AVERAGES OF EIGENFUNCTIONS OVER HYPERSURFACES
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ABSTRACT. Let (M, g) be a compact, smooth, Riemannian manifold and {¢,} an
L2-normalized sequence of Laplace eigenfunctions with defect measure p. Let H be
a smooth hypersurface with unit exterior normal v. Our main result says that when
u is not concentrated conormally to H, the eigenfunction restrictions to H satisfy

/ ¢hd0'H = 0(1) and / hD,,(f)hdUH = 0(1)7
H H

h—0t.

1. INTRODUCTION

On a compact Riemannian manifold (M, g), with no boundary, consider a sequence
of Laplace eigenfunctions {¢y},

—h Ay by = bn,

normalized so that ||¢p|[z2(a) = 1. The goal of this article is to study the average
oscillatory behavior of ¢, when restricted to a hypersurface H C M. Namely, the goal
is to find a condition on the pair ({¢p}, H) that so that

/ ¢h dO’h = 0(1), (1)
H

as h — 07, where oy denotes the hypersurface measure on H induced by the Rie-
mannian structure.

It is important to point out that one cannot always expect to observe this oscillatory
decay. For instance, on the round sphere, zonal harmonics of even degree integrate to
a constant along the equator. Also, for any closed geodesic inside the square flat torus.
there is a sequence of eigenfunctions that integrate to a non-zero constant.

Integrals of the form have been studied for quite some time, going back to the
work of Good [Goo83] and Hejhal [Hej82] that treated the case where H is a periodic
geodesic inside a compact hyperbolic manifold. These authors proved that in such a
case, [ ¢ndop, = O(1) as h — 0F. This result was generalized by Zelditch [Zel92]
to the case where H is a hypersurface inside a compact manifold. Indeed, it fol-
lows from [Zel92] that for a density one subsequence of eigenvalues {h;};, one has
limj_,o [ 1 Ph; dog = 0. Moreover, one can actually get an explicit polynomial bound
of the form O(hl/ 2-0) for the rate of decay of expectations for the density-one subse-
quence (see [JZ16]). However, the latter estimate is not satisfied for all eigenfunctions
and it is not clear which sequence of eigenfunctions must be removed for the estimate to

hold. There are several articles that address this issue by restricting to special cases of
1
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Riemannian surfaces (M, g) and special curves H C M. When (M, g) is a compact sur-
face with constant curvature equal to —1 and H is a closed geodesic Reznikov [Rez15]
proved that the periods [y ¢5 doy, = O(1). Working on surfaces of strictly negative
curvature, and choosing H to be a geodesic, Chen-Sogge [CS15] improved this result to

o(1) bound. Subsequently, Sogge-Xi-Zhang [SXZ16] obtained a O((log h)~'/?) bound
on the rate of decay under a relaxed curvature condition. Recently, working on surfaces
of non-positive curvature Wyman [Wym17] obtained (1) when assuming curvature con-

ditions on H. Finally, we remark that on average, one expects | o Pndop < h3 (see
[Esw16]).

In this article we focus on establishing given explicit conditions on the sequence
of eigenfunctions {¢,}. We do not impose any geometric conditions on (M, g), nor do
we assume it is a surface. Furthermore, we do not restrict our attention to geodesic
curves and allow H to be any hypersurface in M. Instead, we prove that holds
provided that the sequence {¢p} does not asymptotically concentrate in the conormal
direction N*H to H. One example where this holds is the case quantum ergodic
sequences of eigenfunctions and any hypersurface H.

1.1. Statements of the results. Let H C M be a closed smooth hypersurface, and
write ST, M C S*M for the space of unit covectors with foot-points in H, and S*H
for the set of unit covectors tangent to H. We fix ¢y > 0 small enough and define a
measure p on Sy M C S*M by

pan(A) 1= 5, (U G*(4)). 2)

|<t0

where G : S* M — S*M denotes the geodesic flow. Remark shows that if A C ST, M
is so that A C S} M\S*H, then ug(A) is independent of the choice of ¢y and it is
natural to replace fixed to with lims, 0.

Definition 1. We say that p is conormally diffuse with respect to H if
ug(N*H) = 0.
If U C H is open, we say that u is conormally diffuse with respect to H over U if
wp(N*HNS;M) = 0.

As an example, this condition is satisfied when {¢p} is a quantum ergodic (QE)
sequence and p = pr, the Liouville measure on S*M. Note that the QE condition is
much stronger than the assumption in Definition [T} In Section [5] we give examples of
hypersurfaces and sequences of eigenfunctions for which the defect measure is conor-
mally diffuse but is not absolutely continuous with respect to the Liouville measure.
Our main result is the following.

