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Abstract
The Poincaré Recurrence theorem states that any probability measure

preserving map has almost everywhere recurrence. However, it gives no in-
formation on how quickly this recurrence occurs. In the last twenty years,
significant advances have been made in tools for estimating the Poincaré
recurrence times in measure preserving dynamical systems. These meth-
ods connect the long term behavior of recurrence times to the Hausdorff
dimension of the ambient space. We will discuss several of these results
and examine examples including billiards on some interesting domains.

1 Introduction
The notion of Poincaré recurrence dates back to the late 1800’s, when Poincaré
realized that, a map being measure preserving (i.e µ(T−1B) = µ(B)) guarantees
recurrence almost everywhere. More precisely,

Theorem 1 Let (X,N , µ) be a probability space, T : X → X measure preserv-
ing, and A ∈ N , then for µ almost every x ∈ A we have

{n|Tnx ∈ A} is infinite.

This theorem has the following corollary,

Corollary 1 Let X be a metric probability space. For µ almost every x ∈ X

lim infn→∞ d(Tnx, x) = 0

which can be seen by taking successively smaller balls around x and applying
theorem 1. Although this corollary tells us that orbits return arbitrarily close to
their origination point, it provides no information on the frequency with which
recurrence occurs. It is only recently that advances have been made to estimate
the recurrence times of measure preserving maps.

These advances have been accomplished by relating the notions of local and
global Hausdorff dimension of the ambient space X to the recurrence time. The
first occurence of these ideas is in [4], where Boshernitzan relates the Hausdorff
dimension of X to globally determine the long term recurrence behavior. In
[1],[2], Barreira strengthens these results by relating the lower and upper point-
wise µ dimensions of x ∈ X to the recurrence behavior near that point. He
goes on to further improve the results by restricting the relationship between
the map and the measure.

In the following sections, we will discuss the results of both Barreira and Bosher-
nitzan, and attempt to elucidate the surprising nature of these results. Then,
we will examine some examples to demonstrate that the systems to which the
results apply are plentiful.
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2 Notation
We will use a combination of the notations used by Barreira and Boshernitzan
that are summarized below.

Definition 1 mα is defined to be the Hausdorff-α measure on a metric space
(X, d).

Definition 2 A measure preserving system(m.p.s.) is a probability space (X,N , µ)
together with a measure preserving map T : X → X.

Definition 3 A metric measure preserving system (m.m.p.s.) is an m.p.s. with
a metric d such tath the open sets relative to d are in N .

Definition 4 The self return time of a point x to the ball B(x, r) is

τr(x) = inf{n ∈ N|d(Tnx, x) < r}.

Definition 5 The return time of a point y ∈ B(x, r) to the ball B(x, r) is

τr(y, x) = inf{n ∈ N|d(Tny, x) < r}.

Definition 6 The lower and upper recurrence rates of x are respectively

Rl(x) = lim infr→0
log τr
− log r Ru(x) = lim supr→0

log τr
− log r

Definition 7 The lower and upper pointwise dimensions of µ at a point x ∈ X
are respectively

dlµ(x) = lim infr→0
logµ(B(x,r))

log r duµ(x) = lim supr→0
logµ(B(x,r))

log r

Definition 8 The Hausdorff dimension of a probability measure µ on X is

dimH µ = inf{dimH Z|µ(Z) = 1},

where dimH Z is the Hausdorff dimension of Z ⊂ X.

Definition 9 We say that the measure µ has long return time with respect to
T if, for µ-almost every x ∈ X and for ε > 0 small enough,

lim infr→0
logµ(Aε(x,r))
logµ(B(x,r)) > 1

where

Aε = {x ∈ B(x, r)|τr(y, x) ≤ µ(B(x, r))−1+ε}.

Definition 10 We say that the measure µ is weakly diametrically regular (w.d.r)
on a set Z ⊂ X if ∃ η > 1 such that for µ-almost every x ∈ Z and every ε > 0,
∃δ > 0 such that if r < δ then

µ(B(x, ηr)) ≤ µ(B(x, r))r−ε. (1)
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We will now prove the following small consequence of 10.

Lemma 1 If µ is w.d.r. on Z ⊂ X, then ∀η > 1 ∃ δ > 0 for µ almost every
x ∈ Z and every ε > 0 such that ∀r < δ equation (1) holds.

Proof:
Since µ is w.d.r, ∃ η > 1 such that for µ-almost everywhere x ∈ Z and every
ε > 0, ∃δ > 0 such that r < δ ⇒ (1).

