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Abstract. Let M be a smooth, compact manifold of dimension d without boundary. We in-
troduce the concept of predominance for Riemannian metrics on M , a notion analogous to full
Lebesgue measure which, in particular, implies density. We show that there is Ω > 1 such that,
for a predominant Cν metric, the number, c(T, g), of closed geodesics of length ≤ T satisfies

log c(T, g) = O
(
TΩ).

In addition, for g a Riemannian metric on M , let 0 = λ2
1(g) < λ2

2(g) ≤ λ2
3(g) . . . be the

eigenvalues of −∆g. The Weyl law states that there is cd > 0 such that

#{j : λj(g) ≤ λ} = cd volg(M)λd + E(λ, g)

with E(λ, g) = O(λd−1) as λ → ∞. We show that for ν > 0 large enough there is Ω > 1 such
that for a predominant Cν metric

E(λ, g) = O(λd−1/(log λ)1/Ω).

After an application of recent results of the authors in the case of the Weyl law [CG20],
these estimates follow from a study of the non-degeneracy properties of nearly closed orbits for
predominant sets of metrics.

1. Introduction

We study properties of the geodesic flow and remainders in the Weyl law for ‘typical’ metrics on
a compact manifold without boundary. Since the space of Riemannian metrics, G , on a manifold
cannot be endowed with a non-trivial, translation invariant Borel measure, we introduce an analog
of full Lebesgue measure in infinite dimensions called predominance. We then study properties of
the geodesic flow and remainders in the Weyl law for predominant sets of metrics.

The notion of predominance has three important properties: 1) any predominant set is dense, 2)
a finite intersection of predominant sets is predominant, and 3) in finite dimensions, a predominant
set has full Lebesgue measure. Heuristically, a set G ⊂ G is predominant if there is a family of
submanifolds endowed with finite Borel measures {(Γg, µg)}g∈G such that g ∈ Γg, µg assigns a
positive measure to any neighborhood of g, the map g 7→ Γg is C1, and G∩Γg has full µg measure
for every g ∈ G . For the careful definition of this concept, see Definition 2.4 and Remark 2.5.

Remainders in the Weyl law. Let ν ≥ 0 and M be a compact Cν manifold without boundary,
of dimension d. Let G ν denote the space of Cν Riemannian metrics on M with the topology
induced from the Cν norm on symmetric tensors. For g ∈ G ν , let −∆g denote the (positive)
Laplace–Beltrami operator with eigenvalues 0 = λ2

1(g) < λ2
2(g) ≤ λ2

3(g) ≤ . . . . Then, for λ > 0
1
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define the eigenvalue counting function

N(λ, g) := #{j : λj(g) ≤ λ}.
Our first theorem shows that the Weyl law has a logarithmic improvement for a predominant set
of metrics. In what follows, B1 denotes the ball of radius 1 in Rd, vol

Rd
(B1) denotes its volume,

and volg(M) denotes the volume of M as measured by the metric g.

Theorem 1.1. Let d ≥ 2. There is ν0 > 0 and for all ν > 0 there is Ων > 0 such that the
following holds. If ν ≥ ν0, M is a compact Cν-manifold of dimension d without boundary, and
Ω > Ων , then there is a predominant set GΩ ⊂ G ν (see Definition 2.4) such that for every g ∈ GΩ

N(λ, g) = (2π)−d volg(M) vol
Rd

(B1)λd +Og
(
λd−1

/
(log λ)

1
Ω
)
, λ→∞.

In particular, GΩ is dense in G ν .

The constant Ων in Theorem 1.1 is explicit, and we can take

Ων := 1 + log2(2(d− 1)(2d+ 1)(max(ν, 6) + 3d− 1))− log2(2d− 1). (1.1)

Remark 1.1. The authors wish to stress that, although our original motivation was to study
typical properties of remainders in the Weyl law, the analysis in this article is dynamical in nature
and studies predominant properties of the geodesic flow. Once these dynamical properties are
established in Theorem 1.3 below, a direct application of the authors’ work [CG20, Theorem 2]
produces the Weyl remainder estimate of Theorem 1.1 as a corollary (See Section 3.3).

Defining E(λ, g) := N(λ, g) − (2π)−d volg(M) vol
Rd

(B1)λd, the Weyl law states that, for suffi-

ciently smooth metrics, E(λ, g) = Og(λ
d−1). This estimate is sharp on the round sphere and has

a long history dating back to the work of Weyl [Wey12], who proved (in a slightly different con-
text) that E(λ, g) = o(λd). The estimate E(λ, g) = Og(λ

d−1) was proved by Levitan [Lev52] and
Avakumović [Ava56] after which Hörmander [Hör68] provided a general framework for studying
such remainders, reproving this estimate and making far reaching generalizations.

Using this framework, Bérard [Bér77] showed that E(λ, g) = Og(λ
d−1/ log λ) on both surfaces

without conjugate points and non-positively curved manifolds of any dimension. Duistermaat–
Guillemin [DG75] showed that E(λ, g) = o(λd−1) provided that the measure of the set of closed
geodesics in S∗M is 0. Fifteen years later, Volovoy [Vol90a] provided estimates under dynamical
conditions guaranteeing that E(λ, g) = Og(λ

d−1/ log λ) and verified these conditions for certain
specific examples in [Vol90b]. The recent work of Bonthenneau [Bon17] improved a geometric
estimate in Bérard’s work, thus generalizing his result to manifolds without conjugate points of
any dimension. Finally, in [CG20], the authors provided estimates on E(λ, g) under assumptions
on the volume of nearly closed geodesics which improve the results of [DG75, Bér77, Vol90a].
For manifolds with boundary, the analog of [DG75] was proved by Ivrii [Ivr80]. (For a more
comprehensive history of the Weyl law, see [Ivr16].)

Manifolds where there are known polynomial improvements of the form E(λ, g) = Og(λ
d−1−ε)

are very rare. For instance, such estimates hold on the torus [Hux03, BW17], products of
spheres [IW21], and other special integrable systems [Vol90b]. Nevertheless, it has long been ex-
pected that, for a ‘typical’ metric g, there exists ε > 0 such that E(λ, g) = Og(λ

d−1−ε). However,

until now, the best available result is that E(λ, g) = o(λd−1) for a Baire-generic set of g. This can
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be recovered from the work of Sogge–Zelditch [SZ02] or can be seen by combining the remainder
estimates in [DG75] with the bumpy metric theorem of Anosov and Abraham [Ano82, Abr70].

Theorem 1.1 improves on these bounds in two important ways. First, Baire genericity is
replaced by the concept of predominance which is an analog of full Lebesgue measure in infinite
dimensions. Just as in finite dimensions a full Lebesgue measure set is much more ‘typical’ than a
Baire generic one (indeed, a Baire generic set may have measure 0), a predominant set in infinite
dimensions is much more ‘typical’ than a Baire generic set. Second, although the change from
o(λd−1) to O(λd−1/(log λ)1/Ω) may seem small, this improvement requires the development of new
ideas and requires subtle dynamical estimates. In addition, it is the only quantitative remainder
estimate available for typical metrics.

Remark 1.2. We have not attempted to make the value of ν0 from in Theorem 1.1 explicit.
However, it is likely that, following the arguments in [CG20] carefully, ν0 can be taken to be
ν0 = Cd for some C > 0.

Remark 1.3. Although we have kept careful track of the constant Ων in (1.1), we do not expect
it to be optimal. Indeed, we conjecture that Ων could be replaced by 1 + ε for any ε > 0. This
would also allow us to obtain the same estimate for predominant sets in G∞. At the moment,
when working in G∞, we obtain weaker remainder estimates for predominant sets of metrics (see
Remark 1.8).

Growth of the number of periodic geodesics. We next discuss the growth of the number
of periodic geodesics of a given length. We say that a geodesic γ ⊂ M is a primitive periodic
geodesic with length T > 0, if there is a diffeomorphism h : R/TZ→ γ, such that |ḣ|g(h(t)) = 1,

(h(0), ḣ(0)) = (h(T ), ḣ(T )), (h(0), ḣ(0)) 6= (h(t), ḣ(t)) for t ∈ (0, T ).

That is, γ is a periodic geodesic and T is its minimal period. For T > 0 and g a Riemannian
metric on M let

c(T, g) := #{γ : γ is a primitive periodic geodesic for g with length ≤ T}.

We obtain the following theorem on the growth of c(T, g).

Theorem 1.2. Let ν ≥ 5, M be a Cν- compact manifold of dimension d without boundary, and
Ων as in (1.1). Then, for each Ω > Ων there is a predominant set GΩ ⊂ G ν such that for g ∈ GΩ

there exists C > 0 such that for all T > 0

c(T, g) ≤ exp
(
CTΩ

)
.

In particular, GΩ is dense in G ν .

Bounds on c(T, g) have a long history in the literature. For Baire generic metrics, a complete
picture of the non-quantitative behavior of c(T, g) is available. The bumpy metric theorem [Ano82,
Abr70] can be used to show that for Baire generic smooth metrics, g, and all T > 0, c(T, g) <∞
(see also [KT72]). Furthermore, Hingston [Hin84] showed that limT→∞ c(T, g) = ∞ for a Baire-
generic set of metrics. Petkov and Stojanov have studied similar properties of closed billiards in
generic domains in Rd [Sto87, PS87a, PS87b].
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As with remainders in the Weyl law, quantitative estimates on c(T, g) are much more subtle.
Only recently, Contreras [Con10] showed that for g in an open dense subset of G 2 there is c > 0
such that

log c(T, g) ≥ cT − c. (1.2)

One can check that this lower bound is optimal for any dense set of metrics (so certainly for any
reasonable notion of a typical metric, including predominance). Indeed, in the case of manifolds
with negative curvature, the works of Margulis [Mar69] and Bowen [Bow72] show that, for such
a metric g, there is α > 0 such that

lim
T→∞

1

T
log c(T, g) = α.

In particular, this shows that there are open sets of metrics such that c(T, g) grows exactly
exponentially and hence that [Con10] gives a complete picture for lower bounds on c(T, g) for
typical C2 metrics. (See also [Kni98] for the case of compact rank 1 manifolds.)

On the other hand, as far as the authors are aware, Theorem 1.2 is the first quantitative
upper bound on c(T, g) for ‘typical’ metrics. One reason that lower bounds on c(T, g) are well
understood, but upper bounds are not is that one can find a structure, called a hyperbolic basic
set (see [Con10]), which is stable under perturbation and guarantees the lower bound (1.2).
Moreover, the existence of such a set can be guaranteed by studying the Poincaré maps associated
to genuinely periodic orbits.

Unfortunately, no such structure for upper bounds exists and one must understand not only
Poincaré maps of periodic orbits but also those of near periodic orbits. Indeed, although there is
no rigorous proof at present, there is strong evidence that there is no quantitative upper bound
on c(T, g) which is Baire generic. For instance, in the case of diffeomorphims, Kaloshin [Kal00]
showed that there is no growth rate for the number of periodic points that is Baire generic. (See
Section 2 for an additional heuristic discussion for lack of Baire genericity.)

Non-degeneracy of nearly periodic orbits. Our main theorem, which implies both Theo-
rems 1.1 and 1.2, controls how close two periodic orbits may be for a predominant set of metrics
and can be used, for instance, to control the volume of nearly periodic orbits (see Section 3.1).
The result will be stated in terms of how close dϕgt may be to the identity for this set of metrics,
where ϕgt is the geodesic flow for the metric g at time t acting on S∗M .

To understand how this is connected to the distance between periodic orbits, let H|ξ|g denote

the Hamiltonian vector field associated to |ξ|g, and ϕgt := exp(tH|ξ|g ) : S∗M → S∗M . Observe

that if ρ is a t periodic point (i.e. ϕgt (ρ) = ρ for some t > 0), and v ∈ TρS∗M/RH|ξ|g (ρ) is not in

the kernel of I − dϕgt , then any perturbation of the initial point ρ in the direction of v will not be
periodic with period near t. (See Figure 2 for a schematic of such an orbit.) In particular, if the
map

I − dϕgt : TρS
∗M/RH|ξ|g (ρ)→ TρS

∗M/RH|ξ|g (ρ)

is invertible, then there are no vectors in this kernel and hence every small perturbation of ρ other
than those along H|ξ|g (ρ) will produce a point which is not periodic with period near t.
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Motivated by this, we say that a t periodic point, ρ, is non-degenerate if

I − dϕgt : TρS
∗M/RH|ξ|g (ρ)→ TρS

∗M/RH|ξ|g (ρ)

is invertible. The famous bumpy metric theorem [Abr70, Ano82] states that, for a Baire generic
set of smooth metrics, every periodic trajectory is non-degenerate. In particular, this implies the
finiteness of the set of closed geodesics of any bounded length.

Since we are interested in a quantitative version of non-degeneracy for both periodic geodesics
and nearly periodic geodesics, we need to introduce a few concepts to make precise statements
about non-degeneracy.

Definition 1.4 (returning points). Let g ∈ G ν and β > 0. For t ∈ R and ρ ∈ S∗M we write

ρ ∈ R(t, β, g) if d(ϕgt (ρ), ρ) < β.

In this case, we say that ρ is β-returning for g at time t.

We also recall that the geodesic flow is a contact flow on S∗M and thus there is a natural smooth
decomposition of TS∗M preserved by the geodesic flow (see e.g. [Pat99]). In particular, ξdx|TS∗M
is a contact form for S∗M with the geodesic flow as its Reeb flow. Thus, for all ρ ∈ S∗M ,

TρS
∗M = H (ρ)⊕ RH|ξ|g (ρ),

where H (ρ) := ker(ξdx|TρS∗M ) and ⊕ denotes the direct sum, and we have

dϕgt (H (ρ)) = H (ϕgt (ρ)).

Since we work with nearly periodic orbits, we need to identify the tangent spaces at ρ and ϕgt (ρ)
when they are close. Let g ∈ G ν and U ⊂ S∗M×S∗M . We say thatWU = {Wρ2,ρ1 : (ρ2, ρ1) ∈ U}
is a family of transition maps for g on U if for each (ρ2, ρ1) ∈ U the map Wρ2,ρ1 is an invertible
linear transformation,

Wρ2,ρ1 : Tρ1S
∗M → Tρ2S

∗M, (ρ2, ρ1) 7→ Wρ2,ρ1 is Lipschitz

Wρ1,ρ1 = I, Wρ2,ρ1H|ξ|g (ρ1) = H|ξ|g (ρ2), Wρ2,ρ1H (ρ1) = H (ρ2).
(1.3)

Here, by asking that (ρ2, ρ1) 7→ Wρ2,ρ1 be Lipschitz, we mean that for any choice of coordinates

ψi : Wi → Vi ⊂ R2d−1 near ρi the map

W1 ×W2 3 (x1, x2) 7→ dψ2|ρ=ψ−1
2 (x2) ◦Wψ−1

2 (x2),ψ1(x1) ◦ d(ψ−1
1 (x))|x=x1 ∈ GL(2d− 1)

is a Lipschitz family of matrices.

We say that a collectionW = {WUi}Ni=1 is a family of transition maps for g if Ui ⊂ S∗M×S∗M
is open,

{(ρ, ρ) : ρ ∈ S∗M} ⊂
N⋃
i=1

Ui,

and, for each i, WUi is a family of transition maps for g on Ui. We say W is a β0-family of
transitions maps if for each pair (ρ2, ρ1) with d(ρ2, ρ1) < β0, there is i such that (ρ2, ρ1) ∈ Ui.

Remark 1.5. It will be convenient throughout the text to have a fixed reference metric on M .
For this, we choose some g

f
∈ G ν and whenever we refer to a norm | · |, on T ∗M or TM , it is the

one induced by g
f
. We will, in particular, use this metric to define Cν′ norms for ν ′ ≤ ν.
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We are now in a position to define non-degeneracy of a nearly periodic orbit.

Definition 1.6 (non-degenerate points). Let g ∈ G ν , β0 > 0 and W = {WUi}Ni=1 be a β0-
family of transition maps for g. Let 0 < β < β0, t ∈ R, ρ ∈ R(t, β, g), and α > 0. We write
ρ ∈ N (t, α, (g,W)) if for every i ∈ {1, . . . N} such that (ϕgt (ρ), ρ) ∈ Ui,

|Π
ϕ
g
t (ρ)

(
WUi
ϕgt (ρ),ρ

− dϕgt
)
v| ≥ α|Πρv|, v ∈ TρS∗M.

Here, Πρ : TρS
∗M → TρS

∗M/RHp(ρ) denotes the natural projection map and, by an abuse of
notation, |·| denotes the norm induced by the metric g

f
fixed above in Remark 1.5. In this case we

say ρ is α non-degenerate for (g,W) at time t. (See Figure 2 for an example of a non-degenerate
orbit.)

Remark 1.7. Although Definition 1.6 depends on the choice of the metric gf , note that the norm
induced by any other g′f is comparable to that induce by gf .

The main theorem of this article shows that there is a predominant set of metrics such that every
sufficiently returning geodesic is non-degenerate with the degree of non-degeneracy depending
explicitly on the length of the trajectory. As far as the authors are aware, this theorem is the first
quantitative estimate on non-degeneracy of orbits for typical metrics.

Theorem 1.3. Let ν ≥ 5, M be a compact Cν manifold of dimension d without boundary, and
Ων as in (1.1). Then for every Ω > Ων there is a predominant set GΩ ⊂ G ν such that for all
g∈ GΩ and every family of transition maps W for g there are C, c > 0 such that

R
(
t,β(t), g

)
⊂ N

(
t,β(t), (g,W)

)
for t > c

where β(t) := C−C(t+1)Ω−1, and

d(ϕgt (ρ), ρ) ≥ c|t| for |t| ≤ c.
In particular, GΩ is dense in G ν .

Remark 1.8. The reason for the growth of Ων as ν → ∞ in Theorems 1.1, 1.2, and 1.3 comes
from the fact that we make perturbations to the metric at increasingly small scales as the length of
trajectories goes to infinity. Because of this, the size of these perturbations in Cν grows as ν →∞
and this in turn results in weaker non-degeneracy statements. Moreover, with f(t) : [0,∞) →
[0,∞) growing faster than any polynomial in t, if one replaces β(t) by CeCf(t) in Theorem 1.3,
then one can work in C∞. That is, we obtain predominance in the G∞ topology.

Remark 1.9. The notion of predominance (see Section 2) involves using certain families of
perturbations to probe the space of metrics. In this article, the predominance in Theorem 1.3
involves probing with the families of perturbations described in Section 9. However, one may
wonder whether one can probe with other families of perturbations (e.g. conformal perturbations)
and still obtain Theorem 1.3 for that family of probes. In fact, in Sections 7 and 8, we prove
Proposition 8.9 which gives a result analogous to Theorem 1.3 under the assumption that a family
of perturbations of metrics satisfies some abstract assumptions (see Definitions 7.2 and 7.3). The
type of perturbations used to probe the space of metrics is then tied to the family of perturbations
satisfying our abstract assumptions. It is only in Section 9 that we construct such a family of
metric perturbations and it is likely that many other families of perturbations suffice. However,
we do not pursue this here.
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Outline of the paper. In Section 2, we define predominance and discuss the reasons for in-
troducing this notion: predominance is in some sense more ‘typical’ than Baire generic and our
results are unlikely to hold for a Baire generic set of metrics. Then, in Section 3, we use The-
orem 1.3 to prove Theorems 1.1 and 1.2. Before starting the proof of Theorem 1.3, we give a
detailed description of the ideas used in Section 4.

To begin the proof of Theorem 1.3, we study volumes of relevant sets of symplectic matrices
in Section 5. In Section 6, we review some basic estimates for returning points and introduce the
notion of a chain of symplectomorphisms associated to a flow, as well as that of a well-separated
set. The notion of a well-separated set replaces that of a Poincaré section when a global section
for the flow is not available. Although this requires some technical work, it does not substantially
change the proof of the main result and the reader may wish to first assume that there is a global
section and replace chains of symplectomorphisms by the standard Poincaré map for that section.

Section 7 defines sufficient assumptions on a family of metric perturbations to guarantee Theo-
rem 1.3. Under these assumptions, we study the volume of perturbations that produce degenerate
periodic points of a given length. Section 8 then proves an analog of Theorem 1.3 by implementing
a delicate induction argument.

Finally, in Sections 9 and 10, we construct a family of metric perturbations which satisfies our
technical assumptions and we prove Theorem 1.3 in Section 11.

Appendix A contains some elementary control estimates from ODE theory used to construct
the perturbations of metrics in Section 9.

Index of Notation.

R(t, β, g) Def. 1.4 Wρ2,ρ1 (1.3) N (t, α(g,W)) Def. 1.6
probing map Def. 2.2 predominant Def. 2.4 (β, q) non-degenerate (4.1)
MY (V, s) Def. 5.4 Rz(n, δ, g) Def. 6.1 Sz(n, α, g) Def. 6.2

well-separated Def. 6.5 P(n)
I [g] Def 6.8 T (n)

I [g](ρ) Def. 6.9
N z(n, β, g) Def. 6.14 N q,z(n, β, g) Def. 6.15 L (7.1)

Good perturbationDef. 7.2 Admissible pairs Def. 7.3 FRε,δε
J (8.8)

FRε,δε
∞ (8.9) b (8.18) γj (8.19)

βj,j (8.21) αj , αj,`, βi,j,`, β̃j,`, s` (8.22) Φg?
ρ (9.1)

gσ (9.4) ∆σ, ∆̃σ (9.9) Ψg0

ζ0
(σ), Ξi(σ, ζ0, g0) (9.10)
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2. Predominance in Banach Spaces

The main goals of this article are to give upper bounds on the number of closed geodesics of
length T and upper bounds for remainders in the Weyl law for a predominant set of metrics on a
compact manifold M . Before proceeding to define our notion of predominance on Banach spaces
in Section 2.2, we discuss several other available notions and motivate our choice of definition in
Section 2.1. Finally, in Section 2.3 we explain why the notion of Baire genericity is not well-suited
for our purposes.

2.1. Existing notions of ‘full measure’. The main difficulty in defining a concept analogous
full measure in an infinite dimensional space, like the space of Riemannian metrics over a given
manifold, is that there are no non-trivial, translation invariant, Borel measures. Several possible
fixes for this problem have been introduced in the literature. We mention here the concepts of
prevalence [HSY92] which uses an underlying linear structure and metric prevalence [Kal97] which
does not require such a structure. These two notions have three important properties

(1) A prevalent set is dense.

(2) The intersection of prevalent sets is prevalent.

(3) If G ⊂ Rn is prevalent, then G has full Lebesgue measure.

(2.1)

Although quite flexible, as far as we are aware, the notion of metric prevalence has not proved
useful in studying quantitative statements such as the growth of the number of periodic orbits of
length T . Because of this, we focus on the notion of prevalence from [HSY92] which has appeared
before in this type of application. In fact, for ν ≥ 1, [KH07] proves that there is a prevalent set
G ⊂ Cν(I; I) of diffeomorphisms on the interval I = [0, 1], such that for all ε > 0 and f ∈ G there
is C > 0 such that

#{x ∈ I : fn(x) = x} ≤ CeCn1+ε
.

Given a Banach space G , a Borel set G ⊂ G is said to be prevalent if there is a Borel measure
µ and a compact set K ⊂ G such that

0 < µ(K) <∞, G+ g has full µ measure for all g ∈ G .

Usually, when one shows that a set G is prevalent, it is convenient to construct a probe Σ ⊂ G
which carries the measure µ. In other words, if G is prevalent, there are Σ ⊂ G , a smooth map

F : G × Σ→ G , F (g, σ) := g + σ (2.2)

and a Borel measure, µΣ , on Σ such that for all g ∈ G

µΣ(σ ∈ Σ : F (g, σ) ∈ Gc) = 0. (2.3)

Because we will be working in an open subset of a Banach space (the space metrics inside the
space of symmetric 2-tensors) we would like a notion which does not rely on the fact that the space
is linear. To do this, we generalize the type of functions allowed in (2.2) and slightly weaken (2.3).
We now define the notion of predominance on an open subset of a Banach space G .
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2.2. Predominant sets. In this section we introduce the notion of predominance. Let G and
G ′ be open subsets of the Banach spaces (B, ‖ ‖B) and (B′, ‖ ‖

B′ ) respectively,

G ⊂ B, G ′ ⊂ B′, (2.4)

and such that G ⊂ G ′ and B ⊂ B′ via a continuous embedding, with B dense in B′ and G dense
in G ′. Let ι : G → G ′ be the natural inclusion map.

Remark 2.1. When O ⊂ B is open, we will say that a subset K ⊂ O is bounded if it is bounded
as a subset of B and dB(K, ∂O) > 0, where dB is the distance induced by ‖ · ‖B .

The space G will be probed by perturbations indexed by a parameter σ ∈ ΣNε
for ΣNε

as
follows. Given L ∈ N and {Nε}ε>0 ⊂ N ∪ {∞} let

ΣNε
:=

Nε∏
j=1

BRL(0, 1). (2.5)

We endow this space with the sup-norm ‖ · ‖`∞ .

Definition 2.2 (probing maps). We say that a collection F = {(Fε, Nε)}ε, with ε ∈ (0, 1), is
a family of G ′-probing maps for G if Nε ≤ dim B, there is a collection of closed bounded sets
Gε ⊂ G with ∪εGε = G , Gε2 ⊂ Gε1 for ε1 < ε2, and such that Fε : Gε ×ΣNε

→ G is a continuous
map with

Fε(g, 0) = g, g ∈ Gε, (2.6)

and the following hold. For all K ⊂ G bounded,

lim
ε→0+

sup
g∈K

sup
σ∈Σ

Nε

‖Fε(g,σ)− g‖B = 0, (2.7)

lim
ε→0+

sup
g∈K

sup
σ1,σ2∈Σ

Nε
σ1 6=σ2

‖Fε(g,σ1)− Fε(g,σ2)‖
B′

‖σ1 − σ2‖`∞
= 0.

(2.8)

In addition, the map F̃ε := ι ◦ Fε : Gε ×ΣNε
→ G ′ is Lipschitz, and satisfies that for all g ∈ Gε

the Frechet derivative, DgF̃ε, of F̃ε in g exists and for all K ⊂ B bounded

lim
ε→0+

sup
g∈K,σ∈Σ

Nε

‖DgF̃ε|(g,σ) − I‖B′→B′ = 0, (2.9)

Remark 2.3. We typically imagine that Nε is non-decreasing as ε → 0+ so that probing maps
become more dispersed as ε → 0. In fact, in our applications, Nε will often be identically equal
to ∞. However, when G is finite dimensional it is reasonable to assume that Nε ≤ dim G since,
otherwise, one would be putting a very diffuse measure on a finite dimensional space.

In addition, the spaces Gε allow us to define probes only in bounded subsets of G provided
that, as ε→ 0+, these subsets exhaust G .

