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Abstract

We consider solving the exterior Dirichlet problem for the Helmholtz equation with the h-
version of the boundary element method (BEM) using the standard second-kind combined-field
integral equations. We prove a new, sharp bound on how the number of GMRES iterations
must grow with the wavenumber k in order to have the error in the iterative solution bounded
independently of k as k → ∞ when the boundary of the obstacle is analytic and has strictly
positive curvature. To our knowledge, this result is the first-ever sharp bound on how the
number of GMRES iterations depends on the wavenumber for an integral equation used to
solve a scattering problem. We also prove new bounds on how h must decrease with k to
maintain k-independent quasi-optimality of the Galerkin solutions as k → ∞ when the obstacle
is nontrapping.

Keywords: Helmholtz equation, high frequency, boundary integral equation, boundary ele-
ment method, GMRES, pollution effect, semiclassical
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1 Introduction

This paper is concerned with the wavenumber-explicit numerical analysis of boundary integral
equations (BIEs) for the Helmholtz equation

∆u+ k2u = 0, (1.1)

where k > 0 is the wavenumber, posed in the exterior of a 2- or 3-dimensional bounded obstacle Ω
with Dirichlet boundary conditions on Γ := ∂Ω.

We consider the standard second-kind combined-field integral equation formulations of this
problem: the so-called “direct” formulation (arising from Green’s integral representation)

A′k,ηv = fk,η (1.2)

and the so-called “indirect” formulation (arising from an ansatz of layer potentials not related to
Green’s integral representation)

Ak,ηφ = gk, (1.3)

where

A′k,η :=
1

2
I +D′k − iηSk, Ak,η :=

1

2
I +Dk − iηSk, (1.4)

η ∈ R\{0} is an arbitrary coupling parameter, Sk is the single-layer operator, Dk is the double-layer
operator, and D′k is the adjoint double-layer operator (1.8), (1.9).

For simplicity of exposition, we focus on the direct equation (1.2), but the main results also
hold for the indirect equation (1.3) (see Remark 1.25 below). The contribution to Equation (1.2)
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from the Dirichlet boundary conditions is contained in the right-hand side fk,η; our results are
independent of the particular form of fk,η, and so we can simplify the presentation by restricting
attention to the particular exterior Dirichlet problem corresponding to scattering by a point source
or plane wave, i.e. the sound-soft scattering problem (Definition 1.7 below).

We consider solving the equation (1.2) in L2(∂Ω) using the Galerkin method; this method seeks
an approximation vN to the solution v from a finite-dimensional approximation space VN (where
N is the dimension, i.e. the total number of degrees of freedom). In the majority of the paper Γ is
C2, in which case VN will be the space of piecewise polynomials of degree p, for some fixed p ≥ 0,
on shape-regular meshes of diameter h, with h decreasing to zero; this is the so-called h–version
of the Galerkin method, and we denote VN and vN by Vh and vh, respectively, and note that
N ∼ h−(d−1), where d is the dimension. To find the Galerkin solution vh, one must solve a linear
system of dimension N ; in practice this is usually done using Krylov-subspace iterative methods
such as the generalized minimal residual method (GMRES).

For the numerical analysis of this situation when k is large, there are now, roughly speaking,
two main questions:

Q1. How must h decrease with k in order to maintain accuracy of the Galerkin solution as k →∞?

Q2. How does the number of GMRES iterations required to achieve a prescribed accuracy grow
with k?

The goal of this paper is to prove rigorous results about these two questions, and then compare
them with the results of numerical experiments.

We now give short summaries of the main results. These results depend on the choice of the
coupling parameter η; for the results on Q1 we need |η| ∼ k and for the results on Q2 we need
η ∼ k, where we use the notation a ∼ b to mean that there exists C1, C2 > 0, independent of h
and k, such that C1b ≤ a ≤ C2b. We also use the notation a . b to mean that there exists C > 0,
independent of h and k, such that a ≤ Cb.

Summary of main results regarding Q1 and their context. Numerical experiments in-
dicate that, in many cases, the condition hk . 1 is sufficient for the Galerkin method to be
quasi-optimal (with the constant of quasi-optimality independent of k; i.e., (1.20) below holds);
see [42, §5]. This feature can be described by saying that the h-BEM does not suffer from the
pollution effect (in constrast to the h-FEM; see, e.g., [7], [51, Chapter 4]). The best existing result
in the literature is that k-independent quasi-optimality of the Galerkin method applied to the
integral equation (1.2) holds when hk(d+1)/2 . 1 for 2- and 3-d C2,α obstacles that are star-shaped
with respect to a ball [42, Theorem 1.4]. In this paper we improve this result by showing that
the k-independent quasioptimality holds for 2-d nontrapping obstacles when hk3/2 . 1, for 3-d
nontrapping obstacles when hk3/2 log k . 1, and for 2- and 3-d smooth (i.e. C∞) convex obstacles
with strictly positive curvature when hk4/3 . 1 (see Theorem 1.15 below).

The ideas behind the proofs of these results are summarised in Remark 1.18 below, but we
highlight here that all the integral-operator bounds used in these arguments are sharp up to a
factor of log k. Therefore, to lower these thresholds on h for which quasi-optimality is proved,
one would need to use different arguments than in the present paper. We also highlight that
recent experiments by Marburg [59], [10], [60] give examples where pollution occurs, and therefore
determining the sharp threshold on h for k-independent quasi-optimality to hold in general is an
exciting open question.

Summary of main results regarding Q2 and their context. There has been a large amount
of research effort expended on understanding empirically how iteration counts for integral-equation
formulations of scattering problems involving the Helmholtz or Maxwell equations depend on k;
see, e.g, [1], [4], [14], [15], [84], and the references therein.

To our knowledge, however, there are no sharp k-explicit bounds in the literature, for any
integral-equation formulation of a Helmholtz or Maxwell scattering problem, on the number of
iterations GMRES requires to achieve a prescribed accuracy. The main reason, in this current
setting of the Helmholtz sound-soft scattering problem, is that the operator A′k,η is non-normal
for all obstacles other than the circle and sphere [13], [12], and so one cannot use the well-known
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bounds on GMRES iterations in terms of the condition number of A′k,η (see, e.g., the review in
[73, §6]).

In this paper, we prove that, for 2- and 3-d analytic obstacles with strictly positive curvature,
the number of GMRES iterations growing like k1/3 is sufficient to have the error in the iterative
solution bounded independently of k (see Theorem 1.21 below). Numerical experiments in §6 show
that the numbers of GMRES iterations for the sphere and an ellipsoid grow slightly less than k1/3

(k0.29 for the sphere and k0.28 for an ellipsoid), and thus our bound is effectively sharp.
The ideas behind the proof are summarised in Remark 1.23 below. The focus of this paper

is in proving results for A′k,η, i.e. the standard second-kind integral formulation, but we highlight

in Remark 5.5 below how a bound on the number of GMRES iterations of k1/2 when d = 2 and
k1/2 log k when d = 3 can be obtained for a modification of A′k,η, the so-called star-combined integral

equation [76]. Moreover, whereas our bound on the number of iterations of k1/3 for A′k,η holds
for analytic obstacles with strictly positive curvature, the bounds for the star-combined operator
hold for a much wider class of obstacles, namely piecewise-smooth Lipschitz obstacles that are
star-shaped with respect to a ball.

Discussion of these results in the context of using semiclassical analysis in the numeri-
cal analysis of the Helmholtz equation. In the last 10 years, there has been growing interest
in using results about the k-explicit analysis of the Helmholtz equation from semiclassical analy-
sis (a branch of microlocal analysis) to design and analyse numerical methods for the Helmholtz
equation1 . The activity has occurred in, broadly speaking, four different directions:

1. The use of the results of Melrose and Taylor [64] on the rigorous k →∞ asymptotics of the
solution of the Helmholtz equation in the exterior of a smooth convex obstacle with strictly
positive curvature to design and analyse k-dependent approximation spaces for integral-
equation formulations [30], [41], [5], [33], [34], [32],

2. The use of the Melrose-Taylor results [64], along with the work of Ikawa [52] on scattering
from several convex obstacles, to analyse algorithms for multiple scattering problems [35],
[2].

3. The use of bounds on the Helmholtz solution operator (also known as resolvent estimates)
due to Vainberg [82] (using the propagation of singularities results of Melrose–Sjöstrand
[63]) and Morawetz [68] to prove bounds on both ‖(A′k,η)−1‖L2(∂Ω)→L2(∂Ω) and the inf-sup
constant of the domain-based variational formulation [23], [75], [9], [25], and also to analyse
preconditioning strategies [40].

4. The use of identities originally due to Morawetz [68] to prove coercivity of A′k,η [77] and to
introduce new coercive formulations of Helmholtz problems [76], [67].

This paper concerns a fifth direction, namely proving sharp k-explicit bounds on Sk, Dk and D′k
as operators from L2(∂Ω) to H1(∂Ω) using estimates on the restriction of eigenfunctions of the
Laplacian to hypersurfaces from [81], [16], [79], [47], [27], and [80] (and recapped in §2.3 below). We
then use these results, in conjunction with the results in Points 3 and 4 above, to obtain answers
to Q1 and Q2. Our L2(∂Ω) → H1(∂Ω) bounds include the sharp L2(∂Ω) → L2(∂Ω) bounds on
Sk, Dk and D′k from [46, Appendix A], and [38]; indeed, the presence of these L2(∂Ω) → L2(∂Ω)
bounds and the realisation that they could be extended to L2(∂Ω) → H1(∂Ω) bounds were the
motivation for this paper.

1.1 Formulation of the problem

1.1.1 Geometric definitions.

Let Ω ⊂ Rd, d = 2 or 3, be a bounded Lipschitz open set, such that the open complement
Ω+ := Rd \Ω is connected. Let H1

loc(Ω+) denote the set of functions v such that χv ∈ H1(Ω+) for

1 A closely-related activity is the design and analysis of numerical methods for the Helmholtz equation based
on proving new results about the k →∞ asymptotics of Helmholtz solutions for polygonal obstacles; see [22], [50],
[49], [20], and [48].
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every χ ∈ C∞comp(Ω+) := {χ|Ω+
: χ ∈ C∞(Rd) is compactly supported}. Let γ+ denote the trace

operator from Ω+ to ∂Ω. Let n be the outward-pointing unit normal vector to Ω (i.e. n points out
of Ω and in to Ω+), and let ∂+

n denote the normal derivative trace operator from Ω+ to ∂Ω that
satisfies ∂+

n u = n ·γ+(∇u) when u ∈ H2
loc(Ω+). (We also call γ+u the Dirichlet trace of u and ∂+

n u
the Neumann trace.)

Definition 1.1 (Star-shaped, and star-shaped with respect to a ball)
(i) Ω is star-shaped with respect to the point x0 ∈ Ω if, whenever x ∈ Ω, the segment [x0, x] ⊂

D.
(ii) Ω is star-shaped with respect to the ball Ba(x0) if it is star-shaped with respect to every

point in Ba(x0).
(iii) Ω is star-shaped with respect to a ball if there exists a > 0 and x0 ∈ Ω such that Ω is

star-shaped with respect to the ball Ba(x0).

Definition 1.2 (Nontrapping) We say that Ω ⊂ Rd, d = 2, 3 is nontrapping if ∂Ω is smooth
(C∞) and, given R such that Ω ⊂ BR(0), there exists a T (R) < ∞ such that all the billiard
trajectories (in the sense of Melrose–Sjöstrand [63, Definition 7.20]) that start in Ω+ ∩ BR(0) at
time zero leave Ω+ ∩BR(0) by time T (R).

Definition 1.3 (Smooth hypersurface) We say that Γ ⊂ Rd is a smooth hypersurface if there

exists Γ̃ a compact embedded smooth d− 1 dimensional submanifold of Rd, possibly with boundary,
such that Γ is an open subset of Γ̃ and the boundary of Γ can be written as a disjoint union

∂Γ =

(
n⋃
`=1

Y`

)
∪ Σ,

where each Y` is an open, relatively compact, smooth embedded manifold of dimension d− 2 in Γ̃,
Γ lies locally on one side of Y`, and Σ is closed set with d − 2 measure 0 and Σ ⊂

⋃n
l=1 Yl. We

then refer to the manifold Γ̃ as an extension of Γ.

For example, when d = 3, the interior of a 2-d polygon is a smooth hypersurface, with Yi the edges
and Σ the set of corner points.

Definition 1.4 (Curved) We say a smooth hypersurface is curved if there is a choice of normal
so that the second fundamental form of the hypersurface is everywhere positive definite.

Recall that the principal curvatures are the eigenvalues of the matrix of the second fundamental
form in an orthonormal basis of the tangent space, and thus “curved” is equivalent to the principal
curvatures being everywhere strictly positive (or everywhere strictly negative, depending on the
choice of the normal).

Definition 1.5 (Piecewise smooth) We say that a hypersurface Γ is piecewise smooth if Γ =
∪Ni=1Γi where Γi are smooth hypersurfaces and Γi ∩ Γj = ∅.

Definition 1.6 (Piecewise curved) We say that a piecewise-smooth hypersurface Γ is piecewise
curved if Γ is as in Definition 1.5 and each Γj is curved.

1.1.2 The boundary value problem and integral equation formulation

Definition 1.7 (Sound-soft scattering problem) Given k > 0 and an incident plane wave
uI(x) = exp(ikx · â) for some â ∈ Rd with |â| = 1, find uS ∈ C2(Ω+)∩H1

loc(Ω+) such that the total
field u := uI + uS satisfies the Helmholtz equation (1.1) in Ω+, γ+u = 0 on ∂Ω, and uS satisfies
the Sommerfeld radiation condition

∂uS

∂r
(x)− ik uS(x) = o

(
1

r(d−1)/2

)
as r := |x| → ∞, uniformly in x̂ := x/r.

The incident field in the sound-soft scattering problem of Definition 1.7 is a plane wave, but this
could be replaced by a point source or, more generally, a solution of the Helmholtz equation in a
neighbourhood of Ω; see [18, Definition 2.11].
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Obtaining the direct integral equation (1.2). If u satisfies the sound-soft scattering problem
of Definition 1.7 then Green’s integral representation implies that

u(x) = uI(x)−
∫
∂Ω

Φk(x, y)∂+
n u(y) ds(y), x ∈ Ω+, (1.5)

(see, e.g., [18, Theorem 2.43]), where Φk(x, y) is the fundamental solution of the Helmholtz equation
given by

Φk(x, y) =
i

4
H

(1)
0

(
k|x− y|

)
, d = 2, Φk(x, y) =

eik|x−y|

4π|x− y|
, d = 3 (1.6)

(note that we have chosen the sign of Φk(x, y) so that −(∆ + k2)Φk(x, y) = δ(x− y)). Taking the
exterior Dirichlet and Neumann traces of (1.5) on ∂Ω and using the jump relations for the single-
and double-layer potentials (see, e.g., [18, Equation 2.41]) we obtain the integral equations

Sk∂
+
n u = γ+uI and

(
1

2
I +D′k

)
∂+
n u = ∂+

n u
I , (1.7)

where Sk and D′k are the single- and adjoint-double-layer operators defined by

Skφ(x) :=

∫
∂Ω

Φk(x, y)φ(y) ds(y), D′kφ(x) :=

∫
∂Ω

∂Φk(x, y)

∂n(x)
φ(y) ds(y), (1.8)

for φ ∈ L2(∂Ω) and x ∈ ∂Ω. Later we will also need the definition of the double-layer potential,

Dkφ(x) :=

∫
∂Ω

∂Φk(x, y)

∂n(y)
φ(y) ds(y) for φ ∈ L2(∂Ω) and x ∈ ∂Ω. (1.9)

The first equation in (1.7) is not uniquely solvable when −k2 is a Dirichlet eigenvalue of the
Laplacian in Ω, and the second equation in (1.7) is not uniquely solvable when −k2 is a Neumann
eigenvalue of the Laplacian in Ω (see, e.g., [18, Theorem 2.25]). The standard way to resolve this
difficulty is to take a linear combination of the two equations, which yields the integral equation
(1.2) where A′k,η is defined by (1.4),

fk,η := ∂+
n u

I − iη γ+uI , (1.10)

and we use the notation that v = ∂+
n u (this makes denoting the Galerkin solution below easier

since we then have vh instead of (∂+
n u)h).