Claim:

µ(B(x, ηkr)) ≤ µ(B(x, r))r−kε for r < δ
ηk−1 .

We proceed by induction. The base case k = 1 is clear. Assume that the
inductive hypothesis is true for k − 1. Then, we have

µ(B(x, ηk−1r)) ≤ µ(B(x, r))r−(k−1)ε for r < δ
ηk−2 .

Therefore, if ηr < δ
ηk−2 ⇒ r < δ

ηk−1 then let y = ηk−1r < δ

µ(B(x, ηy)) ≤ µ(B(x, y))y−ε
= µ(B(x, ηk−1r))y−ε
≤ µ(B(x, r))r−(k−1)ε(ηk−1r)−ε
≤ µ(B(x, r))r−kε

where the last step follows from the fact that η > 1. Thus, we have proved the
claim.

Now, let γ > 1 then ηk > γ for some finite k > 0. Fix such a k. Then
B(x, γr) ⊂ B(x, ηkr)⇒ µ(B(x, γr)) ≤ µ(x, ηkr) ≤ µ(B(x, r))r−kε for r < δ

ηk−1 .
Thus, letting ε = β

k we have ∀β > 0 r < α = δ
ηk−1 ⇒ (1) as desired. �

The statement in lemma 1 strengthens the notion of w.r.d. and will help us
obtain bounds on Ru and Rl

3 Global Recurrence Behavior
We will begin by examining the results for recurrence that apply globally to
an m.p.s. X. In [4], Boshernitzan derives the following theorems that relates
recurrence time to Hausdorff dimension.

Theorem 2 Let (X,N , µ, T ) be an m.p.s, (Y, d) a metric space and f : X → Y
be measurable (i.e. U open ⇒ f−1(U) measurable). If, for some α > 0, mα is
σ-finite on Y . Then for µ-almost every x ∈ X

lim inf
n→∞

{n 1
α d(f(x), f(Tnx))} <∞ (2)
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and, if mα(Y ) = 0, then

lim inf
n→∞

{n 1
α d(f(x), f(Tnx))} = 0. (3)

In other words, min1≤n≤N{d(f(x), f(Tnx))} ≈ ( cN ) 1
α for some constant c ≥ 0

and N large enough. We can easily adjust this theorem to answer a question
about how quickly the map T recurs by taking f to be the identity. By doing
so, we arrive at the following theorem of Boshernitzan.

Theorem 3 Let (X,N , µ, T, d) be an m.m.p.s, If, for some α > 0, mα is σ-
finite on Y . Then for µ-almost every x ∈ X

lim inf
n→∞

{n 1
α d(x, Tnx)} <∞ (4)

and, if mα(Y ) = 0, then

lim inf
n→∞

{n 1
α d(x, Tnx)} = 0. (5)

We can see from these theorems that, to within a constant multiple, we can
obtain an upper bound on the global long term behavior of the recurrence of
any any µ-invariant map T based only upon the Hausdorff measures on the
ambient space. In fact, this statement can be strengthened.

Lemma 2 Let (Y, d) a metric space, then α < dimH Y ⇒ mα is not σ-finite.

Proof:

Suppose ∃α < dimH Y such that mα is σ-finite on Y . Then ∃ Ai with Y ⊂
⋃
Ai

and mα(Ai) = ci < ∞. Then ∀α > α mα′(Ai) = 0[8]. Let α < α′ < dimH Y .
Then

mα′(Y ) ≤
∑
Mα′(Ai) = 0

and since dimH Y = inf{a|m(a)E = 0} we have dimH Y ≤ α′ < dimH , a
contradiction. Therefore, ∃ no such α. �

Based on this we see that α = dimH X is the best one can hope to do with
theorem 2 and, in fact, ∀α > dimH Y

lim inf n 1
α d(f(x), f(Tnx)) = 0.

So, for every ε > 0, c > 0 min1≤n≤N{d(f(x), f(Tnx))} < ( cN )
1

dimH Y −ε for N
large enough. Thus, we have obtained an upper bound, to within a constant,
on the behavior of the recurrence time for any µ-preserving map T based solely
upon Hausdorff dimension of the ambient space. In fact, we have obtained a
much stronger result. We have that for any measurable function f : X → Y an
upper bound for the recurrence of fn = f◦Tn can be obtained by only looking
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at the Hausdorff dimension of the space Y .

