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Abstract. We prove sharp lower bounds on the error incurred when approximating any oscil-
lating function using piecewise polynomial spaces.

1. Introduction

In this article, we study the error incurred when approximating highly oscillatory functions
using piecewise polynomial spaces. This type of space is standard when using both finite ele-
ment and boundary element methods to numerically approximate solutions to partial differential
equations (PDE). We are motivated by the application of these methods to solve high frequency
problems. For example, to solve the Helmholtz sound-soft or sound-hard scattering problem:

(−∆− k2)u = f in Rd \ Ω, u|∂Ω = g, (∂r − ik)u = or→∞(r
1−d

2 ),

(−∆− k2)u = f in Rd \ Ω, ∂νu|∂Ω = g, (∂r − ik)u = or→∞(r
1−d

2 ),
(1.1)

or the variable wave speed Helmholtz problem:

− ∂xj (aij∂xiu)− k2c−2(x)u = f in Rd, (∂r − ik)u = or→∞(r
1−d

2 ), (1.2)

where aij(x) ≡ δij and c(x) ≡ 1 for |x| � 1. In both cases the solution, u, with data coming
from a scattering problem will oscillate at frequency k in a sense to be made precise below. Since
numerical methods such as the Galerkin method seek to approximate u in some finite dimensional
space, Vk, it is important to understand what the best possible approximation error for such
oscillating functions is. Indeed, a numerical method for a high frequency PDE is called quasi-
optimal if the error in the method is controlled uniformly by the best approximation error in the
relevant finite dimensional space; i.e. if the numerical solution, unum, satisfies

‖u− unum‖ ≤ Cqo inf
v∈Vk
‖u− v‖

where u is the exact solution and Cqo > 0 is a constant that is uniform over k > 1. There has been
a great deal of effort in understanding when numerical methods based on piecewise polynomial
spaces are quasi-optimal (see e.g. [LSW22, GLSW21, MS11, GS22, Ihl98, IB97, IB95, MS10] and
references there-in).

Upper bounds on the error for piecewise polynomial approximations are completely standard
in the literature (see e.g. [Cia02, Section 3.1] [BSS08, Chapter 4] [SS11, Chapter 4]). In this
article, we prove complementary, optimal lower bounds on the error when approximating any
oscillatory function by piecewise polynomials and hence, on the absolute error for many quasi-
optimal methods (see Section 1.4 for more detail).
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We now state a consequence of the main theorem of this paper (Theorem 1.4) informally.

Theorem 1.1. Let 0 < ΞL < ΞH . Then there are k0 > 0 and c > 0 such that for all k > k0,
all u ∈ L2(Rd) oscillating with frequency between ΞLk and ΞHk, all 0 < h < 1, and all piecewise
polynomials, vh, of degree p on a regular mesh with scale h

c(hk)p+1‖u‖L2(Rd) ≤ ‖u− vh‖L2(Rd). (1.3)

Remark 1.1. The precise definition of a piecewise polynomial on a regular mesh is given in
Section 1.1 and of the concept of oscillating with a certain frequency in Section 1.3.

Despite the fact that they have many natural applications in numerical analysis, lower estimates
on the approximation error for oscillatory functions are absent in the literature. Indeed, the
only lower estimates on approximation by finite dimensional spaces of which the author is aware
concern the Kolmogorv n-width (see [Jer72] and references there-in). These estimates assert the
existence e.g. of some Hp+1 function, u, not necessarily oscillating at any particular frequency
which achieves (1.3). This existence result says nothing about the structure of u nor how many
such u there are (see Section 1.7 for a more detailed discussion). Because of this, it is not useful
for giving lower estimates on the approximation error in practice for many numerical problems.

Proving Theorem 1.1 involves two substantial new difficulties relative to existing results. First,
for a given u, unlike for the corresponding upper bounds, it is not possible to prove (1.3) by
construction of an interpolant polynomial. One must instead consider all possible piecewise poly-
nomial and all possible regular meshes simultaneously and hence the proof must be based on some
structure inherent in the piecewise polynomial space. Second, since we want the estimate (1.3) for
all possible oscillating functions, it is not sufficient to construct a single bad oscillating function
and again one must use instead the structure inherent in the space of oscillating functions.

1.1. Definitions of meshes and polynomial spaces. We work with piecewise polynomial
finite element spaces. In order to describe these spaces, we first introduce regular meshes of an
(open) Riemannian manifold (M, g), possibly with Lipschitz boundary.

Definition 1.2 (meshes for M). Let Ω b Rd be open with Lipschitz boundary. A mesh for
M with reference element Ω, T , is a locally finite collection of open subsets of M such that the
following holds:

(1) The open sets are disjoint in the sense that if T1, T2 ∈ T and T1 ∩ T2 6= ∅, then T1 = T2.
(2) T covers M in the sense that M =

⋃
T∈T T .

(3) For every T ∈ T , there is p ≥ 1 and a bijection γT : Ω→ T such that

sup
T∈T

sup
x∈T

sup
|α|≤p

‖∂αx γT (x)‖+ ‖(DγT )−1(x)‖ <∞.

We say that T is a mesh for M if there is Ω b Rd such that T is a mesh for M with reference
element Ω. For R > 0 and p ∈ {0, 1, . . . } we say that T is (p,R) regular if there are {γT }T∈T
such that

sup
T∈T

sup
|α|≤p

sup
x∈T
‖∂αx γT (x)‖+ ‖(DγT )−1(x)‖ < R. (1.4)

We call a collection {γT }T∈T satisfying (1.4) a (p,R)-regular set of coordinates for T .
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We introduce the notion of (p,R) regularity in (1.4) because we are interested in uniform
estimates as the size of a mesh element decreases. In order to do this, we need to assume that as
the mesh elements decrease in size, their behavior does not become too wild. This will be encoded
using (p,R) regularity.

Below, we will actually work with families of meshes at decreasing scale. To do this, we make
the following definition.

Definition 1.3 (Scales of meshes for M). Let Ω b Rd open with Lipschitz boundary and p ∈
{1, . . . }. A p-scale of meshes for M with reference element Ω is a set I ⊂ (0, 1) with 0 ∈ I and
a collection of meshes for M , {Th}h∈I , such that Th is a mesh for M with reference element hΩ
and there is R > 0 such that for all h ∈ I, Th is (p,R) regular.