The space L2(∂Ω) is a natural space for the practical solution of second-kind integral equations
since it is self-dual, and, for η ∈ R \ {0}, A′k,η is a bounded invertible operator from L2(∂Ω) to

itself [18, Theorem 2.27]. Furthermore the right-hand side fk,η is in L2(∂Ω) (since uI ∈ C∞(Ω+))
and thus we consider the equation (1.2) as an equation in L2(∂Ω).

The Galerkin method. Given a finite-dimensional approximation space VN ⊂ L2(∂Ω), the
Galerkin method for the integral equation (1.2) is

find vN ∈ VN such that
(
A′k,ηvN , wN

)
L2(∂Ω)

=
(
fk,η, wN

)
L2(∂Ω)

for all wN ∈ VN . (1.11)

Let VN = span{φi : i = 1, . . . , N}, let vN ∈ VN be equal to
∑N
j=1 Vjφj , and define v ∈ CN by

v := (Vj)
N
j=1. Then, with Aij := (A′k,ηφj , φi)L2(∂Ω) and fi := (fk,η, φi)L2(∂Ω), the Galerkin method

(1.11) is equivalent to solving the linear system Av = f .
We consider the h–version of the Galerkin method, and we then denote VN and vN by Vh and

vh respectively. The main results for Q1 and Q2 will be stated under the following assumption on
Vh.

Assumption 1.8 (Assumptions on Vh) Vh is a space of piecewise polynomials of degree p for
some fixed p ≥ 0 on shape-regular meshes of diameter h, with h decreasing to zero (see, e.g., [72,
Chapter 4] for specific realisations). Furthermore
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(a) if w ∈ H1(∂Ω) then
inf

wh∈Vh
‖w − wh‖L2(∂Ω) . h ‖w‖H1(∂Ω) , (1.12)

(b)

‖wh‖2L2(∂Ω) ∼ h
d−1 ‖w‖22 , (1.13)

where ‖ · ‖2 denotes the l2 (i.e. euclidean) vector norm.

Remark 1.9 (For what situations is Assumption 1.8 proved?) Part (a) is proved for sub-
spaces consisting of piecewise-constant basis functions in [72, Theorem 4.3.19] when ∂Ω is a poly-
hedron or curved (in the sense of Assumptions 4.3.17 and 4.3.18, respectively, in [72]) and in [78,
Theorem 10.4] when Ω is a piecewise-smooth Lipschitz domain. Part (a) is proved for subspaces
consisting of continuous piecewise-polynomials of degree p ≥ 1 (in the sense of [72, Definition
4.1.36]) in [72, Theorem 4.3.28].

Part (b) is proved for subspaces consisting of piecewise-linear basis function in [78, Lemma
10.5] when ∂Ω is piecewise-smooth and Lipschitz, and for more general subspaces in [72, Theorem
4.4.7].

1.2 Statement of the main results and discussion

We split the statement of the main results into three sections

• k-explicit bounds on Sk, Dk, and D′k as mappings from L2(∂Ω) to H1(∂Ω) (§1.2.1).

• Results concerning Q1 (§1.2.2).

• Results concerning Q2 (§1.2.3).

1.2.1 k-explicit bounds on Sk, Dk, and D′k

Theorem 1.10 (Bounds on ‖Sk‖L2(∂Ω)→H1(∂Ω), ‖Dk‖L2(∂Ω)→H1(∂Ω), ‖D′k‖L2(∂Ω)→H1(∂Ω))
(a) If ∂Ω is a piecewise-smooth hypersurface (in the sense of Definition 1.5), then, given k0 > 1,

‖Sk‖L2(∂Ω)→H1(∂Ω) . k1/2 log k, (1.14)

for all k ≥ k0. Moreover, if ∂Ω is piecewise curved (in the sense of Definition 1.6), then, given
k0 > 1, the following stronger estimate holds for all k ≥ k0

‖Sk‖L2(∂Ω)→H1(∂Ω) . k1/3 log k. (1.15)

(b) If ∂Ω is a piecewise smooth, C2,α hypersurface, for some α > 0, then, given k0 > 1,

‖Dk‖L2(∂Ω)→H1(∂Ω) + ‖D′k‖L2(∂Ω)→H1(∂Ω) . k5/4 log k

for all k ≥ k0. Moreover, if ∂Ω is piecewise curved, then, given k0 > 1, the following stronger
estimates hold for all k ≥ k0

‖Dk‖L2(∂Ω)→H1(∂Ω) + ‖D′k‖L2(∂Ω)→H1(∂Ω) . k7/6 log k.

(c) If Ω is convex and ∂Ω is C∞ and curved (in the sense of Definition 1.4) then, given k0 > 0,

‖Sk‖L2(∂Ω)→H1(∂Ω) . k1/3, (1.16)

‖Dk‖L2(∂Ω)→H1(∂Ω) + ‖D′k‖L2(∂Ω)→H1(∂Ω) . k

for all k ≥ k0.

Remark 1.11 (Sharpness of the bounds in Theorem 1.10) In Section 3 we show that,
modulo the factor log k, all of the bounds in Theorem 1.10 are sharp (i.e. the powers of k in
the bounds are optimal). The sharpness (modulo the factor log k) of the L2(∂Ω)→ L2(∂Ω) bounds
in Theorem 2.10 was proved in [46, §A.2-A.3]. Earlier work in [17, §4] proved the sharpness of
some of the L2(∂Ω)→ L2(∂Ω) bounds in 2-d; we highlight that Section 3 and [46, §A.2-A.3] con-
tain the appropriate generalisations to multidimensions of some of the arguments of [17, §4] (in
particular [17, Theorems 4.2 and 4.4]).
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Remark 1.12 (Comparison to previous results) The only previously-existing bounds on the
L2(∂Ω)→ H1(∂Ω)-norms of Sk, Dk, and D′k were the following:

‖Sk‖L2(∂Ω)→H1(∂Ω) . k(d−1)/2 (1.17)

when ∂Ω is Lipschitz, and

‖Dk‖L2(∂Ω)→H1(∂Ω) + ‖D′k‖L2(∂Ω)→H1(∂Ω) . k(d+1)/2 (1.18)

when ∂Ω is C2,α [42, Theorem 1.6].
We see that (1.17) is a factor of log k sharper than the bound (1.14) when d = 2, but otherwise

all the bounds in Theorem 1.10 are sharper than (1.17) and (1.18).

Remark 1.13 (Bounds for general dimension and k ∈ R) We have restricted attention to 2-
and 3-dimensions because these are the most practically interesting ones. From a semiclassical point
of view, it is natural work in d ≥ 1, and the results of Theorem 1.10 apply for any d ≥ 1 (although
when d = 1 it is straightforward to get sharper bounds). We have also restricted attention to the
case when k is positive and bounded away from 0. Nevertheless, the methods used to prove the
bounds in Theorem 1.10 show that if one replaces log k by log〈k〉 (where 〈·〉 = (2 + | · |2)1/2) and
includes an extra factor of log〈k−1〉 when d = 2, then the resulting bounds hold for all k ∈ R

This paper is concerned with second-kind Helmholtz BIEs posed in L2(∂Ω), but there is also a
large interest in both first- and second-kind Helmholtz BIEs posed in the trace spaces H−1/2(∂Ω)
and H1/2(∂Ω) (see, e.g., [72, §3.9], [78, §7.6]). The k-explicit theory of Helmholtz BIEs in the
trace spaces is much less developed than the theory in L2(∂Ω), so we therefore highlight that
the L2(∂Ω) → H1(∂Ω) bounds in Theorem 1.10 can be converted to Hs−1/2(∂Ω) → Hs+1/2(∂Ω)
bounds for |s| ≤ 1/2.

Corollary 1.14 (Bounds from Hs−1/2(∂Ω)→ Hs+1/2(∂Ω) for |s| ≤ 1/2) Theorem 1.10 is
valid with all the norms from L2(∂Ω) → H1(∂Ω) replaced by norms from Hs−1/2(∂Ω) →
Hs+1/2(∂Ω) for |s| ≤ 1/2.

1.2.2 Results concerning Q1

Theorem 1.15 (Sufficient conditions for the Galerkin method to be quasi-optimal)
Let u be the solution of the sound-soft scattering problem of Definition 1.7, let |η| ∼ k, and let Vh
satisfy Part (a) of Assumption 1.8.

(a) If either (i) Ω is nontrapping, or (ii) Ω is star-shaped with respect to a ball and ∂Ω is C2,α

and piecewise smooth, then given k0 > 0, there exists a C > 0 (independent of k and h) such that
if

hk3/2 ≤ C, d = 2, hk3/2 log k ≤ C, d = 3, (1.19)

then the Galerkin equations (1.11) have a unique solution which satisfies

‖v − vh‖L2(∂Ω) . inf
wh∈Vh

‖v − wh‖L2(∂Ω) (1.20)

for all k ≥ k0.
(b) In case (ii) above, if ∂Ω is piecewise curved, then given k0 > 0, there exists a C > 0

(independent of k and h) such that if

hk4/3 log k ≤ C, d = 2, 3 (1.21)

then (1.20) holds.
(c) If Ω is convex and ∂Ω is C∞ and curved then given k0 > 0, there exists a C > 0 (independent

of k and h) such that if
hk4/3 ≤ C, d = 2, 3 (1.22)

then (1.20) holds.
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Having established quasi-optimality, it is then natural to ask how the best approximation error
infwh∈Vh ‖v − wh‖L2(∂Ω) depends on k, h, and ‖v‖L2(∂Ω).

Theorem 1.16 (Bounds on the best approximation error) Let u be the solution of the
sound-soft scattering problem of Definition 1.7 and let Vh satisfy Assumption 1.8.

(a) If ∂Ω is C2,α and piecewise smooth, then, given k0 > 0,

inf
wh∈Vh

‖v − wh‖L2(∂Ω) . hA(k) ‖v‖L2(∂Ω) (1.23)

with A(k) = k5/4 log k, for all k ≥ k0.
(b) If ∂Ω is piecewise curved, then, given k0 > 0, (1.23) holds with A(k) = k7/6 log k, for all

k ≥ k0.
(c) If Ω is convex and ∂Ω is C∞ and curved, then, given k0 > 0, then (1.23) holds with

A(k) = k, for all k ≥ k0.

Combining Theorems 1.15 and 1.16 we can obtain bounds on the relative error of the Galerkin
method. For brevity, we only state the ones corresponding to cases (a) and (c) in Theorems 1.15
and 1.16.

Corollary 1.17 (Bound on the relative errors in the Galerkin method) Let u be the so-
lution to the sound-soft scattering problem, let |η| ∼ k, and let Vh satisfy Part (a) of Assumption
1.8.

(a) If either (i) Ω is nontrapping, or (ii) Ω is star-shaped with respect to a ball and ∂Ω is C2,α

and piecewise smooth, then given k0 > 0, there exists a C > 0 (independent of k and h) such that
if h and k satisfy (1.19) then the Galerkin equations (1.11) have a unique solution which satisfies

‖v − vh‖L2(∂Ω)

‖v‖L2(∂Ω)

.

{
k−1/4 log k, d = 2,

k−1/4, d = 3,

for all k ≥ k0.
(b) If Ω is convex and ∂Ω is C∞ and curved, then given k0 > 0, there exists a C > 0 (inde-

pendent of k and h) such that if hk4/3 ≤ C the Galerkin equations (1.11) have a unique solution
which satisfies

‖v − vh‖L2(∂Ω)

‖v‖L2(∂Ω)

.
1

k1/3

for all k ≥ k0.

Remark 1.18 (The main ideas behind the proofs of Theorems 1.15 and 1.16) The
proof of Theorem 1.15 uses the classic projection-method analysis of second-kind integral equations
(see, e.g., [6]), with A′k,η be treated as a compact perturbation of the identity. In [42], this
argument was used to reduce the question of finding k-explicit bounds on the mesh threshold h for
k-independent quasi-optimality to hold to finding k-explicit bounds on

‖Sk‖L2(∂Ω)→H1(∂Ω), ‖D′k‖L2(∂Ω)→H1(∂Ω), and ‖(A′k,η)−1‖L2(∂Ω)→L2(∂Ω).

We use the sharp bounds on the first two of these norms from Theorem 1.10, and the sharp bounds
on the third of these norms from [9, Theorem 1.13] (for nontrapping obstacles) and [23, Theorem
4.3] (for obstacles that are star-shaped with respect to a ball).

The bounds of Theorem 1.16 are proved by showing that

‖v‖H1(∂Ω) . A(k) ‖v‖L2(∂Ω) , (1.24)

and then using the approximation theory result (1.12). The bound (1.24) is obtained from the inte-
gral equation (1.2) using the second-kind-structure of the equation and the the L2(∂Ω)→ H1(∂Ω)
bounds on Sk and D′k from Theorem 1.10.
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Remark 1.19 (Comparison to previous results) Theorems 1.15 and 1.16 and Corollary 1.17
sharpen previous results in [42]: the mesh thresholds for quasi-optimality in Theorem 1.15 are
sharper than the corresponding ones in [42], and the results are valid for a wider class of obstacles.

This sharpening is due to the new, sharp bounds on L2(∂Ω) → H1(∂Ω)-norms of Sk, Dk,
and D′k from Theorem 1.10, and the widening of the class of obstacles is due to the bound on
‖(A′k,η)−1‖L2(∂Ω)→L2(∂Ω) for nontrapping obstacles from [9, Theorem 1.13]. In more detail: The-
orem 1.4 of [42] is the analogue of our Theorem 1.15 except that the former is only valid when Ω
is star-shaped with respect to a ball and C2,α and the mesh threshold is hk(d+1)/2 ≤ C. Comparing
this result to Theorem 1.15 we see that we’ve sharpened the threshold in the d = 3 case, expanded
the class of obstacles to nontrapping ones, and added the additional results (b) and (c). Theo-
rem 1.16 on the best approximation error is again proved using the L2(∂Ω) → H1(∂Ω)-bounds in
Theorem 1.10 and thus we see similar improvements over the corresponding theorem in [42] ([42,
Theorem 1.3]).

As discussed in Remark 1.18, both the present paper and [42] use the classic projection-method
argument to obtain k-explicit results about quasi-optimality of the h-BEM. There are two other sets
of results about quasi-optimality of the h-BEM in the literature:

(a) results that use coercivity [30], [76], [77], and

(b) results that give sufficient conditions for quasi-optimality to hold in terms of how well the
spaces Vh approximate the solution of certain adjoint problems [8], [56], [62].

These two sets of results are discussed in detail in [42, pages 181–182] and [42, §4.2] respectively,
and neither give results as strong as those in Theorem 1.15.

Finally, in this paper we have only considered the h-BEM; a thorough k-explicit analysis of
the hp-BEM for the exterior Dirichlet problem was conducted in [56] and [62]. In particular,
this analysis, combined with the bound on ‖(A′k,η)−1‖L2(∂Ω)→L2(∂Ω) for nontrapping obstacles from
[9, Theorem 1.13], proves that k-independent quasi-optimality can be obtained for nontrapping
obstacles through a choice of h and p that keeps the total number of degrees of freedom proportional
to kd−1 [56, Corollaries 3.18 and 3.19].

Remark 1.20 (How sharp are the quasioptimality results?) Numerical experiments in
[42, §5] show that for a wide variety of obstacles (including certain trapping obstacles) the h-BEM
is quasi-optimal with constant independent of k (i.e. (1.20) holds), when hk ∼ 1. The closest we
can get to proving this is the result for strictly convex obstacles in Theorem 1.15 part (c), with the
threshold being hk4/3 ≤ C. The recent results of Marburg [59], [10], [60], however, give examples
of cases where hk ∼ 1 is not sufficient to keep the error bounded as k →∞.

1.2.3 Result concerning Q2

We now consider solving the linear system Av = f with the generalised minimum residual method
(GMRES) introduced by Saad and Schultz in [71]; for details of the implementation of this algo-
rithm, see, e.g., [70], [43].

