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Abstract. We establish high energy L2 estimates for the restriction of the free Green’s function
to hypersurfaces in Rd, d ≥ 1. As an application, we estimate the size of a logarithmic resonance
free region for scattering by potentials of the form V ⊗ δΓ, where Γ ⊂ Rd is a finite union of
compact subsets of embedded hypersurfaces. In odd dimensions we prove a resonance expansion
for solutions to the wave equation with such a potential.

1. Introduction

Scattering by potentials is used in math and physics to study waves in many physical systems
(see for example [7], [16], [29], [11] and the references therein). Examples include acoustics in
concert halls, scattering in open microwave cavities, and scattering of particles by atoms. A case
of recent interest is scattering in quantum corrals that are constructed using scanning tunneling
microscopes [4], [10]. One model for this system is that of a delta function potential on the
boundary of a domain Ω ⊂ Rd (see for example [2], [4], [10]). In this paper we study scattering
by a generalization of such delta function potentials on hypersurfaces.

We assume that Γ ⊂ Rd is a finite union Γ =
⋃m
j=1 Γj , where each Γj is a compact subset of

an embedded C1,1 hypersurface; equivalently, by subdividing we may take Γj to be a compact
subset of the graph of a C1,1 function with respect to some coordinate. Here, C1,1 is the space
of functions whose first derivatives are Lipschitz continuous. The Bunimovich stadium is an
example of a domain in two dimensions with boundary that is C1,1, but not C2. Let δΓ denote
(d − 1)-dimensional Hausdorff measure on Γ, which on each Γj agrees with Lebesgue induced
surface measure on Γj , and let L2(Γ) be the associated space of square-integrable functions on Γ.
Although the compact sets Γj and Γ may be irregular, the estimates we need in L2(Γ) will follow
from L2 estimates over the hypersurfaces containing the Γj , hence the detailed analysis in this
paper will take place on C1,1 hypersurfaces. Let γu denote restriction of u to Γ. We take V to
be a bounded, self-adjoint operator on L2(Γ), and for u ∈ H1

loc(Rd) define (V ⊗ δΓ)u := (V γu)δΓ.
Let −∆V,Γ be the unbounded self-adjoint operator

−∆V,Γ := −∆ + V ⊗ δΓ .

(See Section 2.1 for the formal definition of −∆V,Γ.) We will show that σess(−∆V,Γ) = [0,∞), and
that there are at most a finite number of eigenvalues, each of finite rank, in the interval (−∞, 0].
In contrast to the case of potentials V ∈ L∞comp(Rd) (see [21, Section XIII.13] or [11, Section 3.2]),
there may be embedded eigenvalues in [0,∞), which can arise from the allowed non-local nature
of V ⊗ δΓ.
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Γ ∂Ω

Figure 1.1. Examples of a finite union of compact subsets of strictly convex
hypersurfaces, and of the boundary of a domain of C1,1 regularity.

Resonances are defined as poles of the meromorphic continuation from Imλ� 1 of the resolvent
RV (λ) = (−∆V,Γ − λ2)−1 .

If the dimension d is odd, RV (λ) admits a meromorphic continuation to the entire complex plane,
and to the logarithmic covering space of C \ {0} if d is even (see Section 6). In even dimensions
we will restrict attention to −π ≤ arg λ ≤ 2π, so Imλ > 0 implies 0 < arg λ < π.

The imaginary part of a resonance gives the decay rate of the corresponding term in the
resonance expansion of solutions to the wave equation. Thus, resonances close to the real axis
give information about long term behavior of waves. In particular, since the seminal work of
Lax-Phillips [16] and Vainberg [28], resonance free regions near the real axis have been used to
understand decay of waves.

In this paper, we demonstrate the existence of a resonance free region for −∆V,Γ on a general
class of Γ.

Theorem 1. Let Γ ⊂ Rd be a finite union of compact subsets of embedded C1,1 hypersurfaces, and
suppose V is a bounded self-adjoint operator on L2(Γ). Then for all ε > 0 there exists Rε < ∞
such that, if λ is a resonance for −∆V,Γ, then

(1.1) Imλ ≤ −
(

1
2d
−1
Γ − ε

)
log(|Reλ|) if |Reλ| ≥ Rε ,

where dΓ is the diameter of the set Γ. If d = 1 then we can replace 1
2 by 1 in (1.1). For d ≥ 2, if Γ

can be written as a finite union of compact subsets of strictly convex embedded C2,1 hypersurfaces,
then we can replace 1

2 by 2
3 in (1.1).

By a strictly convex hypersurface we understand that, with proper choice of normal direction,
the second fundamental form of the hypersurface is strictly positive definite, as in the example
on the left in Figure 1.

Remarks:

• In case of potential functions V ∈ L∞comp(Rd) or V ∈ C∞c (Rd), the resonance free region
can be improved. For any M < ∞ and ε > 0, the inequality in (1.1) can be replaced by,
see [17], [18], and [11, Section 3.2]

Imλ ≤

−
(
D−1

suppV − ε
)

log(|Reλ|) if |Reλ| ≥ Rε , V ∈ L∞comp(Rd) ,
−M log(|Reλ|) if |Reλ| ≥ RM , V ∈ C∞c (Rd) .
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• The bounds on the size of the resonance free region for −∆V,Γ are not generally optimal,
for example in the case that Γ = ∂B(0, 1) ⊂ R2. In [13], the first author uses a microlocal
analysis of the transmission problem (1.8) to obtain sharp bounds in the case that Γ = ∂Ω
is C∞ with Ω strictly convex. In this case, one can replace the constant 1

2 in (1) by 1
and, under certain nontrapping conditions, one obtains an arbitrarily large logarithmic
resonance free region as in the case of V ∈ C∞c (Rd).
• For Γ the boundary of a smooth, strictly convex domain Ω ⊂ Rd, [9] and [19] studied

resonances and local energy decay for the transmission problem with differing wave speeds
on Ω and Rd\Ω, and with prescribed matching conditions at ∂Ω as opposed to the potential
V ⊗ δΓ considered in this paper.

Let R0(λ) : H−1
comp(Rd) → H1

loc(Rd) be the outgoing free resolvent (−∆ − λ2)−1, which is
defined by the Fourier multiplier (|ξ|2 − λ2)−1 for Imλ > 0, and extended to its domain by
analytic continuation in λ; see [11]. In odd dimensions with d ≥ 3 the domain of R0(λ) is C. If
d = 1 the domain is C\{0}, and R0(λ) has a simple pole at 0. In even dimensions the domain
of R0(λ) is the logarithmic cover of C\{0}. Theorem 1 follows from bounds on the restriction of
R0(λ) to Γ. Let γ : H

1
2 +ε
loc (Rd)→ L2(Γ) denote restriction to Γ, and γ∗ : L2(Γ)→ H

− 1
2−ε

comp (Rd) its
dual, so γ∗ is the inclusion map f 7→ fδΓ. The trace estimate γ : H

1
2 +ε
loc (Rd) → L2(Γ) for ε > 0

follows from the fact that it holds for subsets Γj of C1,1 graphs, which is seen by mapping the
graph surface to a hyperplane by a C1,1 diffeomorphism. For λ in the domain of R0(λ) we then
define G(λ) : L2(Γ)→ L2(Γ) by restricting the kernel G0(λ, x, y) of R0(λ) to Γ,

G(λ) := γ R0(λ) γ∗ .

If d = 1 then δΓ is a finite sum of point measures, and from the formulaG0(λ, x, y) = −(2iλ)−1eiλ|x−y|

we see, using the notation of Theorem 2 below, that

(1.2) ‖G(λ)‖L2(Γ)→L2(Γ) ≤ C |λ|−1 edΓ(Imλ)− , d = 1 .
In higher dimensions, we establish the following theorem to prove Theorem 1.

Theorem 2. Let Γ ⊂ Rd be a finite union of compact subsets of embedded C1,1 hypersurfaces.
Then G(λ) is a compact operator on L2(Γ) for λ in the domain of R0(λ), and there exists C such
that

(1.3) ‖G(λ)‖L2(Γ)→L2(Γ) ≤
{
C 〈λ〉−

1
2 log〈λ−1〉 edΓ(Imλ)− , d = 2 ,

C 〈λ〉−
1
2 log〈λ〉 edΓ(Imλ)− , d ≥ 3 ,

where dΓ is the diameter of the set Γ, and we assume −π ≤ arg λ ≤ 2π if d is even.
If Γ can be written as a finite union of compact subsets of strictly convex C2,1 hypersurfaces,

then for some C and all λ in the domain of R0(λ) the following stronger estimate holds

(1.4) ‖G(λ)‖L2(Γ)→L2(Γ) ≤
{
C 〈λ〉−

2
3 log〈λ〉 log〈λ−1〉 edΓ(Imλ)− , d = 2 ,

C 〈λ〉−
2
3 log〈λ〉 edΓ(Imλ)− , d ≥ 3 .

Here we set 〈λ〉 = (2 + |λ|2)
1
2 , and (Imλ)− = max(0,− Imλ) . Compactness follows easily

by Rellich’s embedding theorem, or the bounds on G0(λ, x, y) in Section 2.2. The powers 1
2
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and 2
3 in (1.3) and (1.4), respectively, are in general optimal. This follows from the fact that the

corresponding estimates for the restriction of eigenfunctions in Section 4 are the best possible. The
logarithmic divergence at λ = 0 for d = 2 in both (1.3) and (1.4) arises from similar divergence for
R0(λ). The factor of log〈λ〉 in the estimates, which arises from our method of proof via restriction
estimates, is likely not needed. For Γ contained in a hyperplane, the estimate (1.3) for d ≥ 3
holds without it, and it does not arise in our direct proof of (1.3) for d = 2. We also expect that
estimate (1.4) holds for subsets of strictly convex C1,1 hypersurfaces, but do not pursue that here.

In the case that Imλ ≥ |λ|
1
2 , respectively Imλ ≥ |λ|

2
3 , the above bounds can be improved

upon.

Theorem 3. Let Γ ⊂ Rd be a finite union of compact subsets of embedded C1,1 hypersurfaces.
Then there esists C such that for 0 ≤ arg λ ≤ π,

‖G(λ)‖L2(Γ)→L2(Γ) ≤
{
C 〈Imλ〉−1 log〈λ−1〉, d = 2 ,
C 〈Imλ〉−1 , d ≥ 3 .

We next use the results above to analyze the long term behavior of waves scattered by the
potential V ⊗ δΓ. Theorem 1 implies that there are only a finite number of resonances in the
set Imλ > −A , for any A < ∞. We give a resonance expansion in odd dimensions for the wave
equation

(1.5)
(
∂2
t −∆ + V ⊗ δΓ

)
u = 0 , u(0, x) = 0, ∂tu(0, x) = g ∈ L2

comp ,

with solution given by U(t)g, where U(t)g can be expressed as an integral (7.1) of the re-
solvent RV (λ)g. This is also equivalent to the more standard functional calculus expression√
−∆V,Γ

−1
sin(t

√
−∆V,Γ

)
g .

Let mR(λ) be the order of the pole of RV (λ) at λ. We let DN be the domain of (−∆V,Γ)N , and
define

Dloc = {u : χu ∈ D1 whenever χ ∈ C∞c (Rd) and χ = 1 on a neighborhood of Γ
}
.

