PSEUDOSPECTRA OF SEMICLASSICAL BOUNDARY VALUE PROBLEMS

JEFFREY GALKOWSKI

ABSTRACT. We consider operators —A + X, where X is a constant vector field, in a bounded
domain and show spectral instability when the domain is expanded by scaling. More generally, we
consider semiclassical elliptic boundary value problems which exhibit spectral instability for small
values of the semiclassical parameter h, which should be thought of as the reciprocal of the Peclet
constant. This instability is due to the presence of the boundary: just as in the case of —A + X,
some of our operators are normal when considered on R%. We characterize the semiclassical
pseudospectrum of such problems as well as the areas of concentration of quasimodes. As an
application, we prove a result about exit times for diffusion processes in bounded domains. We
also demonstrate instability for a class of spectrally stable nonlinear evolution problems that are
associated to these elliptic operators.

1. INTRODUCTION

For many non-normal operators, the size of the resolvent is a measure of spectral instability and
is not connected to the distance to the spectrum. The sublevel sets of the norm of the resolvent
are referred to as the pseudospectrum. The study of the pseudospectrum has been a topic of
interest both in applied mathematics (see [2],[22], [10], and numerous references given there) and
the theory of partial differential equations (see, for example [23],[3],[18],[9], [11], [12]).

The problem of characterizing pseudospectra for semiclassical partial differential operators
acting on Sobolev spaces on R? started with [2]. Dencker, Sjostrand, and Zworski gave a more
complete characterization for these pseudospectra in [4] by proving that, for operators with Weyl
symbol p, if (p—2z)(z0, &) = 0 and i{p, p}(x0, &) < 0 then z is in the semiclassical pseudospectrum
of p*. That is, for all N > 0, there exists C'y > 0 such that

H(pw—z)_l‘ >Cyh™.

L2—12 —

Moreover, they show that there exists a quasimode at z in the following sense: there exists u € H }%
(see (3.1) for the definition of H?) with ||u|;2 = 1 and WFp(u) = {(x0, &)} such that

(P — 2)u = Or2(h).
In [18], Pravda-Starov extended the results of [4] and gave a slightly different notion of semiclas-

sical pseudospectrum.
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In this paper, we examine the size of the resolvent for operators defined on bounded domains
Q c R? with C* boundary. Let

1
(1.1) P = (hD)* +i(X,hD) D;:=-0;.

i
where X € R?\ {0}. Here, h can be thought of as the inverse of the Peclet constant. We are
interested in determining the semiclassical pseudospectrum of the Dirichlet operator P on ().
That is, we wish to find z € C and u € H,ZL such that

(1.2) {qu = (P —2)u=0p:(h®) zeQ,

ulan =0, ||ul|2 = 1.

The collection of such z will be denoted A(P,2) and the semiclassical pseudospectrum of (P, Q)
is A(P, Q). From this point forward, we will refer to A(P,2) as the pseudospectrum. A solution
to (1.2) will be called a quasimode for z. We restrict our attention to the case where X is constant
so that there are no quasimodes given by the results of [4] and, moreover, the operator is normal

when acting on L?(R%).

We characterize A(P, §2) for such boundary value problems as well as the semiclassical essential
support of quasimodes. Here the essential support is defined as

Definition 1.1. The essential support of a family of h-dependent functions u = u(h) is given by

ESy(u):= (U, A:={UcCQ: ifxeC®Q), x=1onU, then (1 — x)u= Or2(h™)}.
UeA

We will need the following analogue of convexity (similar to that used for planar domains in
[16]). First, define

(1.3) Lyy:={te+(1—-t)y:te[0,1]},
the line segment between = and y. Then,

Definition 1.2. A set A C B is relatively convex in B if for all z,y € A, L,, C B implies
L., CA.

We also need an analogue of the convex hull in this setting
Definition 1.3. For A C B, we define the convex hull of A relative to B by

chp(A) = ﬂ C, A:={C:AcCC and C is relatively convex in B}.
CeA
(See Figure 1.3 for an example.)
If A¢Z B, then define
ChB(A) = ChB(A N B)

Remark: In the case that B is convex, these definitions coincide with the usual notions of
convexity.
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Let v be the outward pointing unit normal to 0€2. We define subsets of 02 similar to those in
[15],

(1.4) 0N_={red: (X,v) <0}, 004 ={zed: (X,v)> 0},
80 = {z € 90 (X,1) =0}, T, =089, UdY.

Remark: We will refer to 04, 0€, and 0{2_ as the illuminated, glancing, and shadow sides
of the boundary, respectively. Figure 1.3 shows examples of these subsets in a two dimensional
domain.

With these definitions in place, we can now state our main theorem:

Theorem 1. Let P be as in (1.1), and Q C R be a domain with C™ boundary. Then,

(1) A(P,Q) = {z € C:Rez > (Im2)?|X|~2}. (Here | -| is the Euclidean norm.)
(2) For all quasimodes u,

ESp(u) C chg(ly)NoQ  and  ESp(u) N0Q, # 0.
(3) For each point xo € 0y, there exists
W,y C {2z € C:Rez > (Im2)?X|?}

such that Wy, is open and dense in A(P, Q) and for each z € Wy, there is a quasimode u
for z with ESp,(u) = xg. Moreover, if OS2 is real analytic near xq, then there exists ¢ > 0
such that these quasimodes can be constructed with Pou = Op2(e</").

(4) Let zg € 0Q2—. Suppose that O) is strictly convex or strictly concave at xo. Then, for any
quasimode u, xo ¢ ESp(u).

(5) If @ C R?, and u is a quasimode, then ESp(u) C T'4.

Remark: If Q is convex then Theorem 1 gives that ES,(u) C T'y.

When X # 0 is constant, conjugating P by e~(¥#)/20 shows that the spectrum of (P,€) is
discrete and contained in {z € C : Rez > ¢ > 0, Imz = 0}. Thus, Theorem 1 shows that
the pseudospectrum of (P,€2) is far from its spectrum and hence that the size of the resolvent is
unstable in the semiclassical limit. (Figure 1.2 shows the spectrum and pseudospectrum of (P, <)
in an example.)

For a large class of nonlinear evolution equations this type of behavior has been proposed as an
explanation of instability for spectrally stable problems. Celebrated examples include the plane
Couette flow, plane Poiseuille flow and plane flow — see Trefethen-Embree [22, Chapter 20] for
discussion and references. Motivated by this, we consider the mathematical question of evolution
involving a small parameter h (in fluid dynamics problem we can think of h as the reciprocal of
the Reynolds number) in which the linearized operator has spectrum lying in Rez < —v < 0,
uniformly in h, yet the solutions of the nonlinear equation blow up in short time for data of size

Olexp(—c/h)).

Let p > 1. We examine the behavior of the following nonlinear evolution problem

(hoy+ (P —p))u—uP =0, t>0, x€QCR?
(1.5)
ulog =0 u(z,0) = up(x),

and interpret it in terms of the pseudospectral region of P — p.
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FiGURE 1.1. The figure shows an example of the imaginary part of a quasimode
constructed in Proposition 5.1. On the left, the boundary forms an angle of 7/4
with X = 0,,, and on the right the boundary is normal to J;,. In both cases,
z=1+1i/2.

We have the following analog of what is shown in [8] and [20]

Theorem 2. Fiz p > 0. Then, for
0< h<hg,

where hgy is small enough, and each § > 0 , there exists
1
wo € CXR™), >0, |luofler < exp <_—> k=01,
Crh

such that the solution to (1.5) with u(x,0) = ug(z), satisfies
lu(z,t)||poe —> 00, t —> T,
where T < §.

As an application of Theorem 1, we consider diffusion processes on bounded domains. Specifi-
cally, we examine hitting times

7x = inf{t > 0: X; € 0Q}
for processes of the form
dX; =b(Xy) + V2hdB;, Xo = xo(h)

where By is standard Brownian motion in d dimensions, xqg(h) — o € 9€4 (defined for the vector
field —b), and b € C®(R% R?). We show that, for 9Q, analytic near z¢, and all N > 1, the log



PSEUDOSPECTRA OF SEMICLASSICAL BOUNDARY VALUE PROBLEMS 5

FIGURE 1.2. The figure shows the pseudospectrum and spectrum of (P, () for
|X| = 1. The pseudospectrum is the shaded region, the spectrum is shown as blue
circles, and the curve Rez = (Imz)? is shown in dashed red. The spectrum of
(P, ) is discrete and real since P is an elliptic second order partial differential
operator. Moreover, in the case that X is a constant, P can be conjugated to a
self-adjoint elliptic operator using a non-unitary operator and hence has real spec-
trum.

moment generating function of 7, does not decay as h — 0 for |xzo(h) — 20| =~ ChY. Moreover,
letting

L := (hD)* +i(—b,hD)

and 0 < ¢ < A\ (L) be the principal eigenvalue of L, we have for each 0 < A < A\j(L) (where \ is
h independent), each € > 0, and xg(h) as above, that there exists ¢ > 0 such that for all « > 1,
there exists a function s(h) > & — h!=¢ and ¢, > 0 a constant depending only on « such that for
h small enough,

_ pl—e
min(ce G0/ 1) < p (TX N @) <p (TX N 5%) .

Remark: See the remarks after Proposition 10.1 for an interpretation of this inequality.
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grateful to the National Science Foundation for partial support under grant DMS-0654436 and
under the National Science Foundation Graduate Research Fellowship Grant No. DGE 1106400.
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FIGURE 1.3. The figure shows an example domain Q C R2. 9, is shown in the
solid red line, 0€)g in the dotted black line, and 92_ in the dashed black line. The
region chg(I';) is shaded in. The 1) shown here is the locally convex function used
to prove Lemma 8.8

2. OUTLINE OF THE PROOF

In this section, we explain the ideas of the proof of Theorem 1. We also describe the structure
of the paper.

Our starting point is to prove that if |p,(x,&)| > C(£)2, for all x € €, then (1.2) has an
inverse that is bounded independently of h on semiclassical Sobolev spaces. We do this via a
construction of Calderén projectors adapted from [14, Chapter 20]. It follows from the existence
of such inverses that

A(P,Q) C {Rez > (Im 2)?|X| 72}

Next, we show that
A(P,Q) = {Rez > (Im 2)?|X|~?}.
In particular, we construct quasimodes near points xg € 9. To do this, we use a WKB method
adapted to Dirichlet boundary value problems. Motivated by the fact that, in one dimension,
eigenfunctions of the Dirichlet realization of P are of the form e®*/" sin(z/h), we look for solutions
of the form
a(w)eim(w)/h _ b(x)ewz(w)/h

and derive formulae for WKB expansions of a and b. In order to complete this construction,
we have to solve a complex eikonal equation for the ¢;’s. This is done by finding the Taylor
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expansions ; at zg. We proceed similarly for a and b. Figure 1.1 shows examples of quasimodes
constructed using this method.

Our last task is to characterize the essential support of quasimodes u. The main idea is to
prove a Carleman type estimate for solutions to (1.2). This estimate gives us control of solutions
outside relatively convex sets containing I';. Hence any quasimode is essentially supported inside
such a convex set. The next ingredient in the proof is a result adapted from [5] on propagation of
semiclassical wavefront sets for solutions of (1.2). We show that the wavefront set of a quasimode
is invariant under the leaves generated by Himp = (X, 0;) and Hgep. We then show that there
exist convex sets containing I'y which do not extremize (X, z) inside Q. Finally, we combine this
with the propagation results to show that

ESp,(u) C chg(I'y) NoQ.

