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Abstract. In this paper, we investigate single and double layer potentials mapping boundary data to
interior functions of a domain at high frequency λ2 → ∞. For single layer potentials, we find that the
L2(∂Ω) → L2(Ω) norms decay in λ. The rate of decay depends on the curvature of ∂Ω: The norm is
λ−3/4 in general domains and λ−5/6 if the boundary ∂Ω is curved. The double layer potential, however,
displays uniform L2(∂Ω) → L2(Ω) bounds independent of curvature. By various examples, we show that
all our estimates on layer potentials are sharp.

The appendix by Galkowski gives bounds L2(∂Ω) → L2(∂Ω) for the single and double layer operators
at high frequency that are sharp modulo log λ. In this case, both the single and double layer operator
bounds depend upon the curvature of the boundary.

1. Introduction

Denote ∆ =
∑n
i=1 ∂

2
i as the Laplacian operator in Rn. Given a piecewise smooth and bounded

domain Ω ⊂ Rn, Green’s formula yields that the solution to the Helmholtz equation in Ω
−∆u = λ2u

has the form

(1.1) u(x) =
∫
∂Ω
Kλ(x− y)∂νyu(y)dσy −

∫
∂Ω
∂νyKλ(x− y)u(y)dσy,

where ∂νy is the outward normal derivative at y ∈ ∂Ω, dσ is the surface measure on ∂Ω, and Kλ is a
fundamental solution to (−∆− λ2), that is
(1.2) (−∆− λ2)Kλ(x) = δ(x).
In fact, we can write Kλ explicitly as

K+
λ (x) = i

4

(
λ

2π|x|

)n−2
2
H

(1)
n−2

2
(λ|x|),

where H(1)
n−2

2
is the Hankel function of the first kind and order n−2

2 . It is the kernel of the outgoing

resolvent R+
λ =

[
−∆− (λ+ i0)2]−1.

Let us therefore define the semiclassical single layer potential S+
λ as

S+
λ (f) = R+

λ (fdσ) = K+
λ ∗ (fdσ),

and the semiclassical double layer potential D+
λ as

D+
λ (f) = ∂νK

+
λ ∗ (fdσ).

Now (1.1) can be written
(1.3) u = S+

λ (∂νu)−D+
λ (u|∂Ω),

allowing us to construct interior eigenfunction from boundary data. In particular,{
u = S+

λ (∂νu), for Dirichlet eigenfunction u|∂Ω = 0,
u = −D+

λ (u|∂Ω), for Neumann eigenfunction ∂νu = 0.
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Main results. In this paper we obtain sharp L2(∂Ω)→ L2(Ω) bounds on S+
λ and D+

λ .

Theorem 1.1 (Boundedness and sharpness of semiclassical single layer potentials).
(i). In a general domain Ω,

‖S+
λ (u)‖L2(Ω) ≤ cλ−

3
4 ‖u‖L2(∂Ω),

where c depends only on Ω. Furthermore, the exponent −3/4 is sharp if the boundary ∂Ω contains
a flat piece.

(ii). If ∂Ω is curved, that is, the second fundamental form of ∂Ω is (positive or negative) definite, then

‖S+
λ (u)‖L2(Ω) ≤ cλ−

5
6 ‖u‖L2(∂Ω),

where c depends only on Ω. Furthermore, the exponent −5/6 is sharp if Ω is an annulus.

In contrast to the case of single layer potentials, we obtain a uniform bound for double layer potentials
in all domains. The sharp examples for the single layer potential all rely on concentration in the
tangential direction (see Section 4). However the symbol of D+

λ is zero in such tangential directions.

Theorem 1.2 (Boundedness and sharpness of semiclassical double layer potentials).
‖D+

λ (u)‖L2(Ω) ≤ c‖u‖L2(∂Ω),

where c depends only on Ω. Furthermore, the estimate is sharp if Ω is a disc.

The representation of eigenfunctions in (1.3) has applications in a variety of both theoretical and
numerical studies. Hassell and Zelditch [18] use it to prove the quantum ergodicity of boundary values
of eigenfunctions. In particular, they express boundary traces of Dirichlet, Neumann, and Robin
eigenfunctions as eigenfunctions of integral operators produced by semiclassical layer potentials.

In a similar vein Toth and Zelditch [32, 33] recently applied these potentials to prove quantum ergodic
restriction (QER) theorems on interior hypersurfaces.

If the boundary ∂Ω is analytic, then there exist analytic continuations of S+
λ and D+

λ in the Grauert
tube (a complex neighborhood of the real domain). Such complexification enables the study of zeros of
eigenfunctions in the complex region (instead of in the real region), where it has a simpler characteri-
zation. For detailed discussion on the nodal intersection estimates, see Toth and Zelditch [31], El-Hajj
and Toth [9].

In star shaped domains Barnett and Hassell [2] develop a numerical technique for constructing Dirich-
let eigenfunctions by solving a related eigenfunction problem on the boundary. They then use (1.3) to
reconstruct interior eigenfunctions. Their technique allows them to control error on the boundary and
so mapping norms on S+

λ control error in the interior.
In [2, Remark 3.2], the authors proposed the question of finding a bound on the λ-dependence of the

single layer potential S+
λ . In particular they ask is

(1.4) ‖S+
λ ‖L2(∂Ω)→L2(Ω) . λ

−1?
Such a bound would imply that boundary error controls interior error with no loss, which would be
optimal for their numerical technique. In fact, some results were achieved previously. Feng and Sheen
[11] showed that the norm is uniformly bounded independent of λ. Spence [26] improved this to λ−1/2.

Theorem 1.1 answers Barnett and Hassell’s question in the negative for general (and even curved)
domains. However, the estimate (1.4) might hold for strictly convex domains; see Conjecture 4.3.

Weaker estimates than those of Theorem 1.2 were obtained by Feng and Sheen [11] and Spence
[26]. Precisely, Feng and Sheen [11] proved ‖Dλ‖L2(∂Ω)→L2(Ω) . λ; while Spence [26] improved to
‖Dλ‖L2(∂Ω)→L2(Ω) . λ1/2. See also the survey article [6] for related results and their applications in
numerical computations.

One may compare the high frequency (λ→∞) results of Theorems 1.1 and 1.2 with the case λ = 0.
There (1.1) reduces to the construction of a harmonic function u in Ω by its boundary data. K+

0 = N
is the fundamental solution of the Laplacian: −∆N(x) = δ(x). The two convolution-type operators
S(f) and D(f) mapping L2(∂Ω) to L2(Ω) with kernels N and ∂νN are the classical single and double
layer potentials at zero frequency. The mapping properties of these layer potentials from boundary
data to interior functions and related boundary value problems have been studied extensively over the
past century. See [10, 23, 35] and [7, 12] for a detailed discussion of this classical problem.

In the case of classical single and double layer potentials, it is the regularity of the boundary that
determines mapping properties, with the case of smooth boundaries being rather trivial. By contrast, in



LAYER POTENTIALS AND OPERATORS 3

the high frequency limit λ→∞, the interest is not the boundedness of S+
λ and D+

λ for a particular λ, but
rather the rate of decay of the mapping norms as λ→∞. In this limit, the problem is interesting even
for smooth boundaries, as Theorem 1.1 shows, the rate of decay depends on the geometric properties
of the boundaries.

The single and double layer operators S+
λ and D+

λ are restrictions of layer potentials S+
λ and D+

λ to
the boundary, that is, D+

λ : f → D+
λ (f)|∂Ω and S+

λ : f → S+
λ (f)|∂Ω. Galkowski’s appendix to this paper

provides estimates for both D+
λ and S+

λ . These operators have been studied by other mathematicians
and some results were known prior to the above estimates. Please refer to the appendix for a brief
discussion.

Theorem A.1 (Boundedness and sharpness of semiclassical layer operators).

‖S+
λ ‖L2(∂Ω)→L2(∂Ω) ≤

{
Cλ−1/2 log λ in general domains;
Cλ−2/3 log λ if ∂Ω is curved,

and

‖D+
λ ‖L2(∂Ω)→L2(∂Ω) ≤

{
Cλ1/4 log λ in general domains;
Cλ1/6 log λ if ∂Ω is curved.

Moreover, these estimates are sharp modulo the log λ.

Connection with boundary estimates of eigenfunctions. Because of (1.3), there is a close rela-
tion between semiclassical layer potentials and boundary estimates of eigenfunctions.

• Dirichlet eigenfunction: u satisfies u = S+
λ (∂νu). Bardos, Lebeau, and Rauch [1] and Hassell

and Tao [16, 17] proved that
‖u‖L2(Ω) ≈ λ−1‖∂νu‖L2(∂Ω),

as u = S+
λ (∂νu) this implies that

‖S+
λ ‖L2(∂Ω)→L2(Ω) ≥ cλ−1.