These statements are remarkable since, apriori, one would expect that the spe-
cific nature of a map would play a large role in its recurrence times and, even if
the nature of the map did not affect this upper bound significantly, one would
expect that, since the space of measurable functions has widely varying be-
havior, different measurable functions f would have widely varying recurrence
behavior. However, we can now see that no matter how different their behavior,
two µ-preserving maps T, T ′ with measurable functions f, f ′ respectively must
have the same upper bound on their behavior. Because of this, we might suspect
that these upper bounds are very far from optimal, however, [4] is able to find
examples where these bounds are in fact optimal. We will see in the work of
Barreira in [1] that in some more restricted domains and families of maps we
are able to obtain both upper and lower bounds on the recurrence behavior of
the map T given only information about the measure structure on X.

4 Local Recurrence
In this section, we restrict our attention to Borel measurable transformations T
on separable metric spaces X and, in many cases, X ⊂ Rd. This appears to be a
large restriction, however, by the Whitney embedding theorem if X ⊂ M with
M a finite dimensional smooth manifold then X can be smoothly embedded
into Rd for some d > 0 and there we can apply the theorems in this section.

We will now discuss theorems that relate the upper and lower recurrence times
to the pointwise dimension of the manifold X. Note that in this section, we
will not discuss recurrence of measurable functions of an m.p.s., but will assume
that X is an m.m.p.s. and discuss the recurrence of the map T .

In [1] Barreira is able to obtain local upper bounds on the lower and upper
recurrence rates without additional assumptions on T or the space X. He does
this in terms of the lower and upper pointwise dimensions of the space X.

Theorem 4 Let (X,N , µ, T, d) be an m.m.p.s. with T Borel measurable and µ
w.r.d., then for µ- almost every x ∈ X

Rl ≤ dlµ and Ru ≤ duµ. (6)

The theorem can be better understood in the following form. For r small enough
we obtain τr(x, x) ≥ r−d

l
µ . This is obtained by applying the bound on Rl(x).

Thus, we have obtained a lower bound on the recurrence time of the map T .
Notice that this first theorem gives us a lower bound on the first recurrence to
B(x, r), while the information from the global recurrence theorem 3 together
with lemma 2 gives us an upper bound on this quantity when it is rewritten in
the form τr(x, x) ≤ Cxr− dimH X for r small enough.
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By examinging x ∈ X locally and looking only at the map T instead of measur-
able functions f : X → Y , Barreira[1] improves the upper bound obtained from
global considerations in the following theorem.

Theorem 5 If (X,N , µ, T, d) is an m.m.p.s. with T a Borel measurable trans-
formation and µ w.d.r. then (5) holds with f the identity ∀ α > dlµ(x).

This statement is in fact stronger than that in theorem 3 since, using Young’s
criteria from [9], one can show dimH X ≥ dlµ(x) for µ almost every x ∈ X.
Thus, if we have information about µ locally, we will in general gain a better
upper bound on the recurrence time for T by examining the local dimension of µ.

The final result that we will discuss tightens both the upper and lower bound
using local information about the T invariant measure µ given additional infor-
mation about the relationship between the measure µ and the map T .

Theorem 6 [1] Let (X,N , µ, T, d) be an m.m.p.s. with T Borel measurable and
µ w.d.r. If µ has long return time with respect to T , and dlµ(x) > 0 for µ almost
every x ∈ X, then for µ almost every x ∈ X

Rl(x) = dlµ(x) and Ru(x) = duµ(x). (7)

Thus, if µ has a long return time with respect to T , we can improve from the
bounds

r−d
l
µ ≤ τr(x, x) ≤ Cxr− dimH X

to the bounds

r−d
l
µ ≤ τr(x, x) ≤ r−duµX .

From a further theorem in [1] we see that the class of systems with long return
time includes all those equilibrium measures supported on locally maximal hy-
perbolic sets.

Since these results seem to be very strong, one may be led to believe that
measures that are w.d.r. are not very common, however, the following lemma
shows that each one of these theorems applies to Borel measurable subsets of
Rd for any finite d.

Lemma 3 [1] Any Borel probability measure on Rd is w.d.r.

Proof:
Let µ be a Borel probability measure on Rd.
Claim: It is sufficient to show that for µ almost every x ∈ Rd

µ(B(x, 2−n)) ≤ n2µ(B(x, 2−n−1)) (8)

for sufficiently large n ∈ N.