The paper is organized as follows. In section 3 we introduce various semiclassical notations.
Then, in section 4 we prove results on Calderén projectors adapted from [14, Chapter 20]. Section
5 contains the construction of quasimodes via a boundary WKB method. In section 6, we adapt
results of Duistermaat and Hérmander in [5, Chapter 7] on propagation of wavefront sets to the
semiclassical setting. In section 7, we prove a Carleman type estimate that will be used in section
8 to derive restrictions on the essential support of quasimodes. Section 9 contains the proof of
Theorem 2. Finally, section 10 applies some of the results of Theorem 1 to exit times for diffusion
processes.

3. SEMICLASSICAL PRELIMINARIES AND NOTATION

The O(-) and o(-) notations are used in the present paper in the following ways: we write
u = Ox(F(s)) if the norm of the function, or the operator, u in the functional space X is
bounded by the expression F' times a constant independent of s. We write u = ox(F(s)) if the
norm of the function or operator, u in the functional space X has

- ullx
s—80 F(S)

where sg is the relevant limit. If no space X is specified, then this is understood to be pointwise.

=0

The Kohn-Nirenberg symbols for m € R as in [24, Section 9.3] by

s™ = {a(w,€) € CX®R¥) : [020fa] < Caple)™ P}, (&) = (1+ )
and denote by W™, the semiclassical pseudodifferential operators of order m, given by
U™ = {a(x,hD)|a € S™}.

Remark: We will sometimes write S = S° and h*S™ denotes the class of symbols in S™ whose
seminorms are O(h*).

Throughout this paper, we will use the standard quantization for pseudodifferential operators
on R?,

(e, hD)u = 2rh)~ [[ alw. )7 uly)dyde,
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unless otherwise stated. In those cases that we use the Weyl quantization,

a”(z,hD)u = (27Th)_d//a <$ i y,f) 6i<z_+’€>u(y)dyd§,

2

the operator will be denoted p"(x, hD) where p is the symbol of the operator. Using semiclassical
pseudodifferential operators, we can now define the semiclassical Sobolev spaces Hj := (hD)=sL?
with norm

(3.1) [ullzz; = [IKAD) ul| L2

For more details on the calculus of pseudodifferential operators see, for example, [24, Chapter 4].

We briefly recall the definition of pseudodifferential operators on a compact manifold M. We say
that an operator B : S(M)"™ — S'(M)* is a pseudodifferential operator, denoted B € ¥™(M,CF®
C™), if,

(1) letting U, be a coordinate patch, and ¢,¢p € C§°(U,), the kernel of ¢(v*)B(y~1)*¢ can
be written as an n x k matrix b;; where b;; € S™.
(2) if p,7 € C§°(M) with supp ¥N supp ¢ = () then for all N
@By = O(h™) : H, N (M;C") — H} (M;CF).
See [24, Chapter 14] for a detailed account of pseudodifferential operators on manifolds.

Finally, we need a notion of microlocalization for semiclassical functions. We call u tempered
if for some m, N > 0,
'LLEH}T, HUHH,T SChiN.

For a tempered function, u, we define the semiclassical wavefront set of u, WFp(u), by (x9,&0) ¢
WF},(u) if there exists a € S° with |a(w, &)| > v > 0 such that

la® (2, hD)u(h) ||y = O(R).
(For more details on the semiclassical wavefront set see [24, Section 8.4].)

Other Notation:

e Throughout the paper, we will denote the outward unit normal to 92 at a point xg, by
v(xo).

e We will identify T*R¢ with TR? using the Euclidean metric, denote by | - | the induced
Euclidean norm on TR?, and (-,-) the inner product.

e We will denote by e;, the unit vector in the z; direction and v; = (e;, v).

e Q° will denote the interior of 2 and €, its closure.

4. CALDERON PROJECTORS FOR ELLIPTIC SYMBOLS

Our goal is to find an inverse, uniformly bounded in h, for the following elliptic boundary value
problem

(1) Pu=f | in £,
Bju=gj, j=1,..,J on 09,
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where P = p(z, hD) is a differential operator of order m with p € S™ elliptic (in the semiclassical
sense, i.e. |p| > ¢(§)™), and B; are differential operators on the boundary of order m; with
symbols b; € S™.
Remark: In our applications, B; is the identity and J = 1.

We define classical ellipticity for a boundary value problem as in [14, Definition 20.1.1],

Definition 4.1. The boundary value problem (4.1) is called classically elliptic if

(1) For all z € Q, |p(z, &) > C(E)™ for €] > .
(2) The boundary conditions are elliptic in the sense that for every z € 9Q and ¢ € T (Q)
not proportional to the interior conormal n, of X, the map

M:Z{ S u— (b1(z, € + Dyng)u(0), ..., by(x, € + Dyng)u(0)) € C7

is bijective, if M;{ is the set of all u € C*°(R) such that p(z,§ + Ding)u(t) =0 for t € R
and such that u is bounded on R .

We follow Hérmander’s construction [14, Chapter 20] of a Calderdén projector for classically elliptic
boundary value problems to prove the following Proposition:

Proposition 4.1. Let P be as in (4.1), p(x,§) have inf__g |p(z,&)| > (€)™, and (4.1) be classi-
cally elliptic. Then, for h small enough and s > m, the system (4.1) has an inverse
s—mj—1
Pyt HY Q) e HyY T (09) - Hi(Q)
with |Pot|| < C uniformly in h.

4.1. Pseudospectra Lie Inside the Numerical Range. Observe that Proposition 4.1 gives
that pseudospectra for elliptic boundary value problems must lie inside the numerical range of
p(z,€). In the special case of P as in (1.1), we have that P = p(x, hD) where p(z,&) = |£]? +
i({X,€). By Proposition 4.1, we have that, if P, is strongly elliptic, i.e. |p.(x,&)| > ¢(¢)2, then no
quasimodes for z exist.
Using this, observe that p,(xg,&p) = 0 implies
(X, &) =TImz, [&°—Rez=0.

Hence, identifying T, ;‘ORd with T, xORd using the Euclidean metric, there exists w € T;()Rd with
(X, w) = 0 such that

(4.2) fo=ImzX|X|2 4w, |w?=Rez—|X|"2(mz).
This, together with Proposition 4.1, implies that
(4.3) A(P,Q) C {z€C:Rez> |X|7?(Imz)?}.

4.2. Proof of Proposition 4.1. We will follow Hérmander’s proof from [14, Chapter 20] almost
exactly. We present the proof in detail to provide a reference for Calderén projectors in the
semiclassical setting. Note that, unlike for operators that are only classically elliptic (in which
case projectors yield a C°° parametrix), in the semiclassically elliptic setting, the construction
yields an inverse for the boundary value problem.
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First observe that in (4.1) we can assume without loss of generality that the order of B;
transversal to 0f2 is less than m. To see this, let U be a local coordinate patch in which € is
defined by ;1 > 0. Then, Pu = f has the form

S Pu(@)(hD)*u = f

where P, are C* functions of x. Then, observe that since P is elliptic, the coefficient of D7* is
nonzero and we can write

(hD)™u =P, (f = Y Pa(z)(hD)u), e =(1,0,...,0).

anp<m

Hence, if the transversal order of B; is greater than m — 1, we can replace (hD1)™ by this
expression. Using a partition of unity on the boundary to combine these local constructions, we
obtain that

Bj = B + C;P
where B7 has transversal order < m and Cj is a boundary differential operator. Then, (4.1) is
equivalent to

{Pu =f in
Biu=g; - Cjf, j=1,..,.J indQ

Now, extend P to a neighborhood, Q of O so that P is strongly elliptic on Q). Then, define
T = P~! where T exists and is a pseudodifferential operator since p is semiclassically elliptic i.e.
T is given by

1 11 .

T = |=(xz,hD)p(z,hD)| —(x,hD) e ¥~ ™.
p p

(The fact that T is pseudodifferential follows from Beals” Theorem, (see for example [24, Section
9.3.4 and remark after Theorem 8.3])) We will construct the Calderén projector locally and hence
reduce to the case where 92 = {z; = 0} by a change to semigeodesic coordinates for 92 and an
application of a partition of unity.

For u € C*°(Q), define
Yu = (’LL, (th)lua ey (th)m_1)|8Q € COO(OQ)
In 092 x [0, 1), we have

m
P =Y Pj(x,hDs,....hDy)(hDy)
j=0
where P; are semiclassical differential operators of order m — j in 02 depending on the parameter
z1. We denote the principal symbol of P; by o(P;) = p;. Next, let u® denote extension by 0 off
of Q. We have

Pu’ = (Pu)? 4+ Pyu
where for U = (U, ..., Up—1) € C®(09),

PU=i"'> hPj1 Y Uj_y ® (hD1)*5,
j<m k<j
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where 0 is the Dirac mass at 1 = 0. Then,
(4.4) u® = T[(Pu)? 4+ Pyul.

Next, define @, the Calderén projector, for U € C*(9Q,C™), by QU := ~vTP°U. Then, for
k=0,....,m—1,

m—1

QU)k = > QuU,
0

with
m—1—I

> hi ' (hD1)*T P11 U @ (hD1 )6
=0

QU =

o0
(Note that the boundary values are taken from Q°.) Therefore, we have that Qy; are pseudodif-
ferential operators in 92 of order k — [ with principal symbols

4+ m=Il-1

(4.5) qkz(w’,ﬁ’)Z(%i)_l/ > & p(a,0,6) pyin (0,2, ),
j=0

where the [T denotes the sum of residues for Im &; > 0.

Lemma 4.1. Q is a projection on the space of Cauchy data in the sense that Q* — Q = 0. If we
identify solutions of the ordinary differential equation p(0,z', hD1,& v = 0 with the Cauchy data
(v(0), ..., (RD1)™ 1v(0)) then, q(z', &) is for & # 0 identified with the projection on the subspace
M of solutions exponentially decreasing on R, along the subspace M~ of solutions exponentially
decreasing in R_.

Proof. Let w=TP°U, by (4.4),
Py = PTPU = PU =01in Q°.
Also, by (4.4),
QU = ~(TPU)? =T ((PTPU)° + P°yu) = vT(PU)° +yTP4TP°U = Q*U
since P°U = 0 in Q°. Hence, Q> — Q = 0 and thus is a projection.

To see the second part of the claim, let U as above. Then, the inverse semiclassical Fourier
transform

v(zy) = (2mhi)"'h / p(0,2", )7 Y pisia(0,2, &) Ure™ 6/ h g
jHl<m
is in &’ and satisfies
p<07 $/7 gla th)U = hi_l Z pj+l+1(x,a Oa gl)Ul(th)](s
jHl<m

and hence v coincides for ;7 > 0 with an element v© € M* and for ; < 0 with an element
v~ € M~. For 1 = 0, we have the jump condition

(hD)F (vt —v7) = Uy
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Then, (4.5) gives
q(z', €YU = (v*(0), .., (hD1)™ 0 *(0))
and qU = U implies v~ = 0, i.e. U Is the Cauchy data of a solution in M ™. Also, if qU = 0, U is
the Cauchy data for v € M~ and we have proven the claim. O

Now that we have ) defined locally, we can extend it to a global pseudodifferential operator on
0f1 by taking a locally finite partition of unity, x; subordinate to V}, the semigeodesic coordinate
patches, and letting

Q=) x;Q
J

To complete the proof, we need the following lemma

Lemma 4.2. Let Y be a compact manifold without boundary. Suppose that Q € ¥O(Y,CF @ CF)
with Q> — Q = 0, and B € ¥™(Y;CF @ C™) with symbols q and b respectively. Then,

(1) if b(y,n) restricted to q(y,n)CF is surjective for all (y,n) € T*(Y), then one can find
S € U™(Y;C" ® C*) such that

BS=1,+0g(h), QS=S
(2) if b(y,n) restricted to q(y,n)CF is injective for all (y,n) € T*(Y), then one can find
S e U™(Y;C" @ CF) and S" € ¥O(Y;C* @ C*) such that
S'B+S"=1I;+0g(h), S"Q=0
(3) if b(y,n) restricted to q(y,n)CF is bijective, then S, S’, S" are uniquely determined mod
Ole(h) and 8' =S + O\p(h)

Remark: I, denotes i(xz, hD) where i is the n x n identity matrix.