Therefore the sharp examples for Theorem 1.1 that we produce in Section 4 are far from being
normal derivatives of a Dirichlet eigenfunctions.
• Neumann eigenfunction: u satisfies u = D+

λ (u|∂Ω). Hence, as a corollary of Theorem 1.2, we
have

Corollary 1.3 (Boundary estimate of Neumann eigenfunctions). Let u be a Neumann eigen-
function of ∆ in Ω with eigenvalue λ2. Then

‖u‖L2(Ω) ≤ c‖u‖L2(∂Ω),

where C is independent of λ.

Tataru [29] proved that

(1.5) ‖u‖L2(∂Ω) . λ
1
3 ‖u‖L2(Ω).

Putting the above results together gives both lower and upper bounds of the boundary estimates
of Neumann eigenfunctions:

‖u‖L2(Ω) . ‖u‖L2(∂Ω) . λ
1
3 ‖u‖L2(Ω).

Furthermore, this suggests that the sharp examples for Tataru’s estimate are far from saturating
the double layer potential estimates. We will discuss the sharpness of above inequalities in
Section 4, and construct examples for which saturation is achieved.

Connection with interior hypersurface restriction estimates of eigenfunctions. One can sim-
ilarly define the incoming resolvent

R−λ =
[
−∆− (λ− i0)2

]−1

and K−λ as its kernel. Then the above theorem is also valid with the same norm for S−λ . We will drop
the ± sign in the L2 estimates without causing any confusion. If we write dEλ as the spectral measure
operator δ(−∆− λ2), then Stone’s formula (See e.g. [20, Chapter XIV].)

(1.6) dEλ = R+
λ −R

−
λ

2πi
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immediately implies the same norm bounds from L2(∂Ω) to L2(Ω). Moreover, the sharp examples
of these bounds on spectral measure operators automatically provides the sharpness for single layer
potentials.

Proposition 1.4 (Boundedness and sharpness of spectral measure operators).
(i). In a general domain Ω,

‖dEλ(udσ)‖L2(Ω) ≤ cλ−
3
4 ‖u‖L2(∂Ω),

and the norm is sharp if the boundary ∂Ω contains a flat piece.
(ii). If ∂Ω is curved, then

‖dEλ(udσ)‖L2(Ω) ≤ cλ−
5
6 ‖u‖L2(∂Ω).

and the norms are sharp if Ω is an annulus.

Notice that the kernel of dEλ
K̃λ = K+

λ −K
−
λ

2πi
satisfies (−∆− λ2)K̃λ = 0. To estimate the norm of

dEλ(· dσ) : L2(∂Ω)→ L2(Ω),
we consider the adjoint operator (dEλ)? with the same norm. In particular, the estimates of dEλ in
Proposition 1.4 is equivalent to

(1.7) ‖(dEλ)?(u)‖L2(∂Ω) ≤
{
cλ−

3
4 ‖u‖L2(Ω) in general domains;

cλ−
5
6 ‖u‖L2(Ω) if ∂Ω is curved.

We provide a proof of (1.7) here. It also motivates the strategy of the main proof of Theorem 1.1.
Write v = (dEλ)?(u), then v is an eigenfunction in Rn. In particular, let Ω1 be a compact set such that
Ω b Ω1 b Rn. Then v is an eigenfunction in Ω1, and ∂Ω can be regarded as an interior hypersurface
in Ω1. It is a classical result in scattering theory that (dEλ)? : L2(Ω) → L2(Ω1) is bounded. In fact,
from the semiclassical Fourier integral operator theory, (See e.g. [25].) we have
(1.8) ‖v‖L2(Ω1) ≤ cλ−1‖u‖L2(Ω).

Since ∂Ω ⊂ Ω1, we can use the interior hypersurface restriction estimate for v from [4, 22]:

‖v‖L2(∂Ω) ≤ cλ
1
4 ‖v‖L2(Ω) ≤ cλ−

3
4 ‖u‖L2(Ω)

on general ∂Ω, and
‖v‖L2(∂Ω) ≤ cλ

1
6 ‖v‖L2(Ω) ≤ cλ−

5
6 ‖u‖L2(Ω)

if ∂Ω is curved.

Connection with interior hypersurface estimates of quasimodes and strategy of the proofs.
Consider the adjoint operator

(S+
λ )? : L2(Ω)→ L2(∂Ω).

Unlike (dEλ)?(u), (S+
λ )?(u) is not an eigenfunction on the whole space Rn. The failure of (S+

λ )?(u) to
be an eigenfunction arises from a singularity in its kernel at the diagonal. Our strategy is therefore
to divide the kernel into near-diagonal and off-diagonal parts. The near-diagonal part admits better
bound than required, and the off-diagonal part while not an exact eigenfunction is a good approximate
eigenfunction (or quasimode) which can be treated within the semiclassical framework.

To use the the semiclassical framework we set h = λ−1, then for
p(x, hD) = (−h2∆− 1)

Laplacian eigenfunctions satisfy p(x, hD)u = 0. Given any function v we may measure the quasimode
error

E[v] = (−h2∆− 1)v
See [36, Section 7.4.1] for more details on quasimodes. Restrictions of quasimodes to hypersurfaces are
studied in [27] and [15]. Therefore we are able to reduce the problem of operator norm estimates to
that of estimating the quasimode error of the off-diagonal contribution.

A similar strategy applies to double layer potential (D+
λ )?, as the off-diagonal part on the bound-

ary resembles the normal derivative of an OL2(h) quasimode, and therefore we can use the result on
Neumann data restriction estimates in [28].
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Semiclassical interpretation. Here we provide a semiclassical description of the problem and our
approach. While this description is not strictly necessary to prove Theorems 1.1 and 1.2 it allows us
to develop a useful heuristic that gives us insight into the role of geometry in these estimates. In the
semiclassical setting (with h = λ−1) Laplacian eigenfunctions are solutions to

p(x, hD)u = (−h2∆− 1)u = 0,
where p(x, hD) has symbol p(x, ξ) = |ξ|2 − 1. Similarly (1.2) can be written as

p(x, hD)K+
h−1(x) = h2δ(x).

Hörmander’s theory on propagation of singularities asserts that
(1.9) WFh(K) \WFh(g) ⊂ {(x, ξ) ∈ T ∗Rn : p(x, ξ) = 0} = {(x, ξ) ∈ T ∗R : |ξ| = 1} = S∗Rn,
which means that WFh(K) \ WFh(g) is in the bicharacteristic variety of p, and furthermore it is
invariant under the Hamiltonian flow Φt of p. Here, WFh is the semiclassical wavefront set, T ∗Rn and
S∗Rn are the cotangent and cosphere bundles of Rn, and Φt of p is the geodesic flow in Rn. See [21, 36]
for a complete discussion of the theory.

This framework provides an heuristic to understand the improvement in Theorem 1.1 for curved
domains.

The dominating singularities of S+
λ propagate through the bicharacteristic flowout, i.e., the geodesic

flow. Since f is supported on ∂Ω, the dominating singularities propagate along the lines tangent to the
boundary. Therefore it is natural to expect worse estimates in the flat case where tangent lines coincide
with the boundary.

Next we consider the semiclassical description of the outgoing and incoming resolvents R±λ and the
spectral measure dEλ. From the intersecting Lagrangian distribution theory introduced in [24] (for the
semiclassical version see [13, Appendix A]), R+

λ is an intersecting Lagrangian distribution associated to
two Lagrangian submanifolds [13, Theorem 3]:

• The conormal bundle to the diagonal,
L1 = {(x, ξ, y, η) ∈ T ∗Rn × T ∗Rn : x = y, ξ = η},

which is the lift of WFh(g) in (1.9) from in T ∗Rn to in T ∗Rn × T ∗Rn;
• The bicharacteristic flowout Φt in the positive direction from the intersection of L1 and the

bicharacteristic variety S∗Rn × S∗Rn,
L2 = {(x, ξ, y, η) ∈ T ∗Rn × T ∗Rn : ξ = η, |η| = 1, x = y + tη, t ≥ 0}.

R−λ is the same except it would be the bicharacteristic flowout in the negative direction. When
we subtract them in (1.6), the diagonal part cancels and dEλ is associated to the flowout L0 in both
directions, from the intersection of L1 and the characteristic variety:

L0 = {(x, ξ, y, η) ∈ T ∗Rn × T ∗Rn : ξ = η, |η| = 1, x = y + tη, t ∈ R}.
The above characterization can also been seen in the proof of Theorem 1.1 in Section 2, as we cut the

kernel into near-diagonal and off-diagonal parts, which correspond to the two Lagrangian submanifolds.

Organisation of the paper. In Section 2, we prove Theorem 1.1 and in Section 3 we prove Theorem
1.2. In Section 4, we show that all of these estimates are essentially sharp, and then give some further
remarks concerning the relation between these bounds and the convexity of the domain. In the appendix,
we prove the mapping norms of semiclassical layer operators and show that the estimates are nearly
sharp.