Theorem 1.21 (A bound on the number of GMRES iterations) Let Ω be a 2- or 3-d con-
vex obstacle whose boundary ∂Ω is analytic and curved. Let Vh satisfy Part (b) of Assumption 1.8,
let the Galerkin matrix corresponding to (1.11) be denoted by A, and consider GMRES applied to
Av = f

There exist constants η0 > 0 and k0 > 0 (with η0 = 1 if Ω is a ball) such that if k ≥ k0 and
η0k ≤ η . k, then, given 0 < ε < 1, there exists a C (independent of k, η, and ε) such that if

m ≥ Ck1/3 log

(
12

ε

)
, (1.25)

then the mth GMRES residual rm := Avm − f satisfies

‖rm‖2
‖r0‖2

≤ ε,

where ‖ · ‖2 denotes the l2 (i.e. euclidean) vector norm. Furthermore, when Ω is a ball (i.e. ∂Ω is
a circle or sphere), then the constant η0 = 1.

9



In other words, Theorem 1.21 states that, for convex, analytic, curved Ω, the number of iterations
growing like k1/3 is a sufficient condition for GMRES to maintain accuracy as k →∞.

Remark 1.22 (How sharp is the result of Theorem 1.21?) Numerical experiments in §6
show that for the sphere the number of GMRES iterations grows like k0.29, and for an ellipsoid they
grow like k0.28. The bound in Theorem 1.21 is therefore effectively sharp (at least for the range of
k considered in the experiments).

Remark 1.23 (The main ideas behind the proof of Theorem 1.21) The two ideas behind
Theorem 1.21 are that:

(a) A sufficient (but not necessary) condition for iterative methods to be well behaved is that
the numerical range (also known as the field of values) of the matrix is bounded away from zero,
and in this case the Elman estimate [37, 36] and its refinement due to Beckermann, Goreinov,
and Tyrtyshnikov [11] can be used to bound the number of GMRES iterations in terms of (i) the
distance of the numerical range to the origin, and (ii) the norm of the matrix.

(b) When Ω is convex, C3, piecewise analytic, and ∂Ω is curved, [77] proved that A′k,η is coercive
for sufficiently large k (with η ∼ k) . The k-dependence of the coercivity constant, along with the
k-dependence of ‖A′k,η‖L2(∂Ω)→L2(∂Ω) then give the information needed about the numerical range
of the Galerkin matrix A required in (a).

Remark 1.24 (Comparison to previous results) The bound m & k2/3 when ∂Ω is a sphere
was stated in [77, §1.3]; this bound was obtained using the original Elman estimate (see Remark 5.4
below), and the fact that the sharp bound ‖A′k,η‖L2(∂Ω)→L2(∂Ω) . k1/3 was known for the circle and
sphere; see [18, §5.4]. To our knowledge, there are no other k-explicit bounds in the literature, for
any Helmholtz BIE, on the number of GMRES iterations required to achieve a prescribed accuracy.
The closest related work is [24], which uses a second-kind integral equation to solve the Helmholtz
equation in a half-plane with an impedance boundary condition. The special structure of this integral
equation allows a two-grid iterative method to be used, and [24] prove that there exists C > 0 such
that if kh ≤ C, then, after seven iterations, the difference between the solution and the Galerkin
solution computed via the iterative method is bounded independently of k and h.

Remark 1.25 (Translating the results to the indirect equation (1.3)) Instead of using
Green’s integral representation (1.5) to formulate the sound-soft scattering problem as the integral
equation (1.2), one can pose the ansatz that the scattered field satisfies

uS(x) =

∫
∂Ω

∂Φk(x, y)

∂n(y)
φ(y) ds(y)− iη

∫
∂Ω

Φk(x, y)φ(y) ds(y)

for x ∈ Ω+, φ ∈ L2(∂Ω), and η ∈ R \ {0}. Imposing the boundary condition γ+uS = −γ+uI on
∂Ω and using the jump relations for the single- and double-layer potentials leads to the integral
equation (1.3) where Ak,η is defined by (1.4) and g = −γ+uI . One can use (2.53) below to show
that Ak,η and A′k,η are adjoint with respect to the real-valued L2(∂Ω) inner product (see, e.g., [18,
Equation 2.37, Remark 2.24, §2.6]), and so their norms are equal, the norms of their inverses are
equal, and if one is coercive then so is the other (with the same coercivity constant). These facts
imply that the results of Theorems 1.15 and Theorem 1.21 hold for the indirect equation (1.3).

The bounds on the best approximation error in Theorem 1.16 hold for the indirect equation
(1.3) with (a) A(k) = k3/2 for d = 2, A(k) = k3/2 log k for d = 3, (b) A(k) = k4/3 log k, and (c)
A(k) = k4/3. These powers of k are all slightly higher than those for the direct equation; the reason
for this is essentially that we have more information about the unknown in the direct equation
(since it is ∂+

n u) than about the unknown in the indirect equation (one can express φ in terms of
the difference of solutions to interior and exterior boundary value problems – see [18, Page 132] –
but it is harder to make use of this fact than for the direct equation).

Remark 1.26 (Translating the results to the general exterior Dirichlet problem) The
results of Theorems 1.15 and 1.21 are independent of the right-hand side of the integral equation
(1.2), and therefore hold for the general Dirichlet problem with Dirichlet data in H1(∂Ω) (this
assumption is needed so that A′k,η can still be considered as an operator on L2(∂Ω); see, e.g., [18,
§2.6]). The results of Theorem 1.16 and Corollary 1.17, however, do not immediately hold for the
general Dirichlet problem, since they use the particular form of the right-hand side in (1.10).
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Outline of the paper In §2 we prove Theorem 1.10 (the L2(∂Ω) → H1(∂Ω) bounds) and
Corollary 1.14, and in §3 we show that these bounds are sharp in their k-dependence. In §4 we
prove Theorems 1.15 and 1.16 (the results concerning Q1). In §5 we prove Theorem 1.21 (the
result concerning Q2), and then in §6 we give numerical experiments showing that Theorem 1.21
is sharp in its k-dependence.

2 Proof of Theorem 1.10 (the L2(∂Ω)→ H1(∂Ω) bounds) and
Corollary 1.14

In this section we prove Theorem 1.10 and Corollary 1.14. The vast majority of the work will be
in proving Parts (a) and (b) of Theorem 1.10, with Part (c) of Theorem 1.10 following from the
results in [38, Chapter 4], and Corollary 1.14 following from the results of [42].

The outline of this section is as follows: In §2.1 we discuss some preliminaries from the theory
of semiclassical pseudodifferential operators, with our default references the texts [85] and [31]. In
§2.2 we recap facts about function spaces on piecewise-smooth hypersurfaces. In §2.3 we recap
restriction bounds on quasimodes – these results are central to our proof of Theorem 1.10. In §2.4
we prove of Parts (a) and (b) of Theorem 1.10, in §2.5 we prove Part (c) of Theorem 1.10 §2.5,
and in §2.6 we prove Corollary §2.6.

We drop the . notation in this section and state every bound with a constant C; we do this
because later in the proof it will be useful to be able to indicate whether or not the constant in
our estimates depends on the order s of the Sobolev space, or on a particular hypersurface Γ (we
do this via the subscript s and Γ – see, e.g., (2.17) below).

2.1 Semiclassical Preliminaries

2.1.1 Symbols and quantization

We define the symbol class Sm(R2d) by

Sm(R2d) :=
{
a(x, ξ; k) ∈ C∞(R2d

x,ξ) | for all α, β there exists Cαβ with |∂αx ∂
β
ξ a| ≤ Cαβ〈ξ〉

m−|β|}.
We write S−∞ =

⋂
m
Sm. We say that a ∈ Scomp if a ∈ S−∞ with supp a ⊂ K for some compact

set K ⊂ R2d independent of k.
For an element a ∈ Sm, we define its quantization to be the operator

u 7→ a(x, k−1D)u :=
kd

(2π)d

∫
Rd

∫
Rd

exp
(
ik〈x− y, ξ〉

)
a(x, ξ)u(y) dydξ (2.1)

for u ∈ S(Rd). These operators can be defined by duality on u ∈ S ′(Rd). We denote the set of
pseudodifferential operators of order m by

Ψm(Rd) := {a(x, k−1D) | a ∈ Sm}.

We denote Ψ−∞(Rd) = ∩mΨm(Rd). We say that A ∈ Ψcomp(Rd) if

A = a(x, k−1D) +OΨ−∞(k−∞)

for some a ∈ Scomp. Here, we say that an operator B is OΨ−∞(k−∞) if for any N > 0, there exists
CN such that

‖B‖H−N→HN ≤ CNk−N .

Suppose that A ∈ Ψm(Rd) has A = a(x, k−1D). Then we call a the full symbol of A. The
principle symbol of A ∈ Ψm(Rd), is defined by

σ(A) := a mod k−1Sm−1.
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Lemma 2.1 [31, Proposition E.16] Let a ∈ Sm1 and b ∈ Sm2 . Then we have

a(x, k−1D)b(x, k−1D) = (ab)(x, k−1D) + k−1r1(x, k−1D) +OΨ−∞(k−∞)

[a(x, k−1D), b(x, k−1D)] := a(x, k−1D)b(x, k−1D)− b(x, k−1D)a(x, k−1D)

=
1

ik
{a, b}(x, k−1D) + k−2r2(x, k−1D) +OΨ−∞(k−∞)

where r1 ∈ Sm1+m2−1, r2 ∈ Sm1+m2−2, supp ri ⊂ supp a ∩ supp b, and the Poisson bracket {a, b}
is defined by

{a, b} :=

d∑
j=1

∂ξja∂xj b− ∂ξj b∂xja.

2.1.2 Action on semiclassical Sobolev spaces

We define the Semiclassical Sobolev spaces Hs
k(Rd) to be the space Hs(Rd) equipped with the

norm
‖u‖2Hsk(Rd) = ‖〈k−1D〉su‖2L2(Rd),

where 〈ξ〉 := (1 + |ξ|2)1/2 ∈ S1 and D := −i∂. Note that for s an integer, this norm is equivalent
to

‖u‖2Hsk(Rd) =
∑
|α|≤s

‖(k−1∂)αu‖2L2(Rd).

The definition of the semiclassical Sobolev spaces on a smooth compact manifold of dimension
d − 1 Γ, i.e. Hs

k(Γ) for |s| ≤ 1, follows from the definition of Hs
k(Rd−1) (see, e.g., [61, Page 98]).

Because solutions of the Helmholtz equation (−k−2∆ − 1)u = 0 oscillate at frequency k, scaling
derivatives by k−1 makes the norms uniform in the number of derivatives.

With these definitions in hand, we have the following lemma on boundedness of pseudodiffer-
ential operators.

Lemma 2.2 [31, Proposition E.22] Let A ∈ Ψm(Rd). Then ‖A‖Hsk(Rd)→Hs−mk (Rd) ≤ C.

2.1.3 Ellipticity

For A ∈ Ψm(Rd), we say that (x, ξ) ∈ R2d is in the elliptic set of A, denoted ell(A), if there exists
U a neighborhood of (x, ξ) such that for some δ > 0,

inf
U
|σ(A)(x, ξ)| ≥ δ.

We then have the following lemma

Lemma 2.3 [31, Proposition E.31] Suppose that A ∈ Ψm1(Rd), b ∈ Scomp with supp b ⊂ ell(A).
Then there exists R1, R2 ∈ Ψcomp(Rd) with

R1A = b(x, k−1D) +OΨ−∞(k−∞), AR2 = b(x, k−1D) +OΨ−∞(k−∞).

Moreover, if b ∈ Sm2 and there exists M > 0, δ > 0

inf
supp b

|σ(A)|〈ξ〉−m1 > δ,

then the same conclusions hold with Ri ∈ Ψm2−m1(Rd).

2.1.4 Pseudodifferential operators on manifolds

Since we only use the notion of a pseudodifferential operator on a manifold in passing (in Lemma
2.15 and §2.5 below), we simply note that it is possible to define pseudodifferential operators on
manifolds (see, e.g., [85, Chapter 14]). The analogues of Lemmas 2.1, 2.2, and 2.3 all hold in
this setting. Moreover, the principal symbol map can still be defined although its definition is
somewhat more involved.
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2.2 Function spaces on piecewise-smooth hypersurfaces

Definition 2.4 (Extendable Sobolev space Hs(Γ) on a smooth hypersurface) Let Γ be a

smooth hypersurface of Rd (in the sense of Definition 1.3) and let Γ̃ be an extension of Γ. Given

s ∈ R, we say that u ∈ Hs(Γ) if there exists u ∈ Hs
comp(Γ̃) such that u|Γ = u.

Let (Uj , ψj)j∈J be an atlas of Γ̃ such that Uj ∩ ∂Γ ∩ ∂Γ̃ = ∅ for all j ∈ J , and let

JΓ :=
{
j ∈ J, Uj ∩ Γ 6= ∅

}
and J∂ :=

{
j ∈ J, Uj ∩ ∂Γ 6= ∅

}
(observe that if ∂Γ = ∅ then J∂ = ∅). Let (χj)j∈J be a partition of unity of Γ̃ subordinated to

(Uj)j∈J . Given χ ∈ C∞c (Int(Γ̃)) such that χ = 1 in a neighborhood of Γ, we define

‖u‖Hs(Γ) =
∑

j∈JΓ\J∂

‖(χju) ◦ ψ−1
j ‖Hs(Rd−1) + inf

u∈Hscomp(Γ̃),u|Γ=u

∑
j∈J∂

‖(χjχu) ◦ ψ−1
j ‖Hs(Rd−1). (2.2)

We make two remarks:

1. The definition of the norm Hs(Γ) depends on Γ̃, χ, and the choice of charts (Uj , ψj) and
partition of unity (χj). One can however prove that two different choices of charts (Uj , ψj)
and partition of unity (χj) lead to equivalent norms Hs(Γ). In what follows, (Uj , ψj , χj)

shall be traces on Γ̃ of charts and partition of unity on Rd.

2. When Γ is a compact embedded submanifold without boundary, the norm on Hs(Γ) coincides
with usual Hs(Γ) norm.

Definition 2.5 (Sobolev space Ḣs(Γ) on a smooth hypersurface) Let Γ be a smooth hyper-

surface of Rd (in the sense of Definition 1.3) and let Γ̃ be an extension of Γ. Given s ∈ R, We say

that u ∈ Ḣs(Γ) if there exists u ∈ Hs
comp(Γ̃) such that u|Γ = u and suppu ⊂ Γ. Then,

‖u‖Ḣs(Γ) := ‖u‖Hs(Γ̃) = ‖u‖Hs(Γ).

Since Γ has C0 boundary, one can show [21, Theorem 3.3, Lemma 3.15] that the dual of Hs(Γ)

is given by Ḣ−s(Γ) with the dual pairing inherited from that of Hs
comp(Γ̃) and H−scomp(Γ̃).

For piecewise-smooth ∂Ω, it is useful to consider the following “piecewise-Hs” spaces.

Definition 2.6 (Sobolev space Hs(∂Ω)) Let Ω be a bounded Lipschitz open set such that its
open complement is connected and ∂Ω is a piecewise smooth hypersurface (in the sense of Definition
1.5); i.e., ∂Ω = ∪Ni=1Γi where Γi are smooth hypersurfaces. With |s| ≤ 1, we say that u ∈ Hs(∂Ω)
if

u =

N∑
i=1

ui, for ui ∈ Hs(Γi), and we let ‖u‖Hs(∂Ω) :=

√√√√ N∑
i=1

‖ui‖2Hs(Γi).

We similarly define the norms H̄s
k(Γ) and Ḣs

k(Γ) replacing ‖·‖Hs(Rd−1) in (2.2) with the weighted-
norm ‖ · ‖Hsk(Rd−1).

The following lemma shows that, when Sk, Dk, and D′k map L2(∂Ω) to H1(∂Ω), to bound the

H1(∂Ω) norms of Skφ, Dkφ, and D′kφ, it is sufficient to bound their H1(∂Ω) norms.