Proof. To prove the first claim, observe that bq is surjective. Hence there exists a right inverse c.
Thus, bgc = i and, letting C' = ¢(z, hD), BQC = I, + Oy(h) and Q(QC) = QC. Hence, the first
claim follows from letting S = QC.

To prove the second claim, observe that b @ (i — ¢) is injective and hence has a left inverse
(t,¢"). Thus, letting S" = ¢/(x, hD) and S” = t"(x, hD), we have the claim.

To prove the third claim, just observe that
S"= 8BS+ Ogy(h) = S'BS+ 8"(S —QS) + Ogy(h) = S'BS + 5"S + Og(h) = S + Og(h).
O

@ and B satisfy the hypotheses of the part (iii) of the previous lemma by [14, Theorem 19.5.3].
Therefore, using this on @ and B from above, we obtain S and S” as described.

As in [14, Chapter 20], we use the properties of S and S” to see that
R:(f,g9)— (I+TPS"y)Tf°+TPSy
has
PR(f,g9) = f+OM)(f+9) BjyR(f,9) =g; + O()(f +g)
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and
R(Pu,vyu) = u+ O(h)u
provided that R is bounded

1
s—mj—3

R: Hy™(Q) @' H), (09Q) — Hi(Q).
Hence R is a candidate for an approximate inverse modulo O(h) errors.

Therefore, in order to show that R is both an approximate left and right inverse for (4.1), all
we need is the following lemma which follows from a rescaling of [14, Proposition 20.1.6] along
with the fact that PT = I with no remainder. We include the proof here for convenience.

Lemma 4.3. If s > m and f € C*™(Q)), then

(4.6) 1Tz < Cllf gz
IfU = (U, ...,Up—1) € C®(09Q), we have for any s

m—1
(4.7) ITPU||g; < C ) U0

Proof. Tt suffices to prove (4.6) when f has support in a compact subset K of a local coordinate
patch Y x [0, 1) at the boundary, Y € R4"!. Let y € C§°(K x[0,1)) have x = 1 in a neighborhood
of K, let k > s —m. Then, with the notation £ = (£1,¢’), and

[l ey = 270) = [ 1Fa(u) O (€)™ (),
where F}, is the semiclassical Fourier transform, we have
1590 oo < 18 N g0mms < 1Sl

We can write
(hD)*XT = Y T(hD)"
18I<lal
where T} is a pseudodifferential operator of order —m and $; = 0 if a3 = 0. Then, since
|(RD)? £ e < | f0||H’<ffm7k,k) if |8 < k and B; = 0, we have

[(DYXT £l g < CIS it

if @y =0 and |a| < k. Thus,
HXTfOHH;Ls—w < Cllf N ggo=m-

But, PTf% = f in Q°. Hence, by [14, Theorem B.2.9], or rather a rescaling of its proof, we have
for ¢ € C§° with ¢ =1 in a neighborhood of K and x =1 in a neighborhood of supp 1,

(4.8) 1671 < COl gz + IXT A go-s0) < CllFl g

Since ||(1 — @ZJ)TfDHHi = O(hOO)HfOHHZ_m’ we have proved (4.6).
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Now, to prove (4.7), we may assume that supp U C K. We have,

PU = Zv] ® (hD1)’8, wvj= Y PjupUhi’
JjHi<m

Then, since Pj4;41 is order m — j — [ — 1, we have
Z ||U]|| s— 'm-&-]-‘—2 < Chz H[]jHI{s—j—l
h

The semiclassical Fourier transform of v; ® (hD1)7d is Fp(v) (&) {.’ and when j < m.
h /ﬁj(l FIEP ) mde, < OhN (L + €2y

Thus, if j < m and k is an integer, k > max(s,0).

lv; ® (th)ijHH}(;mﬂfk,k) < |lv; ® (hDy)|| ) < Ch71||vj||Hsfm+j+%‘

H}()(fm,s :
Putting these together, we have
m—1

| TP UHH(s ey < C Z U]

s J——
h

Then, because T' is continuous from H) (t=mk) ¢4, H; R for ke > 0, we can commute T with 2’
derivatives. Then, by observing that PT PeU = PCU and proceeding as in (4.8) we can improve
this estimate to (4.7). O

Proposition 4.1 now follows from the fact that R is an inverse for (4.1) modulo O(h) errors and
an application of a standard Neumann series argument that can be found, for example, in [24,
Theorem C.3].

5. CONSTRUCTION OF QUASIMODES VIA BOUNDARY WKB METHOD

In this section, we will prove part 3 of Theorem 1. Moreover, we do not assume that X is
constant in the construction. In particular, we show

Proposition 5.1. Let X € C®°(R%R?) be a vector field and 0, defined as in (1.4). Then, for
each xo € 04, let v(zg) be the outward unit normal. Then, if d > 2, for each

2 € {C € C:[X(w)|*(Im()* < Re ¢} \ {(X (o), v(20))*/4},

there exists u € C™(Q) such that u is a quasimode for z with ESy(u) = x9. Moreover, if 92 and
X are real analytic near xq, then P,u = Op2 (e“s/h).

If d =1, then for each xy € Q4 and each
2 € {CeC X (20)| 2(m()? < Re¢}\ {C € C: Im¢ = 0 and Re > (X (z0), v(z0))?/4},

there exists u € C*°(Q) with the same properties as above.
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Remarks:

(1) We demonstrate the construction in dimension d > 2. The additional restriction in d =1
comes from the fact that OS2 is a discrete set of points and hence functions on 0f2 are
determined by their values at these points. In particular, since we cannot choose d¢g for
¢o in equation (5.3), we must restrict the z for which we make the construction.

(2) In fact we will also show that P,u = Ope(h™) in the smooth case and O« (e~%") in the
analytic case.

We wish to construct a solution to (1.2) that concentrates at a point in 9. Let xo € 04
and assume for simplicity that | X (xzo)| = 1 and without loss that X (z¢) = e;. We also assume

2
Imz # %1 for technical reasons. To accomplish the construction, we postulate that u has the form
' . N N
(5.1) u=xv, v=(aePN/M_peip2n/hy g — Z aph™, b= Z bph™.
n=0 n=0

Then, let I' C 99 be a small neighborhood of g to be determined later and U C ) be a small
neighborhood of I". We solve for a, b, 1 n, and 2 v such that

(5.2) {PZU = O0p2(PN*?)  in U,

’U’F =0.
More precisely, we find two distinct solutions, 1y and 2 n to

(5.3) {pz@fv, dpin) = Ollz — 2PN inU,
pi,N|r = o,

with qﬁo(l‘o) = 0,

_ el |nl<lord=1 .
(5.4) dgf)o(xo)—/\{ er vi=1,d>2 }ETF,

Imdpy = 0 and Imd?¢g(xg) > 0, where €] = (e; — (e1,v(wo))v)/ X', X' = \J1—vE 1y =
(e1,v(x0)), and A will be chosen later (see (5.6)).

Remark: We choose ¢g in this way to get localization along the boundary.
In addition, we solve the transport equations
5.3 —iAGi N + 20013, ) + (X, 000) = A1 + Oz — 2N in U,
' Yolr =1 tn|r =0 forn >0, '
(5.3) has two solutions (¢1,n and 2 n) and we set a,, := 1, when using o1 x in (5.5) and by, := ¥,
when using 2 .

First, we consider (5.3). To solve this equation, we construct a complex Lagrangian submanifold
as in [4, Theorem 1.2’]. Note that with the choice of d¢g(zp) as in (5.4),

dp(xo) = (a +iB)v(xo) + doo(zo)
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for some a, 5 € R. This gives rise to
a?—B2— By —Rez+ N =0
and
a28+v1) —Imz+ X'\ = 0.
Hence
(B2 + v +Rez— A2)(28 +1v1)? = (Imz — X'\)2
Letting ¢ = 3 + %, we have

2
“

4 2
— 2=
c+<Rez

1
) - Z(Imz —X'N2=0.

Which gives

c= i;g (\/1/12 —4(Rez — A?) + \/(y% —4(Rez — A?))2 +16(Im z — X’)\)2>

(note that we take the positive root inside so that the result is real).

In order to complete the construction, we need g < 0. That is, we require

4!

— > & 208> —4Rez— \)+ \/(V12 —4(Rez—A?))2 4+ 16(Im z — X'\)?

2
& (V¥ +4Rez - M) > (2 —4(Rez — A?))2 +16(Imz — X'N)?
& (Rez—A) v > (Imz— X'\)?

Im2)2(1 — X?)+ (A —ImzX')? A —Im zX’)?
< Rez > (Im 2)( )V;_( m 2 X') :(Imz)z—i——( IVT;Z ) :
1 1

We also need |c| > 0 so that ¢ n and @9 v are distinct. Thus, letting |a| < 1, we choose

Im z X' Im z # 0,
nvReza Imz=0,v #1,

0 Imz:O,Rez<%,y1:1,

\/fm Imz=0,Rez > %,I/l =1.

Remark: In dimension 1, we are forced to choose A = 0, however, in dimension 1, »; = 1 and
2
X' =0, so we have |¢| > 0 when Rez < § = “L or Imz # 0.

(5.6) A=

With this choice for A, we have 0 < || < % if and only if (Im z)? < Re z. Hence, v decays expo-
nentially in the —z7 direction if (Im 2)? < Re 2. This decay allows us to localize our construction
near the boundary.

Remark: (Im z)? < Re z, corresponds precisely with (4.3).
Now that we have f, g, and A\, we need to solve (5.3) on the rest of I' and in the interior of U.
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5.1. Analytic Case. We first assume that I' and p are real analytic and solve the equations
exactly. Let v be the coordinate change to semigeodesic coordinates for I'. Extend ~ analytically
to a neighborhood of T' in C?~1. Then, define &, the lift of v, by (z,1) + (v(2), (97~1)Tn). Next,
choose ¢1(y) real analytic in a neighborhood of 0 € R4~! with ¢1(0) = 0, d¢1(0) as in (5.4), and
Im d?¢1(0) > 0. Then, extend ¢; to y in a neighborhood of the origin in C4~!. Next, let

Ap := {(Ov Y, fl(y)a dy¢1 (y)) : H*pz(ov Y, {17 dy¢1 (y)) =0, (Oa y) € '7(1—‘)}

where &;(y) is well defined since &;(0) = f + ig and, for z # VT%, O¢, kxpz (20, f + ig,do(z0)) # 0.
Observe also that Ag is isotropic with respect to the complex symplectic form.

Finally, let ®; be the complex flow of k,p, which exists by the Cauchy-Kovalevskaya Theorem
([6, Section 4.6]). Then,
A= U|t|<eq)t(AO)
is Lagrangian. Hence it has a generating function ¢ such that ¢ = @ o~ solves (5.3) and has
©|a = ¢o := ¢1 0. Therefore, there exist @1 ny # @2 n, solutions to (5.3).
Remark: Note that the two distinct solutions ¢, x and ¢o x come from the two solutions to
&1(zo).

Next, we solve (5.5). To do this, note that 1 x and ¢y from above are analytic. Hence,
since I" and (5.5) are analytic, we may apply the Cauchy-Kovalevskaya Theorem as above to find
an, and b,.

If T and p are analytic, it is classical [21, Theorem 9.3] that the solutions a,, and b, have
max(|an|, [bn|) < C™n™. This will be used below to show that the error contributed by truncation
at N = 1/Ch is exponential.