We say that M := (I, {Th}h∈I) is a p-scale of meshes for M if there is Ω as above such that
M is a p-scale of meshes for M with reference element Ω. We say that M is a scale of meshes
for M if there is p such that M is a p-scale of meshes for M .

The mesh, by itself, is not sufficient to define piecewise polynomial spaces. We need, in addition
of choice of maps γT .

Definition 1.4 (Coordinates for a scale of meshes). Let M = (I, {Th}h∈I)h∈I be a p-scale of
meshes for M , we call a collection {γT }T∈Th,h∈I a set of coordinates forM if there is R > 0 such
that for all h ∈ I, {γT }T∈Th is a (p,R)-regular set of coordinates for Th.

We next define spaces of piecewise polynomials on a scale of meshes. We emphasize again that
this definition depends both on the mesh and on the coordinates for the mesh.

Definition 1.5 (Piecewise polynomial spaces). Let M := (I, {Th}h∈I) be a scale of meshes for
M and C := {γT }T∈Th,h∈I a set of coordinates for M. Let Ω be the reference element for M and
p ∈ {0, 1, . . . }. For h ∈ I, we define the polynomial approximation space of degree p by

Sp,mM,C,h := {u ∈ L2(M) : u ◦ γT ∈ Pp|hΩ} ∩Hm(M),

where Pp denotes the space of polynomials of degree p on Rd. Let P p,mTh,` : H`(M)→ Sp,mM,C,h denote

the H`
k(M) orthogonal projection onto Sp,mM,C,h; i.e. the orthogonal projector with respect to the

norm

‖u‖2
H`
k(M)

:= ‖u‖2L2(M) + 〈k〉−2`‖u‖2H`(M), 〈k〉 := (1 + k2)1/2.

Remark 1.6. It is more standard to work with a fixed reference element, Ω, rather than the
shrinking element hΩ. However, the latter will be more convenient here and one can translate
between the methods by pre-composing each of our coordinate γT with the scaling map sh : Ω→
hΩ, sh(x) = hx. Defining meshes this way allows us to guarantee that certain estimates (e.g
the Poincaré–Wirtinger inequality) can be made uniform as h → 0. The assumptions needed to
guarantee these uniform estimates could instead be encoded in the coordinate maps γT , but this
would be much more complicated.

1.2. Lower bounds for approximations on Rd. Although we give applications to meshes on
manifolds below, our results are simplest to understand when approximating functions on Rd and
we state them in this case first. For u ∈ L2(Rd), we let û denote its Fourier transform.
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Theorem 1.2. Let p ≥ 0, 0 ≤ ` ≤ m ≤ p+ 1, M = (I, {Th}h) be a 2(p+ 1)-scale of meshes for
Rd and C be a set of coordinates for M. Then for all 0 < ΞL < ΞH there are k0 > 0 and c > 0
such that for all k > k0, all u ∈ L2(Rd) satisfying

supp û ⊂ {ξ ∈ Rd : ΞLk ≤ |ξ|}, ‖u‖H2(p+1)(Rd) ≤ (ΞH〈k〉)2(p+1)‖u‖L2(Rd), (1.5)

all h ∈ I, and all 0 ≤ m′ ≤ m we have

c(hk)p+1−m′‖u‖L2(Rd) ≤ ‖(I − P
p,m
Th,`)u‖Hm′

k (Rd)
. (1.6)

Furthermore, if p = 0, then k0 can be taken arbitrarily small.

It is easy to see that Theorem 1.2 is optimal. Indeed, any u satisfying (1.5) has

‖∂αxu‖L2 ≤ CΞ
|α|
H 〈k〉

|α|‖u‖L2 , |α| ≤ 2(p+ 1),

and hence the standard estimate

‖(I − P p,mTh,m)u‖Hm(Rd) ≤ Chp+1−m‖u‖Hp+1(Rd) 0 ≤ m ≤ p+ 1,

(see e.g [SS11, Theorem 4.3.19], [BSS08, Section 4.4], [Cia02, Section 3.1]) together with the fact
that our u satisfies

‖u‖Hs(Rd) ≤ C〈k〉s‖u‖L2(Rd), 0 ≤ s ≤ p+ 1

shows that, up to a constant, (1.6) cannot be improved for many standard scales of meshes.

Remark 1.7. Note that, while we write the estimate (1.6) with the L2 norm of u on the left
hand side, we could replace it by the Hp+1(Rd) norm using (1.5).

It is often interesting not only to have lower bounds for the approximation error in Hs
~ , but to

understand lower bounds for the ‘frequency k’ components of the best Hs
~ approximant. This is

the content of our next theorem.

Theorem 1.3. Let p ≥ 0, 0 ≤ ` ≤ m ≤ p + 1, s ≥ 0, M = (I, {Th}h) be a 2(p + 1)-scale of
meshes for Rd and C be a set of coordinates for M. Then for all 0 < ΞL < ΞH there are k0 > 0
and c > 0 such that for all k > k0, all u ∈ L2(Rd) satisfying

supp û ⊂ {ξ ∈ Rd : ΞLk ≤ |ξ|}, ‖u‖
H

max(2(p+1),2`+s)
k (Rd)

≤ (ΞH〈k〉)max(2(p+1),2`+s)‖u‖L2(Rd)

all h ∈ I we have

c(hk)2(p+1−`)‖u‖L2(Rd) ≤ ‖(I − P
p,m
Th,`)u‖H−sk (Rd). (1.7)

If p = 0, then k0 can be taken arbitrarily small. Finally, the estimate (1.7) is optimal when p = 0
and d = 1 for the standard scale of meshes

Because the H−sk norm weights frequnciess |ξ| � k by |k−1ξ|−s, Theorem 1.3 shows that the
‘frequency k’ components of the error are in general much smaller than the very high frequency
components of the error (note that the power on the left hand side of (1.7) is twice that on the
left-hand side of (1.6)), but nevertheless retain a controllable amount of the mass of u.
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1.3. Functions oscillating with a given frequency on a manifold. In order to state our
results on a manifold, we first introduce an appropriate notion of a function that oscillates at
frequency k in a certain Sobolev space Hm.

