|_{\partial M}=0,\left.d y_{1}\right|_{\partial M} \neq 0$, such that

$$
\begin{equation*}
\bar{M} \supset y_{1}^{-1}([0,1)) \ni m \mapsto\left(y_{1}(m), y^{\prime}(m)\right) \in[0,1) \times \partial M \tag{1.13}
\end{equation*}
$$

is a real analytic diffeomorphism, and near ∂M the metric has the form,

$$
\begin{equation*}
\left.g\right|_{y_{1} \leq \epsilon}=\frac{d y_{1}^{2}+h\left(y_{1}\right)}{y_{1}^{2}}, \tag{1.14}
\end{equation*}
$$

where $[0,1) \ni t \mapsto h(t)$, is an analytic family of real analytic Riemannian metrics on ∂M.

Let

$$
R_{g}(\lambda)=\left(-\Delta_{g}-\lambda^{2}-(n / 2)^{2}\right)^{-1}: L^{2}\left(M, d \operatorname{vol}_{g}\right) \rightarrow H^{2}\left(M, d \operatorname{vol}_{g}\right), \quad \operatorname{Im} \lambda>0
$$

Mazzeo-Melrose [MM87] and Guillarmou [Gu05] proved that

$$
\begin{equation*}
R_{g}(\lambda): C_{\mathrm{c}}^{\infty}(M) \rightarrow C^{\infty}(M), \tag{1.15}
\end{equation*}
$$

continues to a meromorphic family of operators for $\lambda \in \mathbb{C} \backslash i\left(-\frac{1}{2}-\mathbf{N}\right)$. In addition, Guillarmou [Gu05] showed that if the metric is even, that is,

$$
\begin{equation*}
\left.g\right|_{y_{1} \leq \epsilon}=\frac{d y_{1}^{2}+h\left(y_{1}^{2}\right)}{y_{1}^{2}} \tag{1.16}
\end{equation*}
$$

(see [DyZw19a, Theorem 5.6] for an invariant formulation), then $R_{g}(\lambda)$ is meromorphic in \mathbb{C}. In particular, for $\lambda \neq 0$ we have the following Laurent expansion

$$
R_{g}(\zeta)=\sum_{j=1}^{J(\lambda)} \frac{\left(-\Delta_{g}-\lambda^{2}-(n / 2)^{2}\right)^{j-1} \Pi(\lambda)}{\left(\zeta^{2}-\lambda^{2}\right)^{j}}+A(\zeta, \lambda), \quad \Pi(\lambda):=\frac{1}{2 \pi i} \oint_{\lambda} R_{g}(\zeta) 2 \zeta d \zeta,
$$

where $\zeta \mapsto A(\zeta, \lambda)$ is holomorphic near λ. For $\lambda=0$ we have a Laurent expansions in powers of ζ^{-j}.

The operator $\Pi(\lambda)$ has finite rank and its range consists of generalized resonant states. We then have

Theorem 3. Suppose that (M, g) is an even asymptotically hyperbolic manifold (in the sense of (1.16)) analytic near conformal infinity ∂M. Then for $\lambda \in \mathbb{C} \backslash 0$,

$$
\begin{equation*}
u \in \Pi(\lambda) C_{\mathrm{c}}^{\infty}(M) \Longrightarrow u=y_{1}^{-i \lambda+\frac{n}{2}} F,\left.\quad F\right|_{\partial M} \in C^{\omega}(\partial M) \tag{1.17}
\end{equation*}
$$

Moreover, in coordinates of (1.16), $F(y)=f\left(y_{1}^{2}, y^{\prime}\right), y^{\prime} \in \partial M$ where $f \in C^{\omega}((-\delta, \delta) \times$ $\partial M)$.

Proof. The metric (1.14) (in the coordinates valid near the boundary) gives the following Laplace operator:

$$
\begin{align*}
& -\Delta_{g}=\left(y_{1} D_{y_{1}}\right)^{2}+i\left(n+y_{1} \gamma_{0}\left(y_{1}^{2}, y^{\prime}\right)\right) y_{1} D_{y_{1}}-y_{1}^{2} \Delta_{h\left(y_{1}\right)}, \tag{1.18}\\
& \gamma_{0}\left(t, y^{\prime}\right):=-\frac{1}{2} \partial_{t} \bar{h}(t) / \bar{h}(t), \quad \bar{h}(t):=\operatorname{det} h(t), \quad D:=\frac{1}{i} \partial .
\end{align*}
$$

Following Vasy [Va13] we change the variables to $x_{1}=y_{1}^{2}, x^{\prime}=y^{\prime}$ so that

$$
\begin{equation*}
y_{1}^{i \lambda-\frac{n}{2}}\left(-\Delta_{g}-\lambda^{2}-\left(\frac{n}{2}\right)^{2}\right) y_{1}^{-i \lambda+\frac{n}{2}}=x_{1} P(\lambda), \tag{1.19}
\end{equation*}
$$

where, near $\partial M, P(\lambda)$ is given by (1.2). This operator is considered on $X:=$ $\left((-\delta, 0]_{x_{1}} \times \partial M\right) \sqcup M$. The key fact is that $P(\lambda)$ is a Fredholm family operators on suitable spaces, $P(\lambda)^{-1}$ is meromorphic and its poles can be studied using microlocal methods - see [Va13], [DyZw19a, Chapter 5] and also [Zw16, §2] for a short self-contained presentation.

From meromorphy of $P(\lambda)^{-1}$ we obtain meromorphy of (1.15) using (1.19):

$$
\begin{equation*}
R_{g}(\lambda) f:=\left.y_{1}^{\frac{n}{2}-i \lambda}\left(P(\lambda)^{-1} y_{1}^{i \lambda-\frac{n+2}{2}} f\right)\right|_{M} \in C^{\infty}(M) \tag{1.20}
\end{equation*}
$$

Here we make $y_{1}^{i \lambda-\frac{n+2}{2}} f$ into an element of $C_{\mathrm{c}}^{\infty}(X)$ by extending it by zero outside of M. Near any $\lambda, P(\zeta)^{-1}=\sum_{k=1}^{K(\lambda)} Q_{j}(\lambda)(\zeta-\lambda)^{-j}+Q_{0}(\zeta, \lambda)$, with $Q_{j}(\lambda)$ operators of finite rank and $\zeta \mapsto Q_{0}(\zeta, \lambda)$ is analytic near λ. We then have

$$
\Pi(\lambda)=\frac{1}{2 \lambda} y_{1}^{\frac{n}{2}-i \lambda} Q_{1}(\lambda) y_{1}^{i \lambda-\frac{n+2}{2}}
$$

Hence, the claim about the range of $\Pi(\lambda)$ follows from analyticity of functions in the range of $Q_{1}(\lambda)$. This follows from Theorem 1. In fact, $P(\zeta)=P(\lambda)+(\zeta-\lambda) V$, $V:=-4 D_{x_{1}}+i \gamma(x)$, and hence

$$
P(\lambda) Q_{k}(\lambda)=-V Q_{k+1}(\lambda), \quad Q_{K+1}(\lambda):=0
$$

Since we already know that the ranges of Q_{k} 's are in C^{∞} (see [DyZw19a, (5.6.10)]) we inductively conclude that the ranges are in C^{ω}.

Remark. Vasy's adaptation of Melrose's radial estimates [Me94] shows that to conclude that $u \in C^{\infty}$ when $P(\lambda) u \in C^{\infty}$ (see (1.2)), we only need to assume that $u \in H^{s+1}$ near m_{0}, where $s+\frac{1}{2}>-\operatorname{Im} \lambda$, see [Zw16, §4, Remark 3].

2. Preliminaries on FBI transforms and their deformations

We will use the FBI transform defined in [GaZw19b] in its \mathbb{R}^{n} (rather than \mathbb{T}^{n}) version. Since the weights we use will be compactly supported in x the same theory applies. The constructions there are inspired by the works of Boutet de MonvelSjöstrand [BoSj76], Boutet de Monvel-Guillemin [BoGu81], Helffer-Sjöstrand [HeSj86] and Sjöstrand [Sj96]. An alternative approach to using the classes of weights we need here was developed independently and in greater generality by Guedes BonthonneauJézéquel [GuJe20].
2.1. Deformed FBI transforms. We define

$$
\begin{equation*}
T u(x, \xi):=h^{-\frac{3 n}{4}} \int_{\mathbb{R}^{n}} e^{\frac{i}{h}\left\langle\langle x-y, \xi\rangle+\frac{i}{2}\langle\xi\rangle(x-y)^{2}\right)}\langle\xi\rangle^{\frac{n}{4}} u(y) d y, \quad u \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right), \tag{2.1}
\end{equation*}
$$

recalling that the left inverse of T is given by

$$
\begin{equation*}
S v(y)=\frac{2^{\frac{n}{2}} h^{-\frac{3 n}{4}}}{(2 \pi)^{\frac{3 n}{2}}} \int_{\mathbb{R} 2 n} e^{-\frac{i}{h}\left(\langle x-y, \xi\rangle-\frac{i}{2}\langle\xi\rangle(x-y)^{2}\right)}\langle\xi\rangle^{\frac{n}{4}}\left(1+\frac{i}{2}\langle x-y, \xi /\langle\xi\rangle\rangle\right) v(x, \xi) d x d \xi \tag{2.2}
\end{equation*}
$$

see [GaZw19b, Proposition 2.2].
The first fact we need is the characterization of Sobolev spaces and of the C^{∞} wave front set using the FBI transform (2.1). To formulate it we use semiclassical Sobolev spaces H_{h}^{s} (see for instance [Zw12, §7.1] or [DyZw19a, Definition E.18]) but we should in general think of h as being fixed.

Proposition 2.1. There exists a constant C such that for $u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\|u\|_{H_{h}^{s}} \leq C\left\|\langle\xi\rangle^{s} T u\right\|_{L^{2}\left(T^{*} \mathbb{R}^{n}\right)} \leq C^{2}\|u\|_{H_{h}^{s}} . \tag{2.3}
\end{equation*}
$$

Moreover, $\left(x_{0}, \xi_{0}\right) \notin \operatorname{WF}(u) \Leftrightarrow\left\{\begin{array}{l}\exists \chi \in S^{0}\left(T^{*} \mathbb{R}^{n}\right), \chi \equiv 1 \text { in a conic neighbourhood of }\left(x_{0}, \xi_{0}\right), \\ \forall N \exists C_{N}\left\|\langle\xi\rangle^{N} \chi T u\right\|_{L^{2}\left(T^{*} \mathbb{R}^{n}\right)} \leq C_{N} .\end{array}\right.$

Proof. This follows from the characterization of the H^{s} based wave front sets in Gérard [Gé90] as stated in [De, Theorem 1.2]. Since the arguments are similar to the more involved analytic case presented in Proposition 2.3 we omit the details.

As in $[S j 96, \S 2]$ and $[G a Z w 19 b, \S 3]$ we introduce a geometric deformation of $\mathbb{R}^{2 n}$, $\Lambda=\Lambda_{G}$:

$$
\begin{gather*}
\Lambda:=\left\{\left(x-i G_{\xi}(x, \xi), \xi+i G_{x}(x, \xi)\right) \mid(x, \xi) \in \mathbb{R}^{2 n}\right\} \subset \mathbb{C}^{2 n}, \\
\operatorname{supp} G \subset K \times \mathbb{R}^{n}, \quad K \Subset \mathbb{R}^{n}, \tag{2.4}\\
\sup _{|\alpha|+|\beta| \leq 2}\langle\xi\rangle^{-1+|\beta|}\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} G(x, \xi)\right| \leq \epsilon_{0}, \quad\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} G(x, \xi)\right| \leq C_{\alpha \beta}\langle\xi\rangle^{1-|\beta|},
\end{gather*}
$$

where ϵ_{0} is small and fixed (so that the constructions below remain valid as in [GaZw19b]). For convenience, we change here the convention from [GaZw19b]: it amounts to to replacing G by $-G$ everywhere.