Theorem 1. Let H C M be a closed hypersurface. Let {¢n} be a sequence of eigen-
functions associated to a defect measure p that is conormally diffuse with respect to

H. Then,
/ ¢hdUH = 0(1)7
H
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and
/ ho,¢ndom = o(1),
H
as h — 0.

As we have already pointed out, the Liouville measure . = py, is conormally diffuse.
Consequently, the following result is a corollary of Theorem [T}

Theorem 2. Le H C M be a closed hypersurface and {¢p} be any QE sequence
sequence of eigenfunctions. Then,

/ ¢ndog = o(1) and / hdyon dog = o(1).
H H

By Lindenstrauss’ celebrated result [Lin06], Hecke eigenfunctions on compact, arith-
metic hyperbolic surfaces are all QE (ie. they are quantum uniquely ergodic (QUE)).
Together with Theorem 2| this yields

Theorem 3. Let (H/T',g) be a compact, arithmetic surface and H C M be a closed,
C* curve. Then, for all Hecke eigenfunctions {¢p},

/ ¢h dUH = 0(1) and / h&,th dUH = 0(1).
H H

One can localize the results in Theorems In the following, we write doyr for the
measure on H induced by the Riemannian structure.

Theorem 4. Let (M,g) be a smooth, closed Riemannian manifold and H C M be
a closed hypersurface with A C H a subset with piecewise C°° boundary and suppose
U C H is open with A C U. Let {¢,} be a sequence of eigenfunctions with defect
measure [ conormally diffuse with respect to H over U. Then,

/ ¢h dO’H = 0(1),
A
and
/ hdyon do = o(1),
A
as h — 0t.

Remark 1. We note that as a corollary of Theorem [4] the results in Theorems [2] and
for QE eigenfunctions extend to all smooth curve segments A.
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2. DECOMPOSITION OF DEFECT MEASURES

2.1. Invariant Measures near transverse submanifolds. Let N be a smooth
manifold, V be a vector field on N and write ¢} : N — N for the flow map generated
by V at time t. Let ¥ C N be a smooth manifold transverse to V. Then for ¢ > 0
small enough, the map ¢ : (—2¢,2¢) x ¥ — N
Ut.q) = ot ()

is a diffeomorphism onto its image and we may use (—2¢, 2¢) X X as coordinates on N
near .
Lemma 5. Suppose that p is a finite Borel measure on N and that Vu = 0 i.e.
(¢¥)ept = p. Then, for a Borel set A C [—¢,¢) x X,

U u(A) = didps (A)

where duy, is a finite Borel measure on 3.

Proof. Throughout this proof, we slightly abuse notation by identifying ¢*u with pu.
For B C ¥ Borel, define

dps(B) := %,u([—e,s) x B).

We will show that
p = dtdpx(B).
To do this, it is enough to show that for B C ¥ Borel and I C [—¢,¢), an interval
u(I x B) = |1|dus(B) (3)
Notice that with
A:={I xB: IC|[—¢,¢) an interval, B C ¥ Borel},

the sigma algebra generated by A is the Borel sigma algebra on [—¢, ) x X. Therefore,
once we show , we have

n(A) = didus(A), AeA

and hence since p is o-finite (indeed finite) and A generates the Borel sets, this proves
@ = dtdusy.
We now proceed to prove . By invariance of y under ¢},

u([a,b) x B) = p([la+t,b+1t) x B)
for all —2¢ —a <t < 2e —b. So, given kg,n € N with 1 < kg < n < oo, we have

%,u([—s,e)xB):%ZM([—5+w,—5+%)><B) (4)

:,u<[—e—|—72€(k071),—5+@) X B).

n

Next, suppose I C [—¢,¢) is an interval with endpoints a,b € [—¢,¢], a < b, and fix
6 > 0. Then let k1, k1 € N satisfy 1 < k1 < ko < n and be so that

a—6< —e+EWD < cp< ey 2R <y
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Then, since
ko

u(la,b] x B) < p([—e+ 20D o g 22y gy = N7 (e 200 oy 2] ),
Jj=k1

28(/{32 — k1 + 1)

n

u(I x B) <

1
% p([—e,e) x B) < (b—a+20)dux(B).
Sending & — 0 proves
p(l x B) < [I|dps(B).
Therefore, if @ = b, (I x B) = 0 and we may assume a < b. Fix § > 0 so that
b—a > 20 >0 and choose

ae( -1+ caro<b-d<e(—14%2) <o,

Then,
2 — 1)1 B
e(ka nlﬂ + )25 p([—€,€) x B) > (b — a — 26)dus(B)

and sending § — 0 proves and hence finishes the proof of the lemma.