Fix ε > 0. Let 2−n−2r ≤ 2−n−1. Then we have
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µ(B(x, 2r)) ≤ µ(B(x, 2−n)) ≤ n2µ(b(x, 2−n−1))

for n > N large enough i.e. r < 2−N−1. But X ⊂ Rd, we have
µ(B(x,2r))

µ(B(x,2−n−1)) ≥
µ(x,2−n−2)

µ(B(x,2−n−1)) ≥ (n− 1)−2 ≥ n−2.

Thus, we obtain µ(B(x, 2r)) ≤ n4µ(B(x, r)). Thus, we need only find n > 0
such that n4 ≤ r−ε. But, we have r−ε ≥ 2(n+1)ε. Thus, clearly ∃N2 such that
for n ≥ N2 ⇒ 2(n+1)ε > n4. Therefore, ∀n ≥ N2 ⇒ ∀r < 2−N2−1 we have (1)
and the claim is proven.

Now, we prove the lemma. For every n > 0, δ > 0 let

Kn(δ) = {x ∈ suppµ|µ(B(x, 2−n−1)) < δµ(B(x, 2−n))}.

Now, take a maximal 2−n−2 separated set E ⊂ Kn(δ). Then, we have

µ(Kn(δ)) ≤
∑
x∈E µ(B(x, 2−n−1)) ≤

∑
x∈E δµ(B(x, 2−n)).

Now, since E is 2−n−2-separated subset of Rd, ∃ M > 0 (depending only on d)
such that ∃Ei1 ≤ i ≤ M with Ei 2−n separated and E =

⋃M
i=1 Ei. Now, since⋃

x∈Ei B(x, 2−n) is disjoint,

µ(Kn(δ)) ≤
∑M
i=1
∑
x∈Ei δµ(B(x, 2−n)) ≤Mδ.

Therefore, since ∑
n>0 µ(Kn(n−2)) ≤M

∑
n>0 n

−2 <∞

we have by the Borel-Cantelli lemma that for n large enough (8) holds µ almost
everywhere in X. �

5 Proofs of the Theorems
5.1 Proof of global theorem 2
Proof:
Our plan for the proof, givein in [4] is to first prove the result for the case
mα(Y ) < ∞ by finding subsets of Fn ⊂ X where µ(Fn) → 1 and the claim
(2) holds in Fp then argue that we can manipulate the Fp in such a way to
obtain F with the same property and µ(F ) = 1. We will then reduce the case
mα(Y ) =∞ to that of mα(Y ) <∞.
Case 1 mα(Y ) <∞

Claim 1: Let V ⊂ X be measurable, V ∈ N For fixed t ≥ 1, let

V (t) = {x ∈ V |T ix /∈ V,∀i, 1 ≤ i ≤ t}.
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Then µ(V (t)) < 1
t .

We will show that T−iV (t)
⋂
T−jV (t) for i 6= j, 0 ≤ i ≤ t and therefore,

since T is µ preserving, each has the same measure⇒ µ(V (t)) < µ(X)
t = 1

t .
Let 0 ≤ j < i ≤ t. Suppose ∃x ∈ T−iV (t)

⋂
T−jV (t). Then, we have

T ix ∈ V (t) ⊂ V and T jx ∈ V (t) ⊂ V . Therefore, if y = T ix, y ∈ V but
T j−iy ∈ V (t) ⊂ V and j − i < t therefore, y = T ix /∈ V (t), a contradic-
tion. Thus, we have proven the first claim.

Claim 2: Let mα(Y ) < c < ∞. Then ∀ ε > 0 and p ≥ 1 ∃ a measurable set
F = F (p, ε) ⊂ X, with µ(F ) > 1 − 1

p , such that ∀ x ∈ F ∃ an integer k
such that

d(f(x), f(T kx)) < min(
(

4cp2

k

) 1
α

, ε)

By the definition of the Hausdorff α measure, we can find a countable
cover of Y =

⋃
i≥1 Ui, with Ui having diam(Ui) = ri < min(1, ε) and∑

i≥1 r
α
i < c. Without loss of generality, we may assume Ui are Borel

and disjoint up to sets of measure 0. We may assume the sets are Borel
since for every set U ⊂ Y with mα(U) < ∞ ∃U ⊂ W ⊂ Y such that W
is Borel and mα(U) = mα(W ). We then make the sets disjoint by taking
Ũi = Ui \

⋃
1≤j<i Ui, which will still be Borel.

Now, denote Vi = f−1(Ui), vi = µ(Vi). We examine the set

J = {i ≥ 1|2cpvi ≤ rαi }.

Then, we have that∑
i∈J ≤

1
2cp
∑
i∈J r

α
i <

c
2cp = 1

2p and vi >
1

2cpr
α
i for i /∈ J .