Lemma 2.7 Let Ω be a bounded Lipschitz open set such that its open complement is connected
and ∂Ω is a piecewise smooth hypersurface (in the sense of Definition 1.5). If u ∈ H1(∂Ω) then

‖u‖H1(∂Ω) ≤ ‖u‖H1(∂Ω) (2.3)

Proof. Recall that H1(∂Ω) can be defined as the completion of C∞comp(∂Ω) := {u|∂Ω : u ∈ C∞0 (Rd)}
with respect to the norm ∫

∂Ω

(
|∇∂Ωu|2 + |u|2

)
ds (2.4)
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[18, Pages 275-276] where ∇∂Ω is the surface gradient, defined in terms of a parametrisation of the
boundary by, e.g., [18, Equations (A.13) and (A.14)]. By the definition of the H1(Γi) norm from
Definition 2.4, u restricted to Γi satisfies

‖u‖2
H1(Γi)

=

∫
Γi

(
|∇Γiu|2 + |u|2

)
ds(Γi) +

∫
Γ̃i\Γi

(
|∇Γ̃i

u|2 + |u|2
)

ds(Γ̃i),

≥
∫

Γi

(
|∇Γiu|2 + |u|2

)
ds(Γi).

Then,

‖u‖2H1(∂Ω) =

∫
∂Ω

(
|∇∂Ωu|2+|u|2

)
ds =

N∑
i=1

∫
Γi

(
|∇Γiu|2+|u|2

)
ds(Γi) ≤

N∑
i=1

‖u‖2
H1(Γi)

= ‖u‖2
H1(∂Ω)

and the proof is complete.
Observe that Lemma 2.7 also holds when H1(∂Ω) and H1(∂Ω) are replaced by H1

k(∂Ω) and

H1
k(∂Ω) respectively.

2.3 Recap of restriction estimates for quasimodes

Theorem 2.8 Let U ⊂ Rd be open and precompact with Γ a smooth hypersurface (in the sense of
Definition 1.3) satisfying Γ ⊂ U . Given k0 > 0, there exists C > 0 (independent of k) so that if
‖u‖L2(U) = 1 with

(−k−2∆− 1)u = OL2(U)(k
−1), (2.5)

then, for all k ≥ k0,

‖u‖L2(Γ) ≤

{
Ck1/4,

Ck1/6, Γ curved,
(2.6)

and
‖∂νu‖L2(Γ)) ≤ Ck (2.7)

where ∂ν is a choice of normal derivative to Γ.

In the context of the wave equation on smooth Riemannian manifolds with restriction to a
submanifold, the estimates (2.6) along with their Lp generalizations appear in the work of Tataru
[81] who also notes that the L2 bounds are a corollary of an estimate of Greenleaf and Seeger
[44]. The semiclassical version was studied by Burq, Gérard and Tzvetkov in [16], Tacy [79] and
Hassell-Tacy [47].

Estimates like (2.7) first appeared in the work of Tataru [81] in the form of regularity estimates
for restrictions of solutions to hyperbolic equations. Semiclassical analogs of this estimate were
proved in Christianson–Hassell–Toth [27] and Tacy [80].

Remark 2.9 (Smoothness of Γ required for the quasimode estimates) The k1/4-bound
in (2.6) is valid when Γ is only C1,1, and the k1/6-bound is valid when Γ is C2,1 and curved.
Therefore, with some extra work it should be possible to prove that the bounds on Sk in Theorem
1.10 hold with the assumption “piecewise smooth” replaced by “piecewise C1,1” and “piecewise
C2,1 and curved” respectively. On the other hand, the bound (2.29) is not known in the literature
for lower regularity Γ.

2.4 Proof of Parts (a) and (b) of Theorem 1.10

When proving these results, it is more convenient to work in semiclassical Sobolev spaces, i.e. to
prove the bounds from L2(∂Ω) to H1

k(∂Ω). We therefore now restate Theorem 1.10 as Theorem
2.10 below, working in these spaces.
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Theorem 2.10 (Restatement of Theorem 1.10 as bounds from L2(∂Ω)→ H1
k(∂Ω))

(a) If ∂Ω is a piecewise-smooth hypersurface (in the sense of Definition 1.5), then, given k0 > 1,
there exists C > 0 (independent of k) such that

‖Sk‖L2(∂Ω)→H1
k(∂Ω) ≤ C k−1/2 log k. (2.8)

for all k ≥ k0. Moreover, if ∂Ω is piecewise curved (in the sense of Definition 1.6), then, given
k0 > 1, the following stronger estimate holds for all k ≥ k0

‖Sk‖L2(∂Ω)→H1
k(∂Ω) ≤ Ck

−2/3 log k. (2.9)

(b) If ∂Ω is a piecewise smooth, C2,α hypersurface, for some α > 0, then, given k0 > 1, there exists
C > 0 (independent of k) such that

‖Dk‖L2(∂Ω)→H1
k(∂Ω) + ‖D′k‖L2(∂Ω)→H1

k(∂Ω) ≤ Ck
1/4 log k. (2.10)

Moreover, if ∂Ω is piecewise curved, then, given k0 > 1, there exists C > 0 (independent of k) such
that the following stronger estimates hold for all k ≥ k0

‖Dk‖L2(∂Ω)→H1
k(∂Ω) + ‖D′k‖L2(∂Ω)→H1

k(∂Ω) . k1/6 log k.

(c) If Ω is convex and ∂Ω is C∞ and curved (in the sense of Definition 1.4) then, given k0 > 1,
there exists C such that, for k ≥ k0,

‖Sk‖L2(∂Ω)→H1
k(∂Ω) ≤ Ck

−2/3,

‖Dk‖L2(∂Ω)→H1
k(∂Ω) + ‖D′k‖L2(∂Ω)→H1

k(∂Ω) ≤ C.

This theorem is actually stronger than Theorem 1.10 in that it now contains the L2(∂Ω) →
L2(∂Ω) estimates originally proved in [39, Theorem 1.2], [46, Appendix A], and [38, Theorems
4.29, 4.32].

In §2.4.2 below, we give an outline of the proof of Parts (a) and (b). This outline, however,
requires the definitions of Sk, Dk, andD′k in terms of the free resolvent, given in the next subsection.

2.4.1 Sk, Dk, and D′k written in terms of the free resolvent R0(k)

We now recall the definitions of Sk, Dk, and D′k in terms of the free resolvent R0(k), these
expressions are well-known in the theory of BIEs on Lipschitz domains [29], [61, Chapters 6 and
7]. We then specialise these to the case when ∂Ω is a piecewise-smooth hypersurface (in the sense
of Definition 1.5)

Let R0(k) be the free (outgoing) resolvent at k; i.e. for ψ ∈ C∞comp(Rd) we have

(
R0(k)ψ

)
(x) :=

∫
Rd

Φk(x, y)ψ(y) dy,

where Φk(x, y) is the (outgoing) fundamental solution defined by (1.6) for d = 2, 3. Recall that
R0(k) : Hs

comp(Rd)→ Hs+2
loc (Rd); see, e.g., [61, Equation 6.10].

With Ω a bounded Lipschitz open set with boundary ∂Ω and 1/2 < s < 3/2, let γ+ :
Hs
loc(Ω+) → Hs−1/2(∂Ω) and γ− : Hs(Ω) → Hs−1/2(∂Ω), be the trace maps [29, Lemma 3.6],

[61, Theorem 3.38]. When γ+u = γ−u we write both as γu (so that γ : Hs
loc(Rd)→ Hs−1/2(∂Ω)),

and we then let γ∗ : H−s+1/2(∂Ω) → H−scomp(Rd) be the adjoint of γ [61, Page 201]. Then Sk can
be written as

Sk = γR0(k)γ∗ (2.11)

[61, Page 202 and Equation 7.5], [29, Proof of Theorem 1]. With ∂∗n denoting the adjoint of the
normal derivative trace (see, e.g., [61, Equation 6.14]), we have that the double-layer potential,
Dk, is defined by

Dk := R0(k)∂∗n
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[61, Page 202]. Recalling that the normal vector n to point out of Ω and into Ω+, we have that
the traces of Dk from Ω± to Γ are given by

γ±Dk = ±1

2
I +Dk

[61, Equation 7.5 and Theorem 7.3] and thus

Dk = ∓1

2
I + γ±R0(k)∂∗n. (2.12)

Similarly, the result about the normal-derivative traces of the single-layer potential Sk implies that

∂±n Sk = ∓1

2
I +D′k

so

D′k = ±1

2
I + ∂±n R0(k)γ∗. (2.13)

When ∂Ω is Lipschitz, Sk : L2(∂Ω) → H1(∂Ω) by [83, Theorem 1.6] (see also, e.g., [65,
Chapter 15, Theorem 5], [66, Proposition 3.8]), and when ∂Ω is C2,α for some α > 0, then
Dk, D

′
k : L2(∂Ω)→ H1(∂Ω) by [53, Theorem 4.2] (see also [28, Theorem 3.6]).

We now consider the case when ∂Ω is a piecewise-smooth hypersurface (in the sense of Definition

1.5) and use the notation that Γ̃i are the compact embedded smooth manifolds of Rd such that,

for each i, Γi is an open subset of Γ̃i. Let Li be a vector field whose restriction to Γ̃i is equal to
∂νi , the normal to Γ̃i that is outward pointing with respect to ∂Ω. Let γi : Hs

loc(Rd)→ Hs−1/2(Γi)
denote restriction to Γi. We note that γ∗i is the inclusion map f 7→ fδΓi where δΓi is d − 1
dimensional Hausdorff measure on Γ. Finally, we let γ±i denote restrictions from the interior and
exterior respectively, where “interior” and “exterior” are defined via considering Γi as a subset of
∂Ω. With these notations, we have that

Dk = ∓1

2
I +

∑
i,j

γ±i R0(k)L∗jγ
∗
j (2.14)

and

D′k = ±1

2
I +

∑
i,j

γ±i LiR0(k)γ∗j ; (2.15)

the advantage of these last two expressions over (2.12) and (2.13) is that they involve γi and Li
instead of ∂∗n and ∂±n .

In the rest of this section, we use the formulae (2.11), (2.14), and (2.15) as the definitions of
Sk, Dk, and D′k. Note that we slightly abuse notation by omitting the sums in (2.14) and (2.15)
and instead writing

Dk = ±1

2
I + γ±R0(k)Lγ∗, D′k = ∓1

2
I + γ±LR0(k)γ∗. (2.16)

2.4.2 Outline of the proof of Parts (a) and (b) of Theorem 2.10

The proof of Parts (a) and (b) of Theorem 2.10 will follow in two steps. In Lemma 2.11, we obtain
estimates on frequencies ≤Mk and in Lemma 2.19 we complete the proof by estimating the high
frequencies (≥Mk).

To estimate the low frequency components, we spectrally decompose the resolvent using the
Fourier transform. We are then able to reduce the proof of the low-frequency estimates to the
estimates on the restriction of eigenfunctions (or more precisely quasimodes) to ∂Ω that we recalled
in §2.3. To understand this reduction, we proceed schematically; from the description of Sk in
terms of the free resolvent, (2.11), the spectral decomposition of Sk via the Fourier transform is
schematically

Skf =

∫ ∞
0

1

r2 − (k + i0)2

〈
f, γu(r)

〉
L2(∂Ω)

γu(r) dr
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where u(r) is a generalized eigenfunction of −∆ with eigenvalue r2. Using this decomposition we
see that estimating Sk amounts to estimating the restriction of the generalized eigenfunction u(r)
to ∂Ω.

At very high frequency, we compare the operators Sk, Dk, and D′k with the corresponding
operators when k = 1 (recall that the mapping properties of boundary integral operators with
k = 1 have been extensively studied on rough domains; see, e.g. [65, Chapter 15], [61], [66]). By
using a description of the resolvent at very high frequency as a pseudodifferential operator, we are
able to see that these differences gain additional regularity and hence to obtain estimates on them
easily.

The new ingredients in our proof compared to [39] and [46] are that we have Hs norms in
Lemma 2.11 and Lemma 2.19 rather than the L2 norms appearing in the previous work.

2.4.3 Proof of Parts (a) and (b) of Theorem 2.10

Low-frequency estimates. Following the outline in §2.4.2, our first task is to estimate frequen-
cies ≤ kM . We start by proving a conditional result that assumes a certain estimate on restriction
of the Fourier transform of surface measures to the sphere of radius r (Lemma 2.11). In Lemma
2.13 we then show that the hypotheses in Lemma 2.11 are a consequence of restriction estimates
for quasimodes. In Lemma 2.16 we show how the low-frequency estimates on Sk, Dk, and D′k
follow from Lemma 2.11.

In this section we denote the sphere of radius r by Sd−1
r and we denote the surface measure on

Sd−1
r by dσ.

Lemma 2.11 Suppose that for Γ ⊂ Rd any precompact smooth hypersurface, s ≥ 0, f ∈ Ḣ−s(Γ),
and some α , β > 0, ∫

Sd−1
r

|L̂∗fδΓ|2(ξ)dσ(ξ) ≤ CΓ〈r〉2α+2s‖f‖2
Ḣ−s(Γ)

, (2.17)∫
Sd−1
r

|f̂ δΓ|2(ξ)dσ(ξ) ≤ CΓ〈r〉2β+2s‖f‖2
Ḣ−s(Γ)

. (2.18)

Let Γ1, Γ2 ⊂ Rd be compact embedded smooth hypersurfaces. Recall that Li is a vector field with
Li = ∂ν on Γi for some choice of normal ν on Γi and ψ ∈ C∞c (R) with ψ ≡ 1 in neighborhood
of 0. With the frequency cutoff ψ(k−1D) defined as in (2.1), we then define for f ∈ Ḣ−s1(Γ1),
g ∈ Ḣ−s2(Γ2), si ≥ 0,

QS(f, g) :=

∫
Rd
R0(k)(ψ(k−1D)fδΓ1

)ḡδΓ2
dx , QD(f, g) :=

∫
Rd
R0(k)(ψ(k−1D)L∗1(fδΓ1

))ḡδΓ2
dx

QD′(f, g) :=

∫
Rd
R0(k)(ψ(k−1D)fδΓ1)L∗2(gδΓ2) dx.

Then there exists CΓ1,Γ2
so that for k > 1,

|QS(f, g)| ≤ CΓ1,Γ2,ψ〈k〉2β−1+s1+s2 log〈k〉‖f‖Ḣ−s1 (Γ1)‖g‖Ḣ−s2 (Γ2) (2.19)

|QD(f, g)|+ |QD′(f, g)| ≤ CΓ1,Γ2,ψ〈k〉α+β−1+s1+s2 log〈k〉‖f‖Ḣ−s1 (Γ1)‖g‖Ḣ−s2 (Γ2) (2.20)

The key point is that, modulo the frequency cutoff ψ(k−1D), QS(f, g), QD(f, g), and QD′(f, g)
are given respectively by 〈Skf, g〉Γ, 〈Dkf, g〉Γ, and 〈D′kf, g〉Γ,where f is supported on Γ1 and g on
Γ2.
Proof of Lemma 2.11. We follow [39] [46] to prove the lemma. First, observe that due to the
compact support of fδΓi , (2.17) and (2.18) imply that for Γ ⊂ Rd precompact,∫

Sd−1
r

∣∣∣∇ξ L̂∗fδΓ(ξ)
∣∣∣2 dσ(ξ) ≤ C 〈r〉2α+2s‖f‖2

Ḣ−s(Γ)
, (2.21)∫

Sd−1
r

∣∣∣∇ξ f̂ δΓ(ξ)
∣∣∣2 dσ(ξ) ≤ C 〈r〉2β+2s‖f‖2

Ḣ−s(Γ)
. (2.22)
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Indeed, ∇ξ f̂ δΓ = x̂fδΓ and since Γ is compact,

‖xf‖Ḣ−s(Γ) ≤ C‖f‖Ḣ−s(Γ).

Also, ∇ξ ̂L∗(fδΓ) = F(xL∗(fδΓ)). Thus,

xL∗(fδΓ) = L∗(xfδΓ) + [x, L∗]fδΓ

and [x, L∗] ∈ C∞. Therefore, using compactness of Γ,

‖xf‖Ḣ−s(Γ) + ‖[x, L∗]f‖Ḣ−s(Γ) ≤ C‖f‖Ḣ−s(Γ).