Definition 1.8. Let m ≥ 1, a ≤ b, M be a Cm manifold with Lipschitz boundary and g ∈ C1

be a Riemannian metric on M . Let −∆g : L2(M) → L2(M) denote the Dirichlet or Neumann
Laplace–Beltrami operator on (M, g) (i.e. the Friedrichs extension defined by the quadratic
form Q(u, v) := 〈∇gu,∇gv〉L2(M) with form domain H1

0 or H1 respectively) and dEλ its spectral
measure.

We say that u ∈ L2(M) oscillates with frequencies between a and b in Hm if

Π[a,∞)u = u, ‖u‖Hs(M) ≤ 〈b〉s‖u‖L2(M), 0 ≤ s ≤ m
where we write

Π[a,∞) :=

ˆ ∞
a2

dEλ

for the orthogonal projection onto functions oscillating with frequencies larger than a

Examples:

(1) If (M, g) is a compact manifold without boundary, then −∆g has an orthonormal basis of
eigenfunctions {uλj}∞j=1 satisfying (−∆g − λ2

j )uλj = 0 and hence

Π[a,∞)v =
∑

λj∈[a,∞)

〈v, uλj 〉L2(M)uλj .

(2) If (M, g) = (Rd, gEuc) is Rd with the standard metric,

Π[a,∞)u =
1

(2π)d

ˆ
a≤|ξ|

ei〈x,ξ〉û(ξ)dξ.

It will also be convenient to have a notion of approximately k oscillating.

Definition 1.9. Let {Cj}∞k=1 ⊂ R+. We say that a family of functions {uk}k ∈ L2(M) is ε
approximately k oscillating with constants Cj if for all j = 0, 1, . . . , and k > 1,

‖Π[εk,∞)uk − uk‖L2 ≤ Cjk−j , ‖uk‖Hj
k(M)

≤ Cj‖uk‖L2(M)

1.4. Approximate k-oscillation and solutions of the Helmholtz equation. The main mo-
tivation for this article is the study of numerical solution of the Helmholtz problems (1.2) and (1.1)
when the data comes from a natural scattering problem; e.g. plane wave scattering. In this case,
we have

f = (kχ1(x) + χ2(x))eikx·a, χi ∈ C∞c (Rd), (1.8)

and

g = φ(x)eikx·a, φ ∈ C∞(∂Ω). (1.9)

Indeed, using methods of semiclassical analysis; specifically the elliptic parametrix construction
(see e.g. [DZ19, Appendix E]), one can show that for aij , c ∈ C∞(Rd) with c(x) > c0 > 0 and
aij(x)ξiξj ≥ c0|ξ|2, the solution, u to (1.2) with f of the form (1.8) is approximately k oscillating.
Furthermore, for obstacle scattering, when the boundary of the obstacle is smooth and the data
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is as in (1.8) and (1.9) one can use the functional calculus techniques from [GLSW21] to see that
the solution to the Helmholtz equation (1.1) is approximately k oscillating.

The estimates in Theorems 1.2, 1.3 (above) and 1.4, 1.5 (below) then have direct applications
to error analysis in finite element methods (FEM) based on piecewise polynomials. For example,
when the FEM using the space Sp,mM,C,h is applied to solve one of (1.2) or (1.1) a key role in this

analysis is played by the quantity

η
(
Sp,mM,C,h

)
:= sup

f∈L2

‖(I − P p,mTh,1)uf‖H1

‖f‖L2

,

where uf is the solution to (1.2) or (1.1) withe the radiation condition changed to

(∂r + ik)u = or→∞(r
1−d

2 ).

Indeed, conditions for quasioptimality of FEM as well as error estimates are given explicitly in
terms of this η [Sau06, MS10]. Because the solution of the Helmholtz problem is approximately
k-oscillating, Theorems 1.2 and 1.4 thus give sharp lower bounds on this quantity and hence
provide lower estimates on how refined the grid must be to apply these results.

1.5. Lower bounds on a manifold. We now restate Theorems 1.2 and 1.5, generalizing them
to Riemannian manifolds in the process.

Theorem 1.4. Let p ≥ 0, 0 ≤ ` ≤ m ≤ p+ 1, M be a C2(p+1) manifold with Lipschitz boundary
and g a Cp+1 Riemannian metric on M . Let M = (I, {Th}h) be a 2(p + 1)-scale of meshes for
M and C be a set of coordinates for M. Then for all 0 < ΞL < ΞH there are k0 > 0 and c > 0
such that for all k > k0, all u ∈ L2(M) oscillating with frequencies between ΞLk and ΞHk in

H2(p+1)(M), 0 ≤ m′ ≤ m, and all h ∈ I we have

c(hk)p+1−m′‖u‖L2(M) ≤ ‖(I − P
p,m
Th,`)u‖Hm′

k (M)
. (1.10)

Furthermore, if p = 0, then k0 can be taken arbitrarily small.

As in Rd, we also obtain lower bounds for the ‘frequency k’ part of the error.

Theorem 1.5. Let p, s ≥ 0, 0 ≤ ` ≤ m ≤ p+ 1, M be a Cmax(2(p+1),2`+s) manifold with Lipschitz
boundary and g be a Cp+1 Riemannian metric on M . Let M be a 2(p + 1) scale of meshes for
M and C be a set of coordinates for M. Then for all 0 < ΞL < ΞH there are k0 > 0 and c > 0
such that for all k > k0, all u ∈ L2(M) oscillating with frequencies between ΞLk and ΞHk in

Hmax(2(p+1),2`+s)(M)and all h ∈ I we have

c(hk)2(p+1−`)‖u‖L2(M) ≤
∥∥(I − P p,mTh,`)u

∥∥
H−sk (M)

.

Furthermore, if p = 0, then k0 can be taken arbitrarily small.

Remark 1.10. In fact, if C consists only of affine maps, then one can k0 arbitrarily small for all
p in Theorems 1.2 and 1.3. In general, when p 6= 0 and the maps γT need not be affine, this is not
possible. To see this, we work on the circle S1 = [−π/2, 3π/2). We need only consider a single
mesh T := {T1, T2, T3, T4}, T1 := (−π/2, 0), T2 := (0, π/2), T3 := (π/2, π), T4 := (π, 3π/2)}, with
reference domain [0, 1]. To define our coordinates, we will need two branches of sin−1(t). For this,
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let s1 : [−π/2, π/2] → [−1, 1], s1(t) = sin(t), and s2 : [π/2, 3π/2] → [−1, 1], s2(t) = sin(t). Set
γ1(t) = s−1

1 (−1 + t2), γ2(t) := s−1
1 (1− t2), γ3(t) := s−1

2 (1− t2), and γ4(t) := s−1
2 (−1 + t2).