Let

ti = 4cp2

rα
i

= 4p2 c
rα
i
> 1.

Then, by the first claim, µ(Vi(ti)) < 1
ti

where

Vi(ti) = {x ∈ Vi|T kx /∈ Vi,∀k, 1 ≤ k ≤ ti}.

Thus, for i /∈ J , we have

µ(Vi(ti)) < rαi
4cp2 ≤ 2cpµ(Vi)

4cp2 = µ(Vi)
2p .

Therefore, since Ui disjoint ⇒ Vi disjoint and thus
∑
i µ(Vi) ≤ 1, we have
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∑
i/∈J µ(Vi(ti)) < 1

2p .

Now, for the set G =
(⋃

i∈J Vi
)⋃ (⋃

i/∈J Vi(ti)
)
, we obtain

µ(G) ≤
∑
i∈J µ(Vi) +

∑
i/∈J µ(Vi(ti)) ≤

∑
i∈J vi +

∑
i/∈J

vi
2p <

1
2p + 1

2p = 1
p

Now, let F = X \G. Then µ(F ) > 1− 1
p and x ∈ F ⇒ x ∈ Vi \ Vi(ti) for

some i. Therefore, ∃ k, 1 ≤ k ≤ ti such that x, T kx ∈ Vi and thus

d(f(x), f(T kx)) < diam(Ui) = ri =
(

4cp2

ti

) 1
α

≤
(

4cp2

k

) 1
α

(9)

since ti = 4cp2

rα
i

. Thus, since ri < ε we have proved claim 2.

Claim 3: Let mα(Y ) < c <∞. For every p ≥ 1, let

F ′(p) =
{
x ∈ X| lim infn≥1{n

1
α d(f(x), f(Tnx))} ≤ (4cp2) 1

α

}
.

Then µ(F ′(p)) ≥ 1− 2
p .

Let (εn)n≥1 be a decreasing sequence of positive numbers εn ↓ 0. Let
Fi = F (p, εi) found in claim 2. Then, since µ(Fi) ≥ 1 − 1

p for all i, we
have µ(F (p)) ≥ 1− 1

p , where

F (p) =
⋂
k≥1

(⋃
i≥k Fi

)
.

x ∈ F (p)⇒ x ∈ Fi(p) for infinitely many i, and x ∈ Fi(p)⇒ ∃k such that
(9) holds. Let

ki = inf{k|(9) holds with ε = εi}.

Then, clearly ki →∞ or ∃ k such that f(T kx) = f(x).

Case 1 If ∃ki →∞ such that d(f(x), f(T kix)) ≤
(

4cp2

ki

) 1
α , then x ∈ F ′(p)

as desired.
Case 2 If ∃k such that f(T kx) = f(x) then either ∃N > 0 such that for

k > N f(T kx) 6= f(x) or ∃ki →∞ such that d(f(x), f(T kix)) ≤
(

4cp2

ki

) 1
α

as in the first case.
Now, suppose ∃N > 0 such that for k > N f(T kx) 6= f(x). Then, if
TNx ∈ F (p) we obtain a sequence of ki → ∞ as above and x ∈ F ′(p).
Therefore, we have reduced the set x ∈ F (p) such that x /∈ F ′(p) to the
set

A ⊂ {x ∈ X|∃Kx > 0 such that TKxx /∈ F (p)}.
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Now, clearly if TKx /∈ F (p) then, ∀n > K Tnx /∈ F (p). Therefore,
∀n > infx∈F (p){Kx} > 0, we have A ⊂ T−n(X \ F (p)) ⇒ µ(A) ≤ 1

p

since T is measure preserving. Therefore, since µ(F ′(p)) = µ(F (p) \A) ≥
µ(F (p))− µ(A) ≥ 1− 2

p as desired.

Claim 4: Completion of the proof for mα(Y ) <∞.
Let F ′ =

⋃
p≥max(1, 1

4c ). Then by claim 4, µ(F ′) = 1 and ∀ x ∈ F , (4) holds.

Now, if mα(Y ) = 0, then we show that 3 holds. Let (cp) = 1
4p3 . Then

cp > 0 = mα(Y ). Therefore, by claim 4,

F̃ ′(p) =
{
x ∈ X| lim infn≥1{n

1
α d(f(x), f(Tnx)) ≤ (4cpp2) 1

α = ( 1
p ) 1

α

}
has µ(F̃ ′(p)) ≥ 1− 2

p . But, F̃ ′(p) ⊃ F̃ ′(p+ 1) ⇒
⋂N
p=1 F̃

′(p) = F̃ (N) and
then

F̃ ′ =
⋂
p ≥ 1F̃ ′(p)

has µ(F̃ ′) ≥ 1− 2
p ∀p ≥ 1 and for every x ∈ F̃ ′

lim infn≥1{n
1
α d(f(x), f(Tnx))} < 1

p ∀p ≥ 1.