Throughout this paper, A . B (A & B) means A ≤ cB (A ≥ cB) for some constant c depending
only on the domain, in particular, independent of λ; A ≈ B means A . B and B . A; the constants c
and C may vary from line to line.
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guidance, Hart Smith for discussion of sharpness of single layer operator estimates, and Andrew Hassell
for discussion of sharpness of the double layer operator estimates. J.G. is grateful to the National
Science Foundation for support under the National Science Foundation Graduate Research Fellowship
Grant No. DGE 1106400 and grant DMS-1201417. X. H. acknowledges the support of the Australian
Research Council through Discovery Project DP120102019.
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2. Boundedness of semiclassical single layer potentials

We aim to use previously know bounds for restriction of quasimode to hypersurfaces, both in the
general and curved cases. We want mapping norm bounds for S+

λ : L2(∂Ω) → L2(Ω). However to
use prior results on restriction of quasimodes we actually study the adjoint operator (S+

λ )? : L2(Ω)→
L2(∂Ω). Now

(2.1) (S+
λ )?u(x) =

∫
Ω
K?
λ(x− y)u(y)dy,

where
(−∆− λ2)K?

λ = δ(x).
Therefore if R∂Ω is the restriction operator to the boundary of Ω we must prove L2(Ω) → L2(∂Ω)
estimates for R∂ΩS

+
λ . We will do this by constructing an auxiliary quasimode v defined on Rn, for

which we know the restriction bounds, then the problem reduces to finding the L2 norm and the
quasimode error of v.

To begin we excise the diagonal of (S+
λ )? that is let ζ : Rn → R+ be a smooth cut off function equal

to one in |x− y| ≤ 1 and supported in |x− y| ≤ 2. Then we decompose (S+
λ )? as

(2.2) (S+
λ )? = S0 + S̃,

where

(2.3) S0u(x) =
∫

Ω
K?
λ(x− y)ζ

(
M−1λ(x− y)

)
u(y)dy,

(2.4) S̃u(x) =
∫

Ω
K?
λ(x− y)

(
1− ζ

(
M−1λ(x− y)

))
u(y)dy.

We first show that S0 has a better L2(Ω) → L2(∂Ω) mapping norm than predicted by Theorem 1.1
and therefore we may focus on the mapping norm of S̃.

Proposition 2.1. Let S0 be as defined in (2.3), then

(2.5) ‖S0u‖L2(∂Ω) . λ
− 3

2 ‖u‖L2(Ω).

Proof. We use the explicit respresntation of K?
λ as a Hankel function. If n ≥ 3, we have that the kernel

of S0, K0(x, y) has the bounds
|K0(x, y)| ≤ |x− y|−(n−2),

and is supported in |x− y| ≤Mλ−1. Fixing x we have

‖K0(x, ·)‖L1 .
∫ Mλ−1

0
r−(n−2)rn−1dr

. CMλ
−2.

Conversely fixing y we have

‖K0(·, y)‖L1 .
∫ Mλ−1

0
r−(n−2)rn−2dr

. CMλ
−1.

Therefore by Young’s inequality
‖S0u‖L2(∂Ω) . CMλ

−3/2‖u‖L2(Ω)

which is better than (2.5).
In R2, if |x− y| ≤Mλ−1

|K0(x, y)| ≤ log (λ|x− y|) ≤ Cε (λ|x− y|)−ε

for any ε > 0. The same application of Young’s inequality implies
‖S0u‖L2(∂Ω) . CM,ελ

−3/2‖u‖L2(Ω).

�
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We now focus on the operator S̃. Let
v = S̃u.

We will treat v as a quasimode of (−h2∆− 1). Accordingly let
E[v] = (−h2∆− 1)v.

From [27] and [15], we know that

(2.6) ‖v‖L2(∂Ω) . h
− 1

4
[
‖v‖L2(Rn) + h−1‖E[v]‖L2(Rn)

]
in the general case and

(2.7) ‖v‖L2(∂Ω) . h
− 1

6
[
‖v‖L2(Rn) + h−1‖E[v]‖L2(Rn)

]
in the case where ∂Ω is curved. We can also obtain these bounds from [29] by considering the function
e
i
h
tv which is an approximate solution to the wave equation. It is known that (S+

λ )? has mapping norm
λ−1 from L2(Ω)→ L2(Rn), see for example [34]. By the arguments of Proposition 2.1 S0 has mapping
norm λ−2 from L2(Ω)→ L2(Rn) therefore as

S̃ = (S+
λ )? − S0,

‖v‖L2(Rn) = ‖S̃u‖L2(Rn) . λ
−1‖u‖L2(Ω) = h‖u‖L2(Ω).

So to obtain Theorem 1.1 it is enough to show that
‖E[v]‖L2(Rn) . h

2‖u‖L2(Ω).

Rescaling this to work in terms of λ we require that
‖(−∆− λ2)v‖L2(Rn) . ‖u‖L2(Ω).

Now
v(x) =

∫
Ω
K?
λ(x− y)

(
1− ζ(M−1λ(x− y))

)
u(y)dy,

where
(−∆− λ2)K?

λ = δ.

So applying the operator (−∆− λ2) we have

(2.8) (−∆− λ2)v =
∫

Ω

(
1− ζ(M−1λ(x− y))

)
[(−∆x − λ2)K?

λ(x− y)]u(y)dy + Ẽu,

(2.9) Ẽu =
∫

Ω
[−K?

λ(x− y)∆x

(
1− ζ(M−1λ(x− y))

)
− 2∇x

(
1− ζ(M−1λ(x− y))

)
· ∇xK?

λ(x− y)]u(y)dy.

The first term in (2.8) is zero as the support of
(
1− ζ(M−1λ(x− y))

)
is bounded away from the

diagonal x = y. The second term is the error term and has kernel supported in Mλ−1 ≤ |x − y| ≤
2Mλ−1. It therefore suffices to show that

‖Ẽu‖L2(Rn) . ‖u‖L2(Ω).

Proposition 2.2. If Ẽ is given by (2.9), then
‖Ẽu‖L2(Rn) . ‖u‖L2(Ω).

Proof. This is similar to the proof of Proposition 2.1. By choosing M large enough we may assume
that the argument of the Hankel function λ|x− y| is large and therefore

|H(2)
β (λ|x− y|)| ≤ λ−

1
2 |x− y|−

1
2

for any β. Therefore on the support of the kernel of E we have
|Kλ(x− y)| . λn−2,

|∇xKλ(x− y)| . λn−1,

|∇x
(
1− ζ(M−1λ(x− y))

)
| . λ,

|∆x

(
1− ζ(M−1λ(x− y))

)
| . λ2.
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Therefore we may write
Ẽu =

∫
K̃(x− y)u(y)dy,

where |K̃(x− y)| . λn and is supported on Mλ−1 ≤ |x− y| ≤ 2Mλ−1. Now

‖K̃(·)‖L1 . λn
∫ 2Mλ−1

0
rn−1dr . 1.

Therefore by Young’s inequality
‖Ẽu‖L2(Rn) . ‖u‖L2(Ω)

as required. �

3. Boundedness of semiclassical double layer potentials

We now address the mapping norms of the double layer potential

(3.1) D+
λ u =

∫
∂Ω
∂νyKλ(x− y)u(y)dσy.

We proceed in a similar fashion as the proof for the single layer potential working instead with the
adjoint operator (D+

λ )?. Let ζ : Rn → R be a smooth cut off function equal to one in |x| ≤ 1 and
supported in |x| ≤ 2. Then we decompose D?

λ as

(3.2) (D+
λ )? = D0 + D̃

where

(3.3) D0u =
∫

Ω
∂νxK

?
λ(x− y)ζ

(
M−1λ(x− y)

)
u(y)dy

and

(3.4) D̃u =
∫

Ω
∂νxK

?
λ(x− y)

[
1− ζ

(
M−1(x− y)

)]
u(y)dy.

Similar to the single layer potential case we will treat D0 by Young’s inequality and D̃ by quasimode
methods.