Theorem 4. Let d ≥ 1 be odd, and assume that Γ ⊂ Rd is a finite union of compact subsets of
embedded C1,1 hypersurfaces, and that V is a self-adjoint operator on L2(Γ).

Let 0 > −µ2
1 > · · · > −µ2

K and 0 < ν2
1 < · · · < ν2

M be the nonzero eigenvalues of −∆V,Γ, with
µj , νj > 0, and {λk} the resonances with Imλ < 0. Then for any A > 0 and g ∈ L2

comp , the
solution U(t)g to (1.5) admits an expansion

(1.6) U(t)g =
K∑
j=1

(2µj)−1etµjΠµjg + tΠ0g + P0g +
M∑
k=1

νj
−1 sin(tνj)Πνjg

+
∑

Imλk>−A

mR(λk)−1∑
`=0

e−itλk t` Pλk,`g + EA(t)g ,

where Πµj and Πνj respectively denote the projections onto the −µ2
j and ν2

j eigenspaces, and Π0
the projection onto the 0-eigenspace. The maps Pλk,` and P0 are bounded from L2

comp → Dloc.
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The operator EA(t) : L2
comp → L2

loc has the following property: for any χ ∈ C∞c (Rd) equal to 1
on a neighborhood of Γ, and N ≥ 0, there exists TA,χ,N <∞ and CA,χ,N <∞ so that

‖χEA(t)χ‖L2→DN ≤ CA,χ,N e
−At , t > TA,χ,N .

We refer to Section 7 for more details on the operators Pλk,` and P0. The restriction that t be
larger than a constant depending on the diameter of χ is necessary to ensure that χEA(t)χg has
no H2N singularities away from Γ in supp(χ), although our argument does not give an optimal
value for TA,χ,N .

Under the assumption that Γ = ∂Ω for a bounded open domain Ω ⊂ Rd, and that V and ∂Ω
satisfy higher regularity assumptions, for g ∈ L2 we obtain estimates on χEA(t)χg in the spaces

EN := H1(Rd) ∩
(
HN (Ω)⊕HN (Rd \ Ω)

)
, N ≥ 1 .

If ∂Ω is of C1,1 regularity, and V is bounded H
1
2 (∂Ω) → H

1
2 (∂Ω), then we show in Section 2

that D1 ⊂ E2, and convergence in E2 follows from Theorem 4. If ∂Ω is of C∞ regularity, and V is
bounded Hs(∂Ω) → Hs(∂Ω) for every s, then DN is a closed subspace of E2N (see (2.3) below),
and we have the following.

Theorem 5. Suppose that Γ = ∂Ω is C∞, and that V is a self-adjoint map on L2(∂Ω) which
is bounded from Hs(∂Ω) → Hs(∂Ω) for all s. Then the operator EA(t) defined in (1.6) has the
following property: for any χ ∈ C∞c (Rd) equal to 1 on a neighborhood of Ω, and N ≥ 1, there
exists TA,χ,N <∞ and CA,χ,N <∞ so that

‖χEA(t)χ‖L2→EN ≤ CA,χ,N e
−At , t > TA,χ,N .

In addition to describing resonances as poles of the meromorphic continuation of the resolvent,
we will give a more concrete description of resonances in Sections 6 and 7. We show in Proposition
6.2 and the comments following it, that if Γ is as in Theorem 1 then λ is a resonance if and only
if there is a nontrivial λ-outgoing solution u ∈ H1

loc(Rd) to the equation

(1.7) (−∆− λ2 + V ⊗ δΓ)u = 0 .

Here we say that u is λ-outgoing if for some R <∞, and some compactly supported distribution
g, we can write

u(x) =
(
R0(λ)g

)
(x) for |x| ≥ R .

In case d = 1 this definition needs to be modified for λ = 0. Noting that for d = 1 and λ 6= 0,
a λ-outgoing solution equals csgn(x)e

iλ|x| for |x| ≥ R, we say u is 0-outgoing when d = 1 if u is
separately constant on x ≥ R and x ≤ −R, for some R <∞.

In case Γ = ∂Ω for a bounded domain Ω, and V : H
1
2 (∂Ω)→ H

1
2 (∂Ω), we show that λ-outgoing

solvability of (1.7) is equivalent to solving the following transmission problem. We remark that the
Sobolev spaces Hs(∂Ω) are well defined for |s| ≤ 2 if ∂Ω is C1,1, since these spaces are preserved
under C1,1 changes of coordinates. Also, since E2,loc(Rd) ⊂ H1

loc(Rd), if u ∈ E2,loc then its trace
γu belongs to H

1
2 (∂Ω).

Proposition 1.1. Assume Ω is a bounded domain in Rd with ∂Ω a C1,1 hypersurface, and V is a
self-adjoint map on L2(∂Ω) which maps H

1
2 (∂Ω)→ H

1
2 (∂Ω). Then λ is a resonance of −∆V,∂Ω if
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and only if the following system has a nontrivial solution u ∈ E2,loc(Rd) such that, with u|Ω = u1 ,
u|Rd\Ω = u2 ,

(1.8)


(−∆− λ2)u1 = 0 in Ω
(−∆− λ2)u2 = 0 in Rd \ Ω
∂νu1 + ∂ν′u2 + V γu = 0 on ∂Ω
u2 is λ-outgoing

Here, ∂ν and ∂ν′ are respectively the interior and exterior normal derivatives of u at ∂Ω .

The outline of this paper is as follows. In Section 2 we present the definition of −∆V,Ω and
its domain, as well as some preliminary bounds on the outgoing Green’s function G0(λ, x, y). In
Section 3 we give a simple proof of Theorem 2 for d = 2. In Section 4 we establish Theorem 2 for
Imλ > 0 in all dimensions, deriving the estimates from restriction estimates for eigenfunctions of
the Laplacian. We include a proof of the desired restriction estimate for hypersurfaces of regularity
C1,1, since the result appears new, and prove Theorem 3. In Section 5 we complete the proof of
Theorem 2 for Imλ ≤ 0 using the Phragmén-Lindelöf theorem. In Section 6 we demonstrate the
meromorphic continuation of RV (λ), give the proof of Theorem 1, relate resonances to solvability
of (1.7) by reduction to an equation on Γ, and prove Proposition 1.1. In Section 7 we give more
details on the structure of the meromorphic continuation of RV (λ). We establish mapping bounds
for compact cutoffs of RV (λ), and use these to prove Theorems 4 and 5 by a contour integration
argument. In Section 8 we prove a needed transmission property estimate for boundaries of
regularity C1,1.

2. Preliminaries

2.1. Determination of −∆V,Γ and its Domain. We define the operator −∆V,Γ using the
symmetric quadratic form, with dense domain H1(Rd) ⊂ L2(Rd),

QV,Γ(u,w) := 〈∇u,∇w〉L2(Rd) + 〈V γu, γw〉L2(Γ) .

For Γ a finite union of compact subsets of C1,1 hypersurfaces (indeed for Γ a bounded subset
of a Lipschitz graph), as a special case of (7.7) we can bound

‖γu‖L2(Γ) ≤ C ‖u‖
1
2
L2‖u‖

1
2
H1 ≤ C ε ‖u‖H1 + C ε−1‖u‖L2 .

It follows that there exist c , C > 0 such that

|QV,Γ(u,w)| ≤ C ‖u‖H1‖w‖H1 and c ‖u‖2H1 ≤ QV,Γ(u, u) + C‖u‖2L2 .

By Reed-Simon [20, Theorem VIII.15], QV,Γ(u,w) is determined by a unique self-adjoint operator
−∆V,Γ, with domain D consisting of u ∈ H1 such that QV,Γ(u,w) ≤ C‖w‖L2 for all w ∈ H1(Rd).
By Rellich’s embedding lemma, the potential term is compact relative to H1. It follows by Weyl’s
essential spectrum theorem, see [21, Theorem XIII.14], that σess(−∆V,Γ) = [0,∞). Additonally,
there are at most a finite number of eigenvalues in (−∞, 0], each of finite multiplicity.
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If u ∈ D, by the Riesz representation theorem we then have QV,Γ(u,w) = 〈g, w〉 for some
g ∈ L2(Rd), and taking w ∈ C∞c (Rd) shows that in the sense of distributions
(2.1) −∆u+ (V γu)δΓ = g .

Conversely, if u ∈ H1(Rd) and (2.1) holds for some g ∈ L2(Rd), then by density of C∞c ⊂ H1 we
have QV,Γ(u,w) = 〈g, w〉 for w ∈ H1(Rd), hence u ∈ D, and −∆V,Γu is given by the left hand side
of (2.1). We thus can define

‖u‖D = ‖u‖H1 + ‖∆V,Γu‖L2 ,

where finiteness of the second term carries the assumption that ∆V,Γu ∈ L2.
We set D1 = D, and recursively define DN ⊂ D1 for N ≥ 2 by the condition ∆V,Γu ∈ DN−1.

We also recursively define
‖u‖DN = ‖u‖H1 + ‖∆V,Γu‖DN−1 , N ≥ 2 .

Suppose that χ ∈ C∞c (Rd \ Γ) and that u ∈ H1(Rd) solves (2.1). Then,
∆(χu) = χg + 2∇χ · ∇u+ (∆χ)u ∈ L2(Rd) .

Hence,
‖χu‖H2 ≤ Cχ‖u‖D .

That is, D ⊂ H1(Rd) ∩H2
loc(Rd \ Γ), with continuous inclusion. Similar arguments show that

DN ⊂ H1(Rd) ∩H2N
loc (Rd \ Γ) .

The behavior of u near Γ may be more singular. For V and Γ as in Theorem 1, from (2.1)
and the fact that (V γu)δΓ ∈ H−

1
2−ε(Rd) for all ε > 0, we conclude that u ∈ H

3
2−ε(Rd). However,

under additional assumptions on V and Γ we can give a full description of D near Γ.
For the purposes of the remainder of this section we assume that Γ = ∂Ω for some bounded

open domain Ω ⊂ Rd, and that ∂Ω is a C1,1 hypersurface; that is, locally ∂Ω can be written as the
graph of a C1,1 function. We assume also that V : H

1
2 (∂Ω)→ H

1
2 (∂Ω). Then since u ∈ H1(Rd),

and γ : Hs(Rd)→ Hs− 1
2 (∂Ω) for s ∈ (1

2 , 2], we have V γu ∈ H
1
2 (∂Ω). By (2.1) we can write u as

(−∆)−1g plus the single layer potential of a H
1
2 (∂Ω) function, hence Proposition 8.2 shows that

D ⊂ E2 = H1(Rd) ∩ (H2(Ω)⊕H2(Rd \ Ω)) ,
with continuous inclusion. We remark that H2(Ω) and H2(Rd\Ω) can be identified as restrictions
of H2(Rd) functions; see [8] and [23, Theorem VI.5]. Thus, if u ∈ D then u has a well defined
trace on ∂Ω of regularity H

3
2 (∂Ω), and the first derivatives of u have one-sided traces from the

interior and exterior, of regularity H
1
2 (∂Ω).