In other words, 3 holds for x ∈ F̃ ′ and the claim is proven.

Now, we show that the case mα(Y ) =∞ reduces to that of mα(Y ) <∞.

Since mα is σ-finite on Y . Y can be covered by a countable family of sets
Ui with mα(Ui) < ∞. As above, we may assume Ui are Borel. Now,
since f : X → Y is measurable, the sets Ki = f−1(Ui) are measurable.
Therefore, since µ(

⋃
Ki \X) = 0, we need only verify µ(Ei) = 0 ∀i, where

Ei =
{
x ∈ Ki| lim infn≥1{n

1
α d(f(x), f(Tnx))} =∞

}
.

Suppose that for some Ei ⊂ Ki, µ(Ei) > 0. Then µ(Ki) ≥ µ(Ei) > 0. For
almost every x ∈ Ki, the set N(x) = {n ≥ 1|Tn(x) ∈ Ki} of return times
to Ki is infinite by theorem 1. Therefore

N(x) = {n1(x) < n2(x) < ...}.

Let S : K → K be the induced transformation: Sk(x) = Tn(x)(x) with
n(x) = n1(x). Since f(Ki) = Ui with mα(U) <∞ we use the first part of
this proof (with Y = U , T = S) to obtain µ(E′) = 0 where

E′ =
{
x ∈ Ki| lim infn≥1{k

1
α d(f(x), f(Sk(x)))} =∞

}
.
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Now,

E \ E′ ={
x ∈ K| lim infk≥1{k

1
α d(f(x), f(Sk(x)))} <∞ and lim infn≥1{n

1
α d(f(x), f(Tn(x)))} =∞

}
.

But Sk = Tnk therefore, if

lim infk≥1{k
1
α d(f(x), f(Sk(x)))} <∞

then

lim infk≥1{n(x) 1
α k

1
α d(f(x), f(Tnk(x)))} <∞

and therefore,

lim infn ≥ 1{n 1
α d(f(x), f(Tn(x)))} <∞.

Thus, µ(E \E′) = 0 ⇒ µ(E) = 0, a contradiction. Thus, the reduction is
complete.

�

5.2 Local Theorems
We will follow [1] to prove these theorems. We will need the following lemmas
to prove the theorems on local recurrence behavior.

Lemma 4 Let µ be a finite Borel measure on the separable metric space X, and
G ⊂suppµ a measurable set. Given r > 0, ∃ a countable set E ⊂ G such that

1. B(x, r)
⋂
B(y, r) = ∅ for any two distinct pointx x, y ∈ E

2. µ(G \
⋃
x∈E B(x, 2r)) = 0

Proof:
Order the the collection of subsets of G satisfying the first property by inclusion.
Clearly this collection is nonempty since any single point set in G is in it. Then
by Zorn’s lemma since G is an upper bound for the collection, ∃ a maximal set
E ⊂ G. Now, since µ(B(x, r)) > 0 for each x ∈ E ⊂suppµ, the set E is at most
countable. �

Lemma 5 Let (X,N , µ, T, d) be an m.m.p.s. with T Borel measurable. Then
if µ is w.d.r. on a measurable set Z ⊂ X with µ(Z) > 0, (6) holds for µ-almost
every x ∈ Z.
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Proof:
Observe that the function δ(x, ·) in definition 10 can be made measurable for
any fixed x. Fix ε > 0 and choose δ > 0 small enough so that

G = {x ∈ Z|δ(x, ε) > δ}

has measure µ(G) > µ(Z)− ε. Now, for any r, λ > 0 and x ∈ X consider

Ar,x = {y ∈ B(x, 4r)|τ4r(y, x) ≥ λ−1µ(B(x, 4r))−1}.

Then, Chebyshev’s inequality gives us

µ(Ar,x) ≤ λµ(B(x, 4r))
∫
B(x,4r) τ4r(y, x)dµ(y).

Now, since µ is invariant, it can be decomposed into a convex combination of
ergodic measures[7] and we can apply Kac’s lemma [5] tells us that∫

B(x,4r) τ4r(y, x)dµ(y) = 1.