This provides us with the following new objects: the deformed FBI transform (see [GaZw19b, §4]),

$$
\begin{gather*}
T_{\Lambda} u(x, \xi):=T u\left(x-i G_{\xi}(x, \xi), \xi+i G_{x}(x, \xi)\right), \quad u \in \mathscr{B}_{\delta}, \\
\mathscr{B}_{\delta}:=\left\{u \in \mathscr{S}\left(\mathbb{R}^{n}\right): \int_{\mathbb{R}^{n}}|\widehat{U}(\xi)|^{2} e^{4 \delta|\xi|} d \xi<\infty\right\}, \tag{2.5}
\end{gather*}
$$

the the spaces H_{Λ}^{s}, defined as in [GaZw19b, §4],

$$
\begin{equation*}
H_{\Lambda}^{s}:=\overline{\mathscr{B}_{\delta_{0}}}\|\bullet\|_{H_{\Lambda}^{s}}, \quad\|u\|_{H_{\Lambda}^{s}}^{2}:=\int_{\Lambda}\left\langle\operatorname{Re} \alpha_{\xi}\right\rangle^{2 s}\left|T_{\Lambda} u(\alpha)\right|^{2} e^{-2 H(\alpha) / h} d \alpha \tag{2.6}
\end{equation*}
$$

and the orthogonal projector

$$
\Pi_{\Lambda}: L_{\Lambda}:=L^{2}\left(\Lambda, e^{-2 H(\alpha) / h} d \alpha\right) \rightarrow T_{\Lambda} H_{\Lambda}, \quad H_{\Lambda}:=H_{\Lambda}^{0}
$$

described asymptotically (as $h \rightarrow 0$ and as $\xi \rightarrow \infty$) in [GaZw19b, §5]. The weight H appears naturally in this subject and is given by [GaZw19b, (3.3),(3.4)] i.e. $H(x, \xi)=$ $\xi \cdot G_{\xi}(x, \xi)-G(x, \xi)$. The deformed FBI transform T_{Λ} has an exact left inverse S_{Λ} obtained by deforming S in (2.2).

We now prove a slightly modified version of [GaZw19b, Proposition 6.2]:
Proposition 2.2. Suppose that $P=\sum_{|\alpha| \leq m} a_{\alpha} D^{\alpha}$ is a differential operator with $a_{\alpha} \in$ $C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$ satisfying,

$$
a_{\alpha} \in C^{\omega}(U), \quad K \Subset U,
$$

for an open set U and K as in (2.4). Then

$$
\Pi_{\Lambda} T_{\Lambda} h^{m} P S_{\Lambda}=\Pi_{\Lambda} b_{P} \Pi_{\Lambda}+\mathcal{O}\left(h^{\infty}\right)_{H_{\Lambda}^{-N} \rightarrow H_{\Lambda}^{N}},
$$

where

$$
\begin{align*}
& b_{P}(x, \xi) \sim \sum_{j=0}^{\infty} h^{j} b_{j}(x, \xi), \quad b_{j} \in S^{m-j}\left(\mathbb{R}^{2 n}\right), \tag{2.7}\\
& b_{0}=\left.p\right|_{\Lambda}:=p\left(x-i G_{\xi}(x, \xi), \xi+i G_{x}(x, \xi)\right) .
\end{align*}
$$

We remark that the expansion remains valid when h is fixed. We can use smallness of h to dominate the lower order terms and then keep it fixed.

Proof. The result follows from the analogue of [GaZw19b, Lemma 6.1] where the operator $T_{\Lambda} h^{m} P S_{\Lambda}$ is described in the case where the coefficients of P are globally analytic. Here we point out that the analyticity of the coefficients is only needed in the neighbourhood U of $K \Subset \mathbb{R}^{n}$ such that in (2.4) $\operatorname{supp} G \subset K \times \mathbb{R}^{n}$ and ϵ_{0} is small enough depending on the size of the complex neighbourhood to which the coefficients extend holomorphically.

In fact, arguing as in the proof of [GaZw19b, Proposition 6.2] all we need is that for $a \in C_{\mathrm{c}}^{\infty}\left(\mathbb{R}^{n}\right)$ and $a \in C^{\omega}(U)$, the Schwartz kernel of $T_{\Lambda} M_{a} S_{\Lambda}, M_{a} f(x):=a(x) f(x)$, is given by

$$
\begin{align*}
& K_{a}(\alpha, \beta)=c_{0} h^{-n} e^{\frac{i}{h} \Psi(\alpha, \beta)} A(\alpha, \beta)+r(\alpha, \beta), \quad \alpha, \beta \in \Lambda=\Lambda_{G} \tag{2.8}\\
& r(\alpha, \beta) \text { is the kernel of an operator } R=O\left(h^{\infty}\right): H_{\Lambda}^{-N} \rightarrow H_{\Lambda}^{N} .
\end{align*}
$$

The phase in (2.8) is given by

$$
\begin{equation*}
\Psi(\alpha, \beta)=\frac{i}{2} \frac{\left(\alpha_{\xi}-\beta_{\xi}\right)^{2}}{\left\langle\alpha_{\xi}\right\rangle+\left\langle\beta_{\xi}\right\rangle}+\frac{i}{2} \frac{\left\langle\beta_{\xi}\right\rangle\left\langle\alpha_{\xi}\right\rangle\left(\alpha_{x}-\beta_{x}\right)^{2}}{\left\langle\alpha_{\xi}\right\rangle+\left\langle\beta_{\xi}\right\rangle}+\frac{\left\langle\beta_{\xi}\right\rangle \alpha_{\xi}+\left\langle\alpha_{\xi}\right\rangle \beta_{\xi}}{\left\langle\alpha_{\xi}\right\rangle+\left\langle\beta_{\xi}\right\rangle} \cdot\left(\alpha_{x}-\beta_{x}\right), \tag{2.9}
\end{equation*}
$$

and the amplitude satisfies

$$
A \sim \sum_{j=0}^{\infty} h^{j}\left\langle\alpha_{\xi}\right\rangle^{-j} A_{j}, \quad A_{0}(\alpha, \alpha)=\left.a\right|_{\Lambda}(\alpha)
$$

and A_{j} are supported in a small conic neighbourhood of the diagonal in $\Lambda \times \Lambda$. We note that if ϵ_{0} is small enough, a extends to some neighbourhood of K in \mathbb{C}^{n} and hence $\left.a\right|_{\Lambda}=a\left(x-i G_{\xi}(x, \xi)\right)$ is well defined.

To see (2.8) we use the definitions of T_{Λ} and S_{Λ} to write

$$
\begin{equation*}
K_{a}(\alpha, \beta)=c_{n}\left\langle\beta_{\xi}\right\rangle^{\frac{n}{4}}\left\langle\alpha_{\xi}\right\rangle^{\frac{n}{4}} h^{-\frac{3 n}{2}} \int e^{\frac{i}{h}\left(\varphi_{G}(\alpha, y)+\varphi_{G}^{*}(\beta, y)\right)} a(y)\left(1+\left\langle\beta_{x}-y, \beta_{\xi} /\left\langle\beta_{\xi}\right\rangle\right) d y,\right. \tag{2.10}
\end{equation*}
$$

where

$$
\begin{align*}
\varphi_{G}(\alpha, y)= & \left.\Phi(z, \zeta, y)\right|_{z=\alpha_{x}, \zeta=\alpha_{\xi}}, \quad \varphi_{G}^{*}(\alpha, y)=-\left.\bar{\Phi}(z, \zeta, y)\right|_{z=\alpha_{x}, \zeta=\alpha_{\xi}} \\
& \alpha_{x}=x-i G_{\xi}(x, \xi), \quad \alpha_{\xi}=\xi+i G_{x}(x, \xi) \tag{2.11}\\
\Phi(z, \zeta, y)= & \langle z-y, \zeta\rangle+\frac{i}{2}\langle\zeta\rangle(z-y)^{2}, \quad \bar{\Phi}(z, \zeta, y): \overline{\Phi(\bar{z}, \bar{\zeta}, y)}
\end{align*}
$$

Let V, V_{1} open such that $K \subset V_{1} \Subset V \Subset U$. We start by showing that the contribution to K_{a} away from the diagonal is negligible. For that let $\chi \in C_{c}^{\infty}(\mathbb{R})$ with $\chi \equiv 1$ near 0 . Then for all $\delta>0$ small enough, the operator R_{1} with kernel

$$
\begin{gathered}
R_{1}(\alpha, \beta)=K_{a}(\alpha, \beta) \tilde{\chi}_{\delta}(\alpha, \beta), \\
\tilde{\chi}_{\delta}(\alpha, \beta):=\left(1-\chi\left(\delta^{-1}\left|\alpha_{x}-\beta_{x}\right|\right)\right)\left(1-\chi\left(\frac{\left|\alpha_{\xi}-\beta_{\xi}\right|}{\delta\langle | \alpha_{\xi}-\beta_{\xi}| \rangle}\right)\right)
\end{gathered}
$$

satisfies $R_{1}=O_{H_{\Lambda}^{-N} \rightarrow H_{\Lambda}^{N}}\left(h^{\infty}\right)$. This amounts to showing that the operator with kernel $R_{1}(\alpha, \beta) e^{\frac{1}{h}(H(\beta)-H(\alpha))}\left\langle\alpha_{\xi}\right\rangle^{N}\left\langle\beta_{\xi}\right\rangle^{N}$ is bounded on $L^{2}\left(\mathbb{R}^{2 n}\right)$ with $O\left(h^{\infty}\right)$ norm.

To see this, we first integrate by parts K times in y, using that

$$
\left|\partial_{y} \Psi\right|=\left|\beta_{\xi}-\alpha_{\xi}+i\left(\left\langle\alpha_{\xi}\right\rangle\left(y-\alpha_{x}\right)+\left\langle\beta_{\xi}\right\rangle\left(y-\beta_{x}\right)\right)\right| \geq c\left(1+\left|\alpha_{\xi}\right|+\left|\beta_{\xi}\right|\right)
$$

on $\operatorname{supp} \tilde{\chi}_{\delta}$. This reduces the analysis to the case of (2.10) with a is replaced by $b(\cdot, \alpha, \beta) \in C^{\omega}(U) \cap C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $|b| \leq h^{K}\left(\langle | \alpha_{\xi}| \rangle+\langle | \beta_{\xi}| \rangle\right)^{-K}$.

