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JEFFREY GALKOWSKI

ABSTRACT. We prove a quantum version of the Sabine law from acoustics describing the location
of resonances in transmission problems. This work extends the work of the author to a broader
class of systems. Our main applications are to scattering by transparent obstacles, scattering
by highly frequency dependent delta potentials, and boundary stabilized wave equations. We
give a sharp characterization of the resonance free regions in terms of dynamical quantities. In
particular, we relate the imaginary part of resonances or generalized eigenvalues to the chord
lengths and reflectivity coefficients for the ray dynamics, thus proving a quantum version of the

Sabine law.
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1. INTRODUCTION

In this paper we study scattering in systems where the metric or potential has a singularity
along an interface. Metric examples include scattering in media having sharp changes of index of

refraction | , ], in dielectric microcavities | ] and in fiber optic cables
[ . Schrodmger operators with a distributional potential along a hypersurface can be used to
model quantum corrals, concert halls, and other thin barriers | , ]. Such potentials

are also used to understand leaky quantum graphs [ -

Mathematically, an abrupt change in the index of refraction corresponds to a discontinuity in

the metric along a hypersurface. Scattering in such situations has been studied in | , ,

, , | while scattering by certain distributional potentials has been studied in

[ ) , ]. These types of problems have also been studied from the point of view of
propagation of singularities [MT, , | and quantum chaos | .

For a Schrédinger operator, P, on L?(R?) (d odd) it is often possible to prove that solutions,
u, to

(0} + P)u=0

have expansions roughly of the form

(1) U~ Z e My

AERes

where Res is the set of scattering resonances of P. Thus, the real and (negative) imaginary part of
a scattering resonance correspond respectively to the frequency and decay rate of the associated
resonance state, e~ “*uy. This expression is similar to the expansion in terms of eigenvalues that
one obtains when solving the wave equation on a compact manifold. Hence, for leaky systems,
scattering resonances play the role of eigenvalues in the closed setting.

To get a quantitative heuristic for the decay of waves (the imaginary part of resonances), we
imagine that the interface for our problem occurs at 9 for some Q € R?. We then think of
solving the wave equation

(02 +P)u=0, ultmo=1up, ult—o=0

with initial data ug a wave packet (that is a function localized in frequency and space up to the
scale allowed by the uncertainty principle) localized at position 2y € Q and frequency & € S9!
We also assume that P creates waves with speed c. The solution, u, then propagates along the
billiard flow starting from (xg,&p). At each intersection of the billiard flow with the boundary,
the amplitude inside of €2 will decay by a factor, R, depending on the point and direction of
intersection. Suppose that the billiard flow from (z9,&y) intersects the boundary at (x,,§,) €
00 x Sdil, n > 0. Let [, = |x,4+1 — o] be the distance between two consecutive intersections
with the boundary (see Figure 1.1). Then the amplitude of the wave decays by a factor [} ; R;
in time Y7, ¢~ !l; where R; = R(z;,&;). The energy scales as amplitude squared and since the
imaginary part of a resonance gives the exponential decay rate of L? norm, this leads us to the
heuristic that resonances should occur at

(2) Im ) = log[R2/ (2¢7
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FiGURE 1.1. The figure shows the path of a wave packet along with the lengths
between each intersection (I;) and the reflection coefficient at each point of in-
tersection with the boundary (R;). After each reflection with the boundary, the
amplitude of the wave packet inside 2 decays by a factor of R;. If the speed of the
wave is ¢, the time between reflections is given by ¢~ 11;.

where the map ~ is defined by f = % Zi]\; fi- In the early 1900s, Sabine | | postulated that
the decay rate of acoustic waves in a region with leaky walls is determined by the average decay
over billiards trajectories. The expression (2) provides a precise statement of Sabine’s idea and,
because resonances are spectral quantity, we refer to such an expression as a quantum Sabine law.
We will show in Theorem 4 that such a Sabine law holds for many different types of transmission
problem.

Although the appearance of scattering resonances in (1) is intuitive, a more mathematically
useful definition of a scattering resonance is as a pole of the meromorphic continuation of

(P— X))~

from Im A > 1. This description allows us to show that the existence of a scattering resonance at
A corresponds to the existence of a nonzero A—outgoing solution to

(P — X2)u = 0.

By M-outgoing we mean that there exists g € L2, (R?) and M > 0 such that

u(@) = (Ro(Mg)(x), [z = M.

Here, Ro()\) is the meromorphic continuation of (—A — A?)~! from Im A > 1 as an operator
Ro(A) : Lgomp(Rd) — L2 (RY). (For a more complete description of mathematical scattering and

further references, see [D7])

We start by considering a few applications of our main theorem (see Theorem 4).

1.1. Transparent Obstacles. Our first application is to scattering by a transparent obstacle.
That is, an obstacle with different refractive index than the ambient medium. In particular, let
Q) € R? be strictly convex with smooth boundary, ¢ € Ry \ {1} be the speed of light in €, and
R > 0 be a coupling parameter. In | |, Cardoso, Popov, and Vodev show that the set of
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scattering resonances in this setting is given by A such that there is a non-zero solution to
(=A== X)up =0 inQ

(—A = X)uy =0 in R4\ Q

(3) U = U on 0f)

o,u; — NI,us =0 on 0f)

ug is A-outgoing.

We denote the set of such A by A. Here, v denotes the outward unit normal to 9f2.

Let T*09) be the cotangent bundle to 02 and B*9S) denote the coball bundle of 0. Let
Ty T*0Q — 09 be the projection to the base. Then define 7, Iy, ry € C*°(B*0Q2) and

[ € C°(T* 00 x T*I0\ {(, €, z,1) € T*IQ x T*3Q}) N C(T*9Q x T*Q)

ey VR E e
r\or :

5 ) =
(4) Ry e — |12+ /1 - 1€

1(q1,q2) := |72 (q1) — T2(q2)| In(q) :==

by

o1 log [r(87(q)
N

Ll (0), F ()

N
where 3 : B*0Q0 — B*0%) denotes the billiard ball map (see section 5) and |{’|4 denotes the norm
induced on the fibers of T*9) by the metric on R%. Then r is the reflectivity for the transparent
obstacle problem. Note that we take the branch of the square root so that v/—1 = i and place
the branch cut on the negative imaginary axis.

Remark 1.

e We will use £ to denote coordinates in the fiber of T*9€ and ¢ to denote points in T*9
throughout this paper.

e Note that the log in the definition of r appears because we measure exponential rates of
decay and the reflection coefficient acts by multiplication.

rn(q) =

Theorem 1. Let Q € R be strictly convex with smooth boundary and suppose that 0 < ¢ # 1,
N > 0. Then for all M, e > 0 there exists \g > 0 such that for A € A with ReX > Ay and
Im A > —MlogRe,

. . N
sup inf ———— —e<ImA< inf sup ———— +e.
N>01¢l,<1 2¢7 N N>0jer,<1 2¢7 N

Moreover, for every X, ¢ as above, and K > 0, this bound is sharp in the region Im A > —K when
Q= B(0,1) C R%

Remark 2.

e The lower bound in Theorem 1 is nontrivial, i.e. |r(z,¢")] > 0, if either ¢ < 1 and R < ¢!,
or ¢ > 1 and X > ¢~!. This corresponds to transverse electric waves (TE). The opposite
case, when there is no lower bound, corresponds to transverse magnetic waves (TM). In
the TM case, the angle at which r(z/, &) = 0 is called the Brewster angle (| , Chapter
13]). At this angle, there is complete transmission of the wave in the ray dynamics picture.
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F1GURE 1.2. The figure shows the geometry of reflection and refraction at the
boundary of an interface between a medium with speed of light ¢ and one with
speed of light 1. Total internal reflection occurs when the incoming ray does not
project onto the ball of radius 1 in the ¢ variable.

e The upper bound in Theorem 1 is nontrivial if ¢ > 1. When ¢ < 1, Popov and Vodev
[ | show that the presence of total internal reflection (see Figure 1.2) produces res-
onances { A\, }°2; with Re A\,, = oo and Im A, = O((Re A\,,) ™).

e The bounds for resonances given in Theorem 1 match our prediction (2).

Theorem 1 improves upon the results of Cardoso—Popov—Vodev | , | by giving
sharp estimates on the sizes of the resonance free regions as well as expanding the range of
parameters, N, for which we have only a band of resonances.

1.2. Highly Frequency Dependent Delta Potentials. Let U>°(992) denote the set of semi-
classical pseudodifferential operators of all orders whose seminorms are bounded by a constant
independent of h so that A~V ¥ (9€) denotes those whose seminorms are bounded by h=" (see
section 2 for more details).

We next consider operators of the form
(5) — h2A + h(hépa @ V) = —h?Apas.
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FIGURE 1.3. We show numerically computed resonances for the transparent ob-
stacle problem with ¢ = 2 and X = 1 when Q = B(0,1) C R% (See Figure
13.1 for other values of ¢ and X.) In this case, we expand the solutions to (3) as
ui(r,0) = 3, uin(r)e™ and solve for some of the resonances with Re A ~ 500. In
the lower graph, the red circles show Im A vs. Re A. The dashed black lines show
the upper and lower bounds for Im A (since N is in the TE range with have both
an upper and lower bound) from Theorem 1. Notice that by orthogonality of e
and €™ for m # n, the pair (u1,e™, us,e™?) satisfies (3). In the top graph,
the red circles show Im A vs. n/Re for such pairs. The dashed curve shows a
plot of c%(cﬁ’ ), the decay rate predicted for a billiards trajectory traveling with
scaled tangent frequency c£’. See the table for the relationship between the points
(Im A\, n/Re ) and (cr1/201(c€’), c€’) predicted by the quantum Sabine law.
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where h € (0, 1], is a semiclassical parameter that should be thought of as the wavenumber (i.e.
the inverse of the frequency), V € h=N¥>(9Q), and for u,w € C(R?)

(6) (600 ® V)u, w) := / (V) (@)w(z)do (z)

o0
and o is the surface measure of 9. (See [ , Section 2.1] for the formal definition of this
operator.) These operators are used as models for quantum corrals | , | as well as
concert halls, leaky quantum graphs | | and other thin barriers.

In a typical physical system, the interaction between a potential and wave depends on the
frequency of the interacting wave. Therefore, we are motivated to consider h-dependent potentials
V. Moreover, if one considers the delta interaction in 1 dimension

—A+d(r1)®1
and rescales to y = hx, we obtain
(7) — WAL+ 5(y1/h) ® 1 = —h*0; + hé(y1) ® 1

which corresponds to V' = h~! in (5). The operator (7) describes the quantum point interaction
[MiI00].

Another motivation for highly frequency dependent delta potentials is the following wave equa-
tion

{ (02 — A+ (690 ® ((a(x),dy) + ao(x)d;))u = F in R
Fel?, ((0,00)xR%, u=0ont<0

comp

where a,ay € C(92;R), and the tensor product acts as in (6). Then, taking the time Fourier
transform

Fioau(z, A) == / ez, t)dt,
0
gives with A = z/h,
(—B°A = 22 + 2(hdpq ® ((z7'a, hDy) + a0)) Fisysynu = Frsyapn P

Remark 3. Note that we have switched the usual convention for the Fourier transform in our
definition of F;_,) so that the integral converges absolutely for Im A > 0.

In [ ], Smith and the author show that the set of scattering resonances, A(h), is equal to
the set of z such that there is a non-zero solution to
(—h2A — 2%)u; =0 in
(—h2A — 2%)uy = 0 in R¥\ O
up = ug on 0f2

Oyu1 — Opugs +Vuyr =0  on 99
ug is z/h outgoing.

Denote by
(8) Aiog(h) :={z € A(h)|z € [1 = Ch,1 + Ch] +i[-Mhlogh™*,0]}.
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For V € h=NW¥>(9Q) with real valued symbol, o(V), the reflectivity, r € C°°(B*9RQ), is given by
ho(V)

2i\/1 = [¢']2 — ha(V)

with rx(q) and Ix(q) as in (4). For a more general definition of r see (18) and for ry see (21).

(@) i

Let U™ (02) denote the set of semiclassical pseudodifferential operators of order m (see Section
2) and Ajog(h) be as in (8). Next, let
1 . .
) Ais) = 5— / Sy, A_(s) = Ai(e*3s),  B_(s) == A (s)/A_(s),
7r
0> (1 > (2> ... be the zeros of Ai(s).

Finally, let Q(z,£’) € C®°(T*0Q) be the symbol of the second fundamental form to 9. Then we
have:

Theorem 2. Let Q € R? be strictly convex with smooth boundary, o > —1, and suppose that
V € heWwl(09) is self adjoint with a(V) >0 and (V) > ¢ > 0 in a neighborhood of {|¢'|, = 1}.
(1) Suppose that o > —5/6. Then for all €, Ny > 0 there exist e; > 0, hg > 0 such that for
0< h<hg
Imz TN
Age(h) C{—— < inf s — te,.
log( ) { h — N12N1 If/‘<111p_51 QZN 6}

(2) Suppose that —5/6 > o« > —1. Then for all e > 0, M > 0, there exists hg > 0 such that

for0 < h < hg
M 2/3 2/3
h#/°Im z h#/°Im z
Ao h) C Brin —€ < ————~ < Bpax +¢ ————— > Bnin — €
es(") U{ o () }U{Imwwm }
where

1/3 n4/3 1/3 N4/3
Bmax := sup M B = 2 Q(fl?,f)

) inf ——*1>7 |
erly=1 1o (V)(2, &) ely=1 |o(V)(x, &)
Moreover, these estimates are sharp in the case of 2 = B(0,1) C R® with V = 1.

Theorem 2 verifies several conjectures from | | and generalizes the results from | ]
to arbitrary convex domains. It also provides a second general class of examples that may have
resonances with —Im z/h ~ ch? for some v > 0. That is, resonances converging to the real axis at
a fixed polynomial rate, but no faster. Compared to the work in | , Theorem 5.4], Theorem
2 allows for potentials that depend more strongly on frequency. When the dependence is strong
enough (o < —5/6), the new phenomenon of a band structure appears.

Remark 4.

e Under the pinching condition,

Bmin > Im(I)—(Cj)
Brmax ~ Im®_(¢j41)
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FI1GURE 1.4. This figure shows a schematic representation of the resonance free re-
gions from Theorem 2 for & > —5/6 on the top and o < —5/6 on the bottom. Res-

h%/3 Im z
€< T~

Im ®_(5)
or the light gray shaded region, but not in the white regions. Note that the bands
start to group closer together as they go deeper into the complex plane. Thus,
there will be only a finite number of bands if g’r“nﬁ = 1. See also Figures 1.6 and

onances lie in the dark grey bands, B; := { Bunin — < Bmax +€

1.7 for numerically computed resonances in the case of the disk where g‘;‘z‘ =1

when V' = h°.
0 I I I I /
Ap Y .
oL i
3L i
42 10 8 6 4 2 0

F1cURrEe 1.5. This figure shows Im ®_ in the solid line and —y/—s in the dashed
line. The black dots are placed at (¢;,Im ®_((;)).
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FI1GURE 1.6. We show resonances for the delta potential on the circle with Re A ~
10%, V = (Re A\)~® and several . The plots show Im A vs. Re \ in each case. The
solid black line shows the (logarithmic) bound for resonances coming from non-
glancing trajectories and the dashed black lines show the first few (polynomial)
bands of resonances from near glancing trajectories. Since the solid black line is
above the dashed black lines at & = —5/6, it is necessary to go to still larger Re A
to see the transition to resonances with fixed size imaginary parts. However, at

a < —5/6, we start to see better agreement with the bands of resonances predicted
in Theorem 2.

there is a gap between the j*" and (5 + 1)* band of resonances given by Theorem 2 for
a < —5/6. For a plot of Im ®_(s) see Figure 1.5.

e To see that the resonance bands in Theorem 2 for a < —5/6 agree with those in | ],
observe that
1

o A2G) o 2rATG)AL(G) 2w AV(GAN(G)
-(G) eomi/6 2/A_(G)AV(G)P2r)? 82 A (G AV (G)]
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FIGURE 1.7. We show a plot of resonances for the delta potential on the disk with
V = Re\. In particular, we show log(Re \) vs. log(—Im\) for Re A ~ 10%. The
bands predicted by Theorem 2 are shown by the black dashed lines.

1.3. Boundary stabilization problem. Our final application of Theorem 4 is to a boundary
stabilized wave equation

(0} — A)u=F in Q
Oyu + a(x)0u = 0 on 0N

F e Lzomp((ovoo)t X Q)
u=0ont< -1

(10)

with 0 < a(z) € C>°(9Q;R). It is not hard to see that the energy
_ 1 2 2
B(t) := 5 (19wl + | Vul?)
for the corresponding initial value problem is nonincreasing. The study of (10) has a long history,

see [BLR92] and the references therein. In [B1.1R92], Bardos, Lebeau, and Rauch give nearly sharp
conditions on a to guarantee exponential decay of the energy.
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Here, we impose the strongly dissipative condition 0 < a9 < @ and study the asymptotic
(JReA| > 1) spectral gap for the corresponding stationary problem. That is, taking the Fourier
transform in time, we study

an (—A = M) Fiu= F\F in Q
(0) —ida(x)) Fruau =0 on 0N2.

In | |, the authors show the existence of a spectral gap in a much more general, but still
strongly dissipative, situation. Here, we give estimates on the size of the gap. Let A denote the
set of A so that (11) has a nonzero solution. The reflectivity, r € C*°(B*0f2), for this problem is

given by
PO
r(z', &) =
a(z’) + /1= [¢']3

Theorem 3. Let Q € RY be strictly convex with smooth boundary and a(z) > ag > 0. Then for
all €, M > 0 there exist \g > 0 such that for A € A with |ReA| > \g and Im A > —M log | Re A,

and [y, ry as in (4).

. N . N
12 sup inf — —e<ImA< inf sup — +e.
(12) NS0 l&'lg<1 20N N>0 \5/@21 2N
Note that Theorem 3 can also be obtained from the results of Koch-Tataru | |. Indeed,

the result contained there actually implies a stronger estimate than (12) in the case of (11). We
include this application to give a new proof of those results in this special case and to show that
our analysis may be applied even to non-transmission problems. Moreover, note that the operator
ad; can be replaced by a much more general pseudodifferential operator and our methods still

apply.

1.4. The general setup - a generalized boundary damped wave equation. Theorems 1,
2, and 3 are a consequence of analysis of the boundary damped problem

(13) (=h*A — 2%)u = w in Q
hd,u + Bu = hv on 0f)

with Rez ~ 1. Here, the operator B plays the role of damping waves upon interaction with the
boundary and encodes the interaction with the exterior of ) in the case of scattering problems.

Let No(z/h) denote the outgoing Dirichlet to Neumann map for R?\ Q. That is, the map given
by C*(Q) > f — —0,u where u solves
(—=h2A - 22 u=0 inRI\Q
uloo = f
u is z/h outgoing.
We assume that B = hNa(z/h) + hV(z) where V is in a certain second microlocal class of
pseudodifferential operators which we specify later.