Since B(x, 2r) ⊂ B(x, 4r), we have

µ({y ∈ B(x, 2r)|τ4r(y, x)µ(B(x, 4r)) ≥ λ−1}) ≤ λµ(B(x, 4r)).

Moreover

τ4r(y, x)µ(B(x, 4r)) ≥ τ8r(y, y)µ(B(y, 2r))

whenever d(x, y) < 2r and thus

µ({y ∈ B(x, 2r)|τ8r(y, y)µ(B(y, 2r)) ≥ λ−1}) ≥ λµ(B(x, 4r)). (10)

By lemma 4 ∃ a countable maximal r separated set E ⊂ G. By (10) with λ = r2ε

and lemma 1 with η = 4 we obtain

µ(Dε(r)) := µ({y ∈ G|τ8r(y, y)µ(B(y, 2r)) ≥ r−2ε})
≤

∑
x∈E µ({y ∈ B(x, 2r)|τ8r(y, y)µ(B(y, 2r)) ≥ r−2e})

≤ r2ε∑
x∈E µ(B(x, 4r))

≤ rε
∑
x∈E µ(B(x, r)) ≤ rε.

We then observer that∑
n>− log δDε(e−n) ≤

∑
n>− log δ e

−εn <∞.

Then, by the Borel-Cantelli lemma, we have that for µ-almost every x ∈ G,
log τ8e−n (x,x)

n ≤ 2ε+ logµ(B(x,2e−n))
−n

for n large enough. Thus, the identities in the lemma follow since ε > 0 was
arbitrary and

dlµ(x) = lim inf logµ(B(x,ae−n))
−n , duµ(x) = lim sup logµ(B(x,ae−n))

−n
Rl(x) = lim inf log τae−n (x)

n Ru(x) = lim sup log τae−n (x)
n

.

12
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Lemma 6 Given x ∈ X, we have Rl(x) ≤ d ⇔ for every ε > 0,

lim inf
n→∞

n
1
d+ε d(Tnx, x) = 0 (11)

Proof:
Assume that Rl(x) ≤ d. Then given ε > 0 ∃(rn) such that rn → 0, and
τrn(x) < r

−(d+ε)
n for all n. Let mn = τrn(x). If mn is bounded, then x is periodic

and clearly (11) holds. Now, if mn is unbounded, we have d(Tmnx, x) < rn and

m
1

d+2ε
n d(Tmnx, x) < τrn(x) 1

1+2ε rn

< r
− d+ε
d+2ε

n rn = r
ε
d+ε
n .

Therefore

lim infn→∞ n
1

d+2ε d(Tnx, x) ≤ lim infn→∞m
1

d+2ε
n d(Tmnx, x) = 0.

Thus, (11) holds for every ε > 0.
Now, assume (11) holds for all ε > 0. Let rn = 2d(Tnx, x). We have that
τrn(X) ≤ n, and thus

lim infn→∞ τrn(x) 1
d+ε rn = 0.

Thus, ∃ a divergings sequnce of positive integers kn such that τrkn (x) 1
d+ε rkn < 1

for every n. Therefore,

Rl(x) ≤ lim infn→∞ log τrn (x)
− log rn ≤ lim infn→∞

log rd+ε
kn

− log rkn
= d+ ε.

Since ε was arbitrary, we have our result. �
Now, to prove theorem 4 we simply apply lemma 5.

To prove theorem 5 we apply theorem 4 and lemma 6.
We will have to prove something more to prove the strongest result, theorem 6.
Proof:
By theorem 4 we have Rl(x) ≤ dlµ(x) and Ru(x) ≤ duµ(x) for µ-almost every
x ∈ X. We need to obtain the reverse inequalities.

Since µ is w.r.d. and µ has long return time with respect to T and dlµ(x) > 0
for µ-almost every x ∈ X, if ε > 0 is small enough, we have that ∃a, γ, ρ > 0
and G ⊂ X with µ(G) > 1− ε such that if x ∈ G and r ∈ (0, ρ)

µ(Aε(x, 2r)) ≤ µ(B(x, 2r))1+γ , (12)

µ(B(x, 2r)) ≤ µ(B(x, r2))r−a
γ
2 , (13)

µ(B(x, r)) ≤ ra (14)
where Aε(x, 2r) is as in definiton 9. Now, consider

13



Aε(r) := {y ∈ G|τr(y) ≤ µ(B(y, 3r))−1ε}.