Next, we choose $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{n} ;[0,1]\right)$ with $\psi \equiv 1$ on V and $\operatorname{supp} \psi \subset U$, and $\psi_{1} \in$ $C_{c}^{\infty}\left(\mathbb{R}^{n} ;[0,1]\right)$ with $\psi_{1} \equiv 1$ on V_{1} and $\operatorname{supp} \psi_{1} \subset V$. We then deform the contour

$$
y \mapsto y+i \epsilon \psi(y) \frac{\overline{\beta_{\xi}-\alpha_{\xi}}}{\langle | \beta_{\xi}-\alpha_{\xi}| \rangle} .
$$

This contour deformation is justified since $a \in C^{\omega}(U)$. The phase in the integrand of (2.10) becomes

$$
\begin{aligned}
\Psi= & \left\langle\alpha_{x}-y, \alpha_{\xi}\right\rangle+\left\langle y-\beta_{x}, \beta_{\xi}\right\rangle+\frac{i\left\langle\alpha_{\xi}\right\rangle}{2}\left(\alpha_{x}-y\right)^{2}+\frac{i\left\langle\beta_{\xi}\right\rangle}{2}\left(\beta_{x}-y\right)^{2} \\
& +i \epsilon \psi(y) \frac{\left|\beta_{\xi}-\alpha_{\xi}\right|^{2}}{\langle | \beta_{\xi}-\alpha_{\xi}| \rangle}+\frac{i\left\langle\alpha_{\xi}\right\rangle}{2}\left[2 \epsilon \psi (y) \left\langle\alpha_{x}-y, \frac{\left.\left.\frac{\alpha_{\xi}-\beta_{\xi}}{\langle | \beta_{\xi}-\alpha_{\xi}| \rangle}\right\rangle-\epsilon^{2} \psi^{2}(y) \frac{\left|\beta_{\xi}-\alpha_{\xi}\right|^{2}}{\langle | \beta_{\xi}-\alpha_{\xi}| \rangle^{2}}\right]}{} \begin{array}{rl}
\frac{i\left\langle\beta_{\xi}\right\rangle}{2}\left[2 \epsilon \psi(y)\left\langle\beta_{x}-y, \frac{\alpha_{\xi}-\beta_{\xi}}{\langle | \beta_{\xi}-\alpha_{\xi}| \rangle}\right\rangle-\epsilon^{2} \psi^{2}(y) \frac{\left|\beta_{\xi}-\alpha_{\xi}\right|^{2}}{\langle | \beta_{\xi}-\alpha_{\xi}| \rangle^{2}}\right]
\end{array},\right.\right.
\end{aligned}
$$

In particular, for $y \in V$, and $(\alpha, \beta) \in \operatorname{supp} \tilde{\chi}_{\delta}$, the integrand is bounded by

$$
e^{-c\left(\left\langle\alpha_{\xi}\right\rangle+\left\langle\beta_{\xi}\right\rangle\right)\left\langle\alpha_{x}-\beta_{x}\right\rangle / h}
$$

which is negligible (even after multiplication by $e^{\frac{1}{h}(H(\beta)-H(\alpha))}\left\langle\alpha_{\xi}\right\rangle^{N}\left\langle\beta_{\xi}\right\rangle^{N}$).
For the integral over $y \notin V$, we consider three cases. First, if both $\operatorname{Re} \alpha_{x} \in K$ and $\operatorname{Re} \beta_{x} \in K$, then it is easy to see that the integrand is bounded by

$$
e^{-c\left(\left\langle\alpha_{\xi}\right\rangle+\left\langle\beta_{\xi}\right\rangle\right)\left(\left\langle\alpha_{x}-\beta_{x}\right\rangle+|y|\right) / h}
$$

and hence produces a negligible contribution. Next, if $\operatorname{Re} \alpha_{x} \notin K$ and $\operatorname{Re} \beta_{x} \notin K$, then $H(\alpha)=H(\beta)=0, \alpha, \beta$ are real, and integration by parts in y shows that the contribution is negligible.

Finally, we consider the case $\operatorname{Re} \alpha_{x} \in K, \operatorname{Re} \beta_{x} \notin K$, (the case $\operatorname{Re} \beta_{x} \in K$ and $\operatorname{Re} \alpha_{x} \notin K$ being similar). In this case, we have $H(\beta)=0$ and β real. Since $y \notin V$, we have that the integrand is bounded by $e^{-c\left\langle\alpha_{\xi}\right\rangle\left\langle\alpha_{x}-y\right\rangle / h} h^{K}\left\langle\beta_{\xi}\right\rangle^{-K}$ and hence this term is also negligible.

Since R is negligible, we may assume from now on that

$$
\left|\alpha_{x}-\beta_{x}\right| \ll 1 \text { and }\left|\alpha_{\xi}-\beta_{\xi}\right| \ll\langle | \alpha_{\xi}| \rangle+\langle | \beta_{\xi}| \rangle .
$$

In particular, there are three cases: $\operatorname{Re} \alpha_{x} \in K$ and $\operatorname{Re} \beta_{x} \in V_{1}, \operatorname{Re} \beta_{x} \in K$ and $\operatorname{Re} \alpha_{x} \in V_{1}$, or $\operatorname{Re} \alpha_{x} \notin K$ and $\operatorname{Re} \beta_{x} \notin K$.

The first two cases are similar, so we consider only one of them. Since $\operatorname{Re} \alpha_{x} \in K$ and $\operatorname{Re} \beta_{x} \in V_{1}$, the contribution from $y \notin V$ is negligible. Therefore, we may deform the contour to

$$
y \mapsto y+\psi(y) y_{c}(\alpha, \beta), \quad y_{c}(\alpha, \beta)=\frac{i\left(\beta_{\xi}-\alpha_{\xi}\right)+\left\langle\alpha_{\xi}\right\rangle \alpha_{x}+\left\langle\beta_{\xi}\right\rangle \beta_{x}}{\left\langle\alpha_{\xi}\right\rangle+\left\langle\beta_{\xi}\right\rangle}
$$

The proof in this case then follows from the method of complex stationary phase.

When, both $\operatorname{Re} \alpha_{x} \notin K$ and $\operatorname{Re} \beta_{x} \notin K, \alpha=\operatorname{Re} \alpha, \beta=\operatorname{Re} \beta$, and $H(\alpha)=H(\beta)=0$. In order to handle this situation, we will Taylor expand $a(y)$ around $y=\alpha_{x}$. For that we first consider (2.10) with $a=O\left(\left|y-\alpha_{x}\right|^{2 N}\right)$. In that case, we consider the integral

$$
\begin{align*}
& K_{N}(\alpha, \beta):=h^{-\frac{3 n}{2}} \int e^{\frac{i}{h}\left(\left\langle\alpha_{x}-y, \alpha_{\xi}\right\rangle+\frac{i}{2}\left(\left\langle\alpha_{\xi}\right\rangle\left(\alpha_{x}-y\right)^{2}+\left\langle\beta_{\xi}\right\rangle\left(\beta_{x}-y\right)^{2}\right)\right)} \tag{2.12}\\
& \quad O\left(\left|y-\alpha_{x}\right|^{2 N}\right)\left\langle\alpha_{\xi}\right\rangle^{\frac{n}{4}}\left\langle\beta_{\xi}\right\rangle^{\frac{n}{4}}\left(1-\tilde{\chi}_{\delta}(\alpha, \beta)\right) d y .
\end{align*}
$$

Changing variables $y \mapsto y+\alpha_{x}$,

$$
\begin{aligned}
&\left|K_{N}(\alpha, \beta)\right| \leq \int\left\langle\alpha_{\xi}\right\rangle^{\frac{n}{4}}\left\langle\beta_{\xi}\right\rangle^{\frac{n}{4}} \frac{h^{N-\frac{3 n}{2}}}{\left\langle\alpha_{\xi}\right\rangle^{N}} e^{-\frac{\left\langle\beta_{\xi}\right\rangle}{2 h}\left(\beta_{x}-\alpha_{x}-y\right)^{2}}\left(1-\tilde{\chi}_{\delta}\right) d y \\
& \leq C \frac{h^{N-n}}{\left(\left\langle\alpha_{\xi}\right\rangle+\left\langle\beta_{\xi}\right\rangle\right)^{N}} e^{-\frac{\left\langle\alpha_{\xi}\right\rangle+\left\langle\beta_{\xi}\right\rangle}{h}\left(\alpha_{x}-\beta_{x}\right)^{2}}\left(1-\tilde{\chi}_{\delta}(\alpha, \beta)\right)
\end{aligned}
$$

Therefore, using the Schur test for boundedness, the operator K_{N} with kernel $K_{N}(\alpha, \beta)$ satisfies

$$
K_{N}=O\left(h^{N-\frac{n}{2}}\right): H_{\Lambda}^{-N+\frac{n}{4}+0} \rightarrow H_{\Lambda}^{N-\frac{n}{4}-0}
$$

Now, observe that for any $N>0$,

$$
a(y)=a_{N}(y)+O\left(\left|y-\alpha_{x}\right|^{2 N}\right)
$$

where $a_{N}(y)$ is a polynomial of order $2 N-1$ in $\left(y-\alpha_{x}\right)$. In particular,

$$
K_{a}(\alpha, \beta)=K_{a_{N}}(\alpha, \beta)+K_{N}(\alpha, \beta)
$$

Since a_{N} is analytic and the integrand is exponentially decaying in y, we may deform the contour with $y \mapsto y+y_{c}(\alpha, \beta)$ in the integral forming the kernel of $K_{a_{N}}$ and apply complex stationary phase as in the case where $\operatorname{Re} \alpha_{x} \in K$ or $\operatorname{Re} \beta_{x} \in K$. This finishes the proof of the proposition after taking N large enough.
2.2. Analytic wave front set. We now relate weighted estimates to analyticity.

Proposition 2.3. Let T be the FBI transform defined in (2.1) for some fixed h, and let $\psi \in S^{1}\left(T^{*} \mathbb{R}^{n}\right)$ satisfy

$$
\begin{equation*}
\psi(x, \xi) \geq|\xi| / C, \quad(x, \xi) \in U \times \Gamma \tag{2.13}
\end{equation*}
$$

where $U \subset \mathbb{R}^{n}$ and $\Gamma \subset \mathbb{R}^{n} \backslash 0$ is an open cone. Then, for $u \in H^{-N}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
e^{\psi}\langle\xi\rangle^{-N} T u \in L^{2}\left(T^{*} \mathbb{R}^{n}\right) \Longrightarrow \mathrm{WF}_{\mathrm{a}}(u) \cap(U \times \Gamma)=\emptyset \tag{2.14}
\end{equation*}
$$

Conversely, suppose $u \in H^{-N}\left(\mathbb{R}^{n}\right), \Gamma_{0} \subset \mathbb{R}^{n}$ is a conic open set such that $\Gamma_{0} \cap \mathbb{S}^{n-1} \Subset$ $\Gamma \cap \mathbb{S}^{n-1}, U_{0} \Subset U$. Then for any $\psi \in S^{1}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ with $\operatorname{supp} \psi \subset U_{0} \times V_{0}$,

$$
\begin{equation*}
\mathrm{WF}_{\mathrm{a}}(u) \cap(U \times \Gamma)=\emptyset \Longrightarrow \exists \theta>0 \quad\langle\xi\rangle^{-N} e^{\theta \psi} T u \in L^{2}\left(T^{*} \mathbb{R}^{n}\right) \tag{2.15}
\end{equation*}
$$

Remark: Here we do not consider uniformity in h in the L^{2} bounds. If we demanded that, than we would only need $\psi \in C_{\mathrm{c}}^{\infty}\left(T^{*} \mathbb{R}^{n}\right), \psi>0$ on $U \times\left(\Gamma \cap \mathbb{S}^{n-1}\right)$.