Remark 5. By replacing h = hE and B(h) = EB(h/E), 2 = Ez we may work with Rez ~ E.
Notice that z/h = Z/h so operators that are functions of z/h do not change under this rescaling.
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We first introduce some notation.. Let
Dyr(h) :=[1—h,1+ h] +i[-Mhlogh™', Mhlogh™'].
Let v : H*(R?) — H*~1/2(9Q), s > 1/2 be the restriction operator. Then the single layer operator
is given by
G(z/h) :==yRo(z/h)y".
Recall that Rg(\) is the meromorphic continuation of (—A — A\?)~!. From | , Lemma 4.25]
[ , Proposition 4.1] (see also Lemma 7.3), we have that

G(z/h) = Ga(z/h) + Gp(z/h) + Gy4(z/h) + Op(a0)—co(a0) (h™)
where G A is pseudodifferential, Gp is a semiclassical Fourier integral operator associated to the
billiard ball map (see section 2 for the definition of semiclassical Fourier integral operators),
and Gy is microlocalized near |¢'|, = 1. Let m > 0 and \I/g’/?(lf’]g = FE') denote the set of

pseudodifferential operators that are second microlocalized near [£'|; = E (see section 4).

We now introduce assumptions on V. For a; € R, « > —1, E' e R\ {1}, 6 > 0, M, My, M > 0,
0<e<1/2. Let (-) € C®°(T*0N) be given by (&) := (1 + |§’\3)1/2. We assume that

(14)  V =a1Na(z/h) + V1, Vi e hO‘\I/O’m(\ﬁ']g =F), V is elliptic on ||¢'|; — 1] < 6,

2/3
hU(V) < hite > nm—1 / 2/3
Lt ——te | 20 [ (=) + ()" €/lg > 1+ MiR?2,
15) 2\/1€'5 — 1 ( VIEE -1
hio (V) < hite > ,
l+ —F——| 2§ ———— €y <1 =15,
21— 1¢']3 V1= 1€05
(16) V(z) is an analytic family of operators for z € Dys(h),
ho(V
(17) log [ 1+ _holV) exists and is smooth on T%90N \ {|¢|; < Ma}.
VIgE—1

We say that AV(ay,a, E',m,d, M, My, Ms, €) holds when (14)-(17) hold.

We now give a heuristic understanding of (14)-(17). The assumption (14) describes the struc-
ture of the operator V' in particular, allowing us to include copies of Na(z/(hE")) which encodes

the exterior behavior of waves at speed \/E_l. We assume that V' is elliptic on [£'|; = 1, the
glancing set for the problem inside €2, to simplify some of our analysis and guarantee that glancing
effects play a nontrivial role in the analysis. Notice in particular that if WF, (V)N {|¢|g =1} =0,
then waves near glancing escape () essentially without reflection. This ellipticity assumption is
not necessary for our analysis, but since the main advantage of the present paper over | ]is
the analysis near glancing, we include it to simplify our presentation.

Next, (15) guarantees that the problem is locally elliptic in the sense that if a singularity
emerges from (2/, &) € T*01, then there must be a singularity coming in to (2/,¢’). That is, the
boundary cannot produce singularities spontaneously. Furthermore, this guarantees that there
are no solutions microlocalized in the elliptic region |£'|4 > 1.
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Finally, (16) and (17) are used to guarantee that the resolvent operator corresponding to (13)
is meromorphic and hence that it makes sense to discuss its poles.

Remark 6.

e For the definition of ellipticity of V', see sections 2.3.2 and 4.1.1.

e These are not quite the most general assumptions we can make on V', but in practice all
situations we have in mind fall into this category. For the most general assumptions, see
(65) and for the statement of the Theorem in that case, see Theorem 5.

o We make the assumption that V is elliptic near glancing so there is no rapid loss of energy
near glancing. We could remove this assumption, but there would be no new phenomena
and the analysis near glancing would be more complicated.

e The final assumption (17) (used to prove that the underlying problem is Fredholm) is
satisfied for example when m < 1, or when m > 1 and for some 6y fixed and o(V) real
valued

o(V)=ePa(V),  [€ly = Mo.

Lt x € C°(R) with x = 1 near 0, and define

1 _ !/
Xe € C™(T709),  Xe(z,8):=1-x <h|£|g> ’

(18)
Ri=—(1+G*va*) G *vay® op(x.).
(19) T(2) = GA(2)Gp(2)GL*(2)

where G is the Fourier integral operator component of G(z). (See section 2 for an explanation
of the quantization procedure Opy.) Note also that the inverse (I + G1A/2VG1A/2)_1 makes sense
microlocally on supp x, by (15).

Let ¢ denote the compressed shymbol (see | , Section 2.3] or Section 3). Then let
In, N (%) : B*0Q2 — R (recall that B*0Q is the coball bundle of the boundary and 3 is the
billiard ball map) be

N

(20) 0. 0) = mala) — mald)] )= 2 U ), 4 (a))
k=1

(21) rvla) = I (g) + % log 5(((RT(2))) (RT(2)))(0)

The term 2]y in (21) serves to cancel the growth of 7'(z) in the definition of ry.

Remark 7. Note that we use the notion of the compressed shymbol instead of a variable order
symbol since we do not wish to make any apriori assumption on how the symbol of V' varies from
point to point. Moreover, the order of the symbol will vary also as a function of Im z.

In fact, for 0 < N independent of h we have

(22) Z log ’( ) + o(h!7 )H*QE))‘

2
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where Ir(q) is the local order of R at g (see | , Section 2.3] or Section 3]). The expression
(22) illustrates that 7y is the logarithmic average reflectivity over N iterations of the billiard ball
map.

Let
—hQA — 22 s s s+1/2—max(m—1,0
(23) Plz) = ( 5 4+ B ) L HEPH(Q) — Hi(Q) @ 1y A0 (g0
where H]" denotes the semiclassical Sobolev space with norm
(24) [l = [¢h D)™ ul| 2.
(See [ , Section 7.1] for a more precise definition.) Let ®_(s) and ¢; be as in (9) and

Q € C®(T*0Q) be the symbol of the second fundamental form to 92 (as in Theorem 2), and
define f;(-;h) € C®(T*0Q) for j =1,2,... by

Q(q)((2hQ())"/3(1 + a1) Tm @_(¢;) + o(hTm V1)(a))

filg;h) =
iah) BV @)
Let §*0%) denote the cosphere bundle of 02 and
Bj+(e,C;h) ==
I
{z€ D) it (Fa) - Ch) (159 <7 < swp (filaw) + Ch) (124
S*00 h S*0Q

Then Theorems 1, 2, and 3 are a consequence of the following;:

Theorem 4. Let Q @ R% be strictly convex with smooth boundary. Fize >0, M > 0, N;, Ny >
0, m > 0 and suppose that AV(ay,a, E';m,dy, M, My, Ms,€y) holds. Then there exist hy >
0,C,¢e, N >0, so that if 0 < h < hg, z € Dy(h),

Im 2 s

(25) —Z < sup inf

Im 2 TN
1—€¢) or — > inf su —
h = N<N, l€]g<1-heo 2ZN( ) P (

> I+e),
h N<Ny |€"]g<1—heo 2[]\[ )

+Imz>0, z ¢ Uévilb’ji(e,c; h), and

Im z

= sup (fvpna(@h) +Ch) (1 £ ).
S*0Q

then P(z) is invertible and moreover if
0
PEu= (7).
then

(26) [uloallzm < ch™ o]l 2.

Observe that Theorem 4 (in particular, (25)) takes the same form as (2). Thus, the poles
of P(z)~! are controlled by the average reflectivity in the hyperbolic region. To see that this
continues up to the glancing set and hence that Theorem 4 is a quantum version of the Sabine
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law, observe that (2) matches (25). Moreover, using Lemma 5.1, that V is elliptic near |{'|; = 1

and
a(hV)

o) = = =RV
we have that for ¢ = (z,£') € B*9Q with /1 — |¢/|2 < h!te
2 / /
o8 RO _ Qe (VT V) oo )

20(q, B(a)) |o(hV)[?

where, as above, Q(z,¢’) is the symbol of the second fundamental form to 9. Now,

Im®_(s) ~ —/—s, §— —00 (see Figure 1.5).

(27)

Therefore (27) matches the bounds in Theorem 4 modulo:

(1) modes cannot concentrate closer than h%? to {|¢/|, = 1} (the glancing set)
(2) a quantization involving the zeros of the Airy function happens at scale h2/3 near glancing

(3) replacing —v/—s by Im ®_(s).

1.5. Outline of the Proof. Proving Theorem 4 amounts to understanding the location of reso-

nances, which correspond to z so that P(z) is not invertible. We proceed by proving the estimate

(26) on solutions to (13) which implies an estimate on P(z)~!.

To avoid analyzing the microlocally complicated interior Dirichlet to Neumann map, we change
the boundary condition. In particular, we have

(28) (I+GV) = Gu.

We then proceed similarly to | | and decompose the boundary microlocally into the hyper-
bolic, glancing, and elliptic regions given respectively by

H={(z,)eT*0Q||¢|y <1—hY},
G = {(x.) € T"00|I¢'ly 1] < ),
€= {(x.€) € T°00|¢/l, = 1 + b}

Then, letting 17 be an operator microlocally equal to the identity on U and U’ be a slight
enlargement of U, we have

(I —1y)Gly = Og- (h™)
where U is any of ‘H, G, or £. This allows us to work with each region separately.
For notational convenience, let 1 = u|gn and recall that

(29) P(2)u = (0>

v
where P(z) is as in (23). We first consider £. Here, G is a pseudodifferential operator and
our assumptions on V allow us to prove estimates on lgty in terms of v. We then consider

the hyperbolic region, H. Here the situation is more complicated because G consists of two
pieces: Gp, a Fourier integral operator (FIO) associated to the billiard ball map, and Ga, a
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pseudodifferential operator. Using the calculus of FIO’s, we are able to reduce estimating solutions
to (28) microlocally in ‘H to estimating solutions to

(I — (RT)N)u = Av

for some A. Then, again using the calculus of FIOs, we see that I — (RT)Y is microlocally
invertible under the conditions given in (25).

Up to this point, the analysis in the present paper requires only minor changes from that

in | |. However, the analysis near glancing is substantially different and heavily uses the
microlocal model for G and S¢ := 1qRy(z/h)y* near glancing given in | , Section 4.5]. The
analysis in | , Chapter 5] uses only the microlocal model for G and does so simply to obtain

a norm bound on G near glancing. Here we use the precise microlocal properties of G and S/
near glancing.

We start by analyzing I + GV as a second microlocal paseudodifferential operator on
Gy o= {(2,8) € T*0Q| 1 — MR < |¢/|; <1+ h°}

which is the microlocal region closest to glancing. When « is sufficiently small, (o < —2/3) we
see that I + GV is elliptic on G4 outside of a union of h%/3 thickened hypersurfaces given by

e -1
B0 )77 = Mm} |

Since we have microlocal invertibilty on G off of Gy, resonance states must concentrate on Gy.
This is the quantization condition which occurs at scale h2/3.

N
ov=G;, G= {(x,gf) €T 00| — h23¢;

=1

To get this quantization property, we have used the microlocal structure of G. To obtain
estimates the remaining part of ¢, i,e, on ¢4 := (1g, + 1g_)1 where
G = {(x,&) € T"0Q| ¢, < 1 — MK?/3)
we will use the microlocal structure of S¢.
We have that u solves (29). Integrating by parts in €2, we have

(QRezImz
h

Then, letting D¢ denote the double layer potential and using a classical boundary layer formula
together with the boundary condition from (13), we have

u = h"tSthd,u — Dlu = —(h " SIB + D)) + Stv = —SIV ) + St.

(30) Juls — (B, v) ) = = Tm(ho, ).

So, we can write u in terms of v via the boundary layer potential, S¢. Another technical innovation
in our proof is to use the model for S¢ near glancing to identify S¢*S¢ as a second microlocal
pseudodifferential operator on G. We are then able to apply the sharp Garding inequality to
obtain upper and lower bounds on

2RezImz
(B g2 — (B, ) )

where uy, = —h~18¢V1),. Together with (30), this allows us to estimate 9, in terms of v.
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Combining the estimates on £, G, and H, we are able to estimate 1 in terms of v. In order to
prove that condition (3) of Theorem 4 together with (25) implies (26), we refine our estimates on
G when |Im z| > ch” for some N > 0.

Because we have polynomial bounds on the interior Dirichlet to Neumann map, Ni(z/h), in

this region and
(N1 4 N2)G =1 = G(N1 + Na),
we are able to show that if
(I+GV)Y=w,

then there exists v = (Ny + No)w such that (I + GV)y = Guv and hence there exists @ solving
(13) with v replaced by (N1 + No)w = Op2_,z2(h~N)w.

Returning to the original problem, (I + GV)y = Guv, we see that for § small enough, G; are
separated by 6h2/3. Hence, we can find 1; microlocalized Sh2/3 close to G; so that

I+ GV =wj,  wjll < Ch]Jv.

Therefore, we can find u; solving (13) with u;|sq = ¢; and v = v; = h(N; + N2)w; and, repeating
the analysis above using boundary layer operators, we can obtain estimates on v;. Together with
knowledge of the symbol of Ny and that of S¢*S¥, this finishes the proof of Theorem 4.

1.6. Organization of the paper. The paper is organized as follows. We start by introducing
the necessary standard semiclassical tools as well as the shymbol from | ] in Sections 2 and
3. Then in Section 4, we introduce the second microlocal calculus from | ]. We conclude the
preliminary material with Section 5 where we introduce the billiard ball low and map.

As a guide for the general case, Section 6 analyzes the single and double layer potentials,
respectively

SUN)f(x) = /a RN ) fW)dS@)  we

DINS@) = | 0, Ro(N@. ) fW)dS() @0

and operators, respectively
G ()= [ RoN)(a,5)f (1)dS(y) x €00

NS (@) = [0, RoN)(a,5)f (1)dS 1) r €00

in the special case of the Friedlander model. Section 7 contains the analysis of the boundary layer
potentials and operators in the general strictly convex case. Next, Section 8 gives the proof of
Theorem 4 including the Fredholm property and meromorphy of the resolvent for P. Sections
10, 11, and 12 respectively contain the necessary material to deduce Theorems 1, 2, and 3 from
Theorem 4. Finally, Section 13 gives the proof that Theorem 1 is sharp in the case of the unit
disk.
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2. SEMICLASSICAL PRELIMINARIES

In this section, we review the methods of semiclassical analysis which are needed throughout
the rest of our work. The theories of pseudodifferential operators, wavefront sets, and the local
theory of Fourier integral operators are standard and our treatment follows that in | ] and
[ |. We introduce the notion shymbol from | ] which is a notion of sheaf-valued symbol
that is sensitive to local changes in the semiclassical order of a symbol.

2.1. Notation. We review the relevant notation from semiclassical analysis in this section. For
more details, see | | or | .

2.1.1. Big O notation. The O(-) and o(-) notations are used in this paper in the following ways:
we write u = Oy (F) if the norm of u in the functional space &X' is bounded by the expression F'
times a constant. We write u = oy (F') if the norm of u has

_us)llx
) O
where s is the relevant parameter. If no space X is specified, then u = O(F') and u = o(F') mean
- Jus)]
(32) lu(s)| < C|F(s)| and Slgglo F() 0
respectively.

2.1.2. Phase space. Let M be a d-dimensional manifold without boundary. Then we denote an
element of the cotangent bundle to M, (z,§) where { € T M.

2.2. Symbols and Quantization. We start by defining the exotic symbol class f(h)Sy*(M).

Definition 2.1. Let a(x,&h) € C°(T*M x [0, hg)), f € C*°((0,hg)), m € R, and § € [0,1/2).
Then, we say that a € f(h)Sy*(T*M) if for every K € M and ¢, w multiindeces, there exists
C.wr such that

(33) 0508 a(x, & h)| < Cogpc f(h)B W=D (gym=l=ly
We denote S§° := U,, S5, S5 °° := Ny, S§* and when one of the parameters § or m is 0, we suppress
it in the notation.
We say that a(x,&h) € S507P(M) if a € Ss(M) and a is supported in some h-independent
é

compact set.

This definition of a symbol is invariant under changes of variables (see for example | ,
Theorem 9.4] or more precisely, the arguments therein).
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2.3. Pseudodifferential operators. We follow | , Section 14.2] to define the algebra
U (M) of pseudodifferential operators with symbols in S§*(M). (For the details of the construc-
tion of these operators, see for example | , Sections 4.4, 14.12]. See also [ , Chapter
18] or | , Chapter 3|.) Since we have made no assumption on the behavior of our symbols
as z — oo, we do not have control over the behavior of W¥(M) near infinity in M. However,
we do require that all operators A € W' (M) are properly supported. That is, the restriction of
each projection map m;, 7y : M X M — M to the support of K4(x,2';h), the Schwartz kernel
of A, is a proper map. For the construction of such a quantization procedure, see for example
[ , Proposition 18.1.22]. An element in A € W§' (M) acts Hy,,.(M) — Hp 0 (M) where
Hj 1,.(M) denotes the space of distributions locally in the semiclassical Sobolev space Hy(M).
The definition of these spaces can be found for example in [ , Section 7.1]. Finally, we say
that a properly supported operator, A, with

A:D(M) — C=(M)
and each seminorm O(h™) is Og-«(h>). We include operators that are Oy-- (h>°) in all pseuod-
ifferential classes.

With this definition, we have the semiclassical principal symbol map
(34) o U (M) — Sf;”(M)/hl—%sgn*l(M)
and a non-canonical quantization map

Opn : 55" (M) — W' (M)
with the property that o o Opy is the natural projection map onto

Sgn(M)/hl—255(7sn—l(M) .

Henceforward, we will take o(A) to be any representative of the corresponding equivalence
class in the right-hand side of (34). We do not include the sub-principal symbol because then
the calculus of pseudodifferential operators would be more complicated. With this in mind, the
standard calculus of pseudodifferential operators with symbols in S§* gives for A € U™ (M) and
B e U5 (M),

o(A%) = 0 (A) + Ogrm - (h!=29)

(h1—25)

(M)

o(AB) = o(A)o(B) + Ogrn a1
o([A, B]) = —ih{0(A), 0(B)} + Ogmysma—sar) (K2(172D).

Here {-,-} denotes the Poisson bracket and we take adjoints with respect to L?(M).
2.3.1. Wawvefront sets and microsupport of pseudodifferential operators. In order to define a notion

of wavefront set that captures both h-microlocal and C>° behavior, we define the fiber radially
compactified cotangent bundle, T M, by T"M = T*M U S*M where

§*M 1= (T"M\{M x 0}) /g



QUANTUM SABINE LAW FOR RESONANCES 21

and the Ry action is given by (t, (z,£)) — (x,t§). Let ||, denote the norm induced on 7 M by the
Riemannian metric g. Then a neighborhood of a point (xo, &y) € S*M is given by VN {|¢], > K}
where V' is an open conic neighborhood of (xo, &) € T*M.

For each A € W§'(M) there exists a € S§*(M) with A = Opp(a) + Oy-(h>). Then the
semiclassical wavefront set of A, WFy, ¢ (A) C T M, is defined as follows. A point (z,&) € T M
does not lie in WFy, g (A) if there exists a neighborhood U of (z, ) such that each (z, ) derivative
of ais O(h>(§)~>°) in U. Asin | |, we write

WEhw(A) = WF}  (A) UWF}  (A)

where WF{I\I, (A) = WFL(A)NT*M and WFil‘I,(A) = WFy(4) N S*M.

Operators with compact wavefront sets in T*M are called compactly microlocalized. These are
operators of the form

Opn(a) + Og- (h™)

for some a € S5°"P(M). The class of all compactly microlocalized operators in U§"(M) are denoted
by WP (M).

We will also need a finer notion of microsupport on hA-dependent sets.