5.2. Smooth Case. Suppose that I" and p are not analytic. Then, let «v be the coordinate change
to semigeodesic coordinates for I'. Define the lift x of v and choose ¢ as above. We now solve
the equations (5.3) with O(|z — 2¢|?V**) error. First, write

kapz(2,€) = p1(2, &) + O(|z — mo PN T)p/(€),

where p; is the Taylor polynomial for k.p, to order 2N + 4. Next, apply the construction for
analytic p, from above to solve

{pl(&“, df) =0,
01y = ¢1.
Then, observe that

rups(x,d6) = O(|x — 2oV )p'(d6) = O(|x — oV H).
Hence, we have that ¢; v = 0 o7 solves (5.3).

Now, using the solution ¢; y just obtained, we solve the amplitude equations (5.5) with O(|x —
x|V *1) errors. As with the phase, we start by changing to semigeodesic coordinates. Write the
equation for v,, in the new coordinates as

{<p, L) — (Pl = f,
Yolyay =1 Pplyr) = 0 for n > 0.
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Then, writing the Taylor polynomials to order 2N +4 for p, (, and f as p1, (1, and f; respectively,
we solve

{<p17 O — Gy = fi,

Yolyay =1 Pplyary = 0 for n >0,

using the analytic construction above. Then, just as in the solution of (5.3), ¥, := 1], oy solves
(5.5).

Remark: We are actually solving for the formal power series of ¢; n, a, and b,,.

5.3. Completion of the construction. Let V' € U be a neighborhood of I'. Then, let y €
C>®(Q) with x = 1 on V and x = 0 on Q\ U. For convenience, we make another change
of coordinates so zg + 0 and that v(zg) = e;. Then, ImJ,,¢; N(0) < 0 for i = 1,2, and
Im d2¢(0) > 0. Together, these imply that Im @i n > 0 on supp Ox NI'. Hence, we have for U
small enough but independent of h,

[Pl = [xPo + [P2, xJo] < O(ja M) (

eiW1,N/h’ +

eIt} £ O(RNF2) 4 O(e= /M),
Now, observe that a|r = b|r, ¢1,n|r = p2,n|r = ¢o and

vin = do(2') + cizy + O(x1|2’]) + O(z}),

c1 # ca. Hence, since Im ¢o(z') > c|z’|?, and Im ¢; < 0

O(|5L“2N+4)(€i<’01*N/h—I—eigozN/h) hN+2)

= Or2npe(
and v solves (5.2).

Note also that if I' and p are analytic, then the equations (5.3) and (5.5) can be solved exactly
with max(|ay,|, |bn|) < C™n™. Hence, truncating the sums (5.1) at N = 1/eCh, we have

|Pu| = |xPov + [P., X]Jv] < CNNVNRNFL L O(e=/?) = (CNYN(CN) N e N1 4 O(e=/M)
_ efc/h + O(efe/h) _ O(efe/h)_

d
Our last task is to show that ||ul|p2 > Ch“T" . To see this, we calculate, shrinking U and V' if
necessary, and letting u = xv,

HUH%Q = /V ’(1 + O(x)) (@i@l,N/h _ ewz,N/h) ’2

> c/ e
(V)

> c/ e cle P /hg=corr/h (1 + O((f‘sxl/h)) drydz’ > chs
(V)

i(6o(a")+O(|2' |21)+O(22)) /h <6iclxl/h B eiczm/h) ’2 dwyda’

Remark: By the same argument [ju|?, < Ch'E.

To finish the construction of u, we simply rescale u so that it has ||u|/;2 = 1 and invoke Borel’s
Theorem (see, for example [24, Theorem 4.15]).
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6. PROPAGATION OF SEMICLASSICAL WAVEFRONT SETS

We first examine the case where P = hD,, + ihD,, = hD; (here, we identify R? with C). We
make the following definition in the spirit of Duistermaat and Hormander [5, Section 7]

Definition 6.1.
s0(z) := sup{t € R : there exists U a neighborhood of x such that ||h_tu||L2(U) =0(1)}

u
We will need the following lemma

Lemma 6.1. Let u € H} with hDzu = f. Then, s* = min(s),s) is superharmonic if s is
superharmonic and s[} —1>s.

Proof. Let ¢(z) be harmonic function in C such that s*(z,0) > ¢(z) for |z2| = r. (Here we
have written z € R? as = (z, 23, ..., 24), identifying C with R2.) Then, we need to show that
s*(z) > q(z) for |z| < r. The fact that s(z,0) > ¢q(z) for |z| < r follows from the superharmonicity
of 5. Therefore, we only need to show the inequality for s¥.

To do this, let x1 € C§°(R?~2) have support in a small neighborhood of 0, x1(0) = 1, and
X2 € C§°(C) be 1 for |z| < r and 0 outside a neighborhood so small that

Hh_q(Z)uHLQ(supp x10x2) — O(1>

This is possible since s* > ¢(z) for |z| = r implies s¥ > ¢(z) for |z| = r. Then, define v := x1x2u.
We have

hDzv = xixz2f + xiuhDz(x2) =1 g
with s9(z) > ¢(2) + 1.
Next, let F(z) be analytic with Re F/(z) = ¢(z) and define Q(z) := h~ (%), Using this, we have
D:(Qv) = h~'Qg and, since s(g) >q+1, " 'Qg = Oy2(1). Then, applying 0., we have
Az, 2,(Qu) = CD.Dz(Qu) = Ch™'D.(Qg)

and hence, shrinking r if necessary (note that this is valid since superharmonicity is a local
property), Qu solves,

Agyw, (Qu) = Ch_lDz(Qg) in B(0,1) C R?,
Qu=0 in 0B(0,1).
Therefore, by the estimate for u with u|p(,1) = 0,
ull 2 < CllAul[ -1,

we have

1Qullzz . < CWlezQQHH;l1

,12.
But, since h'Qg = Op2(1), ||h'D.Qg|| ;-1 = O(1) for almost every z’ € supp x1, the same
1,2

is true for Qu. Thus, since v = u in a neighborhood of 0, and |Q| = |[h=9)|, ¥ > ¢(z) for
lz| <. O
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Definition 6.2. We say that an operator T quantizes « if T : L? — L? and for all a € S™, we
have
T 'a%(z,hD)T = b¥(x, hD)
for a symbol b € S™ satisfying
blu, = £*(alv,) + Ogm-1(h).
To convert from P as in (1.1) to the case of P = hDz we need the following lemma similar to
[24, Theorem 12.6] which we include for completeness.

Lemma 6.2. Suppose P = p* and p has
oo
> Wy
k=0

with pp(0,0) = 0 and {Rep,Imp} = 0 with ORep and OImp linearly independent. Then there
exists a local canonical transformation k defined near (0,0) such that

K'po = &1 + i

and an operator T : L? — L? quantizing k in the sense of Definition 6.2 such that T~ exists
microlocally near ((0,0),(0,0)) and

TPT™' = hD,, +ihD,, microlocally near ((0,0),(0,0)).
Proof. Let g1 = Repp and ¢a = Impg. Then, by a variant of Darboux’s Theorem (see, e.g.
[24, Theorem 12.1]), there exists £ a symplectomorphism, locally defined near (0,0), such that
£(0,0) = (0,0) and
K'qp =68 Kq=%&.
Then, by [24, Theorem 11.6] shrinking the domain of definition for « if necessary, there exists a
unitary Ty quantizing x such that

TOPTO_1 = hD,, +ihDz, + E  microlocally near (0,0),

where F = e% for e € AS .

Next, we find a € S elliptic at (0,0) such that

hDg, +ihDy, + E = A(hDg, 4 ihD,,)A™! microlocally near (0,0),
where A = a" i.e.
[hDg, + ihDy,, A] + EA = 0 microlocally near (0,0).

Since P = p¥ + hp¥ + ..., we have E = e¥ for e = hey + h%ez + .... We use the Cauchy formula

to solve the equation
%{51 + i€z, a0} + €1a9 = 0
near (0,0) for ap € S with ap(0,0) # 0. Then, defining Ay := af’, we have
[hDyy, + thDy,, Aol + EAg = 1§

for rg € h?S. To complete the proof, we proceed inductively to obtain Ay = a¥* for aj € S, solving

[WDy, +ihDyy, Ag + ... + WY AN] = B(Ag + ... + BN Ay) =%
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where ry € hVN1T2S, using the Cauchy formula at each stage. Then, we invoke Borel’s Theorem
(see, for example [24, Theorem 4.15]) to find A and let T = ATy, O

Now, define
Definition 6.3.

SOz, &) :==sup{t e R: 3 U,V C RY open z € U, £ €V sit.
Y x1 € C5°(U),x2 € C5°(V), " x1 () x2(hD)u = Op2(1)}

In Lemma 6.3 we prove that Definition 6.3 is equivalent to the following

Definition 6.4.
Su(z, &) :=sup{t € R: there exists U C R?? open, (x,&) € U,
st. ¥V x € C°(U) h '™ (2, hD)u = O2(1)}.

The proof follows [24, Theorem 8.13], but we reproduce it in this setting for the convenience of
the reader.

Lemma 6.3. Suppose that there exist U and V as in Definition 6.3. Then, there exists W open,
(x,€) € W such that for x € C§°(W), x“u = Or2(ht).

Proof. Let a = x1(x)x2(€) as in Definition 6.3. Then, there exists y € C§°(R??) supported near
(z0,&0) such that

Ix(z,&)(a(z,§) — a(wo, o)) + a(wo, o) > v > 0.
Hence, by [24, Theorem 4.29], there exists ¢ € S such that for A small enough,
c’(x"a” +a(wo, §o)(I —x")) = I.
Next, observe that
bYu = b"c"x"a" u + a(xg, &)b" (I — x“)u.
Now, the first term on the right is Oy2(h!) since a”u = Opz2(h'). Also, if the support of b is

sufficiently near (xg,&p), supp bN supp (1 — x) = 0 and hence the second term is Oy2(h>). This
proves the claim. O

Remark: Note that S,(x,{) = oo if and only if (z,£) &€ WFp(u).

Lemma 6.3 shows that S, (z,&) = S(x, ). It will be convenient to use both of these definitions
in the proof of the following proposition.

Proposition 6.1. Let u € H}", p(z,hD)u = f with p € S™ and let Sy > s+ 1, O C N where
N = {(az,f) e T*RY : p(x,6) =0, {p,p} =0, HRgep and Hyy, ) are independent} .

Then, it follows that min(Sy,s) is superharmonic in O if s is superharmonic in O, and that
min (S, — s, 0) is superharmonic in O if s is subharmonic in O (with respect to Hy,). In particular,

Sy is superharmonic in O if O NWF(f) = 0.
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Proof. First, we consider hDz. We prove that Lemma 6.1 remains valid with s and s? replaced
by S9 and S?. Let x € C§°(R?). Then, hDs(x(hD)u) = x(hD)f. Take x; with x;(&) = 1,
vanishing outside Vj, V; | {£o}, and denote uj = x;j(hD)u. Then we have 53], (z) T 89(z,&). So,
the superharmonicity of

min(sgj, s;), where s;(x) = gien‘g s(x, §),
J

gives that min(SY, s) is superharmonic and proves the first part of the proposition for hD5.

To prove the second, note that it is equivalent to the first if s is harmonic. Thus, the second part
follows if s is the supremum of a family of harmonic functions. If s € C? is strictly subharmonic,
then s(z,2/,€) > q(z,2',€) in a neighborhood of (w,2’,§) with equality at (w,2’,§) when ¢ is the
harmonic function

q(z,2',€) = s(w, 2, ) + Re(2(z — w)ds(w, 2, €) /0w + (2 — w)20?s(w, 2, £)Ow?).
Then, the local character of superharmonicity proves the second statement when s is strictly
subharmonic and the general case follows by approximation of s with such functions.