The proof is based on the following
Lemma 2.4. Let T and S be given by (2.1) and (2.2), respectively, with h fixed. Suppose that $\chi, \tilde{\chi} \in S^{0}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ and $\operatorname{supp} \chi, \operatorname{supp} \chi_{1} \subset K \times \mathbb{R}^{n}, K \Subset \mathbb{R}^{n}$. Then for any $a>0$ there exists $b>0$ such that

$$
\begin{equation*}
\chi e^{b\langle\xi\rangle} T S \chi_{1} e^{-a\langle\xi\rangle}=\mathcal{O}_{N}(1): L^{2}\left(\mathbb{R}^{2 n}\right) \rightarrow H^{N}\left(\mathbb{R}^{2 n}\right) \tag{2.16}
\end{equation*}
$$

for any N.
If in addition $\chi_{1} \equiv 1$ on a a conic neighbourhood of the support of χ, then there exists $b>0$ such that

$$
\begin{equation*}
\chi e^{b\langle\xi\rangle} T S\left(1-\chi_{1}\right)\langle\xi\rangle^{M}=\mathcal{O}_{N, M}(1): L^{2}\left(\mathbb{R}^{2 n}\right) \rightarrow H^{N}\left(\mathbb{R}^{2 n}\right) \tag{2.17}
\end{equation*}
$$

for any N.
Proof. We analyse the Schwartz kernel of the operator in (2.16), $K(x, \xi, y, \eta)$. As in the proofs of [GaZw19b, Lemma 2.1, Proposition 4.5] (the phase of resulting operator can be computed by completion of squares and is given by [GaZw19b, (4.10)] with $\Lambda=T^{*} \mathbb{R}^{n}$) we see that

$$
\begin{gather*}
\left|(h D)_{x, \xi}^{\alpha} K(x, \xi, y, \eta)\right| \leq C_{\alpha} e^{b\langle\xi\rangle-a\langle\eta\rangle-\psi(x, \xi, y, \eta)} \tag{2.18}\\
\psi:=c(\langle\xi\rangle+\langle\eta\rangle)^{-1}\left(|\xi-\eta|^{2}+\langle\xi\rangle\langle\eta\rangle|x-y|^{2}\right)
\end{gather*}
$$

We have

$$
b<\frac{1}{8} \min (a, c) \Rightarrow b\langle\xi\rangle-a\langle\eta\rangle-c(\langle\xi\rangle+\langle\eta\rangle)^{-1}|\xi-\eta|^{2} \leq-\frac{1}{2}(b\langle\xi\rangle+a\langle\eta\rangle),
$$

if b is sufficiently small. (By taking $b<a / 8$ we can assume that $|\eta| \leq|\xi| / 2$. But then $|\xi-\eta| \geq \frac{1}{2}|\xi|$ and $\langle\xi\rangle+\langle\eta\rangle \leq 2\langle\eta\rangle$.) This proves (2.16) as we can use the Schur criterion.

To see (2.17) we note that we can now assume that $|\xi /\langle\xi\rangle-\eta /\langle\eta\rangle|>\delta$ or $|x-y|>\delta$. But then if the kernel of the operator in (2.17) is given by $K_{M}(x, \xi, y, \eta)$ where

$$
\left|\left(h D_{x, \xi}\right)^{\alpha} K_{N}(x, \xi, y, \eta)\right| \leq C_{\alpha, N} e^{b\langle\xi\rangle-M \log \langle\eta\rangle-\psi(x, \xi, y, \eta)}
$$

Now, fix $0<\delta<1$ small. Then, when $|\xi /\langle\xi\rangle-\eta /\langle\eta\rangle|>\delta$ or $|x-y|>\delta$,

$$
\begin{equation*}
|\xi-\eta|^{2}+\langle\xi\rangle\langle\eta\rangle|x-y|^{2} \geq \frac{\delta^{2}}{16}(\langle\xi\rangle+\langle\eta\rangle)^{2} . \tag{2.19}
\end{equation*}
$$

To see this, observe that on

$$
\left|\frac{\langle\xi\rangle-\langle\eta\rangle}{\langle\xi\rangle+\langle\eta\rangle}\right| \geq \frac{\delta}{4},
$$

we have

$$
\frac{\delta}{4} \leq\left|\frac{\langle\xi\rangle^{2}-\langle\eta\rangle^{2}}{(\langle\xi\rangle+\langle\eta\rangle)^{2}}\right| \leq \frac{|\xi-\eta|}{\langle\xi\rangle+\langle\eta\rangle}
$$

On the other hand, when

$$
\left|\frac{\langle\xi\rangle-\langle\eta\rangle}{\langle\xi\rangle+\langle\eta\rangle}\right| \leq \frac{\delta}{4},
$$

we have

$$
\frac{2\langle\xi\rangle\langle\eta\rangle}{\langle\xi\rangle+\langle\eta\rangle}=\frac{\langle\xi\rangle+\langle\eta\rangle}{2}\left(1-\left[\frac{\langle\eta\rangle-\langle\xi\rangle}{\langle\xi\rangle+\langle\eta\rangle}\right]^{2}\right) \geq \frac{1}{4}(\langle\xi\rangle+\langle\eta\rangle)
$$

Therefore, if $|x-y| \geq \delta$, (2.19) follows. If instead, $|\xi /\langle\xi\rangle-\eta /\langle\eta\rangle| \geq \delta$, then

$$
\frac{|\xi-\eta|}{\langle\xi\rangle+\langle\eta\rangle} \geq \frac{1}{2}\left[\left|\frac{\xi}{\langle\xi\rangle}-\frac{\eta}{\langle\eta\rangle}\right|-\left(\frac{|\xi|}{\langle\xi\rangle}+\frac{|\eta|}{\langle\eta\rangle}\right)\left|\frac{\langle\xi\rangle-\langle\eta\rangle}{\langle\xi\rangle+\langle\eta\rangle}\right|\right] \geq \frac{\delta}{4}
$$

and (2.19) follows.
From (2.19), we have that there is $C_{M, \delta}>0$ such that if $|\xi /\langle\xi\rangle-\eta /\langle\eta\rangle|>\delta$ or $|x-y|>\delta$,

$$
\begin{aligned}
& b\langle\xi\rangle-c(\langle\xi\rangle+\langle\eta\rangle)^{-1}\left(|\xi-\eta|^{2}+\langle\xi\rangle\langle\eta\rangle|x-y|^{2}\right)+M \log \langle\eta\rangle \\
& \quad \leq b\langle\xi\rangle-\frac{1}{64} c \delta^{2}(\langle\xi\rangle+\langle\eta\rangle)-\frac{1}{2} c(\langle\xi\rangle+\langle\eta\rangle)^{-1}\left(|\xi-\eta|^{2}+\langle\xi\rangle\langle\eta\rangle|x-y|^{2}\right)+C_{M, \delta}
\end{aligned}
$$

and the Schur criterion and gives (2.17) for $b \leq \frac{c \delta^{2}}{64}$.
Proof of Proposition 2.3. We start by recalling the characterization of the analytic wave front set using the standard FBI/Bargmann-Segal transform:

$$
\mathscr{T} u(x, \xi ; h):=c_{n} h^{-\frac{3 n}{4}} \int_{\mathbb{R}^{n}} e^{\frac{i}{h}\left(\langle x-y, \xi\rangle+\frac{i}{2}(x-y)^{2}\right)} u(y) d y, \quad u \in \mathscr{S}^{\prime}\left(\mathbb{R}^{n}\right)
$$

Then

$$
\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}_{\mathrm{a}}(u) \Longleftrightarrow\left\{\begin{array}{l}
\exists \delta, U=\operatorname{neigh}\left(\left(x_{0}, \xi_{0}\right)\right) \tag{2.20}\\
|\mathscr{T} u(x, \xi, h)| \leq C e^{-\delta / h},
\end{array} \quad(x, \xi) \in U, \quad 0<h<h_{0}\right.
$$

see [HöI, Theorem 9.6.3] for a textbook presentation; note the somewhat different convention: $\mathscr{T} u(x, \xi ; h)=e^{-\frac{1}{2 h} \xi^{2}} T_{1 / h} u(x-i \xi)$.

We first prove (2.14). Hence suppose that $\left(x_{0}, \xi_{0}\right) \in U \times \Gamma$. Let $\chi \in S^{0}$ be supported in a small conic neighbourhood, $U_{0} \times \Gamma_{0}$, of $\left(x_{0}, \xi_{0}\right)$ and choose $\chi_{1} \in S^{0}$ which is supported in $U \times \Gamma$ and is equal to 1 on a conic neighbourhood of the support of χ and $\chi_{2} \in S^{0}$ supported in $U \times \Gamma$ and equal to 1 on a conic neighborhood of the support of χ_{1}. Our assumptions then show that $e^{a\langle\xi\rangle / h} \chi_{2} T u \in L^{2}\left(\mathbb{R}^{2 n}\right)$ for some $a>0$. We now write

$$
\chi e^{b\langle\xi\rangle} T u=\chi e^{b\langle\xi\rangle} T S\left(\chi_{1} e^{-a\langle\xi\rangle} e^{a\langle\xi\rangle} \chi_{2} T u+\left(1-\chi_{1}\right)\langle\xi\rangle^{N}\langle\xi\rangle^{-N} T u\right) .
$$

Since $u \in H^{-N},\langle\xi\rangle^{-N} T u \in L^{2}\left(\mathbb{R}^{2 n}\right)$ and (2.16), (2.17), now show that $e^{b\langle\xi\rangle} \chi T u \in H^{K}$ for some $b>0$ and any K. By taking $K>n$ and applying [HöI, Corollary 7.9.4] we obtain a uniform bound

$$
|T u(x, \xi)| \leq C e^{-b\langle\xi\rangle}, \quad(x, \xi) \in U_{0} \times \Gamma_{0}
$$

Let h_{1} be the fixed h in the definition of T. Then,

$$
\begin{equation*}
\mathscr{T}\left(x, \xi /\langle\xi\rangle ; h_{1} /\langle\xi\rangle\right)=T u(x, \xi)=\mathcal{O}\left(e^{-b\langle\xi\rangle}\right), \quad(x, \xi) \in U_{0} \times \Gamma_{0} \tag{2.21}
\end{equation*}
$$

Putting $\omega_{0}:=\xi_{0} /\left\langle\xi_{0}\right\rangle$, it follows that $\mathscr{T}(x, \omega, h)=\mathcal{O}\left(e^{-\delta / h}\right)$ for (x, ω) in a small neighbourhood of $\left(x_{0}, \omega_{0}\right)$. But then (2.20) shows that $\left(x_{0}, \omega_{0}\right) \notin \mathrm{WF}_{\mathrm{a}}(u)$. Since $\mathrm{WF}_{\mathrm{a}}(u)$ is a closed conic set, we conclude that $\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}_{\mathrm{a}}(u)$.

Now suppose that $\mathrm{WF}_{\mathrm{a}}(u) \cap(U \times \Gamma)=\emptyset$. Then for (x, ω) near $U_{0} \times\left(\Gamma_{0} \cap \mathbb{S}^{n-1}\right)$ (with U_{0} and Γ_{0}, as in the statement of the theorem), $\mathscr{T}(x, \omega, h)=\mathcal{O}\left(e^{-\delta / h}\right)$. Reversing the argument in (2.21) we see that

$$
|T u(x, \xi)| \leq C e^{-b\langle\xi\rangle}, \quad(x, \xi) \in U_{0} \times \Gamma_{0}
$$

Now, since $u \in H^{-N}\left(\mathbb{R}^{n}\right),\langle\xi\rangle^{-N} T u \in L^{2}\left(\mathbb{R}^{2 n}\right)$. In particular, since $|\psi| \leq C\langle\xi\rangle$ and the support of ψ is contained in $U_{0} \times \Gamma_{0}$, (2.15) follows.