Proposition 3.1. Let D0 be as defined in (3.3) then
‖D0u‖L2(∂Ω) . λ

−1/2‖u‖L2(Ω)

Proof. We have that

∂νxK
?
λ(x− y) = i

4

(
x− y
|x− y|

· νx
)[
−
(

λ

2π|x− y|

)n−2
2
λH

(2)
n
2

(λ|x− y|)−

n− 2
2|x− y|

(
λ

2π|x− y|

)n−2
2
H

(2)
n−2

2
(λ|x− y|)− λ−1

(
λ

2π|x− y|

)n
2
H

(2)
n−2

2
(λ|x− y|)

]
Therefore on the support of the kernel of D0 we have that

|∂νxK?
λ(x− y)| ≤ |x− y|−(n−1)

We cannot directly apply Young’s inequality as ‖K(·, y)‖L1 is not bounded. However if we decompose
dyadically we may use Young’s inequality on each piece and, since ‖K(x, ·)‖L1 is much better than
O(1), recover something summable. Accordingly we write

D0 =
∞∑
j=0

Dj
0

where

(3.5) Dj
0u =

∫
Ωj
∂νyK

?
λ(x− y)ζ

(
M−1λ(x− y)

)
u(y)dy

Ωj = Ω ∩ {y | 2−jMλ−1 ≤ |x− y| ≤ 2−j+1Mλ−1}.
Now applying Young’s inequality to each Di

0 we have

‖Dj
0u‖L2(∂Ω) . (2jλ)n−1 · (2−jλ−1)

n
2 (2−jλ−1)

n−1
2 ‖u‖L2(Ω)
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. λ−1/22−j/2‖u‖L2(Ω)
and therefore

‖D0u‖L2(∂Ω) . λ
−1/2‖u‖L2(Ω)

as claimed.
�

Proposition 3.2. Let D̃ be given by (3.4) then
‖D̃u‖L2(∂Ω) . ‖u‖L2(Ω)

Proof. We note that if we define the auxiliary function w by
(3.6) w = D̃u

then
(3.7) w = ∂νv + Ẽu

where
Ẽu = λ

M

∫
Ω
K?
λ(x− y)∂νyζ

(
M−1λ(x− y)

)
u(y)dy

and v is the quasimode
v = S̃u

introduced in the proof of Theorem 1.1.
From [28] and [29] we know that normal derivatives of quasimodes enjoy the hypersurface restriction

bound
‖∂νv‖L2(∂Ω) . λ‖v‖L2(Ω)

therefore by the L2(Ω)→ L2(Rn) mapping properties of the single layer potential
(3.8) ‖∂νv‖L2(∂Ω) . ‖u‖L2(Ω).

So we can restrict our attention to Ẽu. We write

Ẽu =
∫

Ω
Ẽ(x, y)u(y)dy

and note by Young’s inequality

‖Ẽu‖L2(∂Ω) . sup
x,y
‖Ẽ(x, ·)‖1/2L1 ‖Ẽ(·, y)‖1/2L1 ‖u‖L2(Ω).

On the support of Ẽ(x, y) we have that
|K?(x− y)| . λn−2 n 6= 2
|K?(x− y)| . log λ n = 2

Therefore for n 6= 2 we have
sup
x
‖Ẽ(x, ·)‖ . λn−1 · λ−n . λ−1

and
sup
y
‖Ẽ(·, y)‖ . λn−1 · λ−(n−1) . 1.

For n = 2
sup
x
‖Ẽ(x, ·)‖ . λ log λ · λ−2 . λ−1 log λ

and
sup
y
‖Ẽ(·, y)‖ . λ log λ · λ−1 . log λ

so for any ε > 0
‖Ẽu‖L2(∂Ω) . λ

−1+ε
2 λ

ε
2 ‖u‖L2(Ω)

and therefore setting ε < 1/2
‖Ẽu‖L2(∂Ω) . ‖u‖L2(Ω)

as required.
�
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4. Sharp examples and further remarks

In this section, we construct examples to show that the estimates in Theorems 1.1 and 1.2 are in
fact sharp. That is, we prove that lower bounds hold in some domains for some sequences of functions.
Furthermore, we make some remarks on single layer potentials and spectral measure operators in strictly
convex domains.

4.1. Sharpness of Theorem 1.1: Semiclassical single layer potentials in general domains.
In the view of the Stone’s formula (1.6) and Proposition 1.4, we only need to prove the sharpness of
dEλ, and then the sharpness of Sλ follows immediately. In fact, we construct functions {fλ} on the
square [−1, 1]n−1 such that

(4.1)
‖dEλ(fλdσ)‖L2([−1,1]n−1×[0,1])

‖fλ‖L2([−1,1]n−1)
≥ cλ−

3
4 .

Throughout this subsection, we denote x = (x′, xn) ∈ Rn where x′ ∈ Rn−1 and xn ∈ R. We develop
our sharp example through a series of lemmas. First we observe the following fact.

Lemma 4.1. Write Ω′ = [−1, 1]×· · ·×[−1, 1] ⊂ Rn−1, for λ ≥ 0 there exists an L2 normalized function
fλ such that

(1) supp fλ ⊂ Ω′,
(2) f̂λ ≥ 0,
(3) f̂λ(ξ′) ≥ c1 if |ξ′− η′λ| ≤ 1 for η′λ = (λ, 0, ..., 0) and some positive constant c1 depending only on

the dimension.

Proof of Lemma 4.1. Fix a Schwartz function ϕ such that ϕ̂ ≥ 0 and ϕ̂ = 1 in Ω′. Let f0 =
ϕχΩ′/‖ϕχΩ′‖L2(Rn−1), obviously supp f0 ⊂ Ω′, and we verify that f0 also satisfies (2) and (3) above.
Since χΩ′ is even, and

χ̂Ω′(ξ′) =
n−1∏
i=1

2 sin(ξi)
ξi

,

we obtain f̂0 = cϕ̂ ∗ χ̂Ω′ ≥ 0. Now we compute

f̂0(ξ′) = c

∫
Rn−1

ϕ̂(η′)χ̂Ω′(ξ′ − η′)dη′ ≥ c
∫
|η′|≤1

χ̂Ω′(ξ′ − η′)dη′ ≥ c1,

if |ξ′ − η′0| ≤ 1. Therefore if we set fλ(x′) = eix
′·η′λf0(x′), we have constructed of function that satisfies

all the required condtions. �

Now denote Ω = Ω′ × [0, 1] ⊂ Rn, and let supp fλ ⊂ Ω′ × {xn = 0}. We claim that fλ is our desired
sharp example. That is

‖dEλ(fλdσ)‖L2(Ω) = ‖dEλ(fdσ)χΩ‖L2(Rn) ≥ cλ−
3
4 .

To facilitate our calculation we will replace χΩ with a function g designed to make calculation on
the Fourier transform side easy. We need the following lemma.

Lemma 4.2. There exists a function g such that
(1) supp g ⊂ Ω,
(2) 0 ≤ g ≤ c2 for some constant c2 > 0 depending only on the dimension,
(3) ĝ(ξ) ≥ c3 in {|ξ| ≤ c4} for some positive constants c3 and c4 ≤ 1

2 depending only on the
dimension.

Proof of Lemma 4.2. Fix z = (0, ..., 0, 1
2) ∈ Ω, and write ϕ = χ|x−z|≤ 1

4
. Let g = ϕ ∗ ϕ, then both (1)

and (2) above are satisfied, and

ĝ(0) = [ϕ̂(0)]2 =
[∫

Rn
ϕ(x)dx

]
> 0.

Thus, ĝ(ξ) ≥ c3 in {|ξ| ≤ c4} because ĝ is continuous. �

In order to evaluate ‖dEλ(fλdσ)‖L2(Ω), notice that f̂λdσ(ξ) = f̂λ(ξ′) and

[dEλ(fλdσ)]∧(ξ) = δ(|ξ|2 − λ2)f̂λdσ(ξ) = f̂λ(ξ′)dµ
2λ ,
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where dµ is the surface measure on {|ξ| = λ}. Using the function g constructed in Lemma 4.2, for any
ξ such that

ξ ∈
{

0 ≤ λ− |ξ| ≤ c4
2 and |ξ′ − η′λ| ≤

1
2

}
:= Gλ,

we have
[dEλ(fλdσ)]∧ ∗ ĝ(ξ) ≥ 2c3

λ

∫
{|η|=λ}∩{|η−ξ|≤c4}

f̂λ(η′)dµ ≥ c · c1 · c3 · cn−1
4

λ
,

in which we use the geometric fact that the area measure |{|η| = λ} ∩ {|η − ξ| ≤ c4}| ∼ cn−1
4 if ξ is a

fixed point near the sphere with 0 ≤ λ − |ξ| ≤ c4
2 < 1

4 . Recall that η′λ = (λ, 0, ..., 0), then the volume
measure of Gλ has

|Gλ| =
∣∣∣∣{0 ≤ λ− |ξ| ≤ c4

2 and |ξ′ − η′λ| ≤
1
2

}∣∣∣∣ ∼ √λ.
Therefore,

‖dEλ(fλdσ)g‖L2(Rn) = c
∥∥[dEλ(fλdσ)]∧ ∗ ĝ

∥∥
L2(Rn) ≥ cλ

−1|Gλ|
1
2 ≥ cλ−

3
4 .

Now, since g is supported in Ω and bounded from above,

‖dEλ(fλdσ)‖L2(Ω) = ‖dEλ(fλdσ)χΩ‖L2(Rn) ≥ c−1
2 ‖dEλ(fλdσ)g‖L2(Rn) ≥ cλ−

3
4 ,

and we have obtained (4.1).