Definition 2.2. An operator A € lllgomp(M ) is microsupported on an h-dependent family of sets
V(h) C T*M if we can write A = Opyp(a) + Og- (h*°), where for each compact set K C T*M,
each differential operator 0° on T*M, and each N, there exists a constant C.yx such that for h
small enough,
sup |0%a(z,&;h)| < Conrh.
(z,£)€EK\V(h)
We then write
MSy ¢ (A) € V(h).

The change of variables formula for the full symbol of a pseudodifferential operator | ,
Theorem 9.10] contains an asymptotic expansion in powers of h consisting of derivatives of the
original symbol. Thus definition 2.2 does not depend on the choice of the quantization procedure

comp

Opy. Moreover, since we take § < 1/2, if A € U is microsupported inside some V'(h) and
B € U5, then AB, BA, and A* are also microsupported inside V' (k). This implies the following.

Lemma 2.1. Suppose that A, B € U™ and MSy, y (A) N1 MSy, ¢ (B) = 0. Then
WFy g (AB) = 0.

For A € U§™"P(M), (z,&) ¢ WFL(A) if and only if there exists an h-independent neighborhood
u of (z,£) such that A is microsupported on the complement of U. However, A need only be
microsupported on any h-independent neighborhood of WF}, ¢ (A), not on WFY, g (A) itself. Also,
notice that by Taylor’s formula if A € WP (M) is microsupported in V(h) and ¢’ > 4, then
A is also microsupported on the set of all points in V' (h) which are at least hY away from the
complement of V' (h).

Remark 8. Notice that since we are working with A € ¥§™"P(M) for 0 < § < 1/2 we have
a € S§°"P(T*M) and a can only vary on a scale ~ h~9. This implies that the set MSh v (A) will

respect the uncertainty principle.
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2.3.2. Ellipticity and L* operator norm. For A € WI(M), define its elliptic set ell(A) C T*M
as follows: (z,&) € ell(A) if and only if there exists a neighborhood U of (x,£) in T'M and a
constant C such that |o(A)] > C~H¢)™ in U N T*M. The following statement is the standard
semiclassical elliptic estimate; see | , Theorem 18.1.24’] for the closely related microlocal case
and for example | , Section 2.2] for the semiclassical case.

Lemma 2.2. Suppose that P € WP (M) and A € WP (M) with WFy, ¢ (A) C ell(P). Then for
each x € CX(M), there exist Q; € \I/g”,_m(M) such that

xA=xQ1P+ 0 goo(hoo) = xPQ2 + Og-(h™).

In particular, for each s € R and u € Hﬁ'“nl there exists C > 0 such that for all N > 0, and
X1 € C®°(M) with x1 =1 on supp ¥,
IxAull < ClixPull o —m + 0T Ixaull -
We also recall the estimate for the L? — L? norm of a pseudodifferential operator (see for

example | , Chapter 13]).

Lemma 2.3. Suppose that A € Ws(M). Then there exists C > 0 such that

1Al 222 < sup [o(A)| + Ch' 2.
T*M
2.4. Semiclassical microlocalization of distributions and operators.

2.4.1. Semiclassical wavefront sets and microsupport for distributions. An h-dependent family
u(h) : (0, hg) — D'(M) is called h-tempered if for each open U € M, there exist constants C' and
N such that

(35) B g g < CRTH.

For a tempered distribution u, we say that (zg,&)) € T*M does not lie in the wavefront set
WEFy, (u), if there exists a neighborhood V' of (x¢, §y) such that for each A € ¥(M) with WFy, ¢ (A) C
V', we have Au = Oce(h*°). As above, we write

WFL(u) = WFLY (u) U WFL (u)

where WFy,'(u) = WFy,(u) N S*M. By Lemma 2.2, (x0,&) € WFy(u) if and only if there exists
compactly supported A € W(M) elliptic at (zg, o) such that Au = Ogee (h>°). The wavefront set
of u is a closed subset of T"M. It is empty if and only if u = Oceo(ar)(h°°). We can also verify
that for u tempered and A € ¥J*(M), WF,(Au) C WFy g (A) N WFy(u).

Definition 2.3. A tempered distribution « is said to be microsupported on an h—dependent
family of sets V/(h) C T*M if for 6 € [0,1/2), A € Us(M), and MSy, ¢ (A) NV =0, WFy,(Au) = 0.
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2.4.2. Semiclassical wavefront sets of tempered operators. An h- dependent family of operators

A(h) : S(M) — S'(M’) is called h-tempered if for each U € M, there exists N > 0 and k € ZT,
such that

—-N
(36) 1A gty oy < Ch
For an h-tempered family of operators, we write that the wavefront set of A is given by

WEW(A) := {(z,&y,n) |, (,& 9, —n) € WFy(Ka)}
where K 4 is the Schwartz kernel of A.

Definition 2.4. A tempered operator A is said to be microsupported on an h-dependent family
of sets V/(h) C T*M x T*M, if for all 6 € [0,1/2) and each By € Ws(M') and By € ¥s(M) with
(MSh,w (B1) x MSp w(B2)) NV = (), we have WF},(B1AB3) = (). We then write

MSy'(A4) C V(h).
Remark 9. With the definitions above, we have for A € W*(M),
WEFY(A4) = {(2,§,2,8) : (,£) € WFpu(A)}.
In addition, we have that if A € U™, then MSy, ¢ (A4) C V(h) if and only if

MSL'(A4) € {(z,€,2,€) : (2,8) € V(h)}.

Since there is a simple relationship between WFy, ¢ and WFy, as well as MSy, ¢ and MSy,, we will
only use the notation without ¥ from this point forward and the correct object will be understood
from context.

2.5. Semiclassical Lagrangian distributions. In this subsection, we review some facts from
the theory of semiclassical Lagrangian distributions. See [ , Chapter 6] or | , Section 2.3]
for a detailed account, and [ , Section 25.1] or | , Chapter 11] for the microlocal case.
We do not attempt to define the principal symbol as a globally invariant object. Indeed, it is not
always possible to do so in the semiclassical setting. When it is possible to do so, i.e. when the
Lagrangian is exact, we define the symbol modulo the Maslov bundle. Taking symbols modulo
the Maslov bundle makes the theory considerably simpler. We can make this simplification since
for all of our symbolic computations, we work only in a single coordinate chart and, moreover, we
always work with exact Lagrangians.

2.5.1. Phase functions. Let M be a manifold without boundary. We denote its dimension by d.
Let ¢(x,0) be a smooth real-valued function on some open subset U, of M x RE, for some L; we

call = the base variable and 0 the oscillatory variable. As in | , Section 21.2], we say that ¢
is a phase function if the differentials (0p, ), ...,d(0g, ) on the critical set
(37) Cy = {(z,0) | Opp =0} C U,

are independent Note that
Ay i={(z,000(2,0)) | (x,0) € Cpo} CT"M

is an immersed Lagrangian submanifold (we will shrink the domain of ¢ to make it embedded).
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2.5.2. Symbols. Let 6 € [0,1/2). A smooth function a(z,0;h) is called a compactly supported
symbol of type d on Uy, if it is supported in some compact h-independent subset of U, and for
each differential operator ¢ on M x R%, there exists a constant C. such that

sup |8%a| < C.h0Kl,

U,

@

As above, we write a € 5”7 (Uy,) and denote S°™P := S
2.5.3. Lagrangian distributions. Given a phase function ¢ and a symbol a € S5°"P(U,), consider
the h-dependent family of functions

(38) u(z;h) = (27Th)_(d+2L)/4/L @0 /ha (. 0; h) db.
R
We call u a Lagrangian distribution of type § generated by ¢ and denote this by u € ISP (A,).
e 5 @

By the method of non-stationary phase, if suppa is contained in some h-dependent compact
set K(h) C Uy, then

(39) MSh(u) C {(z,0z¢(x,0)) | (x,0) € CoNK(h)} C Ay,
Remark 10. We are using the fact that a € S5(U,,) for some § < 1/2 here.

2.5.4. Principal Symbols. We define the principal symbol of a Lagrangian distribution indepen-
dently of the choice of ¢. To do this, we will need to use half-densities on A, (see, for example
[ , Chapter 9] for a definition).

Following | , Section 25.1], letting
/! /!
P = ( (70,$/x (pzlv/@ ) ,
Por  Poo
Lemma 2.4. Modulo Maslov factors, and a factor e/ for some constant A € R depending on
, the principal symbol
comp A, ()1/2
o(u) e S5 (Ap; Q2 / )/hlf%ggomp(/\@;gl/?)
s a half density given by
o(u)(w,€) = |d¢[*a(x, 0)e™/*5 P | det B| 71/,

Remark 11. In the case that A, is exact the factor ¢t4/" can be removed.

Definition 2.5. Let A C T*M be an embedded Lagrangian submanifold. We say that an
h-dependent family of functions u(x;h) € C°(M) is a (compactly supported and compactly
microlocalized) Lagrangian distribution of type ¢ associated to A, if it can be written as a sum
of finitely many functions of the form (38), for different phase functions ¢ parametrizing open
subsets of A, plus an Ogee (h™) remainder. Denote by I5°™P(A) the space of all such distributions,
and put I°°MP(A) := I;""P(A).

The action of a pseudodifferential operator on a Lagrangian distribution is given by the following
Lemma, following from the method of stationary phase:
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Lemma 2.5. Let u € I;°"P(A) and P € O§*(M). Then Pu € I3 (A) and
o(Pu) = a(P)|s - o(u) + O(h' =) geomp ).

2.6. Fourier integral operators. A special case of Lagrangian distributions are Fourier integral
operators associated to canonical graphs. Let M be a manifolds of dimension d. Consider a
Lagrangian submanifold A C T*M x T*M given by

A= {(k(y,n),y.—n)}

where k is a symplectomorphism.

A compactly supported operator U : D'(M') — C*(M) is called a (semiclassical) Fourier

comp

integral operator of type § associated to & if its Schwartz kernel Ky (x,2’) lies in I3 "P(A). We
write U € I;°""(C) where

C= {(%,f,y,ﬂ) ’ (x7§7y7 _77) € A}

The numerology h~(#+2L)/4 in (38) is explained by the fact that the normalization for Fourier
integral operators is chosen so that

1U N 2(any= 2y ~ 1
when C is the generated by a symplectomorphism.

We will need the following lemma from the calculus of Fourier integral operators
Lemma 2.6. Let A € I;"""(M x M,C) and P € U™ (M). Then, A*PA € U™ (M) and
o(A*PA)(q) = |o(A)(g, 5(0)) o (P)(r(q))-

3. THE SHYMBOL

It will be useful to calculate symbols of operators whose semiclassical order may vary from point
to point in T*M. One can often handle this type of behavior by using weights to compensate for
the growth. However, this requires some a priori knowledge of how the order changes and limits
the allowable size in the change of order. In this section, we will develop a notion of a sheaf valued
symbol, the shymbol, that can be used to work in this setting without such a priori knowledge.

Let M be a compact manifold. Let 7 (7T*M) be the topology on T*M. For s € R, denote the
symbol map
O 1 REWSOTP oy S GLOMP /s 120 geomp
Suppose that for some N > 0 and § € [0,1/2), A € L~ NU™P(M). We define a finer notion of
symbol for such a pseudodifferential operator. Fix 0 < € < 1—2¢. For each openset U € T(T*M),
define the e-order of A on U

IG(U) :=sups+1—20
SGS(
where

5(Opn(x)A Opn(X))|lv =0
Then it is clear that for any V € U there exists y € C°(U) with x = 1 on V such that
Opn(x)A4 Opn(x) € hTAIWE™ (M).

Se = {SEGZ

there exists x € C°(T"M), x|lv = 1,}
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Give T (T* M) the ordering that U < V if V' C U with morphisms U — V if U < V. Notice that
U <V implies I4(U) < I4(V). Then define the functor F§ : 7(1*M) — Comm (the category
of commutative rings) by

po ) = {PAOSEODy / WAORZESEI Dy I4(U) # o0
! {0} I5(U) = oo
15 (V)15 (U) €
Py vy =t TalV) oo

Then F is a presheaf on T*M. We sheafify Fy, still denoting the resulting sheaf by F'§, and
say that A is of e-class F'§. We define the stalk of the sheaf at ¢ by F§(q) := ligqu Fq(U).

Now, for every U C T(T*M), I5(U) # oo, there exists xy € CX(T*M) with xy = 1 on U
such that o7 (17)(Opn(xv)A Opn(xv))|u # 0. Then we define the e-shymbol of A to be the section
of iy, 6(y(A) : T(I"M) — F4(:), given by

e v o @) (Opu(xv)AOpn(xv))|lv  I4(U) # oo
0 I4(U) =
Define also the e-stalk shymbol, 6¢(A), to be the germ of 6¢(A) at ¢ as a section of F.
Now, define
I5(q) :=sup{I4(U) | ¢ € U}.
We then define the simpler compressed shymbol. Let Uy, | {q} be a sequence of open sets.

G(A): T"M — | | nlalac / Bl (@+1-26C by
q

40
1 o Iy(a) = o0
| limag, (A)(g) i) < oo
The limit in (40) exists since if 19(¢q) < oo, then there exists U > ¢ such that for all V' C U,

I5(V) = 15(U). This also shows that the limit is independent of the choice of sequence of U,, | q.
It is easy to see from standard composition formulae that the compressed shymbol has

5°(AB)(q) = °(A)(¢)5(B)(q), A€ h NT™ and B € h-MwmP,
Moreover,
o“([4, B))(q) = —ih {5°(A)(q),°(B)(q)} -
The following lemma follows from standard formulas for the composition of FIOs combined

with the definitions above:

Lemma 3.1. Suppose that A € U™ and let T be a semiclassical FIO associated to the sym-
plectomorphism k with elliptic symbol t € Ss. Then for N > 0 independent of h (AT)ny =
(T* AN (AT has

S ((AT)w0) = TT (162 on'la) + 0 (15 @01=2) )

i=1
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Proof. Fix g € T*M. Let x € C°(T*M) have x, =1 on B (q, %), the open ball of radius k~*
around ¢, and supp xx C B (q, %) . Then let D := Opp(xx)(AT)N Opn(xx). We have that
D= Oph(Xk)(ANTANflT. .. AlT)*(ANTANflT ... AlT) Oph(Xk) + O\I,gomp (hoo)

where A; = Opp(¥k;)A Opn(Yri) with C°(T*M) > 1bx; = 1 in some neighborhood of 8¢(q) and
is supported inside a neighborhood Uy ; of $%(q) such that Uk | q. Then the result follows from
standard composition formulae in Lemma 2.6. ]

Now, since € > 0 is arbitrary, we define the semiclassical order of A at g by 14(q) = sup.-oI4(q)
with the understanding that f = 0(h4(9)) means that for any € > 0,
£ ()] < Ceh4l0~e,

Furthermore, we suppress the e in the notation ¢¢(A)(¢q) and denote the compressed shymbol,
(A)(q), again with the understanding that for any ¢ > 0,

5(A)(q) € hIA(Q)_GC/hIA(q)H—%—eC.

4. A SECOND MICROLOCAL CALCULUS

In the present work, it will be necessary to localize h?/3 near the glancing submanifold in T*9.
In order to do this, we present the second microlocal calculus from | .

4.1. The local model. We start by considering the model case of £y = {& = 0} C T*R?.
Suppose that U is a neighborhood of (0,0) and a € C2°(U). In that case, we write a = a(z,&, \; h)
with A\ = h79¢;. Suppose that ¢ < min(1/2,0), and € + 6 < 1. We say that a € S;le(Zo) if and
only if
(41) 0507 Oa(x, &, \; h) = o(h~<(sIHI=D (peyyki=h),
We will write

a=0.((h*A\)*) if and only if (41) holds.
For such a, we define the exact quantization

— 1 T+ _ e
Omm(a)u = gy [ o (52 eh0eush ) ek vty

Then,
Lemma 4.1. Suppose that a = O.((h*\)*') and b = O.((h\)*2). Then,
Opn(a) e Opn(b) = Opn(ath).

where
ah = ") (a|y_p,—s¢,bl1mp-sp,)

g = OL((hN7H2)
§=n
where

A(D) = 50((Ds, D), (Dy, D)) =: (@D, D).
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Moreover if e+ < 1,

2 jkpk N

ab = Z k! (D)k(a|,\:h_5€1b\u:h_5m)y mod AW,
k=0 : T

n=¢

We say that a(z,&,y,n, A, 1) = O((hEA)F (A pu)*2) if
‘8:21 8;28?1 a;]m 8;”1 8Ln2a| < ngmhfe(lclﬂw\) <h6)\>k1*m1 <helu>k27m2‘

The only part of this lemma that is non-standard is the following. The rest follows from applying
stationary phase.

Lemma 4.2.
ADY G (RN (e )*2) = Ou((hNP ().

Proof. We start by considering the case of one dimension. Let wy = (2,&],v},n}) and

pr(wn) = (€6, uh) — 0, 4.

Then, with z = (x1,&1,y1,m1),
ci= (e"Pa)(z,p) = Ch™? / e FAWa(w — 2, A — h70¢, i — h™0n)dw

Then, rescale (z},v}) = (&1,51)h~ 9, and (¢],7}) = (€1,71)h~%. We have that with @ =
(%1, 81,51, 7),

C:C/ —11(@) (y(@)a(zy — B10F1, & — ho&, y1 — W %G1, m — BT, A — &1, i — 1)

(w)) (21 — h'0%1, & — K&, y1 — R 001, m — hPijn, A — &1, p — i1 )db
=: A+B

where y € C2°(R*) has x = 1 on B(0,1) and supp x C B(0,2).
|0°A(z, A\, p)| < C sup [0°a(wy — h' 0%, & — &,y — b 000, m — hOfj, A — &, — 7))

W] <2
and hence A = O ((h\)¥1 (hp)*2). Letting

_ —(0p(w), Da)
L= T g@)e

and integrating by parts sufficiently many times shows also that B = O, ((R\)*! (h€p)*2).
To obtain the general case, we simply observe that

ihA(Dz,Dg,Dy,Dy) _ ,ihA(Dyr,Der, Dy Dyy) ihA(Day s Dey s Dyy Dy )

=€

and use that
eihA(Dac”Ds“Dy/’Dn’) . Se - S,
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Now, rewriting the asymptotic expansion, and assuming that |{;1| < C so that
hl*?é < Ch17676<h€A>71
we have if € + 6 < 1, taking p; > =<

1—0—e¢

00 ikhk
atb(x, &, N\ h) = Z iy (@(De Dey + ™ Dy, D¢r, Dy, Dy, +h7°D,y, Dyy))Fab

1 h
=ab+ %hH (0\bOzy 0 — Dxa0i, b) + {1, b}

S ikhk(r_é) k >y 2—3e—0 /1€ Y\ k1+ka—1
i (O(Dess Dy, Dy D) ab |y, e+ O (12750 ey
k=2 : A=p

4.1.1. Ellipticity and Boundedness in the local model. We now present the analogs of microlocal
elliptic estimates and the sharp Garding inequalities in the second microlocal setting. Suppose
that € + 0 < 1 and a = O.((h*\)*1). We define the elliptic set of a, ell(a) by (x,&,)) € ell(a) if
there exists a neighborhood, U of (z,£,\) and ¢ > 0 so that |a] > c¢(hA)*t on U.