In our treatment, G and G ′ will be the spaces of Cν and Cν−1 Riemannian metrics on a given
manifold, while B and B′ will be the spaces of Cν and Cν−1 symmetric two-tensors. We need to
refer to G ′ because our probing maps will typically not be Frechet differentiable as a map from



10 YAIZA CANZANI AND JEFFREY GALKOWSKI

G

L

Fε(g0,Σε)

g0

Fε(g1,Σε)

g1

Fε(g2,Σε)

g2

Figure 1. An example of a probing family Fε at a fixed ε and a thin set L. One
way to think of a probing map is that, to each point g ∈ G , we attach a probe
Fε(g,Σ

ℵ
Nε

). These probes are asymptotically translates of one another in the limit
ε→ 0 and, moreover, are contained in a small ball around g. A set L is thin if its
intersection with each of these probes has vanishing measure in the limit ε→ 0.

Cν to Cν and instead, the Frechet derivative of the map will make sense as a map from Cν to Cν−1

and will extend as in (2.9) to a map from Cν−1 to Cν−1.

We next discuss briefly the roles of each piece of the definition of a family of probing maps.
The assumption (2.6) is crucial to know that Fε probes all of Gε and does not avoid any open
sets. To understand (2.9) and (2.8), recall [Mil97] that one can construct an example of a foliation
of the unit square by analytic leaves {Wg}g∈[0,1], such that the map g 7→ Wg is continuous (but

not differentiable), and there is a set E ⊂ [0, 1]2 with full measure such that #{Wσ ∩ E} ≤
1. Thus, assumptions (2.9) and (2.8), which imply that the map Fε has reasonable regularity
properties (both as a function of g and ε), are crucial in proving that item (3) in list (2.1) holds
for predominant sets.

In what follows we work with the measure mΣ
Nε

on ΣNε
defined to be the product measure

mΣ
Nε

:= ⊗Nεj=1m, m :=
m

RL
|B(0,1)

m
RL

(B(0, 1))
,

where m
RL

denotes the Lebesgue measure on RL. Note that mΣε
(Σε) = 1.

Definition 2.4 (predominant sets). Let G be an open subset of a Banach space B, and F :=
{(Fε, Nε)}ε>0 be a family of G ′ probing maps for G . We say a set L ⊂ G is F -thin if for all
K ⊂ G bounded there is a Borel subset L0 ⊂ G such that L ⊂ L0 and for every g ∈ K, and ε > 0,
there exists an mΣε

-measurable set Sg,ε⊂ ΣNε
such that

{σ ∈ ΣNε
: Fε(g,σ) ∈ L0} ⊂ Sg,ε, lim

ε→0+
sup
g∈K

mΣ
Nε

(Sg,ε)= 0. (2.10)

We say G ⊂ G is F -predominant if G \G is F -thin. We say G ⊂ G is respectively predominant
or thin if there exists G ′ as above and a family of G ′ probing maps for G such that G is F -
predominant or F -thin respectively. Figure 1 shows a schematic of a family of probing maps and
a thin set.
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Remark 2.5. We note that if a set G ⊂ G is predominant the family of submanifolds endowed
with Borel measures, {(Γε,g, µε,g)}g∈G , with Γε,g := Fε(g,ΣNε

) and µε,g := (Fε(g, ·))∗mΣε
satisfies

that g ∈ Γε,g (by (2.6)), µε,g assigns a positive measure to any neighborhood of g (by (2.7)), the
map g 7→ Γε,g is a C1 family of Lipschitz submanifolds (by (2.8), (2.9)), and µε,g(G

c ∩ Γε,g) ≤ ε
for every g ∈ G (by (2.10)). Indeed, by (2.9), we have that locally Γε,g is almost a translate of
Γε,g0 .

The direct analogy to (2.3) would replace the condition (2.10) with

sup
g∈K

mΣ
Nε

(Sg,ε)= 0.

We are, however, not able to show this in our applications and, instead, relax the condition
to (2.10).

2.2.1. Verification of properties (2.1) for predominance. We now check that the notion of F -
predominance satisfies the properties listed in (2.1). We first prove that predominant sets are
dense.

Lemma 2.6. Suppose F is a family of B′ probing maps for G and that G ⊂ G is F -predominant.
Then, G is dense in G .

Proof. Let G be F -predominant. Fix g0 ∈ G and δ > 0. We will prove that BG (g0, δ) ∩ G 6= ∅.
Let F := {(Fε, Nε)}ε>0 with Fε : Gε ×ΣNε

→ G , ∪εGε = G , and Gε2 ⊂ Gε1 for ε1 < ε2. By (2.7),
there is ε0 > 0 such that for 0 < ε < ε0, g0 ∈ Gε and

sup
σ∈Σ

Nε

‖Fε(g0,σ)− g0‖B < δ. (2.11)

Let Gc ⊂ L0 with L0 Borel and satisfying (2.10). Then, since mΣε
(Σε) = 1, there is ε1 > 0

such that {σ ∈ ΣNε
: Fε(g0,σ) ∈ L0} 6= Σε for 0 < ε < min(ε0, ε1). In particular, there is σ ∈ Σε

such that Fε(g0,σ) ∈ G \ L0 ⊂ G. By (2.11), this implies that BG (g0, δ) ∩G 6= ∅. �

Next, we check that finite intersections of predominant sets are predominant.

Lemma 2.7. Suppose F is a family of B′ probing maps for G and that Gj ⊂ G , j = 1, 2, . . . , J

are F -predominant. Then,
⋂J
j=1Gj is F -predominant.

Proof. Let K ⊂ G bounded, let {Lj,0}Jj=1 ⊂ G be a collection of Borel sets with Gcj ⊂ Lj,0, and

for ε > 0 and g ∈ K let Sj,g,ε⊂ ΣNε
be mΣε

-measurable sets satisfying (2.10). Let L0 :=
⋃J
j=1 Lj,0

and for each ε > 0 and g ∈ K set Sg,ε :=
⋃J
j=1 Sj,g,ε. Then, for all g ∈ K and ε > 0

{σ ∈ ΣNε
: Fε(g,σ) ∈ L0} =

J⋃
j=1

{σ ∈ ΣNε
: Fε(g,σ) ∈ Lj,0} ⊂ Sg,ε.

Finally, limε→0+ supg∈K mΣ
Nε

(
Sg,ε

)
≤
∑J

j=1 limε→0+ supg∈K mΣ
Nε

(
Sj,g,ε

)
= 0, as claimed. �
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We end this section by checking that in finite dimensions predominant sets have full measure.

Since we are working in finite dimensions, we assume that Nε < ∞ and G ⊂ Rn for some
n <∞. We also take B = Rn. Now, the topology induced on Rn from B′ for any Banach space
B′ is identical. Therefore, we may assume, without loss of generality, that B′ = B = Rn.

Lemma 2.8. Let n < ∞, N0 < ∞, and suppose F= {(Fε, Nε)}ε>0 is a family of Rn probing
maps for G := Rn with supε>0Nε < N0. If G ⊂ G is F -predominant, then G has full Lebesgue
measure.

Proof. We will show that if L is F -thin, then L has zero Lebesgue measure. Let K0 ⊂ G = Rn
be closed and bounded. Next, observe that by (2.7), for ε > 0 small enough,

πG (F−1
ε (K0)) ⊂ {g ∈ G : d(g,K0) ≤ 1} =: K.

Since K ⊂ G is bounded, we let L0 ⊂ G be a Borel set with L ⊂ L0 and L0 satisfying (2.10) and
we take ε small enough such that K ⊂ Gε. Note that F−1

ε (L0 ∩K0) is measurable for all ε > 0.
Fubini’s theorem yieldsˆ

G×Σ
Nε

1F−1
ε (L0∩K0)d(mRn×mΣ

Nε
) =

ˆ
K
mΣ

Nε

(
{σ : Fε(g,σ) ∈ L0 ∩K0}

)
dmRn (g). (2.12)

Next, by (2.9), DFε|(g,σ) : T(g,σ)(Rm×Σε)→ TgRm is surjective for ε > 0 small enough, g ∈ K,
and σ ∈ Σε. Therefore, by the coarea formula,ˆ

G×Σε

1F−1
ε (L0∩K0)d(mRn×mΣ

Nε
) =

ˆ
K0

1L0∩Fε(G×Σ
Nε

)

(ˆ
F−1
ε (g)

1

|JFε|
dHg,ε

)
dmRn (g), (2.13)

where Hg,ε denotes the dim(ΣNε
)-Hausdorff measure on F−1

ε (g) and |JFε| :=
√

detDFε(DFε)∗.

Next, we will prove that there is ε0 > 0 such that for all 0 < ε < ε0 and g0 ∈ K0

πΣ
Nε

(F−1
ε (g0)) = ΣNε

. (2.14)

Once we have (2.14), observe that

Hg,ε(F−1
ε (g)) ≥ Hg,ε(πΣ

Nε
(F−1

ε (g)) ≥ c > 0.

Hence, since |JFε| ≤ C <∞, we have for all gˆ
F−1
ε (g)

1

|JFε|
dHg,ε > c > 0. (2.15)

To see (2.14), fix (g0,σ) ∈ K0 ×ΣNε
, and define Ψε : Rn → Rn by

Ψε(g1) := g1 − (DgFε|(g0,σ)
)−1(Fε(g1 + g0,σ)− g0).

We claim that there is ε0 > 0 such that Ψε : B̄(0, 1) → B̄(0, 1) is a contraction for 0 < ε < ε0 ,
where B̄(0, 1) is the closed unit ball. To prove the claim note that by (2.7), (2.8) and (2.9) there
is ε0 > 0 small enough such that for 0 < ε ≤ ε0, g0 ∈ K0, and g1 ∈ B̄(0, 1),

‖(DgF |(g0,σ))
−1(Fε(g0,σ)− g0)‖ < 1

2 , ‖(DgFε|(g0,σ)
)−1
(
DgFε|(g1+g0,σ)

−DgFε|(g0,σ)

)
‖ < 1

4 .

(2.16)
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Now, for g1, g2 ∈ B̄(0, 1),∥∥∥(DgFε|(g0,σ)
)−1
[
Fε(g0 + g1,σ)− Fε(g0 + g2,σ)−DgFε|(g0+g2,σ)

(g1 − g2)
]∥∥∥

=
∥∥∥ˆ 1

0
(DgFε|(g0,σ)

)−1
(
DgFε|(g0+(1−t)g2+tg1,σ)

−DgFε|(g0+g2,σ)

)
(g1 − g2)dt

∥∥∥ ≤ 1
2‖g1 − g2‖. (2.17)

Therefore, using (2.16) and letting g2 = 0 in (2.17), we have that for g1 ∈ B̄(0, 1)

‖Ψε(g1)‖ = ‖(DgFε|(g0,σ)
)−1
(
DgFε|(g0,σ)

g1 − Fε(g0 + g1,σ) + Fε(g0,σ)− Fε(g0,σ) + g0

)
‖ < 1,

and so Ψε : B̄(0, 1)→ B̄(0, 1) for ε < ε0. Next, again by (2.16) and (2.17), for g1, g2 ∈ B̄(0, 1)

‖Ψε(g1)−Ψε(g2)‖ = ‖(DgFε|(g0,σ)
)−1
(
DgFε|(g0,σ)

(g1 − g2)− Fε(g1 + g0,σ) + Fε(g2 + g0,σ)
)
‖

≤ 3
4‖g1 − g2‖.

Hence, Ψε : B(0, 1)→ B(0, 1) is a contraction. For each (g0,σ) ∈ Rn ×ΣNε
let g1 = g1(g0,σ) be

the fixed point of Ψε. Then, for each (g0,σ) ∈ Rn ×ΣNε
there is g1 with Fε(g1 + g0,σ) = g0 as

claimed in (2.14).

Finally, by (2.8) there is C > 0 with supε>0 sup(g,σ)∈K×Σε
|JFε(g,σ)| < C, (2.12), (2.13),

(2.10), (2.15) yield

0 = lim
ε→0+

ˆ
G×Σ

Nε

1F−1
ε (L0∩K0)d(mRn ×mΣ) ≥ 1

C

ˆ
K0

1L0∩Fε(G×Σ
Nε

)dmRn = 1
CmRn (L0 ∩K0).

Hence, mRn (L0 ∩ K0) = 0 and, since K0 is an arbitrary closed bounded set, mRn (L0) = 0.
In particular, by the completeness of the Lebesgue measure, L is Lebesgue measurable with
mRn (L) = 0 as claimed. �

2.3. Heuristic explanation for lack of Baire-genericity. A set is Baire generic if it contains
the intersection of countably many open dense sets. In order to explain why we do not pursue
this notion of genericity, we discuss one of the key features we require at periodic points for the
geodesic flow. Let Γ ⊂ S∗M be a Poincaré section through the point ρ and P : Γ → Γ the
corresponding Poincaré map. For simplicity, we will assume that P(ρ) = ρ. Theorem 1.3 has
consequences for the eigenvalues of dP|ρ : TρΓ→ TρΓ. Indeed, we have that there is C > 0 such
that for all n

‖(dP|ρ)n − I)−1‖ = ‖(d(Pn)|ρ − I)−1‖ ≤ (Cn)Cn
αν+ε+1.

Therefore, the eigenvalues, {λj}2d−2
j=1 of dP|ρ must satisfy

inf
j,p

(
1 + |λj |

)n−1|λj − ei
2πp
n | ≥ inf

j
|λnj − 1| ≥ (Cn)−Cn

αν+ε−1, n ≥ 1.

Since dP is a symplectic transformation, eigenvalues may be confined to the unit circle (see
Section 5.1) and this becomes analogous to understanding the structure of the set real numbers
which are poorly approximable by rational numbers.

To discuss the issues of genericity in a simpler setting, we forget now about Poincaré maps
and instead discuss them in the context of approximation of real numbers. As explained above,
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letting h`(q) = (`q)−`q
α−1 we want to investigate the set

D :=
⋃
`>0

D`, D` := {s ∈ [0, 1] : |s− p
q | > h`(q), for all p, q ∈ N}. (2.18)

To study D we consider

U :=
∞⋂
q0=1

∞⋃
q=q0

Uq, Uq :=

q−1⋃
p=0

(pq − hq(q),
p
q + hq(q)).

Observe that U is Baire generic. However, U ∩D` = ∅ for all ` > 0 which implies that D ∩ U = ∅
and hence that D is not Baire generic. Since even the property we want for the eigenvalues of
dP is non-generic, it is unlikely that the set of metrics which produce such P is generic.

For further evidence of lack of Baire genericity, we consider the space Diffν(Γ) of Cν diffeomor-
phisms on a smooth manifold Γ for ν ≥ 2. Kaloshin [Kal00] showed that for any {an}∞n=1 ⊂ [1,∞),
the set {

f ∈ Diffν(Γ) : lim sup
n

Pn(f)

an
<∞

}
is not Baire generic, where Pn(f) := #{ρ ∈ Γ isolated : fn(ρ) = ρ}. Indeed, when Γ is a
3-manifold, this set is not Baire generic even in the space of volume preserving maps [KS06].

While D in (2.18) is not Baire generic, one can see that, since limn→∞ |[0, 1] \Dn| = 0, D has
full Lebesgue measure and hence is, in a much stronger sense, typical. Indeed, for many purposes,
the notion of full Lebesgue measure is a better version of ‘typical’ than Baire genericity. For
example, a randomly chosen element of [0, 1] is almost surely in D but may not be in a given
Baire generic set. Also, a full Lebesgue measure set in R has Hausdorff dimension 1, while a
Baire generic set in R may have 0-Hausdorff dimension. Motivated by this discussion, the notion
of ’typicality’ that we use, i.e. that of predominance (see Definition 2.4), is an analog of a full
Lebesgue measure set of metrics g ∈ G ν .

3. Counting closed geodesics and improvements for Weyl laws:
Proof of Theorems 1.1 and 1.2

In this Section, we use Theorem 1.3 to prove Theorems 1.1 and 1.2. Both of these theorems rely
on volume estimates on the set of nearly closed geodesics. We obtain these estimates in Section
3.1 and prove Theorems 1.1 and 1.2 in Sections 3.2 and 3.3 respectively.

We start by letting M be a Cν manifold, g ∈ G ν , β0 > 0, and W be a β0-family of transition
maps for g. Let β : [0,+∞) → (0,+∞) be a continuous, decreasing function. Throughout the
section we will suppose that

R(t,β(t), g) ⊂ N (t,β(t), (g,W)), for t > c, d(ϕgt (ρ), ρ) ≥ c|t|, for |t| ≤ c. (3.1)

In Theorem 1.3, we show that there is a predominant set of metrics G ⊂ G ν such that (3.1) holds

for g ∈ G with β(t) = C−C(t+1)Ω−1 and some C > 0.
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3.1. Volume of nearly closed geodesics. We start by following [DZ16, Appendix A], replacing
their assumption of hyperbolicity of the flow with (3.1) to estimate the volume of nearly closed

geodesics. Recall that there are C̃, L > 0 such that for all f ∈ C2(S∗M) and t ∈ R

‖f ◦ ϕgt ‖C2(S∗M) ≤ C̃eL|t|‖f‖C2(S∗M). (3.2)

In particular, d(ϕgt (ρ), ϕgt (ρ
′)) ≤ C̃eL|t|d(ρ, ρ′) for all ρ, ρ′ ∈ S∗M and t ∈ R.

The following lemma shows that two nearby orbits that return to their starting point after
similar times are almost iterates of one another.

Lemma 3.1. Let M, g, β0,W and β be such that (3.1) and (1.3) hold. Given t0 > 0 there are
C, δ > 0 such that the following holds. Let t ≥ t0, t′ ≥ t0 with |t − t′| ≤ δ, and for 0 ≤ ε < β(t)
let ρ, ρ′ ∈ S∗M be such that

d(ρ, ϕgt (ρ)) ≤ ε, d(ρ′, ϕgt′(ρ
′)) ≤ ε, d(ρ, ρ′) ≤ δβ(t)e−Lt.

Then, |t− t′| ≤ Cε and there exists s ∈ [−1, 1] such that β(t)d(ρ, ϕgs(ρ′)) ≤ Cε.

Proof. First, observe that for any ε0 > 0, we may increase C enough so that the statement becomes
trivial for ε ≥ ε0. Therefore, we need only work with ε < ε0< min(1

4β0,
1
2) small enough and we

do so from now on. Next, observe that we may shrink δ so that d(ϕgt (ρ), ϕgt (ρ
′)) ≤ 1

4β0 whenever

d(ρ, ρ′) ≤ δe−Lt, t ≥ t0. We may also assume that all of the relevant points are contained in a
single coordinate chart and hence we may work in a small ball in R2d−1.

We also assume that δ is small enough such that whenever d(ρ, ρ′) ≤ δ there exists |s| ≤ 1 with
ρ− ϕgs(ρ′) ∈H (ρ) and such that d(ρ, ϕgs(ρ′)) ≤ 2d(ρ, ρ′). Set ρ0 := ϕgs(ρ′) and note

ρ− ρ0 ∈ (Hp(ρ))⊥, d(ρ, ρ0) ≤ 2δβ(t)e−Lt, d(ϕgt′(ρ0), ρ0) ≤ C̃eLε. (3.3)

By Taylor expanding in ρ and using (3.2), we have

‖ϕgt (ρ0)− ϕgt (ρ)− dϕgt (ρ)(ρ0 − ρ)‖ ≤ C̃eLtd(ρ, ρ0)2 ≤ 2C̃δβ(t)d(ρ, ρ0).

Next, Taylor expanding in t and using that there is C > 0 such that ‖∂2
t ϕ

g
t ‖ ≤ C,

‖ϕgt′(ρ0)− ϕgt (ρ0)−Hp(ϕ
g
t (ρ0))(t′ − t)‖ ≤ C|t′ − t|2 ≤ Cδ|t′ − t|.

Thus, we have that there is C > 0 with

‖ϕgt′(ρ0)− ϕgt (ρ)− dϕgt (ρ)(ρ0 − ρ)−Hp(ϕ
g
t (ρ0))(t′ − t)‖ ≤ Cδ

(
β(t)d(ρ0, ρ) + |t− t′|

)
.

Next, since d(ϕt(ρ), ρ) ≤ ε, by (3.3) there is C > 0 such that

‖
[
I − dϕgt (ρ)

]
(ρ0 − ρ)−Hp(ϕ

g
t (ρ0))(t′ − t)‖ ≤ Cδ

(
β(t)d(ρ0, ρ) + |t− t′|

)
+ Cε.

Now, by (1.3) there is C > 0 such that ‖Wϕgt (ρ),ρ − I‖ ≤ Cd(ϕgt (ρ), ρ) ≤ Cε. Therefore, there is

C > 0 such that

‖
[
Wϕgt (ρ),ρ − dϕ

g
t (ρ)

]
(ρ0 − ρ)−Hp(ϕ

g
t (ρ))(t′ − t)‖ ≤ Cδ

(
β(t)d(ρ0, ρ) + |t− t′|

)
+ Cε. (3.4)
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Now, since ρ0 − ρ ∈H (ρ), we have by (3.1), Definition 1.6, and the fact that that ε ≤ β(t), that
there is C > 0 such that

β(t)d(ρ0, ρ) ≤ ‖Πϕt(ρ)

[
Wρ,ϕgt (ρ) − dϕ

g
t (ρ)

]
(ρ0 − ρ)‖

≤ C‖
[
Wρ,ϕgt (ρ) − dϕ

g
t (ρ)

]
(ρ0 − ρ)−Hp(ϕ

g
t (ρ))(t′ − t)‖. (3.5)

On the other hand, since Wϕgt (ρ),ρ(Hp(ρ)) = Hp(ϕ
g
t (ρ)), Wϕt(ρ),ρ(H (ρ)) = H (ϕgt (ρ)), and H (ρ)

is transverse to Hp(ρ) (uniformly in ρ), we have

|t− t′| ≤ C‖
[
Wρ,ϕgt (ρ) − dϕ

g
t (ρ)

]
(ρ0 − ρ)−Hp(ϕ

g
t (ρ))(t′ − t)‖. (3.6)

Combining (3.4), (3.5), (3.6), and choosing δ � 1 and ε0 <
1

2C , we have β(t)d(ρ, ρ0)+ |t−t′| ≤ Cε
as claimed. �

We proceed to bound the volume of nearly closed trajectories in S∗M .

Lemma 3.2. Let M, g, β0,W, and β be such that (3.1) holds. Let t0 > 0, then there is C > 0
such that for T > t0 and 0 < ε ≤ β(T ), we have

vol
S∗M

({
ρ : ∃t ∈ [t0, T ] such that d(ϕgt (ρ), ρ) ≤ ε

})
≤ Cε2d−2eCTβ(T )−(4d−3).

Proof. Let t0 > 0 and T > t0. Then, let δ as in Lemma 3.1 and fix 0 < ε ≤ β(T ). Next divide

[t0, T ] into intervals, {Ii}
N
T

i=1 with right endpoints at {Ti}
N
T

i=1 satisfying |Ii| ≤ δ
2 . Next, for each

i = 1, . . . , NT let {ρj}
K
Ti

j=1⊂ S∗M be a maximal δ
2e
−LTiβ(Ti) separated set. Note that

{
ρ : ∃t ∈ [t0, T ] such that d(ϕgt (ρ), ρ) ≤ ε

}
⊂

N
T⋃

i=1

K
Ti⋃

j=1

π
S∗M (Pi,ρj ),

Pi,ρj :=
{

(ρ, t) : t ∈ Ii, d(ϕgt (ρ), ρ) ≤ ε, d(ρ, ρj) ≤ δ
2e
−LTiβ(Ti)

}
.

(3.7)

To estimate vol
S∗M (π

S∗M (Pi,ρj )), fix (ρ′, t′) ∈ Pi,ρj and let (ρ, t) ∈ Pi,ρj with (ρ, t) 6= (ρ′, t′). By
Lemma 3.1,

|t− t′| ≤ Cε, d
(
ρ ,

⋃
|s|≤1

ϕgs(ρ
′)
)
≤ Cεβ(Ti)

−1.

Then, vol
S∗M (π

S∗M (Pi,ρj )) ≤ Cε2d−2β(Ti)
−(2d−2), and

vol
S∗M

(
π
S∗M

(KTi⋃
j=1

π
S∗M (Pi,ρj )

))
≤ KTi

Cε2d−2β(Ti)
−(2d−2) ≤ Cε2d−2e(2d−1)LTiβ(Ti)

−(4d−3),

(3.8)

since there is Cδ > 0 such that KTi
≤ Cδ[e

−LTiβ(Ti)]
−(2d−1). The claim follows from combining

(3.8) with (3.7), and using that β is decreasing and NT ≤ CT . �

Remark 3.3. We note that if one is only interested in obtaining a volume estimate of the form

volS∗M

({
ρ : ∃t ∈ [t0, T ] such that d(ϕgt (ρ), ρ) ≤ ε

})
≤ Cε2d−2−keCTβ(T )−(4d−3−k),
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for some k ≥ 1, then it is possible to use a weaker notion of non-degeneracy. Indeed, one can
replace the definition of N (t, ρ, (g,W)) by saying that ρ ∈ N k(t, ρ, (g,W)) if there is a 2d− 2− k
dimensional subspace of v ∈ TρS∗M such that |Π

ϕ
g
t (ρ)

(W
ρ,ϕ

g
t (ρ)
− dϕgt )v| > α|Πρv|. If implemented

throughout the article, this would in turn lead to a smaller value of αν in Theorem 1.1 but would
not be sufficient for counting closed geodesics.

3.2. Proof of Theorem 1.2. Let Ω > Ων . By Theorem 1.3 there is a predominant set GΩ ⊂ G ν

such that for all g ∈ G and W a family of transition maps for g there is C > 0 such that (3.1)

holds with β(t) = C−C(t+1)Ω−1.

Let g ∈ GΩ and 0 < t0 < injg(M) so that there are no closed geodesics with length ≤ t0.
Let δ be as in Lemma 3.1. First, we claim that c(T, g) < ∞ for each T > 0. Indeed, suppose
that {ρi}∞i=1 ⊂ S∗M and {ti}∞i=1 ⊂ [t0, T ] are sequences satisfying ϕgti(ρi) = ρi and such that

ρj /∈ {ϕgs(ρi) : |s| ≤ 4} for all i 6= j. Then, we may assume that there are ρ ∈ S∗M and t ∈ [t0, T ]
such that ρi → ρ and ti → t. By continuity, we conclude ϕgt (ρ) = ρ. Next, let i0 > 0 be such
that d(ρi, ρ) ≤ δβ(T )e−LT and |ti − t| ≤ δ for i ≥ i0. Then, by Lemma 3.1 we obtain that for
i > i0 there is si ∈ [−1, 1] such that ϕgsi(ρi) = ρ and ti = t. In particular, for i, j > i0, we have
ρj = ϕgsi−sj (ρi) which is a contradiction since |si − sj |≤ 3.