To pass from hDz to P, we need the following (][5, Lemma 7.2.3]).

Lemma 6.4. If (z9,&) € N there exists a € S1™™ with a(wo, &) # 0 such that {q,q} =0 in a
neighborhood of (xg, &) if ¢ = ap.

Now, by Lemma 6.2, there exists T microlocally quantizing s such that x*(Reap) = & and

k*(Im ap) = &, so that
Ta“PT™ = hD,, + ihD,,
microlocally near ((0,0), (xo,&p)). Then,
STU ° Ii(CC, E) = Su(x7 g)’
for (z,£) € V a small neighborhood of (xg,&p). This follows from the fact that by Definition 6.2,
if x € C§°, then
R ITYY T Tu = h T~ T
where b € S and b|y, = £*(x|v,) + Og-1(h) and T~! is uniformly bounded on L?. But
SPawpyot = Squs =Sy =259 >s+1.

Hence, Proposition 6.1 follows from the case with hD5. ]

We need the following elementary lemma to prove Corollary 6.1.
Lemma 6.5. Suppose u solves (1.2) and P, has symbol p,(x,§). Then,

WF(u) N (2° x RY) < p71(0) N (Q° x RY).

Proof. Let zo € Q° and (wo,&) ¢ p;'(0). Then, let x1 € C§°(R?) have support near zo and
X2 € C5°(R?) have support near &. Then we have

X2 X1y u = O(h>).
But, x¥xV = ¢¥, ¢ € S with |e(x,&)| > 0. Similarly, ¢“p¥ = ¢* for ¢ € S with |q(z0,&)| > 0.
Hence, (33’0,50) §é WFh(u) O
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Putting Proposition 6.1 together with Lemma 6.5, we have the following corollary
Corollary 6.1. Let P as in (1.1), Rez > (Im 2)?| X |72, and u € H} with P,u = Op2(h*°). Then,
WE, (u)N(Q°xR?) is invariant under the leaves generated by Hiyp = (X, 0z) and Hgep = 2(€,0y).
Proof. By Lemma 6.5,
WEF(u) N (Q° x RY) € p21(0) N (Q2° x RY).

Also, {p,p} =0, and, for Rez > (Im 2)?|X|~2, Hgep and Hyy p are independent on all of p; *(0).
Now, let K, € Q° and K, 1 Q° Then, let x, € C5°(Q2°) and x, = 1 on K,,. Then, applying
Proposition 6.1, to x,u, we have that WF},(x,u) N K, x R? is invariant under the leaves generated
by Himp and Hgep. But, this is true for all n, so, letting n — oo, we obtain the result. ]

7. A CARLEMAN TYPE ESTIMATE

We now prove a Carleman type estimate for (P,(2). This will be used in the following sections
to restrict the essential support of quasimodes.

Observe that for ¢ € C*°(Q2), we have
(7.1) P, = e?/"P.e™?" =" (hD,, +1i0y,0)* — (X, 0p) + i(X,hD) — 2
with Weyl symbol
(7.2) Pap(2,6) = [€]7 — (X + O, 0p) + (X + 200, €) — 2.

Then, P, , = A+iB where A and B are formally self adjoint and have

A= (hD)* — (X + 8p,00) —Rez, B = (X,hD)+ Y (0r;p0hDy, + hDy, o 0,,¢) —Im 2
J

with Weyl symbols
a=6P = (X +0p,0p) —Rez, b= (X+20p,¢) —Imz.

Next, let u € C*°(Q) with ulpg = 0, Pu = v, uy := e?/My, and vy = e®/Mv. Then, we compute
lvi]> = ((A+iB)uy, (A+iB)uy)
= [[Awi|* + || Bu|]* + i [(Bu1, Aur) — (Aus, Buy))

Now, observe that, since B is a first order differential operator that is formally self adjoint, and
ulpn = 0,

(7.3) (Auy, Buy) = (BAug,u1) .

Next,

(7.4) (Bui, Auy) = (ABuy,u1) — h? (Bu1, Oyu1) o, -
But, on 092

h
B = ;<28¢>+X7 v)0, + B’
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where B’ acts along 9f2. Hence,

h
(Buy, Oyur)gq = h ((20¢ + X, v)0,u1,0,u1) 5
and we have

(7.5) ol = | Au|® + [ Bua|® + i ([A, Bluy, w1) — h* ({20 + X, v)yur, 0vur ) o -

Next, we compute
{a,b} = 4(8%p€, &) + (8%p(X +20¢), X + 20¢).
Thus, choosing ¢ = e) with 0%y positive definite, we have
(7.6) {a,0} > Celé]” + Ce|X + 2609 [* > Ce([€]* + |X|*) + O(e?).

Now, i[A, B] = h{a,b}* + eh®r™, where r € S'. Hence, for § > 0 small enough and independent
of h, h small enough, and 0 < € < § (here e may depend on h), we have

(7.7) i[A, B = Che(—=h*(0*¢)"0; 5, + f(2)) + €Oy, 12(h?)
where f > C > 0 and 0%y > C > 0. Hence, by an integration by parts,
i ([A, Blut,ur) = Che(||hDur [|* + [Jur[|?).

Combining this with (7.5), noting that, on 909, d,u; = T dyu, and, letting I'y. and 0€)_ be as in
(1.4), we have,

— 1* (2600 + X, v)et ov, e%ayu)m + Chelle®ul},

< He%quHQ + h? ((2661/1 + X, 1/>e%8uu, e%&/u)

Iy
Now, note that a similar proof goes through if
(7.8) ¥(z) = 1 ((z, X))
where 11 has %1 > 0. In this case (7.6) reads
{a,0} > Ce[(X, )* + Ce| X + 2e09|* > Ce(|(X, &) + [X[*) + O()
and (7.7) reads
i[A, B] = Che(=h*(0*¢)"0; ., + f(2)) + €O 12 (h?)
where ||u|| gy = (X, hD)u| 12 + |Jul|z2. After this observation, we obtain the following lemma,

Lemma 7.1. Let u € C*(Q) ulpg = 0, ¥ € C>(Q) either have

(1) v is locally strictly conver (01 is positive definite), or
(2) ¢ is as in (7.8).
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Then, there exists 6 > 0 independent of h small enough such that for 0 < € < & (e possibly
depending on h), and 0 < h < hg, we have

(7.9) —n3 (<2681/) + X, y>e%6yu, e%ayu)ag + CheHe%uH%V
< ||€%PZUH%2 + h? ((268¢ + X, I/>€%8VU, e%ayu)r
+

where if 1 satisfies

W) - M = [ e
@) - lw =1 Ml = 11 lle2 + (X, 2D) - | 2.

Lemma 7.1 easily extends to u € H? with u|sq = 0.

8. ESSENTIAL SUPPORT OF QUASIMODES

In this section, we prove part 2 of Theorem 1.

8.1. No quasimodes on the boundary of the pseudospectrum. Let zy € OA(P, ). We use
a small weight to conjugate P as in (7.1) such that p, is elliptic. For simplicity, we again assume
X = e; and hence Re zg = (Im 20)2. Using (7.2), let € > 0 and 9p = —eX (i.e. ¢ = —¢(X, 2)+C).
Then, using the fact that X = e;, we have

Peo(,8) = | + (1 — €)e +i(1 — 2€)&1 — 2.

Then, p. , = 0 implies that

_ Im zg /9 # 5 B B ) L
51 - 1 — 2% |§‘ + (1—26)2 ((Imzo) ReZO RezO( de + 4e )) +€(1 6) =0.
But,
€% + 7(1 502 ((Im 20)? — Re zg — Re zo(—4e + 462)) +e(l—c¢)
1
> — _
Z A= 202 (4eRezp(l—€))+ (1 —€)e >0

for € small enough. We now show that

|pz,<p‘ > C€<£>2

for € small enough. The fact that |p, ,| > c(€)? for [£| >> 1, is clear. Thus, we only need to check
that |p. | > ce. Let & = (Im 2o + v)/(1 — 2¢). Then, choose v = e

Dzp(x,8)] > |§'\2 + m(’y2 + 2yIm zo + 4e Re 2y — 4é> Rezp) + € — €
> (14 0(€))(6%€* 4 25e Tm 2o + 4e Re 29 — 4¢? Re zp) + € + O(€?)
> €(20Imzg +4Rezg +1) — O(?) > e

for § small enough independent of € and for € small enough.
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Therefore, by Proposition 4.1, if u|sq = 0, we have that
elle® ull g2 < Cllet Pl .
Thus, if u is a quasimode for zy, choosing € = hlogh™!,
lull 2 < C(A log h™1)~TO(h%) = O(h™),
a contradiction. Hence, there are no quasimodes for zg € OA(P, ).

Thus, we have proved

Lemma 8.1. Suppose Re zg = | X|~2(Im 2)?. Then there are no quasimodes of (P,Q) for z.

Remark: This argument can be adjusted slightly to give that if d(z9,0A(Q2, P)) = O(h), then
there are no quasimodes for zy € JA(P, ).

8.2. No Quasimodes Away from the Illuminated Boundary. To finish the proof of Theo-
rem 1, we will need the following elementary lemma. (The proof follows [6, Section 6.3.2].) Let

Q(x, hD)u = —h?9;(c¥0;u) + {a(x), hu) + b(z)u.

Lemma 8.2. Suppose that 9Q € C1 and that a,b,c € C°(R%; C) with c&;&; > C|€ uniformly
in Q. Then there exists C > 0 such that for all u € C°°(Q) N H}(Q) we have

ull 20y < CUIQullL2(0) + [lullL2(q))-

Proof. Using a partition of unity and change of coordinates, we can assume without loss of gener-
ality that Q = B(0,1) N {21 > 0}. Then, let y € C*°(Q) with y=1on V := {|z| < 3} and x =0
on |z| > %. Next, let v = —h20x?Oxu for k = 2,...,d. Then, v € H} with v|sq = 0 and hence

/cijh(?iuhé?jv = /qu — (a(z), hou)v — b(x)uv

Now,
/cijhaiuhajv = /—cijhﬁiuhQ(?jﬁk(th@kﬂ)
_ / (9129303 + 1y () (hoyu)| 20,0 + 2x(hdj) (hh)|
/x — CO)|h200ul? — h2e |hojul?
> /§X B200ul? — Ch2|hdyul®.
Then,
[ Quo = tate), hdwyo —btayun] < [(1Qul+ la(e), how] + eyl

—/ 1Qul + [{alx). hdu)| + [b(x)u]) |2xhdkx ki + x*h203

< /C’\Qu!z + Clhou* + Clu|* + Ch%hDul? + Ce|x*h203ul?
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Thus,
Ih20kdull 2y < CUIQul L2 + Ilull 1 0)
for k =2,...,d. Now, for k = 1, we note that

h20iu = (')t (Qu + Z ch20;0;u — i (0;¢)0iu — {(a(z), hou) — b(a:)u)

where (c!!)~! is well defined by the positive definiteness of ¢/. Thus,

d
[R?0tu| < C <Z|h28i2u| + [hDuf + [uf + IQU|>
=2
and we have
ull 2y < CUIQUl L2 () + [l 2 (o)
and the result follows from [24, Theorem 7.1] and its proof. O

We apply the above lemma to obtain the following,
Lemma 8.3. Suppose that u has ulgg = 0, ||u|lz2 = 1, and ESp(u) UES,(P,u) C A and P,u =

O;2(1). Then, for any U with A € U, and x € C>*(Q) with x =1 on U,
11 =2)ullz = O(h™).

In particular, if u is a quasimode for (1.2) with ESy(u) C A, then, for any U with A € U, there
s a quasimode uy with supp uy C U.