Lemma 4.3. Suppose that p = O.((h*\)*1), b = 0. ((h*A\)*2) and that supp b C ell(p). Then there
exists a; = O ((RENY*2F1) i = 1,2 so0 that

Opn(a1)Opn(p) = Opy(p)Opn(az) + Oy (h™) = Opy(b) + Oy ().

Proof. By elementary analysis, one sees that

Is] k
opt=pT'> D Car H (p~'0%p)
k=1lc=glt ..tk 7=1
o7 |>1

(see for example the proof of | , Theorem 4.32]). Thus, since |p| > c¢(h°A\)** on suppb,

qo : bp~t = O ((h A2,
So,

Oph(qO)Oph(p) = Oph(b) + hlféiEOph(el) + O\ijoo(hoo)

where e; = (A);(Uf)\)k?*l) with suppe; C ell(p). Thus, setting 1 = h' ™% ¢e; and letting q; =
—rip~! = h1T97€0 ((RA)F2~F1~1) | Continuing in this way, we obtain

4n = WO (o))
so that with a1 ~ >_ ¢,
Opi(a1)Op(p) = Opu(b) + Og—= (h™).
A similar argument, yields as. d

Lemma 4.4. Suppose that a = O ((h\)¥1). Then
|0pn (@)l 22 < C (R,
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Proof. The proof for h = 1 follows from for example | , Theorem 4.23]. Suppose that
u(z) € S. The proof follows that in [ , Theorem 5.1]. We have that
I0p(a)llz2z2 < C sup [0%al.
l<|<Md

(1+95) 1-6 (1=8)d

So, we rescale é = h~ 3¢, #=h~ 2z and @(%) = h~ 1 u(h'Z Z). Then,

where

Therefore,

10py(a)ullz = [Op(an)@(@)] 2 < [OP(an) 2o 2]l 2
< C sup |Fapllullzy

[s|<Md

<0 sup  AIHEIERSS g g ok
[(s,,k)|<Md

<C sup h(\§|+|w|+k) (1—|—<h€ 5>k;1 )
[(s,0,k)|<Md

O

We now prove an analog of the Sharp Garding inequality for the second microlocal operators.
Lemma 4.5. Suppose that a = 0p((\)°) and a > 0. Then
(Opn(a)u, u) > —Ch' = |Jul 7.

Proof. We again follow the proof in the classical case. (See for example | , Theorem 4.32]).
Fix h sufficiently small and let v = h¢/h. We will show that ¢ = (a + v)~! satisfies
(42) 0507 0% q = O(h™ h(hh)~ & sIH=ITR (\)=k)

That is ¢ € h_fﬁsg+e/2 e/2(20). We will then be able to invert a + v when ¢ <1 — 4.
First, since @ > 0 and a = 0g((\)?), |dra| < C(A\)"1al/2. (see for example | , Lemma
4.31]) Moreover, |dza| + |9¢a| < Ca'/2. Then recall that

[<] k
@) FarnT =0Ty 3 Cow [Ie )0 0RO ),

k=1¢=w —l— b
7| >1

Now,
[Oral(a+7)7" < Oy AN
and for || =1
(105 al + [0 a)(a+7) " < Oy 2.
Moreover, for |(s,w, k)| > 2,

9508 0kal(a+7) " < Oy N,
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So,
k
[[(a+y oo 205 al < ¢ T v~ T] 4720 =9 < o)~y k12
j=1 |w|>2 |w|=1
Plugging this into (43) gives (42).
We now choose e =1—14. So,a+7 € SE’O(EO) C Sg+e/27€/2(20). Then, write a;(x,&, A1) for the
function so that

Opn(a) = Opp (a1).
) 0+e/2

Write also q1 = (a1 +7)~!. So we can define (a1 +7)fig1 Then, using Taylor’s formula and letting
w=(z,§), 2= (y,n),

ihA(D

(a1 +7)iq = e (a1 + Nazh-s-e/2¢, @1l yump-s-c/2¢, we>z

—1+ / AP (i A(D))P (ax (w, b€ ) (.|
= 1+4+7r(z).
Note that we have used that {a1+~, (a1+7) "'} = 0. Now, (ihA(D))?(a1+7)tiq: € BS(?_FG& ¢/2(20)-
So,

- 1
O () lz2r2 < O <
o+e/2

for A small enough. Thus, (fﬁ;(q) is an approximate right (and similarly left) inverse for 6\p/h(a) +
d+e/2 §

~. This implies that (6&1(@) + v+ 1)1 exists for any y; > 0 Therefore,
6

Spec(Opi(a)) © [, %0).
Thus, by [ , Theorem C.§]

(Opn(a)u, u) > —]ful7.

Using the Sharp Garding inequality, it is not hard to prove that
Lemma 4.6. Suppose a = O((\)°). Then,
(Opn(a)*Opn(a)u, u) < (sup |a| + Ch'~0)||ul|7..

4.2. The global second microlocal calculus. Let ¥ C T*M be a smooth compact hypersur-
face. Let V; denote vector fields tangent to ¥ and W, denote any vector fields. Let 0 < § < 1.
We define the symbol class S(l;l’kz (M;%) by a € S(l;l’kz (M; %) if and only if

{ near $: Vi ...V, Wi ... Wya = 0o(h~%2(h=%d(s, ))"),

44
“ away from X : 8fcc‘)ga(a:,§; h) = o(h*‘”ﬂ1 <§>k2*\W\)'
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where d(X,-) denotes the absolute value of any defining function of ¥ that behaves like (£) near
fiber infinity. Then we have the following

Lemma 4.7. For 0 < § < 1, there exists a class of operators, \Iflgl’]€2 (M; %), acting on C°°(M)
and maps

Opns : SPVF(T*M; %) — witF (M %)
k1,k *
oy : \Illgl’kQ(M;E) — S5 (T M; Z)/hl‘ssgl_l’kz_l(T*M;E)

such that
o5(AoB) =ox(A)os(B),
0 — KIOWl bRl sy whiR (v ) 23 S5 (T M; E)/hwsgl—lv’f?—l(T*M; 5) =0
is a short exact sequence, and
ox, 0 Oppy : S(];l’kz(T*M; Y) — S(’;l’kQ(T*XE Z)/hl—fssg’l_l’k?_l(T*M; %)

is the natural projection map.

As in, | ] near ¥ it is possible to reduce all computations to the case where ¥ = ¥ :=
{& = 0}. We then have analogs of all the properties from the model case for the global calculus.
We sometimes suppress M and T*M in our notation, writing only S(];l’kQ(Z) and \Iilgl’kz (3). We
also sometimes suppress the ¥ in Opy, 2 to simplify notation.

5. THE BILLIARD BALL FLOW AND MAP

Recall that Q € R is an open set with smooth boundary 92. We need notation for the billiard
ball flow and billiard ball map. Write v for the outward pointing unit normal to 9€2. Then

S*R 90 = 00 L OQ_ L 89
where (x,&) € 0Q4 if £ is pointing out of Q (i.e. v(§) > 0), (z,&) € 9Q_ if it points inward
(i.e v(&) < 0), and (z,§) € 0 if (x,§) € S*0N. The points (x,&) € 9Q are called glancing
points. Let B*0f) be the unit coball bundle of 92 and denote by w1 : 0Q1 — B*0Q) and

7 : S*R%gq — B*0N) the canonical projections onto B*9€Q. Then the maps 74 are invertible.
Finally, write

to(z, &) = inf{t > 0 : exp,(x,£) € T*RY g}
where exp,(z, ) denotes the lift of the geodesic flow to the cotangent bundle. That is, ¢y is the
first positive time at which the geodesic starting at (x, &) intersects 0.

We define the broken geodesic flow as in [ , Appendix A]. Without loss of generality, we
assume ty > 0. Fix (z,£¢) € S*R? and denote tg = to(x,£). If expy, (z,&) € 08, then the
billiard flow cannot be continued past ¢y. Otherwise there are two cases: expy (z,§) € 9§24 or
expy, (z,&) € 02_. We let

(20, £9) = {Trjl(mr(expto(a:,&))) € IN_, if expy (x,€) € 90

WII(W—(eXptO({Bag))) S aQ-I-? if eXptg(£7’£> € 0N .
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Rd

S*R?

FicUre 5.1. The figure shows how the billiard ball map is constructed. Let
q = (z,&) € B*00. The solid black arrow on the left denotes the covector £ € BX0S2
and that on the right £(8(q)) € B;w(ﬂ(q))aQ. The center of the left circle is x and

that of the right is 7,(8(q)).

We then define ¢;(x, &), the broken geodesic flow, inductively by putting

_ Jexpy(z,€) 0<t<ty
Pl = {cpt_to (z0.&0) t>to

We introduce notation from [ | for the billiard flow. Let K be the set of ternary fractions
of the form 0.k1ks, ..., where k; = 0 or 1 and S denote the left shift operator

S(0.k1ko...) = 0.koks . ...
For k € K, we define the billiard flow of type k, G, : S*RY — S*R? as follows. For 0 < t < ty,

oi(z,&) it ki =0

(45) Grl@,8) = {expt(x,f) ifk; =1

Then, we define G, inductively for ¢ > ¢ by

(46) Gl (,€) = G (GI (2,)).
We call G}, the billiard flow of type k. By | , Proposition 2.1], G%, is measure preserving.
Remark 12.

e In | |, geodesics could be of multiple types when total internal reflection occurred.

However, in our situation, the metrics on either side of the boundary match, so there is
no total internal reflection and geodesics are uniquely identified by their starting points
and k € K.

e In general, there exist situations where G}; intersects the boundary infinitely many times
in finite time. However, since we work in convex domains, we need not consider this
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situation. For a proof of this fact see the proof of Lemma 5.1. Note of course that the
number of possible reflection in a given time 1" grows as one approaches glancing points.

Now, for k € K and T' > 0, we define the set Op, C S*R? to be the complement of the set of
(z,€) such that one can define the flow G%, for ¢ € [0,T]. That is, Ory is the set for which the
billiard flow of type k is glancing in time 0 < ¢ < T. Last, define the set

(47) Op = U ij.
keK

The billiard ball map reduces the dynamics of G§ to the boundary. We define the billiard
ball map as in [ ]. Let (x,&') € B*OQ and (z,€) = 7" (z,£') € dQ_ be the unique inward
pointing covector with 7(xz,&) = (x,&’). Then, the billiard ball map 3 : B*0Q — B*0f) maps
(z,¢&') to the projection onto T*9N of the first intersection of the billiard flow with the boundary.
That is,

(48> /B : (x7§/) = ﬂ-(expto(l’,f) (.73,5))
Remark 13.

e Just like the billiard flow, the billiard ball map is not defined for (z,£’) € m(9y) = S*ONQ.
However, since we consider convex domains, 5 : B*Q) — B*Q) and 8" is well defined on
B*09.

e Figure 5.1 shows the process by which the billiard ball map is defined.

The billiard ball map is symplectic. This follows from the fact that the Euclidean distance
function |z — 2'| is locally a generating function for §; that is, the graph of 3 in a neighborhood

of (z0,&o,y0,70) is given by
(49) {(z, —ds|z — 9|, y, dylx —y|) : (z,y) € 00 x 0N}

We denote the graph of 5 by Cj. For strictly convex €2, Cj, is given globally by (49).

We also write
Bi = (2(B(x, &/ VE)), VEE(B(x,&/VE))) : B — Bo)
where BL0€) is the coball bundle of radius VE.

5.1. Dynamics in Strictly Convex Domains. We are interested in the behavior of the billiard
ball map, 5(¢q) when [£'(¢)|y is close to 1. Our interest in this region comes from a desire to
understand how the reflection coefficients R from (18) behaves when a wave travels nearly tangent
to a strictly convex boundary.

Fix g = (z9,&) € B*0N) so that 99 is strictly convex near xy and |§0|§ is sufficiently close to
1. Let v:[0,0) — 09 be the unique length minimizing geodesic connecting ¢ and m,(5(q)). The
existence and uniqueness of such a geodesic is guaranteed for |§0\3 close enough to 1 by the strict
convexity of 9. Indeed, this follows from the fact that I(q, 5(q)) — 0 as |£g|§ — 1 and the fact
that the exponential map is a diffeomorphism for small times.
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Let s € [0,0) have v(s) = m(8(q)). We first examine how the normal component to 0§ changes
under the billiard ball map. Let A, denote the change in the normal component under 3. Then

A, = (((s) =7(0)) - v(0) = (4(0) = 7(5)) - v(s))
“ () =(0)]
_ ((s) =7(0)) - ((0) + v(s))
[7(s) = 7(0)] '
Here | - | is the euclidean norm in R? and v is the inward pointing unit normal.

First, note that
7"(s) = K(s)v(s), V(s) ' (s) = —kl(s),
7'(s) - v(s) =0, 1V ()1l = llv(s) =1
where k(s) is the curvature of the geodesic 7 as a curve in R?. Then, expanding in Taylor series
gives
Ag, [s+0(s3)] = [Y(0)s +7"(0)5 + 7D (©0)% + 0o(s")] - [20(0) + V' (0)s + v"(0)5 + O(s°)]
A, [1+0(s)] = 29(0) - w(0) + (- )/ (0)s + (290 - v(0) + 3+ - /) (0)) % + 0(s”)
Ag, = [2(K (0)0(0) = r(0)(0)) - v(0) — 3 (0)] % + O(s”)
(50) Ag, = (2r'(0) = 36/(0)% + 0(s%) = =K/ (0)% + O(s”).
Next observe that

A=) KO
=€l = L= 0 = S+ o)
Now, using x(0) > ¢ > 0 for Q strictly convex this implies
21— €02 Ny
s= +o((1 = 1€'5))

and therefore,

10, 8(0)) = 1(s) = 0)] = s+ 0(s) = —\[T= €'} + 0(1 = ¢'2).

Summarizing, we have

Lemma 5.1. Let Q C R? be strictly convex. Then, for ¢ € B*0Q sufficiently close to S*O
VI-EB@)2 = /1-1€(@R+ 00— € (@)2)

(g, 8(q)) = 1{(20)\/1 —EE + o(1 - €]2).

This implies that set of O(h¢) near glancing points is stable under the billiard ball map. This
also follows from the equivalence of glancing hypersurfaces | ].
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6. BOUNDARY LAYER OPERATORS AND POTENTIALS IN THE NON-NOMOGENEOQUS
FRIEDLANDER MODEL

Our goal is to give microlocal descriptions of the boundary layer operators and potentials near
a glancing point. We start by considering the non-homogeneous Friedlander model problem

((h‘DId)2 — KTq + hDy1)U = O> U(O, y) = f(y)
(51) ulz,>0 outgoing, [ull 22 ((—o0,0)xRE-1) < 00

Then, let Fj(u) denote the semiclassical Fourier transform in y,
1

Fru(zg,n) = W /u(xd,y)efﬂy’mdy.
Rescaling w = h=2/3/3 2, gives that
(B 3(Dy, = w + PP Fy(u)(w,m) =0, Fu(w)(0,7) = Fu(f)(n)-
Hence, using (51)

A'(—h*2/3 1/3 +h72/3 —2/3 )

Fn(u)(za,n) = Z éﬁé‘i‘?’du”/?’g}g 2/:1 Fu(f)m)  xa <0
)T A (=h2/3y h=2/3 :

: A,&fzfsd,jfz/sm? W F(f) () g >0

So, the Dirichlet to Neumann map for the interior problem (x4 < 0) is given by

A (W22 )

N __2/3,1/3
Fr(N1f)(n) H Ai(h—2P3—2/3p,)

Fn(f)(n)

and that for the exterior problem (x4 > 0) by

AL (W23 =23y,
A (h o)

Remark 14. Since the goal of this section is only to present a simple model where the calculations
are exact, we ignore the poles in Nj. It is possible to find the single and double layer operators
and potentials without using the Dirichlet to Neumann map N; (see [ , Section 4.5] see also
[ , Section 7.11] for a general introduction to layer potential methods), but it simplifies the
presentation to do so here.

Fn(Naf)(n) = h=2/311/3 Fu(f)(m)-

So, letting ©p(n) = h=2/31,=2/3p, | the single layer operator is given by
Ai(©r)A—(Op)

AL (Or)Ai(©y) — Ai'(©,)A—(On)

= W33 2me™/0 4i(©4) A (On) Fu (1) (m)

and the double layer operator is given by

Fu(N Y1) = 3 £)(n) — Fu(GNa ) (o)

_ (; _ gmm'/w(ehmf(eh)) FulH) ()

Fu(G£) (1) = Fu((Ny + No) L f) () = h¥3p1/3

Fu(f)(n)
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Therefore, since
Sl =G 7+D€:—éI+JV
and both solve the Friedlander model equation away from z4 = 0,
Fu(SLf) = B3 327me™/0 Ai(—h =231 By + ©4)A_(04) Fu(f)(n)
Fn(DLf) = =2me™/ S Ai(—=h= 1 Py + ©4) AL(O4) Fu(f) (1)
Now, consider the kernel of S¢*S¢,

* roo 47T2M72/3h4/3 ; —-2/3,,1/3
SeSal,y) = T T / A2 + 0,(n) A (On ()

(27h)2d=2
Ai(=h=Bpl Py + ©3,(€)) A (O (€))e (&= M HW V') oy de ' d
471' 1% 1h2 2 —
B [, A1 (@n(e) et ' D
_n Ws0(0 7@ =Y8) g
= W se(On(§))e sdg
Similarly,
SUDU,y) = S /‘I’Dzse On(€)et @V g
’ 12/3 (27rh )d—1
4/3
'DE*SK(JZI y') h/ 7/1119@54 @h(f)) %< ’£>d§
’ u2/3 (Qﬂh d—1
DE*DE(.T/ y/) h/s /‘lipg (On(¢ i@/—y/v@df
’ ul/3 27rh (9nh)d—1
where
Wse(w) i=4x% [T A PIA-@)Pds = 4x% A (@)PI(AT (0))? — o (Ai(2))

(52) Uprsela) = dn® [ Ai(s) PA- @A @)ds = 4t A (@) A (@AY (2))* — 2(Ai(2))

Upi(a) i= dr* [T AP @) ds = 4 |A (@) (A7 (@) - a(Ai(2)

xT

/;O(Ai(s))zds — (A7 (2))? — (Ai(2))>

Using the Wronskian we have that Ws,((;) = 1 where (; is a zero of the Airy function, i.e.
Ai(¢j) = 0. Moreover, using asymptotics for the Airy function, as z — —o0,

Use(x) ~1, Upp(a) ~ -z, Upuse~i(—z)'/%
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FIGURE 6.1. We plot the symbols of S¢*S¢, DI*S¢ and DE*DE. From top to bot-
tom, the graphs show Vg, Ypyse, Ype. The bottom graph shows Ai for reference.
In the graph of Upysy, the imaginary part is shown in the solid line, and the real
part in the dashed line. The black dots in each graph show ((j, f(¢;)) where (; are
the zeros of Ai(s) and f is one of Wgy, Wpyse, YDL or Ai as described at the top
of each graph.

7. ANALYSIS OF THE BOUNDARY LAYER OPERATORS AND POTENTIALS NEAR GLANCING

Our next task is to show that analogs of all of the formulas for the boundary layer operators
and potentials from Section 6 hold in the general case.