u(I x B) >

O

2.2. Fermi coordinates. Let H C M be a closed smooth hypersurface and let Up
be a Fermi collar neighborhood of H. In Fermi coordinates

Uy = {(x/,l‘n) . 2’ € H and Ty € (_C’ C)}

for some ¢ > 0, and H = {(2/,0) : 2’ € H}. Since H is a closed hypersurface, it divides
M into two connected components Qg and M\Qg. In the Fermi coordinates system,
the point (2, z,,) is identified with the point exp,/ (z,v,) € Uy where v, is the unit
normal vector to Qy with base point at 2’ € H.

The Fermi coordinates on Uy induce coordinates (2, zy, ', &) on SjyM = {(x,§) €
S*M : x € U} with (¢,¢,) € ST M. In these coordinates, £ is cotangent to H

while &, is conormal to H.
Note that in the Fermi coordinate system we have

(€60 [0y = &0 + R(a" 0, €), (5)

where R satisfies that R(2/,0,¢&') = |£’g (an) for all (2',&") € T*H and gp is the
Riemannian metric induced on H by g¢.

(2"xn)
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2.3. Transversals for defect measures. We now apply Lemma/5]to the special case
of defect measures, using the fact that they are invariant under the geodesic flow. In
what follows we write [£'|, := [£'|g,,(2r), Where gy is the Riemannian metric on H
induced by g. Let

Gu (6) :={(,€) € SyM : |¢'[z > 167,
and define the set of non-glancing directions
Y5 =Sy M\ Gr(0).
Lemma 6. Suppose p is a defect measure associated to a sequence of Laplace eigen-
functions. Then, for all 6 > 0 there exists € > 0 small enough so that
S = dtdps, on (—g,e) X X

where

vi(—ee) x5 = | G5(%y), Wt,q) = G'(q),

|s|<e

is a diffeomorphism and dus; is a finite Borel measure on ¥s.
Proof. In what follows we use Lemmawith N = 5*M,V = H), the Hamiltonian flow
for p = [¢|4, and @Y = G* the geodesic flow. Note that since u is a defect measure for

a sequence of Laplace eigenfunctions, it is invariant under the geodesic flow G*. Then,
for ¢ € X5,

|Hpzn(q)| >cd >0
and hence Y is transverse to G!. Therefore, there exists € > 0 so that ¢ : (—2¢,2¢) x
Y5 — S*M, with «(t,q) = G'(q), is a coordinate map. O

Remark 2. For each A C S5 M with A C S5, M \ S*H, there exists §y > 0 so that

dpiz; (A) = lim 2tu(|L|JtGS )

for all 0 < 6 < d. Indeed, since A is compact, there exists dp = do(A4) > 0 so that
A C E5,. Then, by Lemma @ there exists € = £(A4) > 0 so that if |t| < ¢, then

u( U G(4)) = 2tdus, (4).

|s|<t

In particular, we conclude that the quotient 2% ,u< U‘s‘ < GS(A)) is independent of t as
long as [t| <e.

We also need the following description of .

Lemma 7. Suppose p is a defect measure associated to a sequence of Laplace eigen-
functions, and let § > 0. Then, in the notation of Lemmal@, there exists eg > 0 small
enough so that

n= fﬁnrldﬂm (x/’ 517 é‘n)dmna
for (-T,a l‘n,f/,fn) € L((_SO’go) X 25)'
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Remark 3. Notice that |Hpz,| > v on ¥, = S M \ G(v). Therefore, there exists
cp,c1 > 0 so that

{(x/axna§/7€n) : ‘xn‘ < o7, ’§/|i/ <1- 00_172} C U Gt(zv)‘
[t|<c1y

Proof. By Lemma [6]
V= dusg (2, &,)dt on (—e,e) x Xs.
Then, for ¢ € X5

01 0(0.0)| = [Hyr, (0.))| = LD >

and hence for €9 > 0 small enough and q € s, t € (—&0,€9),
€ (e(t, q))|
|Orn (u(t, q))| = [Hpan(u(t, q))| = €]
g
Therefore, dt = f(2', xp, &, &) dx, where

f($/,$n,§,,fn) = |prn(b_1($na (xlvgl’fn)))‘_l =

S0
2

Iely _

-1
&l 133

where in the last equality, we use that |{|, = 1. In particular,

n= lgnrld//{](s (xlv §/7 fn)dxn
O

Before proceeding to the proof of Theorem [I] we note that Lemma[7] implies that for
all 9 > 0,

p(SHEM \ Gr(9)) = 0. (6)