Proof. Let A e Uy € U € Uy € B. Let x € C*®(Q) have x = 1 on U and supp x € U;. Let

Xo = x and for i = 1,... let x; € C*°(Q) have supp x; C B\ Uy and have x; = 1 on supp 9y;_1.
Then, by Lemma 8.2

I = 2)ull gz < CP(1 = x)ullpz + I(1 = x)ullr2)
< OI(1 =x)Pullr2 + Cll[Pz x]ull 2 + O(h™)
= O(h) + [|[Pz; x]ull2 < O(h>) + Chllx1ul g1 -
But, using the same argument again, we have that since x, = 0 on Uy for all n,
Ixn—1ull gy < (1= (1 = xn-1))ul gz < OT) + Chlixnul g1
Hence, by induction, for all N > 0,
10 = xullz < OB + k™ [xvull .
But, by Lemma 8.2, since Pu = Op2(1), u = OHz(l) and hence
11 = x)ull gz < O(h™) + OnAY [Jull g2 = O(h™)
as desired.

To prove the second claim observe that if u is a quasimode,

[1Pzxull 2 < [P.(1 = x)ullr2 + [[Pzull 2 = O(R™)
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since (1 — x)u = OH’%(hOO). O

We now apply the above lemma to restrict the essential support of quasimodes.

Lemma 8.4. If u is a quasimode for (1.2) then ESy(u) NNy # (.

Proof. Suppose that u is a quasimode for (1.2) and u has
Then, by Lemma 8.3, we may assume that u is supported away from 0€) .

2

Now, applying Lemma 7.1 with € = hlogh~! and ¢ = (X, z)2, we have

—h? ((266w + X, Z/)e%al/u, e%&/u)ag, + C’he”e%uH%z
<OMh™®)+h? ((2681/1 + X, 1/>e%81/u, e%auu)aﬂ .
0
But, since 01 = 2(X, z) X, the term on 0 vanishes and, hence, we have

Chelle T ul|2. = O(h™).
Hence, u = Oy2(h*°) and there are no quasimodes concentrating away from 9, - i.e.
ESy,(u) N Oy # 0.
O

8.3. Characterization of the Essential Support of Quasimodes. In order to use Lemma
7.1 to characterize ESp(u) for quasimodes, we would like to construct a set A with I'y C A
and a weight function 1 such that for any U C € separated from A, there exists € > 0 such that
sup 4 ¥ < infyy ¢ —e. Since ¥ must be locally convex in  to apply Lemma 7.1, any set A with this
property must be relatively convex inside Q (Recall that relative convexity is defined in Definition
1.3.).

8.3.1. Preliminaries on Relatively Convex Sets. Let B be a bounded set and A be convex relative
to B. We wish to determine whether there is a smooth locally strictly convex function (inside B)
with JA as a level set.

Lemma 8.5. Let A be a closed and relatively convex set inside B, a bounded set. Then there is
a function ga that is locally convez inside B and has gala =0, ga(x) > 0 for x ¢ A.

Proof. First, define the epigraph of a function f as follows.
epi(f) = {(z,p) € BXR:p = f(z)}.

We show that a function f is locally convex in B if and only if its epigraph is relatively convex in
B x R.

Suppose that f is locally convex in B. Then, for every z,y € B with Ly, C B, f(tz + (1 —
t)y) < tf(x) + (1 —1t)f(y). (Here Ly, is as in (1.3)) Therefore, if (x, ), (y,v) € epi(f), then
(tr + (1 =t)y, tp+ (1 —t)v) € epi(f).
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Now, suppose that epi(f) is relatively convex in B x R. Then, suppose that x,y € B with
L., C B. Then, let f(z) = p and f(y) = v. Then, t(z, 1) + (1 —t)(y,v) € epi(f). Hence,

flz+ (A —t)y) <tp+ (1 -ty =1tf(z)+ (1 -1)f(y)
and f is locally convex in B.

Now, we determine the epigraph of the function g4. First, let
G=Ax[0,00)UB\ Ax][l,00).

Then, let G4 = chpxr(G). Observe that since A is relatively convex in B, A x [0, 00) is relatively
convex in B x R. Now, by Carathéodory’s Theorem, any point in ch(G) can be written as the
convex combination of at most d + 2 points in G. Since A X [0, 00) is relatively convex in B x R,
and chpyr(G) C ch(G), any point in G4 \ (A x [0,00)) is representable as a convex combination
of d + 2 points, at least one of which is in B\ A x [1,00).

Suppose z ¢ A and (x,v) € Ga. Then, d(x, A) > 0 since A is closed and

d+2

(.7}, V) = Z ti(xz'a Vi)
=1

where, for some r > 0, x1,...,x, ¢ A. Hence, v1,...,v, > 1. Relabel (z;,v;) i = 1,...,7 so that

t1 = max(tq,...,t,). Then, since B is bounded there exists R > 0 such that B C B(0, R) and
d(w,A)

CE=orR Therefore

hence t; >

d(z, A)

>~ 7 7
Y=+ 2R

> 0.

Thus letting
ga(z) = inf{y : (z,y) € Ga},
ga is locally convex in B with g4 >0 on B\ A and g4 =0 on A. O

Corollary 8.1. Let B and B; > B be bounded sets. Let A C By be closed and convex relative to
By. Then there exists ¥ € C*°(B) strictly locally convezr in B such that for all W with A € W,

supq ¢ < infp\w .

Proof. Let d(Bj, B) = 26. Then, let . € C$°(R%) be a nonnegative approximate identity family
with support contained in B(0,6) and define f§ = ga * ¢ where g4 was constructed in Lemma
8.5. (Here we extend g4 off of By by 0.) Then, f§ — g4 uniformly on bounded sets. Also, f§ is
smooth. To see that f§ is locally convex inside B, observe that for x,y € B with L, , C B,

Falte+ (1= = [ ed2)gatte+ (1 -ty - 2)d

< [ pdtgate = 2) + (1= Hgaly - 2)dz = tF5(w) + (1 - /()

by the local convexity of g4 inside B; and the nonnegativity of ¢.. Finally, to make a locally
strictly convex approximation of g4, define g% = f§ + €|x|?. Then, 9% — ga uniformly on
bounded sets, and g5 € C*(B) with g4 locally strictly convex inside B. O
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Remark: Although we have not constructed a smooth locally convex function with level set 0A,
we have one that has a level set which is uniformly arbitrarily close.

We also need a few more properties of relatively convex sets

Lemma 8.6. Suppose that A C B is relatively convex in B, B open and bounded. Then, A is
relatively convex in B.
Proof. Let x,y € A such that L,, C B. Then, there are sequences z, — x and y,, — y with
Tp,yn C A. We need to show that L, , C A. For 0 < XA <1, We have that
A@n —2) + (L= N (yn — 9| < |20 — 2] + |y — yl-
But, since L, , is compact and B is open, there is ¢ > 0 such that
{z:d(z,Lyy) <€} CB

and hence, we have that for n large enough L, ,. C B. But, since A is relatively convex, this
implies L, 4, C A and hence for 0 <A <1

nh_}rglo Aep + (1 =Ny, =dz+ (1 — Ny € A

O
Lemma 8.7. We have that
() chp, (A) = chy(A).
BeB;
Proof. Let
C={C:AcC,z,yeC, L,y € By for all B; B implies L., C C}.
Then,
[ chp, (A) =) C.
BeB; ceC
But, if Ly, ¢ B, then L, , ¢ By for some B;  B. Hence,
C={C:AcC,z,ye(C,L,, € B implies L,, C C}
and the result follows.
O

8.3.2. Application to Quasimodes. We now apply the above results on relatively convex sets to
quasimodes.

Lemma 8.8. Let u € L? have ulsq = 0, ESp,(u) C A, P,u = O;2(1), and ES,(P,u) C B. Then,
for all Ay A and B1 B,

ESh(u) - Chﬁ((Al N F+) U B1>.
In particular, if u is a quasimode for (1.2), then for all A1 A
ESh(U) C Chﬁ(Al N F+)
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Proof. Choose Q1 open with Q @ 4, A1 closed with A € A;, and B closed with B € B;. Let
F = chg, ((A1NT4) U By). Then, by Lemma 8.6, F is relatively convex in Q. Let U C € such
that d(U, F) > 0. By Corollary 8.1, there exists ¢ € C°(Q) strictly convex in  such that for
some ¢ > 0, supp ¢ < infy ¢ — 6.

Remark: The regions of ) > 0 and 1 = 0 are shown in Figure 1.3.

We have, by Lemma 7.1 that, for ¢y small enough independent of h, and h small enough, for
e(h) < e,

C’h6||e%u||]2ql < C’He%quH2 + Ch3 ((268111 + X, 1/)6%81/% e%ﬁyu)
h

Ly

Now, suppose that u has ESy(u) C A, ESy(P,u) C B, and let € = yhlog h~!. Then for A € A;
and B € By Lemma 8.3 gives that up to OHZ(hOO) supp u C A1 U By. Thus,

h3 ((266@ + X, 1/>e%81/u, e%ﬁl/u)r < O(h™®) +h3 ((268¢ + X, 1/>e%8uu, e%auu) (ASUBAT,.
+ 1UB1)NC

Hence, we have

b2 o0 e/h 3 s s
Cheller ul|7. < O(h™) + e v/ P.ull2,) +h ((2681/1 + X,v)en Qvu,en ayu) (AsUBDAT,.

But, by Lemma 8.2, ||u||H2 = O(1). Hence,
12 (Oyu, Oyu)on < CRP|lullfsre = Cllull? a2 < Cllull = O(1).
h

Thus, we have that

Cheinf e’ [ul22y) < Chelle ™ ul22() < Chelle™ul2: < OR™) +C  sup e
U (A1NT4)UB;

But, infy ¢ > 6 + supp ¢ and we have
Cyh?> 2 log bt |ul| 21y = C’hee%éHuH%z(U) <O(h™) +C.

Hence, letting v — oo, we have that ||ul| 72y = O(h™) as desired.
Thus, v cannot have essential support away from F. That is for any A; A and By 3 B,

ESp(u) € () cho, (A1 NT4)UBy) = chg((A1NTy) U By)
Qe

Here, equality of the two sets follows from Lemma 8.7. The second claim follows from the fact
that a quasimode has ESp,(Pu) = (). O

Remark: Observe that if I'y C A, then the second part of Lemma 8.8 gives that for quasimodes

ESh(U) C chﬁ(F+)
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8.4. Characterization of the Interior Wavefront set of a Quasimode. We wish to deter-
mine the possible essential support of a quasimode. To do this we first need the following simple
lemmas

Lemma 8.9. For a solution to (1.2),
7z (WFp(u)) N Q° = ESk(u) N Q°.

Proof. Say xo € my(WFp(u)) NQ°. Then it is clear that xp € ESy(u).

Now, suppose o & m(WF,(u)) N Q°. Let K > 0 such that |p,(z,¢)| > C(¢)? for |£] > K and
x € Q°. Let U be a neighborhood of z¢ such that for all x € C§°(U x {|¢| < 2K}),

Ix*“ullrz = O(h).
Such a neighborhood, U exists by the compactness of {|{| < 2K} and [24, Theorem 8.13].
Let 20 € V € U, ¢ € C(U) with p =1 on V, and ¢ € C*®°(R?) with supp + C {|¢| < 2K}.
To complete the proof, we need only show that there is a V' such that

11 = (&))" pull L2y = O(B™).

To see this, let 1 € C§°(RY) have ¢ = 1 on supp 91 and supp 91 C {|¢| < 2K}, let 1 € C§(U)
with 1 =1 on supp ¢, and finally let ¢ € C§°(U) with ¢2 =1 on supp ¢.