Since c(T, g) <∞, we let {γi}c(T,g)i=1 be the finite collection of primitive closed geodesics of length
≤ T . Then, there is δ0 = δ0(T ) > 0 such that if γi(δ) ⊂ S∗M denotes the δ neighborhood of γi,

γi(δ) ∩ γj(δ) = ∅, i 6= j, 0 ≤ δ < δ0. (3.9)

Letting Ti be the length of γi, we have by (3.2) that supρ∈γi(δ) d(ρ, ϕg
Ti

(ρ)) ≤ C̃δeLTi . Therefore,

using Lemma 3.2 with C̃δeLT in place of ε, there is C > 0 such that,∑
1≤i≤c(T,g)

vol
S∗M (γi(δ)) = vol

S∗M

( ⋃
1≤i≤c(T,g)

γi(δ)
)
≤ Cδ2d−2eCT+(2d−2)LTβ(T )−(4d−3). (3.10)

In addition, since there is c > 0 such that vol
S∗M (γi(δ)) ≥ cδ2d−2t0 for all 1 ≤ i ≤ c(T, g), we

obtain, using (3.9) and (3.10) that there is C > 0 such that

c(T, g)t0 ≤ CeCT+(2d−2)LTβ(T )−(4d−3).

Together with the fact that c(T, g) = 0 for 0 < T < t0, this implies Theorem 1.2. �

3.3. Proof of Theorem 1.1. Let g be a Cν-Riemannian metric on a manifold M of dimension
d. For R > 0 let PR(t0, T ) ⊂ S∗M be the set of directions that yield trajectories that are R close
to being periodic at some time with t0 ≤ |t| ≤ T . That is,

PR(t0, T ) :=

{
ρ ∈ S∗M :

⋃
t0≤|t|≤T

ϕgt (BS∗M (ρ,R)) ∩B
S∗M(ρ,R) 6= ∅

}
. (3.11)

In [CG20, Theorem 2] it is proved that if ν ≥ ν0 and T(R) is a sub-logarithmic resolution function
and there exist C > 0 and t0 such that

lim sup
R→0+

vol
S∗M

(
B(PR(t0,T(R)), R)

)
T(R) ≤ C, (3.12)
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then, as λ→∞,

#{j : λj(g) ≤ λ} =
volRd(B

d) volg(M)

(2π)d
λd +O

( λd−1

T(λ−1)

)
. (3.13)

Remark 3.4. The application of [CG20, Theorem 2] deserves a brief comment. Note that, as
stated, the theorem is valid for C∞ metrics. However, it is clear that all of the proofs rely only
on the Cν norm of the metric for some sufficiently large ν. Therefore, provided that we work with
sufficiently smooth metrics, we may apply [CG20, Theorem 2].

The proof of Theorem 1.1, given in subsection 3.4, is then reduced to proving that for any
Ω > Ων and some C0 > 0

T(R) = f−1(Rγ), (3.14)

with

γ :=
2d− 2

4d− 3
, f(t) =

β(t)

β(0)
e−C0t, β(t) := C−C(t+1)Ω−1

is a sub-logarithmic resolution function and that (3.12) holds. Indeed, Theorem 1.1 follows since

C0(log λ)
1
Ω ≥ T(λ−1) = f−1(λ−γ) ≥ 1

C0
(log λ)

1
Ω , λ ≥ λ0 (3.15)

for some C0 > 0 and λ0 > 0 large enough.

Before we proceed to the proof of Theorem 1.1, we recall the notion of a sub-logarithmic
resolution function from [CG20, Definition 1.1]. We say that T : (0, 1) → (0,∞) is a resolution
function if it is continuous and decreasing. We say that T is sub-logarithmic if it is differentiable
and

(log T(R))′ ≥ − 1

R logR−1
0 < R < 1. (3.16)

Next, we introduce a convenient class of sub-logarithmic rate functions.

Lemma 3.5. Suppose that A(t) : R→ R is twice differentiable and satisfies A(0) = 0, A′(t) > 0,

A′′(t) ≥ 0 for t ≥ 0. Then, with f(t) = e−A(t), we have that T(R) := f−1(Rγ) is a sub-logarithmic
rate function for γ > 0.

Proof. First, observe that T(R) is decreasing and differentiable. Moreover,

(log T)′(R) =
γRγ

Rf ′(f−1(Rγ))f−1(Rγ)
= − γ

RA′(f−1(Rγ))f−1(Rγ)
.

Next, note that

A′(t)t =

ˆ t

0
A′′(s)s+A′(s)ds ≥

ˆ t

0
A′(s)ds = A(t).

Therefore, A′(f−1Rγ)f−1(Rγ) ≥ A(f−1(Rγ)) = γ logR−1, and hence (3.16) holds as claimed. �

Remark 3.6. By Lemma 3.5, the function T(R) as defined in (3.14) is a sub-logarithmic resolu-

tion function. Indeed, f(t) = e−A(t) with A(t) = C0t+C((t+ 1)Ω − 1). Note that A(0) = 0, and,
since Ω ≥ 1, it is easy to check that A′(t) > 0, and A′′(t) ≥ 0 for t ≥ 0 as claimed.
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3.4. Proof of Theorem 1.1. Let Ω > Ων . By Theorem 1.3 there is a predominant set GΩ ⊂ G ν

such that for all g ∈ GΩ and W a family of transition maps for g there is C > 0 such that

(3.1) holds with β(t) = C−C(t+1)Ω−1. Without loss of generality we assume C > 1. In Lemma
3.5 we proved that T as defined in (3.14) is a sub-logarithmic resolution function. Therefore, as
explained above, the proof of Theorem 1.1 would follow from combining (3.13) and (3.15) once
we prove (3.12).

Let 0 < t0 < T . In order to prove (3.12), we first claim that there is C > 0 such that

B(PR(t0, T ), R) ⊂
{
q ∈ S∗M : ∃t ∈ (t0, T ) ∪ (−T,−t0) s.t. d(ϕt(q), q) ≤ CeCTR

}
. (3.17)

Indeed, for q ∈ B(PR(t0, T ), R), there is ρ ∈ PR(t0, T ) such that d(ρ, q) < R. Then, there
are t ∈ (t0, T )∪(−T ,−t0) and ρ1 ∈ S∗M such that d(ρ, ρ1) < R and d(ϕt(ρ1), ρ) < R. Since
ϕt((x, ξ)) = ϕ−t(x,−ξ), we may assume without loss of generality that t > 0. Therefore, by (3.2)
there is C > 0 such that

d(ϕt(q), q) ≤ d(ϕt(q), ϕt(ρ1)) + d(ϕt(ρ1), ρ) + d(ρ, q) ≤ C̃eLtd(q, ρ1) +R+R ≤ CeCtR,

proving the claim in (3.17).

By (3.17) and Lemma 3.2, for R ≤ β(T )(CeCT )−1, we have

vol
S∗M

(
B(PR(t0, T ), R)

)
T ≤ CT (CeCTR)2d−2eCTβ(T )−(4d−3) ≤ CeC1TR2d−2β(T )−(4d−3).

Therefore, we may choose C0 = C1
4d−3 and use the definition of T(R) to obtain that R ≤

β(T(R))(CeCT(R))−1 for R small enough and vol
S∗M

(
B(PR(t0,T(R)), R)

)
T(R) ≤ C as claimed.

�

4. Outline of the proof of Theorem 1.3

To simplify the exposition in this outline, we will first imagine that it is only necessary to
understand exactly periodic points rather than returning points. We also assume that one can
construct a global Poincaré section (see Section 4.5). In addition, rather than providing the details
to prove the result for a predominant set of metrics, we will outline a proof of the theorem for a
dense set of metrics. See the end of the section for remarks on how to drop these assumptions
and prove predominance.

4.1. The perturbation. The first key point to understand when proving Theorem 1.3 is how
to perturb away the degeneracy of a single periodic orbit with quantitative control on how large
a perturbation is needed to produce non-degeneracy. When doing this, it is important to use a
perturbation of the metric which interacts with the periodic geodesic exactly once. That is, the
perturbation must be supported in a ball, B ⊂ M , over which the geodesic passes exactly once.
Because of this, we will only be able to directly perturb away degeneracy for primitive closed
geodesics. The construction of one such the perturbation is done in Section 9.

Remark 4.1. Our main inductive argument is actually proved under some general assumptions
on the perturbation (see Definitions 7.2 and 7.3). Because of this, we postpone this construction
until after our main inductive argument, which appears in Section 8.
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Restricting our attention to a single geodesic, γg0 , for a metric g0, we find a finite dimensional
family of perturbations gσ of the metric g0. When γg0 is a primitive periodic geodesic, these
perturbations should produce non-degeneracy of the orbit γgσ . The perturbations are a combina-
tion of those considered by Anosov [Ano82] and Klingenberg [Kli78, §3.3] (see also Klingenberg–
Takens [KT72]). In our case, when γg0 is primitive, we give careful estimates on how these
perturbations affect the Poincaré map, Pγgσ , associated to γgσ and its derivative, dPγgσ . In
particular, estimating the size of the inverse of the derivative of the map σ 7→ (Pγgσ , dPγgσ ).

Once we have a family of perturbations for any given geodesic, we cover S∗M by finitely many
small balls, Bi, of radius r and center ρi and associate to each ball a family of perturbations
modelled on those above; replacing the geodesic γg0 by the geodesic, γg0,ρi for g0 through ρi.
After an approximation argument, this gives a finite (albeit very large) dimensional family of
perturbations which can be used to perturb away degeneracy for primitive geodesics of a given
length. In particular, for every such geodesic γg0 , we can find a ball, Bi, such that, with gi,σ
the perturbation of g0 associated to γg0,ρi , the derivative of the map σ 7→ (Pγgi,σ,ρi

, dPγgi,σ,ρi
)

is invertible at σ for all σ ∈ BRL(0, 1). Once we have this in place, it will be possible to control
the volume of the set of perturbations for which there is a degenerate primitive closed geodesic
of some length, with some quantitative control on how degenerate such an orbit may be. In
particular, once this volume is small enough, there is at least one perturbation of g0 for which all
primitive orbits of a certain length are non-degenerate. Since g0 is arbitrary, and we make our
perturbations arbitrarily small, we will eventually obtain density after an induction on the length
of the closed geodesics.

Remark 4.2. In order to obtain predominance in our main theorem, we use the control on the
volume of bad perturbations more seriously. In particular, making it smaller than ε > 0 for any
chosen ε.

4.2. The Induction. The proof of Theorem 1.3 relies on an induction on the length of an orbit.
In order to do this, we follow a strategy motivated by that of Yomdin [Yom85]. The work in
[Yom85] shows that every diffeomorphism f0 on M can be perturbed to a diffeomorphism fε in
which every n-periodic point x is γε-hyperbolic in the sense that the eigenvalues λj of dfnε (x)
satisfy ||λj | − 1| ≥ γε where γε is a power of ε depending on n, ε and the regularity of f0. The
idea there is to first use a perturbation to make primitive orbits hyperbolic and then to use the
fact that hyperbolicity of an orbit passes to its multiples and, moreover, that every multiple is
more hyperbolic than the previous multiple.

In contrast to what happens when working with diffeomorphisms on M , one of the main
difficulties to overcome in the case of geodesic flows (or indeed symplectic maps) is that, in
general, it is not possible to perturb a closed orbit to turn it into a hyperbolic closed orbit.
Indeed, eigenvalues of the Poincaré map may be ‘trapped’ on the unit circle (see Section 5.1) and
hence there are so-called stable closed orbits which cannot be perturbed away. Because of this
structure, one must find a different property which guarantees non-degeneracy and can be passed
from a primitive closed orbit to its multiples.

Given a metric g0, our objective is to find a metric g∞, that is arbitrarily close to g0, with the
property that for each ` every periodic trajectory of length ≤ 2` is β` non-degenerate in the sense
of Definition 1.6. Here, {β`}` is a decreasing sequence of numbers.
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We build g∞ by induction on the parameter ` which represents (the logarithm of) the maximum
length of the orbits up to which non-degeneracy is controlled. Note that we start with the most
naive possible version of the induction and gradually add the details necessary to handle our
situation.

A. Hypothesis. Assume g` is a metric such that for k ≤ `, all closed trajectories of length
n ∈ (2k−1, 2k] are βk non-degenerate in the sense of Definition 1.6.

B. Perturbation: Find a perturbation, g`+1 of g` which satisfies

• primitive closed trajectories of length n ∈ (2`, 2`+1] are β`+1 non-degenerate,
• closed trajectories of length n ∈ (2k−1, 2k] with k ≤ ` remain βk non-degenerate.

C. Deal with non-primitive closed trajectories: A non-primitive closed trajectory γ for g`+1

of length n ∈ (2`, 2`+1] is a multiple of a primitive closed trajectory γ̃ of lengthm ∈ (2k−1, 2k]
with k ≤ `. By the inductive hypothesis γ̃ is βk non-degenerate. Use this to show that the
βk non-degeneracy of γ̃ implies β`+1 non-degeneracy of γ.

Why it fails: The βk non-degeneracy of the orbit γ̃ does not imply β`+1 non-degeneracy of its
multiple γ. Indeed, the Poincaré map associated to γ may have a root of unity as an eigenvalue.
That is, Step C cannot be completed.

Solution: We define the notion of (β, q)-nondegeneracy. For ℵ > 0 and β, q > 0 we say a matrix
A ∈M(ℵ), the set of ℵ × ℵ matrices, is (β, q) non-degenerate if∥∥(I −Aq)−1

∥∥ ≤ (5
2q

2β−1)
ℵ
(1 + ‖A‖q)ℵ−1. (4.1)

The key observation here is that, if the derivative, A = dPγ , of the Poincaré map associated to a

closed orbit γ is (β, q)-nondegenerate, then the q iterate of the orbit is (5
2q

2β−1)−ℵ non-degenerate
(see Figure 2 for a schematic of a (β, 2) non-degenerate orbit). Therefore, our goal will be to make
perturbations of the metric, g`, so that primitive orbits become (β(q), q)-non-degenerate for all q
and some sequence {β(q)}∞q=1. This will be possible provided that β(q) = O(q−2−0) as q → ∞.

The main difficulty with the notion of (β(q), q) non-degeneracy is that, although for each fixed
(β(q), q) the property of (β(q), q) non-degeneracy is stable under small perturbations, the property
of being (β(q), q) non-degenerate for all q is not. Therefore, we only look for non-degeneracy for
q < Q.

We next present the modified induction argument. The induction is done on the parameter `.
One can find sequences of numbers {βk}k, {βk,`}k,`, and {Qk,`}k,` so that the induction below can
be completed.

A. Hypothesis. Assume g` is a metric such that for k ≤ `
– closed trajectories of length n ∈ (2k−1, 2k] are βk non-degenerate,
– primitive closed trajectories of length n ∈ (2k−1, 2k] are (βk,`q

−3, q) non-degenerate for
all 0 < q < Qk,`.

B. Perturbation: Find a perturbation, g`+1, of g` which satisfies

– primitive closed trajectories of length n ∈ (2`, 2`+1] for g`+1 are β`+1 non-degenerate
– closed trajectories of length n ∈ (2k−1, 2k] for g`+1 remain βk non-degenerate for all
k ≤ `.
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v

dϕg
T
v

dϕg
2T
v

∼ β

Figure 2. In the figure, we show a primitive periodic orbit of length T such that
the derivative dP of the Poincaré map is (β, 2) non-degenerate. The primitive
orbit is shown in the blue dotted line. Note that dP satisfies (dP)k = dϕgkT .
Thus, the property of (β, 2) non-degeneracy implies that ‖dϕg2T v − v‖ ∼ β.

– primitive closed trajectories of length n ∈ (2k−1, 2k] for g`+1 are (βk,`+1q
−3, q) non-

degenerate for 0 < q < Qk,`+1 and k ≤ `+ 1,

C. Deal with non-primitive closed trajectories: Let γ be a closed trajectory for g`+1 of length
n ∈ (2`, 2`+1] that is non-primitive. Then γ is a multiple of a primitive closed trajectory γ̃
of length m ∈ (2k−1, 2k] with k ≤ `. Note that then γ̃ satisfies the hypothesis in Step A. In
particular, to show that γ is β`+1 non-degenerate, we would like to use that γ̃ is (βk,`q

−3, q)
non degenerate with q = n/m, and for that we need n/m < Qk,`. We then show that

2`+1−k < Qk,` and that by the inductive hypothesis this implies β`+1 non-degeneracy of γ.

After the steps A-C above (modulo the fact that we have only consider exactly closed orbits),
the inductive argument yields a metric g∞ which is arbitrarily close to g0 and has the desired
non-degeneracy property that, for each `, every closed trajectory for g∞ of length ≤ 2` is β`
non-degenerate. This yields a discretized version of the statement in Theorem 1.3.

It is important to note that one cannot do a simplified version of this induction in which a
sequence {Qk}k is used in place of {Qk,`}k,` and {βk}k is used in place of {βk,`}k,`. The problem
would be that, when applying the inductive hypothesis to carry out Step C, one would need
n/m < Qk so that the non-degeneracy of γ̃ may pass to that of γ. However, this may not be
possible to arrange. For example, for a closed trajectory of length n that is a multiple of a
primitive trajectory of length m = 1. One might wonder, at this point, why we do not simply
take Qk,` = Q` = 2`+2. We will see below, in sections 4.3 and 4.4, that this is indeed not possible.
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4.3. How to deal with almost closed trajectories. Next, we explain how to modify the
argument to deal with trajectories that are not necessarily closed and primitive but are very
close to being such. First of all, instead of working with closed trajectories, one works with (n, α)
returning trajectories. In this discussion a point ρ is said to be (n, α) returning if d(ρ,Pn(ρ)) ≤ α,
where we are still pretending that we can work with a globally defined Poincaré section P (see
Section 4.5).

There is one serious difficulty which is hidden by imagining that we only deal with exactly closed
trajectories. This difficulty arises from the fact that the notion of primitiveness for non-closed
trajectories is not a well-defined condition. One should instead think of a degree of simplicity.
We will say that a point ρ is (n, α) simple if d(ρ,Pk(ρ)) > α for 0 < k < n. Instead of working
with primitive closed trajectories of length n one works with trajectories that are (n, α) simple
for some α.

It is in fact only possible to make an (n, α) simple point be (βq−3, q) non-degenerate whenever
β is small depending on α. Therefore, there are sequences {βk,`}k,` and {αk,`}k,` such that in the

`-th step of the induction argument, orbits of length n ∈ (2k−1, 2k) which are βk,` returning can
only be made to be (βk,`q

−3, q) non-degenerate for 0 < q < Qk,` provided they are (n, αk,`)-simple
and βk,` is small in terms of αk,`.

The induction argument is the same as the one outlined before but with each instance of the
word ‘closed’ replaced by (n, β) returning for some parameter β depending on (k, `) and each
instance of the word ‘primitive’ replaced by (n, α) simple for some parameter α depending on
(k, `).

A. Hypothesis. Assume g` is a metric such that for k ≤ `
– βk,` returning trajectories of length n ∈ (2k−1, 2k] are βk non-degenerate,

– βk,` returning trajectories that are αk,` simple and have length n ∈ (2k−1, 2k] are
(βk,`q

−3, q) non-degenerate for all 0 < q < Qk,`.

B. Perturbation: Find a perturbation, g`+1, of g` which satisfies

– β`+1,`+1 returning trajectories that are α`+1,`+1 simple and have length n ∈ (2`, 2`+1]
are β`+1 non-degenerate

– βk,`+1 returning trajectories of length n ∈ (2k−1, 2k] will remain βk non-degenerate for
all k ≤ `.

– βk,`+1 returning trajectories that are αk,`+1 simple and have length n ∈ (2k−1, 2k] will
be (βk,`+1q

−3, q) non-degenerate for 0 < q < Qk,`+1 and k ≤ `+ 1.

C. Deal with non-simple trajectories: This step becomes substantially more complicated as
a result of needing to handle non-closed trajectories. One consequence of the new difficulties,
is that, instead of using 2-adic intervals, we must use a-adic intervals for some 1 < a < 2.
We include a sketch of how to handle Step C below in Section 4.4, in order to present a
more or less complete picture of the induction. However, the reader may wish to skip the
next section on first reading.

4.4. Detailed sketch of Step C. Suppose that ρ yields a trajectory of length n ∈ (2`, 2`+1] that
is (n, β`+1,`+1) returning but not (n, α`+1,`+1) simple.
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It is in general not possible to find an m ≤ n/2 such that ρ is (m,α`+1,`+1) returning and
(m,α`+1,`+1) simple. Instead, one only obtains (m1, α̃1) returning with α̃1 ∼ Cnα`+1,`+1 and

m1 ≤ 2−1n. Therefore, in Step C of the induction, if m1 ∈ (2k1−1, 2k1), we would need α̃1 < βk1,`

and that the trajectory be at least αk1,` simple to apply the inductive hypothesis and obtain the
(βk1,`q

−3, q) non-degeneracy of the orbit for q < Qk1,`. In fact, the first condition that we impose
on α`+1,`+1 is that α̃1 < βk1,`.

Then, we need to ask whether the trajectory is (m,αk1,`) simple. If it is, we can apply the
inductive hypothesis to obtain non-degeneracy. However, if it is not, we need to repeat this process,
obtaining that ρ is (m2, α̃2) returning, with α̃2 ≤ Cm1αk1,` and m2 ≤ m1/2 with m2 ∈ (2k2 , 2k2+1].
As in the case of treating ρ as (m1, α̃1) returning, we compare α̃2 and βk2,`−1 and ask whether
ρ is (m2, αk2,`−1) simple. The requirement that α̃2 ≤ βk2,`−1 puts an additional upper bound on
αk1,`. If the trajectory is not simple enough, we repeat once again finding (mi, ki, α̃i) until ρ is
(mi, αki,`−i+1) simple. Note that this will happen, since every 1 returning trajectory is simple
and hence, if mi = 1, then, provided we have chosen the αk,` correctly, ρ is β0,0 returning and
α0,0 simple and hence we may apply the inductive hypothesis.

Since mi ≤ mi−1/2, we have mi ≤ 2−in ≤ 2`+1−i. In some circumstances, we may be working
with n = 2`+1 and the iteration may not terminate until mi = 1. If this is the case, then we
want to use the inductive hypothesis on (1, β1,1) returning points to obtain non-degeneracy of γ.

However, this requires that every (1, β0,0) returning point be (β0,02−3(`+1), 2`+1) non-degenerate.
This will eventually fail, since Q1,1 < ∞ and ` is unbounded above. This can be remedied by
putting 1 < a < 2 and replacing 2-adic intervals by a-adic intervals. By doing this, we guarantee
that 1 ≤ mi ≤ 2−ia` and hence, the above iteration terminates in i < c` steps for some c < 1.

4.5. Comments on the lack of a global Poincaré section. In the outline above, we have
worked as though one can find a single compact symplectic manifold without boundary, Γ ⊂ S∗M ,
to serve as a Poincaré section. In general, this may not be the case and one may need to work
with Poincaré sections with boundaries. This leads to a number of technical complications in
the argument which are handled by introducing the notion of chains of symplectomporphisms
and well-separated sets (see Section 6.2). However, these technical complications do not lead to
any fundamental change in the proof and the reader may wish to imagine that there is a global
Poincaré section; in particular, the reader can then safely ignore the discussion about chains
of symplectomorphisms and well-separated sets, instead thinking of the Poincaré map and its
iterates.

4.6. Comments on proving predominance. In order to prove predominance instead of den-
sity, at each step of the induction, rather than finding a single metric, g`, we produce a family g`,σ
for σ ∈

∏∞
j=1BRL

(0, 1) in a set with almost full measure. This is possible since we actually showed
that, at each step, all but a small measure of our perturbations have the required properties.

5. Volume of the set of (β, q)-degenerate symplectic matrices

In this section, we do some preliminary work on volumes and covering numbers (see Definition
5.4) in the space of symplectic matrices with real coefficients in 2ℵ dimensions, Sp(2ℵ). As
explained in Section 4, it is necessary to work with (β, q)-non-degenerate matrices (see (4.1) for
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the definition). The goal of this section is to understand the covering number of the complement
of these matrices in Sp(2ℵ).

5.1. Properties of eigenvalues of symplectic matrices. We recall here a few properties of
the spectrum of a symplectic matrix A ∈ Sp(2ℵ). A 2ℵ× 2ℵ matrix A with real coefficients is in
Sp(2ℵ) provided

ATJA = J , J =
(

0 Iℵ
−Iℵ 0

)
, (5.1)

where Iℵ ∈ M(ℵ) is the identity matrix. Symplectic matrices are invertible with ‖A‖ = ‖A−1‖.
They also have detA = 1.

We note that if λ is in the spectrum of A and has multiplicity m, then λ−1, λ̄ and λ̄−1 are
also in the spectrum and have multiplicity m. However, λ, λ−1, λ̄ and λ̄−1 may not be distinct.
First, if λ /∈ R and |λ| 6= 1, then all four are distinct. Thus, each non-real eigenvalue off the unit
circle comes in a quadruplet {λ, λ−1, λ̄, λ̄−1}. Next, if λ /∈ R with |λ| = 1, then λ−1 = λ̄ and such
eigenvalues come in pairs of the form {λ, λ−1}. Third, if λ ∈ R with |λ| 6= 1, then λ = λ̄ and the
eigenvalues again come in pairs of the form {λ, λ−1}. Finally, if λ = ±1, then λ = λ̄ = λ−1 = λ̄−1,
and it is known that ±1 always occurs with even multiplicity.

We say that an invertible matrix is hyperbolic if none of its eigenvalues lie on the unit circle.
Note that if A is hyperbolic then the same is true for Aq for all q. Moreover, the distance from
the eigenvalues to the unit circle is increasing with q.

One important consequence of the facts we recalled about eigenvalues of symplectic matrices is
that every small enough perturbation of a symplectic matrix with an eigenvalue λ0 ∈ {λ : |λ| =
1, λ 6= ±1} having odd multiplicity must have an eigenvalue on the unit circle since eigenvalues off
the unit circle come in quadruplets. In other words, certain eigenvalues are ‘trapped’ on the unit
circle. Thus, unlike general matrices, symplectic matrices cannot be perturbed to be hyperbolic.
This makes perturbing a matrix to one which is (β(q), q)-non-degenerate for all q much more
delicate in the symplectic category than in the category of matrices and requires the delicate
induction argument carried out in Section 8.

5.2. (β, q)-non-degeneracy and the location of eigenvalues. We start by discussing the
relationship between (β, q)-non-degeneracy and the location of the eigenvalues {λj(A)}2ℵj=1 of a
matrix A.

Lemma 5.1. For all A ∈M(2ℵ), q ∈ N, s ∈ (0, 1),

if min
1≤j≤2ℵ

0≤p≤q−1

|λj(A)− e2πip/q| ≥ s, then |det(I −Aq)| >
(
min(2

5qs ,
1
5)
)2ℵ

.