To see that γ1 is a regular coordinate map, observe that

γ′1(t) =
−2t√

1− (1− t2)2
= − 2√

2− t2
.

In particular, γ′1(t) is smooth up to the boundary of (0, 1) and satisfies γ′1(t) > c > 0. Similar
analysis shows that γi(t) is regular for i = 2, 3, 4. Now, notice that

sin(γ1(t)) = sin(s1(−1 + t2)) = −1 + t2, sin(γ2(t)) = sin(s1(1− t2)) = 1− t2,
sin(γ3(t)) = sin(s2(1− t2)) = 1− t2, sin(γ4(t)) = sin(s2(−1 + t2)) = −1 + t2.

In particular, sin(x) ∈ S2,2
M,C,1 and hence there can be no lower bound like (1.10) for functions

oscillating with small frequency.

Finally, we record an estimate when u is approximately k-oscillating.

Corollary 1.11. Let p, s ≥ 0, 0 ≤ ` ≤ m ≤ p + 1, 0 < ε < 1, and {Cj}∞j=1 ⊂ R+, M be a

Cmax(2(p+1),2`+s) manifold with Lipschitz boundary and g be a Cp+1 Riemannian metric on M .
Let M be a 2(p + 1) scale of meshes for M and C be a set of coordinates for M. Then for all
N > 0, there is c > 0 such that for all ε approximately k oscillating, u with constants Cj , there
is k0 ≥ 0 such that for k > k0, 0 ≤ m′ ≤ m, and h ∈ I with h > k−N , we have

c(hk)2(p+1−m)‖u‖L2(M) ≤ ‖(I−P
p,m
Th,`)u‖H−sk (M), c(hk)p+1−m′‖u‖L2(M) ≤ ‖(I−P

p,m
Th,`)u‖Hm′

k (M)
.

1.6. Ideas from the proof. For the purposes of this outline, we work on Rd, assume that
γT : Ωh → T is a rotation followed by a translation, and consider only m′ = 0. There are four
important facts used to prove Theorem 1.4:

(1) For a function oscillating between ΞLk and ΞHk in H2(p+1) and p+ 1 = 2m+ r,

ck2(p+1)‖u‖2L2(Rd) ≤ 〈(−∆)p+1u, u〉L2(Rd) = ‖∇r(−∆)mu‖2L2(Rd),

‖u‖2
H2(p+1)(Rd)

≤ C〈k〉4(p+1)‖u‖L2(Rd).
(1.11)

(2) We have

‖∇r(−∆)mu‖2L2(Rd) =
∑
T∈Th

‖∇r(−∆)mu‖2L2(T ). (1.12)

(3) For a polynomial, qT , of degree p on T

‖∇r(−∆)mu‖2L2(T ) = 〈∇r(−∆)mu,∇r(−∆)m(u− qT )〉L2(T ). (1.13)

(4) Integrating by parts and using trace estimates, the pairings can be estimated∑
T∈Th

|〈∇r(−∆)mu,∇r(−∆)m(u− qT )〉L2(T )|

≤ ε‖u‖2
H2(p+1)(Rd)

+ Cε−1h−2(p+1)‖u−
∑
T∈Th

1T qT ‖2L2(Rd). (1.14)
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Combining (1.11), (1.12), (1.13), and (1.14) and choosing ε = ε0k
−2(p+1) for some ε0 > 0 then

completes the proof.

The estimates (1.11) follow directly from the definition of oscillating between ΞLk and ΞHk,
and (1.12) follows from the definition of the L2 norm. The equation (1.13) follows from the fact
that derivatives of order ≥ p+1 vanish on a polynomial of order p. The work of this paper is then
in proving (1.14). This is done in two steps. First, in Section 2, we prove estimates on a pairing
〈∂αxu, ∂αx v〉L2(T ) that are uniform in the scale h and involve Sobolev norms of u together with the

L2 norms of v and its (p + 1)th derivatives (see Lemma 2.6). We then combine the estimates on
all elements of the mesh in Section 3 (see Lemma 3.2) to obtain (1.14).

1.7. Comparison with Kolmogorov n-width bounds. The only other lower estimates on
approximation by finite dimensional spaces of which the author is aware concern the V-Komolgorov
n-width of a space where V is a normed space (see [Jer72] and references there-in). For example,
for Ω ⊂ Rd, the L2(Ω)-Komolgorov n width of B ⊂ L2(Ω) is defined by

dn(B) := sup
u∈B, ‖u‖B≤1

inf
w∈W

dimW=n

‖u− v‖L2(Ω).

For instance, [Jer72] shows that when Ω has Lipschitz boundary,

0 < lim inf
n→∞

n
1
ddn(H1

0 (Ω)) ≤ lim sup
n→∞

n
1
ddn(H1

0 (Ω)) <∞. (1.15)

For concreteness, we will consider the case of H1
0 (Ω) in the rest of this subsection. Standard

upper estimates on piecewise polynomial approximation then show that the space of piecewise
polynomials saturate the estimate (1.15) in the sense that they achieve the estimate: for all
u ∈ H1

0 (Ω),

‖(I − P p,mTh,0)u‖L2(Ω) ≤ Ch‖u‖H1(Ω) ≤ Cn−
1
d ‖u‖H1(Ω). (1.16)

The estimate (1.15), when applied to the space Sp,mM,C,h shows that for h small enough,

sup
u∈H1

0 (Ω),‖u‖H1(Ω)≤1

‖(I − P p,mTh,0)u‖L2(Ω) ≥ ch,

and hence (1.16) is optimal when one considers all possible u in H1
0 (Ω). In particular, there exists

a function u ∈ H1
0 (Ω) such that ‖u‖H1 ≤ k and

‖(I − P p,mTh,0)u‖L2(Ω) ≥ chk.

However, the estimate (1.15) gives no information about the structure of this u nor how many
such u there are and hence cannot be applied to understand approximation errors in concrete
situations like Helmholtz scattering with natural data.

In contrast, the estimates in Theorem 1.4 show that every k-oscillating function with ‖u‖L2 ∼ 1
(and hence ‖u‖H1 ∼ k) satisfies

‖(I − P p,mTh,0)u‖L2(Ω) ≥ chk.