4.2. Sharpness of Theorem 1.1: Semiclassical single layer potentials in curved domains.
As in Section 4.1, we only need to prove the sharpness of dEλ. We construct functions {fλ} such that

(4.2)
‖dEλ(fλdσ)‖L2(Ω)
‖fλ‖L2(∂Ω)

≥ cλ−
5
6

where Ω is annulus.
Let B1 = {x ∈ R2, |x| < 1}, B2 = {x ∈ R2, |x| < 2}, and Ω = {x ∈ R2, 1 < |x| < 2}. We work in

polar coordinates (r, θ) and set
fk(x) = eikθ ∈ L2(∂Ω).

Then
u(x) = dEλ(fkdσ)(x) = aJk(λr)eikθ,

in which Jk is the Bessel function of the first kind and order k. We pick λ = jk,1 as the first positive
zero of Jk. Then u solves the Dirichlet boundary value problem{

−∆u = λ2u in B1,

u = 0, ∂ru = eikθ on ∂B1.

We need to show that
‖u‖L2(Ω) ≥ cλ−

5
6 .

From [8, Section 10.21.40], J ′k(λ) = O(k−
2
3 ). Thus

(4.3) a = 1
λJ ′k(λ) = O(k−

1
3 ).

We also have
(4.4) λ = k + c5k

1
3 +O(k−

1
3 ),

where c5 = 1.86... is an independent constant. Since (∆ + λ2)u = 0,[
∂2
r + 1

r
∂r +

(
λ2 − k2

r2

)]
u = 0.

Furthermore, ∂ru(x) = aλJ ′k(λr)eikθ and ∂2
ru(x) = aλ2J ′′k (λr)eikθ. To evaluate ‖u‖L2(Ω), notice that in

Rn,
∆ = ∂2

r + n− 1
r

∂r + 1
r2 ∆Sn−1 ,

in which ∆Sn−1 is the Laplacian on the sphere Sn−1. Then the commutator

[∆, r∂r] =
[
∂2
r + n− 1

r
∂r + 1

r2 ∆Sn−1 , r∂r

]
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=
[
∂2
r , r∂r

]
+
[
n− 1
r

∂r, r∂r

]
+
[ 1
r2 ∆Sn−1 , r∂r

]
= 2∂2

r + 2(n− 1)
r

∂r + 2
r2 ∆Sn−1

= 2∆.
Using the above facts and Green’s formula, we have

−2λ2
∫
|x|<R

|u|2 = 2
∫
|x|<R

∆u · ū =
∫
|x|<R

[∆, r∂r]u · ū

=
∫
|x|<R

[∆ + λ2, r∂r]u · ū

=
∫
|x|<R

(∆ + λ2)(r∂ru) · ū− r∂ru · (∆ + λ2)ū

=
∫
|x|=R

∂r(r∂ru) · ū− r∂ru · ∂rū

=
∫
|x|=R

∂ru · ū+ r∂2
ru · ū− r|∂ru|2

=
∫
|x|=R

[−r(λ2 − k2r−2)]u · ū− r|∂ru|2

= −2a2πR2
[
(λ2 − k2R−2)(Jk(λR))2 + λ2(J ′k(λR))2

]
,

which implies

(4.5)
∫
|x|<R

|u|2 = a2πR2
[(

1− k2

λ2R2

)
(Jk(λR))2 + (J ′k(λR))2

]
.

If R = 1, then note that λ is a zero of Jk. As (4.3) gives |a| ∼ λ−
1
3 and J ′k(λ) = J ′k(jk,1) ∼ λ−

2
3 in [8,

Section 10.21.40],

(4.6) ‖u‖L2(B1) =
(∫
|x|<1

|u|2
) 1

2

= |a|
√
π|J ′k(λ)| = cλ−1.

If R = 2, then

(4.7) ‖u‖L2(B2) = 2|a|
√
π

[(
1− k2

4λ2

)
(Jk(2λ))2 + (J ′k(2λ))2

] 1
2

≥ cλ−
5
6 .

Here, we use the asymptotic expansions of Bessel functions for large orders in [8]

Jk(k secβ) ∼
( 1
k tan β

) 1
2

cos
(
k tan β − kβ − 1

4π
)
,

and

J ′k(k secβ) ∼
(sin(2β)

k

) 1
2

sin
(
k tan β − kβ − 1

4π
)
,

in which secβ = 2λ/k → 2 in the view of (4.4), and thus β ∼ π
3 . Therefore,

‖u‖L2(Ω) = ‖u‖L2(B2) − ‖u‖L2(B1) ≥ cλ−
5
6 ,

as required.

4.3. Further remark: Semiclassical single layer potentials in strictly convex domains. If we
choose R = 1 + ε in (4.5) for any fixed ε > 0, then

(4.7’) ‖u‖L2(B1+ε) ≥ cλ
− 5

6

is valid when k, and therefore λ, is large. (We can argue similarly by setting β asymptotically fixed
depending only on ε.) Comparing (4.6) and (4.7)’, we see that the L2 norm of u is essentially concen-
trated outside the disc. As discussed in the Introduction, this is because the estimates are dominated
by the semiclassical singularities of u, which propagate along the tangent lines of the circle. All such
lines lie outside of B1. Therefore, ‖u‖L2(B1) ∼ λ−1 is smaller than ‖u‖L2(B1+ε\B1) ∼ λ−

5
6 .
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However, in the case when the domain is flat as in Section 4.1, the tangent lines coincide with the
boundary, one may get worse L2 bound for u (∼ λ−

3
4 ).

The above observation motivates us to consider the problem in strictly convex domains, in which
case all the tangent lines lie outside the domain. Analogously to the unit disc, we make the following
conjecture.

Conjecture 4.3. If Ω is strictly convex, then
(4.8) ‖Sλ(f)‖L2(Ω) ≤ cλ−1‖f‖L2(∂Ω),

and
(4.9) ‖dEλ(fdσ)‖L2(Ω) ≤ cλ−1‖f‖L2(∂Ω).

The computation in Section 4.2 already gave the sharp example in this case once one observes (4.6),
which says

‖dEλ(fλdσ)‖L2(Ω)
‖fλ‖L2(∂Ω)

= cλ−1

is valid in the unit ball for some constant c and functions {fλ}.
In fact, the estimates in Conjecture 4.3 are sharp in any strictly convex domain: From [1, 16, 17],

‖u‖L2(Ω) ≈ λ−1‖∂νu‖L2(∂Ω),

where u is a Dirichlet eigenfunction in Ω, therefore u = Sλ(∂νu), and (4.8) and (4.9) are sharp in all
strictly convex domains.

4.4. Sharpness of Theorem 1.2: Semiclassical double layer potentials. We show the sharpness
in the unit ball:

(4.10)
‖Dλ(fλdσ)‖L2(Ω)
‖fλ‖L2(∂Ω)

≥ c

for some constant c and functions {fλ}.
Consider the Neumann eigenfunctions:{

−∆u = λ2u in B1,

∂νu = 0, u = eikθ on ∂B1.

Then, adopting the same notations as in Section 4.2, we have
u(x) = Dλ(fkdσ)(x) = aJk(λr)eikθ,

in which λ = j′k,l is the l-th zero of J ′k, and a = 1/Jk(λ).
We use identity (4.5) with R = 1 and J ′k(λ) = 0 to obtain

‖u‖L2(B1) =
(∫
|x|<1

|u|2
) 1

2

=
√
π

(
1− k2

λ2

)
≥ c,

by picking λ ∼ 2k. In fact, λ = j′k,l →∞ as l� k →∞.
On the other hand, to saturate the inequality (1.5):

‖u‖L2(∂B1) . λ
1
3 ‖u‖L2(B1),

we pick λ = j′k,1 as the first zero of J ′k. From [8, Section 10.21.40], we have

λ = j′k,1 = k +O(k
1
3 ),

then

‖u‖L2(B1) =

√√√√π(1− k2

(j′k,1)2

)
= O(k−

1
3 ) = O(λ−

1
3 ).

As ‖u‖L2(∂B1) ∼ 1 this implies that

‖u‖L2(∂B1 ≥ cλ
1
3 ‖u‖L2(B1).

See also [16, Example 7] on the boundary estimates of Neumann eigenfunctions.
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Appendix A. The Single and Double Layer Operators

By Jeffrey Galkowskii

In this appendix, we give high frequency estimate for the double and single layer operators. We
do this by adapting the methods of [14] to the double layer operator. The estimates on single layer
operators appear in [14, Theorem 1.2], but we repeat them below for the convenience of the reader.

We use the same notation as in the prequel. In addition, let γ : Hs(Rd) → Hs−1/2(∂Ω), s > 1/2
denote restriction to ∂Ω. Then, define the single layer operator,

S+
λ := γS+

λ : L2(∂Ω)→ L2(∂Ω)
and the double layer operator

D+
λ : L2(∂Ω)→ L2(∂Ω)

where
D+
λ f(x) =

∫
∂Ω
∂νyKλ(x− y)f(y)dy.