7.1. Preliminaries for the General Case. In order to make an analysis similar to that for the
model case, we use the microlocal models for G, N, §¢, and D¢ developed in [ , Section 4.5]
We recall the results here. The idea is to write a parametrix for the solution to the problem

(—h*A = 2%)u = L*690 © g1 + don © ga

where f; are microlocalized near glancing and dgn denotes the surface measure on 0. The
parametrix for the problem will be a sum of oscillatory integrals of the form

HF = (27h) ™ [ (foAi(h=p) + ih'/* A7 (0=21%9) A (b2 @) Fo(F) (€))de’
(53) _
HLF = ()~ [ (foAi(h/p) 4 bV LAY (02 p) AL (=22 0)e0 7 (F) (€ )de
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where f; solve certain transport equations and p, 6 certain eikonal equations. The boundary values
of fo and f; are determined by the limiting behavior of Dfg; and Sfgy at 0.

Let z = 1 +ip with |u| < Mhlogh™t. Then let €(h) := max(h, |u|) Let (x0,&) € S*9Q and

suppose that in coordinates (2, z4) near xg, with 9Q = {z4y = 0} and 24 > 0 in Q,
—hA =" aThDy hD,, + h(D Dy, + ).
ij i
Then there exist
p(z,&5h) =po+ > pje(h)y, 0z, &3h) =00+ 0;e(h)
J J

solving the eikonal equations

22 4+ 0(h*>®) = (adf, d) — pladp, dp)
o(h*) = 2(d8, dp)
on pg < 0 and in Taylor series at pg = 0, x4 = 0. Here, pg, Oy are real valued solving
1 = (adbo, dbo) — pladpo, dpo)
0= 2<d90, dp0>

on pg < 0 and in Taylor series at pg = 0, x4 = 0. We need a few additional properties of p and 6.
In particular,

(54) polon =&, Owupolon >0,  0eboloa # 0
and gy, := Op|on has that
(55) K : (85/90(,(1‘/, 5/), 6/) — (x/, 8x/90(,(l‘/, &l))

is a symplectomorphism reducing the billiard ball map for the Friedlander model case to that for
Q. We also write 8, = 0|sq. Next, let

O .= p‘aﬂ = §1 + Zé(h), @0 = P0|8Q = 51'

Finally, there exist
oo
fie > figh, i=0,1
j=0

with fo, := folaq having | fos| > ¢ > 0 and g1]|on = 0 solving

2(adbo, dfon) + 2poladpo, df1n) + (b, dfon) _— '

+(adpo, dpo) f1,n — Pabof1.n — po(Papo) fim 10 (0, p: fiim<n: 1)

(56)

2(adpo, dfo.n) — 2(adby, df1 , — (b, df1n))
—(Papo) fon + (P26o) fin

on po < 0 and in Taylor series at pp = 0, 4 = 0 so that for H; as in (53) (—h?A — 2?)H;F =

Og-o (h*°)F whenever F' is supported h¢ close to & = 0. If |u| < Ch, then this also holds when
F is supported § close to &, = 0 for § small enough.

= FQ,’n(HHO? fi,m<7’b7:u>'
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7.1.1. Identification of Oy, po|z,—0 and lﬁy/t%b\g. It will be useful to have the value of 0,,p0|x,—0
and yayle()b\g. To obtain these, we simply write the eikonal equations in normal geodesic coordi-
nates Recall that in normal geodesic coordinates (', z4) with x4 > 0 in Q,

—h?A = (thd)Q + R(ylv hDy/) + 2$dQ(£da y/a hDy’) + hF(xda y,)hD:td
where

R(y,Dy) = —Doq = 5 V23" D,§"%¢9D,,, g=(det(g7))V/?
iJ

QOyD ZD aw

where Q(y', &) = 32,5 aij(y')&i€; is the second fundamental form of 99 lifted to T*9Q, g9 = g“(y/)
is the metric on T*0%, and R(y',{') = 32, g7¢&;€; is the symbol of —h2Ayq.
Using the eikonal equations for pg and 6y in these coordinates,
1= (82,00)* + R(Y, 0y00) + 224(Q(Y/, 0y 00) + O(x4))
— o {(f%dpo)Q + R(y', 8y po) + 2x4(Q(y', Dy po) + O($d))}
0 = 2(82,000:400 + 97 0y,000y, p0 + 2xa(aij0y,000,,p0 + O(xa)).
Now, we know that polz,—0 = &1 and 0y, p0|z,=0 > 0. So, evaluation at x4 = 0 shows

1= (81‘(190)2 + R(ylv ay’eo) - 51(82?dp0)2 = R(yla 8y/90) 51( :L‘dpo)
0 = 0

Moreover, differentiating the first equation in x4 and the second in 3’ and evaluating at x4 = 0
shows

0= 2g”a§dy 000y, 00 + 2Q(Y', 0, 600) — (0z,p0)* — 26192 ,p00z,p0

0= 2(8y/xd6’08xdpo)
Hence,

(82400)% [ca=0 = 2Q(Y, 8y 00) — 2(£10% ,p002,£0)|za=0 = 2Q(y; Dy bop) + O(£1)
R(Y', 0y bos) = 10y 005 = 1 + £1(20)*|z4=0
The implicit function theorem then implies that with & = Oy Bop,
€15 —
(2Q(y, €))*/3
Now, in coordinates (x,¢) = k1 (y,n) where & is as in (55), we have
B, €) = (21 — 2V ~=&,2',€)

since k reduces the Friedlander model to the billiard ball map for 2. Let ¢; be a partition of
unity on 1 —e < [¢'|; < 1+ € for some € > 0 small enough so that on supp ¢; K, 1 with k; given
by (55), is well defined. Let

(58) = Z%& (2,£)).

(57) & = o((J€2 1)),  Ouup=2Q(y, &)+ 0(I¢2 - 1).
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Then we have the following lemma given the existence of an approximate interpolating Hamiltonian
for the billiard ball map. In particular, the lemma follows from the equivalence of glancing
hypersurfaces [ | (see [ , Proposition 3.1] for a proof, see also | )]

Lemma 7.1. Let Z be as in (58). Then at S*0Q, = =0, |dZ| > 0 and Z < 0 in B*9Q. Moreover,
= B(a) — Z(a) = o((I€']; — 1)),
B(q) — exp(—2V=EHz)(q) = o((|¢'; — 1)),
2w €)= L o - 1)
o (2Q(x,€"))%/3 ! '

7.1.2. Microlocal description of the boundary layer potentials and operators. We now recall the
microlocal descriptions of the boundary layer potentials and operators near glancing from | ,
Section 4.5]. Let Ai, Ai’, A_, and A" denote the Fourier multiplier with multiplier Ai(©,),
Ai'(©), A_(Oy), and A’ (©},) where for convenience, we define

On:=h7*%0, O =000,  pni=0"Pp, pon:=h"p.
Next, let
Tf = @rh) =4 [ et O pyyay g
JCf := (2mh)~*H! / Fob(Duap + 1hdy91)agmoet CH =V EN (Y ay/ de,

JBf := (2rh)~ " / FouOuyGozg—oet O VLD ¢\ ay'dg'.

Then J is an elliptic semiclassical Fourier integral operator quantizing the reduction of the Fried-
lander glancing pair to the glancing pair 99, S*R?% and it is not hard to check that B, C' € ¥ (99)
so that for any 6 > 0,

a(JCTY) = (2Q(x, €)' + 05, (h' %)
where @ is the second fundamental form lifted to the cotangent bundle, T*0€2. Thus C is elliptic.

Lemma 7.2. Suppose that (zg, &) € S*0Q and ¢ € C°(R?) have ¢ =1 on [—1, 1] with supp( C
[—2,2]. Then there exists § > 0 such that for any M, € > 0 if |[Im z| < Mhlogh™1,

GXg=h*Pw 'NJAA_C VT Xg+ Og-(h™)g
1
NXg= (2 Id —w Iy J(AiA + h2/3AAz'C‘1B)J‘1> X g+ Oy-s (h™)g

(StXg)lo =w ™ h¥3 A1 (JCTH I X g + Opooee (h)g
(DIXg)|g = —w A9, X g — h2Pw Ay ;JC'BI ' X g + Opr_co (h®)g

—7i/6
2T

X = C((35)_1\CE — x)), Ayg = YHJ 1, Aoy = YHoJ !
X := Opy [¢ (67" (|l — ol + 1§’ = &oly)) ¢ (h6711€ly — 1) -

If we only allow |Im z| < Mh, then we can set e = 0.

where w = ¢
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A simple calculation shows that on —Mh%*3 < &, AiA_(0},) € \112_/13/2’_1/2(51 = 0) and on
—Che <& < —Mh?/3, AiA_(©),) € h*1/4+€/4\111__1£/2§_1/2(€1 = 0). Moreover, for & > Mh?/3,
1/3

2me™ /6 AiA_(O)) = ——
T (©n) N

(14 0(h(&1)~?)).

So, using (57)
h 1
2\/&1(r1(q)) Oz ,p(K1(q))
¢ (67 (I — wol + ¢ = &oly)) ¢ (R0 1]1€'ly — 1)

h
— (1 +0(h(¢> - 1))
e o -

¢ (07 (e — ol + 1€ = &olg) ) ¢ (R0 I€/1y — 11)

o(JR2BPw I AIA_CTV I TIX) = (14 o(h(&)~3/?))

Finally, we recall the decomposition of the boundary layer operators away from glancing from
[ , Lemma 4.27]. For a similar decomposition when Im z = 0 see | , Proposition 4.1].

Lemma 7.3. Let Q C R? be strictly convex with 0Q € C™®. Then for all 1/2 > ¢, > 0, and
z=E+ o(h'™7) with Tmz > —Chlogh™!. Then
G(z/h) := Ga(z) + GB(2) + Gy(2) + Oprmso (h™)
N(z/h) == Na(2) + Np(z) + Ny(2) + Op' oo (h™)
0,Dl(z/h) = 0,DUA(2) + 0,Dlp(z) + 0,Dly(2) + Opr—coe (R™)
where Ga € hlfé‘lie_l, Na € R'729071 9, Dln € h 1), and Gp € hlfge(Imz)*dﬂ/hfgomp(Cb),

Np € e(ImZ)—dQ/hfgomp(Cb), and 0,Dlg € hile(lmz)—dﬂ/hfgomp(Cb) are FIOs associated to Bg
where § = max(e,y). Moreover,

/ (¢,p) € BR0Q2 x BN :
M) < {min(E —1€@lg, B~ 1€ (@, U p)) > Che}
NSy (g,p) € T*OQ x T"0Q:
H () < {max(\E — 1€ @ lgl 1B = €' (P)lgl Ua:p)) < C”f}

. ih_l E2 _ ’€/|2
o(Gp) = L, (8, Dlp) = V g
2B~ I¢'l; :

he% Rewol(q,82(q))

dql/Q,
2(E? — €' (Be(q) ) Y4(E? - ¢ (¢))2)1/4

—jen Rewol(a.85(0) (E2 — 1€ (g)|2) 1/ i
2(E? — |¢(Be(q))[2)t/4 ’

U(GBeITf Opu(Ua:85(@))) =

O'(NBQIH% oph(z(q,ﬁE(q)))) =
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(8, Dl et OPn(U(a.Br @)y —
h—le%Rewol(QﬂE ( ‘fl(ﬁE( ))| )1/4( ‘f/( )| )1/4

dg'/?.
B q
where we take \/z = \/]z\e%Arg(z) for —m/2 < Arg(z) < 37 /2.
Remark 15. The decomposition in | ] is slightly less precise than that in | | because the

glancing pieces are microlocalized to a neighborhood of S*0€) x S*9€) rather than to a neighbor-
hood of S*9%2 x S*0Q N A(T*00Q) where A(T*0S2) denotes the diagonal.

In particular, Lemma 7.3 together with (59) imply that there exists M > 0 so that for x =
. —1/2,~1/2
x(1€']g) € WSR(1€']y = 1) with supp x € {|€']y > 1+Mh>3}, G Opu(x) € /30, > 2 (¢'), = 1)
with

(60) o(G Opu(x) = —X]s)

2\/1€'5 -1

7.2. Analysis of S¢*S¢, D¢*Dl, and DI¢*S¢ near glancing. Our next goal is to understand
S0*S¢, DE*DL, and DL*SE microlocally near glancing points. To do this, we will use the microlocal
description of §¢ and D¢ from Lemma 7.2. In particular, let J; be a microlocally unitary FIO
quantizing  where « is as in (55). Then we prove

(1+ oh(g2 = 1)) .

Lemma 7.4. Fiz z = 1 + iy with |u| < Mhlogh™t. Then for any e > 0 and § < 2/3, for
X € \112/3(\5’]9 = 1) self adjoint with WFy(x) C {]|¢'|g — 1] < h‘;},

XSEStx € W2 WY ({|€]y = 1}),  XDL Sty xSEDly € h3 =1~ W 7 ({|¢/]y = 1)),
XDEDEx € 2w (€], = 1)

Moreover,
sy AU )
o (JXDESI,) = h4/3‘1’m&é( (2/z@o< )3 /Z( w2 )
o (JIxSEDINT,) = h4/3%e‘si(h (2/290( );sf/z(( ),
o (JEXDEDIYT) = hz/gq/w((th(/g(@O( ;;;i/f( <)

We prove this lemma using Lemma 7.2 to write a parametrix for S¢*S¢. We then Taylor expand
the Airy functions around their values at the boundary of 2 and estimate each of the terms. The
higher order terms in the expansion will turn out to be lower order in i and the symbols will be
found by computing the first term. The operators DI*SE, S£* DL and DDV are handled similarly.
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7.2.1. Estimates on the Remainder Terms. We first give estimates on the size of terms that will be
lower order. These terms arise from a Taylor expansion of the integrand when computing S¢*S¢
using the mcirolocal model from Lemma 7.2. In particular, consider an operator with kernel given
by

Rijkimno = (2mh)~21+2 / /0 T b(w, 2!y, €)hHE (o, o) — plw, €))H(O(1) — O(E)uh

AiD (g (w, ) AT (O4,(€1) Ai ) (pn (w, €1)) AV (O(¢7))

i

eg(G(w»ﬁ’)—9(w777’)—9b(y’,£’)+9b(x’m’))dwddgfdn’dw’

where b € Ss5(& = 0) is supported in [©(¢')[,|©(n')| < Ch®. First, observe that since d;,p0 > 0
and for ¢ > 1,
7t3/2

Ai(t) < Ce ,
we may assume that b is supported on wy < € for any € > 0 by introducing an 0(e~¢/")
Next, notice that

9(’[1), 5/) - 9(w7 77/) - eb(wlv 5/) - eb(w/7 77/) + w§<£l - 77/7 r(w, 5,, 7/))'

error.

So,
8w’6(w7 5/) - aw’e(wa 77/) = (8:%’6’917(7“”/7 77/) + wglaw’r) (6/ - 77/)
and, using that 8:%,5, 0, # 0, for wy small enough, the phase is stationary precisely at & = 7'

We first change variables so that Wy = h=2/3pg(w,&’). Then, wy = h?3e(Wy,w',&)(Wy —
h=2/30,(¢")) where e is elliptic. So, the kernel takes the form

Rijklmno
= () 22 [T W ol g, €
h—2/5®0(5’)
(p(wa(Was 0, €),1) = B3Wy — e()pr)E(O0) — OE)) (Wa — h=2*(€))"

AiD Wy + h=2Be(h)pr (w, &) AT (O4,(€) i) (Wy + h=2/3¢(h) pr (w, €) AV (04(¢)
e (00 (w ) =0u(w 1) =00 (' &) +00 (&' ')+ (Wa=@o (€)X € ' r(Wasw' ' €10 vy 1€ !

Now, the integrand vanishes to order |¢’ — 7/[7** and the phase is stationary in w’ precisely at
& =1n'. Hence, integrating by parts j + k times in w’ and then applying stationary phase in the
w’, 1/ variables gives a finite sum of terms (possibly with additional positive powers of h) of the
form
h2/3 //OO b (h2/3W 2 + o((Wy — h2/30 (5’))2h4/3) oyl €€
(27Th)d_1 h—2/300 (") 2 dy d 0 Yy LHYHG

MG 2= ()P (W, — B30 (¢'))" AiHP) (W + B2 e(h)pr) A" (O4(€)))

Aio+D) (W + h=2/3¢(h) p1) AV (0, (¢7)) en @& €) =00 ) gy g
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Note that we can apply stationary phase in the w’,n’ variables since 8%,5,005, # 0. Next, change
variables &' — Z'(2/, ¢/, £’) so that

00b(x/7 fl) - GOb(y/a 77/) = <xl - ylv E/(‘rlv y/a £I)>

To find such a change of variables, observe that Z(z', 2',£") = 0,60 and hence 92 = (952,96,905, #0
so we can apply the implicit function theorem. Then, integrating in Wy and using the fact that
on supp ba, |9(¢')] < Ch?, we obtain

Rijttmno = (2mh) ="+ / ba(a’, 1/, €/ h)eh @V g’

where, letting

. m+l+p+o+qg+m+i—4
- 2

1
+ Z(dg—i-q + 5l0+p + 510 + 521)7
b3 c h2/3+%(j+k+p+q+2n) (log h—l)p-ﬁ-qhmax(r,())(%—g)sgfé/Q(Rd—l; {51 — 0})

Hence, the operator RUKmno with kernel Rijkimno has for any € > 0,
Rijklmno c hl/3(j+k—l—m—i—o+2)+6/2(l+m+i+2n+o)—5‘11(1)85/2({{1 _ O})

Rijklmno e h2/3—|—%(j+k+2n)hmax(r,0)(%—g)\Ij(l)faﬂ(Rd—l; {51 — 0})

7.2.2. The Principal Part. By the analysis above, we see that when microlocalized near glancing
points S¢*S¥, DE* DL, and DE*SY are pseudodifferential in a second microlocal class. We just need
to compute the principal symbol of these operators. The symbols will turn out to be Vgp, Wpy,
and Wpysy, respectively.