Then, observe that
(1= 91)?lp= P30t = (6)*
on supp (1 — ). Hence, by the Sharp Garding inequality,
lp2Po(hD)"2(hD)*(1 — 9)“ul| 72 = V(|1 = ¢)*pul72 — Ch{(RD)*(1 — ) pul|7..
But, by Lemma 8.2
1A =) ullgz < C(I(1 =) pul 2 + [P.(1 = ¢) pull2)
and we have that
2@ =) pullz2 < CllpaPa(1 = ) u 12
But,
PP (1 =) ou = paPou+ @2 P-((1 = 9")p — Lu = Op2(h™).
since P,u = Op2(h™) and paP,(1 — (1 —¢™)p) = ¢ with supp ¢ C U x {|{| < 2K}. O

Lemma 8.10. Let 9Q € C'. Then for any plane A with X tangent to A and AN Q° # 0, we
have

(Q°\ ch(I')) N A # 0.

Proof. For simplicity, we again assume X = e;. By the compactness of ') we can choose x €
I't N A such that 7 (x) < mi(y) for all y € I'y N'A where 7 is projection onto the first component.
Then,

m1 (ch(I'y) N A) C [mi(x),0).
We show that there is a z € Q° N A with 7 (2’) < m1(x) and hence that 2’ ¢ ch(I'y) N A.

Remark: The regions of interest are shown in Figure 8.1.
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>

F1GURE 8.1. The figure shows a piece of A N where A is a plane tangent to
X. A portion of 9Q2_ is shown in the black dashed line and a portion of 024 is
shown in the red line. The shaded region represents the convex hull of I'y.. The
non-shaded region is a portion of 2 N A that is not contained in ch(I'}).

Suppose x € 9. Then, (e1,v(x)) > 0 and hence there is z € Q° N A with m1(2') < m(2).
Now, suppose that x € 0{)g. Then, e; is tangent to 92N A at x. Hence, thereisa z € 90N A
with 71(z) < 71 (z). But, this implies that there is a 2’ € Q° N A with m (') < 71 (). O

We now finish the proof of part (2) of Theorem 1.

Proof. Let u be a quasimode. Observe that if (p — 2)(x0,&) = 0 and & # (Imz,0,...,0), then
Rez > (Im z)2. Hence, by Lemma 6.5, and Corollary 6.1, if

xo € Q% (x0,&) € WFp(u),

then, there exists a plane A tangent to e; with zg € A such that
T (WFp(u)) D AN Q.
But, ES,(u) is closed and ESj, (u) N Q° = m,(WFy,(u) N (2° x R?)), hence
ESn(u) D ANQ.
Together with Lemma 8.8, this gives for I'; € A3
ANQ CESy(u) C chg(Ar).

But, notice that

Chﬁ(Al) C Ch(Al).
Hence, since A1 3 I'; was arbitrary,
ANQCES(u) C () ch(A1) =ch(ly)
A1§F+

since 'y is compact. Therefore we have a contradiction of Lemma 8.10. Putting this together
with Lemma 6.5, we have

WF,(u) N (Q° x RY) ¢ (Q° x {(Im 2,0,0, ...,0)}) N p; 1(0).
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Now, note that if ¢ = (Imz,0,...,0), and p(x,£) — 2z = 0, then Rez = (Imz)? and hence
z € A(P,Q2). Thus, except for z € IA(P, ),
WF(u) N (Q° x RY) = 0,

But, we have shown in Lemma 8.1 that there are no quasimodes for z € OA(P, ). Hence
quasimodes cannot have wave front set in the interior of 2.

So, using Lemma 8.9, we have
(8.1) ESp(u) N Q° = m, (WFp(u) N (Q2° x RY)) = 0.
Thus, ESp,(u) C 02
To finish the proof of Theorem 1, we apply Lemma 8.8 with ESy(u) C 02 to obtain

(8.2) ESp,(u) C chg(I'y).

Putting (8.1) and (8.2) together, we have that quasimodes cannot concentrate away from the
intersection of the 2 convex hull of the glancing and illuminated boundary with the boundary -
i.e.

ESp(u) € 022N chg(Ty)
as desired. (]

8.5. Further Localization. We now apply Lemma 7.1 locally to obtain further information
about the essential support of quasimodes — we prove parts (4) and (5) of Theorem 1.

We will need the following lemma.

Lemma 8.11. Let xy € C*°(Q), then for any quasimode u of (1.2), any A, B with supp OxNIQ €
B and supp x N OS2 € A, we have

ESp(xu) C ch

suppxﬂﬁ((r+ N A) U B) N of.

Proof. Let u be a quasimode for (1.2), x € C*°(Q2). Now, let W have supp dx € W and let U;

be a neighborhood of W N 9Q. Then, let x; € C*°(2) with x; =1 on U;. Then,

(1 = x1)Pexullz2 = O(h™) + [|(1 = x1) [Pz, x]ul|z2-
Now, by Lemma 8.3, and the fact that ESy(u) C 09,

11 = x1) [Pz xull g2 < C(1 - XI)UHH}L(W) = O(h™).
Hence, since U; was an arbitrary neighborhood of supp dx N 012,

ESp (P, xu) C supp dx N oS.
Then, observe that yu is a function on Q; = supp x N Q with
xulag, =0, ESp(xu) C 02N supp x, ESi(P;xu) C supp dx N ONL.

Hence, applying Lemma 8.8 to xu on 1, and using the fact that ESy(u) C 912, we have for every
B 5 supp Ox NN and every A S supp x NI,

(8.3) ESp(xu) C ch (Ty NA)UB)NN.

supp Xﬁﬁ
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We now use Lemma 8.11 to finish the proof of Theorem 1.

Proof. For simplicity, assume X = ey. To prove the first part of the proposition, suppose that 02

is either strictly concave or strictly convex at z¢g € 92_. Then there exists y € C*°(Q2) such that
X = 1 in a neighborhood of zq, supp x N 92 € 9Q2_ and for = € supp dx N O,

|1 (x) — 71 (x0)| > 6.
Then there exists A with dQ_ D A 3 supp x NI and B 3 supp dx N I such that for x € B
|m1(x) — mi(x0)| > 6/2.

Hence,

T € ch I NA)UB) NI =ch, . a(B)NoQ

suppxrﬁ((
implies

|1 () — 71(x0)| > 0/2
and by Lemma 8.11, zy ¢ ES,(xu). Thus, since xy =1 in a neighborhood of zg, xo ¢ ES(u).

Now, suppose 2 C R?. Then choose z¢ € 92 and let «y : [—1,1] — 95 be a curve defining 99
with v(0) = zg, y(—1),v(1) € 9Q0, and y((—1,1)) C 9Q_. Defining

by = if{t 17/ () £ 7/ (0)},

we have |t1| < 1 since if not, then (X,+/(£1)) # 0. Then, there exists € > 0, such that for r > 0
small enough

xo ¢ B(y(t— —€),r)UB(y(ty +€),r) == Wi UWa, (Wi UWa)NTL =0,
and there exists > 0 such that

8.4 i f J 1 s
( ) (21,22)IEHW1><W2821[§)1} (S’Zl ( 5)22 )

Let x € C*°(2) have x = 1 in a neighborhood of zy,
suppdx NIN € W1 UWy, suppx NI € IN_,

and
suppx C {z € Q:d(z,00) < §/2}.
Then, letting u be a quasimode for (1.2), and applying Lemma 8.11

ESp(xu) C ch Wi UWy) =W U Ws.

supp Xﬂﬁ(

Here, the last equality follows from (8.4) and the convexity of B(x,r). Hence, xo ¢ ES;(xu) and
we have xg ¢ ESp,(u). But, g € 0Q_ was arbitrary. Therefore, ESp(u) C I'; as desired. O

Remark: Figure 8.2 shows an example of why we cannot make a similar argument in dimensions
larger than 2.
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FIGURE 8.2. The figure shows a piece of a domain  C R3. A portion of 9§2_
is shown in the black line and a portion of €2 is shown in the dashed red line.
Notice that for any point in the portion of 92— shown, 924 can be reached along
a straight line lying entirely inside the boundary. This example shows that in
dimensions higher than 2 we cannot hope to make an argument similar to that
used to prove the last part of Theorem 1.

9. INSTABILITY IN AN EVOLUTION PROBLEM

Our approach to obtaining blow-up of (1.5) will follow that used by Sandstede and Scheel in
[20] and that by the author in [8]. We first demonstrate that, from small initial data, we obtain
a solution that is > 1 on a translated ball in time ¢; = O(1). We then use the fact that the
solution is > 1 on this region to demonstrate that, after an additional to = O(h), the solution to
the equation blows up.

First, we prove that there exists initial data so that the solution to (1.5) is > 1 in time O(1).
Let ¢; := exp(—tX) denote the flow of i(X, D). Note that for the purposes of Theorem 2, we do
not need to assume that X is constant.

Lemma 9.1. Fiz 1> 0, a <, 0 <e < i(u— ), and (z9,a,8) € RY x RT x RT such that both
(B (0,2a)) C Q for 0 <t <25 and ¢ is defined on B (xg,3a) for 0 <t < 25§. Then, for each

0<h<hg

where hg is small enough, there exists

1
w(@) >0, [uofler < exp <—m> k=01,

and 0 < t; < § so that the solution to (1.5) with initial data ug satisfies u(z,t) > 1 on x €
¢t(B(xo,a)) forty <t <.
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Proof. The proof of this lemma follows that in [8, Lemma 3] except we no longer need to control
the size of the potential. Instead, we show that the ansatz satisfies Dirichlet boundary conditions

on 0f2.

Let v solve
(9.1) (hOy + P(x,hD) — p)v =0, v(z,0) =vg, v|gg =0.

Let wo : RY — R and define O := {x : wg > 0}. We make the following assumptions on wy,

1
(9.2) wo >0,  JJwollor < exp(——=—), wp € C(RY)
Crh
o~ o

(9.3) wop € C*°(0), supp wo C B(xo,2a), wy > exp ~g5) o0 B(xg,a),
(9.4) 00 is smooth, —Awy(x) < Cwy(z)— p for z € O and 0 < h < hy.

where C*°(0) are smoothly extendible functions on O. We refer the reader to [8, Lemma 3] for
the construction of such a function.

Define w : [0,26) x R? — R by
{eXP (%) wo(pe(z))  where ¢ is defined,
w =

0 else.
Since supp w C B(xo,2a) and ¢; is defined on B(xg,2a) x [0,260), w is continuous. We proceed
by showing that w is a viscosity subsolution of (9.1) in the sense of Crandall, Ishii, and Lions [1].

First, we show that w is a subsolution on O := ¢;(O) for t < .
hw; 4+ P(x, hD)w — pw = hwy — h*Aw + ih(X, D)w — pw
= (a0 — p)w — K2 Aw

<exp (5t) ((a = pun) - A,

(Here, we evaluate all instances of wy at ¢;(z).) Now, by Taylor’s formula, for x € Q, p;(x) =
x4 O(t) (with similar estimates on x derivatives). Hence —A [wo(pi(2))] = —Awo(p(z)) + O(t).
We have t < ¢, and —Awg < Cwg — f on O. Therefore, for § small enough, —Aw < Cwgy. Hence,
for h small enough independent of 0 < § < dg,

hwy + P(x,hD)w — pw < exp (Zt) (a —pu+ C’h2) wo <0

Now, since for ¢ < 4, supp w C 2 we have that w is a subsolution on O; for ¢ < § and h small
enough. Next, observe that on (R?\ Oy), w = 0 and hence is a subsolution of (9.1) on this set as
well.