Proof. First, note that λj(I −Aq) = 1−λj(A)q. Therefore, | det(I −Aq)| =
∏2ℵ
j=1

∣∣(1−λj(A)q)
∣∣.

The lemma will follow once we prove that for all q ∈ N, s ∈ (0, 1),

min
j,p
|λj(A)− e2πip/q| ≥ s, ⇒ min

j
|1− λj(A)q| ≥ min(2

5qs,
1
5). (5.2)

Fix 1 ≤ j ≤ 2ℵ, and set λj(A) = reiθ for some r > 0 and θ ∈ [0, 2π). First, notice that if
|r− 1| ≥ 1

2 , then |1− λj(A)q| ≥ 1
2 for all q ∈ N, and hence (5.2) holds in this case. Therefore, we

assume that |r − 1| < 1
2 from now on.
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Next, fix q ∈ N, s ∈ (0, 1), and for p ∈ N let αp = θ − 2π pq . We claim that

either |αp| ≥ 1
2s for all p, or |r − 1| ≥ 1

2s. (5.3)

To prove the claim suppose there exists p such that |αp| < s
2 . First, note that by the assumption

in (5.2)

s2 ≤|reiθ − e2πip/q|2 = |1− reiαp |2 = (r − cosαp)
2 + (sinαp)

2.

Therefore, 3s2

4 ≤ (r − cosαp)
2 since | sinαp| ≤ |αp| < s/2. In particular, since |r − 1| < 1

2 and

|1− cosαp| = 2| sin2(
αp
2 )| ≤ s2

8 ,

3s2

4 ≤
(
r − 1 + (1− cosαp)

)2 ≤ (r − 1)2 + s2

4 ,

and hence |r − 1| ≥ 1√
2
s ≥ 1

2s as claimed in (5.3).

With (5.3) in place, we first consider the case |r − 1| ≥ s
2 and divide it into two sub-cases.

Case 1: Suppose that r ≥ 1 + s
2 . Then, |1− λj(A)q| ≥ rq − 1 ≥ q s2 as claimed in (5.2).

Case 2: Suppose r ≤ 1 − s
2 . Then, r−q ≥ 1 + q s2(1 − s

2)−1 since s ∈ (0, 1). Thus, rq ≤
1− q s2

1
1+(q−1) s

2
. In particular, as claimed in (5.2),

|1− λj(A)q| ≥ 1− rq ≥ qs(2 + (q − 1)s)−1 ≥ min(qs2
5 ,

1
5).

Finally, suppose that |r − 1| < s
2 . Then, |αp| ≥ s

2 for all p by (5.3) and hence

|1−λj(A)q|2 = |1−rqeiqθ|2 ≥ inf
a≥0

(1− a cos(qθ))2 + a2 sin2(qθ) =

{
sin2(qθ) infk∈Z |qθ − 2πk| < π

2 ,

1 else.

In particular, since s
2 ≤ minp |αp| ≤ π

q , we have |1− λj(A)q| ≥ | sin
(
q s2
)
| ≥ min(2

5qs,
1
5).

�

In what follows, it will be necessary to avoid symplectic matrices which have eigenvalues close
to a given number. To this end, for θ ∈ R and s > 0 let

D(θ, s) := {A ∈ Sp(2ℵ) : BC(eiθ, s) ∩ spec(A)6=∅}. (5.4)

We now record a corollary of Lemma 5.1 which we use in the next section. It controls the size
of the inverse of I−Aq in terms of the distance between the spectrum of A and the roots of unity
{e2πip/q}0≤p<q.

Lemma 5.2. Let q ∈ N, 0 < s ≤ 1
2q , and A ∈M(2ℵ). If A /∈

⋃q−1
p=0D(2πp

q , s), then,

‖(I−Aq)−1‖ ≤ (5
2)2ℵ(qs)−2ℵ(1 + ‖A‖q)2ℵ−1.

Proof. Note that by assumption minj,p |λj(A) − e2πip/q| ≥ s and hence |det(I −Aq)| ≥ (2
5qs)

2ℵ

by Lemma 5.1 together with s ≤ 1
2q . In particular, the corollary follows from the fact that

‖B−1‖ ≤ | det(B)|−1‖B‖2ℵ−1 for all B ∈ M(2ℵ). Indeed, let σ2
1 ≤ σ2

2 ≤ · · · ≤ σ2
2ℵ be the
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eigenvalues of B∗B. Then, det(B∗B) = | det(B)|2 =
∏2ℵ
j=1 σ

2
j , ‖B−1‖2 = σ−2

1 , and ‖B‖2 = σ2
2ℵ.

Therefore, as claimed,

‖B−1‖2 = σ−2
1 ≤ σ2(2ℵ−1)

2ℵ

( 2ℵ∏
j=1

σ2
j

)−1
= ‖B‖2(2ℵ−1)| det(B)|−2.

�

An immediate consequence of the previous lemma is the following.

Corollary 5.3. Let q ∈ N and β > 0 with 2β < q2. If A is not (β, q) non-degenerate, then

A ∈
⋃q−1
p=0D(2πp

q , βq
−3).

Corollary 5.3 will be used to estimate the volume of the set of matrices which are not (β, q)
non-degenerate using covering numbers.

5.3. Covering numbers and (β, q) non-degeneracy. Throughout the article, the notion of
the covering number of a set will play an important role. Let (Y, d) be a metric space.

Definition 5.4. The covering number of a set V ⊂ Y and radius s is defined by

MY (V, s) := inf
{
N ∈ N : ∃{yi}Ni=1 ⊂ Y such that V ⊂

N⋃
i=1

B(yi, s)
}
.

5.3.1. Covering numbers in M(2ℵ) and Sp(2ℵ). In this subsection, we will relate covering numbers
in M(2ℵ) to those in Sp(2ℵ). The goal is to compare covering numbers of a given set as measured
by balls in Sp(2ℵ) and in M(2ℵ). The following lemma controls how Sp(2ℵ) sits inside M(2ℵ).

Lemma 5.5. There exists ε0 > 0 such that for all A ∈ Sp(2ℵ) and 0 < r ≤ ε0‖A‖,

BM(2ℵ)
(A, r

2‖A‖2 ) ∩ Sp(2ℵ) ⊂ B
Sp(2ℵ)

(A, r).

Proof. Let A ∈ Sp(2ℵ) and set V := A−1(B
Sp(2ℵ)

(A, r))⊂ Sp(2ℵ). We have that V is a neighbor-

hood of I in Sp(2ℵ) and B
Sp(2ℵ)

(I, ‖A‖−1r) ⊂ V. Let ε0 = ε0(ℵ) be such that for 0 < r̃ ≤ ε0

B
Sp(2ℵ)

(I, 1
4 r̃) ⊂ BM(2ℵ)

(I, 1
2 r̃) ∩ Sp(2ℵ) ⊂ B

Sp(2ℵ)
(I, r̃)

Therefore, BM(2ℵ)
(I, r

2‖A‖)∩Sp(2ℵ) ⊂ V for r ≤ ε0‖A‖. Hence,(
BM(2ℵ)

(
A, r

2‖A‖‖A−1‖

)
∩Sp(2ℵ)

)
⊂ A

(
BM(2ℵ)

(I, r
2‖A‖)∩Sp(2ℵ)

)
⊂ AV = B

Sp(2ℵ)
(A, r).

Since A ∈ Sp(2ℵ), we have ‖A‖ = ‖A−1‖ and the result follows. �

With Lemma 5.5 in place, we are ready to study the relationship between the covering numbers
of a given set as measured by balls in Sp(2ℵ) and in M(2ℵ). To ease notation, for r > 0 we also
introduce the ball

BA0
(r) := {A ∈M(2ℵ) : ‖A−A0‖ ≤ r}.
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Lemma 5.6. There exists ε0 > 0 such that the following holds. If Z ⊂ B0(r) ∩ Sp(2ℵ) for some
r > 0, A0 ∈ Sp(2ℵ), 0 < s ≤ ε0r, and r0 > 0, then

M
Sp(2ℵ)

(Z ∩BA0
(r0), s) ≤MM(2ℵ)

(Z ∩BA0
(r0), 1

4sr
−2).

Proof. Fix r0 > 0. Let s̃ > 0 and {Ai}Ni=1 ⊂ M be such that Z ∩ BA0
(r0) ⊂

⋃N
i=1BAi

(s̃).

Without loss of generality, we may assume that BAi
(s̃) ∩ Z 6= ∅. Let {Zi}Ni=1 ⊂ Z be such that

Z ∩BA0
(r0) ⊂

⋃N
i=1BM(2ℵ)

(Zi, 2s̃). Then, since Z ⊂ B0(r)∩Sp(2ℵ), by Lemma 5.5 there is ε0 > 0
such that

Z ∩BA0
(r0) ⊂

N⋃
i=1

B
Sp(2ℵ)

(Zi, 4s̃‖Zi‖2) ⊂
N⋃
i=1

B
Sp(2ℵ)

(Zi, 4s̃r
2),

provided 4s̃r ≤ ε0. In particular, M
Sp(2ℵ)

(Z ∩ BA0
(r0), 4s̃r2) ≤ MM(2ℵ)

(Z ∩ BA0
(r0), s̃). The

Lemma follows by putting s = 4s̃r2. �

5.3.2. Covering numbers for matrices that are not (β, q) non-degenerate. We now study the cov-
ering numbers of the set of matrices in Sp(2ℵ) with a given eigenvalue of unit length: for θ ∈ R
let

D(θ) := {A ∈ Sp(2ℵ) : eiθ ∈ spec(A)}. (5.5)

In particular, D(θ) = ∩sD(θ, s) with D(θ, s) as in (5.4). We start by bounding the covering
number of D(θ) in M(2ℵ).

Lemma 5.7. There is C > 0 such that for all A0 ∈M(2ℵ), θ ∈ R, r0 > 0, and 0 < s < r0,

MM(2ℵ)
(D(θ) ∩BA0

(r0), s) ≤ C(r0/s)
L−2ℵ−1, L = ℵ(2ℵ+ 3).

Proof. Note that Sp(2ℵ) ⊂ M(2ℵ) is defined by ℵ(2ℵ − 1) algebraically independent polynomial
equations. Now, having eigenvalue eiθ is equivalent to asking both < det(A − eiθI) = 0 and
= det(A− eiθI) = 0. In particular, D(θ) ⊂ R(θ) := {A ∈ Sp(2ℵ) : < det(A− eiθI) = 0}.

We claim that dimR(θ) = dimM(2ℵ) − (ℵ(2ℵ − 1) + 1) = L − 2ℵ − 1. Once we prove this,
we would have that D(θ) is an algebraic set with dimD(θ) ≤ L − 2ℵ − 1. Then, the bound on
the covering number for D(θ) ∩ BA0

(r0) will follow from the estimates on covering numbers for

algebraic sets given in [YC04, Corollary 5.7].

To prove that dimR(θ) = L − 2ℵ − 1, it suffices to show that < det(A − eiθI) does not just
take the value 0 in Sp(2ℵ). Indeed, one may find matrices A in Sp(2ℵ) such that < det(A− eiθI)
takes all values in an open set in R. To see this, let A be the diagonal matrix with entries
(λ1, λ2, . . . , λℵ, λ

−1
1 , . . . , λ−1

ℵ ) with λi ∈ R \ {0} and adjust λi as needed. (In fact, it is enough to
take λ3, . . . , λℵ = 1 except when θ = 0 in which case one can take λ3, . . . , λℵ = −1.) �

Our next goal is to bound the covering number of D(θ, s). To do this, in Lemma 5.9 below, we
first control how D(θ) sits inside D(θ, s). The proof of Lemma 5.9 hinges on the following result.

Lemma 5.8. The set {A ∈ Sp(2ℵ) : A has simple eigenvalues} is dense in Sp(2ℵ).
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Proof. Given A ∈ Sp(2ℵ) with eigenvalues {λi}2ℵi=1 define the polynomial p(A) =
∏
i 6=j(λi − λj)

and notice that A has simple eigenvalues if and only if p(A) 6= 0. Next, recall that any symmetric
polynomial in the eigenvalues of a matrix can be expressed as a polynomial in the coefficients of
that matrix [OCV11, Proposition 7.1.10]. In particular, since

∏
i 6=j(λi − λj) is symmetric, there

is q : Sp(2ℵ) → C such that q(A) is a polynomial in the (2ℵ)2 coefficients of the matrix with
q(A) 6= 0 if and only if A has simple eigenvalues (see also [dlCS21, Example ii]).

Let A ∈ Sp(2ℵ). Then A can be written as A = eXeY for two elements X,Y ∈ sp(2ℵ). (To see
this, we combine [Hal15, Corollary 11.10], which states that the exponential map is surjective on
compact, connected Lie groups, with the polar decomposition A ∈ Sp(2ℵ) = BeY with Y ∈ sp(2ℵ)
and B ∈ SO(2n)∩Sp(2n) [HN12, Proposition 4.3.3], noting that SO(2n)∩Sp(2n) is a compact Lie
group.) Furthermore, it is easy to see that any diagonal matrix D = diag(λ1, . . . , λℵ, λ

−1
1 , . . . λ−1

ℵ ),
with λi ∈ (0,∞)\{1}, λi 6= λj , for i 6= j has simple eigenvalues and lies in Sp(2ℵ). Fix one such
D and for t ∈ R let

F (t) = D1−tetXetY ∈ Sp(2ℵ).

We claim that there is {tn}∞n=1 ⊂ R such that F (tn) → F (1) = A, and F (tn) has simple
eigenvalues. This would prove the density statement. To prove the claim note that q(F (t))
extends to an analytic function of t ∈ C and q(F (0)) = q(D) 6= 0. In particular, q(F (t)) has
a discrete set of zeros and hence, there is tn ∈ R such that tn → 1 and q(F (tn)) 6= 0. Since
F : R→ Sp(2ℵ) is continuous, F (tn)→ A as claimed. �

Lemma 5.9. Let a > 0 and suppose that A ∈ Sp(2ℵ) has an eigenvalue λ with |λ| > a. Then,
for all θ ∈ R there is B ∈ D(θ) and

‖A−B‖ ≤ 3(1 + a−1)|λ− eiθ|. (5.6)

Proof. Let θ ∈ R. Without loss of generality, we may assume that λ 6= eiθ since otherwise the
claim is trivial. By Lemma 5.8, for any ε > 0, there is Ã ∈ Sp(2ℵ) with simple eigenvalues, one
of which we label µ, such that

‖A− Ã‖ ≤ ε|λ− eiθ|, |µ− λ| ≤ εmin(|λ− eiθ|, 1). (5.7)

Without loss of generality we assume that ε is small enough that

ε+ 2(1 + ε)(1 + |a− ε|−1) ≤ 3(1 + a−1). (5.8)

Let Eµ(Ã) denote the eigenspace of µ for Ã. Then we need to consider three cases µ /∈ S1 ∪ R,
µ ∈ S1, and µ ∈ R.

Case 1: µ /∈ S1 ∪ R. In this case, one has that µ, µ−1, µ̄, µ̄−1 are distinct, and hence we have

Eµ, Eµ̄, Eµ−1 , Eµ̄−1 are distinct subspaces of dimension 1. Note that Eµ = Eµ̄ and Eµ−1 = Eµ̄−1 .
Consider now the matrix

B = Ã+ (eiθ − µ)Πµ + (e−iθ − µ̄)Πµ̄ + (e−iθ − µ−1)Πµ−1 + (eiθ − µ̄−1)Πµ̄−1 ,

where Πµ denotes the projector which gives the component of a vector in the Eµ direction i.e.

if {µi}2ℵi=1 are the eigenvalues of Ã, then Πµi : C2ℵ → Eµi are the unique operators such that

v =
∑

i Πµiv for v ∈ C2ℵ.
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Note that, (B − eiθ)Πµ = 0 since AΠµ = µΠµ. That is, B has eigenvalue eiθ. Then, by (5.7)

‖B − Ã‖ ≤ |eiθ − µ|+ |e−iθ − µ−1|+ |e−iθ − µ̄|+ |eiθ − µ̄−1|

≤ 2(1 + |µ|−1)|µ− eiθ| ≤ 2(1 + |µ|−1)(1 + ε)|λ− eiθ|

≤ 2(1 + |a− ε|−1)(1 + ε)|λ− eiθ|.

The bound on (5.6) then follows from (5.8) and (5.7).

To see that B ∈ D(θ), it remains to check that B ∈ Sp(2ℵ). First, to see that B has real
coefficients one must check that Bv = Bv for all v real valued vectors. This claim follows from
the facts that

Ãv = Ãv, Πµv̄ = Πµ̄v, Πµ̄v̄ = Πµv, Πµ−1 v̄ = Πµ̄−1v, Πµ̄−1 v̄ = Πµ−1v.

To see that B is symplectic, note that if µiµj 6= 1, then 〈Jvµi , vµj 〉 = 0 for vµi ∈ Eµi since

〈Jvµi , vµj 〉 = 〈JÃvµi , Ãvµj 〉 = µiµj〈Jvµi , vµj 〉. (5.9)

Therefore, since B preserves Eµi for all i and R2ℵ = ⊕2ℵ
i=1Eµi it suffices to note

〈JBvµ, Bvµ−1〉 = 〈J(Ã+ (eiθ − µ))vµ, (Ã+ (e−iθ − µ−1))vµ−1〉 = 〈Jvµ, vµ−1〉.

Case 2: µ ∈ S1. Since µ ∈ S1, then µ = µ̄−1. We consider

B = Ã+ (eiθ − µ)Πµ + (e−iθ − µ−1)Πµ−1 .

As before, (B − eiθ)Πµ = 0, and ‖Ã−B‖ ≤ (1 + ε)(1 + |a− ε|−1)|λ− eiθ|. The bound on (5.6)
then follows from (5.8) and (5.7). Therefore, to see that B ∈ D(θ) we need to check that B is
real and symplectic. The computation is identical to that in Case 1.

Case 3: µ ∈ R. In the case µ ∈ R, we let vµ ∈ R2ℵ with ‖vµ‖ = 1 and (Ã−µ)vµ = 0, vµ−1 ∈ R2ℵ

with ‖vµ−1‖ = 1, and (Ã − µ−1)vµ−1 = 0. Observe that R2ℵ = Eµ ⊕ Eµ−1 ⊕2ℵ
i=3 Eµi , with

µi /∈ {µ, µ−1}, and dimEµi = 1 for i = 3, . . . , 2ℵ. Note that by (5.9) we have 〈Jvµi , vµ〉 = 0 and
〈Jvµi , vµ−1〉 = 0 for vµi ∈ Eµi and i = 3, . . . , 2ℵ. We then set

B = Ã+ (cos θ − µ)vµv
t
µΠµ + (cos θ − µ−1)vµ−1vtµ−1Πµ−1 − sin(θ)vµv

t
µ−1Πµ−1 + sin(θ)vµ−1vtµΠµ.

One can check as before that B ∈ Sp(2ℵ). Then, B ∈ D(θ) since (B − eiθ)(vµ − ivµ−1) = 0.
Finally,

‖B − Ã‖ ≤ 2

√
| cos θ − µ|2 + sin2 θ + 2

√
| cos θ − µ−1|2 + sin2 θ = |µ− eiθ|+ |µ−1 − eiθ|

≤ 2(1 + ε)(1 + (a− ε)−1)|λ− eiθ|.

The bound on (5.6) then follows from (5.8) and (5.7). �

We proceed to study the covering number for D(θ, s).

Lemma 5.10. There exists ε0 > 0 so that if r0 > 0, r≥ 1, 0 < s ≤ ε0r, θ ∈ R, and A0 ∈ Sp(2ℵ),
then

M
Sp(2ℵ)

(
D(θ, s) ∩B0(r) ∩BA0

(r0), s
)
≤ MM(2ℵ)

(
D(θ) ∩B0(r) ∩BA0

(r0), 1
12sr

−2
)
.
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Proof. Let r0 > 0, r > 0, s > 0, θ ∈ R, A0 ∈ Sp(2ℵ). By Lemma 5.6 there is ε0 > 0 such that

M
Sp(2ℵ)

(D(θ, s) ∩B0(r) ∩BA0
(r0), s) ≤MM(2ℵ)

(D(θ, s) ∩B0(r) ∩BA0
(r0), s

4r2 ),

for 0 < s ≤ ε0r. We claim that for all s̃ > 0, 0 < s′< 1
2

MM(2ℵ)
(D(θ, s′) ∩B0(r) ∩BA0

(r0), 6s′ + s̃) ≤MM(2ℵ)
(D(θ) ∩B0(r) ∩BA0

(r0), s̃). (5.10)

Let {Ai}Ni=1 ⊂ M(2ℵ) be so that D(θ) ∩ B0(r) ∩ BA0
(r0) ⊂

⋃N
i=1BM(2ℵ)

(Ai, s̃). Suppose A ∈
D(θ, s′) ∩ B0(r) ∩ BA0

(r0). Then, there exists λ ∈ spec A with |λ − eiθ| ≤ s′. In particular, by

Lemma 5.9 d(A,D(θ)) ≤ 6s′, so(
D(θ, s′) ∩B0(r) ∩BA0

(r0)
)
⊂ BM(2ℵ)

(D(θ) ∩B0(r) ∩BA0
(r0), 6s′) ⊂

N⋃
i=1

BM(2ℵ)
(Ai, 6s

′ + s̃).

The result follows from (5.10) after setting s′ = s
36r2 and s̃ = s

12r2 , which yield s̃ + 6s′ = 1
4sr
−2,

and observing that, since r ≥ 1 and s ≤ ε0r, shrinking ε0 if necessary s′ ≤ ε0r
36r2 ≤ 1

2 . �

Next, we use the results above to control the covering numbers of (β, q)-degenerate matrices.

Recall that by Corollary 5.3, if A is not (β, q) non-degenerate, then A ∈
⋃q−1
p=0D(2πp

q , βq
−3). In

particular, the following result bounds the covering number for such matrices.

Corollary 5.11. There exists ε0 > 0 C > 0 such that for all A0 ∈ Sp(2ℵ), q ∈ N, r0 > 0, r≥ 1,
0 < s ≤ min(ε0r, 12r2r0),

M
Sp(2ℵ)

( q−1⋃
p=0

D(2πp
q , s) ∩B0(r) ∩BA0

(r0) , s
)
≤ Cq (r2r0/s)

L−2ℵ−1.

Proof. The Corollary follows from combining Lemmas 5.7 and 5.10. �

6. Returning points, simple points, and their iterates

In Section 6.1, we introduce a version of returning points with discretized time as well as the
notion of a simple point. Next, in Section 6.2 we introduce the concept of a well separated set
for the geodesic flow and the corresponding chain of symplectomorphisms. These concepts are
replacements for, respectively, a global Poincaré section and the Poincaré map associated to the
global section and, while they require some technical work, do not substantially change the main
idea of the proof. Because of this, the reader may first wish to replace the concepts of chains of
symplectomorphisms and well separated sets by the simpler notions of Poincaré map and section.

In the next sections of this paper, we will be varying the metric g. Because of this, it will be
useful to have a single space on which the geodesic flow for any g is defined. This space will be
canonically isomorphic to S∗M for any g and will be defined as follows. Let

S̃∗M := (T ∗M \ {0})/ ∼, (x, λξ) ∼ (x, ξ) for all λ > 0.

Then, since the geodesic flow (the Hamiltonian flow for p(x, ξ) = |ξ|g), is homogeneous of degree

0 in ξ, the flow ϕgt passes naturally to the quotient S̃∗M . We also endow S̃∗M with the distance
inherited from S∗g

f
M for some fixed reference metric g

f
.
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6.1. Returning points and simple points. In this section, we define the notions of returning
trajectories of length n and simple trajectories of length n, and show that non-simple returning
points can be seen as iterates of shorter returning trajectories. Because we will pass from the
continuous time flow to a discrete time object below, these notions will be defined relative to a
fixed number z such that we can guarantee there are no periodic (or near periodic) trajectories
of length < z. In Section 6.2 we will also insist that the flow can be effectively reduced to a
discrete time map by cutting in time at intervals of length ∼ z. We will be working with metrics
in small balls B ⊂ G 3 and will show in Section 10 that one can take z to be a small multiple of
the injectivity radius for a fixed metric in B.

The notion of a returning point generalizes that of periodicity.

Definition 6.1. For z > 0, g ∈ G 2, n ∈ N, and δ > 0, we write

ρ ∈ Rz(n, δ, g) if inf
(n−1)z<t≤nz

t>z/4

d(ϕgt (ρ), ρ) < δ.

In this case we say that ρ is z-(n, δ, g) returning.

It will be important to have a notion of a simple returning point of length n, i.e. one which is
not returning for any smaller n.

Definition 6.2. For z > 0, g ∈ G 2, n ∈ N, and α > 0, we write

ρ ∈ Sz(n, α, g) if inf
1
2
z<t<(n− 1

2
)z
d(ϕgt (ρ), ρ) > α.

In this case we say that ρ is z-(n, α, g) simple.

The importance of simple points comes from the fact that the effect of perturbations of g on
simple trajectories can be understood. This is much harder to do when considering non-simple
trajectories because the trajectory will interact with a given perturbation many times.

The following two lemmas are similar to [Yom85, Lemma 3.1] and show that non-simple re-
turning trajectories are multiples of shorter returning trajectories.

Lemma 6.3. Let K ⊂ G 3(Γ) be bounded and z > 0. Then there is C > 0 such that the following

holds. Let g ∈ K, α > 0, and ρ ∈ S̃∗M with d(ϕgt (ρ), ρ) < α. If d(ϕgs(ρ), ρ) < α where z
2 ≤ |s| < |t|

and q ∈ Z such that t = qs+ r with |r| < |s|, then

d(ϕgr(ρ), ρ) < C |t|α.

Proof. By (3.2) there is C = C(K) ≥ 1 such that, for all m ∈ Z

d(ϕgms(ρ), ϕg(m−1)s(ρ)) ≤ C |s|d(ϕg(m−1)s(ρ), ϕg(m−2)s(ρ)).

Using that d(ϕgs(ρ), ρ) < α and |s| ≥ z
2 > 0, we have d(ϕgms(ρ), ρ) ≤

∑m−1
j=0 C |js|α ≤ 2C |ms|α.

Similarly, since d(ϕgt (ρ), ρ) ≤ α, we have d(ϕgt−qs(ρ), ϕg−qs(ρ)) ≤ C |qs|α. It follows that

d(ϕgr(ρ), ρ) ≤ d(ϕgt−qs(ρ), ϕg−qs(ρ)) + d(ϕg−qs(ρ), ρ) ≤ 3C |qs|α ≤ C |t|α,

where in the last inequality we used that |qs| = |t− r| ≤ |t|+ |r| ≤ 2|t|. �
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Lemma 6.4. Let K ⊂ G 3 be bounded and z > 0. Suppose there are c > 0, Cz > 0 such that for

all g ∈ K and ρ ∈ S̃∗M we have d(ϕgt (ρ), ρ) ≥ c|t| if |t| ≤ Czz. Then there is C > 0 such that for

all g ∈ K, δ > 0, t0 > z, α ≥ δ, and ρ ∈ S̃∗M satisfying

d(ϕgt0(ρ), ρ) < δ,

one of the following two statements hold:

(1) d(ϕgs(ρ), ρ) ≥ α for all z
2 ≤ s ≤ t0 −

z
2 .