In particular, as noted in Remark 1.4, these estimates apply to every Helmholtz scattering solution
and hence can be used to understand approximation errors for numerical solution of Helmholtz
scattering problems.
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2. Estimates on the reference element

2.1. Estimates at a fixed scale. We start by proving a trace estimate for Lipschitz domains.

Lemma 2.1. Let Ω b Rd open with Lipschitz boundary. Then there is C > 0 such that for all
u ∈ H1(Ω), and 0 < ε < 1

‖u‖L2(∂Ω) ≤ C(ε−1‖u‖L2(Ω) + ε‖∇u‖L2(Ω))

Proof. Let {χi}Ni=1 be a partition of unity near ∂Ω such that on suppχi, we may choose Euclidean
coordinates (x′, xd) ∈ Rd such that Ω ∩ suppχi = {xd > Fi(x

′)} ∩ suppχi, with Fi(x
′) Lipschitz.

We now put

(y′, yd) = (x′, xd − F (x′)),

so that Ω ∩ suppχi = {yd > 0} ∩ suppχi. Let χ̃i ∈ C∞(Ω) with χ̃i ≡ 1 on suppχi. Let
ψ ∈ C∞c ((−2, 2)) with ψ ≡ 1 on [−1, 1], and put ψε(yd, y

′) = ψ(ε−1yd). Then, ψεχiu|∂Ω = χiu|∂Ω.
Then,

ˆ
|χiu(y′, 0)|2dy′ =

ˆ ∣∣∣ ˆ 2ε

0
∂yd [ψ(ε−1yd)χi(y)u(yd, y

′)]dyd

∣∣∣2dy′
≤ ε
(
C(1 + ε−2)‖χ̃u‖2L2(y>0) + C‖χ̃∂ydu‖

2
L2(y>0))

Now, since F is Lipschitz

‖χiu|∂Ω‖2L2(∂Ω) ≤ C
ˆ
|χiu(y′, 0)|2dy′,

and

ε
(
C(1 + ε−2)‖χ̃iu‖2L2(y>0) + C‖χ̃i∂ydu‖

2
L2(y>0)) ≤ Cε

−1‖u‖2L2(Ω) + Cε‖∇u‖2L2(Ω),

which completes the proof after replacing ε1/2 by ε and summing over the partition of unity. �

We next recall a useful fact about polynomials.

Lemma 2.2. Let Ω b Rd open. Then for all m ∈ N and u ∈ Hm(Ω), there is a unique qm ∈ Pm
such that for |α| ≤ m,

1

|Ω|

ˆ
Ω
∂αx (u− qm)dx = 0, ‖qm‖Hm(Ω) ≤ C‖u‖Hm(Ω)
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Proof. We prove existence by induction on m. Indeed, for m = 0, we set

q0 =
1

|Ω|

ˆ
udx.

Suppose the claim holds for some m ≥ 0. Let u ∈ Hm+1(Ω). Then, set pα(x) := 1
α!x

α so that for
|α| = m+ 1, |β| = m+ 1, ∂αx pβ = δαβ . Put

q′m+1 =
∑
|α|=m

( 1

|Ω|

ˆ
∂αxudx

)
qα,

so that

1

|Ω|

ˆ
∂αx (u− q′m+1)dx = 0, |α| = m, ‖q′m+1‖Hm+1(Ω) ≤ C‖u‖Hm+1(Ω).

Now, by induction, there is q′m ∈ Pm−1 such that

1

|Ω|

ˆ
∂αx (u− q′m+1 − q′′m)dx = 0, |α| ≤ m, ‖q′m‖Hm+1(Ω) ≤ C‖q′m‖Hm(Ω) ≤ C‖u‖Hm(Ω).

Then, since for |α| = m+ 1, ∂αx q
′′
m = 0, the inductive claim follows with m replaced by m+ 1 by

setting qm+1 = q′m+1 + q′′m.

Uniqueness follows easily since
´

Ω ∂
α
xx

αdx 6= 0. �

Next, we recall a useful, equivalent norm on Hm(Ω) for m ∈ {0, 1, . . . }. For u ∈ Hm(Ω), define

‖u‖2
Ḣm(Ω)

:= ‖u‖2L2(Ω) +
∑
|α|=m

‖∂αxu‖2L2(Ω),

and let Ḣm(Ω) be the closure of Hm(Ω) with respect to ‖ · ‖Ḣm(Ω).

Lemma 2.3. Let Ω b Rd open with Lipschitz boundary and m ∈ N. Then Hm(Ω) = Ḣm(Ω) and

there is C > 0 such that for all u ∈ Ḣm(Ω),

1

C
‖u‖Hm(Ω) ≤ ‖u‖Ḣm(Ω) ≤ C‖u‖Hm(Ω).

Proof. The inclusion Hm(Ω) ⊂ Ḣm(Ω) is trivial as is the upper bound in the lemma. Therefore,
we need only consider the other inclusion.

Suppose that {uj}∞j=1 ⊂ Hm(Ω) is Cauchy with respect to the Ḣm(Ω) norm and hence uk → u

in L2. Then, by Lemma 2.2, there are qm−1,k ∈ Pm−1 such that for all |α| ≤ m− 1

1

|Ω|

ˆ
Ω
∂αx (uk − qm−1,k)dx = 0.

Set vk := uk − qm−1,k. Then, by repeated application of Poincaré–Wirtinger inequality,

‖vk − vj‖Hm(Ω) ≤ C
∑
|α|=m

‖∂αx (vk − vj)‖L2(Ω) = C
∑
|α|=m

‖∂αx (uk − uj)‖L2(Ω) ≤ C‖uk − uj‖Ḣm(Ω).

In particular vk → v in Hm(Ω).
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Now,

‖qm−1,k‖L2(Ω) ≤ ‖vk‖L2(Ω) + ‖uk‖L2(Ω) ≤ C sup
k
‖uk‖Ḣm(Ω).

Therefore, since Pm−1 is finite dimensional, extracting a subsequence, we may assume qm−1,k →
qm−1 ∈ Pm−1 and hence also in Hm(Ω). Therefore, we have that

‖u− (v + qm−1)‖L2(Ω) = 0,

and, in particular, u ∈ Hm(Ω) with

‖u‖Hm(Ω) ≤ ‖v‖Hm(Ω) + ‖qm−1‖Hm(Ω) ≤ C‖u‖Ḣm(Ω).