Finally, we need to show that w is a subsolution on 00, := ¢;(00). We refer the reader to the
proof of [8, Lemma 3| for this. Lastly, observe that since ;(B(x,2a)) C € for t < 24, we have
that for t < 0, w|sn = 0. Together with the previous arguments, this shows that w is a viscosity
subsolution for (9.1) on ¢ < 4.
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Now, by an adaptation of the maximum principle found in [1, Section 3] to parabolic equations,
any solution, v to (9.1) with initial data vy > wy has v > w for t < §. Now, suppose u; solves

howuy + (P — p)uy = |ugl?, uy|i=o = vo > 0.

Then, uy is a supersolution for (9.1) and hence has u; > v > 0. But this implies that in fact
u := uy solves (1.5) with initial data vy. Therefore, u > v > w for ¢ < § and hence, since for
t> %, w(z,t) > 1 on pi(B(xp,a)), we have the result. O

Remark: To obtain a growing subsolution it was critical that g > 0. This corresponds precisely
with the movement of the pseudospectrum of (—(P — u),2) into the right half plane.

Now, we demonstrate finite time blow-up using the fact that in time O(1) the solution to (1.5)
is > 1 on an open region. Again, the proof of Theorem 2 follows that in [8, Theorem 1] except
we replace the need to control the size of the potential with the requirement that the solution be
0 on 012.

Proof. Let ug(x) and ¢; be the initial data and time found in Lemma 9.1 with (a, z¢, §) such that
¢t is defined on B(zg,a), ¢t (B (zo,a)) C Q for t € [0,6], and ¢t; < §. Then, u(z,t1) > 1 on
¢t (B (0, a)).

Now, let & € C3°(R) be a smooth bump function with ®(y) =1 on |y| < 1,0 < ® <1, supp
® C (—2,2), and ®”, &' < CP'/P. Define y : R? — R by x(y) := ® (2a~'|y|) . To see that such a
function ® exists, observe that when ® > ¢ > 0, the inequality can easily be arranged by adjusting
C. Then, notice that the function e~/% has

(e_l/x)// = e_l/x(:L‘_A‘ — 273 < Ce~V/(Px)
and
(671/‘@)’ — e Vry=2 < et/ (ow)

for  small enough.

Next, let 3y = p(xo + y) and let

v(y,t) = x(y)uy',1).
Then, we have that
hv; = h2Av + v + vP — 2R3 (Vx, Vu) — h2uAy + (x — xP)u?.
Finally, define the operations, [f] and (f,g) by
Ni=f,  fwdy ()=, (Fw)ow)dy
B(0,a) B(0,a)

(Here, § denotes averaging.)

Then,

hlole = B*[Av] + plo] + [07] = h* (Ax,uw) = 202 [(Vx, V)] + (x = X, uP)

(9.5) > p[o] + [07] + B2 (Ax, w) + (x = XP,uP)
Here, (9.5) follows from integration by parts, and the fact that Vx = 0 at |y| = a.
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We will later need that [vP] > [v]P. To see this use Holder’s inequality as follows

P _ 1 D vp 1 r — Up
P = B o™ < Jotow B0 </B<o,a> |B<o,a>|> =1

We will also need an estimate on (Ax,u). Following [8, Section 4], we obtain
Lo 2(d—1) -1 —2 1,07 ,.d-1
(Ax,u)| = ‘Cdad L L 2o [wean) + 40720 2o )] v ulrg)as(¢)dr

<C

®YPrd=LydS(p)dr

S(i—l
(9.6) < C’/Xl/pu < C][(l L) <+ C][Xup

where C' and C' do not depend on h.

Now, we have

Wole > M[U]+[vp]+h2(Ax,U)+( )
> plo] + 7] = O(0) + (1= O(W))x = ¥ )
(9.7) > plo]+ [?) - O(h?) — ow%w
> plo] + (1 - O(h®)[o] — O(h?)

Here, (9.7) follows from the fact that x < 1 and [vP] > [v]P. Note that these equations are satisfied
for t < § since ¢y(B(z9,a)) C Q for t < 4.

We have that [v](¢1) > 1/4 and g > 0. Then, by Lemma 9.1, there exists 7 > 0 independent of
h such that for A small enough and t; <t <t + v,

Al > L1+ %[v]p.

But, the solution to this equation with initial data [v](0) > 1/4 blows up in time to = O(h).
Hence, so long as t; + to < min(d,t; + ) and h is small enough, [v] blows up in time t; + to.
Observe that since t1 < 0, 0 < t1 +ta = t; + O(h) < min(0, t1 + ) for h small enough. Thus, the
solution to (1.5) blows up in time 0. O

10. APPLICATION TO HITTING TIMES FOR DIFFUSION PROCESSES

Let Q € R? be a bounded domain with C> boundary. Then, define the stochastic process
(10.1) dX; = b(Xy) + V2hdB,

where B; is Brownian motion and b € C*°(R%; R%). (Figure 10.1 shows an example path for X;.)
Let Y; = X};. Then, Y; solves

dY, = hb(Y;) + V2hdB; Yy = 1
and it is a standard result of probability theory [7, Section 1.5] that the operator
(10.2) L := —(hD)? +i(b, hD)
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FIGURE 10.1. The figure shows a sample of the diffusion process X; with b(X;) =
(—\%, %), h = 1074, and initial condition Xy = (0, h). The dotted line shows the
boundary of a disk tangent to y = 0 of radius 1/2 and the dashed line shows the
path of the ode with no noise. The boundary is shown for y < 10h.

is associated to Y; in the sense that if

(10.3) {(_L —ANu= ((hD)*+i(—b,hD) = Nu=f inQ,
. ulan = 0,
then u has
_ v At
(10.4) u(w) = E, /0 F(V)eMdt.

were [E, denotes the expected value given that Xy = x.
Next, define the first hitting times, by

(10.5) v :=inf{t >0:Y;, € 00} 7x :=inf{t >0:X; € 00} = hry.
Let A1(—L) denote the principal eigenvalue of —L. We prove the following proposition,

Proposition 10.1. Let Q C R? be bounded with 0 € C™®. Let X, and Tx be defined as in (10.1)
and (10.5) respectively. Then, for each zo € 0Q (where X = —b € C®°(R%RY) in (1.4) - that
is (b,v) <0.), and

{0 <A<A(=L), A # (blwo), v(w0))*/4  d =2 A independent of h.

0 < A < min(A(—L), (b(zo), v(z0))2/4) d=1"
There exists -y > 0 such that for all N > 1 and x(h) with
vh > |z(h)| > by, (x(h),v(z0)) < —c2 <0, xo+x(h) €Q, for0< h < hg
there exists C' > 0 such that for h small enough,
hlog Eyyyp(mye’™/" > Chlogh™.
Moreover, if 082 and b are real analytic near xq, there is a § > 0 such that

hlog ]Ex0+x(h)e>‘TX/h >0



PSEUDOSPECTRA OF SEMICLASSICAL BOUNDARY VALUE PROBLEMS 41

and such that for every a > 1 and € > 0, there exists cq > 0 (co depending only on «) and a
function s(h) > § — h1=¢ with

_pl—€
(10.6) mm%fMWFWEDSPGXZ%P)SPGXZ5,?)

Remarks:
(1) Notice that if s(h) <, for 0 < h < hg, then by (10.6) we have that
P(rx > 0/(2)X)) > min(cg, 1)

and hence, for h small enough, that the first hitting time is larger than §/(2)\) with
uniformly positive probability. On the other hand, if s(h) — oo or remains bounded but
is > 4, (10.6) gives control of the decay rate of P(rx > 6/(2\)) as h — 0.

(2) If b= —Vf for f € C®°(R?) and |b| > 01in Q, then 0 < ¢ < A;(—L) uniformly in h. Hence
in these cases, there exist A as required by Proposition 10.1.

(3) In fact, the proof gives that for all € > 0, there exists h small enough so that we can take

(1—e).

_1—a

Cq =
2 —«

Proof. Let L be as in (10.2). Then, for A < A\;(—L), we have that the solution, v to (10.3) has
(10.4).

Now, by Proposition 5.1, if 0 < A, there are quasimodes for (10.3) that are concentrated near
xo for xo in the subset of the boundary illuminated by —b. Let (u,v(x0)) < 0, e(h) < vh. We
change coordinates so that v(zp) = e; and observe that near the point xg, these quasimodes have

‘u(,ue(h) + x0)| — ’e—cm/Pe(h)?/h‘ ’a(ue(h) + 1-0)eiclHlﬁ(h)/h+0(u1u’e(h)2/h)
— b(pe(h) + xo)eiCQ,Ul5(h)/h+O(U1N/€(h)2/h)‘
= (14 O(e(h))) | (elerme®/h — cieame/m)| 1 O(e(h)) > Cpe(h) /h
Therefore, for v > 0 small enough, every u with (u,v(x¢)) < 0 and e(h) < vh, we have |u(pue(h) +
x0)| > Ce(h)/h. Now, applying this in (10.4), we have

e(h)

= <
C’h_

E v f(Yy)eMdt| = |E TY(—L—/\) (Yi)eMdt
xo+pe(h) 0 t)e = [Pzo+pe(h) 0 u\ry)e

1 T
<L = Ml 3B e (™ —1).

If 9Q and b are real analytic near xg, we have ||(—L — Mul|z~ = O(e~%/") which yields

e(h -
(h)ea/h < EwoJrue(h)e)\TY = H*j':fcoﬂldh)eA X/

and if 9 or b is only C* near zg, ||(—L — A)u||g= = O(h*°) and hence, for all N > 0 there exists

cy such that

CNE(h)h_N = Ex0+ﬂ€(h)e>\TY = Ewo+ue(h)e/\TX/h‘
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Thus, if there exists N > 0 such that e(h) > Ch", we have, possibly with a different &,

ed/h 0L, b analytic near z,

10.7 Eapipe(ny " >
(10.7) o+ne(h)€ = {cNh_N 9Q,b C* near xy.

This gives the first two statements in Proposition 10.1.

Remark: Notice also, applying the standard small noise perturbation results that can be found,
for example, in [7, Theorem 2.3] to a domain Q5 D Q with B(xg,d) C s, and defining 7'35( the
corresponding hitting time, that we have for some C' > 0

Mx/h < | M /h < (Clh

Exo—l—ue(h)e xo+pe(h)€

We now prove the second part of the proposition. Compute, using the fact that 7x > 0 and
making the change of variables s = hlogx,

(o ¢] 1 o
Ax /h _ ATx /h _ - s/h -1
Eeotuenye = /0 P (e > ac) dr = W /0 e’ P <TX > sA ) ds.

Hence, in the analytic case,
1 [
E/o es/hp (TX > S)fl) ds > /P

and we have that

h/ /hP x> SAT )dszy

Now, making the change of variables t = (s — §)/h.
/ e'P (rx = A7H (bt +6)) dt = o(1) +/ e'P (rx > \7H(ht +0)) dt.
75/h —h—€
Thus, choosing g(t) € L!(e'dt) with g(t) > 0, we have for all ¢; > 0 and h small enough
1—e < / e'P (rx = AT\ (bt +6)) dt
—h—¢€

<[P (me 2 A7 (0t 49) o) 1o

> t
. /—h—€ g(t)e'dt

< |[P (rx 2 A7t +6)) lo (0] 1

and hence
1—¢€

gl L1 (etar) Lee

That is, letting ht + 6 = s, for all ¥ > 0, and € > 0, there exists s(h) > 6§ — h'~¢ such that

1—e <s(h) - 5) . § — hl=e
- — | < Pl7xy > s(h)\ <Plrmy>—-7—|.
loloreran ”]g ) <P (2 sn7) < Pme> =

Fixing o > 1, letting g(t) = min(e=**,1), and letting v = €1/l 11 (ctar) gives the last part of
Proposition 10.1. O
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