Theorem A.1. Let ∂Ω ⊂ Rd be a finite union of compact embedded C∞ hypersurfaces. Then there
exists λ0 such that for λ > λ0,

(A.1) ‖S+
λ ‖L2(∂Ω)→L2(∂Ω) ≤ C λ−

1
2 log λ , ‖D+

λ ‖L2(∂Ω)→L2(∂Ω) ≤ C λ
1
4 log λ .

Moreover, if ∂Ω is a finite union of compact subsets of curved C∞ hypersurfaces, then

(A.2) ‖S+
λ ‖L2(∂Ω)→L2(∂Ω) ≤ C λ−

2
3 log λ , ‖D+

λ ‖L2(∂Ω)→L2(∂Ω) ≤ C λ
1
6 log λ .

Moreover, modulo the factor log λ, all of the above estimates are sharp.

Such mapping bounds of layer operators in lower dimension cases (d = 2, 3) have been studied by
Chandler-Wilde, Graham, Langdon, and Lindner [5]. In particular, they showed the upper bounds
‖S+

λ ‖L2(∂Ω)→L2(∂Ω) ≤ cλ(d−3)/2 and ‖D+
λ ‖L2(∂Ω)→L2(∂Ω) ≤ cλ(d−1)/2. In 2-dim, they also proved that

‖S+
λ ‖L2(∂Ω)→L2(∂Ω) ≥ cλ−1/2 if ∂Ω contains a flat piece and ≥ cλ−2/3 if ∂Ω is curved. In 2-dim they also

show the existence of ∂Ω with ‖D+
λ ‖L2(∂Ω)→L2(∂Ω) ≥ Cλ1/4 and curved ∂Ω with ‖D+

λ ‖L2(∂Ω)→L2(∂Ω) ≥
Cλ1/8. The special cases of the circle and sphere are studied previously by various authors. We refer to
[5] for more background in this area. This appendix improves these estimates by giving “nearly” sharp
bounds in all dimensions. We also point out that the approaches to prove estimates for semiclassical
layer potentials and operators are completely different.

In section A.1 we prove the upper bounds in Theorem A.1. In sections A.2 and A.3 we show that
the exponents on λ in Theorem A.1 are sharp.
Remark: If we impose the condition that Ω is convex with piecewise smooth, C1,1 boundary, then we
expect that D+

λ is uniformly bounded in λ but we do not consider that here.

A.1. Proof of Theorem A.1. To analyze the single and double layer operators, we rewrite them in
terms of the outgoing free resolvent. In particular, we have that

S+
λ = γR+

λ γ
∗

where R+
λ is the outgoing free resolvent.

To understand D+
λ in relation to the free resolvent, we let L be a vector field with L|∂Ω = ∂ν . Then,

for x0 ∈ Ω, x ∈ ∂Ω, we have

D+
λ f(x) = lim

x0→x

∫
R+
λ (x0 − y)(L∗(fdσ))(y)− 1

2f(x) = lim
x0→x

R+
λ L
∗(fdσ)(x0)− 1

2f(x).

where L∗ = −L − divL and R0 is the outgoing free resolvent (see for example [19, Section 5], [30,
Section 7.11]). Moreover,

D+
λ : L2(∂Ω)→ L2(∂Ω).

Let 〈·〉 := 2 + | · |.
iJ.G.’s address is Department of Mathematics, University of California, Berkeley, CA 94720-3840, USA, and e-mail

address is jeffrey.galkowski@math.berkeley.edu.
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Lemma A.2. Suppose that for Γ b Rd any compact embedded C∞ hypersurface, and some α , β > 0,∫
|L̂∗fδΓ|2(ξ)δ(|ξ| − r)dξ ≤ CΓ〈r〉2α‖f‖2L2(Γ),(A.3) ∫
|f̂ δΓ|2(ξ)δ(|ξ| − r)dξ ≤ CΓ〈r〉2β‖f‖2L2(Γ).(A.4)

Let Γ1, Γ2 b Rd be compact embedded C∞ hypersurfaces. Let L be a vector field with L = ∂ν on Γ1
for some choice of normal ν on Γ1 and ψ ∈ C∞0 (R) with ψ ≡ 1 in neighborhood of 0. Then define for
f ∈ L2(Γ1), g ∈ L2(Γ2)

Q0
λ,Γ1,Γ2(f, g) :=

∫
R+
λ (ψ(λ−1D)fδΓ1)ḡδΓ2 , Q1

λ,Γ1,Γ2(f, g) :=
∫
R+
λ (ψ(λ−1D)L∗(fδΓ1))ḡδΓ2 .

Then for Imλ > 0, |λ| ≥ c > 0,
|Q0

λ,Γ1,Γ2(f, g)| ≤ CΓ1,Γ2〈λ〉2α−1 log〈λ〉‖f‖L2(Γ1)‖g‖L2(Γ2)(A.5)
|Q1

λ,Γ1,Γ2(f, g)| ≤ CΓ1,Γ2,ψ〈λ〉α+β−1 log〈λ〉‖f‖L2(Γ1)‖g‖L2(Γ2)(A.6)

Proof. We follow [14] to prove the lemma. First, observe that due to the compact support of fδΓ, (A.3)
and (A.4) imply that for Γ b Rd,∫ ∣∣∣∇ξ L̂∗fδΓ(ξ)

∣∣∣2 δ(|ξ| − r) ≤ C 〈r〉2α‖f‖2L2(Γ) ,(A.7) ∫ ∣∣∣∇ξ f̂ δΓ(ξ)
∣∣∣2 δ(|ξ| − r) ≤ C 〈r〉2β‖f‖2L2(Γ) .(A.8)

Now, gδΓ2 ∈ H−
1
2−ε(Rd), and

(A.9) R+
λ (ψ(λ−1|D|)L∗(fδΓ1)) ∈ C∞(Rd), R+

λ (ψ(λ−1|D|))fδΓ1) ∈ C∞(Rd).
We only consider |λ| ≥ c > 0 to avoid considering the low frequency divergence in low dimensions.

However, this can be handled as in [14].
By Plancherel’s theorem,

Q1
λ,Γ1,Γ2(f, g) =

∫
ψ(λ−1|ξ|) L̂

∗fδΓ1(ξ) ĝδΓ2(ξ)
|ξ|2 − λ2 , Q0

λ,Γ1,Γ2(f, g) =
∫
ψ(λ−1|ξ|) f̂ δΓ1(ξ)ĝδΓ2(ξ)

|ξ|2 − λ2 .

Thus, to prove the lemma, we only need estimate

(A.10)
∫
ψ(λ−1|ξ|)F (ξ)G(ξ)

|ξ|2 − λ2

where by (A.3), (A.4), (A.7), and (A.8)
‖F‖L2(Sd−1

r ) + ‖∇ξF‖L2(Sd−1
r ) ≤ C〈r〉

δ1‖f‖L2(Γ), ‖G‖L2(Sd−1
r ) + ‖∇ξG‖L2(Sd−1

r ) ≤ C〈r〉
δ2‖g‖L2(Γ).

Consider first the integral in (A.10) over
∣∣|ξ| − |λ|∣∣ ≥ 1. Since

∣∣|ξ|2 − λ2∣∣ ≥ ∣∣|ξ|2 − |λ|2∣∣, by the
Schwartz inequality, (A.3), and (A.4) this piece of the integral is bounded by∫

||ξ|−|λ||≥1

∣∣∣∣ψ(λ−1|ξ|)F (ξ)G(ξ)
|ξ|2 − λ2

∣∣∣∣ ≤ ∫
Mλ≥|r−|λ||≥1

1
r2 − |λ|2

∫
Sd−1
r

F (rθ)G(rθ)dS(θ)dr

≤ C‖f‖L2(Γ)‖g‖L2(Γ)

∫
M |λ|≥|r−|λ||≥1

〈r〉δ1+δ1
∣∣ r2 − |λ|2

∣∣−1
dr

≤ C‖f‖L2(Γ)‖g‖L2(Γ)λ
δ1+δ2−1

∫
M |λ|≥|r−|λ||≥1

|r − |λ||−1 dr

≤ C |λ|δ1+δ2−1 log |λ| ‖f‖L2(Γ)‖g‖L2(Γ).(A.11)
Remark: The estimate (A.11) is the only term where the log appears.

Next, if Imλ ≥ 1, then
∣∣|ξ|2 − λ2∣∣ ≥ |λ|, and by (A.3), (A.4)∣∣∣∣∣

∫
||ξ|−|λ||≤1

F (ξ)G(ξ)
|ξ|2 − λ2 dξ

∣∣∣∣∣ ≤ C |λ|δ1+δ2−1 ‖f‖L2(Γ)‖g‖L2(Γ).