For w ∈ H1(Rd) and u ∈ E2, it follows from Green’s identities that
QV,∂Ω(u,w) = 〈−∆u,w〉L2(Ω) + 〈−∆u,w〉L2(Rd\Ω) + 〈∂νu+ ∂ν′u+ V γu, γw〉L2(∂Ω) ,

where ∂ν and ∂ν′ denote the exterior normal derivatives from Ω and Rd \ Ω. Thus, in the case
that V is bounded from H

1
2 (∂Ω) → H

1
2 (∂Ω), we can completely characterize the domain D of

the self-adjoint operator −∆V,∂Ω as
(2.2) D =

{
u ∈ E2 such that ∂νu+ ∂ν′u+ V γu = 0

}
,
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in which case ∆V,∂Ωu = ∆u|Ω ⊕∆u|Rd\Ω.
If ∂Ω is a C∞ hypersurface, and V : Hs(∂Ω)→ Hs(∂Ω) is bounded for all s, then Proposition

8.1 and induction, as in the proof of Lemma 7.2, show that DN ⊂ E2N . Induction also shows
that DN can be characterized as the subspace of E2N consisting of u that satisfy the following
matching conditions:
(2.3)
γ
(
∆ju|Ω

)
= γ

(
∆ju|Rd\Ω

)
, ∂ν

(
∆ju|Ω

)
+∂ν′

(
∆ju|Rd\Ω

)
+V γ

(
∆ju|Ω

)
= 0 , for 0 ≤ j ≤ N−1 .

2.2. Bounds on Green’s function. We conclude this section by reviewing bounds on the con-
volution kernel G0(λ, x, y) associated to the operator R0(λ). It can be written in terms of the
Hankel functions of the first kind,

G0(λ, x, y) = Cd λ
d−2 (λ|x− y|)− d−2

2 H
(1)
d
2−1

(
λ|x− y|

)
,

for some constant Cd. If d ≥ 3 is odd, this can be written as a finite expansion

G0(λ, x, y) = λd−2 eiλ|x−y|
d−2∑
j= d−1

2

cd,j(
λ|x− y|

)j .
For x 6= y this form extends to λ ∈ C, and defines the analytic extension of R0(λ). In particular,
for d ≥ 3 odd we have the upper bounds

(2.4) |G0(λ, x, y)| .

|x− y|
2−d , |x− y| ≤ |λ|−1 ,

e− Imλ|x−y| |λ|
d−3

2 |x− y|
1−d

2 , |x− y| ≥ |λ|−1 .

If d ≥ 4 is even, the bounds (2.4) hold for Imλ > 0, as well as for the analytic extension to
−π ≤ arg λ ≤ 2π. For −π < arg λ < 2π this follows by the asymptotics of H(1)

n (z); see for
example [1, (9.2.3)]. To see that it extends to the closed sector, we use Stone’s formula (see [11]),

G0(eiπλ, x, y)−G0(λ, x, y) = i

2
λd−2

(2π)d−1

∫
Sd−1

eiλ〈x−y,ω〉 dω = Cd λ
d−2 (λ|x−y|)− d−2

2 J d
2−1

(
λ|x−y|

)
where eiπ indicates analytic continuation through positive angle π, and where dω is surface mea-
sure on the unit sphere Sd−1 ⊂ Rd. This holds in all dimensions for λ > 0, and hence for the
analytic continuation. The bounds (2.4) then follow from the asymptotics of Jn(z) and the bounds
for Imλ ≥ 0. We also note as a consequence of the above that, for λ ∈ R \ {0}, and any sheet of
the continuation in even dimensions,

(2.5) G0(eiπλ, x, y)−G0(λ, x, y) = πi (sgnλ)d |λ|−1(2π)−d δ̂Sd−1
λ

(x− y) ,

where δSd−1
λ

denotes surface measure on the sphere |ξ| = |λ| in Rd, and ĝ(ξ) =
∫
e−i〈x,ξ〉 g(x) dx .

If d = 2, one has the bounds, see [1, (9.1.8)-(9.2.3)],

(2.6) |G0(λ, x, y)| .

| log(λ|x− y|) | , |x− y| ≤ 1
2 |λ|

−1 ,

e− Imλ|x−y| |λ|−
1
2 |x− y|−

1
2 , |x− y| ≥ 1

2 |λ|
−1 .



RESTRICTION BOUNDS FOR THE FREE RESOLVENT AND RESONANCES IN LOSSY SCATTERING 9

3. Estimates for d = 2

In this section we give an elementary proof of estimate (1.3) of Theorem 2 for d = 2. Indeed,
we can prove the following stronger result, which holds on subsets of Lipschitz graphs.

Theorem 6. Suppose that d = 2, and that Γ is a finite union Γ =
⋃
j Γj where each Γj is a

compact subset of a Lipschitz graph. Then for −π ≤ arg λ ≤ 2π , with 1-dimensional Hausdorff
measure on Γ,

‖G(λ)f‖L2(Γ) ≤

C 〈λ〉
− 1

2 log〈λ−1〉 〈Imλ〉−
1
2 ‖f‖L2(Γ) , Imλ ≥ 0 ,

C 〈λ〉−
1
2 log〈λ−1〉 e−dΓ Imλ ‖f‖L2(Γ) , Imλ ≤ 0 .

Proof. The following kernel bounds hold by (2.6), since |x− y| is bounded above,

|G0(λ, x, y)| ≤ C e− Imλ|x−y| 〈λ〉−
1
2 log〈λ−1〉 |x− y|−

1
2 .

By the Schur test and symmetry of the kernel, the operator norm of G(λ) is bounded by the
following

sup
x

∫
Γ
|G0(λ, x, y)| dσ(y)

where σ is 1-dimensional Hausdorff measure, which equals arclength measure on each Γj .
First consider Imλ ≤ 0. Then e− Imλ|x−y| ≤ e−dΓ Imλ for x, y ∈ Γ. After rotation, we can write

Γj as the graph y2 = Fj(y1) for y1 in a compact set Kj , and with uniform Lipschitz bounds on
Fj . Then on Γj we have dσ(y) ≈ dy1, and

sup
x

∫
Γj
|x− y|−

1
2 dσ(y) ≤ C sup

x1

∫
Kj

|x1 − y1|−
1
2 dy1 ≤ C D

1/2
Kj

.

For Imλ ≥ 0, we use instead the bound

sup
x1

∫
Kj

e− Imλ|x1−y1| |x1 − y1|−
1
2 dy1 ≤ Cj 〈Imλ〉−

1
2 .

Summing over finitely many j then yields the desired bounds over Γ. �

4. Resolvent Bounds in the Upper Half Plane

In this section, we prove Theorems 2 and 3 for Imλ > 0. We assume that Γ is a finite union
of compact subsets of embedded C1,1 hypersurfaces, with (d− 1)-dimensional Hausdorff measure.
For f ∈ L2(Γ) we use γ∗f = fδΓ to denote the induced compactly supported distribution. If
|λ| ≤ 2, the estimates of Theorems 2 and 3 follow from Theorem 6 in case d = 2, and from the
estimates (2.4) in case d ≥ 3. So in this section we assume |λ| ≥ 2.

For Imλ > 0 let R0(λ) = (−∆−λ2)−1 be the operator with Fourier multiplier (|ξ|2−λ2)−1. The
estimates of both Theorem 2 and Theorem 3 are equivalent to bounds on the following quantity,
for f, g ∈ L2(Γ),

(4.1) Qλ(f, g) :=
∫
R0(λ)(γ∗f) γ∗g .
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For Imλ > 0, the right hand side (4.1) agrees with the distributional pairing of R0(λ)(γ∗f) ∈ H
3
2−ε

with γ∗g ∈ H−
1
2−ε , and hence by the Plancherel theorem

(4.2) Qλ(f, g) =
∫
γ̂∗f(ξ) γ̂∗g(ξ)
|ξ|2 − λ2 dξ .

We start with the following Lemma, which shows that bounds on Qλ(f, g) for λ in the upper half
plane can be deduced from appropriate restriction bounds on the Fourier transform of γ∗f .

Lemma 4.1. Suppose that for some α ∈ (0, 1) the following estimate holds for r > 0,

(4.3)
∫ ∣∣∣γ̂∗f(ξ)

∣∣∣2 δ(|ξ| − r) dξ ≤ C 〈r〉α‖f‖2L2(Γ) .

Then, for λ in the upper half plane with |λ| ≥ 2,

|Qλ(f, g)| ≤ C |λ|α−1 log |λ| ‖f‖L2(Γ)‖g‖L2(Γ) ,

where Qλ is as in (4.1).

Proof. Consider first the integral in (4.2) over
∣∣|ξ| − |λ|∣∣ ≥ 1. Since

∣∣|ξ|2 − λ2∣∣ ≥ ∣∣|ξ|2 − |λ|2∣∣, by
the Schwartz inequality and (4.3) this piece of the integral is bounded by

‖f‖L2(Γ)‖g‖L2(Γ)

∫
|r−|λ||≥1

〈r〉α
∣∣ r2 − |λ|2

∣∣−1
dr ≤ C |λ|α−1 log |λ| ‖f‖L2(Γ)‖g‖L2(Γ).

Next, if Imλ ≥ 1, then
∣∣|ξ|2 − λ2∣∣ ≥ |λ|, and by (4.3)∣∣∣∣∣

∫
||ξ|−|λ||≤1

γ̂∗f(ξ) γ̂∗g(ξ)
|ξ|2 − λ2 dξ

∣∣∣∣∣ ≤ C |λ|α−1 ‖f‖L2(Γ)‖g‖L2(Γ).

Thus, we may restrict our attention to 0 ≤ Imλ ≤ 1 and
∣∣|ξ| − |λ|∣∣ ≤ 1. For this piece we use

that (4.3) implies

(4.4)
∫ ∣∣∣∇ξ γ̂∗f(ξ)

∣∣∣2 δ(|ξ| − r) dξ ≤ C 〈r〉α‖f‖2L2(Γ) ,

due to the compact support of γ∗f .
We consider Reλ ≥ 0, the case Reλ ≤ 0 following similarly, and write

1
|ξ|2 − λ2 = 1

|ξ|+ λ

ξ

|ξ|
· ∇ξ log(|ξ| − λ) ,

where the logarithm is well defined since Im(|ξ| − λ) < 0. Let χ(r) = 1 for |r| ≤ 1 and vanish for
|r| ≥ 3

2 . We then use integration by parts, together with (4.3) and (4.4) to bound∣∣∣∣∣
∫
χ(|ξ| − |λ|) 1

|ξ|+ λ
γ̂∗f(ξ) γ̂∗g(ξ) ξ

|ξ|
· ∇ξ log(|ξ| − λ) dξ

∣∣∣∣∣ ≤ C |λ|α−1 ‖f‖L2(Γ)‖g‖L2(Γ).

�
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The proof of Theorem 2 is thus accomplished by showing that (4.3) holds with α = 1
2 if Γ is a

compact subset of a C1,1 hypersurface, and with α = 1
3 if Γ is a compact subset of a strictly convex

C2,1 hypersurface. Since we work locally we assume that Γ is given by the graph xn = F (x′),
where by an extension argument we assume that F is a C1,1 function (respectively C2,1 function)
defined on Rn, and we replace surface measure on Γ by dx′. By scaling we may assume that
|∇F | ≤ 1

20 , and by translation that F (0) = 0. Also, the estimate (4.3) is trivial by compactness
of Γ if r ≤ 1, so we may assume r ≥ 1.