Now, gδΓ2
∈ Hmin(−s,−1/2−ε)(Rd), L∗2(gδΓ2

) ∈ Hmin(−s−1,−3/2−ε)(Rd) and since ψ ∈ C∞c (R),

R0(k)(ψ(k−1|D|)L∗(fδΓ1
)) ∈ C∞(Rd), R0(k)(ψ(k−1|D|))fδΓ1

) ∈ C∞(Rd).

By Plancherel’s theorem,

QS(f, g) =

∫
Rd
ψ(k−1|ξ|) f̂ δΓ1

(ξ)ĝδΓ2
(ξ)

|ξ|2 − (k + i0)2
dξ, QD(f, g) =

∫
Rd
ψ(k−1|ξ|) L̂

∗
1fδΓ1

(ξ) ĝδΓ2
(ξ)

|ξ|2 − (k + i0)2
dξ,

and QD′(f, g) =

∫
Rd
ψ(k−1|ξ|) f̂ δΓ1

(ξ) L̂∗2gδΓ2
(ξ)

|ξ|2 − (k + i0)2
dξ,

where k + i0 is understood as the limit of k + iε as ε→ 0+.
Therefore, to prove the lemma, we only need to estimate∫

Rd
ψ(k−1|ξ|) F (ξ)G(ξ)

|ξ|2 − (k + i0)2
dξ (2.23)

where, by (2.17), (2.18), (2.21), and (2.22),

‖F‖L2(Sd−1
r ) + ‖∇ξF‖L2(Sd−1

r ) ≤ C〈r〉
δ1+s1‖f‖Ḣ−s1 (Γ1), and

‖G‖L2(Sd−1
r ) + ‖∇ξG‖L2(Sd−1

r ) ≤ C〈r〉
δ2+s2‖g‖Ḣ−s2 (Γ2).

Consider first the integral in (2.23) over
∣∣|ξ| − |k|∣∣ ≥ 1. Since

∣∣|ξ|2 − k2
∣∣ ≥ ∣∣|ξ|2 − |k|2∣∣, by the

Schwartz inequality, (2.17), and (2.18), this piece of the integral is bounded by∫
||ξ|−|k||≥1

∣∣∣∣ψ(k−1|ξ|)F (ξ)G(ξ)

|ξ|2 − k2

∣∣∣∣dξ
≤
∫
Mk≥|r−|k||≥1

1

r2 − |k|2

∫
Sd−1
r

F (rθ)G(rθ)dσ(θ)dr

≤ C‖f‖H−s1 (Γ1)‖g‖H−s2 (Γ2)

∫
M |k|≥|r−|k||≥1

〈r〉δ1+δ2+s1+s2
∣∣ r2 − |k|2

∣∣−1
dr

≤ C‖f‖H−s1 (Γ1)‖g‖H−s2 (Γ2)|k|δ1+δ2−1+s1+s2

∫
M |k|≥|r−|k||≥1

|r − |k||−1
dr

≤ C |k|δ1+δ2−1+s1+s2 log |k| ‖f‖Ḣ−s1 (Γ1)‖g‖Ḣ−s2 (Γ2). (2.24)

Since k > 1, we write

1

|ξ|2 − (k + i0)2
=

1

|ξ|+ (k + i0)

ξ

|ξ|
· ∇ξ log(|ξ| − (k + i0)) ,

where the logarithm is well defined since Im(|ξ|− (k+ i0)) < 0. Let χ(r) = 1 for |r| ≤ 1 and vanish
for |r| ≥ 3/2. We then use integration by parts, together with (2.17), (2.18), (2.21), and (2.22) to
bound∣∣∣∣∣

∫
Rd
χ(|ξ| − |k|)ψ(k−1|ξ|) 1

|ξ|+ k + i0
F (ξ)G(ξ)

ξ

|ξ|
· ∇ξ log(|ξ| − (k + i0)) dξ

∣∣∣∣∣
≤ C |k|δ1+δ2−1+s1+s2 ‖f‖Ḣ−s1 (Γ1)‖g‖Ḣ−s2 (Γ2).

Now, taking δ1 = δ2 = β gives (2.19), and taking δ1 = α and δ2 = β gives (2.20).
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Remark 2.12 The estimate (2.24) is the only term where the log |k| appears, which leads to the
log k factors in the bounds of Theorem 1.10 (without which these bounds would be sharp).

The proofs of the estimates (2.17) and (2.18) are contained in the following lemma.

Lemma 2.13 Let Γ ⊂ Rd be a precompact smooth hypersurface. Then estimate (2.18) holds with
β = 1/4 and for L = ∂ν on Γ, estimate (2.17) holds with α = 1. Moreover, if Γ is curved then
(2.18) holds with β = 1/6.

To prove this lemma, we need to understand certain properties of the operator Tr defined by

Trφ :=

∫
Sd−1
r

φ(ξ)ei〈x,ξ〉dσ(ξ). (2.25)

Indeed, with A : Hs(Rd)→ Hs−1(Rd), to estimate∫
Sd−1
r

|Â∗(fδΓ)(ξ)|2dσ(ξ),

we write

〈Â∗(fδΓ)(ξ), φ(ξ)〉Sd−1
r

=

∫
Sd−1
r

∫
Rd
A∗(f(x)δΓ)φ(ξ)ei〈x,ξ〉dxdσ(ξ)

=

∫
Γ

fATrφ dx = 〈f,ATrφ〉Γ,
(2.26)

with Tr defined by (2.25).
Before proving Lemma 2.13 we prove two lemmas (Lemma 2.14 and 2.15) collecting properties

of Tr.

Lemma 2.14 Let Tr be defined by (2.25) and χ ∈ C∞c (Rd). Then,

‖χTrφ‖L2(Rd) ≤ C‖φ‖L2(Sd−1
r ).

Proof of Lemma 2.14. We estimate B := (χTr)
∗χTr : L2Sd−1

r → L2Sd−1
r . This operator has

kernel

B(ξ, η) =

∫
Rd
χ2(y) exp (i〈y, ξ − η〉) dy = χ̂2(η − ξ).

Now, for η ∈ Sd−1
r , and any N > 0,∫

Sd−1
r

|χ̂2(η − ξ)|dσ(ξ) ≤
∫
B(0,r/2)

〈ξ′〉−N
[
1− |ξ

′|2

r2

]−1/2

dξ′ + C〈r〉−N ≤ C.

Thus, by Schur’s inequality, B is bounded on L2Sd−1
r uniformly in r. Therefore,

‖χTrφ‖2L2(Rd) ≤ C‖φ‖
2
L2(Sd−1

r )
.

Lemma 2.15 With Tr be defined by (2.25), let Γ̃ denote an extension of Γ, χ ∈ C∞c (Rd) and

A ∈ Ψ1(Rd) with χ ≡ 1 in a neighborhood of Γ̃. Then for s ∈ R,

‖χATrφ‖Hsr(Γ) ≤ Cs‖χATrφ‖L2(Γ̃).

Proof of Lemma 2.15. Since T̂rφ is supported on |ξ| ≤ 2r, χTrφ is compactly microlocalized in
the sense that for ψ ∈ C∞c (R) with ψ ≡ 1 on [−2, 2] with support in [−3, 3],

ψ(r−1|D|)χATrφ = χATrφ+OΨ−∞(r−∞)χTrφ.

(Note that ψ(r−1|D|) can be defined using (2.1) since ψ(t) is constant near t = 0.)
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Let γΓ̃ denote restriction to Γ̃, and γ|Γ restriction to Γ. Let χΓ ∈ C∞c (Γ̃) with χΓ ≡ 1 on Γ.
Then for ψ1 ∈ C∞c (R) with ψ1 ≡ 1 on [−4, 4],

χΓψ1(r−1|D′|g)χΓγΓ̃χATrφ = χ2
ΓγΓ̃χATrφ+OΨ−∞(r−∞)γΓ̃χTrφ

where ψ1(r−1|D′|g) is a pseudodifferential operator on Γ̃ with symbol ψ1(|ξ′|g) and | · |g denotes

the metric induced on T ∗Γ̃ from Rd. Hence, for r > 1,

‖γΓχATrφ‖Hsr(Γ) ≤ Cs‖χATrφ‖L2(Γ̃).

We are now in a position to prove Lemma 2.13.

Proof of Lemma 2.13. The key observation for the proof of Lemma 2.13 is that for χ ∈ C∞c (Rd),
χTrφ is a quasimode of the Laplacian with k = r in the sense of (2.5) in Theorem 2.8. To see this,
observe first that −∆Trφ = r2Trφ by the definition (2.25). Therefore,

−∆χTrφ = r2χTrφ+ [−∆, χ]Trφ.

Now, observe that for χ̃ ∈ C∞c (Rd) with supp χ̃ ⊂ {χ ≡ 1}, χ̃[−∆, χ] = 0. Therefore, taking such
a χ̃ with χ̃ ≡ 1 in a neighborhood, U of Γ shows that χTrφ is a quasimode.

To prove (2.18), we let A = I. Then, by the bounds (2.6) in Theorem 2.8 together with Lemmas
2.14 and 2.15, for s ≥ 0,

‖χTrφ‖Hs(Γ) ≤ Cs〈r〉
s‖χTrφ‖L2(Γ̃) ≤ Cs〈r〉

1
4 +s‖χTrφ‖L2(Rd) ≤ Cs〈r〉

1
4 +s‖φ‖L2(Sd−1

r ), (2.27)

and if Γ is curved then
‖χTrφ‖Hs(Γ) ≤ C〈r〉

1
6 +s‖φ‖L2(Sd−1

r ). (2.28)

To prove (2.17), we take A = L. Observe that

γΓ̃χLTrφ = γΓ̃LχTrφ.

Hence, using the fact that L = ∂ν on Γ together with the bound (2.7) in Theorem 2.8, we can
estimate LTrφ.

‖χLTrφ‖L2(Γ̃) = ‖LχTrφ‖L2(Γ̃) ≤ C〈r〉‖χTrφ‖L2(Rd). (2.29)

In particular, for s ≥ 0,
‖χLTrφ‖Hs(Γ) ≤ Cs〈r〉

s+1‖φ‖L2(Sd−1
r ).

Applying Cauchy-Schwarz together with (2.26), (2.27), (2.28) and (2.29) completes the proof of
Lemma 2.13, since we have shown that

|〈f̂ δΓ(ξ), φ(ξ)〉L2(Sd−1
r )| ≤ Cs〈r〉

1
4 +s‖f‖Ḣ−s(Γ)‖φ‖L2(Sd−1

r ),

|〈 ̂L∗(fδΓ)(ξ), φ(ξ)〉L2(Sd−1
r )| ≤ Cs〈r〉

1+s‖f‖Ḣ−s(Γ)‖φ‖L2(Sd−1
r ),

and if Γ is curved,

|〈f̂ δΓ(ξ), φ(ξ)〉L2(Sd−1
r )| ≤ Cs〈r〉

1
6 +s‖f‖Ḣ−s(Γ)‖φ‖L2(Sd−1

r ).

Lemma 2.16 (Low-frequency estimates) Let s2 be either 0 or 1. If ∂Ω is piecewise smooth
and Lipschitz, then

‖γ±R0(k)ψ(k−1D)γ∗f‖Hs2 (∂Ω) ≤ C〈k〉2β−1+s2 log〈k〉‖f‖L2(∂Ω) (2.30)

‖γR0(k)ψ(k−1D)L∗1γ
∗f‖Hs2 (∂Ω) ≤ C〈k〉β+s2 log〈k〉‖f‖L2(∂Ω) (2.31)

‖γ±L2R0(k)ψ(k−1D)γ∗f‖Hs2 (∂Ω) ≤ C〈k〉β+s2 log〈k〉‖f‖L2(∂Ω). (2.32)

with β = 1/4. If ∂Ω is piecewise curved and Lipschitz then (2.30)-(2.32) hold with β = 1/6.
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Proof of Lemma 2.16. By the duality property of Hs(Γ) and Ḣ−s(Γ) (discussed after Definition
2.5), Lemma 2.13 and the estimates (2.19) and (2.20) imply for s1, s2 ≥ 0 that there exists C > 0
independent of k > 1 so that

‖γΓ2
R0(k)ψ(k−1D)γ∗Γ1

f‖Hs2 (Γ2) ≤ C〈k〉
2β−1+s1+s2 log〈k〉‖f‖Ḣ−s1 (Γ1), (2.33)

‖γΓ2R0(k)ψ(k−1D)L∗1γ
∗
Γ1
f‖Hs2 (Γ2) ≤ C〈k〉

β+s1+s2 log〈k〉‖f‖Ḣ−s1 (Γ1), (2.34)

‖γΓ2
L2R0(k)ψ(k−1D)γ∗Γ1

f‖Hs2 (Γ2) ≤ C〈k〉
β+s1+s2 log〈k〉‖f‖Ḣ−s1 (Γ1). (2.35)

Since ∂Ω is piecewise-smooth, ∂Ω =
∑N
i=1 Γi with Γi smooth hypersurfaces. Since ψ(k−1D)

is a smoothing operator on S ′, by elliptic regularity R0(k)ψ(k−1D) is smoothing and hence its
restriction to ∂Ω maps compactly supported distributions into H1(∂Ω). Applying (2.33)-(2.35)
with s1 = 0, Γ = Γi, and then summing over i, we find that, for 0 ≤ s2 ≤ 1,

‖γR0(k)ψ(k−1D)γ∗f‖Hs2 (∂Ω) ≤ C〈k〉
2β−1+s2 log〈k〉‖f‖L2(∂Ω) (2.36)

‖γ±R0(k)ψ(k−1D)L∗1γ
∗f‖Hs2 (∂Ω) ≤ C〈k〉

β+s2 log〈k〉‖f‖L2(∂Ω) (2.37)

‖γ±L2R0(k)ψ(k−1D)γ∗f‖Hs2 (∂Ω) ≤ C〈k〉
β+s2 log〈k〉‖f‖L2(∂Ω). (2.38)

Applying (2.36)-(2.38) with s2 = 1 (using the norm bound (2.3)) and s2 = 0, we obtain the
estimates (2.30)-(2.32).

High frequency estimates. Next, we obtain an estimate on the high frequency (≥ kM) com-
ponents of Sk, Dk, and D′k. We start by analyzing the high frequency components of the free
resolvent, proving two lemmata on the structure of the free resolvent there.

Lemma 2.17 Suppose that z ∈ [−E,E]. Let ψ ∈ C∞c (R) with ψ ≡ 1 on [−2E2, 2E2]. Then for
χ ∈ C∞c (Rd).

χR0(zk)χ(1− ψ(|k−1D|)) = B1, (1− ψ(|k−1D|))χR0(zk)χ = B2

where Bi ∈ k−2Ψ−2(Rd) with

σ(Bi) =
χ2k−2(1− ψ(|ξ|))

|ξ|2 − z2
.

Proof of Lemma 2.17. Let χ0 = χ ∈ C∞c (Rd) and χn ∈ C∞c (Rd) have χn ≡ 1 on suppχn−1

for n ≥ 1. Let ψ0 = ψ ∈ C∞c (R) have ψ ≡ 1 on [−2E2, 2E2], let ψn ∈ C∞c (R) have ψn ≡ 1 on
[−3E2/2, 3E2/2] and suppψn ⊂ {ψn−1 ≡ 1} for n ≥ 1. Finally, let ϕn = (1− ψn). Then,

k2χR0(zk)χ(−k−2∆− z2) = (χ2 − χk2χ1R0(zk)χ1[χ, k−2∆]). (2.39)

Now, by Lemma 2.3 there exists A0 ∈ k−2Ψ−2(Rd) with

A0 = k−2a0(x, k−1D) +OΨ−∞(k−∞), supp a0 ⊂ {suppϕ0} (2.40)

such that
k2(−k−2∆− z2)A0 = ϕ(|k−1D|) +OΨ−∞(k−∞) (2.41)

and A0 has

σ(A0) =
k−2ϕ(|ξ|)
|ξ|2 − z2

. (2.42)

(Indeed, since we are working on Rd,

k2(−k−2∆− z2)
k−2ϕ(|k−1D|)
|k−1D|2 − z2

= ϕ(|k−1D|)

with no remainder.)
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Composing (2.39) on the right with A0, we have

χR0χϕ(|k−1D|) = χ2A0 − k2χχ1R0χ1ϕ1(|k−1D|)[χ, k−2∆]A0 +OΨ−∞(k−∞),

= χ2A0 − χχ1R0χ1ϕ1(|k−1D|)OΨ−1(k−1) +OΨ−∞(k−∞).