Then, if d(x, y) < r(a), we have τr(y, y) ≥ τ2r(y, x)(b). Then, since B(x, 2r) ⊂
B(y, 3r), if x ∈ G then we obtain

µ(B(x, r)
⋂
Aε(r)) ≤ µ({y ∈ B(x, r)|τ2r(y, x) ≤ µ(B(x, 3r))−1+ε}) (a), (b)

≤ µ(Aε(x, 2r)) µ(B(x, 3r)) ≥ µ(B(x, 2r))
≤ µ(B(x, 2r))1+γ (12)
≤ µ(B(x, r2 ))r−a γ2 (2r)aγ (13)(14)

Then, if E ⊂ G is a maximal r
2 -separated set given by lemma (4), we have

µ(Aε(r)) ≤
∑
x∈E µ(B(x, r)

⋂
Aε(r))

≤
∑
x∈E µ(B(x, r2 ))r−a γ2 (2r)aγ

≤ 2aγra γ2
.

Here, the last step follows from (14). Then, the Borel-Cantelli lemma gives us
that for µ−almost every x ∈ G we have

τe−n(x) > µ(B(x, 3e−n))−1+ε

for all n large enough. Then, (5.2) gives us that

Rl(x) ≥ (1− ε)dlµ(x) and Ru(x) ≥ (1− ε)duµ(x)

for µ-almost every x ∈ G. Then, the desired result follows because ε was
arbitrary. �

6 Examples
6.1 Billiards
Let Ω ⊂ Rd for some d <∞ be convex and bounded. Let X be the pahse space
ΩxSd−1. Then let φt : X → X be the billiards flow on X which is well defined
for all t since the domain is convex. Then, fix some time t0 and let T : Ω→ Ω
Tx = φt0x. Then, by theorem 2, with f : X → Y , the projection from X to the
domain Y , we have

lim inf n 1
d d(PTnx, Px) <∞.

Now, viewing x as a point in the billiards domain Ω. For small r τr(x, x) ≤
Cxr

−d for some constant Cx. This result applies in a remarkable amount of
generality. We have shown that for any domain Ω, no matter how complicated
the boudary, for Lebesgue almost every x0 ∈ Ω the billiard will return toB(x0, r)
in time ≈ Cr−dt0.
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6.2 Baker’s Map
Let T : [0, 1]2 → [0, 1]2 be the standard bakers map. We then have that T
is Lebesgue measure preserving. And thus, by theorem 3 we have that for
Lebesgue almost every x ∈ [0, 1]2, we have

τr(x, x) ≤ Cxr−2

for r small enough. Further, by theorem 4, since duµ(x) = dlµ(x) = 2 for µ the
Lebesgue measure, τr(x, x) ≥ r−2. So, we have bounded the recurrence time for
small r between

r−2 ≤ τr(x, x) ≤ Cxr−2

for some constant Cx depending on x.

6.3 Arnold’s Cat Map
Let T be the standard cat map on [0, 1]2. i.e.

Tx =
(

1 1
1 2

)(
x1
x2

)
mod1.

In [6], Dyson computes upper and lower bounds of recurrence times for a discrete
cat map. In other words, he maps the space [0, 1]2 to a square lattice of points
with x1, x2 in 0, 1, ..., N−1 for some N > 0 and computes bounds on recurrence
in terms of N . Let f : [0, 1]2 → Y = {0, 1, ..., N − 1}2 be the projection onto
this discrete set given by

f(x1, x2) = (sup0≤n{ nN < x1}, sup0≤i{ni < x2}).

Since T is Lebesgue measure preserving, we may apply theorem 3 to obtain for
r small enoough, τr(x) ≤ Cxr

−2 this is consistent with the results of Dyson
since in one of his theorems he obtains an upper bound on recurrence time of
N2

2 . Taking r = 1
N as an approximation to the region which is mapped by f

onto the same point, this heuristically agrees with our result.

7 Final Comments
Based on the results from the papers of Barreira [1][3] and Bashernitzan[4], we
are able to obtain both upper and lower bounds on the behavior of recurrence
in spaces that, at least locally, have finite measure theoretic dimension. In
fact, if a space Y has finite Hausdorff dimension, then we are able to place an
upper bound on the recurrence time for measurable functions from an m.p.s.
to that space Y conditional only on the dimension of Y . Finally, in some
more restricted cases, we are able to place precise bounds on the behavior of
recurrence in measure preserving systems. Since the conditions in many of
these theorems are strictly measure theoretic, we have been able to relate the
topological notion of recurrence to measure theoretic notions of pointwise and
Hausdorff dimensions.
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