The estimate (4.3) is equivalent, by duality, to an estimate in L2(Γ) on the restriction to Γ
of eigenfunctions of the Laplacian. To see this, let r ≥ 1, and let δSd−1

r
= δ(|ξ| − r) be surface

measure on the sphere Sd−1
r of radius r. Assume that g(ξ) is a function belonging to L2(Sd−1

r ),
and define

Tg(x) =
∫
ei〈x,ξ〉g(ξ) δ(|ξ| − r) dξ .

Let χ(x′) ∈ C∞c (Rd−1) be supported in the unit ball. By duality, (4.3) with α = 1
2 is then

equivalent to the following estimate

(4.5)
(∫ ∣∣(Tg)(x′, F (x′))

∣∣2 χ(x′) dx′
) 1

2
≤ C r

1
4 ‖g‖L2(Sd−1

r ) ,

and for α = 1
3 is equivalent to the same estimate with r

1
4 replaced by r

1
6 .

The estimate (4.5) is known as a restriction estimate for eigenfunctions of the Laplacian. Lp
generalizations in the setting of a smooth Riemannian manifold, with restriction to a smooth
submanifold, were studied by Burq, Gérard and Tzvetkov in [6]. Semi-classical analogues were
proved by Tacy [24] and Hassell-Tacy [15]. The L2 estimates, again in the smooth setting, were
noted by Tataru [26] as being a corollary of an estimate of Greenleaf and Seeger [14]. These
estimates were generalized to the setting of restriction to smooth submanifolds in Riemannian
manifolds with metrics of C1,1 regularity by Blair [3]. In making a change of coordinates to
flatten a submanifold the resulting metric has one lower order of regularity, thus the estimates of
[3] do not apply directly to C1,1 submanifolds, and so we include here the proof of the L2 estimate
on C1,1 hypersurfaces of Euclidean space. The estimate with α = 1

3 for strictly convex C2,1

hypersurfaces does follow from [3], so we consider here just the case of a general C1,1 hypersurface
and α = 1

2 .
We in turn derive (4.5) from a square function estimate, Lemma 4.2. The estimate (4.6) is

a characteristic trace estimate for solutions to the wave equation, but the proof more closely
resembles that of dispersive estimates for the wave equation. Our proof of Lemma 4.2 is inspired
by [3], although the analysis here is simpler since we work on Euclidean space, and seek only L2

bounds on the restriction of eigenfunctions.
The reduction of (4.5) to the estimate (4.6) below is attained by letting f = ψTg, where

ψ ∈ C∞c (Rd) equals 1 on the ball of radius 3. Then cos(t
√
−∆)f = cos(tr)Tg for |x| < 2 and

|t| < 1. On the other hand, f̂ = ψ̂ ∗
(
g δSd−1

r

)
is rapidly decreasing away from the sphere |ξ| = r,

so the difference between f̂ and its truncation to 3
4r ≤ |ξ| ≤

3
2r is easily handled. Also, a simple

calculation shows that, uniformly over r,
‖ψ̂ ∗ (g δSd−1

r
)‖L2(Rd) ≤ C ‖g‖L2(Sd−1

r ) .
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The proof of (4.5), hence of (4.3) and Theorem 2, is then completed by the following.

Lemma 4.2. Suppose that r ≥ 1 and f ∈ L2(Rd), and f̂(ξ) is supported in the region 3
4r ≤ |ξ| ≤

3
2r. If F ∈ C1,1(Rd−1) is real valued, with ‖∇F‖L∞ ≤ 1

20 , and F (0) = 0, then

(4.6)
(∫ 1

0

∥∥∥(cos(t
√
−∆)f

)
(x′, F (x′))

∥∥∥4

L2(Rd−1,dx′)
dt

) 1
4
≤ C r

1
4 ‖f‖L2(Rd) .

Proof. Given a function Fr such that supx′ |Fr(x′)−F (x′)| ≤ r−1, then (4.6) holds if we can show
that

(4.7)
(∫ 1

0

∥∥∥(cos(t
√
−∆)f

)
(x′, Fr(x′))

∥∥∥4

L2(Rd−1,dx′)
dt

) 1
4
≤ C r

1
4 ‖f‖L2(Rd) .

This follows from the fact that (4.7), together with the frequency localization of f and translation
invariance, implies the gradient bound, uniformly over s ∈ R,(∫ 1

0

∥∥∥∂s(cos(t
√
−∆)f

)
(x′, Fr(x′) + s)

∥∥∥4

L2(Rd−1,dx′)
dt

) 1
4
≤ C r

5
4 ‖f‖L2(Rd) .

We will take Fr to be a mollification of the C1,1 function F on the r−
1
2 spatial scale. Precisely,

let Fr = φr1/2 ∗ F , where φr1/2 = r
d−1

2 φ(r
1
2x′), with φ a Schwartz function on Rd−1 of integral 1.

Then
sup
x′
|Fr(x′)− F (x′)| ≤ C r−1 , sup

x′
|∇Fr(x′)−∇F (x′)| ≤ C r−

1
2 ,

and Fr is a smooth function with derivative bounds

(4.8) sup
x′
|∂αx′Fr(x′)| ≤ C r

|α|−2
2 , |α| ≥ 2 .

In establishing (4.7) we may replace cos(t
√
−∆) by exp(it

√
−∆), the bounds for exp(−it

√
−∆)

being similar. Let Tf(t, x′) =
(
exp(it

√
−∆)f

)
(x′, Fr(x′)). We deduce bounds for T : L2(Rd) →

L4([0, 1], L2(Rd−1)) from bounds for TT ∗. Precisely, let Kr(t− s, x− y) denote the kernel of the
operator

ρ
(
r−1D) exp

(
i(t− s)

√
−∆

)
, D := −i∂ ,

where ρ is a smooth function supported in the region 1
2 < |ξ| < 2. It then suffices to show that

(4.9)∥∥∥∥∫ 1

0

∫
Kr
(
t−s, (x′−y′, Fr(x′)−Fr(y′))

)
f(s, y′) dy′ds

∥∥∥∥
L4([0,1],L2(Rd−1))

≤ C r
1
2 ‖f‖L4/3([0,1],L2(Rd−1))

since this implies ‖TT ∗f‖L4([0,1],L2(Rd−1)) ≤ C r
1
2 ‖f‖L4/3([0,1],L2(Rd−1)), and hence (4.7). We recall

the Hardy-Littlewood-Sobolev inequality,

‖|t|−
1
2 ∗ f‖L4(R) ≤ C‖f‖L4/3(R) .

Translation invariance in t then shows that (4.9) is a consequence of the following fixed-time
estimate, for |t| < 1,

(4.10)
∥∥∥∥∫ Kr

(
t, (x′ − y′, Fr(x′)− Fr(y′))

)
f(y′) dy′

∥∥∥∥
L2(Rd−1)

≤ C r
1
2 |t|−

1
2 ‖f‖L2(Rd−1) .
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If |t| ≤ r−1, where we recall r ≥ 1, then (4.10) follows by the Schur test, since if |t|r ≤ 1 then for
any N ≥ 0

|Kr(t, x− y)| ≤ CN rd
(
1 + r |x− y|

)−N
.

We thus restrict attention to |t| > r−1, where we establish (4.10) using wave packet techniques
that were developed to prove dispersive estimates for wave equations with C1,1 coefficients; see
[22].

To prove (4.10) for a given t with |t| > r−1, we make an almost orthogonal decomposition
Kr =

∑
jKj of the convolution kernel Kr(t, ·). This decomposition is based on dividing the

frequency space into essentially disjoint cubes of sidelength ≈ r
1
2 |t|−

1
2 . On each of these cubes

the phase of the wave operator is essentially linear in the frequency variable, and hence each term
Kj behaves as a normalized convolution operator in x.

We fix t with |t| ∈ [r−1, 1], and let δ = r
1
2 |t|−

1
2 . Let ηj count the elements of the lattice of

spacing δ for which |ηj | ∈ [1
2r, 2r], and write

ρ(r−1ξ) =
∑
j

Qj(ξ) ,

where Qj is supported in the cube of sidelength δ centered on ηj , and the following bounds hold
on the derivatives of Qj , uniformly over r, t and j,

(4.11)
∣∣∂αξ Qj(ξ)∣∣ ≤ Cα δ−|α| .

We then write Kr(t, x) =
∑
Kj(x) , where we suppress the dependence on r and t, and set

Kj(x) = (2π)−d
∫
ei〈x,ξ〉+it|ξ|Qj(ξ) dξ .

The multiplier t|ξ| − t|ηj |−1〈ηj , ξ〉 satisfies the derivative bounds (4.11) on the support of Qj ,
hence we may write

ei〈x,ξ〉+it|ξ|Qj(ξ) = ei〈x+t |ηj |−1ηj ,ξ〉 Q̃j(ξ) ,
with Q̃j having the same support and derivative conditions as Qj . Consequently, we may write

Kj(x) = δd ei〈x,ηj〉+it|ηj |χj
(
δ(x+ t |ηj |−1ηj)

)
,

where χj is a Schwartz function, with seminorm bounds independent of j. We let
K̃j(x′, y′) = Kj

(
x′ − y′, Fr(x′)− Fr(y′)

)
.

It follows from the Schur test that
‖K̃j‖L2(Rd−1)→L2(Rd−1) ≤ C δ .

To handle the sum over j we establish the estimate

(4.12) ‖K̃jK̃
∗
i ‖L2→L2 + ‖K̃∗j K̃i‖L2→L2 ≤ CN δ2(1 + δ−1|ηi − ηj |

)−N
,

from which the bound (4.10) follows by the Cotlar-Stein lemma. Since K̃j and K̃∗j have similar
form, we restrict attention to the first term in (4.12).

The kernel (K̃jK̃
∗
i )(x′, z′) has absolute value dominated by

(4.13)
∣∣(K̃jK̃

∗
i )(x′, z′)

∣∣ ≤ C δ2d
∫ (

1 + δ |x+ t |ηj |−1ηj − y|
)−N(1 + δ |z + t |ηi|−1ηi − y|

)−N
dy′
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where we use the notation y = (y′, Fr(y′)), and similarly for x and z.
Suppose that |(ηj)n| ≥ 1

4 |ηj |. Then since |Fr(x′)− Fr(y′)| ≤ 1
10 |x

′ − y′|,∣∣x′ + t |ηj |−1η′j − y′
∣∣+ 10

∣∣Fr(x′) + t |ηj |−1(ηj)n − Fr(y′)
∣∣ ≥ 5 t ,

hence (4.13) and the Schur test leads to the bound

‖K̃jK̃
∗
i ‖L2→L2 ≤ CN δ2(1 + δ t

)−N
,

which is stronger than (4.12) since |ηi − ηj | ≤ 6r. The same estimate holds if |(ηi)n| ≥ 1
4 |ηi|.

We thus assume that |(ηj)n| ≤ 1
4 |ηj |, and similarly for ηi. Consider then the case where

|(ηi − ηj)n| ≥ |(ηi − ηj)′|. Then we have∣∣(|ηj |−1ηj − |ηi|−1ηi)n
∣∣ ≥ 1

2 + 2
√

2
∣∣(|ηj |−1ηj − |ηi|−1ηi)′

∣∣ ,
and since 1

2r ≤ |ηi|, |ηj | ≤ 2r,∣∣(|ηj |−1ηj − |ηi|−1ηi)n
∣∣ ≥ 1

4
√

2
r−1|ηi − ηj | .