Now, applying the same arguments, there exists An ∈ k−2Ψ−2(Rd) such that

χnR0χnϕn(|k−1D|) = χ2
nAn + χn+1R0χn+1ϕn+1(|k−1D|)OΨ−1(k−1) +OΨ−∞(k−∞).

Hence, by induction
χR0χϕ(|k−1D|) = B1 ∈ k−2Ψ−2(Rd),

with

σ(B1) =
k−2χ2(1− ψ(|ξ|))

|ξ|2 − z2

as desired. The proof of the statement for B2 is identical.

Next, we prove an estimate on the difference between the resolvent at high energy and that at
fixed energy.

Lemma 2.18 Suppose that z ∈ [0, E]. Let ψ ∈ C∞c (R) with ψ ≡ 1 on [−2E2, 2E2]. Then for
χ ∈ C∞c (Rd),

χ(R0(zk)−R0(1))χ(1− ψ(|k−1D|)) ∈ k−2Ψ−4(Rd).

Proof of Lemma 2.18. We proceed as in the proof of Lemma 2.17. Let χ0 = χ ∈ C∞c (Rd)
and χn ∈ C∞c (Rd) have χn ≡ 1 on suppχn−1 for n ≥ 1. Let ψ0 = ψ ∈ C∞c (R) have ψ ≡ 1 on
[−2E2, 2E2], let ψn ∈ C∞c (R) have ψn ≡ 1 on [−3E2/2, 3E2/2] and suppψn ⊂ {ψn−1 ≡ 1} for
n ≥ 1. Finally, let ϕn = (1− ψn). Then,

k2χ(R0(zk)−R0(1))χ(−k−2∆− z2)

= χR0(1)
(
z2k2 − 1

)
χ− χk2χ1(R0(zk)−R0(1))χ1[χ, k−2∆]). (2.43)

Now, by Lemma 2.3 there exists A0 ∈ k−2Ψ−2(Rd) such that (2.40), (2.41), and (2.42) hold.
Composing (2.43) on the right with k−2A0, we have

χ(R0(zk)−R0(1))χϕ(|k−1D|)
= k2χR0(1)χ(z2 − k−2)A0 − k2χχ1(R0(zk)−R0(1))χ1ϕ1(|k−1D|)[χ, k−2∆]A0 +OΨ−∞(k−∞).

(2.44)
In particular, iterating using the same argument to write

χ1(R0(zk)−R0(1))χ1ϕ1(|k−1D|)
= k2χ1R0(1)χ1(z2 − k−2)A1 − k2χ1χ2(R0(zk)−R0(1))χ2ϕ2(|k−1D|)[χ1, k

−2∆]A1 +OΨ−∞(k−∞),

we see that the right hand side of (2.44) is in k−2Ψ−4(Rd).

With Lemma 2.17 and 2.18 in hand, we obtain the high-frequency estimates of the boundary-
integral operators by comparing them to those at fixed frequency.

Lemma 2.19 (High-frequency estimates) Let M > 1 and ψ ∈ C∞c (R) with ψ ≡ 1 for |ξ| <
M . Suppose that ∂Ω is a piecewise-smooth hypersurface (in the sense of Definition 1.5). Then for
k > 1 and χ ∈ C∞c (Rd)

γR0(k)χ(1− ψ(|k−1D|))γ∗ = OL2(∂Ω)→H1
k(∂Ω)(k

−1(log k)1/2). (2.45)

If, in addition, ∂Ω is C2,α for some α > 0, then

∓1

2
I + γ±R0(k)χ(1− ψ(|k−1D|))L∗γ∗ = OL2(∂Ω)→H1

k(∂Ω)(log k) (2.46)

±1

2
I + γ±LR0(k)χ(1− ψ(|k−1D|))γ∗ = OL2(∂Ω)→H1

k(∂Ω)(log k). (2.47)
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Remark 2.20 The factors of log k in the bounds of Lemma 2.19 are likely artifacts of our proof,
but since they do not affect our final results, we do not attempt to remove them here. In fact, if
∂Ω is smooth (rather than piecewise smooth), then one can show that the logarithmic factors can
be removed from the bounds in Lemma 2.19 using the analysis in [38, Section 4.4].

Proof of Lemma 2.19. By Lemma 2.18,

Ak := χ(R0(k)−R0(1))χ(1− ψ(k−1D)) ∈ k−2Ψ−4.

Note that for s > 1/2,
γ = O

Hsk(Rd)→Hs−1/2
k (∂Ω)

(k1/2); (2.48)

this bound follows from repeating the proof of the trace estimate in [61, Lemma 3.35] but working
in semiclassically rescaled spaces.

Let Bk := γAkγ
∗, Ck := γAkL

∗γ∗, C ′k := γLAkγ
∗. Then, using (2.48) and the fact that

L,L∗ = OHsk→Hs−1
k

(k), we have that Bk = OL2→H1
k
(k−1) and Ck, C

′
k = OL2→H1

k
(1).

Recalling the notation for Sk (2.11), Dk, and D′k (2.16), and the mapping properties recapped
in §2.4.1, we have

γR0(1)χγ∗ :L2(∂Ω)→ H1(∂Ω)

when ∂Ω is Lipschitz, and

±1

2
I + γ±R0(1)χL∗γ∗ :L2(∂Ω)→ H1(∂Ω)

∓1

2
I + γ±LR0(1)χγ∗ :L2(∂Ω)→ H1(∂Ω)

when ∂Ω is C2,α.
Now, note that for Γ̃ a precompact smooth hypersurface, and ψ ∈ C∞c (R),

‖ψ(|k−1D|)γ∗
Γ̃
‖L2(Γ̃)→Hs(Rd) + ‖γΓ̃ψ(|k−1D|)‖H−s(Rd)→H̄−s−1/2(Γ̃) ≤ C


1 s < −1/2

(log k)1/2 s = −1/2

k(s+1/2) s > −1/2.

Thus, since ψ(|k−1D|) : S ′(Rd)→ C∞(Rd) and in particular, γψ(|k−1D|) : S ′(Rd)→ H1(Γ),

‖ψ(|k−1D|)γ∗‖L2(Γ)→Hs(Rd) + ‖γΓψ(|k−1D|)‖H−s(Rd)→H̄−s−1/2(Γ) ≤ C


1 s < −1/2

(log k)1/2 s = −1/2

k(s+1/2) s > −1/2.

(2.49)
Furthermore, notice that by Lemma 2.17, if ψ1 ∈ C∞c (R) has ψ1 ≡ 1 on suppψ, then

χR0(1)χψ(|k−1D|) = ψ1(|k−1D|)χR0(1)χψ(|k−1D|) +OΨ−∞(k−∞).

In particular, using this estimate together with (2.49) and that χR0(1)χ : Hs(Rd)→ Hs+2(Rd),

γ±R0(1)χψ(|k−1D|)γ∗ =

{
O
L2(Γ)→H1

(Γ)
((log k)1/2)

OL2(Γ)→L2(Γ)(1),

γ±R0(1)χψ(|k−1D|)L∗γ∗ =

{
O
L2(Γ)→H1

(Γ)
(k)

OL2(Γ)→L2(Γ)(log k),

γ±LR0(1)χψ(|k−1D|)γ∗ =

{
O
L2(Γ)→H1

(Γ)
(k)

OL2(Γ)→L2(Γ)(log k),

Hence,

γR0(k)χ(1− ψ(|k−1D|))γ∗ = γR0(1)χ(1− ψ(|k−1D|))γ∗ +Bk = OL2→H̄1((log k)1/2).
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Furthermore, since R0(k)χ(1− ψ(|k−1D|)) ∈ k−2Ψ−2(Rd), and we have (2.48),

γR0(k)χ(1− ψ(|k−1D|))γ∗ = OL2→L2(k−1). (2.50)

Next, observe that

∓1

2
+ γ±R0(k)χ(1− ψ(|k−1D|))L∗γ∗ = ∓1

2
+ γ±R0(1)χ(1− ψ(|k−1D|))L∗γ∗ + Ck

=

{
OL2→H̄1(k)

OL2→L2(log k),
(2.51)

±1

2
+ γ±LR0(k)χ(1− ψ(|k−1D|))γ∗ = ±1

2
+ γ±LR0(1)χ(1− ψ(|k−1D|))γ∗ + C ′k

=

{
OL2→H̄1(k)

OL2→L2(log k).
(2.52)

Since ∂Ω is piecewise-smooth, ∂Ω =
∑N
i=1 Γi. Applying (2.50)-(2.52) with Γ = Γi, summing over

i, and then using the result (2.3) we obtain (2.45)- (2.47)

Proof of Parts (a) and (b) of Theorem 2.10. This follows from combining the low-frequency
estimates (2.30)-(2.32) in Lemma 2.16 with the high-frequency estimates (2.45)-(2.47) in Lemma
2.19, recalling the decompositions (2.11) and (2.16).

2.5 Proof of Part (c) of Theorem 2.10

Proof of Part (c) of Theorem 2.10. Observe that [38, Theorems 4.29, 4.32] imply that for
ψ ∈ C∞c (R) with ψ ≡ 1 on [−2, 2],

ψ(|k−1D′|)Sk = OL2→H1
k
(k−2/3), ψ(|k−1D′|)Dk = OL2→H1

k
(1).

Then [38, Lemma 4.25] shows that (1− ψ(|k−1D′|))Sk ∈ k−1Ψ−1(∂Ω) and (1− ψ(|k−1D′|))Dk ∈
k−1Ψ−1(∂Ω) and hence

(1− ψ(|k−1D′|))Sk = OL2→H1
k
(k−1), (1− ψ(|k−1D′|))Dk = OL2→H1

k
(k−1).

An identical analysis shows that
D′k = OL2→H1

k
(1).

2.6 Proof of Corollary 1.14

This follows in exactly same way as [42, Proof of Corollary 1.2, page 193]. The two ideas are that
(i) the relationships∫

Γ

φSkψ ds =

∫
Γ

ψ Skφ ds, and

∫
Γ

φDkψ ds =

∫
Γ

ψD′kφds, (2.53)

for φ, ψ ∈ L2(∂Ω) (see, e.g., [18, Equation 2.37]), and the duality of H1(∂Ω) and H−1(∂Ω) (see, e.g.,
[61, Page 98]) allow us to convert bounds on Sk, Dk, and D′k as mappings from L2(∂Ω)→ H1(∂Ω)
into bounds on these operators as mappings from H−1(∂Ω)→ L2(∂Ω); and
(ii) interpolation then allows us to obtain bounds from Hs−1/2(∂Ω)→ Hs+1/2(∂Ω) for |s| ≤ 1/2.
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3 Sharpness of the bounds in Theorem 1.10

We now prove that the powers of k in the ‖Sk‖L2(∂Ω)→H1(∂Ω) bounds in Theorem 2.10 are optimal.
The analysis in [46, §A.3] proves that the powers of k in the ‖Dk‖L2(∂Ω)→L2(∂Ω) bounds are optimal,
but can be adapted in a similar way to below to prove the sharpness of the ‖Dk‖L2(∂Ω)→H1(∂Ω)

bounds.
In this section we write x ∈ Rd as x = (x′, xd) for x′ ∈ Rd−1, and x′ = (x1, x

′′) (in the case
d = 2, the x′′ variable is superfluous).

Lemma 3.1 (Lower bound on ‖Sk‖L2(∂Ω)→H1(∂Ω) when ∂Ω contains a line segment) If
∂Ω contains the set {

(x1, 0) : |x1| < δ
}

for some δ > 0 and is C2 in a neighborhood thereof (i.e. ∂Ω contains a line segment), then there
exists k0 > 0 and C > 0 (independent of k), such that, for all k ≥ k0,

‖Sk‖L2(∂Ω)→L2(∂Ω) ≥ Ck
−1/2 and ‖Sk‖L2(∂Ω)→H1(∂Ω) ≥ Ck

1/2.

This result shows that the bound (1.14), when ∂Ω is piecewise smooth, is sharp up to a factor
of log k.

Lemma 3.2 (General lower bound on ‖Sk‖L2(∂Ω)→H1(∂Ω)) If ∂Ω is C2 in a neighborhood of
a point then there exists k0 > 0 and C > 0 (independent of k), such that, for all k ≥ k0,

‖Sk‖L2(∂Ω)→L2(∂Ω) ≥ Ck
−2/3 and ‖Sk‖L2(∂Ω)→H1(∂Ω) ≥ Ck

1/3.

This result shows that the bound (1.15), when ∂Ω is piecewise curved, is sharp up to a factor
of log k and that the bound (1.16), when when ∂Ω is smooth and curved, is sharp.

Remark 3.3 The lower bound ‖Sk‖Ḣs(Γ)→Hs+1(Γ) ≥ Ck1/2 when Γ is a flat screen (i.e. a bounded

and relatively open subset of {x ∈ Rd : xd = 0}) and s ∈ R is proved in [19, Remark 4.2] (recall
that Ḣs(Γ) is defined in Definition 2.5).

Proof of Lemma 3.1. By assumption Γ ⊂ Ω, where

Γ :=
{

(x1, x
′′, γ(x′)) : |x′| < δ

}
for some γ(x′) with γ(x1, 0) = 0 for |x1| < δ (since the line segment {(x1, 0) : |x1| < δ} ⊂ Γ).

By the definition of the operator norm, it is sufficient to prove that there exists uk ∈ L2(∂Ω)
with suppuk ⊂ Γ, k0 > 0, and C > 0 (independent of k), such that, for all k ≥ k0,

‖Skuk‖L2(Γ) ≥ Ck−1/2‖u‖L2(Γ) and ‖∂x1
Skuk‖L2(Γ) ≥ Ck1/2‖u‖L2(Γ). (3.1)

We begin by observing that the definition of Φk(x, y) (1.6) and the asymptotics of Hankel functions
for large argument and fixed order (see, e.g., [69, §10.17]) imply that

Φk(x, y) = Cdk
d−2eik|x−y|

(
(k|x− y|)−(d−1)/2 +O(k|x− y|)−(d+1)/2

)
, (3.2)

〈V, ∂x〉Φk(x, y) = C ′dk
d−1 〈V, x− y〉

|x− y|
eik|x−y|

(
(k|x− y|)−(d−1)/2 +O(k|x− y|)−(d+1)/2

)
. (3.3)

Let χ ∈ C∞c (R) with suppχ ⊂ [−2, 2], χ(0) ≡ 1 on [−1, 1] and define

χε,γ1,γ2
(x′) = χ

(
ε−1kγ1x1

)
χ
(
ε−1kγ2 |x′′|

)
, (3.4)

In what follows, we suppress the dependence of u on k for convenience. Let u(x′, γ(x′)) :=
eikx1χε,0,1/2(x′). The definition of χ implies that

suppu =
{

(x′, γ(x′)) : |x1| ≤ 2ε, |x′′| ≤ 2εk−1/2
}
,
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and thus suppu ⊂ Γ for ε sufficiently small and k sufficiently large (say ε < (2
√

2)−1δ and k > 1);
for the rest of the proof we assume that ε and k are such that this is the case. Observe also that

‖u‖L2(Γ) ∼ Cεk−(d−2)/4. (3.5)

Let
U :=

{
(x′, γ(x′)) : Mε ≤ x1 ≤ 2Mε, |x′′| ≤ εk−1/2, M � 1

}
;

the motivation for this choice comes from the analysis in Remark 4.5 below. Indeed, we know
that Sk is largest microlocally near points that are glancing in both the incoming and outgoing
variables. Since u concentrates microlocally at x = 0, ξ = (1, 0) up to scale k−1/2, the billiard
trajectory emanating from this point is {t(1, 0) : t > 0}. This ray is always glancing since Γ is flat.
Therefore, we choose U to contain this ray up to scale k−1/2.