Remark 4. Notice that the measure

1
|£n|_1d1u25 (:E/7§,7£n) = 7du25($/7£/7£n)
V113

is hypersurface measure on S7; M \ G(0) induced by p. For example, if p7, is Liouville
measure, then, parametrizing S7;,M \ G(9) by (2/,¢)

d(ur)ss = lis: gy (@', €, &) da’d€!
for some ¢ > 0.
3. ProOF oF THEOREM [I]

Consider the cut-off function x, € C*(R, [0, 1]) with

on(t) = {O |t| =

1t <3,

with |x,(t)] <3/« for all t € R.
For § > 0 consider the symbol

Bs(a’,€') = xs(1€|.r) € S°(T*H) (7)
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where we continue to write ||, := |¢']y,, (). We refer the reader to the Appendix
where the semiclassical notation used in this section is introduced. The operator
Opn(Bs) € UV (H) microlocalizes near the conormal direction in 7* H which is identified
with & = 0 via the orthogonal projection. The first step towards the proof of Theorem
is to reduce the problem to study averages over H of the functions ¢, and ho,¢p
when microlocalized near the conormal direction.

Lemma 8. For any § >0 and u € L*(H),

/udaH:/ Oph(@s)udO'H—i-Og(hoo).
H H

Proof. We wish to show that
(1 = Opn(Bs))u, 1) 2y = (u, (1 — Opr(B5))"1) L2(sry) = Os(h™).

To prove this, we simply note that
* ]- i r—z' &
(1= Opn(5s)"1(w) = (s // ek (1 = x6)(I€/].) de'da

where the phase function ®(2/,&’;2) = (x — 2/, ¢&’) has critical points in (2/,) given
by

(z',¢) = (2,0).
By repeated integration by parts with respect to the operator

1 & ! & /
L= o e | 2 §hPe + 2 (@5 —)hDe |
j=1 j=1

using that L(e’®/") = ¢'®/" one gets

(1= Opn(Bs)) " 1(z) = (%hl)nl //ei

(z—a"y¢
h

(1= x8)(Ig'Ie)x1 (Jo = 2']) d&'da’ + O5(h™)

= Os(h™),
uniformly in x € H. The last line follows by repeated integrations by parts with respect
to L using the fact that (1 — xs)*)(0) = 0 for all k& > 0. O

3.1. Proof of Theorem |1} We wish to show that for any € > 0 there exists hg(g) > 0

so that
’ | ndou
H
for all h < hyg.
In view of Lemma [8] we can microlocalize the problem to the conormal direction;

that is, the claim in follows provided we prove that given € > 0 there exist d(¢) > 0
and ho(e) > 0 so that

<& (8)

<e and ‘/ ho, opdo g
H

’ /H Opn(B5)én don < (9)

for all h < hy(e).
To prove @D, by Cauchy-Schwarz, it clearly suffices to establish the stronger bounds

<c  and ‘ / Opn(5) 1y bndor st
H
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|Opn(Bs)onll 2y <& and  [|Opn(Bs)hdydnllL2(m) < &, (10)

for all h < hy(e) and d(e) > 0 sufficiently small.
From now on, we fix € > 0. Using Green’s formula [CTZ13], it is straightforward to
check that for any operator A : C*>°(M) — C*°(M) one has the Rellich Identity

2/{2H[—h2Ag,A]¢h¢hdvg—/HAqﬁthl,<Z>hdaH—i—/Hth,(Aqﬁh)qﬁhdaH, (11)

where D, = %81,, with v being the unit outward vector normal to Q.
Let 6 > 0 and o > 0 be two real valued parameters to be specified later and consider
the operator

A5,a(h) = Oph(ﬂg) o Oph(Xoa(‘rn)) ohD,,

where (s is defined in . The operator As,(h) is the semiclassical normal derivative
operator h-microlocalized to a neighbourhood of the conormal direction to H over the
collar neighbourhood Uy.

We note that

| Asalb)on D5 don = (Opu(GDRD, 1 Do) o (12)

H

since xo(n) = 1 for z, € [-5, §]. Without loss of generality, we may assume that
QpNUy ={(2',2,): 2’ € H and z,, < 0}.