Thus, we have Ḣm(Ω) = Hm(Ω) and the two norms are equivalent. �

2.2. Uniform estimates at all scales. We now record the estimates corresponding to Lemma 2.1
and Lemma 2.3 on the rescaled domain Ωh := hΩ.

Lemma 2.4. Let Ω b Rd open with Lipschitz boundary and Ωh := hΩ. There is C > 0 such that
for all u ∈ H1(Ωh), 0 < h < 1, and 0 < ε < 1

‖u‖L2(∂Ωh) ≤ Ch−
1
2 (ε−1‖u‖L2(Ωh) + ε‖h∇u‖L2(Ωh)) (2.1)

Proof. Let u ∈ H1(Ωh). Then, putting v(x) := u(hx) ∈ H1(Ω), we have

‖v‖L2(∂Ω) = h−
d−1

2 ‖u‖L2(∂Ωh), ‖v‖L2(Ω) = h−
d
2 ‖u‖L2(Ωh), ‖∇v‖L2(Ω) = h−

d
2 ‖h∇u‖L2(Ωh).

The lemma now follows directly from Lemma 2.1. �

Lemma 2.5. Let Ω b Rd open with Lipschitz boundary and Ωh := hΩ. For all m ∈ {0, 1, . . . }
there is C > 0 such that for all u ∈ Ḣm(Ω) and 0 < h < 1,

‖u‖Hm
h (Ωh) ≤ C‖u‖Ḣm

h (Ωh), (2.2)

where

‖u‖Ḣm
h (Ωh) := ‖u‖L2(Ωh) +

∑
|γ|=m

‖(h∂x)γu‖L2(Ωh))

Proof. Let u ∈ Ḣm(Ωh). Then v(x) := u(hx) ∈ Ḣm(Ω) and the Lemma follows from Lemma 2.3
applied to v. �

2.3. Estimates on pairings in Ωh.

Lemma 2.6. Let Ω b Rd open with Lipschitz boundary, α ∈ Nd with |α| = p+ 1, and Ωh := hΩ.
Then there are βj ∈ Nd with |βj | = p + 1 + j, j = 0, 1, . . . , p and C > 0 such that for all

u, v ∈ H2(p+1)(Ωh), α1 + α2 = α 0 < h < 1, and 0 < ε < 1

|〈∂αxu, ∂αx v〉L2(Ωh)| ≤ ‖∂α+α1
x u‖L2(Ωh)‖∂α2

x v‖L2(Ωh)

+

p−|α2|∑
j=0

C‖∂βjx u‖H1
h(Ωh)(h

−p+j−1+|α2|ε−1−p
∑
|γ|=|α2|

‖∂γxv‖L2(Ωh) + hjε
∑

|γ′|=p+1

‖∂γ′x v‖L2(Ωh)) (2.3)
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Proof. Integration by parts shows that for j = 0, 1, . . . , p−|α2| there are βj , β
′
j with |βj | = p+1+j,

|β′j | = p− j and fj ∈ L∞(∂Ωh) such that

|〈∂αxu, ∂αx v〉L2(Ωh)| ≤ |〈∂α+α1
x u, ∂α2

x v〉L2(Ωh)|+
p−|α2|∑
j=0

|〈fj∂
βj
x u, ∂

β′j
x v〉L2(∂Ωh)|

≤ ‖∂α+α1
x u‖L2(Ωh)‖∂α2

x v‖L2(Ωh) +

p−|α2|∑
j=0

‖fj∂
βj
x u‖L2(∂Ωh)‖∂

β′j
x v‖L2(∂Ωh).

Then, using the Sobolev trace estimate (2.1) and the estimate (2.2) on Ωh, together with inter-
polation in the Hs

h(Ωh) spaces, we have

≤ ‖∂α+α1
x u‖L2(Ωh)‖∂α2

x v‖L2(Ωh)

+

p−|α2|∑
j=0

∑
|γ|=|α2|

C‖∂βjx u‖H1
h(Ωh)h

−p−1+j+|α2|(ε−1‖∂γxv‖Hp−|α2|
h (Ωh)

+
ε

2
‖∂γxv‖Hp+1−|α2|

h (Ωh)
)

≤ ‖∂α+α1
x u‖L2(Ωh)‖∂α2

x v‖L2(Ωh)

+

p−|α2|∑
j=0

∑
|γ|=|α2|

C‖∂βjx u‖H1
h(Ωh)h

−p−1+j+|α2|

·
(
ε−1‖∂γxv‖

1
p+1−|α2|
L2(Ωh)

‖∂γxv‖
p−|α2|
p+1−|α2|

H
p+1−|α2|
h (Ωh)

+
ε

2
‖∂γxv‖Hp+1−|α2|

h (Ωh)

)
≤ ‖∂α+α1

x u‖L2(Ωh)‖∂α2
x v‖L2(Ωh)

+

p∑
j=0

∑
|γ|=|α2|

C‖∂βjx u‖H1
h(Ωh)h

−p−1+j+|α2|(ε−1−p+|α2|‖∂γxv‖L2(Ωh) + ε‖∂γxv‖Hp+1−|α2|
h (Ωh)

)

≤ ‖∂α+α1
x u‖L2(Ωh)‖∂α2

x v‖L2(Ωh)

+

p∑
j=0

C‖∂βjx u‖H1
h(Ωh)(h

−p−1+j+|α2|ε−1−p+|α2|
∑
|γ|=|α2|

‖∂γxv‖L2(Ωh) + hjε
∑

|γ′|=p+1

‖∂γ′x v‖L2(Ωh)).

�

3. Estimates on the manifold

We now proceed to estimate the finite element approximation error. We first estimate a certain
sum of derivatives over the mesh from below by the L2 norm of u.

Lemma 3.1. Let p ≥ 0 and suppose thatM is a (p+ 1)-scale of meshes for M with coordinates
C, and let 0 < ΞL < ΞH . Then there are c > 0 and k0 > 0 such that for all u oscillating between
ΞLk and ΞHk in Hp+1, k > k0, and h ∈ I,

ck2(p+1)‖u‖2L2 ≤
∑
T∈Th

∑
|α|=p+1

‖∂αx (u ◦ γT )‖2L2(Ωh,dx). (3.1)
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Moreover, if p = 0, then we may take k0 = 0.