Then for x ∈ U , y ∈ suppu,

|(x′, γ(x′))− (y′, γ(y′))|2 = (x1 − y1)2 + |x′′ − y′′|2 + |γ(x′)− γ(y′)|2,

Then, observe that by Taylor’s formula

γ(x′)−γ(y′) = γ(x1, 0)−γ(y1, 0)+∂x′′γ(x1, 0)(x′′−y′′)+y′′(∂x′′γ(x1, 0)−∂x′′γ(y1, 0))+O(|x′′|2+|y′′|2).

Since γ(x1, 0) = 0 for |x1| < δ,

|γ(x′)− γ(y′)|2 = O
(
|x′′ − y′′|2) +O(|x′′|2 + |y′′|2).

In particular,

|(x′, γ(x′))− (y′, γ(y′))| = (x1 − y1) +O
([
|x′′ − y′′|2 + |x′′|2 + |y′′|2

]
|x1 − y1|−1

)
= x1 − y1 +O(k−1M−1ε), (3.6)

= x1

(
1 +O(M−1) +O(k−1M−2)

)
. (3.7)

We have from the Hankel-function asymptotics (3.2) and the definition of u that, for x ∈ U ,

Sku(x) = Cdk
d−2

∫
Γ

eik|x−y|+iky1

(
k−(d−1)/2|x− y|−(d−1)/2

+O((k|x− y|)−(d+1)/2

)
χε,0,1.2(y′)ds(y),

and then using the asymptotics (3.6) in the exponent of the integrand and the asymptotics (3.7)
in the rest of the integrand, we have, for x ∈ U ,

Sku(x) = Cdk
d−2 eikx1

k(d−1)/2|x1|(d−1)/2

∫
Γ

(
1 +O(M−1ε)

)
(

1 +O(M−1) +Oε,M (k−1)

)
χε,0,1/2(y′)ds(y).

Therefore, with M large enough, ε small enough, and then k0 large enough, the contribution from
the integral over Γ is determined by the cutoff χε,0,1/2, yielding k−(d−2)/2, and thus

|Sku(x′)| ≥ Ck(d−2)/2 1

k(d−1)/2|x1|(d−1)/2
, x′ ∈ U, k ≥ k0. (3.8)

In the step of taking ε sufficiently small, we can also take ε small enough to ensure that U ⊂ Γ for
all k ≥ 1. Using (3.8), along with the fact that the measure of U ∼ k−(d−2)/2, we have that

‖Sku‖L2(U) ≥ Ck−1/2−(d−2)/4. (3.9)

Since we have ensured that U ⊂ Γ, (3.9) and (3.5) imply that the first bound in (3.1) holds. It
easy to see that if we repeat the argument above but with (3.3) instead of (3.2), then we obtain
the second bound in (3.1).
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Proof of Lemma 3.2. Let x0 ∈ ∂Ω be a point so that ∂Ω is C2 in a neighborhood of x0 and let x′

be coordinates near x0 so that

Γ :=
{

(x′, γ(x′)) : |x′| < δ
}
⊂ ∂Ω, with γ ∈ C2, γ(0) = ∂γ(0) = 0.

Similar to the proof of Lemma 3.1, it is sufficient to prove that there exists uk ∈ L2(∂Ω) with
suppuk ⊂ Γ, k0 > 0, and C > 0 (independent of k), such that

‖Skuk‖L2(Γ) ≥ Ck−1/2‖uk‖L2(Γ) and ‖∂x1
Sku‖L2(Γ) ≥ Ck1/2‖u‖L2(Γ) (3.10)

for all k ≥ k0.
The idea in the curved case is the same as in the flat case: choose u concentrating as close as

possible to a glancing point and measure near the point given by the billiard map. More practically,
this amounts to ensuring that |x− y| looks like x1 − y1 modulo terms that are much smaller than
k−1. The fact that Γ may be curved will force us to choose u differently and cause our estimates
to be worse than in the flat case (leading to the weaker - but still sharp - lower bound).

With χε,γ1,γ2
defined by (3.4), let u(x′, γ(x′)) := eikx1χε,1/3,2/3(x′) where, as in the proof of

Lemma 3.1, we have x′ = (x1, x
′′) and as in Lemma 3.1, suppu ⊂ Γ for ε sufficiently small and k

sufficiently large, and for the rest of the proof we assume that this is the case. Then

‖u‖L2(Γ) ≤ Cεk−1/6k−(d−2)/3. (3.11)

Define
U :=

{
(x′, γ(x′)) : Mεk−1/3 ≤ x1 ≤ 2Mεk−1/3, |x′′| ≤ εk−2/3, M � 1

}
.

Then, for y ∈ suppu and x ∈ U ,

|(x′, γ(x′))− (y′, γ(x′))| = (x1 − y1) +O
(
(|x′|2 + |y′|2)2|x1 − y1|−1

)
+O

(
|x′′ − y′′|2|x1 − y1|−1

)
= x1 − y1 +O(k−1M3ε3) +O(εk−1M−1) (3.12)

= x1

(
1 +O(M−1) +O(k−2/3M2ε2) +O(k−2/3M−2)

)
. (3.13)

From (3.2) and the definition of u, we have for x′ ∈ U ,

Sku(x) = Cdk
d−2

∫
Γ

eik|x−y|+iky1

(
k−(d−1)/2|x−y|−(d−1)/2+O((k|x−y|)−(d+1)/2

)
χε,1/3,2/3(y′)ds(y),

and then, using (3.12) in the exponent of the integrand and (3.13) in the rest, we have, for x′ ∈ U ,

Sku(x) = Cdk
d−2 eikx1

k(d−1)/2|x1|(d−1)/2∫
Γ

(
1 +O(M3ε3) +O(M−1ε)

)(
1 +O(M−1) +Oε,M (k−2/3)

)
χε,1/3,2/3(y′)ds(y).

Thus, fixing M large enough, then ε small enough, then k0 large enough, we have

|Sku(x′)| ≥ Ck(d−2)/3 1

k(d−1)/2|x1|(d−1)/2
k−1/3, x′ ∈ U, k ≥ k0 (3.14)

In the step of taking ε sufficiently small, we can also take ε small enough so that when x′ ∈ U ,
|x′| < δ, and thus x′ ∈ Γ. Using the lower bound (3.14), and the fact that the measure of U
∼ k−1/3k−2(d−2)/3, we have that

‖Sku‖L2(Γ) ≥ ‖Sku‖L2(U) ≥ Ck−2/3−1/6−(d−2)/3

and so using (3.11) we obtain the first bound in (3.10). Similar to before, if we repeat this argument
with (3.3) instead of (3.2), we find the second bound in (3.10).
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4 Proofs of Theorems 1.15, 1.16 (the results concerning Q1)

4.1 Proof of Theorem 1.15

The heart of the proof of Theorem 1.15 is the following lemma.

Lemma 4.1 There exists a C̃ > 0 such that under the condition

h ‖D′k − iηSk‖L2(∂Ω)→H1(∂Ω) ‖(A
′
k,η)−1‖L2(∂Ω)→L2(∂Ω) ≤ C̃ (4.1)

the Galerkin equations (1.11) have a unique solution satisfying (1.20).

The presence of ‖(A′k,η)−1‖L2(∂Ω)→L2(∂Ω) in (4.1) means that before proving Theorem 1.15

using Lemma 4.1 we need to recall the following bounds on ‖(A′k,η)−1‖L2(∂Ω)→L2(∂Ω).

Theorem 4.2 ([23, Theorem 4.3], [9, Theorem 1.13]) If |η| ∼ k and either Ω is star-shaped
with respect to a ball and C2 in a neighbourhood of almost every point on Γ or Ω is nontrapping,
then, given k0 > 0, ‖(A′k,η)−1‖L2(∂Ω)→L2(∂Ω) . 1 for all k ≥ k0.

Proof of Theorem 1.15 using Lemma 4.1. Using the triangle inequality, a sufficient condition for
(4.1) to hold is

h
(
‖D′k‖L2(∂Ω)→H1(∂Ω) + |η| ‖Sk‖L2(∂Ω)→H1(∂Ω)

)
‖(A′k,η)−1‖L2(∂Ω)→L2(∂Ω) ≤ C̃; (4.2)

we show in Remark 4.5 below that we do not lose anything by doing this, i.e., (4.2) is no less sharp
than (4.1) in terms of k-dependence.

The mesh thresholds (1.19), (1.21), (1.22) then follow from using the bound
‖(A′k,η)−1‖L2(∂Ω)→L2(∂Ω) . 1 from Theorem 4.2 and the different bounds on ‖D′k‖L2(∂Ω)→H1(∂Ω)

and ‖Sk‖L2(∂Ω)→H1(∂Ω) in Theorem 1.10 (apart from when d = 2 when we use the bound on Sk
(1.17) instead of (1.14)).

To prove Theorem 1.15 we therefore only need to prove Lemma 4.1. This was proved in [42,
Corollary 4.1], but since the proof is short we repeat it here for completeness.

We first introduce some notation: let Ph denote the orthogonal projection from L2(∂Ω) onto
Vh (see, e.g, [6, §3.1.2]); then the Galerkin equations (1.11) are equivalent to the operator equation

PhA
′
k,ηvh = Phfk,η. (4.3)

The proof requires us to treat A′k,η as a (compact) perturbation of the identity, and thus we let
Lk,η := D′k − iηSk. Furthermore, to make the notation more concise, we let λ = 1/2. Therefore,
the left-hand side of (4.3) becomes (λI +PhLk,η)vh, and the question of existence of a solution to
(4.3) boils down to the invertibility of (λI + PhLk,η). Note also that, with the Ph-notation, the
best approximation error on the right-hand side of (1.20) is ‖(I − Ph)v‖L2(∂Ω).

The heart of the proof of Lemma 4.1 is the following lemma.

Lemma 4.3 If

‖(I − Ph)Lk,η‖L2(∂Ω)→L2(∂Ω) ‖(A
′
k,η)−1‖L2(∂Ω)→L2(∂Ω) ≤

δ

1 + δ
(4.4)

for some δ > 0, then the Galerkin equations have a unique solution, vh, which satisfies the quasi-
optimal error estimate

‖v − vh‖L2(∂Ω) ≤ λ(1 + δ)‖(A′k,η)−1‖L2(∂Ω)→L2(∂Ω)‖(I − Ph)v‖L2(∂Ω). (4.5)

Proof of Lemma 4.1 using Lemma 4.3. By the polynomial-approximation result (1.12),

‖(I − Ph)Lk,η‖L2(∂Ω)→L2(∂Ω) . h ‖Lk,η‖L2(∂Ω)→H1(∂Ω) .
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Therefore, choosing, say, δ = 1, we find that there exists a C̃ > 0 such that (4.1) implies that (4.4)
holds.

Thus, to prove Theorem 1.15, we only need to prove Lemma 4.3.

Proof of Lemma 4.3. Since

λI + PhLk,η = λI + Lk,η − (I − Ph)Lk,η = (λI + Lk,η)
(
I − (λI + Lk,η)

−1
(I − Ph)Lk,η

)
,

if ∥∥ (λI + Lk,η)
−1

(I − Ph)Lk,η
∥∥
L2(∂Ω)→L2(∂Ω)

< 1,

then (λI + PhLk,η) is invertible using the classical result that I − A is invertible if ‖A‖ < 1. In
this abstract setting ‖(I −A)−1‖ ≤ (1− ‖A‖)−1, and thus if (4.4) holds we have∥∥(λI + PhLk,η)−1

∥∥
L2(∂Ω)→L2(∂Ω)

≤
∥∥ (λI + Lk,η)

−1 ∥∥
L2(∂Ω)→L2(∂Ω)

1

1− δ/(1 + δ)
,

= (1 + δ)
∥∥(λI + Lk,η)−1

∥∥
L2(∂Ω)→L2(∂Ω)

. (4.6)

Writing the direct equation as (λI + Lk,η)v = f and the Galerkin equation as (λI + PhLk,η)vh =
Phf , we have

v − vh = v − (λI + PhLk,η)−1Phf = (λI + PhLk,η)−1(λv − Ph(f − Lkv))

= λ (λI + PhLk,η)
−1

(I − Ph)v, . (4.7)

and the result (4.5) follows from using the bound (4.6) in (4.7).

Remark 4.4 (Is there a better choice of η than |η| ∼ k?) Theorem 1.15 is proved under the
assumption that |η| ∼ k. This choice of η is widely recommended from studies of the condition
number of A′k,η; see [18, Chapter 5] for an overview of these. From (4.2) we see that the best
choice of η, from the point of view of obtaining the least-restrictive threshold for k-independent
quasi-optimality, will minimise the k-dependence of(

‖D′k‖L2(∂Ω)→H1(∂Ω) + |η| ‖Sk‖L2(∂Ω)→H1(∂Ω)

)
‖(A′k,η)−1‖L2(∂Ω)→L2(∂Ω).

There does not yet exist a rigorous proof that |η| ∼ k minimises this quantity, but [9, §7.1] outlines
exactly the necessary results still to prove.

Remark 4.5 (Using the triangle inequality on ‖D′k − iηSk‖L2(∂Ω)→H1(∂Ω)) We now show
that we do not lose anything, from the point of view of k-dependence, by using the triangle in-
equality ‖D′k − iηSk‖L2(∂Ω)→H1(∂Ω) ≤ ‖D′k‖L2(∂Ω)→H1(∂Ω) + |η|‖Sk‖L2(∂Ω)→H1(∂Ω). First, recall
that D′k and Sk have wavefront set relation given by the billiard ball relation (see for example [38,
Chapter 4]). Denote the relation by Cβ ⊂ B∗∂Ω×B∗∂Ω i.e.

Cβ =
{

(x, ξ, y, η) : (x, ξ) = β(y, η)
}

where β is the billiard ball map (see Figure 1). To see that the optimal bound in terms of powers of
k for ‖D′k − iηSk‖L2(∂Ω)→H1(∂Ω) is equal to that for ‖Dk‖L2(∂Ω)→H1(∂Ω) + |η|‖Sk‖L2(∂Ω)→H1(∂Ω),
observe that the largest norm for Sk corresponds microlocally to points (q1, q2) ∈ Cβ∩(S∗∂Ω×S∗∂Ω)
(i.e. “glancing” to “glancing”). On the other hand, these points are damped (relative to the worst
bounds) for D′k. In particular, microlocally near such points, one expects that

‖D′kfq2‖H1(∂Ω) ≤ Ck, ‖Skfq2‖H1(∂Ω) ≥

{
Ck1/2, ∂Ω flat,

Ck1/3, ∂Ω curved,

where ‖fq2‖L2(∂Ω) = 1 and fq2 is microlocalized near q2.
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S∗πx(β(q))R
d

x ξ
S∗xRd

∂Ω

Figure 1: A recap of the billiard ball map. Let q = (x, ξ) ∈ B∗∂Ω (the unit ball in the cotangent
bundle of ∂Ω). The solid black arrow on the left denotes the covector ξ ∈ B∗x∂Ω, with the dashed
arrow denoting the unique inward-pointing unit vector whose tangential component is ξ. The
dashed arrow on the right is the continuation of the dashed arrow on the left, and the solid black
arrow on the right is ξ(β(q)) ∈ B∗πx(β(q))∂Ω. The center of the left circle is x and that of the right is

πx(β(q)). If this process is repeated, then the dashed arrow on the right is reflected in the tangent
plane at πx(β(q)): the standard “angle of incidence equals angle of reflection” rule.

The norm for D′k is maximized microlocally near (p1, p2) ∈ Cβ∩(S∗∂Ω×B∗∂Ω) (i.e. “transver-
sal” to “glancing”), but near these points, the norm of Sk is damped relative to its worst bound.
In particular, microlocally near (p1, p2), one expects

‖D′kfp2
‖H1(∂Ω) ≥

{
Ck5/4, ∂Ω flat,

Ck7/6, ∂Ω curved,
‖Skfp2

‖H1(∂Ω) ≤

{
Ck1/4, ∂Ω flat,

Ck1/6, ∂Ω curved,

where ‖fp2‖L2(∂Ω) = 1 and fp2 is microlocalized near p2. Therefore, even if |η| is chosen so that
‖Dk‖L2(∂Ω)→H1(∂Ω) ∼ |η|‖Sk‖L2(∂Ω)→H1(∂Ω), this analysis shows that there cannot be cancellation
since the worst norms occur at different points of phase space.