(2) there is s0 ∈ [Czz − Ct0α, t02 ] such that d(ϕgs0(ρ), ρ) ≤ Ct0α and there is q ∈ N, q > 1,
such that qs0 = t0. Moreover, if t1 = q1s0 + r ≤ t0 for q1 ∈ N and 0 ≤ r < s0, then

d(ϕgt1(ρ), ϕgr (ρ)) ≤ Ct0α.

Proof. Suppose that statement (1) is false. Then there is s such that z
2 ≤ s ≤ t0 − z

2 and
d(ϕgs(ρ), ρ) < α. Set t1 = s and let q1 ∈ Z such that t0 = q1t1 + t2 for |t2| ≤ s

2 . Then, by
Lemma 6.3, d(ϕgt2(ρ), ρ) ≤ Ct0α. If |t2| ≤ Czz, we put s̃0 = t1.

If |t2| > Czz, we continue the process and suppose we have found {qi}m+1
i=1 ⊂ Z, and {ti}m+2

i=0
such that for i = 2, . . . ,m,

ti = qi+1ti+1 + ti+2, |ti+2| ≤ 1
2 |ti+1|, |ti| > Czz, d(ϕgti(ρ), ρ) ≤ C

∑i−2
j=0 |tj |α.

Then, letting qm+2 ∈ Z, |tm+3| ≤ 1
2 |tm+2|, such that tm+1 = qm+2tm+2 + tm+3, Lemma 6.3 yields

d(ϕgtm+3
(ρ), ρ) ≤ C

∑m+1
j=0 |tj |α. Then, if |tm+3| ≤ Czz, we set s̃0 = tm+2. In particular, since

|tj | ≤ 1
2 |tj−1| for j = 2, . . . , we have

∑∞
j=0 |tj | ≤ 3|t0|. Therefore, we have found s̃0 such that

d(ϕg
s̃0

(ρ), ρ) ≤ C3|t0|α.

Let this process terminate with |tm+3| ≤ Czz. We claim that |tm+3| ≤ C4|t0|α. Indeed, since
d(ϕgt (ρ), ρ) ≥ c|t| for |t| ≤ Czz and |tm+3| ≤ Czz, by Lemma 6.3 we know

c|tm+3| ≤ d(ϕgtm+3
(ρ), ρ) ≤ C3|t0|α. (6.1)

Finally, set s0 = s̃0 + tm+3

qm+2
. Then, after possibly modifying C, and using the bound on |tm+3|

from (6.1) we conclude

d(ϕgs0(ρ), ρ) ≤ C |tm+3|d(ϕgs̃0(ρ), ρ) + d(ϕgtm+3
qm+2

(ρ), ρ) ≤ 2C4t0α

as claimed, since |qm+2| ≥ 1. Note that, since tm+1 = qm+2tm+2 + tm+3 = qm+2(tm+2 + tm+3

qm+2
) =

qm+2s0, we have by construction t0 = qs0 for some q ∈ Z. In addition,

|s0| ≥ |tm+2| − | tm+3

qm+2
| ≥ Czz−c−1C4|t0|α.

If s0 > 0, we have the claimed properties of s0. If, on the other hand, s0 < 0, we have,
modifying C if necessary,

d(ϕg−s0(ρ), ρ) ≤ C |s0|d(ρ, ϕgs0(ρ)) ≤ C4|t0|α.
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Finally, observe that for qs0 ≤ t0,

d(ϕgqs0(ρ), ρ) ≤
q−1∑
j=0

d(ϕgjs0(ρ), ϕg(j+1)s0
(ρ)) ≤

q−1∑
j=0

Cj|s0|d(ϕgs0(ρ), ρ) ≤ C |t0|α.

Therefore, if t1 = qs0 + r ≤ t0 for some q ∈ N, 0 ≤ r < s0

d(ϕgt1(ρ), ϕgr (ρ)) ≤ Crd(ϕgqs0(ρ), ρ) ≤ C |t0|α.
�

6.2. Non-degeneracy and chains of symplectomorphisms. In general, it is not possible to
find a global Poincaré section for the geodesic flow; i.e. a connected, closed submanifold, Γ, of

co-dimension 1 in S̃∗M that is everywhere transverse to H|ξ|g such that every geodesic passes

through Γ. Because of this, we need to replace the notion of a global Poincaré section and its
associated Poincaré map with a more complicated submanifold which captures all the dynamical
information for ϕgt . To this end, we introduce below, the notion of a well separated set and its
associated chains of symplectomorpshims; replacing, respectively, the global Poincaré section and
its associated Poincaré map. The idea of a well-separated set will be to find, Γ̃, a disjoint union
of open 2d − 2 dimensional submanifolds, and a compactly embedded open subset, Γ ⊂ Γ̃, such
that 1) every geodesic passes through Γ in a controlled time and 2) no geodesic passes in a very

short time from Γ̃ to itself. These properties will guarantee that understanding geodesics which
pass from Γ to itself allows one to understand the full dynamics for the geodesic flow.

To understand the need for Γ̃ note that since the connected components of Γ have boundaries,
there are points ρ ∈ Γ such that small perturbations of ρ will cause large jumps in the first
impact point PΓ(ρ) of the geodesic through ρ with Γ; i.e there are sequences ρn → ρ such that

d(PΓ(ρn),PΓ(ρ)) ≥ c > 0. This forces us to include the slightly larger Γ̃ and introduce the notion
of Poincaré chains below. (See Figure 3 for a schematic of a well-separated set and a Poincaré
chain.)

LetWi ⊂ S̃∗M , i = 1, . . . , N be disjoint, open symplectic submanifolds of dimension 2d−2 = 2ℵ
and Vi bWi open subsets. We write

Γ :=
N⊔
i=1

Vi, Γ̃ :=
N⊔
i=1

Wi. (6.2)

Definition 6.5. For z > 0, and G ⊂ G 2 bounded, we say that {(Wi,Vi)}Ni=1 are z-well-separated
for G if the Wi are uniformly transverse to H|ξ|g for all g ∈ G and there are cΓ , CΓ > 1 such that

sup
g∈G

sup
ρ∈S̃∗M

inf{t > 0 : ϕgt (ρ) ∈ Γ} < CΓz, inf
g∈G

inf
ρ∈Γ̃

inf{t > 0 : ϕgt (ρ) ∈ Γ̃} ≥ cΓz,

inf
g∈G

min
i

inf
ρ∈Wi

inf{t > 0 : ϕgt (ρ) ∈ W i}>CΓz.
(6.3)

When it will not lead to confusion, we will say that Γ is z-well-separated.

In words, if {(Wi,Vi)}Ni=1 is z-well-separated for G, it means that (1) every trajectory hits Γ

in time less than CΓz; (2) trajectories starting from Γ̃ always take at least cΓz time to return to
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Γ̃; (3) trajectories that start within some Wi always take at least CΓz to return to Wi no matter
the choice of i.

Before we move on to the definition of chains of symplectomorphisms associated to well sepa-
rated sets, we show that Lemma 6.4 applies when there is an z-well separated set.

Lemma 6.6. Let G ⊂ G 2 bounded. Suppose that z > 0 and Γ is z-well separated for G. Then,
for all K ⊂ G bounded in G 3, there is c > 0 such that for all g ∈ K and |t| ≤ CΓz,

d(ϕgt (ρ), ρ) ≥ c|t|, ρ ∈ S̃∗M.

Proof. First, notice that, since K is bounded in G 3, there are c1, c2 > 0 such that, d(ϕgt (ρ), ρ) ≥
c2|t| for all g ∈ K, ρ ∈ S̃∗M , and |t| < c1. Thus, it remains only to check that there is c > 0 such

that d(ϕgt (ρ), ρ)) ≥ c for all g ∈ K, ρ ∈ S̃∗M , and c1 ≤ |t| ≤ Czz.

Suppose by contradiction there are gn ∈ K, ρn ∈ S̃∗M , and tn with |tn| ∈ [c1, Czz], such that

d(ϕgntn (ρn), ρn)→ 0.

Then, without loss of generality, we may assume gn
G 2

→ g ∈ G, ρn → ρ ∈ S̃∗M , and tn → t with
|t| ∈ [c1, Czz]. Now,

d(ϕgt (ρ), ρ) ≤ d(ϕgt (ρ), ϕgnt (ρ))+d(ϕgnt (ρn), ϕgnt (ρ))+d(ϕgntn (ρn), ϕgnt (ρn))+d(ϕgntn (ρn), ρn)+d(ρn, ρ).

Since gn → g in G 2, the right hand side of the above inequality tends to 0 as n → ∞, and we
have ϕgt (ρ) = ρ. Let T0 := inf{s > 0 : ϕgs(ρ) ∈ Γ} and ρΓ := ϕgT0

(ρ) (note that 0 < T0 < ∞ by

the first inequality in (6.3)). Then, ϕgt (ρΓ) = ϕgt+T0
(ρ) = ϕgT0

(ρ) = ρΓ , with c1 ≤ |t| ≤ Czz. This

contradicts the last inequality in (6.3). �

We next use well-separated sets to reduce the continuous flow ϕgt to a discrete time system.
Let ν ≥ 3, z > 0, G ⊂ G ν bounded,, and {(Wi,Vi)}Ni=1 be z-well-separated for G. Then define

T gj,i :Wi → R, T gj,i(ρ) := inf{t > 0 : ϕgt (ρ) ∈ Wj}, (6.4)

and, with Ugj,i := (T gj,i)
−1((0, CΓz)) ⊂ Wi, let κgj,i : Ugj,i →Wj be the function

κgj,i(ρ) = ϕg
T gj,i(ρ)

(ρ).

Lemma 6.7. For all g ∈ G, j, i, the map κgj,i : Ugj,i →Wj is a Cν−2 symplectomorphism onto its
image.

Proof. Once we show that κgj,i is Cν−2, the fact that κgj,i is a symplectomorphism onto its image

is inherited from the facts that ϕgt is a symplectomorphism and that Wj is transverse to H|ξ|g .

We now show that κgj,i is Cν−2. To do this, note that Wj is open and transverse to H|ξ|g .

Therefore, since (t, ρ) 7→ φgt (ρ) is Cν−2 with ν − 2 ≥ 1 and ϕg
T gj,i(ρ)

(ρ) ∈ Wj , the implicit function

theorem implies that there is a neighborhood V ⊂ Wi of ρ and a Cν−2 function T̃ gj,i(ρ
′) : V → R

such that ϕg
T̃ gj,i(ρ

′)
(ρ′) ∈ Wj and T̃ gj,i(ρ) = T gj,i(ρ). Since T̃ gj,i is continuous and T gj,i(ρ) < CΓz,

shrinking V if necessary, we may assume T̃ gj,i(ρ
′) < CΓz. Finally, we need to check that T̃ gj,i(ρ

′) =
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T gj,i(ρ
′). For this, it suffices to show that ϕgs(ρ′) /∈ Wj for 0 < s < T̃ gj,i(ρ

′). Indeed, suppose

that there is 0 < s < T̃ gj,i(ρ
′) such that ϕgs(ρ′) ∈ Wj . Then, ϕg

T̃ gj,i(ρ
′)−s(ϕ

g
s(ρ′)) ∈ Wj , and

0 < T̃ gj,i(ρ
′)− s < CΓz. This contradicts the third part of (6.3). �

Definition 6.8. Let ν ≥ 3. Let G ⊂ G ν be bounded in G 2 and {(Wi,Vi)}Ni=1 be z-well sep-
arated for G. For I ∈ {1, . . . , N}N, I = (i0, i1, i2, . . . ), g ∈ G, and n ∈ N we define the Cν−2

symplectomorphism

P(n)
I [g] : D(n)

I [g]→Win , P(n)
I [g] := κgin,in−1

◦ . . . κgi2,i1 ◦ κ
g
i1,i0

,

where the D(n)
I [g] ⊂ Wi0 is the domain of the composition. We also define P(0)

I [g] = I and define

PI [g] := (P(0)
I [g] , P(1)

I [g] , . . . )

and call it the Poincaré chain associated to I.

Definition 6.9. We define the time sequence TI associated to the chain PI . For each n ∈ N and

g ∈ G let T (n)
I [g] : D(n)

I [g]→ [0,∞) be defined by T (0)
I [g] ≡ 0 and for all ρ ∈ D(n)

I [g]

T (n)
I [g](ρ) = T (n−1)

I [g](ρ) + T gin,in−1
(P(n−1)
I [g](ρ)).

for T gin,in−1
as defined in (6.4).

By construction, for ρ ∈ D(n)
I

[g] we have

P(n)
I [g](ρ) = ϕg

T
(n)
I [g](ρ)

(ρ). (6.5)

Remark 6.10. If ρ ∈ Γ̃ and ϕgt0(ρ) ∈ Γ̃, then there are n and I such that ρ ∈ D(n)
I [g], P(n)

I [g](ρ) =

ϕgt0(ρ) and T (n)
I [g](ρ) = t0.

Below, we will be varying the metric and need to control how Poincaré chains vary with the
metric.

Lemma 6.11. Let ν ≥ 2, 0 ≤ k ≤ ν − 2, G ⊂ G ν bounded, and g : BRk(0, 1)σ → G a C2 map.
Then there are C > 0, Ck > 0, such that

dσϕ
g
t : Rk → TCν−3(S̃∗M ; S̃∗M), d2

σϕ
g
t : Rk × Rk → TCν−4(S̃∗M ; S̃∗M)

are well defined and satisfy that for all t ∈ R, v, w ∈ Rk, f ∈ Ck(S∗M ;R),

• ‖dσϕgt |σ=0v‖Cν−3 ≤ C |t|‖v‖‖∂σg|σ=0‖Cν−1 , if ν ≥ 4

• ‖d2
σϕ

g
t |σ=0(v, w)‖Cν−4 ≤ C |t|‖v‖‖w‖(‖∂2

σg|σ=0‖Cν−2 + ‖∂σg|σ=0‖2Cν−1), if ν ≥ 5

• ‖f ◦ ϕgt ‖Ck ≤ CkC |k||t|‖f‖Ck .
Moreover, for all n ∈ N,

• ‖dσP(n)
I [gσ]v‖Cν−3 ≤ CnCΓ

z‖v‖‖∂σg|σ=0‖Cν−1 , if ν ≥ 4

• ‖d2
σP(n)
I [gσ](v, w)‖Cν−4 ≤ CnCΓ

z‖v‖‖w‖(‖∂2
σg|σ=0‖Cν−2 + ‖∂σg|σ=0‖2Cν−1), if ν ≥ 5

• ‖f ◦ P(n)
I [g]‖Ck ≤ CkC |k|nCΓ

z‖f‖Ck .
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Proof. The proof of this lemma is a tedious calculation. We sketch here the proof.

Recall that the geodesics flow can be written as the solution (x(t), ξ(t)) to

ẋj(t) = 1
|ξ(t)|g(x(t))

gij(x(t))ξi(t), ξ̇k(t) = − 1
2|ξ(t)|g(x(t))

∂xkg
ij(x(t))ξi(t)ξj(t).

Letting gσ be a family of metrics with g0 = g and differentiating with respect to σ, working always
with initial data so that |ξ0(gσ)|gσ(x0(gσ)) = 1, we obtain equations of the form

∂σẋ = (∂xgξ)∂σx+ g∂σξ + ∂σgξ, ∂σ ξ̇ = (∂2
xg)ξ2∂σx+ ∂xgξ∂σξ + (∂2

xσg)ξ2.

In particular, provided that ∂σg ∈ Cν−1, this is an equation with Cν−2 coefficients (bounded by
the Cν norm of g and the Cν−1 norm of h) and hence results in a Cν−3 flow with the claimed
bounds.

Differentiating again in g, we obtain equations of the form

∂2
σẋ = (∂2

xgξ)(∂
2
σx) + g∂2

σξ + (∂2
xgξ)(∂σx)2 + ∂xg∂σx∂σξ + ∂2

xσgξ∂σx+ ∂σg∂σξ + ∂2
σgξ

∂2
σ ξ̇ = (∂2

xg)ξ2∂2
σx+ ∂xgξ∂

2
σξ + (∂3

xg)ξ2(∂σx)2 + ∂3
σxxgξ

2∂σx+ ∂2
xgξ∂σξ∂σx

+ ∂2
xσgξ∂σξ + ∂xg(∂σξ)

2 + ∂3
xσσgξ

2.

Now, since ∂σ(x, ξ) ∈ Cν−3 if ∂σg ∈ Cν−1, we require ∂2
σg ∈ Cν−2, and ∂σg ∈ Cν−1 to obtain a

solution in Cν−4.

The estimates on the derivative in time now follow from estimating the coefficients in these
equations in L∞ by the relevant Cν norms of the metric and its derivatives. �

The following lemma shows that if ρ ∈ Γ is a returning point, say d(ϕgt0(ρ), ρ) < δ, then we can

associate to it a Poincaré chain under which P(m)
I [g](ρ) = ϕgt0+s(ρ) for some m ∈ N and s small.

Morover, d(P(m)
I [g](ρ), ρ) . δ.

Lemma 6.12. Let G ⊂ G ν be bounded in G 2 and {(Wi,Vi)}Ni=1 be z-well separated for G. Then
there are CG > 0 and δG > 0 such that for all g ∈ G, 0 < δ < δG, j ∈ {1, . . . , N}, and
ρ ∈ Rz(n, δ, g) ∩ Vj the following holds. There exist m ∈ N and I such that

ρ ∈ D(m)
I [g], T (m)

I [g](ρ) ∈
[
(n− 1)z− CGδ , nz + CGδ

]
, (6.6)

and d(P(m)
I [g](ρ), ρ) < CGδ. Moreover, for any m1,m2 ∈ N and I1, I2 such that

ρ ∈ D(mj)
Ij

[g], T (mj)
Ij

[g](ρ) ∈
[
(n− 1)z− CGδG , nz + CGδG

]
, j = 1, 2, (6.7)

P(m1)
I1

[g](ρ) = P(m2)
I2

[g](ρ), T (m1)
I1

[g](ρ) = T (m2)
I2

[g](ρ).

Proof. Since Γ̃ is uniformly transverse to H|ξ|g for g ∈ G, and for all j we have Vj b Wj , there

are CG > 0 and δG > 0 such that for all g ∈ G, j ∈ {1, . . . , N}, 0 < δ < δG , and ρ ∈ S̃∗M with
d(ρ,Vj) < δ, there is |s| ≤ CGδ such that

ϕgt0+s(ρ) ∈ Wj . (6.8)
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Wi3
Vi3

P(3)
I

(ρ)

Wi2

Vi2

P(2)
I

(ρ)

Wi1

Vi1P(1)
I

(ρ)
Wi0

Vi0ρ

Figure 3. A portion of a well-separated set and the chain of symplectomorphisms
evaluated at a point ρ ∈ Γ. The chain pictured begins I = {i0, i1, i2, i3}. Notice
that the geodesic encounters the boundary of Wi1 between Wi2 and Wi3 . It is
because of geodesics like this that we must define a Poincaré chain. Furthermore,
this geodesic encounters the boundary of Vi3 and, to make the map P(3)

I [g] smooth

near ρ, one must refer to the subset Γ̃ in addition to Γ.

Next, let ρ ∈ Rz(n, δ, g) ∩ Vj with 0 < δ < δG . Then, there is (n − 1)z < t0 ≤ nz such
that d(ϕgt0(ρ), ρ) < δ. Therefore, there is |s| ≤ CGδ such that ϕgt0+s(ρ) ∈ Wj . In particular, by

Remark 6.10 there are m and I such that (6.6) holds and P(m)
I [g](ρ) = ϕgt0+s(ρ).

Note that, increasing CG if necessary (uniformly for g ∈ G),

d(ϕgt0+s(ρ), ρ) ≤ d(ϕgt0+s(ρ), ϕgs(ρ)) + d(ϕgs(ρ), ρ) < CGδ. (6.9)

Therefore, it only remains to check that if (m1, I1) are such that (6.7) holds, then T (m1)
I1

[g](ρ) =

t0 +s. Suppose this is not the case for some (m1, I1). Then, since ϕg
T

(m1)
I1

[g](ρ)
(ρ) ∈ Γ̃, by (6.5), the

second equation in (6.3) yields |T (m1)
I1

[g](ρ)− (t0 + s)| ≥ cΓz. In particular, either T (m1)
I1

[g](ρ) ≥
(n − 1)z − CGδ + cΓz, or T (m1)

I1
[g](ρ) ≤ nz + CGδ − cΓz. Since δ < δG , this contradicts (6.7)

provided that 2CGδG < (cΓ − 1)z. Shrinking δG if necessary completes the proof.

�
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Recall that the image of P(m)
I [g0] lands in Γ̃ and that Γ b Γ̃. The following lemma shows that

if the iterates of ρ land sufficiently close to Γ, then there is a neighborhood of ρ that lies in the
domain of the same Poincaré chain.

Lemma 6.13. Let G ⊂ G 3 bounded and Γ be z well-separated for G. There are c > 0, δ0 > 0
such that the following holds. Let g0 ∈ G, ρ ∈ Γ, n ∈ N, and I be such that

sup
m≤n

d(P(m)
I [g0](ρ),Γ) < δ0.

Then, B
Γ̃
(ρ, cn) ⊂ D(m)

I [g] for all m ≤ n provided ‖g − g0‖C3 ≤ cn.

Proof. Let δ0 > 0 such that {ρ ∈ Γ̃ : d(ρ,Γ) < 3δ0} b Γ̃, and

sup
g∈G

sup
ρ∈S̃∗M

inf{t > 0 : ϕgt (ρ) ∈ Γ} < CΓz− 3δ0.

First, note that there is C > 0 such that d(ϕgt (ρ), ϕg0
t (ρ)) ≤ εCt+1, for all g0 ∈ G, ε > 0, t ∈ R,

and g ∈ G 3 with ‖g − g0‖C3 ≤ ε. In particular, since T (m)
I [g0](ρ) ≤ mCΓz by (6.3),

d
(
ϕg
T

(m)
I [g0](ρ)

(ρ) , ϕg0

T
(m)
I [g0](ρ)

(ρ)
)
≤ εCmCΓ

z+1.

Thus, since d(ϕg
T

(m)
I [g0](ρ)

(ρ),Γ) < δ0 and H|ξ|g is uniformly transverse to Γ̃, for g ∈ G, the

implicit function theorem implies that for ε small enough such that εCmCΓz+3 � δ0, there are tj ,

j = 1, . . . ,m such that |tj − T (j)
I [g0](ρ)| ≤ εCjCΓz+2 ≤ δ0 and

ϕg0
tj

(ρ) ∈ Γ̃, d(ϕg0
tj

(ρ), ϕg
T

(j)
I [g0](ρ)

(ρ)) ≤ εCjCΓz+3 ≤ 2δ0.

In particular, since T (j)
I [g0](ρ)−T (j−1)

I [g0](ρ) < CΓz−3δ0 for all 1 ≤ j ≤ m, we have |t1| < CΓz,

and |tj − tj−1| < CΓz for 1 ≤ j ≤ m. Thus, ρ ∈ D(m)
I [g] and

|T (m)
I [g0](ρ)− T (m)

I [g](ρ)| � 1,

provided ε� C−mCΓ
z−1. Thus, we have

d(ϕg
T

(m)
I [g](ρ)

(ρ),Γ) < δ0 + εCmCΓ
+1 < 2δ0.

Arguing as above, since there is C > 0 such that for all g with dC3(g,G) < c,

d(ϕgt (ρ), ϕgt (ρ1)) < Ctd(ρ, ρ1),

we have for d(ρ, ρ1) < ε,

|T (m)
I [g](ρ1)− T (m)

I [g](ρ2)| � 1,

and hence ρ1 ∈ D(m)
I [g]. �

We now define the notion of a non-degenerate returning point for a Poincaré chain PI . Let
G ⊂ G ν be bounded in G 3 and {(Wi,Vi)}Ni=1 be z-well separated for G. To define non-degeneracy,
we fix a finite atlas of coordinates charts on Γ

A :=
{

(ψi, Ui) : ψi : Ui → ψi(Ui), i = 1, . . . , N
}
, (6.10)



40 YAIZA CANZANI AND JEFFREY GALKOWSKI

with Ui ⊂ Γ and ψi(Ui) ⊂ R2ℵ. Let CG and δG be as in Lemma 6.12 and let δ0 be as in Lemma
6.13. Without loss of generality we assume that δG is small enough that

δG < min(1, δ0),

for every ρ ∈ Γ there is (ψ,U) ∈ A such that B(ρ, CGδG) ⊂ U.
(6.11)

Next, observe that by Lemma 6.12, if ρ ∈ Γ∩Rz(n, δ, g) for 0 < δ < δG , then there is (ψ,U) ∈ A
such that ρ ∈ U for every (m, I) satisfying (6.6), P(m)

I [g](ρ) ∈ U , and we may work in R2ℵ by
setting

(P(m)
I [g])ψ := ψ ◦ P(m)

I [g] ◦ ψ−1. (6.12)

Abusing notation slightly, we write d((P(n)
I [g])ψ)(ρ) := d((P(n)

I [g])ψ)(ψ(ρ)).

We now define the notion of non-degeneracy of a trajectory for a chain of symplectomorphisms.

Definition 6.14. Let CG and δG be as in Lemma 6.12 and (6.11). Let n ∈ N, and β > 0. We
say that ρ ∈ Rz(n, δG , g) is (n, β, g) non-degenerate, and write ρ ∈ N z(n, β, g), if there exist I
and m such that T (m)

I [g](ρ) ∈
[
(n− 1)z− CGδG , nz + CGδG

]
and

sup
{(ψ,U)∈A:B(ρ,C

G
δ
G

)⊂U}

∥∥(I − d((P(m)
I [g])ψ)(ρ)

)−1∥∥ < β−1. (6.13)

We next strengthen the notion of non-degeneracy of a trajectory to one that can pass from a
trajectory to its iterates by introducing a type of (β, q)-non-degeneracy for returning points.