Proof. Let p+ 1 = 2m+ r with r ∈ {0, 1}, m ∈ {0, 1, . . . }. Observe that

Ξ
2(p+1)
L k2(p+1)‖u‖L2(M) ≤ 〈(−∆g)

m+ru, (−∆g)
mu〉L2(M) = ‖Lg,p+1u‖2L2(M) (3.2)

where Lg,p+1 is a p+ 1 order differential operator with L∞ coefficients such that 1 ∈ ker(Lg,p+1)
(i.e. Lg,p+1 has no constant term). Then

‖Lg,p+1u‖2L2(M) =
∑
T∈Th

‖1γT (Ωh)Lg,p+1u‖2L2(M). (3.3)

Now, on each mesh element γT (Ωh), we write in coordinates

Lg,p+1 =
∑
|α|=p+1

aTα∂
α
x +

∑
1≤|β|≤p

bTβ ∂
β
x . (3.4)

Therefore,

1

2
‖1γT (Ωh)Lg,p+1u‖2L2(M)) ≤ ‖

∑
|α|=p+1

aTα∂
α
x (u ◦ γT )‖2L2(Ωh,dvg) + ‖

∑
1≤|β|≤p

bTβ ∂
β
x (u ◦ γT )‖2L2(Ωh,dvg)

≤ C
∑
|α|=p+1

‖∂αx (u ◦ γT )‖2L2(Ωh,dx) + C‖du‖2Hp−1(γT (Ωh)).

(3.5)
Summing over the mesh and using (3.2) and (3.3), together with (3.5) we obtain

Ξ
2(p+1)
L k2(p+1)‖u‖L2(M) ≤ C

∑
|α|=p+1

‖∂αx (u ◦ γT )‖2L2(γT (Ωh),dx) + C‖du‖2Hp−1(M)

≤ C
∑
|α|=p+1

‖∂αx (u ◦ γT )‖2L2(γT (Ωh),dx) + C〈k〉2p‖u‖2L2(M).
(3.6)

Taking k0 large enough, we may absorb the last term into the left-hand side and hence obtain the
result for p ≥ 1. For p = 0, notice that the second term in (3.4) is identically 0 and hence there
are no ‖du‖Hp−1 terms in (3.5) or (3.6), so that we need not take k0 large enough in this case. �

Next, we estimate the right-hand side of (3.1) using the L2 norm of (I − P p,mTh,`)u.

Lemma 3.2. Let p,m ≥ 0 and 0 ≤ m′, ` ≤ m, M be a 2(p + 1)-scale of meshes for M with
coordinates C, and 0 < ΞL < ΞH . For all 0 < ε < 1 there is C > 0 such that for all 0 < hk < 1
and all u oscillating between ΞLk and ΞHk in H2(p+1),∑

T∈Th

∑
|α|=p+1

‖∂αx (u ◦ γT )‖2L2(Ωh,dx)

≤ ε〈k〉2(p+1)‖u‖2L2(M) + Ch−2(p+1−m′)‖(I − P p,mTh,`)u‖
2
Hm′ (M)

. (3.7)

Proof. We start by observing that, since [P p,mTh,`u] ◦ γT is a polynomial of degree p,∑
T∈Th

∑
|α|=p+1

‖∂αx (u ◦ γT )‖2L2(Ωh,dx) =
∑
T∈Th

∑
|α|=p+1

〈∂αx (u ◦ γT ), ∂αx ([(I − P p,mTh,`)u] ◦ γT )〉L2(Ωh).
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We Lemma 2.6, to each summand to obtain with v = vT := [(I − P p,mTh,`)u] ◦ γT , u = uT := u ◦ γT ,

and ε = ε1. Note that we can do this since γT ∈ C2(p+1) and hence u ◦ γT ∈ H2(p+1). We obtain∑
T∈Th

∑
|α|=p+1

‖∂αxuT ‖2L2(Ωh,dx)

≤
∑
T∈Th

∑
|α|=p+1
α1+α2=α
|α2|=m′

(
‖∂α+α1

x uT ‖L2(Ωh)‖∂α2
x vT ‖L2(Ωh)

+

p−m′∑
j=0

C‖∂βjx uT ‖H1
h(Ωh)(h

−p−1+j+m′ε−1−p+m′
1

∑
|γ|=m

‖∂γxvT ‖L2(Ωh) + hjε1

d∑
|γ′|=p+1

‖∂γ′x vT ‖L2(Ωh))
)
.

Now, using again that [P p,mTh,`u] ◦ γT is a polynomial of degree p, we have ∂γ
′
x vT = ∂γ

′
x uT . Hence

applying Young’s inequality, we have∑
T∈Th

∑
|α|=p+1

‖∂αxuT ‖2L2(Ωh,dx)

≤ C
∑
T∈Th

∑
|α|=p+1
α1+α2=α
|α2|=m′

(
δ‖∂α+|α1|

x uT ‖2L2(Ωh) + δ−1‖∂α2
x vT ‖2L2(Ωh)

+ C

p∑
j=0

δj‖∂
βj
x uT ‖2H1

h(Ωh) + δ−1
j h−2(p+1−j−m′)ε

−2(p+1−m)
1

∑
|γ|=m′

‖∂γxvT ‖2L2(Ωh)

+ C

p∑
j=0

δ−1
j h2jε2

1

∑
|γ′|=p+1

‖∂γ′x uT ‖2L2(Ωh)

)

≤ C
(
δ‖u‖2

H2(p+1)−m(M)
+ δ−1‖(I − P p,mTh,`)u‖

2
Hm(M) +

p−m′∑
j=0

(δj(‖u‖2Hp+1+j(M) + h2‖u‖2Hp+2+j(M))

+ δ−1
j

(
h−2(p+1−j−m′)ε

−2(p+1−m′)
1 ‖(I − P p,mTh,`)u‖

2
Hm′ (M)

+ h2jε2
1‖u‖2Hp+1(M)

))
.