With this choice, D,, = D,,,. We next recall that

vy (W D2¢p) = (I + h* Ay, )vm (én) + harye (én) + hazyr (hDyéy),

where g : M — H is the restriction map to H, and a1, ae € C*°(H). Since x.,(0) =0
it follows from the restriction upper bounds ||¢4 ||z = O(h~*) [BGTOT7, HT12, [Tacl0)
Tat98] and ||hD, ¢l g = O(1) [CHTI5, [Tacl4] that

((hDy)bny b0 r2(mry — (L + B2 Ay )bn, dn) r2(ary = Or2(Vh).
Consequently,
/HhDV(A&a(h)QSh)QShdUH = <hDVOph(5§)Xa($n)hDu¢h7 ¢h>L2(H)
= <Oph(/3(%)(th/)2¢ha ¢h>L2(H)
= (Oph(B (1 + B2 Dy )60, @) oy + O(RZ).  (13)
Substitution of and in gives

1

PR Asa()on i du, -

N

= (Opr(B)hDyén , hDyén ),y + (Opr(B3)(1+ h*Ag, )on . n)yy + O(h

Next, we observe that

|0pn(Bs)h Dy |3 = (Opr(B3)hDudy, , hDyy ), + O(h) (15)

). (14)
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since ||hD, ¢z = O(1) [CHTI15]. On the other hand, for (2/,¢’) € supp s we have
[€']7 < 6% and so,

B3 (L= I€'12) — 83 - (1 - 20%) = B3 (26% — ¢'[7) > B36° > 0.

Therefore, combining the sharp Garding inequality with the bound ||¢p ||z = O(h~1/%)
gives

(1 —26%) | Opn(B5)dnll% = (Opn(B3(1 — 26%)bn, 1) + O(h?)
< (Opn(B% - (1 = €'12))én, $n) i + O(h?)
— (Opn(B2) (1 + B2Dgyy ), dn)ir + O(hZ).  (16)
Substitution of and into gives

10D (Bs)h Dy |7 + (1 = 26%) | Opn(Bs) bl <

% [—h2A,, Asa(B)|én én dv, + O(h2). (17)

Qn

The claim in follows at once from provided we show that for any ¢ > 0
there exist d, a > 0 and hy > 0 (all possibly depending on ¢) such that

(Gt AsaWlon. n) , 0 [ <2 W0 < hofe) (15)
To prove we note that
<%[_h2AgaA6,a<h)]¢h7 ¢h>L2(QH) =
= (Onn({o(=1*Dg), o(AsalM)} )0, b0) |, 0 +O(B), (19)

where (A5 q(h))(z,£) = BE(2,€) Xa(zn)&n, and according to (F]), the Poisson bracket
{‘(5/7 gn) ’:2r 9 U(A5,a(h))} = 2X;(wn)ﬂ(%($/7 5/) 5721 + Xa(a:n)q(;(:v', xm 5/7 gn) (20)

where,

Q6(x7€) = gnaf’R ) 8:5’/6(? - fnazc’R ) 85’/6? - 8an : 5(?

We now estimate each term in the RHS of separately.

Lemma 9. Let {¢,} be an L?-normalized eigenfunction sequence with defect measure
w. Then,

(i) ’<Oph(Xa(xn)Q(5)¢h7 ¢h>L2(QH)‘ < Ruos+ o(1),
where
" 1
Roz,é = ||QJ”L°° : M({(xlvxna‘slafn) € SUHM : |xn| <a, ’£I| < 5}) 2.
In addition,

(i) (Opn(2x0(za) B3 (2", €) E)n On) 120,y = / | alen)Bi(a’ &) & du+o(1).

*

Qg
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In both (i) and (ii), o(1) denotes a term that vanishes as h — 0.

We postpone the proof of Lemma [9] until the end of this section. Assuming this
result for the moment, we now conclude the proof of the theorem. From Lemma[9] and

, it follows that

i
(Fm B, Asa®Wlon, on),, = [ 2 () B E) 6 di+ Ras + o(1).
h L2(Qp) b M
(21)
Since p is a Radon measure, and hence monotone,
. X 1
lim Ro 5 = llgsllze - n({(2',0,€) € SpM; [€] < 6})2. (22)
Thus, using Lemma m (or more precisely @) gives
ilgb R,s=0. (23)