First, using the principle of stationary phase, we compute that
IS = k)= [ (gl €)ek 00 pyyay g
LI = ()~ [ (y €)er 0 piyf iy

where

| det 82/5/91;(1/,5/)\ bo(y', &)
bo = + Og(h and b = —2222_ + 0g(h).
gou(y', €') () Oeap(y',€') (#)

Denote the kernels of S¢*S¢, DI*DE, and DL*SY, respectively by Ksy, Kpy, and Kpgsy respec-

tively. We explicitly consider $¢*S¢ and we record the end result for the others. The kernel of §¢

is given by

7i/67,2/3
§t(w,y) = 2 [ (900w €)Aion, €) + i (2, €) A (on (. €)

@by
A_(O4(E))bi (3, )t 0@ -0/ g
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The kernel of S¢*S/ is given by

nYRVE:
(;lhhzdz// go(w, &) Aipn(w,€)) + ik g1 (w, &) A¥ (pn(w, £) )

(900w, 7)Ao (w, 7)) — i g1 (w, ) A (on(w, 1))
A (On(EN)A=(On(bi(y & )br(a  yer O =0 lom 1000 ) sy d

Ksp =

Taylor expanding the Airy functions around py(w, ') and ©,(¢’) produces lower order terms of the
form h*/® Rojijo, (4,k) # (0,0), B3 Rojij41)k10, h°/3 Rojrjerr and h2Roji(j1yke1. In particular,
SUSt=A+0y  (e,=op(h***/*~°) where A has kernel

T2h4/3 -
(;h% / / go(w, &) Ai(pn(w, €))go(w, 7)) Ai(pp (w, €))A_(O4(£))A_(O4(€"))

A(z,y) =
Then, changing variables Wy — h™2/3p, (w, &) and performing stationary phase as in the analysis
of Rjkimno gives

Az, y) = |Ai(Wa + h™2e(h)pr)

Am?h? @', &)ao(@,€) + 05, , (W32~
27Th (27h)d—1 //h 2/3@0 5/) |det 82/5/ (x’f’)]@xdp(x’,f’)

|A_(O1(E)2bi (v, € )br (!, €)er O E)=0 " €0 gy d€’ dnf

Using that the phase is stationary at 2’ = ' to integrate by parts in ¢’ when terms of size |z’ — /|

appear, that for any € > 0,

Ai(Wy) + 0s(h2/3e(h) (Wa) /) wy<C
3/2

Ai(Wy+ h™2Pe(h)py) =
i(Wa e(h)p1) Ai(Wg) + 05(h2/3e() (W) V4233w, > ¢,

and using the definition of Wgy gives for any € > 0,

h? / ’ao(.%'/, 8)’2‘()1(1’/7 8)’2\1155(@0/1(&/)) + 05175/2 (h6/276)
(27Th)d_1 | det 85/6/9(){,(%’,f’)‘@xdp(x’,fl)
%(917(33 £ — 9b(y',§/))d5/

A(l’,y) =

Now, let J; be a microlocally unitary semiclassical FIO quantizing & i.e.
Jif = (2mh) / c(a!, € et G @ €)= €D ge!

where

Cc = ]deta /5/00[)( )| 1/2 + O(h)
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Applying stationary phase gives
JTAjl (:Ca y)

_ /C(w’,{’)C(z’,&’)’ao(w/,ﬁf)2|bl(w’,g’)|2qjsz(@0h(5/)) b (0)

(27Th)d71 ’ det 82/5/90[,(“}/7 5/) ’281‘dp(w,7 5,)‘ det 85%/6/001)(2/7 5/)‘ yl/:g‘glg()b((zl/é//))
T = §/ oplw,

e (@ =y ) +01 (0 ) =00 (') g

Again, using integration by parts on terms that are O(|2’ — ¢/|), we can assume that 2/ = ¢ in
the amplitude and hence have

JTAJ (2, y)

_h / (', &)e(w', &) ao(w', )2 |br(w', &) PUse(Oon(€)) + Os, s, (h*/27°)
~ (2mh)dt | det 02,¢0op(w', &) 20z, p(w', §)| det 02 fop (w', €]

@' =8¢0 (w' £
et =& ge!
So, plugging in the definition of ¢ and by, we have
h2 / Use(Oon (&) + 0s,_s,, (h°/27)
(2mh)?t |0xgp(w', €20y p(w’, ')

i

eh <x’—y’,€’>d£/

(61)  JiSC*StJ; =

&'=08¢s b (w',€')
Similar computations give
(62)
/ Lis/4—e
Upese(Oon(€')) + Ogo.1/2 (R )

h4/3 1-6/2 =y
*D * ) 7<CC -y 75 >d /
JI DS, (27rh)d_1 / (axdp(wljé‘/))Q eh '3

@'=0¢s 0o (w',&’)

4/3 Upese(Oon(€)) + 0goaya (h%ﬂw*e) _
JISEDL, = / WL et le =y €) e/
' (2mh)®1 (Oryp(, €))2

2/ =0¢s00p (W' ,£")
Uni(Oon(€)) + g0 (h5™)
O gp(w', &)

i

en@ =g

h2/3
TDEDLL = Gy /

z'=0,1 005 (w' &)
Hence, all of the above operators are second microlocal pseudodifferential operators with respect
to the glancing surface {|¢'|; = 1}.
Plugging (57) into (61) and (62) gives that

s WU (h2360(¢)) ko R 3pgs(h 2300 (¢))
o(EESEh) = N PN EE

2Q(k(a',¢"))
. h4/3\1/1)g31(h72/3@0(£/)) o h2/3‘IID€(h_2/3®O(€/))
(2Q(k(a",€")))1/*

where £ is as in (55).
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8. PRELIMINARY ANALYSIS OF THE GENERALIZED BOUNDARY DAMPED EQUATION

We examine problems of the form

(=h?A -2 u=w in

(63) hd,u + Bu = hv on 0f)
ulog =¥
(64) 2z € [1—ch,14 ch] +i[-Mhlogh™, Mhlogh™1].

We then assume that B = hNo(z/h)+hV (2), with V analytic for z asin (64), V € h“(@ggﬂ{’\g =
E'}u \I/g’;;ﬂg’\g = 1}) for some a > —1 and m € R.

Furthermore, suppose that for some 6 > 0, M, M; >0, and 0 < € < %

V is elliptic, on [|¢'|, — 1| < 4,

1+«
1+M 25(<h+>+<§’>m‘1) €'y > 1+ Mh2/3

2\/I¢"2 -1 VIEE -1
(65) iho (V) < plte > ) c
1+ ————=| 2> ( ——— [Elg<1—h
2,/1—|¢']2 1 [¢2 ’

(1+ ho(V)
VIEE -1

The problem (63) is a highly generalized version of a standard boundary damped equation
which was studied in the seminal work of Bardos-Lebeau-Rauch [ | see also | ]. In
order to study this problem from the spectral point of view, we must see that the inverse operator
is meromorphic with finite rank poles. This is similar to the analysis in the case of the standard
damped wave equation (see for example | , Chapter 5] and references therein).

) exists and is smooth on T*9Q\ {|¢|; < M}

8.1. Meromorphy of the Resolvent. For s > —1/2, let

—h2A — 22

P(z) = (w% A (m) P HYP(Q) — H(Q) @ HoH/2mmaxm=10) (50,

We will show that P(z)~! is a meromorphic family of operators with finite rank poles. Our
analysis is similar in spirit to that for potential and black box scattering see for example [DZ,
Chapters 2,3,4].

Then, when (I + VG)~!: H*(0Q) — Hs+tmax(m=10)(H0) exists,

. ([I —SUI+VE)! ot %;B;mhmo(z/mm)

HS(Q) @Hs+1/2—max(m—1,0)(89) N HS+2(Q).
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To check that this is the inverse, we simply apply the jumps formulas from for example [ ,
Lemma 4.1 and Proposition 4.1.1]. For the Sobolev mapping properties of 1gRolq, S¢, DY, see
for example | , Theorems 9, 10]. Now,

I+VEA) P =T1-VI+GV)'G, (I+GV)'=I-GU+VGa)'V

therefore, I + GV is invertible if and only if I + VG is invertible. Thus, to check that P~! has a
meromorphic continuation from Im z > 0, it is enough to check that for (I+GV)~!. To see this, we
first show that I 4+ GV is a holomorphic family of Fredholm operators with index 0 on the domain
of Ry. The condition (65) and Lemma 7.3 imply that for M sufficiently large and 0 < x¢ € C°(R)
with xo = 1 on |z| < M and supp xo C {|z| < M+1}, (I+GV)(1—x(|hD'|y)) € max(m=1).0)(5Q)
is elliptic on [¢'|; > M + 1 with symbol

ho(V)

2/1¢'5 -1

Then, for k = 1,2, let 0 < x € CX(R) with xx = 1 on |z| < M + 1 and supp xx C Supp Xx+1
with supp x2 C {|x| < M + 2}. Then, by assumption, log % is well defined on supp x2(|¢'|) and
hence for K > 0 large enough

f=0o((I+GV)(1=xo(|hD'|y))) = (1 + ) (1= x0(I¢'ly))-

) F\ el B
0= £+ K€l () €57 s o] 2 efg)™ .
Now, Opn(q) : HEerax(m_l’o) (0?) — H;(09) is invertible for h small enough and
Opn(q)(I +GV) =1+ A, (I4+GV)Opu(q) =1+ Ay
Opn(q)(I +VG) =1+ A3 (I+VG)Opy(q) =1+ Ay

with A; : H(0) — Hi 1(99Q). Therefore, both I + GV and I 4+ VG are Fredholm with index
0. The analysis below will show that there exists zp with Im 2z > 0 so that I + GV is injective.
Therefore, (I + GV)~! exists at 29 and by the analytic Fredholm Theorem has a meromorphic
continuation to C when d is odd and to the logarithmic cover of C\ {0} when d is even.

Write
(66) I+VG)p=n.
Note that if ¢ has (66), then u = Slp solves (67) with w = 0 and ¢ = G¢. That is,

(—=h?A—22u=0 inQ
(67) hd,u + Bu = hv on 0N
ulon =1
Similarly, if
(68) (I + GV)Y = G,

then
u= -8V + St
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solves (67). Now, suppose that u solves (67). Then
u = h™'Sthd,u — Dlulsq = —h~'StBu|sq — Dlu|sq + Stv = —SlVu|sq + Stv
where we have used that in €2,
SINy +Dl =0 and hence (h"'S¢B +Dt) = StV
Therefore, taking x — 02 gives
ulon = —GVulgg + Gu = I+ GV)u|spa = Gv.
That is, ¢ := u|sq solves (68). Finally, if 1) solves (68), then ¢ := v — V) solves (66).
Lemma 8.1. The following are equivalent

(1) u solves (67)

(2) U = Sﬁ(v - Vu|aQ)

(3) ulpn = solves (68)

(4) v —Vu|gq = ¢ solves (66).

Note also that since I + VG is Fredholm with index 0, it is not invertible if and only if there
exists a nonzero solution ¢ to (I + VG)y = 0. Hence, together with Lemma 8.1 we have proved
the following

Lemma 8.2. The operator P~ is meromorphic on the domain of Ro()\) and the following are
equivalent

(1) P~1(2) has a pole at 2.
(2) There exists a nonzero solution v to (I + G(z0)V (20)1 = 0.
(3) There exists a nonzero solution ¢ to (I +V (z0)G(20)p =0
(4) There exists a nonzero solution u to (67) with v = 0.

9. MICROLOCAL ANALYSIS OF THE GENERALIZED BOUNDARY DAMPED WAVE EQUATION

We now proceed to study the poles of P(z)~!. It is convenient to study (68) because then the
solution to (67) has u|pg = ¥. From now on, we do so without comment.

9.1. Brief outline of the computations. The analysis in the next few sections proceeds as
follows. We first study the elliptic region where there is no propagation and hence the analysis is
relatively simple. Then, we study the hyperbolic region where standard propagation occurs. In
this case, we use the decomposition of G (Lemma 7.3) to rewrite (68) in terms of the reflectivity
operator, R from (18) and transition operator 7' from (19). We use the symbolic calculus of
FIO’s to show that this new operator has a microlocal inverse on the hyperbolic set. However, we
must show that this inverse preserves the hyperbolic set up to a small remainder. This is done in
Lemma 9.2.

Putting these two regions together leaves the glancing region to be analyzed. Here, we apply
the microlocal models of G and S¢ near glancing from Lemmas 7.2 and 7.4. We start by using (68)
together with the model for G near glancing to further localize ¥ near certain ’almost glancing
hypersurfaces’ Using that S¢V1) solves (67) with v = 0, we obtain estimates on Im z from the
description of S¢*S¢ near glancing.
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9.2. Elliptic Region. Fix 0 <e < % and 0 < ¢; < ¢a < c. We first estimate solutions to (68) in
the elliptic region & := {|¢'|; > 1 + ch}.

Let x1 € Se(|€'] = 1) have x1 =1 on [£'|; > {1+ 2k} and supp x1 C {|¢'|g > 1+ c1h¢}. Also,
let x2 € S(|¢'|y = 1) have supp x2 C {|¢'lg > 1+ c2h} and x2 = 1 on {|¢'|g > 1+ ch®}. Let
X1 = Opn(x1) and X3 = Opn(x2).

Let 1 solve (68). Then, we have

(I +GV) X4 =[GV, X1J¢ + X1 G,

Now, by Lemma 7.3, GV X; = GAV X + Oy- (h*®) where Gp € h2/3\1127/13/2’71(]§’|g =1). By our
assumptions on V and Lemma 4.3, there exists

max(— —a 1/2,min(0,1—m 0,min(0,1—m

A R a0 O () = 1) U WO (g = B)
so that A(I + GAV') = X3 and MSy(A) C {x1 =1}. So,
X277b = A[GAV, Xl]w + AXlG'U + O\pfoo<hoo)(’¢ + 1})
and hence,
Xl < CUA[GAV, Xa]dl| 2 + [AXaGavlmp + O(BZ) (1] v + (0] )
< C(h = lv]| 2 + o(h>)[¢])-
Summarizing,

Lemma 9.1. For all0 < e <1/2, ¢> 0, and N > 0, there exists hy = ho(e,c) > 0 such that for
0 < h < ho, x € S¥(|¢|, = 1) with supp x C {|€'|; > 1 + ch¢}, and ¢ solving (68)

10ph Ol < C(A 2wl 2 + O(h)[]] ).
9.3. Hyperbolic Region. Recall from Lemma 7.3 that
G=Ga+Gp+Gy+ 02 oo (h™).
First suppose that MSy(X) C {|¢/|; <1 — ch} for some 0 < € < 1/2. Then, suppose that

I+GV)Xy=f

and let GZI/ ? be a microlocal inverse for G1A/2 on
M= {|¢'lg <1 —ryuht}
where ryy < ¢ Then
(I+GV)X1¢) = (I + (Ga + Gp)V) X1 + O(h™))
= (I + G+ G PapG PGPV X0 + o(h®)y = f.

Thus, f is microlocalized on ‘H and, following the formal algebra in | , Section 2] multiplying
1/2
by GV, we have

G VX = —GYPVGYAT + GGG GV X + o(h®)p + GV f.

Remark 16. By Lemma 5.1, a microlocal inverse on H will be a microlocal inverse on MSy, (GpX7).
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Writing ¢ = Gl/zVqujJ and T = G_1/2GBG;1/2, we have

I+ Gva e = -G Pva [’ To + o) + GV T,
Hence, letting
R.— (I+G1/2VG1/2) 1G1/2VG1/2
we have
¢ = RTp + 0(h®)) — RGL* f.
Here, T is an FIO associated to the billiard map such that

o (exp (Imhz Oph(l(q,ﬁ(Q)))) T)(B(q),q) = exp (iRewOl}(Lﬁ(Q)’q)> e~ ™/dgl? € S,

and Re ¥ _U \112/3(|§’|g = E') is as in (18).
Thus by the wavefront set calculus we have for N > 0 independent of A,

N-1

(69) (I = (RT)™)p = 0(h>)¢ — 3 (RT)"RG,* f
m=0

and by Egorov’s theorem (Lemma 2.6), we have

(70) (RT)n := ((RT))N(RT)YN = Opp(an) + Op—o (h™)

where ay € Se U S’g/%(|£’|g = E'). Moreover, with § = max(2¢,2/3) for u with MSy(u) C H, by

the Sharp Garding inequality, Lemma 4.5, and Lemma 4.6,
inf (|((RT)x)(9)] + OB/ #x D120 ) jul] 2 < [|(RT)Vul7
I(RT)Nulf? < sup (|5((RT)x)(g)| + O(R" TN DF=0) ) [u| .
H

Let

s :=1— [supc((RT)N) sy = Jinf 6((RT)N) —
% H

Finally, let > = max(s¢1, 52). Then, we have

Lemma 9.2. Suppose that s > k7' where v; < min(1/2 — ¢€,1/6). Let ¢ > ry and g € L? have
MSy(g) C {1 —Ch* < |¢|; <1—ch}. If

(I = (RT)M)u =g,
then for any § > 0,
MSp(u) € {1 = (C + 8)he < |€'|, <1 (c— 8)h<}.
In particular, there exists an operator A with ||A| 22 < 2371,
A(I — (RT)N) = I microlocally on H
and if MSy(g) € {1 — Ch® < |€], < 1— che}, then
MSp(Ag) € {1 — (C + 8)he < ||, <1— (¢ — 6)h}.
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Proof. In the case that 5 > h7', we write
(I = (RT)N) = =(RT)¥(I — (RT)™")

microlocally on H and invert by Neumann series to see that for any g, (I — (RT)Y)u = g has a
unique solution modulo 2> with |ju|| < »7![|g|. On the other hand, if »; > h", |[(RT)V| <
1 — 3, and we have that for any g, (I — (RT)™)u = g has a unique solution with |lu|| < | g|.

We will consider the case of 51 > h"1, the case of s < h"! being similar with (RT)" replace
by (RT)~". Inversion by Neumann series already shows that we can solve (I — (RT)N)u; = g
with |lu1]| < 271g||. To complete the proof of the lemma, we need to show that this inverse
has the required microsupport property. For this, we need a fine almost invariance result near
the glancing set. In particular, by Lemma 7.1, that there exists an approximate first integral
E(z,£) € C*(B*0N) so that Z =0, |dZ| > 0 on S*9Q, E < 0 in B*9IN) and

(71) =(B(a)) = E(g) = r(q)
with 7(¢) € C*°(B*09) vanishing to infinite order at S*0Q. (See also [ , , ) In
particular, we have that in neighborhood of S*952,

E(2', &) = e(a’, (€] - 1)
with e > ¢ > 0.
For k > 1, let xx = x%(¢) with xx+1 = 1 on supp xx and x1 = 1 on MSy(g) so that

supp xx C {1 — (C +0)h <[]y <1~ (¢ — A}
Let X} = Opn(xx). Finally, let xoo € Se with xoo =1 on [Jsupp xx and
k

SUpPP Xoo C {1 — (C'+28)h° < [€'|; <1 — (c—28)h°}.
Then (71) implies that
Ixk(B(q)) — xk(q)| = O(h™).

Suppose that v is the unique solution of
(I - (RT)M)u=g.
We will show that u is microlocalized as described in the lemma. Letting u; = u, we have
(I = (RT)M)X1u1 = g + 0(h®)g + [X1, (RT)"] Xoou1 =: g + g1.

Let 0 = max(2¢,2/3). Then

(X1, T] =T(T"'X,T - X;) =Th'* B
with B € U,_. In fact,
(72) T71X,T = Opu(x1(B()) + Ow, (h'72).
Hence, since X u is microlocalized h€ close to glancing,

MSy([X1, (RT)N | Xou1) C {x2 =1}
and g1 := [X1, (RT)N] Xoou1 has
lgrll < CR' =057 g 2



54 JEFFREY GALKOWSKI

Now, let us have

(I = (RT)M)ug = —g1,  uall < > Y|g1]| < CR'252||g]
So,

(I = (RT)™)(X1u+ug) = g+ 0(h™)g.

Continuing in this way, let

(I — (RT)M)up = —gi—1, gr-1 = [Xe—1, (RT)V] Xoctp_1.
Then,

gl < 3R lg]l 2.