Then, using that u is oscillating between ΞLk and ΞHk, we have

≤ C
(
δ〈k〉4(p+1)−2m′ +

p−m′∑
j=0

δj〈k〉2(p+1+j) + δjh
2〈k〉2(p+2+j) + δ−1

j ε2
1h

2j〈k〉2(p+1)
)
‖u‖2L2(M)

+
(
δ−1 +

p∑
j=0

δ−1
j h−2(p+1−j−m′)ε

−2(p+1−m)
1

)
‖(I − P p,mTh,`)u‖

2
Hm′ (M)
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Let δ = ε1〈k〉−2(p+1)+2m′ and δj = ε1〈k〉−2j , j = 0, . . . , p−m′ then we obtain∑
T∈Th

∑
|α|=p+1

‖∂αxuT ‖2L2(Ωh,dx)

≤ C
(
ε1〈k〉2(p+1) +

p∑
j=0

ε1〈k〉2(p+1) + ε1h
2k2(p+2) + h2jε1〈k〉2jk2(p+1)

)
‖u‖2L2(M)

+ ε−1
1

(
〈k〉2(p+1−m′) +

p∑
j=0

〈k〉2jh−2(p+1−m′−j)ε
−2(p+1−m)
1

)
‖(I − P p,mTh,`)u‖

2
Hm′ (M)

.

Choosing ε1 small enough and using that hk ≤ 1, we obtain the desired estimate. �

Proof of the L2 lower bound: Theorem 1.4. We now combine Lemmas 3.1 and 3.2 to prove the
main theorem. Indeed, Lemma 3.1 implies that there are k0 > 0 (with k0 arbitrary when p = 0)
and c0 > 0 such that for k > k0 (3.1) holds. In particular,

c0k
2(p+1)‖u‖2L2(M) ≤

∑
T∈Th

∑
|α|=p+1

‖∂αx (u ◦ γT )‖2L2(Ωh,dx). (3.8)

Then, Lemma 3.2 implies that there is C > 0 such that for 0 ≤ m′ ≤ m,∑
T∈Th

∑
|α|=p+1

‖∂αx (u ◦ γT )‖2L2(Ωh,dx)

≤ c0

2
(1 + k−2

0 )p+1〈k2(p+1)‖u‖2L2(M) + Ch−2(p+1−m′)‖(I − P p,mTh,`)u‖
2
Hm′ (M)

≤ c0

2
k2(p+1)‖u‖2L2(M) + Ch−2(p+1−m′)‖(I − P p,mTh,`)u‖

2
Hm′ (M)

.

(3.9)

Combining (3.8) and (3.9), we obtain

c0k
2(p+1)‖u‖2L2(M) ≤

c0

2
k2(p+1)‖u‖2L2(M) + Ch−2(p+1−m′)‖(I − P p,mTh,`)u‖

2
Hm′ (M)

.

Subtracting the first term on the right-hand side to the left-hand side, we obtain for 0 ≤ m′ ≤ m
c0

2
k2(p+1)‖u‖2L2(M) ≤ Ch

−2(p+1−m′)‖(I − P p,mTh,`)u‖
2
Hm′ (M)

,

which completes the proof. �

Proof of the ‘frequency k’ lower bound: Theorem 1.5. By Theorem 1.4, we have

‖(I − P p,mTh,`)u‖H`
k(M) ≥ C(hk)p+1−`‖u‖L2(M). (3.10)

Next, siince Π[ΞLk,ΞHk]u = u and 〈(I − P p,mTh,`)u, P
p,m
Th,`u〉H`

k(M) = 0, we have

‖(I − P p,mTh,`)u‖
2
H`
k(M)

= 〈(I − P p,mTh,`)u, u〉H`
k(M)

≤ ‖(I − P p,mTh,`)u‖H−sk (M)‖u‖H2`+s
k (M)

≤ C‖(I − P p,mTh,`)u‖H−sk (M)‖u‖L2(M).

(3.11)

Combining (3.11) and (3.10) completes the proof. �
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4. Optimality of the low frequency bounds in 1-d

In this section, we show that Theorem 1.5 is optimal when d = 1 for the ‘standard’ unit speed
mesh with p = 0; i.e. fix N > 0 and let T1/N := {2πk/N), 2π(k + 1)/N}N−1

k=0 with coordinates

γk : [0, 2π
N ]→ [2πk/N, 2π(k+ 1)/N ], γk(t) := t+ 2πk/N . ThenM := ({ 1

N }N , {T 1
N
}N ) is a p-scale

of meshes for any p and C := {γk}k is a set of coordinates for M.

Lemma 4.1. Let ΞL < ΞH . Then there are C > 0 and N0 > 0 such that for 1 < k, N/k > N0,
there is u oscillating with frequencies between ΞLk and ΞHk such that

‖(I − P 0,0
T1/N )u‖H−sk ≤ C

[ k2

N2
+
( k
N

)1+s]
‖u‖L2 .

Proof. Let ΞLk ≤ |m| ≤ ΞHk. Then it is easy to see that um = eimx is oscillating between ΞLk
and 2ΞHk in H` for all `. Then, for m 6= 0 the projector P 0

T1/N satisfies

P 0
T1/N e

imx =
1

2π2

∑
−`N 6=m

N2

m(m+ `N)

(
1− cos

(2πm

N

))
ei(m+`N)x.

Therefore, for m 6= 0,

(I − P 0
T1/N )(eimx) =(

1− 1

2π2

N2

m2

(
1− cos(

2πm

N
)
))
eimx − 1

2π2

∑
`6=0

m6=−`N

− N2

m(m+ `N)

(
1− cos

(2πm

N

))
ei(m+`N)x.

Thus, for ΞLk ≤ |m| ≤ ΞHk and k/N small enough,

Π[0,N
2

](I − P
0
T1/N )eimx =

[
1− 1

2π2

N2

m2

(
1− cos(

2πm

N
)
)]
eimx

and taking k/N � 1, we have

c
k2

N2
≤ cm

2

N2
≤
∣∣∣1− 1

2π2

N2

m2

(
1− cos(

2πm

N
)
)∣∣∣ ≤ Cm2

N2
≤ C k2

N2
.

Next, observe that

‖Π(N
2
,∞)(I − P

0
T1/N )eimx‖2L2 ≤ C

∑
`6=0

m 6=−`N

N4

m2(m+ `N)2

(
1− cos

(2πm

N

))2
≤ C k2

N2

Therefore, since

‖Π[N
2
,∞)u‖H−sk ≤

( k
N

)−s
‖u‖L2 ,

the proof is complete after setting u = um = eimx. �
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[IB95] Frank Ihlenburg and Ivo Babuška. Finite element solution of the Helmholtz equation with high wave
number. I. The h-version of the FEM. Comput. Math. Appl., 30(9):9–37, 1995.
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