Moreover, since the LHS of (17 is independent of a, we are free to take the @« — 0
limit of both sides. In view of (21)) and , it follows that after taking h — 07 and
then o — 07,

timsup ([10p(B5)hDunlf + (1~ 20%)|0pn(Bs)onllh ) <

< limsuplimsupZ/ [_thgvA(S,a(h)](bh%dvg
Qp

a—0  h—0t

—tmsup [ 2 @) B ) du (24)

a—0t

The last line in follows from (123]).
To analyze the RHS of , fix v > 0 small. By Lemma m there exists e, > 0 and
a measure ps, on Xy = {(z,§) € Sy M : |¢/|2, <1 —+2} so that

pw(z,€) = f(a 2, €, &) dus, (2, €, &) dwn, (.9 ¢e |J 6=y

It|<ey

By Remark [3| we may assume that we work with «, J small enough so that

supp(x, - BE) C U GH(Z (25)

[t|<ey

Since supp(x},) C (—«,0), by the Fubini theorem we have

/ 2 (1) B2 €)€2 dps =
h M

:/_ 2Xa l'n (/ 55 g ‘gn‘ ld,uEA,( /aglagn)> dxn (26)

— / / 2 () B2 ) | dndpis, (€', 0).
;‘{M —c
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Sending o — 0 gives
lim 2o (1) B3 (2, €)€ dpu = / 265 (2, &) |&nldpx, (2", €, €n).-
a0 Jsg M SEM
Sending § — 0 and using that 85 =1 on N*H, |3s| < C we obtain
lim lim 2Xo ()85 (2", €)En dp = / 2dps, (2, €,&) = 2ps, (N"H).
0—0 a—0+ S;?HM N*H
(27)

Since 4 is conormally diffuse, we have by Remark [2| that ps (N*H) = 0 and so (10)
follows from and . U

3.2. Proof of Lemma [9l

Proof. First, we use the standard fact that {¢y,} are microsupported on S*M [CHT15]
to h-microlocally cut them off near S*M. More precisely, for » > 0 small, consider the
annular shell

Alr) :={(z,§) € T"M : 1 —r < ||y <1+r}.

Let x € C°(T*M) be a cutoff function equal to 1 on A(r) and zero on T*M \ A(2r).
Then, |[CHT15]

[on — Opr(X)dnll L2 (ary = O(R™). (28)
Proof of (i): Since ||¢nllr2(ary = 1, by Cauchy-Schwarz,

|(Opn(Xa(Tn)as)dn , ¢h>L2(QH)|2 < Opn(Xa(xn)a5)bnl 22 (ar)
= ([0P1(Xa(@n)45)]* [OPh(Xa(n)45))Ehs D1 ) 12 ap)
= ([Opn(Xa(n)as)]" [Oph(Xa(2n)25)|0n, Opn (X)) 12y + O(B)
= (Opn(X - X2(@n) - as1*)Pns ) r2(ar) + O(h)
= [ Rl dt o)
< lasll7oe - ({20, €', €0) € Sir, M+ || < o, €] < 8}) + o(1),

where the penultimate identity follows from the fact that p is the defect measure as-
sociated to {¢} and the symbol X - x2(zn) - |gs]* € C(T*Uy).

Proof of (ii): Let p € C°(R) be a smooth cut-off function with p(z,) = 0 for z,, > 0
and p(x,) = 1 for z, < —a/2. Then, since Qy N Uy is identified with the set of points
on which z,, < 0, and supp(x},) C (—o0, —a/2] U [a/2, +0), we have

0 on %,

Xo(zr) on Qp.

p(Zn) X0 (Tn) = {
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Note that since x,,(xn) = 0 for z,, € [—a/2,a/2], we may regard px/, as a smooth
function defined on all of M. We then have that

<Oph(2X:x(xn)Bg(x/7 5/) 5721)¢h ) ¢h>L2(QH) =
= <Oph(2p($n)X:1 (xn)ﬁg (.ﬁU/, gl) g'rgl)d)h ) ¢h>L2(M)'

Microlocalizing the eigenfunctions near S*M by using the cut-off ¥ we obtain

<Oph(2 X,a(xn)ﬁg (l‘,, f/) fr%)d)h ) ¢h>L2(QH) =

Using that p is the defect measure associated to {¢p}, and that the symbol Xﬁg 57% S
C°(T*M), we obtain

(Opn(Xp(2n)2x0 (@n) B3 (2, €) ) 0h s D1) p2(0r) =
= [ 20le N B €) Edut o)
-/ PSR+ ol1),
as claimed. ’ O

Remark 5. By replacing the test operator A;,(h) with

As.a(h) = Opn(B3(a',€)) o f(a") © Opn(xa(zn)) 0 hDy,

where f € C°°(H) and carrying out the same argument as in the proof of Theorem
it is easy to see that under the assumption g (7! (supp f) N N*H) = 0,

[ $ondoy=o(t) and [ phDugudon = o).
H H

4. PROOF OF THEOREM [

To prove Theorem 4] we need the following result.
Lemma 10. Suppose A C H has piecewise smooth boundary. Then for all € > 0
% 1
(1 = Opn(Bs5)) Lall2(my = Oc(h2™°).