4.2 Proof of Theorem 1.16

Proof of Theorem 1.16. By the polynomial-approximation result (1.12), we only need to prove
that the bound (1.24) hold with the different functions A(k). The idea is to take the H1 norm
of the integral equation (1.2) and then use the L2(∂Ω)→ L2(∂Ω) and L2(∂Ω)→ H1(∂Ω) bounds
from Theorems 2.10 and 1.10 respectively.

Taking the H1 norm of (1.2) and using the notation that A′k,η = 1
2I +Lk,η and v := ∂+

n u as in
the proof of Theorem 1.15 above, we have

‖v‖H1(∂Ω) . ‖Lk,η‖L2(∂Ω)→H1(∂Ω) ‖v‖L2(∂Ω) + ‖fk,η‖H1(∂Ω) .

In this inequality, η is just a parameter that appears in Lk,η and fk,η, with the equation holding
for all values of η; in other words, the unknown v(= ∂+

n u) does not depend on the value of η. We
now seek to minimise the k-dependence of ‖Lk,η‖L2(∂Ω)→H1(∂Ω). Looking at the k-dependence of
the L2(∂Ω) → H1(∂Ω)-bounds on Sk and D′k in Theorem 1.10, we see that, under each of the
different geometric set-ups, the best choice is η = 0, and thus

‖v‖H1(∂Ω) . ‖D
′
k‖L2(∂Ω)→H1(∂Ω) ‖v‖L2(∂Ω) + k2 (4.8)

where we have explicitly worked out the k-dependence of ‖fk,η‖H1(∂Ω) using the definition (1.10).
Taking the L2 norm of (1.2) (with η = 0), and noting that ‖fk,η‖L2(∂Ω) ∼ k, we have that(

1 + ‖D′k‖L2(∂Ω)→L2(∂Ω)

)
‖v‖L2(∂Ω) & k. (4.9)
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Using (4.9) in (4.8), we have

‖v‖H1(∂Ω) .
(
‖D′k‖L2(∂Ω)→H1(∂Ω) + k

(
1 + ‖D′k‖L2(∂Ω)→L2(∂Ω)

))
‖v‖L2(∂Ω) . (4.10)

Since the bounds on the L2(∂Ω)→ H1(∂Ω)-norm of D′k in Theorem 1.10 are one power of k higher
that the L2(∂Ω)→ L2(∂Ω)-bounds in Theorem 2.10, using these norm bounds in (4.10) results in
the bound ‖v‖H1(∂Ω) . A(k)‖v‖L2(∂Ω) with the functions of A(k) as in the statement of theorem
(and equal to the right-hand sides of the bounds on ‖D′k‖L2(∂Ω)→H1(∂Ω) in Theorem 1.10).

5 Proofs of Theorem 1.21 (the result concerning Q2)

To prove Theorem 1.21 we need to recall (i) the result about coercivity of A′k,η when Ω is convex,

C3, piecewise analytic, and curved from [77], and (ii) the refinement of the Elman estimate in [11].

Theorem 5.1 (Coercivity of A′k,η for Ω convex, C3, piecewise analytic, and curved [77])

Let Ω be a convex domain in either 2- or 3-d whose boundary, ∂Ω, is curved and is both C3 and
piecewise analytic. Then there exist constants η0 > 0, k0 > 0 (with η0 = 1 when Ω is a ball) and a
function of k, αk > 0, such that for k ≥ k0 and η ≥ η0k,∣∣(A′k,ηφ, φ)L2(∂Ω)

∣∣ ≥ αk‖φ‖2L2(∂Ω) for all φ ∈ L2(∂Ω), (5.1)

where

αk =
1

2
−O(k−2/3 log k) as k →∞. (5.2)

In stating this result we have used the bound (2.9) on Sk in [77, Remark 3.3] to get the
asymptotics (5.2). The fact that η0 = 1 when Ω is a ball follows from [76, Corollary 4.8].

Theorem 5.2 (Refinement of the Elman estimate [11]) Let A be a matrix with 0 /∈W (A),
where W (A) :=

{
(Av,v) : v ∈ CN , ‖v‖2 = 1

}
is the numerical range of A. Let β ∈ [0, π/2) be

defined such that

cosβ =
dist

(
0,W (A)

)
‖A‖2

,

and let γβ be defined by

γβ := 2 sin

(
β

4− 2β/π

)
. (5.3)

Suppose the matrix equation Av = f is solved using GMRES, and let rm := Avm − f be the m-th
GMRES residual. Then

‖rm‖2
‖r0‖2

≤
(

2 +
2√
3

)(
2 + γβ

)
γmβ . (5.4)

When we apply the estimate (5.4) to A, we find that β = π/2 − δ, where δ = δ(k) is such
that δ → 0 as k → ∞. We therefore specialise the result (5.4) to this particular situation in the
following corollary.

Corollary 5.3 If β = π/2 − δ with 0 < δ < δ0, then there exists C1 > 0 and δ1 > 0 (both
independent of δ) such that, for 0 < ε < 1,

if m ≥ C1

δ
log

(
12

ε

)
then

‖rm‖D
‖r0‖D

≤ ε (5.5)

for all 0 < δ < δ1.

That is, choosing m & δ−1 is sufficient for GMRES to converge in an δ-independent way as δ → 0.
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Proof of Corollary 5.3. If β = π/2 − δ, with δ → 0, then cosβ = sin δ = δ + O(δ3) as δ → 0.
From the definition of the convergence factor γβ , (5.3), we have

γβ := 2 sin

(
β

4− 2β/π

)
= 2 sin

(
π

6
− 4δ

9
+O(δ2)

)
= 1− 4δ

3
√

3
+O(δ2) as δ → 0, (5.6)

and then

log γβ = − 4δ

3
√

3
+O(δ2) as δ → 0,

and so there exist C2 > 0 and δ1 > 0 such that

γmβ = em log γβ ≤ e−mδ/C2 for all 0 < δ ≤ δ1,

and the bound (5.5) follows since (2 + 2/
√

3)(2 + γβ) < 3(2 + 2/
√

3) < 12.

Remark 5.4 (Comparison of (5.4) with the original Elman estimate) The estimate

‖rm‖2
‖r0‖2

≤ sinm β (5.7)

was essentially proved in [37, 36] (see also the review [73, §6] and the references therein). When
β = π/2− δ, the convergence factor in (5.7) is

sinβ = cos δ = 1− δ2

2
+O(δ4);

by comparing this to (5.6) we can see that (5.7) is indeed a weaker bound.

Proof of Theorem 1.21. The set up of the Galerkin method in §1.1 implies that, for any vN , wN ∈
VN , (A′k,ηvN , wN )L2(∂Ω) = (Av,w)2, where (·, ·)2 denotes the euclidean inner product on l2.
Therefore, the continuity of A′k,η and the norm equivalent (1.13) implies that

|(Av,w)2| .
∥∥A′k,η∥∥L2(∂Ω)→L2(∂Ω)

hd−1 ‖v‖2 ‖w‖2 for all v,w ∈ CN . (5.8)

Furthermore, if A′k,η is coercive with coercivity constant αk,η, i.e., (5.1) holds, then

|(Av,v)2| & αk,ηh
d−1 ‖v‖22 for all v ∈ CN . (5.9)

The bounds (5.8) and (5.9) together imply that the ratio cosβ in (5.7) satisfies

cosβ &
αk,η

‖A′k,η‖L2(∂Ω)→L2(∂Ω)
.

Since Ω is C∞ and curved, the bound ‖A′k,η‖L2(∂Ω)→L2(∂Ω) . k1/3 follows from the bounds in

Theorem 2.10 (recalling that η0k ≤ η . k). Since ∂Ω is piecewise analytic, C3, and curved, from
Theorem 5.1 there exists a k0 > 0 such that αk,η ∼ 1 for all k ≥ k1. Combining these two bounds
we have cosβ & k−1/3 for all k ≥ k0 and thus Corollary 5.3 holds with δ ∼ k−1/3 for all k ≥ k0;
the result (5.8) then follows from (5.5).

Note that the assumption in the theorem that ∂Ω is analytic comes from the fact that if ∂Ω
is both piecewise analytic and C∞, then ∂Ω must be analytic, where the notion of piecewise
analyticity in Theorem 5.1 is inherited from [26, Definition 4.1].

Remark 5.5 (The star-combined operator) The bound on the number of iterations in Theo-
rem 1.21 crucially depended on the coercivity result of Theorem 5.1. Although numerical experi-
ments in [13] indicate that A′k,η is coercive, uniformly in k, for a wider class of obstacles that those
in Theorem 5.1, this has yet to be proved. Nevertheless, there does exist an integral operator that
(i) can be used to solve the sound-soft scattering problem, and (ii) is provable coercive for a wide
class of obstacles. Indeed, the star-combined operator Ak, introduced in [76] and defined by

Ak := (x · n)

(
1

2
I +D′k

)
+ x · ∇∂ΩS − iηSk
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(where ∇∂Ω is the surface gradient operator on ∂Ω; see, e.g., [18, Page 276]), has the following
two properties: (i) if u solves the sound-soft scattering problem, then

Ak∂
+
n u = x · γ+(∇uI)− iηγ+uI (5.10)

[76, Lemma 4.1] (see also [18, Theorem 2.36]), and
(ii) if Ω is a 2- or 3-d Lipschitz obstacle that is star-shaped with respect to a ball and η :=

k|x|+ i(d− 1)/2, then

Re
(
Akφ, φ)L2(∂Ω) ≥

1

2
ess inf
x∈∂Ω

(x · n(x) > 0

for all k > 0 [76, Theorem 1.1].
The refinement of the Elman estimate in Theorem 5.2 can therefore be used to prove results

about the number of iterations required when GMRES is applied to the Galerkin discretisation of
(5.10). Since the coercivity constant of the star-combined operator is independent of k, the k-
dependence of the analogue of the bound (1.25) for Ak rests on the bounds on ‖Ak‖L2(∂Ω)→L2(∂Ω).

For convex Ω with smooth and curved ∂Ω, Theorems 2.10 and Theorem 1.10 imply that
‖Ak‖L2(∂Ω)→L2(∂Ω) . k1/3, and we therefore obtain the same bound on m as for A′k,η (i.e. (1.25)).
For general piecewise-smooth Lipschitz obstacles that are star-shaped with respect to a ball, Theo-
rems 2.10 and 1.10, along with the bound

‖Sk‖L2(∂Ω)→L2(∂Ω) . k−1/2 for d = 2,

([17, Theorem 3.3], [39, Theorem 6]) and the bound (1.17), show that ‖Ak‖L2(∂Ω)→L2(∂Ω) . k1/2

when d = 2 and . k1/2 log k when d = 3. Corollary 5.3 then implies that m & k1/2 for d = 2
and m & k1/2 log k for d = 3. Recall that GMRES always converges in at most N steps (in exact
arithmetic), and when h ∼ 1/k we have that N ∼ kd−1; these bounds on m are therefore nontrivial.

6 Numerical experiments concerning Q2

The main purpose of this section is to show that the k1/3 growth in the number of iterations given
by Theorem 1.21 is effectively sharp.

Details of the scattering problems considered We solve the sound-soft scattering problem
of Definition 1.7 with â = (1, 0, 0) (i.e the incident plane wave propagates in the x1-direction),
using the direct integral equation (1.2) and the Galerkin method (1.11). The subspace Vh is taken
to be piecewise constants on a shape regular mesh, and the meshwidth h is taken to be 2π/(10k),
i.e. we are choosing ten points per wavelength. We solve the resulting linear system with GMRES,
with tolerance 1× 10−5. We consider two obstacles:

1. Ω the unit sphere, and

2. Ω the ellipsoid with semi-principal axes of lengths 3, 1, and 1 (in the x1-, x2-, and x3-directions
respectively.

The computations were carried out using version 3.0.3 of the BEM++ library [74] on one node
of the “Balena” cluster at the University of Bath. The cluster consists of Intel Xeon E5-2650
v2 (Ivybridge, 2.60 GHz) CPUs and the used node had 512GB of main memory. BEM++ was
compiled with version 5.2 of the GNU C compiler and the Python code was run under Anaconda
2.3.0.

Numerical results Tables 1 and 2 displays the number of degrees of freedom, number of iter-
ations required for GMRES to converge, and time taken to converge, with η = k, and with Ω the
sphere or ellipsoid. The difference between Tables 1 and 2 is that, in the first, k starts as 2 and
then doubles until it equals 128, and in the second, k starts as 3 and then doubles until it equals
96; we performed the second set of experiments when the k = 128 run for the ellipsoid failed to
complete. Figure 2 plots the iteration counts from both tables and compares them to the k1/3 rate
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Sphere
k #DOF #iterations time (s)
4 1304 13 3.10
8 4998 15 7.42
16 19560 18 40.30
32 77224 22 271.42
64 307454 28 2674.54
128 1225260 34 31024.43

Ellipsoid
#DOF #iterations time (s)
3230 16 5.26
12324 18 19.30
48526 21 113.95
190784 25 926.47
754236 31 10354.29

* * *

Table 1: With Ω the sphere or ellipsoid and η = k, the number of degrees of freedom, number of
iterations required for GMRES to converge (with tolerance 1× 10−5), and time taken to converge,
when GMRES is applied to the Galerkin matrix corresponding to the direct integral equation (1.2),
starting with k = 4 and then doubling until k = 128. ∗ denotes that the run did not complete.

Sphere
k #DOF #iterations time (s)
3 846 13 1.12
6 2880 15 3.85
12 11054 17 18.56
24 43688 20 107.18
48 173264 26 928.61
96 689894 31 10753.95

Ellipsoid
#DOF #iterations time (s)
1806 16 6.20
6874 17 9.51
26994 19 55.64
107272 23 373.45
426026 28 3985.63
1691328 34 43423.69

Table 2: Same as Table 1 but for a different range of k.
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Figure 2: The number of iterations required for GMRES to converge (with tolerance 1 × 10−5)
when GMRES is applied to the Galerkin matrix corresponding to the direct integral equation (1.2)
with η = k, and with Ω the sphere or ellipsoid, and the values of k from Tables 1 and 2. The k1/3

rate is the upper bound on the rate guaranteed by Theorem 1.21.

from Theorem 1.21 (the graph is plotted on a log-log scale so that a dependence #iterations ∼ kα

appears as a straight line with gradient α).
We see from Figure 2 that the k1/3 growth predicted by Theorem 1.21 appears to be sharp.

Indeed, the plot of the iterations for the ellipsoid becomes roughly linear from k = 12 onwards,
and estimating the slope of this line using the numbers of iterations at k = 12 and k = 96 we have
that the #iterations ∼ k0.28. Using the numbers of iterations at k = 12 and k = 96 to estimate the
rate of growth for the sphere we have that #iterations ∼ k0.29.

Finally, Table 3 compares the iteration counts and times for the sphere when η = k and when
η = −k. We see that, for every value of k considered, the number of iterations when η = −k is
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much greater than when η = k. Table 3 only goes up to k = 32, since the k = 64 run for the sphere
with η = −k did not complete.

We performed the experiment in Table 3 because, in the engineering acoustics literature, Mar-
burg recently considered collocation discretisations of the direct integral equation for the Neumann
problem (i.e. the Neumann-analogue of equation (1.2)) and showed that the analogue of the choice
η = k leads to much slower growth than the analogue of the choice η = −k [57], [58].

A heuristic explanation for this dependence of the number of iterations on the sign of η is
essentially contained in the work of Levadoux and Michielsen [54], [55], and Antoine and Darbas
[3]; the understanding is that iη should, in some sense, approximate the Dirichlet-to-Neumann map
in Ω+, and (at least for smooth convex obstacles) ik is a better approximation to the Dirichlet-to-
Neumann map than −ik.

η = k
k #iterations time (s)
4 13 3.10
8 15 7.42
16 18 40.30
32 22 271.42

η = −k
#iterations time (s)

44 3.46
88 9.04
405 75.38

11191 4502.05

Table 3: With Ω the sphere and η = k or η = −k, the number of iterations required for GMRES
to converge (with tolerance 1× 10−5) and time taken to converge, when GMRES is applied to the
Galerin matrix corresponding to the direct integral equation (1.2).
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