Moreover, letting @ ~ >, Xpug, we have Xt = 4 + O(h*°)a and
(I = (RT)M)a = g + 0(h™)g

which implies @ — u = O(h™) and hence that (I — (RT)") has a microlocal inverse, A, with the
properties claimed in the lemma. ]

We now suppose that 1 solves (68) and use (69) to obtain estimates on ©. Let x; € S, with
Xk =1 on {|¢|; <1—2kch‘} and supp xx C {|¢'|g <1 — (2k — 1)ch}. Then

(I + GV)Xlw = —[Xl,GV]w 4+ X1Gv=:Y1 + 7

where MSy(¢1) C H N {|¢/]; > 1 — 3¢/2h<}. Then with ¢ = GY*V X9,

N—-1
(I = (RT)V)p = 0(h) — 3_ (RT)™RG A" (41 + )

m=0

and hence by Lemma 9.2, when s > A7 for 71 < min(1/2 —¢,1/6),

N1
¢ = 0(h™y = > ART)"RGL* (1 + )
m=0
and, using the microsupport statement from Lemma 9.2,
N-1

Xop = — 3 A(RT)™RGA*5 + 0y oo (h) (1) + v).
m=0
Hence,
=l 1/2
1Xapl 2 < 51 || S (RT)" RG> X1 Go|| + o(h) (0] + [|v])
m=0

< Coc teNPam=-/hpLR2=</2 ||| 4 o(h%) 4]
Then, since ¢ = G /QVXﬂﬁ, VXY = G_1/2 + O(h*)y and
X3¢ = = X3GV¢ 4 X3Gv = —X3GV X19 + X3Gv + 0(h™)y
= —X3GG5 0 + X3Gv + 0(h™)h = —X3GGL"* Xap + X3Guv + 0(h™).
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Hence,

| Xatel| < |XsGGRY* Xapl + | XsGol| + o(h>) 0|
< O MmN HDPam D=y || 4 0(h™) )

Next, we examine when s > ch?. If this is not the case, then

o I I(RT)IN (@) = 1] _

h=s0 h 0-

So, let
|6(RT) v (q)| = 9.

Taking logs and renormalizing we have

2102 Nl () 22 Niw(q) +log 5((RT))(0)| = ela).
This implies
_Imz__l_l( Imzl Ll S((RT
= v (@) | == Uv(a) + 557 log [ ((RT)w)(9)| + ela)

=~ (9)(rn(q) + e(q)).

where 7y as in (21). Thus, if s < ch?, for any ¢ > 0,
I
inf —Iy' (ry +ch™) < i < sup —Iy' (ry — ch™).
H h H
Now, writing

RT = |Resp (=55 0m((0).5@) )| [ex0 (%5 Opu(ita). 5100 ) 7]

and applying Lemma 3.1 shows that

rn(q) = 6((RT)N)(q)

2Tm z N=! N ' i
- <_ > l<ﬁ”<q>ﬁ"“<q>>) IT (15(R)(B (@)? + o(ui=( e +1-20)).

n=0

Summarizing the discussion, we have

Lemma 9.3. Let 0 < e < 1/2, 9 <min(1/2 —¢€,1/6), ¢ >0, M > 0 and suppose that x =1 on
{l¢'lg <1 —=Ch} and supp x C {|€'| <1 —ch}. Suppose further that v solves (68). Then there
exists hg > 0 small enough so that if 0 < h < hg and

I I
(73) _E g —lR,l (ry +ch) or — e sup —l;,l (ry — ch™),
h H h o

where Iy and vy are as in (20) and (21) respectively, then

(74) | 0P ()l 2 < C(AI= eV HDPARIL || o 4 O(R) [h]] )
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9.4. Glancing Region. Let x € Sc(|¢'|, = 1) with x = 1 on {||¢/|; — 1| < ¢h¢} and suppx C
{[1¢lg — 1| < Ch¢}. Then

(I +GV)Opu(x)¥ = [GV,Opn(x)]¥ + Opn(x)Gv.

Let ¢; be a partition of unity on S*0€2. We then use the microlocal model for G near glancing.

D+ WP T A AICT TV )i Opn(x)9 = Opi(X)Gv + [GV, Opy ()1 + 0(h™) (4).

1

First, observe that if a > —2/3, then our model shows that (I + GV) is an elliptic pseudodif-
ferential operator on supp x and hence

Lemma 9.4. Suppose that « > —2/3. Then under the assumptions of Lemma 9.3, there exists
N > 0 so that
—N
[¥llz < Ch™ o]l 2.

Throughout the rest of our analysis near glancing, it will be convenient to use Z from Lemma

7.1. Then
E(2’,¢) = (€2 - 1)(2Q(, &) "** + o((|¢']2 - 1)?).

Moreover, & (k7 (2/,¢)) = E(2/, &) + 0((|¢'|> — 1)>°) where & is the symplectomorphism (55)
reducing the billiard ball map for the Friedlander model to that for Q near (2/,¢&') € S*0Q. In
particular, notice that if x € SP0(¢; = 1) with supp x C {ah{ <1 — [¢'|2 < bh}, then

a(Ji Opu(x(2))J; 1) = x(&1)
MSyL(;0pn(x () J; 1) € {ahs < & < bh2}.

Now, the assumption that on |£'|; — 1 > Mh2/3,

ha(V) | o s < hite >
2,/1€15 -1 \JIgl; -1
(see (65)) together with Lemma 4.3 and (60) imply that I + GV is microlocally invertible on
€', > 1+ MRh?/3.

When a < —2/3, we can localize further. In particular, fix M; > 0. Then since V is elliptic
and a < —2/3, I + GV is an elliptic pseudodifferential operator when for some 6 > 0 and all
1 S ] S M17

1+

B2BE@, )+ Gl =6, RTPEEL ) + G 26

So, there exists C' > 0 such that, letting x2 € Sy/3(|¢'|; = 0) have supp x2 C [§1] < Ch® and

X2 =1 on {’gl‘SCthS a=-2/3

75
(75) & 723 4+ (| < 6, Che < & < W3¢y, + 6h¥3 a < —2/3,

we have
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Lemma 9.5. Let x2 be as in (75). Then

I(1 = Opn(x2(E))) Opu(x1) || < Ch™3H274(|| Opu () Gol| + | [GV, Opu(x)]¥ || + 0(h™) [
and hence, under the assumptions of Lemma 9.3,

11 = Opn(x2(2))) Opn(x1) || < Ch™VHH/2(02/3 4 plmemmeWFDPalma=/Ry 4| 4 o(h™)||y |
9.4.1. Flux formula. With xo as in (75), define

Ung := (1 = Opn(x2(E)) Opn(x1))1-

and g 1= — Pp,.

By an integration by parts, we have for a solution u to (67),

(76) (QRezImz

S ulfs — (B, v) ) = - Tm(ho, ).

On the other hand,

(77) u = h"'Sthd,u — Dlu = —(h"'SIB + D)) + Stv = —StVY + .Sty
Since we already have estimates for vy, we write

u = (=StVi)g) + (Sl(v — Vihng)) =: ug + tng.

Now, | , Theorem 1.1] together with an application of the Phragmén Lindel6f principle
implies
1860 = Vipng)[| = lltng|| < B> 0PI D=/2(|l0]| + B[ ¢hpg| 1)
ISEV Y]l = lugll < ChY/EHeePallma)=/R |y
Then,
lull? - HU9H2 = 2Re(ug, ung) + ”Ung||2
< Ofug||® + (1 4+ 2571) [[ung|?
< 05h5/3+2ae2D9(Imz),/hHQ/)QHQ + (1 + 25_1)”“1@9”2

|<B¢a¢> - <B¢ga¢g>’ = | B¢ga¢ng> + <B¢nga¢g> + <Bq/}nga¢ng>|
< O@]legl? + C(1+ 871 [9ngllFgm-
Now, rewrite (76) as

2RezIm z
h

2RezIm z

(g I = [ull*) +Tm((Big, ) = (B, v)).

l[ug||*—Im(Buy, 1bg) = Im(hv, )+
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Plugging our estimates in together gives
(78)
2RezIm z

T llug|* + T (=hNatiy, 1) + (—h Im Vg, ty)

< Ch(6TH o)) + 1 [[G11*) + C|Tm 2|k~ (§p72 202D/ |2 4 (1 4 6571 g 1)
+ C([1gI* + (1 + 05 [[$ng | Fim)
< C(81h + |Tm z|p2/320e2Paltm2)=/hg,) 1 53) |l ]|7
T O(hdy + 87" + (1+ 030)| T 2| B2/3+20¢20am ) /) 1y 12,
+ (ST 4 63 T 2l /5420 2Dalm ) /1)y |2
In particular, we have

Lemma 9.6. For all y1 € R, ¢ > 0, there exists C > 0 so that if

2RezIm z

(79) ”

H“g||2 + Im(=hNathg, ¥g) + (—hIm Vipg, ¥g)| > ch™ ||1/Jg||2-

then

gl < C(AT + A7 4 (1 + | Tm 2[R/ 32071 2Palm =)= /Ry | Ty z|p2/3 20 2Da(tn )= /1) |1y, ][
FOmE 4 ‘ImZ’2hzt/z),+2m~y164139(1mz)_/h)”,UH%2

9.4.2. Estimates on the glancing set. We now obtain estimates of the form (79) using the descrip-
tion of the single and double layer potentials from section 7. First, observe that

lugllZ2() = (BYg: g} 1200
where by Lemma 7.4
B:=V*SUSIV € 20, _y(|¢|y =1)
is elliptic and has symbol given by
_ o(rv)? -1
O'(B) = T (\I’Sg(a()h) oK ) .

Take €,¢; > 0 small enough and let

(80) oo JUE = s ht = h23¢| < e1h®3 or 2 < —Mh23} o< —2/3
B —1] < a> -
“ ¢l — 1| < CMn*? 2/3
where C' and M are as in (75).
Now, define
2RezImz
——— llugll* + Im(=ANathg, tg) + (~hIm Vb, 1hg) = (Athg, tbg)
where

_ 2RezIm z

A .

B — Im(hN; + hVh).
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Then, applying the Sharp Garding inequality (see Lemma 4.5) along with bounds on the norm of
pseudodifferential operators (see Lemma 4.6), we obtain

. . [2RezImz|o(hV)[? /3 .
(s1) lgf< 22l sy h 2521 + o)

~h(Im o (Np) + o(Im V) — ch/3+</2 = el 3+ ||y |12 < (Ady, 1)

2Rez1 hV
(82) <A¢g,¢g>gsgf< e; mz!a(w)l

—h(Im o(No) + o (Im V) + ch!/3+e/2 4 cpt/5+e) |y |2

2
s (h™2132)(1 4 o(h/?))

Notice that for all § > 0, there exists M; large enough and €; small enough so that
1-0<Ug(h™2P8) <146, (2,6 €Ly (a<—2/3).
So, we have

Lemma 9.7. For all § > 0 there exists hg > 0, N,M > 0, C, ¢ > 0 such that for 0 < h < hg if
+1Imz > 0 and one of the following holds

_ 1/34+a | p—1/3+¢/2
Im 2 < inf_h(Im o(N2) +o(ImV) +c(h H—&- h ))Q(1 L 5)
. £, o (W) Py (57755
—Imz _ h(Imo(Ns) +o(ImV) — c(h1/3t 4 p=1/3%¢/2)) @ (15 6)
o o (W) U5 (h=7E) '
then
(84) lgllze < Ch™N (vl 2 + l[vomg ) + O [l -
If a« < —2/3, we can replace the conditions (83) with
_ 1/34+a | p—1/3+¢/2
Im 2z < inf—h(Im o(N2) +o(ImV) + ¢(h +h )Q(l 4 5)
Lo lo(hV)|?
—Im=z h(Imo(N3) + oc(ImV) — C(h1/3+°‘ + h=1/3+/2)Q
> sup — 1F6).
g EOG o

9.5. Further localization away from the real axis when a < —2/3. We now focus our
attention on the region |Im z| > ch¥ for some N > 0 and o < —2/3. In this region, we are able
to decompose ¢ = ulpq into pieces, 10, concentrating at = = th2/3, that still have

(I + GV)’(/JJ = GUJ'

with the norm of v; controlled by the norm of v.

We again use the representation of G near glancing. With y and ; as above

(I + > W Jw ' A4 AiCT T Vi) Opn(x)Y = Opy(x)Gv + [GV, Oph (x)]% + O(h™)1).
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Fix €; > 0 small enough and let x; =1 on | + (5| < e1h?/3 with supp X C &1+ (| < 2¢1 h2/3
and let L; = Opy(x;(Z)). Then

DU+ W™ A AICT IV )i L Opn(x)¥ =

(2

L;j Opu(X)Gv + Lj[GV, Opu (X)]9 + [GV; Lj] Opu (x)¥ + O(h™)¢

Now, [GV, L;] is a pseudodifferential operator with support on the complement of £,. Therefore
by Lemma 9.5 there exists M > 0 so that

GV, Lj] Opn()¥ ]| < Aol + o(h™) [[|].
So,
(I +GV)L; Opn(x)¢ = w
with
lwll < h=M o]l + o(h*) |||
Now, G~1 = Ny + Ny and since |Im z| < Mhlogh™!,
IV + o)y <
Hence, using that |Im z| > ch?, we have
(I +GV)L; Opu(x)? = GG~ 'w = G(N1 + No)w =: G,
so that for some M > 0,
logll < R Jlo]| + o(h>) ]l
So, formulas (76) and (77) hold with ¢ replaced by L; Opn(x)y and v replaced by v;. Let
¥j = L;j Opn(x)¥,
L; = {2, &) + h*3¢j| < 2,03,
and u; be the solution to
(=h?A = 2%)u; =0 in Q
(h0y + B)uj =v;  on OS2
ujloa = ¥;
Next, fix § > 0 and take ¢; small enough, +Im z > 0. Then following the arguments above,

(85) ipf

( 2Imz |o(hV)|?
h

A5 ag  MImo(N) +o(imy)) — et/ - ch4/3+a) 2

< (A¢j, ;)
(86) (Agj,1hj) <

2Imz |o(hV)|? 1/3+¢/2 4/3+a 12
S}:l]p (h(lZF(s) QQ h(Ima(NQ) +0’(III1V)) + ch + ch H’(/JJ”

and

(87) (A, b5} | < C (6 vl + 6|5 1))-
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In particular, using that
A/ (h72/3'—)
1/3
we have

Lemma 9.8. Suppose that £Imz > ch™, o < —2/3. Fiz j > 0. Then there exist hg > 0,
N, C > 0 such that if one of the following holds

Tms B(h/3(2Q) Y3 Tm == + o(Im V) + eh!/++)Q
<inf — (1£90)
z; IU(hV)I2
—Imz S h(h 2/3(2Q)1/3I E 2; +o(ImV) —ch!/3)Q 15
T o (AP (1%9)

then
1451 < Ch=N ol + o(h) [[4].
With these estimates in hand, for any M > 0, let
(88) o= {20 <2 < (=Cup + 2007,
and let x5 = x5(£1) € Sy/3 have x2 =1 on
{—he <& < (—Carg1 + €)n?/3}
and supp x2 C £);. Then define
¥, = Opn(x2(Z)) Opn(x1)¥
and 1y, = ¥ —1by. Then (81) and (82) still hold with £ replaced by L}, and we have

Lemma 9.9. For all 6 > 0 there exists hg > 0, N,M > 0, C > 0 such that for 0 < h < hg if
+1Imz > 0 and one of the following holds

— 1/3+«
Imz < inf _ h(Imo(Nz) + o(Im VQ) +ch )Q(1 1 4)
iy (V)
_ 1/34a
Im z > Sup_h(lm o(Nz2) + o(Im 2) ch )Q(l = 5)
o oWV

then
[gllzz < ChN(Jvllr2 + Wy llam) + O ) [[P]] g

So, combining Lemmas 9.1, 9.3, 9.4, 9.5, 9.7, 9.8, and 9.9 gives

Theorem 5. Let ¢ be a solution to (68). Fiz§ > 0,0 <e<1/2, y1 <min(3—¢, £), My, My > 0.
Then there exists hg > 0 and N > 0 such that for 0 < h < hg if
Im z Im 2

- < 1nf —INH(ry + ek or — 5 sup —INH(ry — ek,
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+1Imz > 0 and one of the following holds

—Imz < inf _ h(Imo(Ng) + o(Im V) + c(hl/?:j h=1/3+¢/2))@Q (146)
. 2 o (V) Py (h—2Z)
—Imz sup _h(Imo(Ng) + o(Im V) — ¢(hM/3T 4 p=1/3%</2))Q (15 6)
T La o (RV)[PWse(h=2/3E)
then
(90) [9llz2 < Ch™N o] .
and P(z) is invertible. Moreover, if a < —2/3 then (89) can be replaced by
—Imz < inf _h(Imo(Nz) +o(Im V) + c(};l/%a + RLB+/2)Q 114
(1) La lo(hV)] ,
—Imz sup h(Im o (N3) + o(Im V) — ¢(hl/3+e 4 p=1/3+¢/2))Q (1596
T La o (RV)[?

Finally, if £Im z > ch™' and o < —2/3, then (90) holds and P(z) is invertible if

“Inz e hImo(No) +o(ImV) + chQ g
T Ly, o (hV)[?
—Imz h(Im o (Ny) + o(Im V) — ch/3+*)Q
> — 156
> oWV e
and one of the following holds for 1 < j < My
A (=
Ctme . PRI S + o(Im V) + ch1/3+a)Q(1 )
=g oAV
CIms B(h3(2Q) Y3 Tm == + o(Im V) — ehV/++)Q o
> _
T o (AP (1%9)

In particular, this implies Theorem 4.
10. APPLICATION TO TRANSPARENT OBSTACLES

In the case of transparent obstacles, we want to consider (3), repeated here for the reader’s
convenience,
(—c?A = X)u; =0 in Q
(—A = X)uy =0 in RY\
U] = Us on 0f?
Oyur — NI,us =0 on 0f)
ug is A-outgoing
Thus, writing A = cz/h, in the language of (67),

B = hNy(z/h) + XhNy(cz/h) — hNay(z/h)
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where Nj is the outgoing Dirichlet to Neumann map for the exterior problem (see section 1.4)
Thus, V' = 8Ny (cz/h) — Na2(z/h) has

~2/3(1/2.1 /21 0,1 0,1
Ve R 233 (€], = ) Uy 3 (1€ = 1) € AN R4 (1E ]y = o) U B (1€ = 1)
In order to fit the transparent obstacle problem into the framework of Theorem 5 with o = —1,
we only need to check that V is elliptic near |{'|; = 1 and that 1 + % has the required

properties. We start by calculating the symbols of B, B, and V. Let =¥ be the function given by
Lemma 7.1 when we replace 1 by E in the eikonal equation for py and 6g.

1/3 AL (h7232E)

g98(2,£) = (2Q(z,¢)) A_(h-2/32F)

Then,

N, /2 — |€/|£2] ‘§/|g <c— he

o(B) = o(MRNy(cz/h)) = { RhV P ge(x, &) ||€']g — | < he

RIEG = €]y =z e+ he

i 1= 1R =R/ —[¢)2) 1¢/]y < min(1, ) — b
ifI-IER+RJI€E - e+ <|g)y < 1—he
SR € Il -1 TR <y S e e
CRJEE=E - lEB -1 (€] 2 max(1,0) + k¢

o(hV) =
) M“MKH¢TT?* €]y — ¢l < he, €]y < 1 - he
h1/3Ng €12 — €]y — ¢| < A, |€]y > 1+ e
—iR W@ M“ 1€/, — 1] < he, |€], < ¢ — hE
N Wl — h1/3g, 1€y — 1| < he, |€']y > e+ hE
N2[c? — |¢')2] _
o(B) = ——— LW (h2PE)(1 4+ 0(1)),  ||¢]y — 1] < A€
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Now, we compute

L3Vl e < min(l,¢) — b

22 i 9= ;

1, V€5

sty iem et Sy ST

1 xVeElEl 2/3 — (¢ e
hao(V) 2 Z2\/W 14+ Mh*? < ||y <c—h

1+

o e -1 G
2 1€l =1 1y e max(ehe 1+ MBE) < ¢y
hl/3 5
3+ih —er eIl <A el < 1A
h1/3 . €
SHY s le— €l < b €]y = 1+ MR
g9

Thus, we can see that V is elliptic near |{'|; = 1 and the transparent obstacle problem fits into

the framework of Theorem 5.
In order to finish the proof of Theorem 1, we just need to check a few symbolic properties.