Proof. To prove this result we first introduce a cut-off function xy, so that (1 — xz)1a
is smooth and close to 14. Let x, € C2°(H) satisfy

i) xn=1 on{zxeH: dx,0A)<h'~}
ii) suppx C {x € H : d(z,04) < 2h'~¢}.
i) 92| < Cohlol0=),
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Then, (1 — x5,)14 satisfies the same bound as in (iii), and hence integrating by parts
as in Lemmai.e. with L := W (Z 1 &§hD, .+ > i1 (T] a:j)hDg/) , gives

[(1—01%(55)) (1 —xn)Lal(z)
m Gt [ RO B N~ e
gﬂhn 1// =0 (L7) [(1—5(5( (A = xn(2)1a(a’)]da’dg’

O (hl n+N(1— a)

In particular,

(1 = Opn(Bs))*(1 — xn)lallLee = Oc(h™). (29)

On the other hand
IxnLall 2y = O('2"). (30)
Combining and together with L? boundedness of Opy,(Bs) proves the lemma.
O

4.1. Proof of Theorem Let A C H be an open subset with piecewise C'>* bound-
ary and indicator function y 4. Suppose that U C H is open with A C U. Then since
C>(H) is dense in L?(H), for any ¢ > 0, we can find f € C*°(H)

1f = Lallzeay < e, supp f C U.

‘ / 1A¢hd0H’

< / 14O0pn(Bs) ¢hd0'H‘ +‘ (1 = Opn(Bs))pns La)u ‘

<| [ (ta = HOm(Bs)ondo| +| [ 1Opu(Gs)ondou] +[(@n, (1 = Opu(5s))" La)u
H H

<| [ (ta = NOu(Bs)ndou + o). (31)
H

Ch™i [BGTO07] and Cauchy-Schwarz to the third term, and by applying Remark
the second term.
Now, since 5 is supported away from

H:={(,¢)eT"H : ||, = 1},

we have that ||Opn(Bs)énll2(ay < C [BGTOT, [Tacl0] and hence applying Cauchy-—
Schwarz to (31))

The last line follows by applying Lemma the universal upper bound |[¢n||z2( Hi <

‘/H1A¢hdaH‘ < Ce+o(1).

Since € > 0 was arbitrary, the theorem follows. O
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Remark 6. It is clear from the proof of Theorem [4]that one can decrease the regularity

assumption on 0A and only assume that 0A has Minkowski box dimension < n — %

where n = dim M. However, we do not pursue this here.

5. EXAMPLES

5.1. Non vanishing averages on the torus. Let T? be the 2-dimensional square
flat torus. We identify T? with {(z1,79) : (z1,22) € [0,1) x [0,1)}. Consider the
sequence of normalized eigenfunctions

on(x1,x2) = eh T

Consider the curve H C T? defined as H = {(z1,22) : 1 = 0}. Then, since ¢5|g =1,
we have

/ bndog =1, h™te2nZ?t.
H

We claim that in this case the measure u associated to {¢p} is not conormally diffuse
with respect to H. Actually, we next prove that

w1, 2,61, &2) = 6(1,0)(§1,&2) - d1 da, (z,£) € S*T>. (32)
Given , it follows that
i = 61,0 (&1, &), (z,6) € ST

In particular,
np(NTH) =1,
so the measure p is not conormally diffuse with respect to H.

To see that (32) holds, fix any a € C°(T*T?). Then,

(Opn(a)on, dn) =

for the phase function

a(z,§) ehd’ aUyé)al&dyd:n

T2 JT2 JR2

7/’(1’72%5) = <$ - y7£> +y1 — 1.
We next do Stationary Phase in (y,&). The critical points for the phase are (y,§) =

(x,(1,0)). Also,
0 -1
Hess(, e\ = (_1 0 > .
It follows that

(Opp(a)on, dn) = /11‘2 a(z,(1,0))dx = /S*’]I‘2 a(z,§) 0(1,0)(§)dm,

as claimed.