The next proposition relates weighted estimates to deformed FBI transform:
Proposition 2.5. Suppose that $H_{\Lambda}, \Lambda=\Lambda_{G}$, is defined in [GaZw19b, (4.7)] with G satisfying (2.4) with ϵ_{0} chosen as in the definition of H_{Λ}.

Then there exists $\psi \in S^{1}\left(T^{*} \mathbb{R}^{n}\right)$ such that $T: \mathscr{B}_{\delta} \rightarrow L^{2}\left(T^{*} \mathbb{R}^{n}, e^{\delta\langle\xi\rangle / C h} d x d \xi\right)$ extends to

$$
\begin{equation*}
T=\mathcal{O}(1): H_{\Lambda} \rightarrow L^{2}\left(T^{*} \mathbb{R}^{n}, e^{2 \psi(x, \xi) / h} d x d \xi\right) \tag{2.22}
\end{equation*}
$$

and $S: L^{2}\left(T^{*} \mathbb{R}^{n}, e^{-C \delta\langle\xi\rangle / h} d x d \xi\right) \rightarrow \mathscr{B}_{\delta}$, extends to

$$
\begin{equation*}
S=\mathcal{O}(1): L^{2}\left(T^{*} \mathbb{R}^{n}, e^{2 \psi(x, \xi) / h} d x d \xi\right) \rightarrow H_{\Lambda} \tag{2.23}
\end{equation*}
$$

In addition,

$$
\begin{equation*}
\psi(x, \xi)=G(x, \xi)+\mathcal{O}\left(\epsilon_{0}^{2}\right)_{S^{1}\left(T^{*} \mathbb{R}^{n}\right)} \tag{2.24}
\end{equation*}
$$

For a simpler version of this result in the case of compactly supported weights see [GaZw19a, §8].

Proof. The statement (2.22) is equivalent to

$$
T S_{\Lambda}=\mathcal{O}(1): L^{2}\left(\Lambda, e^{-2 H(\alpha) / h} d \alpha\right) \rightarrow L^{2}\left(T^{*} \mathbb{R}^{n}, e^{2 \psi(\beta)} d \beta\right)
$$

and hence we analyse the kernel of the operator $T S_{\Lambda}$ which is given by

$$
K(\alpha, \beta)=c_{n} h^{-\frac{3 n}{2}} \int_{\mathbb{R}^{n}} e^{\frac{i}{h}\left(\varphi_{0}(\alpha, y)+\varphi_{G}^{*}(\beta, y)\right)}\left\langle\beta_{\xi}\right\rangle^{\frac{n}{4}}\left\langle\alpha_{x}\right\rangle^{\frac{n}{4}}\left(1+\frac{i}{2}\left\langle\alpha_{x}-y\right\rangle\right) d y
$$

where the notation (and also notation for Φ below) comes from (2.11). The integral in y converges and can be evaluated by a completion of squares as in [GaZw19b, Proposition 4.4]. That gives the phase (2.9) with $\alpha \in T^{*} \mathbb{R}^{n}$ and $\beta \in \Lambda$. The critical point in y is given by

$$
\begin{equation*}
y_{c}(\alpha, \beta)=\frac{1}{\left\langle\alpha_{\xi}\right\rangle+\left\langle\beta_{\xi}\right\rangle}\left(\left\langle\alpha_{\xi}\right\rangle \alpha_{x}+\left\langle\beta_{\xi}\right\rangle \beta_{x}+i\left(\beta_{\xi}-\alpha_{\xi}\right)\right) . \tag{2.25}
\end{equation*}
$$

We then have (2.22) with

$$
\begin{equation*}
\psi(\alpha):=\max _{\beta \in \Lambda}(-\operatorname{Im} \Psi(\alpha, \beta)+H(\beta)) \tag{2.26}
\end{equation*}
$$

We have (see [GaZw19b, (3.3),(3.4)])

$$
d_{\beta}(-\operatorname{Im} \Psi(\alpha, \beta)+H(\beta))=\left.\operatorname{Im}\left(-\partial_{z, \zeta} \Psi(\alpha,(z, \zeta))-\left.\zeta d z\right|_{\Lambda}\right)\right|_{(z, \zeta)=\beta \in \Lambda} .
$$

Now, if $y_{c}(\alpha,(z, \zeta))$ is the critical point in y, then

$$
\begin{aligned}
\partial_{z, \zeta} \Psi(\alpha, z) & =\partial_{z, \zeta}\left(\Phi\left(\alpha, y_{c}(\alpha,(z, \zeta))\right)-\bar{\Phi}\left((z, \zeta), y_{c}(\alpha,(z, \zeta))\right)\right)=-\left.\partial_{z, \zeta} \bar{\Phi}\right|_{y=y_{c}(z, \zeta)}(z, \zeta) \\
& =-\zeta \cdot d z+\left(y_{c}-z\right) \cdot d \zeta+i\langle\zeta\rangle\left(z-y_{c}\right) \cdot d z+\frac{i}{2}\left(z-y_{c}\right)^{2} \zeta \cdot d \zeta /\langle\zeta\rangle
\end{aligned}
$$

For $G=0$ the critical point (see (2.25)) is given by $\alpha=\beta$. Hence

$$
\begin{equation*}
\beta_{c}=\beta_{c}(\alpha)=\left(\alpha_{x}+\mathcal{O}\left(\epsilon_{0}\right)_{S^{0}}, \alpha_{\xi}+\mathcal{O}\left(\epsilon_{0}\right)_{S^{1}}\right), \tag{2.27}
\end{equation*}
$$

with ϵ_{0} as in (2.4).
Hence we obtain ψ by inserting the critical point β_{c} into the right hand side of (2.26)

$$
\begin{equation*}
\psi(\alpha)=-\operatorname{Im} \Psi\left(\alpha, \beta_{c}(\alpha)\right)+H\left(\beta_{c}(\alpha)\right) \in S^{1}\left(T^{*} \mathbb{R}^{n}\right) \tag{2.28}
\end{equation*}
$$

(We note that for $G=0$ the maximum in (2.26) is non-degenerate and unique and it remains such under small symbolic perturbations.) From (2.9) we see that

$$
\operatorname{Im} \Psi\left(\alpha, \beta_{c}(\alpha)\right)=\operatorname{Im} \Psi\left(\alpha, \alpha+\mathcal{O}\left(\epsilon_{0}\right)_{S^{0} \times S^{1}}\right)=\alpha_{\xi} \cdot G_{\xi}(\alpha)+\mathcal{O}\left(\epsilon_{0}^{2}\right)_{S^{1}}
$$

Inserting this into (2.28) and recalling that $H=\xi G_{\xi}-G$ we obtain (2.24).
To obtain (2.23) we apply the same analysis to $T_{\Lambda} S$ and we need to show that two weights coincide. That is done as in [GaZw19a, §8].

3. Proof of Theorem 2

As already indicated in $\S 1.2$, to prove the theorem we construct a family of weights $G_{\epsilon} \in S^{1}$, uniformly bounded in S^{1}, supported in a conic neighbourhood of $\Gamma=$ $\left\{\left(0,0, \xi_{1}, 0\right): \xi_{1}>M\right\}, M \gg 1$, and satisfying $0 \leq G_{\epsilon} \leq C_{\epsilon} \log \langle\xi\rangle$. In addition,

$$
\begin{equation*}
H_{p} G_{\epsilon} \geq 0, \quad G_{\epsilon} \rightarrow \xi_{1} \text { on } \Gamma\left(\text { in } S^{1+}\right) \tag{3.1}
\end{equation*}
$$

with $H_{p} G_{\epsilon} \gg \xi_{1}^{m-1}$ in a suitable sense (see (3.4)) for $\epsilon \ll 1$.

We will then put $\Lambda_{\epsilon}:=\Lambda_{G_{\epsilon}}$ so that the assumption $u \in C^{\infty}$ will give $u \in H_{\Lambda_{\epsilon}}$. On the other hand the assumption that $\Gamma \cap \mathrm{WF}_{\mathrm{a}}(P u)$ shows that $\|P u\|_{H_{\Lambda_{\epsilon}}} \leq C$ with the constant C independent of ϵ. But then [GaZw19b, Proposition 6.2] and the properties of G_{ϵ} show that $\|u\|_{H_{\Lambda_{\epsilon}}}$ is bounded independently of ϵ. Propositions 2.3 and 2.5 then show that $\mathrm{WF}_{\mathrm{a}}(u) \cap \Gamma_{0}=\emptyset$.
3.1. Construction of the weight. We now construct a family of weights, G_{ϵ}, satisfying (3.1). In fact, we need more precise conditions on G_{ϵ} given in the following

Lemma 3.1. Suppose that p satisfies (1.9) at $\rho_{0}=\left(x_{0}, \xi_{0}\right) \in T^{*} \mathbb{R}^{n} \backslash 0$ and Γ is an open conic neighbourhood of ρ_{0}. Then, there exists $G_{\epsilon} \in S^{1}\left(T^{*} \mathbb{R}^{n}\right)$, $\operatorname{supp} G_{\epsilon} \subset \Gamma$, such that

$$
\begin{gather*}
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} G_{\epsilon}\right| \leq C_{\alpha \beta}\langle\xi\rangle^{1-|\beta|}, \quad 0 \leq G_{\epsilon} \leq C \epsilon^{-1} \log \langle\xi\rangle \tag{3.2}\\
\left.G_{\epsilon}(x, \xi)\right|_{1 \leq|\xi| \leq 1 / \epsilon}=\Phi(x, \xi)|\xi|, \quad \Phi \in S_{\mathrm{phg}}^{0}\left(T^{*} \mathbb{R}^{n}\right), \quad \Phi\left(x_{0}, t \xi_{0}\right)=1, t \gg 1, \\
H_{p} G_{\epsilon}(x, \xi) \geq c_{0}\left(\langle\xi\rangle^{m}\left|\partial_{\xi} G_{\epsilon}(x, \xi)\right|^{2}+\langle\xi\rangle^{m-2}\left|\partial_{x} G_{\epsilon}(x, \xi)\right|^{2}\right), \tag{3.3}\\
\forall M_{1}, \gamma \geq 0 \exists M_{2}, K, \epsilon_{0} \forall 0<\epsilon<\epsilon_{0}, \quad H_{p} G_{\epsilon} e^{\gamma G_{\epsilon}}+M_{2}\langle\xi\rangle^{K} \geq M_{1}\langle\xi\rangle^{m-1} e^{\gamma G_{\epsilon}} . \tag{3.4}
\end{gather*}
$$

We stress that the constants $C_{\alpha \beta}$ and c_{0} are independent of ϵ and M_{1}.
Proof. We use the normal form for p constructed in [Ha14, §3]. That means that we take $x_{0}=0$ and $\xi_{0}=e_{1}:=(1,0, \cdots, 0)$ and can assume that $p(x, \xi)=-\xi_{1}^{m} x_{1}$ in a conic neighbourhood of $\rho=\left(0, e_{1}\right)$. For simplicity we can assume that $m=1$ as the argument is the same otherwise.