Definition 6.15. Let CG and δG be as in Lemma 6.12 and (6.11). Let q ∈ N, n ∈ N and β ∈ (0, 1).
We say that ρ ∈ Rz(n, δG , g) is (n, β, g) q-non-degenerate, and write ρ ∈ Nq,z(n, β, g), if there

exist I and m satisfying T (m)
I [g](ρ) ∈

[
(n− 1)z− CGδG , nz + CGδG

]
and

sup
{(ψ,U)∈A:B(ρ,C

G
δ
G

)⊂U}

∥∥(I − [(d((P(m)
I [g])ψ)(ρ)]q)−1

∥∥
(1 + ‖d((P(m)

I [g])ψ)(ρ)‖q)2ℵ−1
≤ f(β, q), f(β, q) = (5

2q
2β−1)2ℵ. (6.14)

That is, ρ ∈ N q,z(n, β, κ) provided there are I and m satisfying (6.7) such that the matrix

A := d(ψ ◦ P(m)
I [g] ◦ ψ−1)(ψ(ρ)) is (β, q) non-degenerate (as defined in (4.1)) for every chart

(ψ,U) ∈ A with B(ρ, CGδG) ⊂ U .

Remark 6.16. The reason for the choice of f comes from Corollary 5.3 and the fact that we need
to be able to sum measures of bad sets over all q in Lemma 7.6. We will make perturbations
which guarantee certain properties of the eigenvalues of dP(n)

I [g] and will use Corollary 5.3 to

bound the inverse of I − (dP(n)
I [g])q. In fact, q2 could be replaced by qγ for any γ > 1.

Remark 6.17. In Definitions 6.14 and 6.15, the existence of I and m satisfying (6.6) and, respec-
tively (6.13) or (6.14) could be replaced by the requirement that for all I and m satisfying (6.7),
respectively, the estimates (6.13) or (6.14) hold. To see this, we observe that by the second part of

Lemma 6.12, all I and m satisfying (6.7) in fact satisfy (6.6) and result in the same map P(m)
I [g].

The next lemma demonstrates how the notion of (n, β, g) q non-degeneracy can be passed to
(nq, β, g) non-degeneracy with the trajectory of length nq being a multiple of that of length n.
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Lemma 6.18. Let G ⊂ G 4(Γ) bounded and Γ be z well separated for G. let CG and δG be as in
Lemma 6.12 and (6.11). There is C > 0 such that the following holds. Let g ∈ G, k > 0, β > 0,
q0 ∈ N and 0 < δ ≤ min{δG , (2f(β, q0)Ckq0)−1}. Let

ρ ∈ Γ ∩Rz(k, δ, g) ∩N q0,z(k, β, g),

and I and m such that T (m)
I [g](ρ) ∈

[
(k − 1)z− CGδG , kz + CGδG

]
,{

P(qm)
I [g](ρ)

}q0
q=0
⊂ D(m)

I [g], max
0≤q≤q0

d
((
P(m)
I [g`]

)q
(ρ), ρ

)
≤ δ,

P(qm)
I [g](ρ′) =

(
P(m)
I [g]

)q
(ρ′), 0 ≤ q ≤ q0, ρ′ in a neighborhood of ρ.

Then,

ρ ∈ N z

(
n, (2f(β, q0)Ckq0)−1, g

)
for all n ∈ N such that T (q0m)

I (ρ) ∈ [(n− 1)z− CGδG , nz + CGδG ].

Proof. For 0 ≤ q ≤ q0, set ρq := P(qm)
I [g](ρ) and ∆q := dP(m)

I [g](ρq) − dP(m)
I [g](ρ). Then, since

there is C > 0 such that ‖d2ϕgt ‖ ≤ Ct for all t ≥ 0, by assumption we conclude that there is C > 0
such that maxq ‖∆q‖ ≤ Ckδ. Therefore,

dP(mq0)
I [g](ρ) = (dP(m)

I [g](ρ) + ∆q0−1) ◦ · · · ◦ (dP(m)
I [g](ρ) + ∆1) ◦ dP(m)

I [g](ρ)

= [dP(m)
I [g](ρ)]q0 + ∆′

with ‖∆′‖ ≤ 2q0‖dPI [g](m)(ρ)‖q0Ckδ. We conclude that there is C0 > 0 depending only on G such
that

‖dP(q0m)
I [g](ρ)− [dP(m)

I [g](ρ)]q0‖ ≤ Ckq00 δ. (6.15)

Since ρ ∈ N q0,z(k, β, g), there is C > 0 depending only on G such that for all (ψ,U) ∈ A with
B(ρ, CGδG) ⊂ U , ∥∥(I − [d(P(m)

I )ψ(ρ)
]q0)−1∥∥ ≤ Ckq0f(β, q0).

In particular, provided that C2kq0
0 δf(β, q0) < 1

2 , (6.15) yields

‖[I − d(P(q0m)
I )ψ(ρ)]−1‖ ≤ Ckq0f(β, q0)(1− C2kq0

0 δf(β, q0))−1 ≤ 2Ckq0f(β, q0).

The claim now follows from the definition of non-degeneracy. �

7. Perturbing away q-degeneracy for simple points

In this section, we first introduce general assumptions on a family of perturbations which will
allow us to change the degeneracy properties of a given simple point. We then use a quantitative
analog of Sard’s theorem to show that the collection of perturbation parameters which produce
degeneracy is small.
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7.1. General assumptions. Let G ν denote the space of Cν metrics on M with the topology
induced by the Cν topology on symmetric tensors, and ιCν : Cν → Cν−1 be the natural inclusion
map.

Given a function N : (0, 1) → N, R > 0, and δ > 0, we will work with perturbation maps
QR,δ : G ν ×Σ

N(R)
→ G ν where

Σ
N(R)

:=

N(R)∏
j=1

B
RL

(0, 1), L := ℵ(2ℵ+ 3), (7.1)

Remark 7.1. Recall that 2ℵ = 2d−2 = dim Γ, where Γ is a section of S∗M . Thus, the dimension
L = ℵ(2ℵ+3) appears because we want the parameter σ ∈ B

RL
(0, 1) to be in correspondence with

points in the space (Γ,Sp(2ℵ)), and the latter has dimension L. Here Sp(2ℵ) will parametrize the
possible derivatives of a symplectic map at a point in Γ.

We write σ = (σj)
N(R)
j=1 where each σj is a component in B

RL
(0, 1), and we refer to QR,δ(g,σ)

as the perturbation of g by the parameter σ. When we construct our family of perturbations in
Section 9, R will control the scale on which our metric perturbations take place and δ will control
the size of the perturbation takes place. We ask that the perturbation maps satisfy the following
assumptions.

Definition 7.2 (Good perturbations). Let ν0 ≥ 0 and N : (0, 1) → N. For each R > 0, δ > 0
consider a map

QR,δ : G ν0 ×Σ
N(R)
→ G ν0

such that for each g ∈ G ν0 , the map σ 7→ QR,δ(g,σ) with σ ∈ `∞(B
RL

(0, 1)) is Frechet differen-

tiable, and for all σ ∈ Σ
N(R)

the map g 7→ ι
Cν0−1 (QR,δ(g,σ)) is Frechet differentiable.

We say that {QR,δ}R,δ is a (ν0, N)-good family of perturbations if for each K ⊂ G ν0 bounded

and each 0 ≤ ν ≤ ν0 there exist ϑν ∈ R, ϑ̃ν ∈ R and C > 0 such that the following holds.

For δ > 0, R > 0,

• QR,δ(g, 0) = g, g ∈ G ν0 . (7.2)

• ‖QR,δ(g,σ)−QR,δ(g, σ̃)‖Cν ≤ CδR
−ϑν‖σ − σ̃‖`∞ , σ, σ̃ ∈ Σ

N(R)
, g ∈ K. (7.3)

• ‖DgQ
R,δ − I‖

Cν−1→Cν−1 ≤ CδR−ϑν , g ∈ K,σ ∈ Σ
N(R)

. (7.4)

Furthermore, for all α ∈ NL there is Cα > 0 such that for all g ∈ K, δ > 0, and R > 0

max
1≤j≤N(R)

‖∂ασjQ
R,δ|(g,σ)‖B

RL
(0,1)→Cν ≤ CαR−|α|ϑ̃νδ|α|, g ∈ K,σ ∈ Σ

N(R)
. (7.5)

We also need an assumption which guarantees that the perturbation QR,δ explores a sufficiently
large set of possible metrics.

Definition 7.3 (Admissible pairs). Let ν ≥ 5, b > 0 and y ≥ 1. Let N : (0, 1)→ N and {QR,δ}R,δ
be a (ν,N)-good family of perturbations.
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We say that (Γ, G) is a (z, b, y)-admissible pair for {QR,δ}R,δ if G ⊂ G ν is bounded, Γ is z-well
separated for G, and for all K ⊂ G bounded in G ν there are c > 0 and ε0 > 0 such that for all
R > 0, δ > 0, g ∈ K, α ∈ (0, c), n ∈ N, and ρ0 ∈ Γ satisfying

R < cnα, δ ≤ Rbcn+1, ρ0 ∈ Sz(n, α, g) ∩Rz(n, ε0, g),

there exist j0 ∈ {1, . . . , N(R)}, I0, m0 such that BΓ(ρ0, R
y) ⊂ D(m0)

I0
[QR,δ(g,σ)] for all σ ∈ Σ

N(R)
,

T (m0)
I0

[g](ρ) ∈
[
(n− 1)z− CGδG , nz + CGδG

]
, and for all ρ ∈ BΓ(ρ0, R

y) and σ ∈ Σ
N(R)

,

|dσj0 ΨR,δ
g,I0

(m0,σ, ρ)v| ≥ δcn+1|v|, for all v ∈ Tσj0BRL
(0, 1), (7.6)

where
ΨR,δ
g,I0

(m0,σ, ρ) :=
(
P(m0)
I0

[QR,δ(g,σ)](ρ) , dρ
(
P(m0)
I0

[QR,δ(g,σ)]
)
(ρ)
)
. (7.7)

The constants CG and δG are the ones given in Lemma 6.12.

To understand why we are interested in the map ΨR,δ
g , observe that knowing

(P(m0)
I [g](ρ), dρP(m0)

I [g](ρ))

is exactly the information need to understand (1) whether ρ ∈ Rz(n, β, g) and (2) if ρ ∈
Rz(n, β, g), whether ρ ∈ N q,z(n, β, g). Thus, the dimension of B

RL
(0, 1) is chosen so that we

are able to use the j0-th factor in Σ
N(R)

to locally explore an open set in the image of the maps

ΨR,δ
g,I (whose dimension is L = ℵ(2ℵ+ 3)) by varying σj0 ∈ BRL

(0, 1). See also Remark 7.1.

7.2. Perturbing away (β, q)-degeneracy for simple points. In order to control the volume of
the parameters in Σ

N(R)
which may produce degeneracy we apply a quantitative version of Sard’s

theorem ([Yom85, Theorem 4.2]). We recall the theorem here for convenience. Below, M
Rk

(Y, s)

denotes the covering number of Y ⊂ Rk by balls in Rk of radius s (see Definition 5.4).

Proposition 7.4 ([Yom85] Theorem 4.2). Let Ω ⊂ R` and L > 0 such that for all ρ1, ρ2 ∈ Ω, there
is a path in Ω of length smaller than L‖ρ1−ρ2‖ connecting ρ1 and ρ2. Let Ψ : B

Rk
(0, 1)×Ω→ Rk

be a continuously differentiable mapping such that there exist c1 > 0, c2 > 0 so that for all ρ ∈ Ω,
and σ, σ̃ ∈ B

Rk
(0, 1)

‖dρΨ(σ, ρ)‖ ≤ c1, ‖Ψ(σ̃, ρ)−Ψ(σ, ρ)‖ ≥ c2‖σ − σ̃‖.
Then, for any s > 0 and any X ⊂ Ω, Y ⊂ Rk,

M
Rk

(∆Ψ(X,Y ), s̃) ≤M
R`

(X, s)M
Rk

(Y, s)

where s̃ := 2(Lc−1
2 (1 + c1) + 1)s and

∆Ψ(X,Y ) := {σ ∈ B
Rk

(0, 1) : there is ρ ∈ X such that Ψ(σ, ρ) ∈ Y }. (7.8)

Let m
RL

be the Lebesgue measure on RL normalized so that

m
RL

(B
RL

(0, 1)) = 1 (7.9)

and let mΣ
N(R)

be the product measure on Σ
N(R)

. We write mΓ for the volume measure on Γ.

Next, we show that there is c > 0 such that if ρ0 ∈ Γ is (n, c) returning and (n, α) simple
for some metric g, then there is only a small measure set of σ that yield a perturbed metric
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QR,δ(g,σ) for which there are points ρ ∈ B(ρ0, R
y′) that are (n, βq−3) returning and are not

(n, β) q-non-degenerate for some q ∈ N. This can be done for α < c and β < cnRy′ provided that
we work with metrics that are at least C5.

Remark 7.5. Lemma 7.6 below is the only place where we require g to have 5 derivatives.

Lemma 7.6. Let b > 0, ν ≥ 5, y ≥ 1, and N : (0, 1)→ N. Let {QR,δ}R,δ be a (ν,N)-good family

of perturbations and (Γ, G) be a (z, b, y)-admissible pair for {QR,δ}R,δ.
Let K ⊂ G bounded in G 5 and y′ ≥ y. Let δG be as in Lemma 6.12 and (6.11). There exist

c ∈ (0, 1), C > 0 such the following holds. Let n ∈ N, α ∈ (0, c),

0 < R < min(cnα, 1
2cδG), 0 < δ ≤ min(Rbcn+1, R2ϑ̃4cn+1, cRϑ5).

If g ∈ K, ρ0 ∈ Γ, and BΓ(ρ0, R
y′) ∩ Sz(n, α, g) ∩ Rz(n, c, g) 6= ∅, then for all 0 < β <

min (1
2δG , c

nRy′)

mΣ
N(R)

(Sρ0,R,δ
g (n, α,β)) ≤mΓ(BΓ(ρ0, R

y′))(CnRy′)L−2ℵ−1δ−Lβ,

where

Sρ0,R,δ
g (n, α,β) :=

{
σ ∈ Σ

N(R)
: there are ρ ∈ BΓ(ρ0, R

y′) and q ∈ N such that

ρ ∈ Rz

(
n, βq−3, QR,δ(g,σ)

)∖
N q,z

(
n, β, QR,δ(g,σ)

)}
.

Proof. Let ε0 as in Definition 7.3. Using the estimate on (ϕgt )
∗ : C1 → C1 in Lemma 6.11, we first

note that there exists c = c(K) > 0 such that if g ∈ K, ρ0 ∈ Γ, 0 < α < 1, n ∈ N, and 0 < R ≤
cnα, then B(ρ0, R

y′) ∩Sz(n, α, g) ∩Rz(n, c, g) 6= ∅ implies ρ0 ∈ Sz(n, 1
3α, g) ∩Rz(n, ε0, g). By

Definition 7.3, this allows us to work with indices j0, m0, and I0 such that the lower bound on

the differential of ΨR,δ
g,I0

in (7.6) holds.

The result will follow once we find c, C such that, under the assumptions of the lemma, for all

σ̂ ∈
∏N(R)−1
j=1 B

RL
(0, 1) and 0 < β < min(1

2δG , c
nRy′)

m
RL

(Sρ0,R,δ
g (n, α, β; j0, σ̂)) ≤mΓ(BΓ(ρ0, R

y′))C(CnRy′)L−2ℵ−1δ−Lβ, (7.10)

where for σ̂ ∈
∏N(R)−1
j=1 B

RL
(0, 1), we let σ−j0 := (σ̂i)

j0−1
i=1 , σ+

j0
:= (σ̂i)

N(R)−1
i=j0

, and

Sρ0,R,δ
g (n, α,β; j0, σ̂) =

{
σ ∈ B

RL
(0, 1) :

(
σ−j0 , σ,σ

+
j0

)
∈ Sρ0,R,δ

g (n, α, β)
}
.

To prove the claim in (7.10) we restrict the map ΨR,δ
g,I0

to its jth0 -component in σ. For

σ̂ ∈
∏N(R)−1
j=1 B

RL
(0, 1) define the restricted map ΨR,δ

g,I0 ,j0,σ̂
(n, σ, ρ) = ΨR,δ

g,I0

(
n, (σ−j0 , σ,σ

+
j0

), ρ
)
, with

domain (n, σ, ρ) ∈ N×B
RL

(0, 1)×BΓ(ρ0, R
y′).

By assumption (7.3), after possibly shrinking c in a way that depends only on K, the set
{QR,δ(g,σ) : g ∈ K, σ ∈ Σ

N(R)
} ⊂ G 5 is bounded provided δ < cRϑ5 . Then, combining (7.5)

with Lemma 6.11 we obtain that there is C > 0 depending only on (K,Γ,z) such that

sup
ρ,σ̂,σ,j

sup
{I:ρ∈D(n)

I [QR,δ(g,σ)]}
‖d2

σΨR,δ
g,I ,j,σ̂

(n, σ, ρ)‖ ≤ CnR−2ϑ̃4δ2. (7.11)
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Therefore, since ρ0 ∈ Γ ∩Sz(n, 1
3α, g) ∩Rz(n, ε0, g), assumption (7.6) and (7.11) yield that for

each σ̂, and σ, σ̃ ∈ B
RL

(0, 1),

inf
ρ∈B

Γ
(ρ0,Ry)

‖ΨR,δ
g,I0 ,j0,σ̂

(m0, σ, ρ)−ΨR,δ
g,I0 ,j0,σ̂

(m0, σ̃, ρ)‖ ≥ δcn+1‖σ − σ̃‖, (7.12)

provided that

R < cnα, δ ≤ Rbcn+1, CnR−2ϑ̃4δ2 ≤ 1
10c

n+1δ, (7.13)

after possibly shrinking c in a way that only depends on (K,Γ,z).

Note that if σ ∈ Sρ0,R,δ
g (n, α, β; j, σ̂), then by Lemma 6.12 there are ρ ∈ BΓ(ρ0, R

y′) and q ∈ N
such that

d
(
ρ , P(m0)

I0
[QR,δ(g,σ)](ρ)

)
< CGβq

−3, ρ /∈ N q,z

(
n, β, QR,δ(g,σ)

)
. (7.14)

After requiring that Ry < CGδG and β <
δ
G
2 , there exists a coordinate chart (U,ψ) ∈ A (see

(6.11)) with BΓ(ρ0, R
y′) ⊂ ψ(U) such that (6.14) does not hold with I = I0 and m = m0.

Furthermore, P(m0)
I0

[QR,δ(g,σ))](ρ) ∈ ψ(U) for all ρ ∈ Rz(n, βq−3, QR,δ(g,σ)) ∩BΓ(ρ0, R
y′).

Next, consider the map Ψ̃R,δ
g : N×Σ

N(R)
× ψ(B

Γ̃
(ρ0, R

y′))→ ψ(U)× Sp(2ℵ)

Ψ̃R,δ
g (n,σ, x) :=

(
(P(m0)
I0

[QR,δ(g,σ)]ψ(x)− x , dx((P(m0)
I0

[QR,δ(g,σ)])ψ(x)
)
.

and for each n ∈ N consider its restriction

Ψ̃n : B
RL

(0, 1)× ψ(BΓ(ρ0, R
y))→ ψ(U)× Sp(2ℵ), Ψ̃n(σ, x) := Ψ̃R,δ

g

(
n, (σ−j0 , σ,σ

+
j0

), x
)
.

It follows from (7.14), our choice of ψ, and the comment following Definition 6.15, that A :=

dx(ψ◦(P(m0)
I0

[QR,δ(g,σ)])◦ψ−1)(ψ(ρ)) is not (β, q) non-degenerate. Therefore, Corollary 5.3 applied

to A combined with the first statement in (7.14) yield, that, with sq := βq−3, D(2πp
q , sq) as in

(5.4), and ∆
Ψ̃n

as in (7.8),

Sρ0,R,δ
g (n, α,β; j, σ̂) ⊂ ∆Ψ̃n

(X,∪∞q=1Yq), (7.15)

X := ψ(BΓ(ρ0, R
y′)), Yq := B

R2ℵ (0, CGsq)×
q−1⋃
p=0

D(2πp
q , sq)∩BA0

(r0).

Here, we let A0 := dx(P(m0)
I0

[g])ψ(x) and r0 := Cn1R
y′ with C1 chosen so that the image of the

second factor in Ψ̃n lies within BA0
(r0). This is possible to arrange since there is C0 > 0 depending

only on (K,ψ,U) such that ‖A0‖ ≤ Cn0 . Also, by Lemma 6.11 with ν = 4 and Definition 7.2 with
ν = 3, there is C1 > 0 depending only on (K,ψ,U) such that

‖dx((P(m0)
I0

[QR,δ(g,σ)])ψ(x)−A0‖ ≤ (C1δR
−ϑ3)nRy′ ≤ r0.

Note that the last inequality holds provided δ < Rϑ3 .

With (7.15) in place we proceed to check that the hypothesis in Proposition 7.4 hold. Note that

by Lemma 6.11 there is C > 0, depending only on (K,ψ,U), with supx∈ψ(B
Γ

(ρ0,Ry′ )) ‖dxΨ̃n(σ, x)‖ ≤
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Cn. In addition, by (7.12), there is c > 0 depending only on (K,ψ,U) such that for σ, σ̃ ∈ B
RL

(0, 1)

inf
x∈ψ(B

Γ
(ρ0,Ry))

‖Ψ̃n(σ, x)− Ψ̃n(σ̃, x)‖ ≥ δcn+1‖σ − σ̃‖.

It follows that, for each n ∈ N, Proposition 7.4 applies to Ψ̃n with k := L = dim(ψ(U) ×
Sp(2ℵ)), ` := 2ℵ, c1 = Cn, c2 = δcn+1, and some L depending only on (ψ,U). Note that we are

abusing notation slightly here to identify Sp(2ℵ) with Rℵ(2ℵ+1) in the codomain. Finally, since
m

RL
(∆Ψ̃n

(X,Yq)) ≤ cLMRL
(∆Ψ̃n

(X,Yq) , s) s
L for all s > 0, Proposition 7.4 and (7.15) yield that,

with s̃q := 2(Lδ−1c−n−1(1 + Cn) + 1)sq,

m
RL

(Sρ0,R̃,δ
g (n, α,β; j, σ̂)) ≤

∞∑
q=1

m
RL

(∆Ψ̃n
(X,Yq)) ≤ cL

∞∑
q=1

M
R2ℵ (X, sq)MRL

(Yq, sq) s̃
L
q . (7.16)

To control the right hand side of (7.16) first observe that

M
R2ℵ (X, sq) ≤ CmΓ(BΓ(ρ0, R

y′))s−2ℵ
q (7.17)

provided 0 < sq ≤ Ry′ , where C > 0 depends only on (Γ, ψ, U). Next, by Corollary 5.11 with
r = Cn0 + r0, there are C, ε0 > 0 such that if 0 < sq ≤ min(ε0(Cn0 + r0), 12r0(Cn0 + r0)2), then

M
RL

(Yq, sq) ≤ Cq((Cn0 + r0)2r0sq
−1)L−2ℵ−1. (7.18)

By possibly adjusting c > 0 one last time, asking β ≤ min(
δ
G
2 , c

nRy′) makes sq be sufficiently
small, and so combining (7.16), (7.17) and (7.18) yields

m
RL

(Sρ0,R̃,δ
g (n, α, β; j, σ̂)) ≤

∞∑
q=1

CmΓ(BΓ(ρ0, R
y′))s−2ℵ

q Cq((Cn0 + r0)2r0sq
−1)L−2ℵ−1s̃Lq

≤ C(CnRy′)L−2ℵ−1mΓ(BΓ(ρ0, R
y′))δ−Lβ

∞∑
q=1

q−2.

This proves the claim in (7.10) provided R,α, δ, n satisfy (7.13), β < min(
δ
G
2 , c

nRη
′
), and δ <

cRϑ5 . �

Corollary 7.7. Let b > 0, ν ≥ 5, y ≥ 1, and N : (0, 1) → N. Let {QR,δ}R,δ be a (ν,N)-good

family of perturbations and (Γ, G) be a (z, b, y)-admissible pair for {QR,δ}R,δ.
Let K ⊂ G bounded in G 5 and y′ ≥ y. Let δG be as in Lemma 6.12 and (6.11). There exist

c ∈ (0, 1), C > 0 such the following holds. Let n ∈ N, α ∈ (0, c),

0 < R < min(cnα, 1
2cδG), 0 < δ ≤ min(Rbcn+1, R2ϑ̃4cn+1, cRϑ5+1). (7.19)

If g ∈ K, then for all 0 < β < min (1
2δG , c

nRy′)

mΣ
N(R)

(SR,δg (n, α, β)) ≤ C(CncRy′)L−2ℵ−1δ−Lβ,
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where

SR,δg (n, α, β) :=
{
σ ∈ Σ

N(R)
: ∃q ∈ N s.t.

Γ ∩Sz(n, α,QR,δ(g,σ)) ∩Rz

(
n, βq−3, QR,δ(g,σ))

)∖
N q,z

(
n, β, QR,δ(g,σ)

)
6= ∅
}
.

Proof. Let {ρi}i ⊂ Γ be an Ry′ maximal separated set in Γ. We claim that

SR,δg (n, α,β) ⊂ ZR,δg (n, α,β) ⊂
⋃
i∈I
Sρi,R,δg (n, α,β), (7.20)

where I := {i : BΓ(ρi, R
y′) ∩Sz(n, 1

2α, g) ∩Rz(n, c, g) 6= ∅} and

ZR,δg (n, α,β) :=
{
σ ∈ Σ

N(R)
: ∃q ∈ N s.t.

Γ ∩Sz(n, 1
2α, g) ∩Rz

(
n, βq−3, QR,δ(g,σ))

)∖
N q,z

(
n, β, QR,δ(g,σ)

)
6= ∅
}
.

The claim in (7.20) follows from observing that

Sz(n, α,QR,δ(g,σ)) ⊂ Sz(n, 1
2α, g), Rz(n, βq−3, QR,δ(g,σ)) ⊂ Rz(n, c, g).

Indeed, these two inclusions follow from combining the conclusion from Lemma 6.11 that for all
t ∈ R

d(ϕgt (ρ), ϕ
QR,δ(g,σ)
t (ρ)) ≤ C |t|‖g −QR,δ(g,σ)‖C3

with (7.2), (7.3), and the requirement that δR−ϑ3 ≤ cnα (the latter holds since ϑ5 ≥ ϑ3 and
δ < cRϑ5+1).

Finally, combining (7.20) with Lemma 7.6 applied to each ball B
Γ̃
(ρi, R

y′) with i ∈ I yields the
desired bound. �

8. Induction on the length of orbits

Let b > 0. Let ν > 0, N : (0, 1)→ N, {QR,δ}R,δ be a (ν,N)-good family of perturbations, and

let (Γ, G) be a (z, b, y)-admissible pair for {QR,δ}R,δ. In this section we will prove that there is a
predominant set, G of metrics such that for all g in G, there is C > 0 such that

Γ ∩Rz(n, βn, g) ⊂ N z(n, βn, g), βn = C−Cn
Ων
, (8.1)

We do this using a family of probing maps generated by the (ν,N)-good family of perturbations.
Once this is done (see Proposition 8.9), to prove Theorem 1.3 it will remain to show that there
are (ν,N)-good families of perturbations (we do this in Section 9). We continue to work in the
setting of Section 7.