Then since |∇Fr| ≤ 1
10 ,

|x′− z′+ t(|ηj |−1ηj − |ηi|−1ηi)′|+ 10 |Fr(x′)−Fr(z′) + t(|ηj |−1ηj − |ηi|−1ηi)n| ≥
5

4
√

2
δ−2|ηj − ηi| ,

hence (4.13) and the Schur test show that ‖K̃jK̃
∗
i ‖L2→L2 ≤ CN δ2(1 + δ−1|ηj − ηi|

)−N as desired.
We thus consider the case that |(ηj−ηi)n| ≤ |(ηj−ηi)′|. In this case we need use the oscillations

of the kernels to bound ‖K̃jK̃
∗
i ‖L2→L2 . Up to a factor of modulus 1, the kernel (KjK

∗
i )(x′, z′)

can be written as

δ2d
∫
e−i〈y

′,η′j−η
′
i〉−iFr(y

′)(ηj−ηi)n χj
(
δ(x+ t |ηj |−1ηj − y)

)
χi
(
δ(z + t |ηi|−1ηi − y)

)
dy′ ,

where again y = (y′, Fr(y′)), and similarly for x and z. Since |∇Fr(y′)| ≤ 1
10 , and |(ηj − ηi)n| ≤

|η′j − η′i| , we have
|η′j − η′i +∇Fr(y′)(ηj − ηi)n| ≥ 1

2 |ηj − ηi| .

Using the estimates (4.8), and that r
1
2 ≤ δ, an integration by parts argument dominates the kernel

(KjK
∗
i )(x′, z′) by

δ2d(1 + δ−1|ηj − ηi|
)−N ∫ (1 + δ |x+ t |ηj |−1ηj − y|

)−N(1 + δ |z + t |ηi|−1ηi − y|
)−N

dy′ ,

which leads to the desired norm bounds, concluding the proof of (4.12), and hence of Lemma
4.2. �

We conclude this section with the proof of Theorem 3. The estimates for 0 < Imλ < 1 follow
from Theorem 2, so we consider Imλ ≥ 1. As above, we need to establish bounds on Qλ(f, g)
defined by (4.2).
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First consider the case that f = g and Γ is a graph xn = F (x′). We then have uniform bounds

sup
ξn

∫ ∣∣γ̂∗f(ξ′, ξn)
∣∣2 dξ′ ≤ C ‖f‖2L2(Γ) .

We use the lower bound
∣∣|ξ|2 − λ2∣∣ ≥ |λ| | Imλ| to dominate∫
|ξn|≤2|λ|

∣∣γ̂∗f(ξ)
∣∣2∣∣|ξ|2 − λ2
∣∣ dξ ≤ C 〈Imλ〉−1 ‖f‖2L2(Γ) .

For |ξn| ≥ 2|λ| we have
∣∣|ξ|2 − λ2∣∣ & |ξn|2 , hence∫

|ξn|≥2|λ|

∣∣γ̂∗f(ξ)
∣∣2∣∣|ξ|2 − λ2
∣∣ dξ ≤ C 〈λ〉−1 ‖f‖2L2(Γ) .

The case f 6= g and Γ a finite union of graphs then follows by a partition of unity argument and
the Schwarz inequality. �

5. Resolvent Bounds in the Lower Half Plane

We consider d ≥ 2, and Γ as in Theorem 2. For λ ∈ R and λ 6= 0, the resolvent R0(λ) is
defined as the limit R0(λ+ i0) from Imλ > 0. The estimates of Theorem 2 for Imλ > 0, proved
in Section 4, show that, for λ ∈ R with |λ| > 2, and for some a > 0 and b ∈ {0, 1}, we have

‖γ R0(λ) γ∗‖L2(Γ)→L2(Γ) ≤ C |λ|−a
(
log |λ|

)b
.

In this section we extend this to bounds for Imλ < 0, to complete the proof of Theorem 2.

Lemma 5.1. Suppose that Γ is as in Theorem 2 and that for λ ∈ R, |λ| ≥ 2, the following holds

‖γ R0(λ) γ∗‖L2(Γ)→L2(Γ) ≤ C |λ|−a(log |λ|)b .

Then for Imλ ≤ 0 , |λ| ≥ 2 , and arg λ ∈ [−π, 0] ∪ [π, 2π] in the case that d is even,

‖γ R0(λ) γ∗‖L2(Γ)→L2(Γ) ≤ C |λ|−a(log |λ|)be−dΓ Imλ

where dΓ is the diameter of Γ.

Proof. First consider the case that d is odd. Suppose that ‖f‖L2(Γ) = ‖g‖L2(Γ) = 1, and consider
the function

F (λ) = e−idΓλ λa
(
log λ)−bQλ(f, g) , Imλ ≤ 0 , |λ| ≥ 2 ,

where log λ is defined for arg λ ∈ (π2 ,
5π
2 ) . Then |F (λ)| ≤ C for λ ∈ R \ [−2, 2] and for |λ| = 2.

On the other hand, the resolvent kernel bounds (2.4) and the Schur test show that |F (λ)| has at
most polynomial growth in λ for Imλ ≤ 0, since the kernel |x− x′|2−d is integrable over a d− 1
dimensional hypersurface. It follows by the Phragmén-Lindelöf theorem that |F (λ)| ≤ C in the
lower half plane.

In the case that d is even, we note that the bounds of the lemma hold for R0(λ) if arg λ = 2π
and |λ| ≥ 2. This follows since R0(eiπλ)−R0(λ) satisfies the same bounds as R0(λ) for arg λ = 0,
and by (2.5) we have R0(e2iπλ)−R0(eiπλ) = R0(eiπλ)−R0(λ) . We may thus apply the Phragmén-
Lindelöf theorem on the sheet π ≤ arg λ ≤ 2π . A similar argument works for −π ≤ arg λ ≤ 0 . �
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6. Application to Resonance Free Regions

In this section we establish Theorem 1. First, we demonstrate the meromorphic continuation of
RV (λ) from Imλ� 1 to λ ∈ C (to the logarithmic cover in even dimensions) following arguments
similar to those in the case where V ∈ L∞comp(Rd). We assume Γ is a finite union of compact subsets
of C1,1 hypersurfaces. We use ρ to denote a function in C∞c (Rd) with ρ = 1 on a neighborhood
of Γ; the following results hold for any such choice of ρ. For λ in the domain of R0(λ) we define

K(λ) = (V ⊗ δΓ)R0(λ) = γ∗V γR0(λ) .

The operator K(λ)ρ : H−1(Rd) → H
− 1

2−εcomp is compact on H−1(Rd) by Rellich’s embedding theo-
rem. Furthermore, I + K(λ)ρ is invertible if Imλ � 1. To see this, note that g + K(λ)ρg = 0
and g ∈ H−1(Rd) implies that g = γ∗f where f ∈ L2(Γ). It follows that f + V G(λ)f = 0, which
implies f = 0 for Imλ � 1 by Theorem 3. This also shows that I + K(λ)ρ is invertible on
H−1(Rd) if and only if I + V G(λ) is invertible on L2(Γ).

Then (I + K(λ)ρ)−1 is a meromorphic family of Fredholm operators on H−1(Rd) for λ in
the domain of R0(λ). This follows by analytic Fredholm theory, see e.g. Proposition 7.4 of [27,
Chapter 9]. Note that for d = 1 the domain is C\{0}. We prove meromorphicity at 0 for d = 1
following Proposition 6.2 below; for now if d = 1 we assume λ ∈ C\{0}.

Since K = γ∗V γR0, we have that

(6.1) (I +K(λ)ρ)−1γ∗ = γ∗(I + V G(λ))−1 ,

where (I + V G(λ))−1 acts on L2(Γ). Hence,

(I +K(λ)ρ)−1 = I − (I +K(λ)ρ)−1K(λ)ρ
= I − γ∗(I + V G(λ))−1V γR0(λ)ρ .

The meromorphic extension of the resolvent RV (λ) for −∆V,Γ then equals, for any ρ as above,

RV (λ) = R0(λ)
(
I +K(λ)ρ

)−1 (
I −K(λ)(1− ρ)

)
(6.2)

=
(
R0(λ)−R0(λ)γ∗(I + V G(λ))−1V γR0(λ)ρ

) (
I −K(λ)(1− ρ)

)
.

In particular, given g ∈ H−1
comp we can take ρg = g to obtain

(6.3) RV (λ)g = R0(λ)g −R0(λ)γ∗(I + V G(λ))−1V γR0(λ)g .

Consequently, RV (λ) : H−1
comp → H1

loc, and its image is λ-outgoing.
The resolvent set Λ is defined as the set of poles of RV (λ). Since(

I −K(λ)(1− ρ)
)(
I +K(λ)(1− ρ)

)
= I ,

the preceding arguments show that Λ agrees with the poles of (I + V G(λ))−1, except possibly
λ = 0 when d = 1. If ‖G(λ)‖L2→L2 < ‖V ‖−1

L2→L2 , then I+V G(λ) is invertible by Neumann series.
By Theorem 2 and (1.2), when Imλ < 0 this is the case provided that |λ| > 2 and

| Imλ| ≤ d−1
Γ
(
a log |λ| − logC − log(log |λ|)

)
for some C, where a = 1

2 or 2
3 or 1 accordingly, which completes the proof of Theorem 1. �
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Remark: For λ in the domain of R0(λ), the L2(Γ) kernel of I + G(λ)V is in one-to-one corre-
spondence with the kernel of I + V G(λ) by the map h → V h. That (I + G(λ)V )h = 0 implies
(I +V G(λ))V h = 0 is immediate. Conversely, (I +V G(λ))f = 0 expresses f = −V G(λ)f := V h,
and (I +G(λ)V )h = −G(λ)(I + V G(λ))f = 0.

To equate resonances to λ-outgoing solutions of (1.7), we use the following extension of the
Rellich uniqueness theorem.

Proposition 6.1 (Rellich uniqueness). If λ belongs to the domain of R0(λ), then a global λ-
outgoing solution to (−∆− λ2)u = 0 must vanish identically.

Proof. For 0 < arg λ < π and g a compactly supported distribution, R0(λ)g is exponentially
decreasing in |x|, so Green’s identities yield, for u = R0(λ)g and for R� 1, that

u(x) =
∫
|y|=R

(
G0(λ, x, y) ∂ν′u(y)− ∂ν′yG0(λ, x, y)u(y)

)
dσ(y) , |x| > R .

By analytic continuation this holds for all λ in the domain of R0(λ). If u is an entire solution
then the right hand side is real-analytic in R, and we may let R→ 0 to deduce that u ≡ 0. �

Proposition 6.2. For λ in the domain of R0(λ), there is a one-to-one correspondence of λ-
outgoing solutions u ∈ H1

loc to (1.7) and solutions f ∈ L2(Γ) to (I + V G(λ))f = 0, given by
u = R0(λ)(γ∗f), and f = −V γu.

Proof. If (I+V G(λ))f = 0, f ∈ L2(Γ), then u = R0(λ)(γ∗f) is a λ-outgoing solution to −∆V,Γu =
λ2u. Indeed u ∈ H1

loc and is λ-outgoing by definition, (−∆ − λ2)u = γ∗f , and (V ⊗ δΓ)u =
γ∗V G(λ)f = −γ∗f .