Let $\chi \in C_{c}^{\infty}(\mathbb{R} ;[0,1])$ satisfy

$$
\begin{equation*}
\operatorname{supp} \chi \subset[-2,2], \quad \chi_{|t| \leq 1}=1, \quad t \chi^{\prime}(t) \leq 0 \tag{3.5}
\end{equation*}
$$

and put $\varphi(t):=\chi(t / \delta)$. Here δ will be fixed depending on Γ. Using this function we define $\Phi=\Phi(x, \xi):=\varphi_{1} \varphi_{2} \varphi_{3} \psi$ where

$$
\begin{equation*}
\varphi_{1}:=\varphi\left(x_{1}\right), \quad \varphi_{2}:=\varphi\left(\left|\xi^{\prime}\right| / \xi_{1}\right) \quad \varphi_{3}=\varphi\left(\left|x^{\prime}\right|\right), \quad \psi:=\left(1-\varphi\left(\left(\xi_{1}\right)_{+}\right)\right) \tag{3.6}
\end{equation*}
$$

We choose δ small enough so that $\operatorname{supp} \Phi \subset \Gamma$.
We define G_{ϵ} as follows

$$
\begin{equation*}
G_{\epsilon}(x, \xi)=\Phi(x, \xi) q_{\epsilon}\left(\xi_{1}\right), \quad q_{\epsilon}(t):=\int_{0}^{t}\left(\chi(\epsilon s)+(1-\chi(\epsilon s))(s \epsilon)^{-1}\right) d s \tag{3.7}
\end{equation*}
$$

We check that

$$
\begin{align*}
\xi_{1} \partial_{\xi_{1}} q_{\epsilon} & \geq \min \left(\xi_{1}, \epsilon^{-1}\right) \tag{3.8}\\
\xi_{1} \mathbb{1}_{\xi_{1} \leq 1 / \epsilon}+\epsilon^{-1}\left(1+\log \left(\epsilon \xi_{1}\right)\right) \mathbb{1}_{\xi \geq 1 / \epsilon} & \leq q_{\epsilon} \leq \xi_{1} \mathbb{1}_{\xi_{1} \leq 1 / \epsilon}+\epsilon^{-1}\left(2+\log \left(\epsilon \xi_{1}\right)\right) \mathbb{1}_{\xi \geq 1 / \epsilon}
\end{align*}
$$

Uniform boundedness of G_{ϵ} in S^{1} means that q_{ϵ} in (3.7) satisfies $\left|\partial_{\xi_{1}}^{k} q_{\epsilon}\right| \leq C_{k} \xi_{1}^{1-k}$ with C_{k} 's independent of ϵ. But this is immediate from the definition. We also easily see that G_{ϵ} converges to $G:=\Phi(x, \xi) \xi_{1}$ in S^{1+} as $\epsilon \rightarrow 0$. This proves (3.2).

To see (3.3), we first note that, since $\Phi \geq 0, \Phi \in S^{0}$, the standard estimate $f(z) \geq$ $0 \Longrightarrow|d f(z)|^{2} \leq C f(z)$ gives,

$$
\begin{equation*}
\Phi(x, \xi) \geq c_{1}\left(\xi_{1}^{2}\left|\partial_{\xi} \Phi(x, \xi)\right|^{2}+\left|\partial_{x} \Phi(x, \xi)\right|^{2}\right) . \tag{3.9}
\end{equation*}
$$

Note also that we have $H_{p}=\xi_{1} \partial_{\xi_{1}}-x_{1} \partial_{x_{1}}$ and therefore

$$
\begin{equation*}
H_{p} \Phi=-x_{1} \varphi^{\prime}\left(x_{1}\right) \varphi_{2} \varphi_{3} \psi-\left(\left|\xi^{\prime}\right| / \xi_{1}\right) \varphi^{\prime}\left(\left|\xi^{\prime}\right| / \xi_{1}\right) \varphi_{1} \varphi_{3} \psi-\varphi_{1} \varphi_{2} \varphi_{3} \xi_{1} \varphi^{\prime}\left(\left(\xi_{1}\right)_{+}\right) \geq 0 \tag{3.10}
\end{equation*}
$$

Since $q_{\epsilon} \in S^{1}, \xi_{1} \partial_{\xi_{1}} q_{\epsilon}\left(\xi_{1}\right) \geq c_{2} \xi_{1}\left(\partial_{\xi_{1}} q_{\epsilon}\left(\xi_{1}\right)\right)^{2}$. We also claim that

$$
\begin{equation*}
\xi_{1} \partial_{\xi_{1}} q_{\epsilon}\left(\xi_{1}\right) \geq c_{2} \xi_{1}^{-1} q_{\epsilon}\left(\xi_{1}\right)^{2} \tag{3.11}
\end{equation*}
$$

In fact, using (3.8) we see that to prove (3.11) it is enough to have

$$
\min \left(t, \epsilon^{-1}\right) \geq c_{2} t^{-1}\left(t \mathbb{1}_{t \leq 1 / \epsilon}(t)+\epsilon^{-1}(2+\log (t \epsilon)) \mathbb{1}_{t \geq 1 / \epsilon}(t)\right)^{2}
$$

This clearly holds (with $c_{2}=1$) for $t \leq 1 / \epsilon$ and for $t \geq \epsilon$ is equivalent to $c_{2}(2+\log s)^{2} \leq$ $s, s=t \epsilon \geq 1$, which holds with $c_{2}=\frac{1}{4}$. It follows that

$$
\xi_{1} \partial_{\xi_{1}} q_{\epsilon}\left(\xi_{1}\right) \geq c_{2}\left(\xi_{1}^{-1} q_{\epsilon}\left(\xi_{1}\right)^{2}+\xi_{1}\left(\partial_{\xi_{1}} q_{\epsilon}\left(\xi_{1}\right)\right)^{2}\right),
$$

which combined with (3.9) and (3.10) gives

$$
\begin{aligned}
H_{p} G_{\epsilon} & =\Phi\left(\xi_{1} \partial_{\xi_{1}} q_{\epsilon}\right)+\left(H_{p} \Phi\right) q_{\epsilon} \\
& \geq \Phi\left(\xi_{1} \partial_{\xi_{1}} q_{\epsilon}\right) \geq c_{2} \xi_{1} \Phi\left(\partial_{\xi_{1}} q_{\epsilon}\right)^{2}+c_{3}\left(\xi_{1}^{2}\left|\partial_{\xi} \Phi\right|^{2}+\left|\partial_{x} \Phi\right|^{2}\right) \xi_{1}^{-1} q_{\epsilon}^{2} \\
& \geq c_{0}\left(\xi_{1}\left|\partial_{\xi} G_{\epsilon}\right|^{2}+\xi_{1}^{-1}\left|\partial_{x} G_{\epsilon}\right|^{2}\right) .
\end{aligned}
$$

Since $\langle\xi\rangle \sim \xi_{1}$ on the support of G_{ϵ}, we obtain (3.3).
Finally we prove (3.4). Since by (3.10) we have $H_{p} G_{\epsilon} \geq \Phi H_{p} q_{\epsilon}$, we see that (3.4) follows from proving that for any M_{1} we can find K, M_{2} and ϵ_{0} such that for $\xi_{1} \geq 1$,

$$
\begin{equation*}
\Phi H_{p} q_{\epsilon} e^{\gamma \Phi q_{\epsilon}}+M_{2} \xi_{1}^{K} \geq M_{1} e^{\gamma \Phi q_{\epsilon}} . \tag{3.12}
\end{equation*}
$$

Using (3.8), we see that for $\xi_{1} \leq 1 / \epsilon$ we need $G_{\epsilon} e^{\gamma G_{\epsilon}}+M_{2} \xi_{1}^{K} \geq M_{1} e^{\gamma G_{\epsilon}}$. This holds for

$$
K=0, \quad M_{2}=2 \gamma^{-1} e^{\gamma M_{1}-1}
$$

since for $\gamma>0$ and $a \geq 0, a e^{\gamma a}-M_{1} e^{\gamma a} \geq-2 \gamma^{-1} e^{\gamma M_{1}-1}$.
For $\xi_{1} \geq 1 / \epsilon$, we need to find K and M_{2} for which

$$
\begin{equation*}
\epsilon^{-1} \Phi e^{\gamma \Phi q_{\epsilon}}+M_{2} \xi_{1}^{K} \geq M_{1} e^{\gamma \Phi q_{\epsilon}} . \tag{3.13}
\end{equation*}
$$

Using $a e^{a b}+M_{1} e^{M_{1} b} \geq M_{1} e^{a b}$ with $a:=\epsilon^{-1} \Phi$ and

$$
b:=\gamma \epsilon q_{\epsilon} \leq \gamma\left(2+\log \left(\epsilon \xi_{1}\right)\right) \leq \gamma\left(2+\log \xi_{1}\right)
$$

we obtain (3.13) with $M_{2}=M_{1} e^{2 \gamma M_{1}}$ and $K=\gamma M_{1}$. Hence we obtain (3.12) proving (3.4).
3.2. Microlocal analytic hypoelliticity. We will have bounds which are uniform in ϵ but not in h. We start with the following

Lemma 3.2. Suppose that P is of the form (1.8) with real valued principal symbol p and suppose that $\Gamma \subset U \times \mathbb{R}^{n} \backslash$ is an open cone, $\Gamma \cap \mathbb{S}^{n-1} \Subset U \times \mathbb{S}^{n-1}$ and

$$
\begin{gather*}
G \in S^{1}(\Gamma ; \mathbb{R}), \quad|G| \leq C \log \langle\xi\rangle \\
H_{p} G(x, \xi) \geq c_{0}\left(\langle\xi\rangle^{m}\left|\partial_{\xi} G(x, \xi)\right|^{2}+\langle\xi\rangle^{m-2}\left|\partial_{x} G(x, \xi)\right|^{2}\right) \tag{3.14}
\end{gather*}
$$

Then for $T_{\Lambda}, H_{\Lambda}, \Lambda=\Lambda_{\theta G}$ defined in (2.4) and (2.6), h and θ sufficiently small, and $u \in H_{\Lambda}^{-N+m}$,

$$
\begin{equation*}
\operatorname{Im}\left\langle h^{m} P u, u\right\rangle_{H_{\Lambda}^{-N}} \geq \frac{1}{2} \theta\left\langle H_{p} G\langle\xi\rangle^{-N} T_{\Lambda} u,\langle\xi\rangle^{-N} T_{\Lambda} u\right\rangle_{L_{\Lambda}^{2}}-M h\|u\|_{H_{\Lambda}^{\frac{m-1}{2}-N}}^{2}, \tag{3.15}
\end{equation*}
$$

where M depends only on P and the semi-norms of G in S^{1}.
Proof. We use Proposition 2.2 and [GaZw19b, Proposition 6.3] to see that for any $K>0$,

$$
\begin{align*}
\operatorname{Im}\left\langle h^{m} P u, u\right\rangle_{H_{\Lambda}^{-N}} & =\operatorname{Im}\left\langle\langle\xi\rangle^{-2 N} T_{\Lambda} h^{m} P S_{\Lambda} T_{\Lambda} u, T_{\Lambda} u\right\rangle_{L_{\Lambda}^{2}} \\
& =\operatorname{Im}\left\langle\Pi_{\Lambda}\langle\xi\rangle^{-2 N} \Pi_{\Lambda} h^{m} P S_{\Lambda} \Pi_{\Lambda} T_{\Lambda} u, T_{\Lambda} u\right\rangle_{L_{\Lambda}^{2}} \tag{3.16}\\
& =\left\langle\left(\operatorname{Im} b_{P, N}\right) T_{\Lambda} u, T_{\Lambda} u\right\rangle_{L_{\Lambda}^{2}}+\mathcal{O}\left(h^{\infty}\right)\|u\|_{H_{\Lambda}^{-K}} \\
& \geq\left\langle\left(\left.\operatorname{Im} p\right|_{\Lambda}\right)\langle\xi\rangle^{-N} T_{\Lambda} u,\langle\xi\rangle^{-N} T_{\Lambda} u\right\rangle_{L_{\Lambda}^{2}}-M h\|u\|_{H_{\Lambda}^{\frac{m-1}{2}-N}} .
\end{align*}
$$