8.1. Construction of families of probing maps. Let ν ≥ 0, a function N : (0, 1)→ N, and let
{QR,δ}R,δ be a (ν,N)-good family of perturbations. Let {Ks}s∈(0,1) ⊂ G ν be a family of nested
closed bounded subsets Ks1 ⊂ Ks2 for s1 > s2 such that G ν = ∪s∈(0,1)Ks. By Definition 7.2 for
every s ∈ (0, 1) bounded there is Cs > 0 such that for all δ > 0, R > 0,

‖QR,δ(g,σ)−QR,δ(g, σ̃)‖Cν ≤ CsδR
−ϑν‖σ − σ̃‖`∞ , (8.2)

‖QR,δ(g̃,σ)−QR,δ(g,σ
)
‖
Cν−1 ≤ (1 + CsδR

−ϑν )‖g − g̃‖
Cν−1 . (8.3)
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for σ, σ̃ ∈ Σ
N(R)

, g ∈ Ks. Next, for ε > 0 let s(ε) > 0 be an increasing function such that
limε→0+ Cs(ε)ε = 0 and Cs(ε)ε is increasing. Next, define the closed and bounded sets

G ν
ε := {g ∈ Ks(ε) : d(g,G ν\Ks(ε)) ≥ 2Cs(ε)ε}. (8.4)

Note that G ν
ε2 ⊂ G ν

ε1 for ε1 < ε2 and G ν = ∪ε>0G ν
ε .

For ε ∈ (0, 1) let δε = {δj(ε)}∞j=0 ⊂ [0, 1) and Rε = {Rj(ε)}∞j=0 ⊂ (0, 1), satisfy

∞∑
j=0

δj(ε)(Rj(ε))
−ϑν ≤ ε. (8.5)

We now construct a family of probing maps associated to the perturbation maps QRj(ε),δj(ε).
Given J = 0, . . . , N define the spaces

ΣJ (Rε) :=

J∏
j=0

Σ
N(Rj(ε))

, Σ∞(Rε) :=

∞∏
j=0

Σ
N(Rj(ε))

. (8.6)

Also, given a sequence σ = (σ0 ,σ2 ,σ3 , . . . ) ∈ Σ∞(Rε) we write σ̂J := (σ0 , . . . ,σJ ) ∈ ΣJ (Rε).

We are now ready to define the family of probing maps (see Definition 2.2). We start by letting
FR,δ

0
: G ν

ε ×Σ
N(R0)

→ G ν be the map

FRε,δε
0

(g,σ) := QR0(ε),δ0(ε)(g,σ) (8.7)

and FRε,δε
J

: G ν
ε ×ΣJ (Rε)→ G ν by

FRε,δε
J

(g, σ̂J ) := QRJ (ε),δJ (ε)
(
FRε,δε
J−1

(g, σ̂J−1),σJ
)
. (8.8)

Finally, we define

FRε,δε
∞ : G ν

ε ×Σ∞(Rε)→ G ν , FRε,δε
∞ (g,σ) = lim

J→∞
FRε,δε
J

(g, σ̂J ). (8.9)

Note that, apriori, the limit in (8.9) may not exist, but we prove in Lemma 8.1 that it does under
our assumptions on Rε and δε. When it will not lead to confusion, we will omit the R, δ from
the notation for FR,δ

J
.

When checking the probing maps definition we work with G := G ν and G ′ := G ν−1, while B
and B′ will be the spaces of Cν and Cν−1 symmetric two-tensors.

Lemma 8.1. Let ν ≥ 0, N : (0, 1) → N and {QR,δ}R,δ be a (ν,N)-good family of perturba-
tions. Then for all δε = {δj(ε)}∞j=0 ⊂ (0, 1) and Rε = {Rj(ε)}∞j=0 ⊂ (0, 1) satisfying, (8.5).

{(FRε,δε
∞ ,∞)}ε>0 is a G ν−1-family of probing maps for G ν .

Moreover, for all K ⊂ G ν bounded and K̃ ⊂ G ν bounded with d(K̃c,K) > 0, there is ε1 > 0

such that for all 0 < ε < ε1 and δε and Rε satisfying (8.5), FRε,δε
J

(K × ΣJ (Rε)) ⊂ K̃ for all
J ∈ N ∪ {∞}.

Proof. Let 0 < ε < 1 and assume (8.5) is satisfied. We first show that FRε,δε
∞ is well defined.
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Given g ∈ G ν
ε we claim that FRε,δε

J
(g, σ̂J ) ∈ Ks(ε) for all J and σ̂J ∈ ΣJ (Rε). Indeed, we claim

d(FRε,δε
J

(g, σ̂J ),G ν\Ks(ε)) ≥ Cs(ε)
(

2ε−
J∑
j=0

δJ (ε)RJ (ε)−ϑν
)
. (8.10)

Note that when J = 0 this follows from the definition of G ν
ε since (8.2) and (7.2) yield ‖FRε,δε

0
(g,σ)−

g‖Cν ≤ Cs(ε)δ0(ε)R0(ε)−ϑν . Next, assume the claim holds for all j ≤ J − 1. Then, again by (8.2)
we obtain

‖FRε,δε
J

(g, σ̂J )− FRε,δε
J−1

(g, σ̂J−1)‖Cν =
∥∥QRJ (ε),δJ (ε)(FRε,δε

J−1
(g, σ̂J−1),σJ )− FRε,δε

J−1
(g, σ̂J−1)

∥∥
Cν

≤ Cs(ε)δJ (ε)RJ (ε)−ϑν‖σJ‖`∞ . (8.11)

By (8.11) and (8.5) the claim in (8.10) holds and so FRε,δε
J

(g, σ̂J ) ∈ Ks(ε). Furthermore, (8.11)

and (8.5) guarantee that FRε,δε
∞ (g,σ) is well defined and FRε,δε

∞ (g,σ) ∈ G ν . Also, since FRε,δε
J

is

continuous, so is FRε,δε
∞ .

Note that (8.11) implies the second statement in the Lemma and we need only check that

FRε,δε
∞ is a family of probing maps.

Next, note that (7.2) implies FRε,δε
∞ (g, 0) = g for all g ∈ G ν

ε so (2.6) holds. To check that
(2.7), (2.8), (2.9) hold, let K ⊂ G ν be bounded. Then, there is ε0 > 0 such that K ⊂ G ν

ε for all
0 < ε < ε0. In particular, (8.11) implies that for all 0 < ε < ε0, g ∈ K, and σ ∈ Σ∞(Rε),

‖FRε,δε
∞ (g,σ)− g‖Cν ≤ Cs(ε)

∞∑
J=1

δJR
−ϑν
J
‖σJ‖`∞ ≤ Cs(ε)ε‖σ‖`∞ .

Thus, since limt→0+ Cs(ε)ε = 0, (2.7) holds.

We next prove that FRε,δε
∞ satisfies (2.8). To ease notation, from now on we write FJ in place

of FRε,δε
J

and δJ = δJ (ε), RJ = RJ (ε). First, note that (8.2) implies that for g ∈ Kt(ε) and
σ,µ ∈ Σ∞(R)

‖F0(g, σ̂0)− F0(g, µ̂0)‖
Cν−1 ≤ Cs(ε)δ0R

−ϑν
0 ‖σ0 − µ0‖`∞ .

Our induction hypothesis is that for some J ≥ 1 and all g ∈ G ν
ε , σ,µ ∈ Σ∞(R),

‖FJ−1(g, σ̂J−1)− FJ−1(g, µ̂J−1)‖
Cν−1

≤ Cs(ε)R−ϑν−1
J−1

δJ−1‖σJ−1 − µJ−1‖`∞ +
J−2∑
j=0

Cs(ε)

J−1∏
k=j+1

(1 + Cs(ε)δkR
−ϑν
k )R

−ϑν−1

j δj‖σj − µj‖`∞ .

Next, note that by (8.2),

‖FJ (g, σ̂J )− FJ (g, (σ̂J−1 ,µJ ))‖
Cν−1 ≤ Cs(ε)Rϑν−1

J
δJ‖σJ − µJ‖`∞ .

In addition, by (8.3) and the induction hypothesis

‖FJ (g, µ̂J )− FJ (g, (σ̂J−1 ,µJ ))‖
Cν−1 ≤ (1 + Cs(ε)δJR

−ϑν
J

)‖FJ−1(g, σ̂J−1)− FJ−1(g, µ̂J−1)‖
Cν−1

≤
J−1∑
j=0

J∏
k=j+1

Cs(ε)(1 + Cs(ε)δkR
−ϑν
k )R

−ϑν−1

j δj‖σj − µj‖`∞ .
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Therefore, for all J = 0, 1, . . . , g ∈ G ν
ε , and σ,µ ∈ Σ∞(R),

‖FJ (g, σ̂J )− FJ (g, µ̂J )‖
Cν−1

≤ ‖FJ (g, σ̂J )− FJ (κ, (σ̂J−1 ,µJ )‖
Cν−1 + ‖FJ (g, µ̂J )− FJ (g, (σ̂J−1 ,µJ )‖

Cν−1

≤ Cs(ε)R−ϑν−1
J

δJ‖σJ − µJ‖`∞ +

J−1∑
j=0

Cs(ε)

J∏
k=j+1

(1 + Cs(ε)δkR
−ϑν
k )R

−ϑν−1

j δj‖σj − µj‖`∞ .

Sending J →∞, we conclude that the inequality in (2.8) holds since limt→0+ Cs(ε)ε = 0 and

‖F∞(g,σ)− F∞(g,µ)‖
Cν−1 ≤

∞∑
j=0

Cs(ε)

∞∏
k=j+1

(1 + Cs(ε)δkR
−ϑν
k )R

−ϑν−1

j δj‖σj − µj‖`∞

≤ Cs(ε)ε exp
(
Cs(ε)ε)‖σ − µ‖`∞ .

The fact that F̃Rε,δε
∞ = ι ◦ FRε,δε

∞ : G ν ×Σ∞(R) → G ν−1 is Lipschitz in both σ and g follows
after checking by induction that for all σ ∈ Σ∞(R)

‖F∞(g,σ)− F∞(g̃,σ)‖
Cν−1 ≤

∞∏
j=0

(1 + Cs(ε)δjR
−ϑν
j )‖g − g̃‖

Cν−1 ≤ exp(Cs(ε)ε)‖g − g̃‖Cν−1 .

We proceed to prove (2.9). We claim that

DgF∞(g,σ) = lim
J→∞

HJ (g, σ̂J ) . . . H1(g, σ̂1)H0(g, σ̂0), (8.12)

where we abbreviate HJ (g, σ̂J ) := DgQ
RJ ,δJ (FJ−1(g, σ̂J−1),σJ ) for J ≥ 1 and set H0(g, σ̂0) =

DgQ
R0,δ0(g, σ̂0). Indeed, observe that for J > K

DgFJ (g, σ̂J )−DgFK (g, σ̂K ) =
(
HJ (g, σ̂J ) . . . HK+1(g, σ̂K+1)− I

)
DgFK (g, σ̂K ). (8.13)

Now, fix ε0 > 0 and choose K > 0 such that Cs(ε)
∑∞

j=K+1 δjR
−ϑν
j < ε0. Then, using (7.4),

‖HJ (g, σ̂J ) . . . HK+1(g, σ̂K+1)− I‖
Cν−1→Cν−1

≤
J∑

j=K+1

∥∥HJ (g, σ̂J ) . . . Hj+1(g, σ̂j+1)
(
Hj (g, σ̂j )− I

)∥∥
Cν−1→Cν−1

≤
J∑

j=K+1

J∏
`=j+1

(1 + Cs(ε)δ`R
−ϑν
` )Cs(ε)δjR

−ϑν
j ≤ exp(Cs(ε)ε)ε0. (8.14)

Therefore, by (8.13), the sequence {DgFJ (g, σ̂J )}J is Cauchy. This implies that the limit in (8.12)
exists and the convergence is uniform. Since FJ → F∞ , this implies the equality (8.12). Moreover,
setting K = −1 in (8.14) and combining it with (8.12) we see that

‖DgF∞ − I‖Cν−1→Cν−1 ≤ Cs(ε) exp(Cs(ε)ε)

∞∑
j=0

δjR
−ϑν
j ≤ Cs(ε)ε exp(Cs(ε)ε)→ 0,

and hence the estimate in (2.9) holds.

�
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8.2. Induction on the length of orbits. In this section, we construct the probing family for
which (8.1) holds for a predominant set of metrics. The idea is to show that for any 1 < a < 2,
given non-degeneracy of returning points at time n for all n ≤ ` (together with some additional
conditions on the eigenvalues of Poincaré maps), most perturbations have non-degeneracy of
returning points for times n with n ≤ a`. An outline is given in Section 4.2.

We start by obtaining non-degeneracy of orbits of length 1. In what follows, given δ0(ε) and

R0(ε) we write F0(g,σ) := QR0(ε),δ0(ε)(g,σ) as in (8.7).

Lemma 8.2. Let ν > 0 and b > 0, a function N : (0, 1) → N, and a (ν,N)-good family
of perturbations {QR,δ}R,δ. For all ε > 0, there exist positive constants δ0, R0, β0,0 such that

δ0R
−ϑν
0 < 1

2ε and the following holds. For every z > 0 and (Γ, G) that is a (z, b, y)-admissible

pair for {QR,δ}R,δ, and all K ⊂ G bounded in G ν , there are C > 0 and ε0 > 0 such that for
0 < ε < ε0

sup
σ∈Σ(R0)

‖F0(g,σ)− g‖Cν < 1
4Cε, for all g ∈ K, (8.15)

and

m
Σ(R0)

(
σ ∈ Σ(R0) : F0(g,σ) ∈ L̃z,0

)
≤ 1

2ε, for all g ∈ K (8.16)

where the set L̃z,0 is defined by

L̃z,0 :=
{
g ∈ G ν : ∃q ∈ N s.t. Γ ∩Rz(1, β0,0,0q

−3, g)\N q,z(1, β0,0,0, g) 6= ∅
}
, (8.17)

with β0,0,0 := 2β0,0.

Proof. Let ϑ̃4, ϑ5 be as in Definition 7.2, and set

R0 = 1
2ε, δ0 = min

(
ε2R

max(b,2ϑ̃4)
0 , εR

max(ϑν ,ϑ5+1,1)
0

)
, β0,0 = 1

4R
y+1
0 δL0 .

Next, fix K ⊂ G bounded in G ν . By Definition 7.2 there is C0 > 0 such that ‖g−F0(g,σ)‖Cν ≤
C0δ0R

−ϑν
0 ≤ 1

2C0ε for g ∈ K implying (8.15). Let c, C be as in Corollary 7.7 (with y′ = y) and
note that its hypothesis for n = 1 are satisfied with δ := δ0 and R := R0 provided ε < c. Note

that since Sz(1, α, g) = S̃∗M ⊃ Γ for all g ∈ G and α > 0, then{
σ ∈ Σ(R0) : F0(g,σ) ∈ L̃z,0

}
= SR0,δ0

g (1, α, 2β0,0).

Let α = 1
2c. Finally, since y ≥ 1, if the conclusion follows from Corollary 7.7 after asking

ε = 2R0 < min(c2, cδG , C
−1).

�

Now that we have obtained non-degeneracy for returning points with orbits of length 1, we
need to induct on the length of the returning orbit. In order to do this, we work with lengths
between a`z and a`+1z for some 1 < a < 2 and induct on `. Before stating our lemma, we set

b := 1− log2 a ∈ (0, 1), (8.18)

and for j ≥ 0 and ε > 0 set

γj(ε) := 5−2ℵε(2ℵ+1)a(j+1)/b
a−4ℵ(j+1)/b. (8.19)
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We are now ready to do the induction on the length of the orbits. At step ` in the induction,
we study returning trajectories of length t ≤ za`+1, in particular, making perturbations so that
the returning trajectories with (a` − 1)z < t ≤ a`+1z are non-degenerate and so that the non-
degeneracy of shorter trajectories is maintained. See the outline of the proof in Section 4 for
a more detailed explanation of the argument. In what follows, we continue to use the notation
Σ`(R) introduced in (8.6).

Proposition 8.3. Let ν ≥ 5, y ≥ 1, b > 0, N : (0, 1)→ N, and {QR,δ}R,δ be a (ν,N)-good family
of perturbations. There exists d > 0 and for all ε > 0 there are δε := {δ`}∞`=0, Rε := {R`}∞`=0,

and β0,0 > 0, such that δ`R
−ϑν
` < 2−`−1ε and the following holds. For every z > 0, (Γ, G) that is

a (z, b, y)-admissible pair for {QR,δ}R,δ, and K ⊂ G bounded in G ν , there are C > 0 and ε0 > 0
such that for 0 < ε < ε0 and all ` = 0, 1, . . .

sup
σ∈Σ`+1(R)

‖F`+1(g,σ)− F`(g, σ̂`)‖Cν ≤ C2−`−2ε, g ∈ K. (8.20)

In addition, for 0 ≤ i ≤ j ≤ `, there exist constants βi,j ∈ (0, 1], with βi+1,j ≤ βi,j,

βj+1,j+1 = βcj,jε
daj/b , (8.21)

with c := max(2ℵ(2ℵ+3)
2ℵ+1 mν , 2ℵy) and mν := max(b, ϑν , ϑ5 + 1, 2ϑ̃4, 1) such that the following holds.

Let α0 = 4ε−1 and for 0 ≤ j ≤ ` set

αj+1 := γjβ
2ℵ
j,j , αj,` := (1− 2−(`−j)−1)αj , βi,j,` := (1 + 2−(`−j))βi,j ,

β̃j,`+1 := s`β̃j,`, β̃j,j := β2ℵ
j,jε

2ℵ−1, s` := 1+2−`−1

1+2−`

(8.22)

with γj as in (8.19). Then for all g ∈ K, ` ≥ 0, and 0 < ε < ε0

m
Σ∞(R)

(
σ ∈ Σ∞(R) : ∃ j ≤ ` s.t. Fj(g, σ̂j) ∈ Lz,j

)
≤ (1− 2−`−1)ε, (8.23)

and, for all σ ∈ Σ`−1(R) such that F`−1(g,σ) ∈ G ν \ Lz,`−1

m
Σ(R`)

(
σ` : F`(g, (σ,σ`)) ∈ Lz,`

)
≤ 2−`−1ε. (8.24)

Here, Lz,−1 = ∅, F−1 = π
Gν

, and for ` ≥ 0 the set Lz,` is defined as follows: g ∈ G ν \ Lz,`

(1) For 0 ≤ i ≤ `, ai−1 < n ≤ ai,

Γ ∩Rz(n, β̃i,`, g) ⊂ N z(n, β̃i,`, g). (8.25)

(2) For all b` ≤ j ≤ `, 0 ≤ i ≤ j, ai−1 < n ≤ ai, and all 1 ≤ q ≤ aj/b−i+1,

Γ ∩Rz(n, βi,j,`q
−3, g) ∩Sz(n, αj,`, g) ⊂ N q,z(n, βi,j,`, g). (8.26)

Remark 8.4. There are a large number of parameters in Proposition 8.3. One should think
of these parameters as follows. Those with a β control the degree of q-non-degeneracy that
trajectories have while those with a β̃ control simple non-degeneracy of trajectories. Parameters
with an α control the degree of simplicity that a trajectory must have in order to apply the
inductive hypothesis.

The most important constants will turn out to be c and a. While 1 < a < 2 is left free
for the moment, and will be fixed in the proof of Proposition 8.9, c controls how rapidly the
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non-degeneracy of trajectories decays. This constant is determined in Step 3 of the induction
(Section 8.2.4).

Notice that the parameter c depends on mν , which depends on the regularity ν in which
we work. The reason for definition of mν is as follows: 1) ϑν appears because we want our

perturbations to be close in G ν (see Lemma 8.7), 2) b, 2ϑ̃4, and ϑ5 + 1 appear because we need
to apply Corollary 7.7 (see Step 3 of the induction (Section 8.2.4)

Given `, the proposition yields that for all the perturbations F δε,Rε

`−1 (g,σ) that satisfy both

(8.25) and (8.26) the set of σ` that would yield a new perturbation F δε,Rε

` (g,σ,σ`) not satisfying

either (8.25) or (8.26) is bounded in volume by 2−(`+1)ε. This allows us to show in the proof

of Theorem 1.3 that, except for on a measure ε set of σ, the perturbations F δε,Rε
∞ (g,σ) satisfy

(8.25) for all n.

We next explain the reason why we need to include (8.26) in the statement (this is also explained
carefully in Section 4). We prove the proposition by induction in `. Suppose we could perturb

F δε,Rε

`−1 (g,σ) in such a way that orbits that start in Γ and and are (n, β`,`) returning with n ∈
(a`−1, a`] will also be (n, β`,`) non-degenerate. Then, applying (8.25) to get non-degeneracy of

(n, β`,`) returning orbits with n ∈ (0, a`−1] would finish the job. However, this cannot always
be done. The issue is that we can only arrange for most of the perturbations to yield (n, β`,`)
non-degenerate orbits when the orbits are (n, α`,`) simple with β`,` small in terms of α`,` (see
Corollary 7.7). If all (n, β`,`) returning orbits were indeed (n, α`,`) simple, then (8.25) applied to

`−1 would guarantee that orbits that start at Γ and are (n, β`,`) returning with n ∈ [0, a`] will be
(n, β`,`) non-degenerate as desired. In reality, some returning orbits will not be (n, α`,`) simple,
and so those we will view as iterates of shorter ’loops’ of length n/q ∈ (ai−1, ai−1] with q > 1
that are (n/q, Cnα`,`) returning (see Lemma 6.4). If the shorter ’loop’ is (n/q, αi,`) simple and
Cnα`,` < βi,`q

−3, then we can apply (8.26) to say that such an orbit is (n/q, βi,`) q non-degenerate
and use that to infer that the long orbit is actually (n, β`,`) non-degenerate (see Lemma 6.18).
If the shorter loop is not (n/q, αi,`) simple, then we view it as an iterate of a shorter loop and
repeat the process until it terminates. The reason for the third index in βi,j,` is that we will need
some extra non-degeneracy which is ‘used up’ by making additional small perturbations in future
inductive steps.

We divide the proof of Proposition 8.3 into steps. In Step 0 we show that the base case ` = 0
holds. In Step 1 we deal with the returning orbits that are not simple enough to get non-degeneracy
by perturbation, instead showing that they inherit the non-degeneracy by decomposing them into
shorter loops as described above. In Step 2 we prove that the non-degeneracy created up to step
` is preserved by the perturbation performed in the `+ 1 step. Finally, in Step 3, we prove that
the volume of the set of perturbations that yield orbits whose degeneracy we cannot control is
small.

8.2.1. Step 0: Setting up the induction argument. Let (Γ, G) be a (z, b, y)-admissible pair for

{QR,δ}R,δ, and K ⊂ G bounded. Let K̃ ⊂ G be bounded and satisfy K ⊂ K̃ with d(K, K̃c) > 0.

By Lemma 8.1 there is ε1 > 0 such that K̃ ⊂ G ν
ε for 0 < ε < ε1, where G ν

ε is as in (8.4), and for
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any choice of δε and Rε satisfying (8.5), we have

FRε,δε
J

(K ×ΣJ (Rε)) ⊂ K̃, 0 < ε < ε1, J ∈ N ∪ {∞}.

Since all the metrics we work with will be of the form FRε,δε
J (g, σ̂J), for some g ∈ K, they will lie

inside K̃ and hence have uniform estimates.

Let ε̃0 be the number ε0 found in Lemma 8.2. From now on we assume that ε0 ≤ min{ε̃0, ε1}.
For convenience, in what follows we work with

C0 = 2 max{1, C, C1, C2, C3, C4, δ
−1
G
, CG}, (8.27)

where C is the constant from Corollary 7.7, C1 is the constant from Lemma 6.4, C2 > 0 is such
that ‖ϕg

t
− ϕg̃

t
‖C1 ≤ Ct2‖g − g̃‖C3 for all g, g̃ ∈ K̃ and t ∈ R, C3 is as in Lemma 6.18, and C4 is

the maximum of the constants C in Definition 7.2 for the choices of ν in {3, 5, ν}, and CG , δG are
from Lemma 6.12 and (6.11). Note that C0 depends only on ν,N, y, b, a,z,Γ, G,K. During the
induction argument we will ask that ε0 be small in terms of powers of C−1

0 .

We prove the lemma by induction on `. We check the cases 0 ≤ ` ≤ dloga 2e − 1. Since

adloga 2e−1 < 2, this amounts to considering 0 ≤ ` ≤ dloga 2e − 1, n = 1, 0 ≤ i ≤ ` in (8.25) and

b` ≤ j ≤ `, 0 ≤ i ≤ j, and 1 ≤ q ≤ aj/b−i+1 in (8.26).

By Lemma 8.2, for all ε > 0 there are β0,0, R0, and δ0 such that such that (8.15) holds and (8.16)
holds for all g ∈ K and 0 < ε < ε0(Γ,K). ,Set δ`(ε) = 0, R`(ε) = 1 for 1 ≤ ` ≤ dloga 2e− 1. That
is,

FRε,δε
0 (g, σ0) = FRε,δε

` (g, (σ0, σ1, . . . , σ`)), 1 ≤ ` ≤ dloga 2e − 1. (8.28)

Then, (8.15) implies (8.20) for ` ≤ dloga 2e − 1.

Set βi,j = βi,i for 0 ≤ i ≤ j ≤ dloga 2e − 1. We note that by (8.28), it is enough to show that

m
Σ(R0)

(
σ : F0(g, σ) ∈

⋃
0≤`≤dloga 2e−1

Lz,`

)
≤ 2−1ε.

We next claim that for ` ≤ dloga 2e − 1, and g ∈ K,{
σ : FRε,δε

0 (g, σ) ∈
⋃

0≤`≤dloga 2e−1

Lz,`

}
⊂
{
σ : FRε,δε

0 (g, σ) ∈ L̃z,0

}
where L̃z,0 is defined in Lemma 8.2.

Indeed, since β̃0,0 = β2ℵ
0,0ε

2ℵ−1 and β0,0,0 = 2β0,0 for ε > 0 small enough depending on K and
all g ∈ K,

N (1, β̃0,0, F0(g, σ)) ⊂ N 1,z(1, β0,0,0, F0(g, σ)).

Therefore, by (8.17), if FRε,δε
0 (g, σ) /∈ L̃z,0 , then (8.25) holds for 0 ≤ ` ≤ dloga 2e − 1 and g

replaced by FRε,δε
0 (g, σ).