Conversely, if u ∈ H1
loc is a λ-outgoing solution to −∆u−λ2u = −(V ⊗δΓ)u, then by Proposition

6.1

(6.4) u = −R0(λ)(V ⊗ δΓ)u = −
∫

Γ
G0(λ, x, y) (V γu)(y) .

Hence if f = −V γu, then f + V G(λ)f = 0 . By (6.4) the correspondence between u and V γu is
one-to-one. As a result, the space of solutions u for given λ is finite dimensional, since it is in
one-to-one correspondence with the kernel of a Fredholm operator. �

The case d = 1 and λ = 0. For d = 1, we need to prove that RV (λ) is meromorphic at λ = 0,
and equate existence of 0-outgoing (i.e. separately constant near ±∞) solutions of −∆V,Γu = 0
to 0 being a pole. When d = 1, I + V G(λ) is a matrix valued meromorphic function for λ ∈ C,
invertible on L2(Γ) ≡ Cm for Imλ� 1, so det(I+V G(λ)), hence (I+V G(λ))−1, is meromorphic
on C. Equation (6.3), which holds for λ ∈ C\{0}, and meromorphicity of R0(λ) on C, then
establishes meromorphicity of RV (λ) on C, in particular that 0 is either a regular point or a
pole. Furthermore, since γ∗ has finite dimensional range, so do the singular terms of RV (λ) at
λ = 0. It remains to show that RV (λ) is singular at 0 if and only if there is a nontrivial solution
u ∈ H1

loc(R) ∩ L∞(R) to ∆u = γ∗V γu, since u ∈ L∞(R) is equivalent to 0-outgoing for such u.
By the discussion preceding (7.4) below, a pole at 0 implies existence of a 0-outgoing solution to
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(1.7). Conversely, if RV (λ) is holomorphic at λ = 0, then (6.1) and the identity (see [11, Section
2.2])

(I +K(λ)ρ)−1 = I − γ∗V γRV (λ)ρ

shows that the matrix (I + V G(λ))−1 is then holomorphic at λ = 0. Considering adjoints, we
must then have

(6.5) ‖f‖L2(Γ) ≤ C ‖(I +G(λ)V )f‖L2(Γ) , f ∈ L2(Γ) , |λ| � 1 .

Suppose u ∈ H1
loc ∩ L∞ satisfies ∆u = γ∗V γu . Let Γ = {x1, . . . , xm} ⊂ R , and V γu =

(c1, . . . , cm) ∈ Cm. Then

u(x) = 1
2
∑
xj∈Γ

cj |x− xj | + ax+ b , for some a, b ∈ C .

Since u ∈ L∞ we must have
∑
j cj = 0 and a = 0. Hence, with Eij = −1

2 |xi − xj |, we have

〈γ1, V γu〉 = 0 , (I + EV )γu = γb ,

where 1 and b are constant functions on R. Since G(λ)jk = −(2iλ)−1 exp(iλ|xj − xk|), then for
f ∈ L2(Γ)

(I +G(λ)V )f = −(2iλ)−1〈γ1, V f〉 γ1 + (I + EV )f +O(λ) f .

Assume first that V γ1 6= 0, and take f = γu + 2iλ ‖V γ1‖−2 V γb. Then (I + G(λ)V )f = O(λ),
contradicting (6.5) unless γu = 0, hence u ≡ 0.

We conclude by showing that RV (λ) regular at λ = 0 implies V γ1 6= 0. To see this, note that
if V γ1 = 0 (in which case −∆V,Γ1 = 0 would give a 0-outgoing solution) then K(λ) is regular at
λ = 0, since for g ∈ H−1

comp

V γR0(λ)g = V γ
(
R0(λ)g + (2iλ)−1〈1, g〉 1

)
= −V γ

∫ (
eiλ|x−y| − 1

2iλ

)
g(y) dy .

Then (6.2) shows that for g ∈ H−1
comp, by taking ρ = 1 on a neighborhood of supp(g) ∪ Γ, we can

write R0(λ)g = RV (λ)(I +K(λ))g, hence RV (λ) must be singular at 0 since R0(λ) is. �

Proof of Proposition 1.1. Suppose now that Γ = ∂Ω for a compact domain Ω ⊂ Rd with C1,1

boundary. Assume also that V : H
1
2 (∂Ω) → H

1
2 (∂Ω). Then the analysis leading to (2.2) shows

that a λ-outgoing solution of (1.7) with u ∈ H1
loc belongs to E2,loc and satisfies the transmission

problem (1.8). Conversely, suppose u ∈ E2,loc satisfies (1.8). For w ∈ C∞c (Rd), Green’s identities
yield ∫

Rd
u (−∆− λ2)w =

∫
∂Ω

(∂νu+ ∂ν′u) γw = −
∫
∂Ω

(V γu) γw .

Hence u is a λ-outgoing H1
loc distributional solution to (−∆− λ2)u+ (V ⊗ δ∂Ω)u = 0, and by the

above λ is a resonance. �
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7. Resonance Expansion for the Wave Equation

In this section we prove Theorems 4 and 5. We will use the following representation of the
wave group U(t) acting on g ∈ L2

comp(Rd),

(7.1) U(t)g = 1
2π

∫ ∞+iα

−∞+iα
e−itλRV (λ)g dλ ,

where α ≥ 1 is chosen so that µj < α for all j, where −µ2
j are the negative eigenvalues of −∆V,Γ

with µj > 0. This representation follows by the spectral theorem and the resolvent estimates
we establish in this section; see (7.11). The expansion (1.6) is proven by a contour integration
argument applied to (7.1). We start this section by studying the structure of the resolvent RV (λ)
near its poles, and then prove norm estimates on RV (λ) that justify the change of contour used
to prove Theorem 4. We then establish higher order estimates on RV (λ), which are used to prove
Theorem 5.

Let Λ denote the set of resonances; since we work in odd dimensions Λ is a discrete subset of C.
The elements of Λ such that Imλ > 0 consist of iµj where −µ2

j are the eigenvalues of −∆V,Γ in
(−∞, 0) with µj > 0. That there are only a finite number of such eigenvalues follows by relative
compactness of V ⊗ δΓ with respect to −∆. The resolvent near iµj takes the form

RV (λ) =
−Πµj

λ2 + µ2
j

+ holomorphic =
iΠµj

2µj(λ− iµj)
+ holomorphic ,

where Πµj is projection onto the −µ2
j -eigenspace of −∆V,Γ. In particular we note that

(7.2) Res
(
e−itλRV (λ), iµj

)
= i(2µj)−1etµj Πµj .

We note that if there is a compactly supported eigenfunction u for −µ2
j , then −iµj must also be

a resonance. To see this, by compact support of u we can write

u(x) =
∫
G0(−iµj , x, y)(−∆ + µ2

j )u(y) dy = −R0(−iµj)(V ⊗ δΓ)u ,

hence u is also −iµj outgoing, and −iµj is a resonance by the results of Section 6.
In contrast to the case of V ∈ L∞comp(Rd), there may be resonances λ ∈ R \ {0}. For an

example in one dimension of V and Γ with a positive (hence embedded) eigenvalue, consider
Γ =

{
−π

2 , 0,
π
2
}
, and V given by

(V γu)(x) =
{
u(0) , x = ±π

2
u(π2 ) + u(−π

2 ) , x = 0
Then the function

u(x) =
{

cos(x) , |x| ≤ π
2

0 , |x| ≥ π
2

is compactly supported, and satisfies −∆V,Γu − u = 0. It is λ-outgoing for both λ = ±1 by the
argument above, hence yields resonances at λ = ±1. Using piecewise linear functions one can
also produce an example of a compactly supported eigenfunction with eigenvalue 0, and using
piecewise combinations of {ex, e−x} produce a compactly supported eigenfunction with eigenvalue
−1, for appropriate choices of V and Γ.
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For λ ∈ R \ {0} and any dimension d, a λ-outgoing solution u ∈ H1
loc to −∆V,Γu = λ2u must

in fact be a compactly supported eigenfunction. To see this, observe that for R� 1

0 =
∫
|x|≤R

u
(
−∆u+ (V ⊗ δΓ

)
u− λ2u) =

∫
|x|≤R

(
|∇u|2 − λ2|u|2

)
+
∫
|x|=R

u ∂νu+
∫

Γ
γuV γu

shows that Im
∫
|x|=R u ∂νu = 0. The proof of Proposition 1.1 and Lemma 1.2 of [27, Chapter 9]

then show that u ≡ 0 on |x| ≥ R0, hence by analytic continuation u vanishes on the unbounded
component of Rd \Γ. For V ∈ L∞comp(Rd), unique continuation (see [21, Theorem XIII.63]) would
yield u ≡ 0. For singular potentials and non-local V unique continuation can fail by the example
above, but we note that if Γ coincides with the boundary of the unbounded component of Rd \ Γ
then there are no resonances λ ∈ R \ {0}, since in that case γu = 0, hence (V ⊗ δΓ)u = 0. Thus
u is a compactly supported eigenfunction of −∆ on Rd, and must vanish identically.

The resonances in R\{0} form a finite set by Theorem 1. By Proposition 6.2 and the preceding,
λ ∈ R \ {0} is a resonance if and only if λ2 is an eigenvalue of −∆V,Γ, and the real resonances
are thus symmetric about 0. We indicate them by ±νj , with νj > 0. The spectral bound
‖RV (λ)‖L2→L2 ≤ C ε−1| Imλ|−1, for |Reλ| ≥ ε and Imλ > 0, shows that the pole at νj is simple.
By inspection, for Imλ > 0 near ±νj we have

RV (λ) =
−Πνj

λ2 − ν2
j

+ holomorphic =
∓Πνj

2νj(λ∓ νj)
+ holomorphic ,

where Πνj is projection onto the ν2
j eigenspace, hence

(7.3) Res
(
e−itλRV (λ),±νj

)
= ∓(2νj)−1e∓itνj Πνj .

The nature of the residue at 0 depends on the dimension d. For d ≥ 5, λ-outgoing solutions to
(1.7) for λ = 0 must be square-integrable, hence if 0 ∈ Λ there is a corresponding eigenfunction.
For d = 1, a square-integrable solution to (1.7) must be compactly supported; there may also be
0-outgoing solutions (i.e. constant near ±∞) that are not eigenfunctions for 0. For d = 3, if 0 ∈ Λ
there may be square-integrable and/or non square-integrable solutions to (1.7) since, depending
on whether the integral over Γ of f = V γu vanishes or not, u = R0(0)γ∗f satisfies |u| . |x|−2 or
|u| ≈ |x|−1 for |x| � 1.

For |λ| � 1 and Imλ > 0, the spectral bound ‖RV (λ)‖L2→L2 ≤ C(|λ| Imλ
)−1 shows that

RV (λ) = −Π0
λ2 + iP0

λ
+ holomorphic .