5.2. Defect measures that are not Liouville. As we already pointed out in the
Introduction, the assumptions on p for being conormally diffuse are much weaker than
asking p to be absolutely continuous with respect to the Liouville measure on S*M
In these examples we build a defect measure p that is not absolutely continuous with
respect to the Liouville measure but still satisfies the hypothesis of Theorem [1] for a
suitable choice of curve H.
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5.2.1. Toral Eigenfunctions. Let T? be the 2-dimensional square flat torus. We identify
T? with {(z1,22) : (z1,72) € [0,1) x [0,1)}. Consider the sequence of eigenfunctions

bn(z1,22) = en® pl e 2n7,
As shown in Section the associated defect measure is

(@1, 22, &1, &2) = 0(1,0) (&1, §2)dar da.
Next, consider the curve H C T? defined as H = {(x1, z2)

: w9 = 0}. Since N*H =
{(z1,22,£1,&) € S*T? : & = 0}, we have for § > 0 sufficiently small,

pa(N*H) =0.
Theorem (1| therefore implies that

1,
. . iwg

lim ppdo = lim e dr; =0.
h—0t+ J g h—01 Jo

Of course, in this case the much stronger result fol emTl dz1 = 0 holds for all h=! €
2.

5.2.2. Gaussian Beams. Consider the two dimensional sphere S? equipped with the
round metric, and use coordinates

(6,w) — (cos B cosw,sinf cosw,sinw) € 2,

with [0,27) x [~7/2,m/2]. For each of the frequencies h~! =
associate the Gaussian beam

I(1+1) with £ € N we

L2041\ g ’
¢h(9’w)_211!<47r(21)!) e (eosw).

It is normalized so that

Pnllr2(s2y = 1, (—h*Ag2 — 1)¢y, = 0.
Then, let x € C°(—1,1) with y =1 on [—1,1] and define

o 1 2l+ ]. % —4l0 7[002/2
un(,w) = ﬁ(mzm) e x(w)e

Observe that

up — ¢n = or2(1),
so for the purposes of computing the defect measure, we may compute with uy. Using

this, by an elementary stationary phase argument, (see e.g. [Zwol2] Section 5.1]) the
defect measure associated to ¢y, is

1
1= 5 0w=0,g=—1¢=0y0
where ¢ is dual to 0 and ( is dual to w. Let H = {(6,w) : w = 0} be the equator. In
particular, N*H = {(0,w,&,() € S*S?: w =0, =0,( = +1}. Then,

pa(N*H) = p({w € (—to,t0),£ =0, = £1}) =0
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/ on(0,0)do = o(1).
H

6. APPENDIX ON SEMICLASSICAL NOTATION

and Theorem [I] implies

We next review the notation used for semiclassical operators and symbols and some
of the basic properties. First, recall that for a compact manifold M of dimension n,
we write

S™(T*M) = {a(;h) € C(T*M) : |0807a(x,& h)| < Cap(L+ €)™ 1}

We write ¥ (M) for the semiclassical pseudodifferential operators of order m on M
and

Opyp, : S™(T*M) — 9™ (M)
for a quantization procedure with Opp (1) = Id +Opr_,ce (h*°) and for u supported in
a coordinate patch, ¢ € C°(M) with ¢ =1 on suppu we have

3

Opa)u(s) = // Hom8) p(@)ae, uly)ddy + Oprorcm (™)

Then there exists a principal symbol map
o U™(M) — S™(T*M)/hS™ 1 (T* M)
so that
Oppoo(A) = A+ Ogm-1(h), AcT™, coOp, =7:8™— S™/hS™ L,

where 7 is the natural projection map. Moreover, for A € U™ B € ¥™2

0(AB) = o(A)o(B) € §m™tmz/pgmitma=l

o([A,B)) = 2{o(A),0(B)} € hSmtma2=l/p2gmitma=2

where {-,-} denotes the poisson bracket. For more details on the semiclassical calculus
see e.g. [Zwol2, Chapters 4,14] [DZ16 Appendix EJ.

Finally, we recall the for any {u(h)}o<n<n, C L*(M) a bounded family of functions,
we may extract a subsequence hy — 0 so that for a € C°(T*M),

(Opn(@)uny: ung )2y , = [ al@,€)du

hr—0

for a positive Radon measure . We call i a defect measure for uyp, . For p € S™(T*M)
real valued, if u(h) solves

Opn(p)u = o(h),  [lu(h)l[r> =1,
then for any defect measure p associated to u(h),
suppp C {p(x,§) =0}, exp(tHp).p = p

where H), denotes the Hamiltonian vector field associated to p. See e.g. [Zwol2)
Chapter 5] for more details.
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