From (2.7) and (3.14) we obtain

$$
\begin{aligned}
\left.\operatorname{Im} p\right|_{\Lambda} & =\operatorname{Im} p\left(x-i \theta \partial_{\xi} G(x, \xi), \xi+i \theta \partial_{x} G(x, \xi)\right) \\
& =\theta H_{p} G(x, \xi)+\theta^{2} \mathcal{O}\left(\langle\xi\rangle^{m}\left|\partial_{\xi} G(x, \xi)\right|^{2}+\langle\xi\rangle^{m-2}\left|\partial_{x} G(x, \xi)\right|^{2}\right) \\
& \geq \frac{1}{2} \theta H_{p} G(x, \xi)
\end{aligned}
$$

if θ is small enough.
The next lemma allows us to use smoothness of u to obtain weaker weighted estimates:

Lemma 3.3. Suppose $U \subset \mathbb{R}^{n}$ is an open set,

$$
G \in S^{1}\left(T^{*} \mathbb{R}^{n}\right), \quad G \geq 0, \quad \operatorname{supp} G \subset K \times \mathbb{R}^{n}, \quad K \Subset U
$$

and $T_{\Lambda}, H_{\Lambda}, \Lambda=\Lambda_{\theta G}$ are defined in (2.4) and (2.6). Then, there exists $a>0$ such that for every $\chi, \tilde{\chi} \in S^{1}$ with $\tilde{\chi} \equiv 1$ in a conic neighborhood of $\operatorname{supp} \chi$ and every $K, N>0$, there exists $c, C>0$ such that for all $u \in H^{-N}\left(\mathbb{R}^{n}\right)$,

$$
\begin{equation*}
\left\|\langle\xi\rangle^{K} e^{-a G / h} \chi T_{\Lambda} u\right\|_{L_{\Lambda}^{2}} \leq C\left(\left\|\langle\xi\rangle^{K} \tilde{\chi} T u\right\|_{L^{2}\left(T^{*} \mathbb{R}^{n}\right)}+e^{-c / h}\left\|\langle\xi\rangle^{-N} T u\right\|_{L^{2}\left(T^{*} \mathbb{R}^{n}\right)}\right) \tag{3.17}
\end{equation*}
$$

In particular, if $\chi \equiv 1$ on $\operatorname{supp} G$, then

$$
\begin{align*}
& \left\|\left(\langle\xi\rangle^{K} e^{-a / h} \chi+\langle\xi\rangle^{-N}(1-\chi)\right) T_{\Lambda} u\right\|_{L_{\Lambda}^{2}} \\
& \quad \leq C\left(\left\|\langle\xi\rangle^{N} \tilde{\chi} T u\right\|_{L^{2}\left(T^{*} \mathbb{R}^{n}\right)}+e^{-C / h}\left\|\langle\xi\rangle^{-N} T u\right\|_{L^{2}\left(T^{*} \mathbb{R}^{n}\right)}\right) . \tag{3.18}
\end{align*}
$$

Proof. First, observe that by [GaZw19b, Lemma 4.5], for any $\delta>0$,

$$
T_{\Lambda} S=K_{\delta}+O_{N, \delta}\left(e^{-c_{\delta} / h}\right)_{\langle\xi\rangle^{N} L^{2}\left(T^{*} \mathbb{R}^{n}\right) \rightarrow\langle\xi\rangle^{-N} L_{\Lambda}^{2}}
$$

and K_{δ} has kernel, $K_{\delta}(\alpha, \beta)$, given by

$$
\left.h^{-n} e^{\frac{i}{h} \Psi(\alpha, \beta)} k(\alpha, \beta) \psi\left(\delta^{-1}\left|\operatorname{Re} \alpha_{x}-\beta_{x}\right|\right)\right) \psi\left(\delta^{-1} \min \left(\left\langle\operatorname{Re} \alpha_{\xi}\right\rangle,\left\langle\beta_{\xi}\right\rangle\right)^{-1}\left|\operatorname{Re} \alpha_{\xi}-\beta_{\xi}\right|\right),
$$

where $(\alpha, \beta) \in \Lambda \times T^{*} \mathbb{R}^{n}$ and Ψ is as in (2.9), and $\psi \in C_{c}^{\infty}(\mathbb{R})$ is identically 1 near 0 . Therefore, we need only consider $K_{\delta}(\alpha, \beta)$.

To do this, let $\tilde{\chi} \in S^{0}$ be identically 1 on a conic neighborhood of supp χ. Then, for $\delta>0$ small enough,

$$
\chi(\operatorname{Re} \alpha) K_{\delta}(\alpha, \beta)(1-\tilde{\chi})(\beta) \equiv 0
$$

Therefore,

$$
\chi e^{-a G / h}\langle\xi\rangle^{K} T_{\Lambda} S(1-\tilde{\chi})=O_{N}\left(e^{-c / h}\right)_{\langle\xi\rangle^{N} L^{2}\left(T^{*} \mathbb{R}^{n}\right) \rightarrow\langle\xi\rangle^{-N} L_{\Lambda}^{2} .} .
$$

For the mapping properties

$$
\chi e^{-a G / h} T_{\Lambda} S \tilde{\chi}:\langle\xi\rangle^{-K} L^{2}\left(T^{*} \mathbb{R}^{n}\right) \rightarrow\langle\xi\rangle^{-K} L_{\Lambda}^{2},
$$

we consider the operator

$$
\chi e^{-a G / h} e^{-H / h}\langle\xi\rangle^{K} T_{\Lambda} S \tilde{\chi}\langle\xi\rangle^{-K}: L^{2}\left(T^{*} \mathbb{R}^{n}\right) \rightarrow L^{2}(\Lambda ; d x d \xi) .
$$

Modulo negligible terms, the kernel of this operator is given by

$$
h^{-n} e^{\frac{i}{h}(\varphi((x, \xi),(y, \eta)))} \tilde{k}((x, \xi),(y, \eta))
$$

where $\tilde{k} \in S^{0}$ has

$$
\begin{equation*}
\operatorname{supp} \tilde{k} \subset\{|\xi-\eta| \leq C \delta\langle\xi\rangle\} \cap\{|x-y| \leq C \delta\} \tag{3.19}
\end{equation*}
$$

and

$$
\varphi=i H(x, \xi)+i a \theta G(x, \xi)+\Psi\left(\left(x-i \theta G_{\xi}, \xi+i \theta G_{x}(x, \xi)\right),(y, \eta)\right),
$$

with $H(x, \xi)=\theta\left\langle\xi, G_{\xi}(x, \xi)\right\rangle-\theta G(x, \xi)$. Using (3.19), we have

$$
\begin{aligned}
& \operatorname{Im} \varphi= a G+\theta \xi \cdot G_{\xi}-\theta G+\frac{\langle\eta\rangle\langle\xi\rangle}{2(\langle\eta\rangle+\langle\xi\rangle)}\left((x-y)^{2}-\left(\theta G_{\xi}\right)^{2}\right)+\frac{(\xi-\eta)^{2}-\left(\theta G_{\xi}\right)^{2}}{2(\langle\eta\rangle+\langle\xi\rangle)} \\
&+\theta \xi \cdot G_{\xi}+O\left(\theta\left(\left|x-y\left\|G_{x}\left|+\langle\xi\rangle^{-1}\right| \xi-\eta\right\| G_{\xi}\right|\right)\right) \\
& \quad+O\left(\theta^{2}\left(\langle\xi\rangle^{-1}\left|G_{x}\right|^{2}+\langle\xi\rangle\left|G_{\xi}\right|^{2}\right)\right) \\
& \geq(a-\theta) G-C \theta^{2}\left(\langle\xi\rangle^{-1}\left(G_{x}\right)^{2}+\langle\xi\rangle\left|G_{\xi}\right|^{2}\right)+c\langle\xi\rangle(x-y)^{2}+c\langle\xi\rangle^{-1}(\xi-\eta)^{2} .
\end{aligned}
$$

In particular, taking a large enough and using that $G \geq 0, G \in S^{1}$, (see the argument for (3.9)), we have

$$
\operatorname{Im} \varphi \geq \frac{a}{2} G(x, \xi)+c\langle\xi\rangle(x-y)^{2}+c\langle\xi\rangle^{-1}(\xi-\eta)^{2}
$$

Therefore, applying the Schur test for L^{2} boundedness completes the proof that

$$
\chi\langle\xi\rangle^{K} e^{-a G / h} T_{\Lambda} S\langle\xi\rangle^{-K}=O(1): L^{2}\left(T^{*} \mathbb{R}^{n}\right) \rightarrow L_{\Lambda}^{2}
$$

and the lemma follows.
With these two lemmas in place we can prove the main result:
Proof of Theorem 2. By multiplying u by a C_{c}^{∞}-function which is 1 in a neighbourhood of x_{0}, we can assume that $u \in H^{-N+m}$, for some N, is compactly supported in U and $\rho_{0}:=\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}(u)$. By Proposition 2.1, there exists $\tilde{\chi} \in S^{0}$ with $\tilde{\chi} \equiv 1$ in an open conic neighborhood, Γ, of ρ_{0} such that for any $K>0$,

$$
\begin{equation*}
\left\|\langle\xi\rangle^{K} \tilde{\chi} T u\right\|_{L^{2}} \leq C_{K} \tag{3.20}
\end{equation*}
$$

Also, since $u \in H^{-N+m}$,

$$
\begin{equation*}
\left\|\langle\xi\rangle^{-N+m} T u\right\|_{L^{2}} \leq C \tag{3.21}
\end{equation*}
$$

Let $\Gamma_{1} \Subset \Gamma$ be an open conic neighborhood of ρ_{0} and $\chi \in S^{1}$ with $\chi \equiv 1$ on Γ_{1} and $\operatorname{supp} \chi \subset \Gamma$.

We choose θ small enough so that (2.4) and (3.16) hold. We then fix $0<h \leq 1$ small enough so that (3.16) holds. From now we neglect the dependence on h which is considered to be a fixed parameter. We choose for $G=G_{\epsilon}$ constructed in Lemma 3.1 and supported in Γ_{1}. We recall that the estimates depend only on the S^{1} seminorms of G and these are uniform in ϵ. We now claim that

$$
u \in H_{\Lambda_{\epsilon}}^{-N+m}, \quad \Lambda_{\epsilon}:=\Lambda_{\theta G_{\epsilon}}
$$

In fact, we can use (3.18) together with (3.20) and (3.21), observing that $\exp \left(a G_{\epsilon} / h\right)=$ $\mathcal{O}_{\epsilon}\left(\langle\xi\rangle^{C a /(h \epsilon)}\right)$ and taking $K=C a /(h \epsilon)$.