Since R∗V (−λ) = RV (λ) for Imλ > 0, it follows that Π0 and P0 are symmetric maps of L2
comp to

Dloc, in that 〈P0g, h〉 = 〈g,P0h〉 for g, h ∈ L2
comp, similarly for Π0, and their images are solutions

of (1.7) with λ = 0. Since Π0 is bounded on L2(Rd) it is then self-adjoint, and since it is the
identity on the 0-eigenspace we see that Π0 is projection onto the 0-eigenspace of −∆V,Γ. For
d ≥ 3 the range of Π0 is 0-outgoing, since u = −R0(0)(V ⊗ δΓ)u when u ∈ D solves −∆V,Γu = 0.
We remark that the arguments of [11, Section 3.3] show that P0 = 0 for d ≥ 5, and that the range
of P0 is 0-outgoing if d = 3, although we do not use that here. To see that the range of Π0 and
P0 are 0-outgoing when d = 1, we note that (∂x − i sgn(x)λ)(RV (λ)g)(x) = 0 for |x| � 1 and
g ∈ L2

comp. The range of Π0 is supported in the convex hull of Γ when d = 1 (hence is 0-outoing),
and by letting λ→ 0 this implies ∂x(P0g)(x) = 0 for |x| � 1, hence the range of P0 is 0-outgoing.
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We can then write
(7.4) Res

(
e−itλRV (λ), 0

)
= itΠ0 + iP0 .

The remaining resonances form a discrete set {λk} ⊂ {Imλ < 0}, with respective order mR(λk).
Since λk 6= 0, the Laurent expansion of RV (λ) about λk can be written in the following form

RV (λ) = i

mR(λk)∑
`=1

(−∆V,Γ − λ2
k)`−1Pλk

(λ2 − λ2
k)`

+ holomorphic .

Here Pλk : L2
comp → Dloc is given by

Pλk = − 1
2π

∮
λk

RV (λ) 2λ dλ ,

and (−∆V,Γ − λ2
k)mR(λk)Pλk = 0 . We can thus write

(7.5) Res
(
e−itλRV (λ), λk

)
= i

mR(λk)−1∑
`=0

t` e−itλk Pλk,`

where Pλk,` : L2
comp → Dloc. When ` = mR(λk) − 1, Pλk,`g is λk-outgoing, as seen by writing

the Laurent expansion of RV (λ) in terms of that for (I +K(λ)ρ)−1. In particular, if mR(λk) = 1,
then Res

(
e−itλRV (λ), λk

)
= i(2λk)−1e−itλk Pλk , where Pλk maps L2

comp to λk-outgoing solutions
of (−∆V,Γ − λ2

k)u = 0 .

7.1. Resolvent Estimates. We first establish bounds on the cutoff of RV (λ), for λ in the reso-
nance free region established in Section 6.

Lemma 7.1. Suppose that Γ is a finite union of compact subsets of C1,1 hypersurfaces. Then for
all ε > 0 there exists R <∞, so that if χ ∈ C∞c (Rd) equals 1 on a neighborhood of Γ, |Reλ| > R,
and Imλ ≥ −(1

2d
−1
Γ − ε) log(|Reλ|), then

‖χRV (λ)χg‖L2 ≤ C 〈λ〉−1 e2dχ(Imλ)−‖g‖L2 ,

‖χRV (λ)χg‖H1 ≤ C e2dχ(Imλ)−‖g‖L2 ,

‖χRV (λ)χg‖D ≤ C 〈λ〉 e2dχ(Imλ)−‖g‖L2 ,

where RV (λ) is the meromorphic continuation of (−∆V,Γ − λ2)−1, dχ = diam(suppχ), and
(Imλ)− = max(0,− Imλ). If Imλ ≥ 1, |Reλ| > R, then the estimates hold with χ ≡ 1, set-
ting dχ(Imλ)− = 0.

Remark: The region in which this estimate is valid can be improved by replacing 1
2 by 2

3 if the
components of Γ are subsets of strictly convex C2,1 hypersurfaces.

Proof. We recall the Sobolev estimates for the cutoff of the free resolvent if |λ| ≥ 1, see e.g. [11,
Chapter 3]

‖χR0(λ)χ‖Hs→Ht ≤ C〈λ〉t−s−1edχ(Imλ)− , s ≤ t ≤ s+ 2 .
In addition, when Imλ ≥ 1 these estimates hold globally, that is with χ ≡ 1 and taking
dχ(Imλ)− = 0.
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This in turn leads to the following restriction estimates

‖γR0(λ)χg‖L2(Γ) ≤ C 〈λ〉−s−
1
2 edχ(Imλ)−‖g‖Hs , −3

2 < s < 1
2 ,

‖γ∇R0(λ)χg‖L2(Γ) ≤ C 〈λ〉−s+
1
2 edχ(Imλ)−‖g‖Hs , −1

2 < s < 3
2 .

(7.6)

To prove (7.6) we apply the following trace bound separately on each component of Γ,

(7.7) ‖γg‖L2(Γ) ≤ Ct,t′ ‖g‖θHt ‖g‖1−θ
Ht′ , 0 ≤ t < 1

2 < t′ , θ(t− 1
2) + (1− θ)(t′ − 1

2) = 0 .

The estimate (7.7) follows by considering the case of a graph xn = F (x′), and applying Hölder’s
inequality in x′ and the following scale-invariant one dimensional estimate in xn

‖g‖L∞(R) ≤ Ct,t′ ‖ |D|tg‖θL2(R) ‖ |D|
t′g‖1−θL2(R) ,

with t, t′, θ as in (7.7). This estimate follows by fixing r so that ‖ |D|tgr‖L2(R) = ‖ |D|t′gr‖L2(R),
where gr(x) = g(rx), and noting ‖ĝr‖L1(R) ≤ 1

2Ct,t′
(
‖ |ξ|tĝr‖L2(R) + ‖ |ξ|t′ ĝr‖L2(R)

)
if t < 1

2 < t′,
for some Ct,t′ <∞.

By duality (7.6) implies the following extension estimate,

(7.8) ‖χR0(λ)γ∗f‖Hs ≤ C 〈λ〉s−
1
2 edχ(Imλ)−‖f‖L2(Γ) , −1

2 < s < 3
2 .

Now fix g ∈ L2(Rd), and set u = RV (λ)χg . Then by (6.3) we have u = R0(λ)χg − w, where
w = R0(λ)γ∗(I + V G(λ))−1V γR0(λ)χg .

By Theorem 2, for |Reλ| large enough and Imλ ≥ −(1
2d
−1
Ω −ε) log(|Reλ|), the operator I+V G(λ)

is invertible on L2(Γ), and we have
‖(I + V G(λ))−1‖L2(Γ)→L2(Γ) ≤ C , ‖V G(λ)‖L2(Γ)→L2(Γ) < 1 .

It follows from (7.6) that, for −3
2 < s < 1

2 ,

‖(I + V G(λ))−1V γR0(λ)χg‖L2(Γ) ≤ C 〈λ〉−s−
1
2 edχ(Imλ)−‖g‖Hs .

Then (7.8) gives the following, for −3
2 < s < 1

2 , and with global bounds if Imλ ≥ 1,

‖χw‖L2 ≤ C 〈λ〉−s−1e2dχ(Imλ)−‖g‖Hs ,(7.9)

‖χw‖H1 ≤ C 〈λ〉−s e2dχ(Imλ)−‖g‖Hs .(7.10)

By the L2 → Ht bounds for χR0(λ)χ the same holds for s = 0 with w replaced by u, which yields
the bounds of Lemma 7.1 except for the ones on ‖χu‖D.

To obtain bounds on ‖χu‖D , we write
∆(χu) = −χ2g + 2(∇χ) · ∇u+ (∆χ)u− λ2χu+ (V ⊗ δΓ)u ,

and note by (7.9) and (7.10) that

‖(∇χ) · ∇u‖L2 + ‖(∆χ)u‖L2 + 〈λ〉2‖χu‖L2 ≤ C 〈λ〉 e2dχ(Imλ)−‖g‖L2 .

Consequently,
‖∆V,Γ(χu)‖L2 ≤ C 〈λ〉 e2dχ(Imλ)−‖g‖L2 ,

yielding the desired bound on ‖χu‖D. �
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7.2. Proof of Theorem 4. We prove here the case N = 1 of Theorem 4; that is, that the
expansion holds with bounds on ‖χEA(t)χ‖L2→D. The case N ≥ 2 will be handled following the
proof of Theorem 5. We follow the treatment in [25] and suppose that g ∈ Hs for some 0 < s < 1

2 ,
then proceed by density of Hs in L2. As above write

RV (λ)χg = w(λ) +R0(λ)χg .

Choose α ≥ 1 so that µj < α for all j, where −µ2
j are the negative eigenvalues of −∆V,Γ. By

the spectral theorem we can write

U(t)χg = 1
2π

∫ ∞+iα

−∞+iα
e−itλRV (λ)χg dλ

= 1
2π

∫ ∞+iα

−∞+iα
e−itλ

(
w(λ) +R0(λ)χg

)
dλ .(7.11)

The integral is norm convergent in L2(Rd), by (7.9) and the norm convergence of the free resolvent
integral. After localizing by χ on the left, for t sufficiently large we seek to deform the contour
R + iα to

ΣA =
{
λ ∈ C : Imλ = −A− c log

(
2 + |Reλ|

)}
where we choose c < 1

2d
−1
Γ , and assume A is such that there are no resonances on ΣA. We will

show that the integral over ΣA is norm convergent for g ∈ Hs if s > 0, so to justify the contour
change we need to show that for t sufficiently large the integrals over

γ±R(v) =
{
±R+ iv : −

(
A+ c log(2 +R)

)
≤ v ≤ α

}
, and γR,∞ = {x+ iα : |x| ≥ R}

tend to 0 as R→∞. Note that for R large enough, Theorem 1 shows that there are no resonances
between R + iα and ΣA with |Reλ| ≥ R, and hence none on γ±R.

We introduce the following notation,

Eγ(t)g = 1
2π

∫
γ
e−itλRV (λ)g dλ .

Then for t > 2dχ, and R large enough,

‖χEγ±R(t)χg‖L2 ≤ C eαt〈R〉−1(α+A+ c log(2 +R)
)
‖g‖L2 → 0 as R→∞ .

The norm convergence of (7.11) shows that ‖χEγR,∞χg‖L2 → 0 as R → ∞. We then assume
c(t− 2dχ) ≥ 3 and calculate

‖χEΣA(t)χg‖D ≤ CA,χ e−A(t−2dχ)
∫ ∞
−∞

e−3 log(2+|R|)〈A+ |R| 〉 dR ≤ CA,χ e−At ‖g‖L2 .

In particular the integral is norm convergent, and the contour deformation is allowed.
Thus, if we let ΩA denote the collection of poles of RV (λ) in the set Imλ > −A−c log

(
2+|Reλ|),

then
χU(t)χg = χEΣA(t)χg − iχ

∑
z∈ΩA

Res
(
e−itλRV (λ), z)χg ,

and by density this holds for g ∈ L2(Rd). Observe that if g ∈ L2
comp then we can take χ = 1 on

the support of g, and drop the cutoff χ to write a global equality in L2
loc. To have estimates on the

remainder in D, though, requires cutting off by χ and taking t > 2dχ + C, which is required for
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Imλ

Reλ

iµj−νj νj

λk

γ−R γ+R

ΣA

γR,∞ γR,∞R+ iα

Figure 7.1. The various contours used in Section 7.2 to obtain the resonance
expansion in odd dimensions.