First, notice V' = RNy(cz/h) — Na(z/h). Thus,
o(Na(z/h) + V) = Ro(No(cz/h)) = —ih 1R /c? — |§’\Z
where we take /—1 = i. Putting this in (83) gives that (84) holds when ¢ > 1 and

—Imz . Q —Imz Q
< inf ——=—(14+6) or > sup ———=(1F9).
h 1€ (q)]g=1 N\/ C2 — 1( ) h |§/(q)|Ig):1 N\/C2 _ 1( )

or when ¢ < 1 and
—Imz

> 0.
h_d

Next, observe that

,\/17|£I|2+N\/C27|£l‘2 .
VIEReyaTger  (©lo < min(l o) =
W1 Bg— /1€
J(R) = \/1—|£’\g+iNh1/3gz |C - |5,‘9| S he’ |£l‘g S 1- h’6 .
— /1€ 2+ /€22
\/1—5'|39+m\/¢|§'|§g—c2 cHht sy =1-he
The following geometric lemma completes the proof of Theorem 1.
Lemma 10.1. Fizx N > 0 and let (zo,&) € S*0Q and suppose that {(xy, &)} C B*0 has

(Tny&n) = (x0,&0). Then

Q(x0,60)
IN'ry — {gm ¢!

c<1'

Proof. The conclusion for ¢ < 1 is clear since for |¢'|; > ¢, log|o(R)|* = 0. So, we need only

consider the case ¢ > 1. First, write
44/1— €]
+o(1—[¢']7).

RQ,,:lf
e e =
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So,
4,/1— ¢
(92) log |o(R)|*(z, &) = — o +o(1 - [¢2).

JI-IEB+ 8 /2= el
Now, by Lemma 5.1

1= €@ = /1- €@+ 01— [€72),  1(a,8(a)) = ——/T— [ + o1 — |¢'7)
~(0)

where k(s) is the curvature of the unique length minimizing geodesic, v in 9§ connecting m,(q)
and 7, (B(q)) at the point y(s). Thus, we have that for ¢ sufficiently close to glancing,

loglo(R)(B(a)I* _  k(0) —
Aab@) wam»

Moreover, since \/1 —1€'(8(q)) |2 = ¢1 —[€¢/12 + o(1 — |¢'|2) and #(s) = K(0) + O(s) = &(0) +

O(y/1 — [¢'|2), we have

w0 o0 e,

REEVEE
All that remains to prove is that k(0) = Q(z,&’) + o(1) as |¢'|; — 1. This follows from the fact
that the curvature of the geodesic on 9 passing through z in the direction &’ is Q(x, &’) together
with the fact that .
£
Y(0) ~ o = o(1).
1€l
To see this we simply use the fact that a billiards trajectory approaches a geodesic as [¢/|; — 1
(see for example [ D). O

Together, this discussion proves Theorem 1.

11. APPLICATION TO § POTENTIALS

For the application to § potentials, we consider

(—h2A 4+ B2V ® d50 — 2°)u = 0, u is z/h outgoing.

It is shown in | | that this is equivalent to u = u; @ ug where u; = ulg and ug = ule\ﬁ
solving

(—h?A — 22)u =0 in R%\ 99
(93) up —us =0 on 0N

ho,ur — hOyuz + hVuy =0 on 00
ug is z/h-outgoing

In this case, V =V (indeed this is the motivation for our notation). For our purposes, we will
assume that V € h®U! is self adjoint and hence, ImV = 0. Moreover, we assume that o > —1
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ho(V)

2V/1¢'12 -1
|€'| > 1+ 6. This clearly implies all of the assumptions (65). Theorem 5 then yields Theorem 2
as a Corollary.

and o(V) > ch® on [¢'|; = 1 and for any ¢ > 0, there exists ¢ > 0 so that > —14con

12. APPLICATION TO BOUNDARY STABILIZATION

The application to the boundary stabilization problem (11) is similar to that for the transmis-
sion problem. In particular, note that

_dohV) L, e
2/1-1€2 2 2/1-1¢)2

and the fact that a > ag > 0 implies the ellipticity of V. Finally, an argument identical to that
in Lemma 10.1 together with Theorem 5 gives Theorem 3.

1+

13. OPTIMALITY FOR THE TRANSPARENT OBSTACLE PROBLEM ON THE CIRCLE

For the optimality of Theorem 2, see | ]. We now show that Theorem 1 is optimal in the
case of the unit disk in R2. In this case, (3) reads

(—c2A — X2)u; =0 in B(0,1)
(~A—=X)uy =0 in R4\ B(0,1)
Ul = U on |z| =1
Oru; —NOpug =0 on |z|=1

uo is A—outgoing
We now expand u; in Fourier series, writing

ui(r,0) = Zui,n(r)eme.

Then,

2,2

c'n 2

202 C 2 9 1 n 9
(=c0; — 787’ + — A )urp(r) =0 (=0 — ;ar + P A ug p(r) =0

r
Multiplying by 2 and rescaling by 1 = A¢™'r for u1,, and xzg = Ar for ug, we see that u;,(x;)
solves Bessel’s equation. Together with the outgoing condition for us and the fact that w; is in
L?, this implies that
ULy = Kan()\c_lr), Uy = C’anll)()\r).

Then, the boundary conditions imply that either K,, = C,, =0 or C}, # 0 and

(1)
K, Hy”(\) —1y 7/ -1 (n’
Ao W e 1y _CuRAH —0.
SR A= ¢ A, (A7) = C »)(A)=0

Rewriting this (and assuming A\ # 0) we have

(94) FOO =L (N HWD ) — RED (AT (c7IA) = 0
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Throughout this section we will refer to microlocalization of the Fourier modes e*?. Notice
that for a Fourier mode u, = (u1,(r) ® us,)e™’, the component of the frequency tangent to
0B(0,1) is given by n and the rest of the osciallitions are normal to the boundary. Naively taking
the Fourier transform, we see that if (—A —\?)u = 0, then the Fourier support of u is contained in
|€]2 = A2. Therefore, since | Im A| < | Re A| the total frequency of the mode is given by | Re A| and
the fraction of frequency tangent to the boundary is given by n/Re A. This can be reinterpreted
in terms of the semiclassical wavefront set (with Re A = h™1) of the mode as saying that

WF(un|aq) C {[€'lg = hn}.

For this reason, we refer to modes with n < |Re | as normal to the boundary, those with
elRe )| <n < (¢7! — €)| Re \| transverse, and (¢~! — €)| Re \| < n glancing.

13.1. Asymptotics of Bessel and Hankel functions. We collect here some properties of the
Airy and Bessel functions that are used in the analysis for the unit disk. These formulae can be
found in, for example | , Chapter 9,10].

Recall that the Bessel of order n functions are solutions to

2y + 2y + (22 —nPy =0.

We consider the two independent solutions Hr(Ll)(z) and Jy,(2).

We now record some asymptotic properties of Bessel functions. Consider n fixed and z — oo

1 1/2 ) N ‘ .
In(2) = (27‘_2) (ez(z—iﬁ—iw) + e—z(z—aw—iw) + O(|Z’—le|1mz\)>

1/2
H(l)(z) _ (2> / (ei(z—%ﬂ'—%w) + O(‘Z|—16|Imz|))
Tz

1/2 . n . n
(2) =i (21> (el(z—aﬂ—iﬂ) _ emile—gm—gm) 4 O(|Z|—16|Imz|))
w4

2,
H“W@=i(2> (=557 4 (|2 tel4l))
Yiv4

(95) J (e ) HV (2) = ive (ei(((l“)z_””_%’r) — i) 4 O(|z|_le(071+1)“mz|)>

Tz

(96) Jn(C_lz)H(l)/(Z) — Z,].‘_\/ZE (ei((c_l-l-l)z—'mr—%w) + e—i(c_l—l)z + O(|Z|—le(c_1+1)|1mz|))

Next, we record asymptotics that are uniform in n and z as n — oco. Let ( = ((z) be the
unique smooth solution on 0 < z < oo to

dc\? 1-22
o7) (%) =
with
mme=ee o= o=
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FiGUureE 13.1. We show numerically computed resonances for the transparent ob-
stacle problem with various ¢ and X when = B(0,1) C R In this case, we
expand the solutions to (3) as u;(r,0) = 3, uin(r)e™ and solve for some of the
resonances with Re A ~ 800. In the lower graphs of each of the four subfigures, the
blue circles show Im A vs. ReA. The red lines show the upper and lower bounds
for Im A when R corresponds to TE waves and the upper bounds on Im A when N
corresponds to TM waves from Theorem 1. Notice that by orthogonality of e’
and "™ for m # n, the pair (u1,e™?, uy ) satisfies (3). In the top graph of
each subfigure, the blue circles show Im A vs. n/Re A for such pairs. That is, we
plot Im A vs. the scaled tangent frequency of the resonance state. The red curve
shows a plot of 65711(05 ), the decay rate predicted for a billiards trajectory traveling
with scaled tangent frequency c£. The large spikes in the top graphs occur at the
Brewster angle when R corresponds to TM waves.
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Then
(98) g(_g)?’/? =22 — 1 — arcsec(z) I<z<o
A2
2(4)3/2:1% (H”) V1= 2 0<z<1
z
1— 22 3
Let

T o

for s € R be the Airy function solving Ai”(z) — zAi(z) = 0. Then, A_(z) = Ai(e*™/32) is another
solution of the Airy equation.

Ais) = / T e gy

For z fixed as n — oo

14 [ Ai(n2/3
Jn(nz):( i ) (A ;1/3 <) +O(Ei(5/3,7/3))>

1—22
. 1/4 n2/3
HO(nz) = 26—1/3 (1 iQ) (‘4‘7(11 o O 1 o(E_(5/3, 7/3)))
_ 2 1/4 i (n2/3
J'(nz) = % (1 = ) <A 7(12/3 94 O(Ei(8/3,4/3))>

J2mifs (1 2\ YA [t (23
_ 4 <1 4¢ ) (A_fﬁ/:a S O(E_(8/3’4/3))>

(100)

J (cilnz)Hfll) (nz) =

e2mi/3 — 2,2\ (¢(2 1/4 S 23 (s
: 2 Ql(c-lz)(l fi?i) (A( nf/:(s ))+O(Ei(8/3,4/3)(012))>

n2/3
<A7(11/3 9) JrO(E_(E,/:’>,7/3)(Z))>

/ e2mi/3 —22)¢(c 12 1/4 im2/3¢(c 1z

/ n2/3 P
<A(n2/3C()) + o(E_(8/3,4/3)(Z))>

where
ot

E_(s,t) = [AL(n*PQ)|n™" + |[A_(n*/()|
Ei(s,t) = | A (n**Q)|n~* + | Ai(n*/Q)|n~"
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We now record some facts about the Airy functions A7 and A_. For s € R,
Ai(s) = e T/PA_(s) + TP A_(s)
and hence
Ai(s)
2

(101) Im(e°™/6A_(s)) = —

Next, we record asymptotics for Airy functions as z — oo in the sector |Argz| < 7/3 — 4.
Many of these asymptotic formulae hold in larger regions, but we restrict our attention to this
sector. Let n =2/ 323/2 where we take principal branch of the square root. Then

e /6 n ) ei/12gin
_e e —~3/2 e
A_(z) 2\/7721/4(“0(\2\ ) A _(-2) N
—mi/6,1/4 .1 e—5mi/12 ,1/4 5in
A (2) = S (1 0127 A (—z) ="
(102) NG 2/
2—1/46—77 3 2_1/4 . . . .
. <z v —-3/2 N =2 in—im/4 —in+in/4 —3/2 | Imn)|
Ai(z) = =5 == (4 0(J= 7)) Ai(=2) = 5= (e te + 0|2 73/2¢lml))
1/4 ,—n 1/4
gy 2 ¢ —3/2 gy * in—in/4 _ —intin/4 —3/2_|Imn|
A (2) N (1+ 0(|z]73%))  Ai'(—=2) NG (e e + 0(]2| /2l ml))

13.2. Resonances normal to the boundary (fixed n). First, we fix n > 0 and examine
solutions with Re A — oo. We assume that X # ¢~!. Consider (94) and apply the asymptotics
(95) and (96) with Im A <0

(cfl . N)ei((c*hrl))\fmrf%ﬂ) o (Cil + N)efi(cflfl))\ + O(|Z’fle(c*1+1)\lmz|) —0.

So, ignoring the error term for now, we have

1 —Re i(2c_1)\07n7r7%7r) - 1.
1+ Ne
So,
1 1-XN 2 - 1-N 2 4k
cillm)\ozilog 1+Nz . ¢ 'Re)g = sgn( 4C)+ nt T
Taking \g as above, we have f(\g) = O(|Re \o|™1), |f/(Mo)| = ¢, and |f"(\)| < C. for [\ —Xo| < §
for some 0 > 0. We now recall Newton’s method (see for example | , Lemma 4.1]

Lemma 13.1. Suppose that zop € C. Let Q := {z € C: |z — 29| < €} and suppose f : Q — C is
analytic. Suppose that

1f(z0) <@, 0:.f(z0)| >0, sgg\%f(z)lgd

Then if
(103) a+de <eb<c<1

there is a unique solution z to f(z) =0 in Q.
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Using this, we have that there exists a unique solution A1 to f(A1) = 0 with |\ — Xo| =
O(] Re Mo 7).

13.3. Resonances with non-zero tangent frequency (¢eReX <n < (min(1,¢) —¢)Re ). In
this case, we write

Write z = % Then taking n < (¢ — €) Re A and ignoring error terms, f(Ag) = 0 implies

_ 1/2 - 1/2
L N B Tl I (i R
1— 22 1— 22
0 0

[o—2.2 _ 1 _w./»2 _ _
(104) i C °2) 1 N 20 1 _ 6741771((74(0_120))3/2
Vet 14y /22 -1
Fix max(c,1) +§ < r < oo with § < ¢? so that

Ve2r2 —1—R/r2 —1#£0.

Let

4k — P RNy |
g(svn7 k) = m — arcseC(c_ls) + Sgn(\/c 84n \/3 )7r

Then, fix g € Z, p € Z and let n = ¢gm and k = pm so that

252 1 -Ry/s2 -1
9(s,qm, pm) = Ve 252 —1— arcsec(cls) + P sgn(ve?s Vs )7'['-
q

dmgq

Then, for any € > 0 small enough, there exists p, ¢ so that

lg(r, gm, pm)| < € + O(m™")

—2,2 _ -3
RSN S r c
T

859(’/“, QEmapem) = _\/ﬁ < 5

Therefore, taking e small enough and m large enugh (depending on r — ¢), there is a solution r,
to g(rm,gem, pem) = 0 with |r —rp,| < Ce.

With this r,,, let

asg(r, getmn, pem) =

Ve 22 —1—-Xyr2 —1
Ve — 1+ Ryr2 —1

Ay = mqry, + 1

T'm
lo
2y/c?rz2, — 1 &

and zg = \g/mgq. Let

Ve 222 -1 -RV22 -1
i )
Ve 222 —14+8V22 -1

H(z,n) = exp <—?(—C(c_lz))3/2> +
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Then, accounting for the errors omitted to obtain (104) there is a function a(z,n) = 0(n=2/3),
analytic in z so that nz is a resonance if and only if

H(z,n) = a(z,n) [1 + exp <_4§1(_<(61Z))3/2ﬂ
Now, using (98)
f4i;nq(—§(c—lzo))3/2 _ *Qimq(m — aresec(c2))

2,2 _q
= —2imq(y/c=2r2, — 1 — arcsec(c 'ry,) + iYE T T g + 0((Im 2)?))
r

m
—2,2 2
_ i(2mpi — sgn(y/c—2r2, - Ny/12,
/22 — r2 -
+ log = > o((mq)™")
\/ri%— NF

So,

exp (-5 (¢ )2 =

- sgn(\/c_Qr?n - N\/ 272 —

So, H(zo, mq) = 0((mq)~'). Moreover, |2g — 2| < 1,

\/c 22 1 —-Nr2 -1
\/c—2r2 1+Ry/r2, —1

(1+ o((mg)™")).

|0,H (z,mq)| > emg.

Hence, by the implicit function theorem, there exists a resonance z; with

+0 SUP|z—z|<1 'a(z,mq) {1 + exp ( 4”"‘1( C(c‘lz))3/2)”
21 = Z -
1 0 1nf‘z720‘§1 \azH(z,mqﬂ

= 20+ O((mq) /%)

Thus, there is a resonance, \; with

= © LM L (g
e o8| e | Ol

;e =7, then on B(0,1), I((z,&), B(x,&)) = 2v1 —r~2c2. So,

—2/3).

Al =mqry, + 1

Now, notice that if |£’

-1 (2.€') 1 ) 1—r—2c2 —
ry(x, &) = o
NN 41 — r—2¢2 & V1—1r"2¢2 + R/c2 — c2r—
o1 2,2 2

r
= log
We 22— 1 \/WJF N\/Tf
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Now, by construction for any r with max(1,¢) < r < oo so that vVc=2r2 —1 — Ry/r2 — 1 #£ 0 and

0 small enough, we have |r — r,,| < § so, taking m large enough,
e Im A — Iyt (2, &) < C6.

This shows that Theorem 1 is sharp. Moreover, when ¢ < 1, | | shows that there are
sequences of resonances converging to the real axis that have n ~ ¢! Re \.
Remark 17. Notice also that
mq

cl1Re)
Thus, since (94) with parameter n corresponds to a resonant state with u|pg = Ae™ the semi-
classical tangent frequency of the resonance state is ¢cn/ Re A when we take Rez ~ c¢. Plugging
this into cl;,lr ~N(x, &) gives the decay rate of the resonance state. See also Figures 1.3 and 13.1
for numerically computed resonances in this case.

cr;f = |¢'],.

APPENDIX A. LIST OF NOTATION

For the convenience of the reader, we include a list of some of the notation used in this paper.

- Q: strictly convex domain with smooth - : the compressed shymbol — Section 3

boundary — Section 1.1 - 14(q): the order of A at ¢ — Section 3

l(q1,q2) : chord length — (20)

In(q): average chord length — (20)

|¢'|y metric induced on T*02 — Section 1.1
B : B*0) — B*0Q: the billiard ball map —
Section 5

Wi (M) : semiclassical pseudifferential opera-
tor classes — Section 2

S§(T*M): symbol classes — (33)

o: U (M) — Sy (T*M): the symbol map —

(34)
Ai, A;, &, ¢ Airy related functions — Sec-
tion 1.2, (9)

Q(x',&") € C>°(T*0N): the symbol of the sec-
ond fundamental form — Section 1.2
Nsy(z/h): the outgoing Dirichlet to Neumann
Map — Section 1.4

G(z/h): the single layer operator — Section
1.4

Gp, G : decomposition of G — Lemma 7.3
\Ilf;“‘l’k2 (M;Y), Sfl’kz(M; ¥)): second microlo-
cal operators and symbols — Section 4

R: the reflection operator — (18)

T : the transition operator — (19)

Opy : quantization operator — Section 2

ry : the average reflectivity — (21)

H}" : semiclassical Sobolev spaces — (24)

Sl, DI, respectively the single and double
layer operators — (31)

O(+) and o(-) —(32)

WF}, the semiclassical wavefront set — Defini-
tion 2.3

Wsr, Ypuse, Ypp symbols of layer potentials
- (2)
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