Thus, we may restrict our attention to 0 ≤ Imλ ≤ 1 and
∣∣|ξ| − |λ|∣∣ ≤ 1.
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We consider Reλ ≥ 0, the other case following similarly, and write
1

|ξ|2 − λ2 = 1
|ξ|+ λ

ξ

|ξ|
· ∇ξ log(|ξ| − λ) ,

where the logarithm is well defined since Im(|ξ| − λ) < 0. Let χ(r) = 1 for |r| ≤ 1 and vanish for
|r| ≥ 3

2 . We then use integration by parts, together with (A.3), (A.4), (A.7), and (A.8) to bound∣∣∣∣∣
∫
χ(|ξ| − |λ|) 1

|ξ|+ λ
F (ξ)G(ξ) ξ

|ξ|
· ∇ξ log(|ξ| − λ) dξ

∣∣∣∣∣ ≤ C |λ|δ1+δ2−1 ‖f‖L2(Γ)‖g‖L2(Γ).

Now, taking δ1 = δ2 = α gives (A.5), and taking δ1 = α and δ2 = β gives (A.6). �

We now prove the estimates (A.3) and (A.4).

Lemma A.3. Let Γ b Rd be a compact C∞ embedded hypersurface. For L = ∂ν on Γ, estimate (A.3)
holds with α = 1. Estimate (A.4) holds with β = 1/4. Moreover, if Γ is curved, then (A.4) holds with
β = 1/6.

Proof. Let A : Hs(Rd)→ Hs−1(Rd). To estimate∫
|Â∗(fδΓ)(ξ)|2δ(|ξ| − r),

write

〈Â∗(fδΓ)(ξ)δ(|ξ| − r), φ(ξ)〉 =
∫ ∫

A∗(f(x)δΓ)δ(|ξ| − r)φ(ξ)ei〈x,ξ〉dxdξ =
∫

Γ
fATrφdx

where

(A.12) Trφ =
∫
δ(|ξ| − r)φ(ξ)ei〈x,ξ〉dξ.

For χ ∈ C∞0 (Rd), χTφ is a quasimode of the Laplacian with eigenvalue λ = r in the sense of [27].
Thus, we can use the restriction bounds for eigenfunctions found in [4], [15], [28], and [27], to obtain
estimates on Tφ.

To prove (A.4), let A = I. Then, by [4, Theorem 3], [27, Theorem 1.7]

(A.13) ‖χTrφ‖L2(Γ) ≤ r
1
4 ‖χTφ‖L2(Rd),

and if Γ is curved, then by [15, Theorem 1.3]

(A.14) ‖χTrφ‖L2(Γ) ≤ r
1
6 ‖χTφ‖L2(Rd).

Remark: Estimates (A.13) and (A.14) continue to hold on C1,1 and C2,1 curved hypersurfaces respec-
tively ([3] [14]).

Next, we take A = L to obtain (A.3). Observe that
χLTrφ = LχTrφ+ [χ,L]Trφ

with [χ,L] ∈ C∞0 (Rd). Therefore, [χ,L]Trφ is a quasimode of the Laplacian with eigenvalue r.
Hence, using the fact that L = ∂ν on Γ together with [28, Theorem 0.3], we can estimate LTφ.

(A.15) ‖χLTrφ‖L2(Γ) ≤ ‖LχTrφ‖L2(Γ) + ‖[L, χ]Trφ‖L2(Γ) ≤ Cr‖χTrφ‖L2(Rd).

To complete the proof of the Lemma, we estimate ‖χTφ‖L2(Rd). We have that
‖χTrφ‖L2(Rd) = ‖χ̂ ∗ gδ(|ξ| − r)‖L2(Rd).

Therefore,

‖χ̂ ∗ gδ(|ξ| − r)‖2L2(Rd) =
∫ ∣∣∣∣∫

Sd−1
r

χ̂(ξ − η)g(η)dη
∣∣∣∣2 dξ

≤ ‖g‖2
L2(Sd−1

r )

∫ ∫
Sd−1
r

|χ̂(ξ − η)|2dηdξ

≤ ‖g‖2
L2(Sd−1

r )

∫ ∫
Sd−1
r

CN 〈|ξ| − r〉−Ndηdξ ≤ C‖g‖2L2(Sd−1
r ).

Combining this with (A.13), (A.14) and (A.15) completes the proof of the Lemma. �



LAYER POTENTIALS AND OPERATORS 17

To complete the proof of Theorem A.1 we need an estimate on the high frequency component of S+
λ

and D+
λ . Let γ± : Hs(Ω±) → Hs−1/2(∂Ω), s > 1/2 denote the restriction map where Ω+ = Ω and

Ω− = Rd \ Ω. Then we have

Lemma A.4. Let M > 1 and ψ ∈ C∞0 (R) with ψ ≡ 1 for |ξ| < M . Suppose that ∂Ω is a finite union
of compact embedded C∞ hypersurfaces. Then

γR+
λ (1− ψ(λ−1|D|))γ∗ = OL2(∂Ω)→L2(∂Ω)(〈λ〉−1),(A.16)

γ±R+
λ (1− ψ(λ−1|D|))L∗γ∗ = OL2(∂Ω)→L2(∂Ω)(1).(A.17)

Proof. Let h−1 = λ. Then R+
h−1(1 − ψ(hD)) ∈ h2Ψ−2 (see, for example, [13, Theorem 3]) where Ψk

denotes the class of semiclassical pseudodifferential operators of order k (see [36] for a detailed account
of the theory of semiclassical analysis).

Now, let Γ1, Γ2 b Rd be embedded C∞ hypersurfaces and denote by γi : Hs(Rd) → Hs−1/2(Γi),
s > 1/2 and by γ∗i its adjoint. Then

(A.18) γi = OHs(Rd)→Hs−1/2(Γi)(h
−1/2).

Hence, we have
γiR

+
h−1(1− ψ(|hD|))γ∗j = OL2→L2(h).

Since γ =
∑
i γi, we have proven estimate (A.16)

The strategy for obtaining the bound (A.17) will be to compare D+
λ at high frequency with the

corresponding operators for λ = 0. First, observe that R+
0 (1− ψ(|hD|) ∈ h2Ψ−2.

We consider
Ah−1 := (R+

h−1 −R+
0 )(1− ψ(|hD|)) = h−2R+

h−1R
+
0 (1− ψ(|hD|)).

Hence, Ah−1 ∈ h2Ψ−4. We will bound
Bh := γiAh−1(1− ψ(|hD|))L∗γ∗j .

To do so, consider the adjoint
B∗h = γjL(1− ψ(|hD|))Ah−1γ∗i .

Then, observe that since Γj is smooth, we may extend L off of Γj to a smooth vector field, L̃,
without changing B∗h. Hence, using (A.18), and the fact that L̃ = OHs→Hs−1(h−1), we have that
Bh = OL2→L2(1).

Now, by [19, Section 5]
γ±R+

0 (1− ψ(|hD|))L∗γ : L2(∂Ω)→ L2(∂Ω)
for ∂Ω a finite union of compact embedded C∞ hypersurfaces. Hence,

γ±R+
h−1(1− ψ(|hD|))L∗γ = γ±R+

0 (1− ψ(|hD|))L∗γ + γAh−1L∗γ∗ = OL2(∂Ω)→L2(∂Ω)(1)
and we have proven (A.17) �

Taking ∂Ω =
⋃
i Γi and applying Lemmas A.2 and Lemma A.4 finishes the proof of Theorem A.1.

A.2. Sharpness of the single layer operator estimates. We now show that the estimates on S+
λ

in Theorem A.1 are sharp modulo the log losses. We use a different approach from that in [5, Theorem
4.2] where the authors construct examples giving the same lower bounds. These examples rely on the
concentration of semiclassical singularities in small neighborhoods of glancing rays.

First, recall as above that the spectral measure operator is denoted by dEλ (see (1.6)). Then,

(A.19) γdEλγ
∗ = S

+
λ − S

−
λ

2πi .

But, dEλ has kernel
1

2λ(2π)−d
∫
Sd−1
λ

ei〈x−y,ξ〉dξ.

Thus,
γdEλγ

∗ = Cdλ
−1γTλT

∗
λγ
∗
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where Tλ is the operator in (A.12). By [4], [15], the estimates (A.13) and (A.14) are sharp and hence
for λ ≥ λ0,

‖γdEλγ∗‖L2(Γ)→L2(Γ) ≥
{
Cλ−

1
2 Γ general

Cλ−
2
3 Γ curved

.

Putting this together with (A.19) gives that

‖S+
λ ‖L2(Γ)→L2(Γ) ≥

{
Cλ−

1
2 Γ general

Cλ−
2
3 Γ curved

as desired.

A.3. Sharpness of the double layer operator estimates. We will show that there exist smooth
embedded hypersurfaces Γ such that for λ ≥ λ0,

(A.20) ‖D+
λ ‖L2(Γ)→L2(Γ) ≥

{
Cλ1/4 Γ general
Cλ1/6 Γ curved

.