χU(t)χ to map L2 into D ⊂ H1. The expressions (7.2), (7.4), (7.3), and (7.5) now complete the
proof of Theorem 4 for N = 1, where we observe that the terms from poles in ΩA with Imλ ≤ −A
can be absorbed into EA(t). �

7.3. Higher Order Estimates for Smooth Domains. We start with the following lemma,
where we now assume that Γ = ∂Ω is C∞, and that V : Hs(∂Ω)→ Hs(∂Ω) for all s ≥ 0. Recall
that we set E0 = L2(Rd), and for N ≥ 1,

EN = H1(Rd) ∩
(
HN (Ω)⊕HN (Rd \ Ω)

)
.

In this setting D equals the subspace of E2 satisfying ∂νu+ ∂ν′u+ V γu = 0 .

Lemma 7.2. Suppose that ∂Ω is of regularity C∞, and N ≥ 0. Then for all ε > 0 there exists
R < ∞, so that if |Reλ| > R, | Imλ| ≤ (1

2d
−1
Ω − ε) log(|Reλ|), and χ ∈ C∞c (Rd) equals 1 on a

neighborhood of Ω, then∥∥χ(RV (λ)−RV (−λ)
)
χg
∥∥
EN
≤ CN 〈λ〉N−1 e2dχ| Imλ| ‖g‖L2 .

Proof. We proceed by induction on N . By Lemma 7.1, the result holds for N = 0, 1, 2. We assume
then that the result is true for integers less than or equal to N .

Letting u =
(
RV (λ)−RV (−λ)

)
χg, we write

∆(χu) = 2(∇χ) · ∇u+ (∆χ)u− λ2χu+ (V ⊗ δ∂Ω)u .
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By the induction hypothesis,
‖(∆χ)u‖HN−1(Ω)⊕HN−1(Rd\Ω) + ‖χu‖HN−1(Ω)⊕HN−1(Rd\Ω) ≤ C 〈λ〉

N−2 e2dχ| Imλ| ‖g‖L2 ,

‖(∇χ) · ∇u‖HN−1(Ω)⊕HN−1(Rd\Ω) + ‖V γu‖
HN− 1

2 (∂Ω)
≤ C 〈λ〉N−1 e2dχ| Imλ| ‖g‖L2 .

Proposition 8.1 then gives the desired result for EN+1. �

We now present the proof of Theorem 5. We use the notation from the proof of Theorem 4
above. We first note that

1
2π

∫
ΣA

e−itλRV (−λ) dλ = −
∑

µj>A+log 2
(2µj)−1e−tµjΠµj ,

where the completion of the contour to the lower half plane is justified by Lemma 7.1 and the
rapid decrease of e−itλ for t > 0. We thus can write

χEΣA(t)χg = 1
2π

∫
ΣA

e−itλχ
(
RV (λ)−RV (−λ)

)
χg dλ −

∑
µj>A+log 2

(2µj)−1e−tµjχΠµjχg .

Assume c(t− 2dχ) ≥ N + 1 , by Lemma 7.2 the norm in EN of the integral term is dominated by

CA,χ e
−A(t−2dχ)

∫ ∞
−∞

e−(N+1) log(2+|R|)〈A+ |R| 〉N−1 dR ≤ CA,χ,N e−At ‖g‖L2 .

It remains to show that for the eigenvalues −µ2
j with µj > A, and the resonances λk with

Imλk < −A, then
e−tµj‖χΠµjχg‖EN + ‖χRes

(
e−itλRV (λ), λk

)
χg‖EN ≤ CA,χ,N e

−tA ‖g‖L2 ,

since the difference of χEA(t)χ and χEΣA(t)χ is a sum of such terms.
A similar argument to the proof of Lemma 7.2 gives the bound

‖Πµjg‖EN ≤ CN 〈µj〉
N‖g‖L2 ,

which handles the eigenvalues. To handle the resonances in the lower half plane, consider first
the case that −λk is not a pole (that is, λk 6= −iµj for any j). We can then write

Res
(
e−itλRV (λ), λk

)
= 1

2πi

∮
λk

e−itλ
(
RV (λ)−RV (−λ)

)
dλ ,

and the estimate follows from Lemma 7.2, by choosing a small contour about λk which is contained
in Imλ < −A. In the case that −λk is a pole, hence an eigenvalue, then the term RV (−λ)
contributes an eigenvalue projection, which is handled as above. �

We now complete the proof of Theorem 4 by considering the case N ≥ 2. Eigenfunctions clearly
belong to DN , and by an induction argument we have ‖χΠµjχg‖DN ≤ CN 〈µj〉2N‖g‖L2 . The proof
then follows from that of Theorem 5, using the following lemma.

Lemma 7.3. Suppose that Γ is a finite union of compact subsets of C1,1 hypersurfaces, and N ≥ 1.
Then for all ε > 0 there exists R <∞ so that if |Reλ| > R, | Imλ| ≤ (1

2d
−1
Γ − ε) log(|Reλ|), and

χ ∈ C∞c (Rd) equals 1 on a neighborhood of Γ, then∥∥χ(RV (λ)−RV (−λ)
)
χg
∥∥
DN
≤ C 〈λ〉2N−1 e2dχ| Imλ| ‖g‖L2 .
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Proof. The result was proven in Lemma 7.1 for N = 1. We then proceed by induction, writing

∆V,Γ χ
(
RV (λ)−RV (−λ)

)
χg =

([
∆, χ

]
− λ2χ

)(
RV (λ)−RV (−λ)

)
χg

=
(
2∇χ · ∇+ (∆χ)− λ2χ

)(
RV (λ)−RV (−λ)

)
χg .

By induction, and since supp(∆χ) ⊂ supp(χ),

(7.12) ‖
(
(∆χ)− λ2χ

)(
RV (λ)−RV (−λ)

)
χg‖DN−1 ≤ C 〈λ〉

2N−1 e2dχ| Imλ| ‖g‖L2 .

By Lemma 7.1, if χ1 ∈ C∞c with supp(χ1) ⊂ supp(χ), and u =
(
RV (λ)−RV (−λ)

)
χg,

〈λ〉 ‖χ1u‖L2 + ‖χ1u‖H1 ≤ C e2dχ| Imλ| ‖g‖L2 .

On the complement of Γ, the function u =
(
RV (λ)−RV (−λ)

)
χg satisfies −∆u = λ2u . Since∇χ

vanishes on a neighborhood of Γ, and supp(∇χ) ⊂ supp(χ), an induction argument and elliptic
regularity yields

‖∇χ · ∇
(
RV (λ)−RV (−λ)

)
χg‖H2N−1 ≤ C 〈λ〉2N−1e2dχ| Imλ| ‖g‖L2 , N ≥ 1 .

Since H2N−1
comp (Rd \ Γ) ⊂ DN−1 with continuous inclusion, this term also satisfies the bound of

(7.12), and the result follows. �

8. The Transmission Property for C1,1 Domains

We provide here a proof of the transmission estimate, Proposition 8.2, that we used in Section
2 to establish H2 regularity of solutions on the complement of ∂Ω in case ∂Ω is of C1,1 regularity.
In case ∂Ω is smooth, the following estimate, which we used in the proof of Lemma 7.2, is well
known; see [5], and in particular Theorems 9 and 10 of [12]. We record it here for reference.

Proposition 8.1. Suppose that Ω ⊂ Rd is a bounded open set, and ∂Ω is locally the graph of a
C∞ function. Let G0(x, y) be Green’s kernel for ∆−1, and define the single layer potential map
by

S`f(x) =
∫
∂Ω
G0(x, y) f(y) dσ(y) .

Then for χ ∈ C∞c (Rd), and N ≥ −1, χS` is a continuous map from HN+ 1
2 (∂Ω) → HN+2(Ω) ⊕

HN+2(Rd \ Ω).
Additionally, for N ≥ 0 the map(

χG0χg
)
(x) = χ(x)

∫
G0(x, y)χ(y) g(y) dy

is a continuous map from HN (Ω)⊕HN (Rd \ Ω) to HN+2(Ω)⊕HN+2(Rd \ Ω).

We need the same result for N = 0 and ∂Ω of C1,1 regularity, in which case just the single layer
potential result is nontrivial.

Proposition 8.2. Suppose that Ω ⊂ Rd is a bounded open set, and ∂Ω is locally the graph of a
C1,1 function. Let G0(x, y) be Green’s kernel for ∆−1, and let

S`f(x) =
∫
∂Ω
G0(x, y) f(y) dσ(y) .
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Then for χ ∈ C∞c (Rd), χS` is a continuous map from H
1
2 (∂Ω)→ H2(Ω)⊕H2(Rd \ Ω).

Proof. Since the kernel is smooth away from the diagonal we may work locally, and assume that
∂Ω is given as a graph xn = F (x′) , with F ∈ C1,1(Rd−1). Since surface measure dσ(y) = m(y′) dy′
where m is Lipschitz, we can absorb the m into f . Assuming then that f ∈ C1

c (Rd−1), consider
the maps

T ′f(x) = (∇x′S`f)(x′, F (x′) + xd) = cd

∫ (x′ − y′) f(y′) dy′(
|x′ − y′|2 + |xd + F (x′)− F (y′)|2

) d
2

Tdf(x) = (∂xdS`f)(x′, F (x′) + xd) = cd

∫ (xd + F (x′)− F (y′)) f(y′) dy′(
|x′ − y′|2 + |xd + F (x′)− F (y′)|2

) d
2

We seek H
1
2 → H1(xd 6= 0) bounds for both terms. We have ∂xdT ′ = ∇x′Td − (∇x′F )∂xdTd, and

since ∆S`f = 0, for xd 6= 0 we can write
(1 + |∇x′F |2)∂xdTdf = ∇x′T ′f − (∇x′F )∇x′Tdf .

Thus it suffices to prove H
1
2 → L2 bounds for χ∇′xT ′ and χ∇x′Td .

By the dual of the trace estimate we have
‖χS`f‖H1 ≤ C ‖f‖H−1/2(∂Ω) ,

and hence we can bound
‖χT ′(∇y′f)‖L2 + ‖χTd(∇y′f)‖L2 ≤ C ‖f‖H1/2(∂Ω) .

The desired bound will thus follow from showing that
(8.1)

∥∥χ[∇x′ , T ′]f∥∥L2 +
∥∥χ[∇x′ , Td]f∥∥L2 ≤ C ‖f‖L2(∂Ω) .

One can write
(
χ
[
∇x′ , Td

]
f
)
(x) =

∫
K(x′, xd, y′) f(y′) dy′ , where

K(x′, xd, y′) =
(
∇x′ +∇y′

) (xd + F (x′)− F (y′))(
|x′ − y′|2 + |xd + F (x′)− F (y′)|2

) d
2
,

and one verifies that |K(x′, xd, y′)| .
(
x2
d + |x′− y′|2

)(1−d)/2 since ∇F is Lipschitz. Consequently,

sup
x′

∫
|y′|≤L

|K(x′, xd, y′)| dy′ + sup
y′

∫
|x′|≤L

|K(x′, xd, y′)| dx′ ≤ CL log〈x−1
d 〉 .

The bound (8.1) for this term is obtained by applying the Schur test in x′ for each xd, followed
by integration over xd, where we fix L so f and χ are supported in |x′| ≤ L. The corresponding
kernel of χ

[
∇x′ , T ′

]
satisfies the same bounds, which completes the proof of Proposition 8.2. �
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