Next, note that $P u \in H^{-N}$ is supported in U and $\rho_{0} \notin \mathrm{WF}_{a}(P u)$.Propositions 2.3 and 2.5 (see (2.15) and (2.23) respectively) then show that for G_{ϵ} satisfying the assumptions of Lemma 3.2 and θ sufficiently small $\|P u\|_{H_{\Lambda_{\epsilon}}^{-N}} \leq C_{0}$, where C_{0} depends only on $P u$ and S^{1}-seminorms of θG_{ϵ}.

We now apply (3.15) to obtain with Λ_{ϵ} as above,

$$
\begin{equation*}
\frac{1}{2}\|u\|_{H_{\Lambda_{\epsilon}}^{-N}}^{2}+2 C_{0}^{2} \geq\left\langle\left(\theta H_{p} G_{\epsilon}-M\langle\xi\rangle^{m-1}\right)\langle\xi\rangle^{-N-m} T_{\Lambda_{\epsilon}} u,\langle\xi\rangle^{-N} T_{\Lambda_{\epsilon}} u\right\rangle_{L_{\Lambda_{\epsilon}}^{2}} \tag{3.22}
\end{equation*}
$$

Let a be given by Lemma 3.3 (so that (3.17) holds). Then by (3.4), there exist M_{2} and K such that

$$
\theta H_{p} G_{\epsilon}+M_{2}\langle\xi\rangle^{2 K} e^{-2 a G_{\epsilon} / h} \geq(M+1)\langle\xi\rangle^{m-1}
$$

From (3.17) we have

$$
\begin{align*}
& \left\|M_{2} \chi\langle\xi\rangle^{K} e^{-a G_{\epsilon} / h}\langle\xi\rangle^{-N} T_{\Lambda} u\right\|_{L_{\Lambda_{\epsilon}}^{2}}^{2} \\
& \leq C\left(\left\|\langle\xi\rangle^{K-N} \tilde{\chi} T u\right\|_{L^{2}\left(T^{*} \mathbb{R}^{n}\right)}^{2}+\left\|\langle\xi\rangle^{-N} T u\right\|_{L^{2}\left(T^{*} \mathbb{R}^{n}\right)}^{2}\right) \leq C_{1}^{2} \tag{3.23}
\end{align*}
$$

Therefore, adding (3.23) to (3.22), and using that $\operatorname{supp} G_{\epsilon} \subset \chi \equiv 1$, we have

$$
\begin{align*}
& \frac{1}{2}\|u\|_{H_{\Lambda_{\epsilon}}^{-N}}^{2}+C_{1}^{2}+2 C_{0}^{2} \\
& \geq\left\langle\chi^{2}\langle\xi\rangle^{m-1}\langle\xi\rangle^{-N} T_{\Lambda_{\epsilon}} u,\langle\xi\rangle^{-N} T_{\Lambda_{\epsilon}} u\right\rangle_{L_{\Lambda_{\epsilon}}^{2}} \\
& \quad \quad-\left\langle M\left(1-\chi^{2}\right)\langle\xi\rangle^{m-1}\langle\xi\rangle^{-N} T_{\Lambda_{\epsilon}} u,\langle\xi\rangle^{-N} T_{\Lambda_{\epsilon}} u\right\rangle_{L_{\Lambda_{\epsilon}}^{2}} \tag{3.24}\\
& \geq\left\langle\langle\xi\rangle^{m-1}\langle\xi\rangle^{-N} T_{\Lambda_{\epsilon}} u,\langle\xi\rangle^{-N} T_{\Lambda_{\epsilon}} u\right\rangle_{L_{\Lambda_{\epsilon}}^{2}}-(M+1)\|u\|_{H^{-N+\frac{m-1}{2}}},
\end{align*}
$$

where in the last line we use that $\chi \equiv 1$ on $\operatorname{supp} G_{\epsilon}$.
Using $m \geq 1$ and rearranging, this yields

$$
\|u\|_{H_{\Lambda_{\epsilon}}^{-N}}^{2} \leq 2 C_{1}^{2}+4 C_{0}^{2}+2(M+1)\|u\|_{H^{-N+} \frac{m-1}{2}} .
$$

where C_{1}, C_{0} and M are constants independent of ϵ.
Since $\Lambda_{\epsilon} \cap\{|\xi|<1 / \epsilon\}=\Lambda_{0} \cap\{|\xi|<1 / \epsilon\}$ where $G_{0}:=\Phi|\xi|$, we have that $\left.H_{\epsilon}\right|_{|\xi|<1 / \epsilon}=\left.H_{0}\right|_{|\xi|<1 / \epsilon}$, where $H_{\epsilon}=\theta \xi \partial_{\xi} G_{\epsilon}+\theta G$ is the corresponding weight. Therefore, the monotone convergence theorem implies that $u \in H_{\Lambda_{0}}$. Since $\Phi\left(x_{0}, t \xi_{0}\right)=1, t \gg 1$, Proposition 2.3 shows that $\left(x_{0}, \xi_{0}\right) \notin \mathrm{WF}_{\mathrm{a}}(u)$.

Acknowledgements. Partial support for M.Z. by the National Science Foundation grant DMS-1500852 and for J.G. by the National Science Foundation grant DMS1900434 is also gratefully acknowledged.

References

[BaGo71] M.S. Baouendi and C. Goulaouic. Étude de l'analyticité et de la régularité Gevrey pour une classe d'opérateurs elliptiques dégénérés, Annales scientifiques de l'École normale supérieure 4(1971), 31-46.
[BaSj76] M.S. Baouendi and J. Sjöstrand, Régularité analytique pour des opérateurs elliptiques singuliers en un point, Ark. Mat. 14(1976), 9-33.
[BoCa73] P. Bolley and J. Camus. Sur une classe d'opérateurs elliptiques et dégénérés à plusieurs variables, Mémoires de la Société Mathématique de France, 34(1973), 55-140.
[BCH74] P. Bolley, J. Camus, and B. Hanouzet. Étude de l'analyticité et de la régularité Gevrey pour une classe de problèmes aux limites elliptiques et dégénérés, Asterisque 19(1974), 25-48.
[BoSj76] L. Boutet de Monvel and J. Sjöstrand, Sur la singularité des noyaux de Bergman et de Szegö. Astérisque, 34-35(1976), 123-164.
[BoGu81] L. Boutet de Monvel and V. Guillemin, The spectral theory of Toeplitz operators. Annals of Mathematics Studies, 99(1981). Princeton University Press.
[BoMu17] A. Bove and M. Mughetti, Analytic hypoellipticity for sums of squares and the Treves conjecture, II, Anal. PDE 10(2017), 1613-1635.
[Ch96] M. Christ, A progress report on analytic hypoellipticity, in Geometric complex analysis (Hayama, 1995), 123-146, World Sci. Publ., River Edge, NJ, 1996.
[CaKe96] S. Čanić and B. Keyfitz, A smooth solution for a Keldysh type equation, Comm. P.D.E. 21(1996), 319-340.
[De] J.-M. Delort, F.B.I. Transformation: Second Microlocalization and Semilinear Caustics, Lecture Notes in Mathematics 1522, Springer 1992.
[DyZw19a] S. Dyatlov and M. Zworski, Mathematical theory of scattering resonances, Graduate Studies in Mathematics 200, AMS 2019, http://math.mit.edu/~dyatlov/res/
[EpMa13] C.L. Epstein and R. Mazzeo, Degenerate Diffusion Operators Arising in Population Biology, Annals of Mathematics Studies 186 (2013).
[GaZw19a] J. Galkowski and M. Zworski, An introduction to microlocal complex deformations, arXiv:1912.09845.
[GaZw19b] J. Galkowski and M. Zworski, Viscosity limits for Oth order pseudodifferential operators, arXiv:1912.09840.
[Gé90] P. Gérard, Moyennisation et régularit4 deux-microlocale, Ann. Scient. Ec. Norm. Sup. 4éme série, 23(1990), 89-121.
[GuJe20] Y. Guedes Bonthonneau and M. Jézéquel, FBI Transform in Gevrey classes and Anosov flows, arXiv:2001.03610.
[Gu05] C. Guillarmou, Meromorphic properties of the resolvent on asymptotically hyperbolic manifolds, Duke Math. J. 129(2005), 1-37.
[GuSc77] V. Guillemin and D. Schaeffer. On a certain class of fuchsian partial differential equations, Duke Mathematical Journal 44(1977), 157-199.
[Ha14] N. Haber, A normal form around a Lagrangian submanifold of radial points, Int. Math. Res. Not. IMRN 2014, 17, 4804-4821.
[HaVa15] N. Haber and A. Vasy, Propagation of singularities around a Lagrangian submanifold of radial points, Bull. Soc. Math. France 143(2015), 679-726.
[HeSj86] B. Helffer and J. Sjöstrand, Resonances en limite semiclassique, Bull. Soc. Math. France 114, no. 24-25, 1986.
[HiSj18] M. Hitrik and J. Sjöstrand, Two minicourses on analytic microlocal analysis, in in "Algebraic and Analytic Microlocal Analysis", M. Hitrik, D. Tamarkin, B. Tsygan, and S. Zelditch, eds. Springer, 2018, arXiv:1508.00649
[HöI] L. Hörmander, The Analysis of Linear Partial Differential Operators I. Distribution Theory and Fourier Analysis, Springer Verlag, 1983.
[Ke51] M.V. Keldysh, On some cases of degenerate elliptic equations on the boundary of a domain, Doklady Acad. Nauk USSR, 77(1951), 181-183.
[LeZw19] G. Lebeau and M. Zworski, Remarks on Vasy's operator with analytic coefficients, Proc. Amer. Math. Soc. 147(2019), 145-152.
[Ma02] A. Martinez, An Introduction to Semiclassical and Microlocal Analysis, Springer, 2002.
[MM87] R.R. Mazzeo and R.B. Melrose, Meromorphic extension of the resolvent on complete spaces with asymptotically constant negative curvature, J. Funct. Anal. 75(1987), 260-310.
[Me94] R.B. Melrose, Spectral and scattering theory for the Laplacian on asymptotically Euclidian spaces, in Spectral and scattering theory (M. Ikawa, ed.), Marcel Dekker, 1994, http://www-math. mit.edu/~rbm/papers/sslaes/sslaes.ps
[Sj96] J. Sjöstrand, Density of resonances for strictly convex analytic obstacles, Can. J. Math. 48(1996), 397-447.
[St57] S. Sternberg, Local contractions and a theorem of Poincaré, Amer. J. Math. 79(1957), 809?824.
[Va13] A. Vasy, Microlocal analysis of asymptotically hyperbolic and Kerr-de Sitter spaces, with an appendix by Semyon Dyatlov, Invent. Math. 194(2013), 381-513.
[Zu17] C. Zuily, Real analyticity of radiation patterns on asymptotically hyperbolic manifold, Appl. Math. Res. Express. AMRX 2017, 386-401.
[Zw12] M. Zworski, Semiclassical analysis, Graduate Studies in Mathematics 138, AMS, 2012.
[Zw16] M. Zworski, Resonances for asymptotically hyperbolic manifolds: Vasy's method revisited, J. Spectr. Theory. 6(2016), 1087-1114.
[Zw17] M. Zworski, Mathematical study of scattering resonances, Bull. Math. Sci. 7(2017), 1-85.
Email address: j.galkowski@ucl.ac.uk

Department of Mathematics, University College London, WC1H 0AY, UK

Email address: zworski@math.berkeley.edu
Department of Mathematics, University of California, Berkeley, CA 94720