In the flat case, our examples are adaptations of those given in [5, Theorems 4.6] to higher dimensions.
However, in the curved case, the example we provide is more subtle and improves the lower bound
‖D+

λ ‖L2(Γ) ≥ Cλ1/8 given in [5, Theorem 4.7]
The idea will be to use a family functions which is microlocalized at a point ((x′, 0), ξ′) ∈ T ∗Γ such

that |ξ′| < 1 and the geodesic

{(x′, 0) + t(ξ′,
√

1− |ξ′|2) : t ∈ R}

is tangent to Γ at some point away from (x′, 0).

A.3.1. Flat case. Let
Γ1 := {(x1, x2, x

′) ∈ Rd : 1/2 < x1 < 3/2 , x2 = 0 , |x′| < 1}
Γ2 := {(x1, x2, x

′) ∈ Rd : x1 = 0 , x2
2 + |x′|2 < 1}.

Let χ ∈ C∞c (Rd−1) have χ ≥ 0, ‖χ‖L2 = 1, and χ̂(0) ≥ 1/2. That is∫
χ(x2, x

′)dx2dx
′ ≥ 1/2.

Then, denote by χλ := χ(Mλγ(x2, x
′)) and observe that

‖χλ‖L2 = CMλ
−(d−1)γ/2,

∫
χλdx2dx

′ ≥ CMλ−(d−1)γ

where M > 0 will be chosen later and γ ≥ 1/2.
Now, let Γ b Rd be a smooth embedded hypersurface such that Γ1 ∪ Γ2 ⊂ Γ. Suppose also that

f ∈ L2(Γ) is supported on Γ2. Then,

D+
λ f |Γ1 =

∫
Γ2

(∂νyR+
λ (x− y))f(y)dy

Now, for |x− y| > ε,

(A.21) ∂νyR
+
λ (x− y) = Cdλ

d−1 〈x− y, νy〉
|x− y|

eiλ|x−y|
(
λ−(d−1)/2|x− y|(d−1)/2 +O((λ|x− y|)−(d+1)/2)

)
.

We will consider χλ as a function in L2(Γ2). Thus, since for x ∈ Γ1 and y ∈ Γ2, |x− y| ≥ ε, we consider

λ(d−1)/2
∫

Γ2

eiλ|x−y|〈x− y, νy〉
|x− y|(d+1)/2 χλ(y)dy.

We are interested in obtaining lower bounds for the L2 norm on Γ1. In particular, let ψ ∈ C∞0 (R) with
ψ(z) = 1 for |z| ≤ 1. Then, let ψλ,1(z) = ψ(Mλγ |z|) and ψλ,2(z) = ψ(Mλγ2 |z|).

We estimate
u = ψλ,2(x1 − 1)ψλ,1(x′)λ(d−1)/2

∫
Γ2

eiλ|x−y|〈x− y, νy〉
|x− y|(d+1)/2 χλ(y)dy

on Γ1. For x ∈ Γ1 ∩ suppψλ,1(x′)ψλ,2(x1 − 1) and y ∈ suppχλ

(A.22) 〈x− y, νy〉
|x− y|

= 1 +O(λ−2γ), |x− y| = x1(1 +O(λ−2γ))
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Hence, we have

u|Γ1 = Cdψλ,2(x1 − 1)ψλ,1(x′)λ(d−1)/2 eiλx1

x
(d−1)/2
1

∫
(1 +O(〈λ1−2γ〉M−2) +O(〈M−2λ−2γ〉)χλdy

and on |x′| < M−1λ−γ ,

u|Γ1(x1, x
′) ≥ Cψλ,2(x1 − 1)λ(d−1)/2

∫
χλdy ≥ Cλ(d−1)/2−(d−1)γ .

So,
‖u‖2L2(Γ1) ≥ C

∫
Γ1∩|x′|<Cλ−γ

ψ2
λ,2(x1 − 1)λd−1−2(d−1)γ ≥ Cλd−1−(3d−4)γ−γ2 .

Thus, using elementary estimates on the remainder terms

‖D+
λ χλ‖ ≥ C‖u‖ ≥ Cλ

d−1−(3d−4)γ−γ2
2 .

Hence,
‖D+

λ χλ‖
‖χλ‖

≥ Cλ
(d−1)(1−2γ)+γ−γ2

2 .

Thus, choosing γ = 1/2, γ2 = 0 and M large enough,
‖D+

λ χλ‖ ≥ Cλ
1/4‖χλ‖

as desired.

A.3.2. Curved case. In order to obtain the lower bound in the curved case, we will need to arrange to
hypersurfaces, Γ1 and Γ2 parametrized respectively by γ, σ : B(0, ε) ⊂ Rd−1 → Rd such that

|γ(x)− σ(y)| = |γ(0)− σ(0)|+O(|x1 − y1|3) +O(|x′ − y′|2)
where x = (x1, x

′) ∈ Rd−1. To do this, let γ̃ : (−ε, ε)→ R2 be a smooth unit speed curve with curvature
κ(t) = ‖γ′′(t)‖ and normal vector n(t) = γ′′(t)/κ(t). We assume κ(0) 6= 0 and κ′(0) 6= 0. Then, let ˜σ(t)
be the loci of the osculating circle for γ̃(t). That is,

σ̃

γ̃

Figure 1. We show an example of a curve γ̃ and its loci of osculating circles, σ̃.

σ̃(t) = γ̃(t) + n(t)
κ(t) .

Finally, define
γ(x) := (γ̃(x1) + n(x1)|x′|2, x′) , σ(x) := (σ̃(x1) + γ′(x1)|x′|2, x′).

Then we have
|γ(y)− σ(x)|2 = |γ̃(y1)− σ̃(x1)|2 +O(|x′|2 + |y′|2) + |x′ − y′|2.

Let d(x1, y1) = |γ̃(y1)− σ̃(x1)|. Then,
∂x1d(x1, x1) = ∂2

x1d(x1, x1) = 0.
Hence,

d(x1, y1) = d(x1, x1) +O(|x1 − y1|3)
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and we have near x = y = 0,
|γ(y)− σ(x)| = |γ(0)− σ(0)|+O(|x1 − y1|3) +O(|x′|2 + |y′|2).

Moreover,
〈σ(x)− γ(y), νy〉
|γ(y)− σ(x)| = 1 +O(|x− y|).

Now, with χ ∈ C∞0 (Rd−1), let
χλ = χ(M(λγ1x1, λ

γ2x′)).
Then,

‖χλ‖L2(Rd−1) = CMλ
− d−2

2 γ2− 1
2γ1 ,

∫
B(0,ε)

χλdx1dx
′ ≥ CMλ−(d−2)γ2−γ1 .

Next, define χλ,1 ∈ L2(Γ1) by χλ,1(γ(y)) := χλ(y) and χλ,2 ∈ L2(Γ2) by χλ,2(σ(x)) := χλ(x).
Then

(A.23) ‖χλ,1‖L2(Γ1) , ‖χλ,2‖L2(Γ2) ≥ C‖χλ‖L2(Rd−1),

∫
Γ1
χλ,1 ,

∫
Γ2
χλ,2 ≥ C

∫
B(0,ε)

χλ.

Moreover, for x , y ∈ suppχλ

(A.24) |γ(y)−σ(x)| = |γ(0)−σ(0)|+O(M−1(λ−3γ1+λ−2γ2)) , 〈σ(x)− γ(y), νy〉
|γ(y)− σ(x)| = 1+O(λ−γ1+λ−γ2).

Hence, choosing γ1 = 1/3 and γ2 = 1/2 and M large enough, using (A.23), (A.24) in (A.21) we have

‖χλ,2(x)D+
λ χλ,1‖L2(Γ2) ≥ Cλ

d−1
2 −

d−2
2 −

1
3−

d−2
4 −

1
6

which implies
‖D+

λ χλ,1‖L2(Γ2) ≥ Cλ
1
6 ‖χλ,1‖L2(Γ1).

All that remains to show is that Γ2 and Γ1 can be chosen so that they are curved. To see this, let γ̃
be a unit speed reparametrization of t 7→ (t+ 1, (t+ 1)2). (This example is shown in Figure 1.) Then,
a parametrization of Γ1 is given by

(t, x′) 7→
(

(t+ 1, (t+ 1)2) + (−2(t+ 1), 1)√
1 + 4(t+ 1)2 |x

′|2, x′
)

and a parametrization of Γ2 is given by

(t, x′) 7→
((
−4(t+ 1)3, 3(t+ 1)2 + 1

2

)
+ (1, 2(t+ 1))√

1 + 4(t+ 1)2 |x
′|2, x′

)
.

Then, a simple calculation verifies that near (0, 0) these surfaces are curved. Hence, letting Γ be a
curved hypersurface containing Γ1 and Γ2 completes the proof of the estimate (A.20)
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