Next, since βi,j,` ≤ β0,0,0 for i = 0, b` ≤ j ≤ `, and 0 ≤ ` ≤ dloga 2e − 1, we have that{
g ∈ G ν : Γ ∩Rz(1, β0,0,0q

−3, g) ∩Sz(n, αj,`, g)\N q,z(1, β0,0,0, g) 6= ∅
}
⊂ L̃z,0
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and hence, if FRε,δε
0 (g, σ) /∈ L̃z,0 , then (8.26) holds for 0 ≤ ` ≤ dloga 2e − 1 and g replaced by

FRε,δε
0 (g, σ). The claim in (8.23) then follows from (8.16). This concludes the proof of the base

case in the induction argument.

Note that with β0,0 in place, the constants β`,` and α` are defined as in (8.21) and (8.22) for
all `. For ε > 0 and ` = dloga 2e, dloga 2e+ 1, . . . we set

R`(ε) := 1
8ε

a`+1α`, δ`(ε) := min
(
εa
`+1R

max(b,2ϑ̃4)
` , ε2−`R

max(ϑν ,ϑ5+1,1)
`

)
. (8.29)

We note that δ`(ε)R`(ε)
−ϑν < 2−`−1ε and so δε = {δ`(ε)}∞`=0 and Rε = {R`(ε)}∞`=0 satisfy (8.5).

We also note that with these definitions there is ε0 small enough that the assumptions (7.19) in
Corollary 7.7 are satisfied with R = R`+1(ε), δ = δ`+1(ε), α = 1

2α`+1, and n ≤ a`+1.

We now start the inductive step. Note that the base case 0 ≤ ` ≤ dloga 2e−1 only covers n = 1
since a` < n ≤ a`+1 and a < 2. Since to get to n = 2 we need 2 ≤ a`+1, we may assume that the
inductive hypotheses hold for some ` ≥ dloga 2e − 1. We split the proof of the inductive step with
`+ 1 into three steps.

8.2.2. Step 1: Nondegeneracy of returning points that are not simple. The goal of this step is to
study the set of points in Γ that under the perturbed metric F`(g,σ) generate orbits that return to
Γ at some ‘discrete’ time n ∈ (a`, a`+1] but that are not simple enough that the F`+1 perturbations
would make them non-degenerate. As explained before, we decompose these returning orbits into
shorter ‘loops’ and we use the (βq, q) non-degeneracy of shorter orbits given by (8.26) to show
that the original orbits were already non-degenerate.

We note that for this step in the proof the exact powers in the definition of βj,j do not play
a role. Instead, we only use that βj,j ≥ βj+1,j+1 and βi+1,j ≤ βi,j for all i and j. The precise
definition of γj as well as the definition of αj+1 in terms of γj and βj,j do, however, play a role.

Lemma 8.5. There is ε0 > 0 depending only on ν,N, y, b, a,z,Γ, G,K so that the following
holds. Suppose the conclusions of Proposition 8.3 hold up to the index `. Then, for all 0 < ε < ε0,
a` < n ≤ a`+1 and (g,σ) ∈ K ×Σ`(Rε) such that g` := F`(g,σ) ∈ G ν\L

T,`
we have

Γ ∩Rz(n, α`+1, g`) \Sz(n, α`+1, g`) ⊂ N z(n, α`+1, g`). (8.30)

Proof. Let a` < n ≤ a`+1 and (g,σ) ∈ K ×Σ`(R) such that g` := F`(g,σ) ∈ G ν\Lz,` . Let

ρ ∈ Γ ∩Rz(n, α`+1, g`) \Sz(n, α`+1, g`). (8.31)

We divide the proof into fours steps. In Step A, we decompose the non-simple orbit associated
to ρ into shorter (km, δm(`)) returning orbits that are (km, αm(`)) simple. The returning times
tm associated to these orbits are such that tm divides tm−1, and km = d tmz e with k0 = n. In
Step B we show that ρ ∈ N qm,z(km, βm(`), g`) with qm := t0/tm ∈ Z. In Step C we prove that
there are I and p ∈ Z such that for all q ≤ qm there is a time tq,m sufficiently close to qtm
with the property that (PpI [g`])

q(ρ) = PqpI [g`](ρ) = ϕg`tq,m(ρ). In particular, one can control the

distance from (PpI [g`])
q(ρ) to ρ for q ≤ qm. In Step D we check that the above guarantees that

the hypothesis of Lemma 6.18 are satisfied and so ρ is (n, α`+1) non-degenerate as claimed.
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Step A. We start the proof by showing that there are 1 ≤ m ≤ b(`+ 1) log2 ac, {ti}mi=0 ⊂ R, and
{ki}mi=0 ⊂ Z, such that k0 = n, (ki − 1)z < ti ≤ kiz, ti divides ti−1 for 1 ≤ i ≤ m, ti > z,

ρ ∈ Γ ∩Rz(km, δm(`), g`) ∩Sz(km, αm(`), g`), d(ϕg`tm(ρ), ρ) ≤ αm(`), (8.32)

and

d(ϕg`t (ρ), ϕg`r (ρ)) ≤ δi(`), 0 ≤ t ≤ ti−1, t = qti + r, 0 ≤ r < ti. (8.33)

Here, for i ≥ 1

αi(`) := α`−i+1, δ0(`) = α0(`), δi(`) := C
ti−1

0 αi−1(`),

with C0 as in (8.27).

Note that ρ ∈ Γ∩Rz(k0, δ0(`), g`)\Sz(k0, α0(`), g`) by (8.31). We next show that, by splitting

the orbit into shorter returning ones, we can find {ti}m−1
i=0 such that ti+1 divides ti and ρ ∈

Γ ∩Rz(ki, δi(`), g`) \Sz(ki, αi(`), g`) with ki := d tize, and that both (8.32) and (8.33).

To do this, suppose we have found {ti}m−1
i=0 such that ti+1 divides ti, and, with ki := d tize,

ρ ∈ Rz(ki, δi(`), g`), (8.34)

ρ /∈ Sz(ki, αi(`), g`), (8.35)

and (8.33) hold for 0 ≤ i ≤ m−1. We prove by induction that there is tm dividing tm−1 such that
(8.34) holds with i = m and (8.33) holds for 1 ≤ i ≤ m. Note that the base case i = 0 follows
from (8.31) after letting t0 be such that n = d t0z e since k0 = n.

First, note that δi(`) ≤ αi(`) for 1 ≤ i ≤ m − 1. Indeed, since {βj,j}j is decreasing it is

straightforward to check that δi(`) ≤ αi(`) provided C
ti−1

0 γ`−i−1 ≤ γ`−i−2. Since a−4ℵ/b ≤ 1, this

reduces to checking that C
ti−1

0 ε(2ℵ+1)a(`−i+1)/b(a1/b−1) ≤ 1. Since ti−1 ≤ ki−1z ≤ a`+12−(i−1)z, the
claim follows from letting ε0 be small.

Next, since (8.34) and (8.35) hold with i = m − 1 and δi(`) ≤ αi(`) for 1 ≤ i ≤ m − 1, using
Lemma 6.6 together with CΓ > 1 we may apply Lemma 6.4 with Cz := CΓ > 1, δ := δm−1(`),

α := αm−1(`), t0 := tm−1, to obtain the existence of tm ∈ [CΓz−C
tm−1

0 αm−1(`) , 1
2 tm−1] dividing

tm−1 such that d(ϕg`tm(ρ), ρ) ≤ δm(`) and for 0 ≤ l < tm−1 with l = qtm + r and 0 ≤ r < tm

d(ϕg`l (ρ), ϕg`r (ρ)) = δm(`). (8.36)

Note that, provided ε > 0 was chosen small enough small enough (uniformly in K, `), and using
that CΓ > 1, we have tm > z. If ρ /∈ Sz(km, αm(`), g`), the inductive step i = m is complete. On
the other hand, if ρ ∈ Sz(km, αm(`), g`) then we have proved (8.32) and (8.33).

At this point, we have proved either that there is m ≤ b(`+1) log2 ac such that (8.32) and (8.33)
hold or there are {ti}Ni=1, with N > b(` + 1) log2 ac such that ti divides ti−1, ti > z, and with
ki = d tize, (8.33), (8.34), (8.35) hold for all i. We claim that the second alternative is not possible.
Indeed, note that since ti divides ti−1,

z < ti ≤ 2−it0 ≤ 2−ia`+1z,

and this is not possible for i > b(` + 1) log2 ac since then 2−ia`+1 ≤ 1. It follows that the
claims (8.32) and (8.33) are true with m as stated.
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Step B. Let qm = t0/tm and βm(`) = βim,jm with im = dloga kme, jm = `−m+ 1. We claim

ρ ∈ N qm,z(km, βm(`), g`). (8.37)

The objective is to show that we can apply the induction hypothesis (8.26) with (n, q, i, j, `) :=
(km, qm, im, jm, `). To this end, we first observe that by definition aim−1 < km ≤ aim . In addition,
km ≤ 2−ma`+1 ≤ a`−m+1 and so im ≤ jm. Also, since m ≤ b(` + 1)(1 − b)c, we have b(` + 1) ≤
jm ≤ `. In particular, t0z ≤ a`+1 ≤ a

jm
b . Since tm

z ≥ aim−1, this also yields qm = t0
tm
≤ ajm/b−im+1.

We first claim that
δm(`) ≤ βm(`)q−3

m .

Indeed, using that βjm,jm ≤ βim,jm (since im ≤ jm) and qm ≤ a`+1, this reduces to checking that

a3(`+1)C
tm−1

0 αjm+1 ≤ βjm,jm . Furthermore, since βjm,jm ≤ 1, the claim reduces to showing that

a3(`+1)C
tm−1

0 γjm ≤ 1, and this is equivalent to

5−2ℵ ≤ C−a`+12−m+1

0 a4ℵ(`−m+2)/b−3(`+1)ε−(2ℵ+1)a(`−m+2)/b
.

The claim then follows from the facts that ε0 ≤ C−1
0 and (`−m+ 2)/b ≥ `+ 1.

Since δm(`) ≤ βm(`)q−3
m and βim,jm,` = (1 + 2−m)βm(`), we conclude that Rz(km, δm(`), g`) ⊂

Rz(km, βim,jm,`q
−3
m , g`). Therefore, the claim in (8.37) follows from combining (8.32) and (8.26)

with (n, i, j) = (km, im, jm). This can be done since βim,jm,` ≥ βm(`) and Sz(km, αm(`), g`) ⊂
Sz(km, αjm,`, g`) because αjm,` = (1− 2−m)αm(`).

Step C. Recall that km = d tmz e and t0 = qmtm with k0 = n. Let CG , δG be as in Lemma 6.12 and
(6.11). Let

δm,` := mCza`+1

0 αm−1(`). (8.38)

We next show there are I and p with T (p)
I [g`](ρ) ∈

[
(km − 1)z− CGδG , kmz + CGδG

]
,{

P(qp)
I [g`](ρ)

}qm
q=0
⊂ D(p)

I [g`], max
0≤q≤qm

d
((
P(p)
I [g`]

)q
(ρ), ρ

)
≤ CGδm,`,

P(qp)
I [g`](ρ

′) =
(
P(p)
I [g`]

)q
(ρ′), 0 ≤ q ≤ qm, ρ′ in a neighborhood of ρ.

(8.39)

Let 0 ≤ q ≤ qm. Since {αj(`)}j is decreasing, it follows from Lemma 8.6 below that

d(ϕg`qtm(ρ), ρ) ≤ δm,`. (8.40)

Let ε0 be small enough that δm,` ≤ δG for any choice of m, `. Then, since ρ ∈ Γ, and δm,` ≤ δG
by (6.8) and (6.9) there exists tq,m with such that

|tq,m − qtm| < CGδm,`, ϕg`tq,m(ρ) ∈ Γ̃, d(ϕg`tq,m(ρ), ρ) < CGδm,`. (8.41)

By Remark 6.10 there are p and Ĩ such that ρ ∈ D(p)
Ĩ

[g`],

P(p)

Ĩ
[g`](ρ) = ϕgt1,m(ρ), T (p)

Ĩ
[g`](ρ) = t1,m, max

0≤j≤pqm
d(P(j)

Ĩ
[g`](ρ),Γ) < δG . (8.42)

Let c∗ be the constants given in Lemma 6.13. Now, by Lemma 6.13, we have B
Γ̃
(ρ, cp∗) ⊂ D(p)

Ĩ
[g`].

Note that, since p ≤ Ca`+1, one can choose ε0 small so that CGδm,` ≤ c
p
∗ for all m, ` and ε < ε0 .

Thus, [P(p)
Ĩ

]q(ρ) exists for 0 ≤ q ≤ qm.
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Next, we claim that for all 1 ≤ q ≤ qm(
P(p)

Ĩ
[g`]
)q

(ρ) = ϕg`tq,m(ρ). (8.43)

To see this, set t0,m = 0. Since the claim is true for q = 1, we may assume that for some
1 ≤ q < qm, and every 1 ≤ j ≤ q,

T (p)

Ĩ
[g`]
((
P(p)

Ĩ
[g`]
)j−1

(ρ)
)

= tj,m − tj−1,m, (8.44)

and hence that for 1 ≤ j ≤ q(
P(p)

Ĩ
[g`]
)j

(ρ) = ϕg`tj,m−tj−1,m

((
P(p)

Ĩ
[g`]
)j−1

(ρ)
)

= ϕg`tj,m(ρ). (8.45)

Now, observe that there exists C depending only on G such that

|T (p)

Ĩ
[g`](ρ)− T (p)

Ĩ
[g`](ρ

′)| ≤ Cpzd(ρ, ρ′).

Hence, using (8.41), (8.42), and (8.45)∣∣∣t1,m − T (p)

Ĩ
[g`]
((
P(p)

Ĩ
[g`]
)q

(ρ)
)∣∣∣ ≤ CpzCGδm,`.

Thus, we have

ϕg`tq+1,m−tq,m

((
P(p)

Ĩ
[g`]
)q

(ρ)
)
∈ Γ̃, ϕg`

T
(p)

Ĩ
[g`]

((
P(p)

Ĩ
[g`]
)q

(ρ)

)((P(p)

Ĩ
[g`]
)q

(ρ)
)
∈ Γ̃,

and, choosing ε0 small enough,∣∣∣tq+1,m − tq,m − T (p)

Ĩ
[g`]
((
P(p)

Ĩ
[g`]
)q

(ρ)
)∣∣∣ < (Cpz + 3)CGδm,` < cΓz.

In particular, this implies that

tq+1,m − tq,m = T (p)

Ĩ
[g`]
((
P(p)

Ĩ
[g`]
)q

(ρ)
)
,

and hence (8.44) holds with q replaced by q + 1. This shows that (8.43) holds.

Let Ĩ := (̃i0, ĩ1, . . . ). Using again that ε > 0 can be chosen small enough, this implies that,
with the chain

I := (̃i0, ĩ1, . . . , ĩp, ĩ1, . . . , ĩp, . . . ),

we have
(dqtme − 1)z− CGδG ≤ T

(pq)
I [g`](ρ) ≤ dqtmez + CGδG , (8.46)

and hence
P(qp)
I [g`](ρ) = ϕg`tq,m(ρ) =

(
P(p)

Ĩ
[g`]
)q

(ρ).

Moreover, by definition, using that the fact thatD(p)
I [g`] andD(pq)

I [g`] are open, we have
(
P(p)
I [g`]

)q
(ρ′) =

P(qp)
I [g`](ρ

′) for ρ′ in a neighborhood of ρ as claimed.

Step D. We now complete the proof of the lemma. It follows from (8.32) and (8.37) that

ρ ∈ Γ ∩Rz(km, CGδm,`, g`) ∩N qm,z(km, βm(`), g`), (8.47)

with δm,` as in (8.38). Here, we have used that δm(`) ≤ CGδm,` since tm−1 ≤ zkm ≤ za`+1. The
goal is then to use Lemma 6.18 with δ := CGδm,`, and (β, q0, k,m) := (βm(`), qm, km, p). Let C3
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be as in Lemma 6.18 and note that C0 > C3 by (8.27). Thus, to apply Lemma 6.18 we first need
to check that

CGδm,` ≤ min
{
δG , (2f(βm(`), qm)Ckmqm0 )−1

}
. (8.48)

To see this, note that by the definitions (8.38) and (6.14)

CGδm,`2f(βm(`), qm)Ckmqm0 = 2CGmC
za`+1+kmqm
0 (5

2)2ℵq4ℵ
m αm−1(`)βm(`)−2ℵ.

In addition, αm−1(`)βm(`)−2ℵ ≤ γ`−m+1(ε) since βim,jm ≥ βjm,jm . Therefore, the bound in (8.48)

follows from (8.19) after noting that kmqm ≤ a`+1 and (`−m+1)/b ≤ `+1, and choosing ε small
enough.

Combining (8.48), (8.47), and (8.39) we may apply Lemma 6.18 and obtain

ρ ∈ N z

(
n, (2f(βm(`), qm)Cn0 )−1, g`

)
.

Here, we have used that, by (8.46) and (n− 1)z ≤ t0 ≤ nz, we have

(n− 1)z− CGδG ≤ T
(qmp)
I [g](ρ) ≤ nz + CGδG .

Finally, using that βm(`) ≥ βjm,jm ≥ β`,` one can check that C−k0 ≥ 2γ`(5/2)2ℵq4ℵ
m . In

particular, since qm ≤ a`+1, b ∈ [0, 1], making ε0 < C−1
0 would imply [2f(βm, qm)Cn0 ]−1 ≥ α`+1,

and the proof is complete. �

Lemma 8.6. Let ρ ∈ Γ satisfy (8.33) and (8.36). Then for all 0 ≤ j ≤ m− 1 and 0 ≤ q ≤ tj/tm,

d(ϕg`qtm(ρ), ρ) ≤
m−1∑
i=j

C
∑m−1
l=i tl

0 αi(`). (8.49)

Proof. First, note that for j = m− 1, the statement follows from (8.36). Let 0 ≤ j ≤ m− 2 and
assume (8.49) holds for 0 ≤ q ≤ tj+1/tm. Next, let q < tj/tm and write qtm =

∑m
i=j+1 qiti with

qj < tj−1/tj . Then, by (8.33) with i = j + 1, t = qj+1tj+1, and r = 0,

d(ϕg`qj+1tj+1
(ρ), ρ) ≤ Ctj0 αj(`).

Next, note that g` = F`(g,σ) ∈ K̃ since g ∈ K. In particular, ‖ϕg`z ‖Cν−2 ≤ C‖g`‖Cν ≤ C0 for all
`. It follows that

d
(
ϕg∑̀m

i=j+1 qiti
(ρ), ϕg∑̀m

l=j+2 qltl
(ρ)
)
≤ Ctj+

∑m
l=j+2 qltl

0 αj(`) ≤ C
∑m−1
l=j tl

0 αj(`).

By the induction hypothesis, d
(
ϕg∑̀m

i=j+2 qiti
(ρ), ρ

)
≤
∑m−1

i=j+1C
∑m−1
l=i tl

0 αi(`). Thus,

d(ϕg`∑m+1
i=j+1 qiti

(ρ), ρ) ≤ C
∑m−1
l=j tl

0 αj(`) +
m−1∑
i=j+1

C
∑m−1
l=i tl

0 αi(`) =
m−1∑
i=j

C
∑m−1
l=i tl

0 αi(`)

and the claim follows by induction. �
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8.2.3. Step 2: Preserving non-degeneracy under perturbation. In this section, we show that if the
non-degeneracy properties (8.25) and (8.26) listed in Proposition 8.3 hold for g` := F`(g,σ), then

they also hold for the perturbed metric (g`)
R,δ
σ := QR,δ(g`,σ) for appropriate R, δ.

Lemma 8.7. There is ε0 > 0 depending only on ν,N, y, b, a,z,Γ, G,K so that the following holds.
Suppose that the conclusions in Proposition 8.3 are valid up to the index ` and let 0 < ε < ε0.
Then, for all (g,σ) ∈ K × Σ`(Rε) such that g` := F`(g,σ) ∈ G ν\L

T,`
the following holds. Let

(g`)
R,δ
σ := QR,δ(g`,σ), with R = R`+1(ε) and δ = δ`+1(ε) as defined in (8.29). Then, with C0 as

in (8.27),

‖(g`)R,δσ − g`‖Cν ≤ C02−`−2ε, (8.50)

and

• for 0 ≤ i ≤ `, ai−1 < n ≤ ai,

Γ ∩Rz(n, β̃i,`+1, (g`)
R,δ
σ ) ⊂ N z(n, β̃i,`+1, (g`)

R,δ
σ ). (8.51)

• for a` < n ≤ a`+1

Γ ∩Rz(n, 1
2α`+1, (g`)

R,δ
σ ) \Sz(n, 1

2α`+1, (g`)
R,δ
σ ) ⊂ N z(n, 1

2α`+1, (g`)
R,δ
σ ). (8.52)

• for b(`+ 1) ≤ j ≤ `, 0 ≤ i ≤ j, ai−1 < n ≤ ai, and 1 ≤ q ≤ aj/b−i,

Γ ∩Rz(n, βi,j,`+1q
−3, (g`)

R,δ
σ ) ∩Sz(n, αj,`+1, (g`)

R,δ
σ ) ⊂ N q,z(n, βi,j,`+1, (g`)

R,δ
σ ). (8.53)

Proof. By Definition 7.2 and (8.27), the bound in (8.50) holds since

‖(g`)R,δσ − g`‖Cν = ‖QR,δ(g`,σ)−QR,δ(g`, 0)‖Cν ≤ 1
2C0δR

−ϑν (8.54)

and, by definition,

δ ≤ εRϑν2−(`+1). (8.55)

We next address (8.51). Let 0 ≤ i ≤ `, ai−1 < n ≤ ai. We claim that

Rz(n, β̃i,`+1, (g`)
R,δ
σ ) ⊂ Rz(n, β̃i,`, g`),

Γ ∩Rz(n, β̃i,`, g`) ∩N z(n, β̃i,`, g`) ⊂ N z(n, β̃i,`+1, (g`)
R,δ
σ ),

(8.56)

provided

δ ≤ C−aiz−1
0 Rϑ3 β̃i,`(1− s`), 0 ≤ i ≤ `. (8.57)

Once we prove (8.56), the claim in (8.51) will follow by applying the inductive assumption (8.25)
to g`. One can check that (8.57) is valid after asking that ε0 < C−1

0 .

To see the first part of (8.56) suppose that ρ ∈ Rz(n, β̃i,`+1, (g`)
R,δ
σ ). Then, ρ ∈ Rz(n, β̃i,`, g`)

since Definition 7.2, (8.57), and (8.27) imply∥∥ϕg`t − ϕ(g`)
R,δ
σ

t

∥∥
C1 ≤ Ct0

∥∥g` − (g`)
R,δ
σ

∥∥
C3 ≤ Ct+1

0 δR−ϑ3 < β̃i,`(1− s`) = β̃i,` − β̃i,`+1, (8.58)

provided (n− 1)z ≤ t ≤ nz and (8.57) holds.

For the second part of (8.56), note that with δG as in Lemma 6.12 and (6.11), if β̃i,` < δG , we

may work in a single coordinate chart (U,ψ). Suppose ρ ∈ Γ ∩ Rz(n, β̃i,`, g`) ∩N z(n, β̃i,`, g`).
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By Definition 6.14 and Lemma 6.12 there exist I and m such that T (m)
I [g`](ρ) ∈

[
(n − 1)z −

CG β̃i,` , nz + CG β̃i,`
]

and

sup
{(ψ,U)∈A:B(ρ,C

G
δ
G

)⊂U}

∥∥(I − d((P(m)
I [g`])ψ)(ρ)

)−1∥∥ < β̃−1
i,` . (8.59)

In addition, since otherwise we may modify the choice of chain, we may assume without loss of
generality that

d(P(j)
I [g`](ρ),Γ) < δG , 0 ≤ j ≤ m. (8.60)

Then, by Lemma 6.13 there is c > 0 depending only on G,Γ,z such that

ρ ∈ D(m)
I [(g`)

R,δ
σ ],

as long as ‖(g`)R,δσ − g`‖Cν ≤ cm. Here, we use that (8.54) holds with ν = 3 together with (8.29)

and ϑ5 + 1 − ϑ3 > 0 to justify that ε0 can be chosen small enough that ‖(g`)R,δσ − g`‖Cν ≤ cm.

Next, since T (m)
I [g`](ρ) ∈

[
(n− 1)z− CG β̃i,` , nz + CG β̃i,`

]
, we have

T (m)
I [(g`)

R,δ
σ ](ρ) ∈ [(n− 1)z− CG β̃i,` − C

n
0 δR

−ϑ3 , nz + CG β̃i,` + Cnz+2
0 δR−ϑ3 ]. (8.61)

Indeed, by (8.58), implicit function theorem, and that H|ξ|g is uniformly transverse to Γ,

|T (m)
I [(g`)

R,δ
σ ](ρ)− T (m)

I [g`](ρ)| ≤ CGC
nz+1
0 δR−ϑ3

and (8.61) follows. Now, since for ε small enough,

CGC
nz+1
0 δR−ϑ3 + CG β̃i,` < CG β̃i,`+1 < CGδG ,

we have

T (m)
I [(g`)

R,δ
σ ](ρ) ∈ [(n− 1)z− CGδG , nz + CGδG ]. (8.62)

Let (ψ,U) ∈ A be such that B(ρ, CGδG) ⊂ U . Abusing notation slightly, we work with P(m)
I [g`],

and P(m)
I [(g`)

R,δ
σ ] for the maps induced in the (ψ,U) coordinates. Let A = I − dP(m)

I [g`](ρ) and

∆ = dP(m)
I [g`](ρ) − dP(m)

I [(g`)
R,δ
σ ](ρ), and observe that (8.58) yields ‖∆‖ ≤ β̃i,`(1 − s`). In

particular, by (8.59),

‖(A+ ∆)−1‖ ≤ ‖A−1‖
1− ‖A−1‖‖∆‖

≤
β̃−1
i,`

1− β̃−1
i,` β̃i,`(1− s`)

= β̃−1
i,` s

−1
` = β̃−1

i,`+1.

Combining this with (8.62) we conclude ρ ∈ N z(n, β̃i,`+1, (g`)
R,δ
σ ), and hence the second part

of (8.56). As noted earlier, this shows that (8.51) holds.

We next prove (8.52). Let a` < n ≤ a`+1. We will show that

Rz(n, 1
2α`+1, (g`)

R,δ
σ ) ⊂ Rz(n, α`+1, g`),

Rz(n, α`+1, g`) ∩N z(n, α`+1, g`) ⊂ N z(n, 1
2α`+1, (g`)

R,δ
σ ),

(8.63)

Sz(n, α`+1, g`) ⊂ Sz(n, 1
2α`+1, (g`)

R,δ
σ ), (8.64)

provided

δ ≤ C−a`+1z−1
0 Rϑ3 1

2α`+1. (8.65)
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Note that combining (8.63) and (8.64) with Lemma 8.5 yields the claim in (8.52). Also, it is
immediate to check that (8.65) is valid after asking ε0 ≤ C−1

0 .

The claims in (8.63) follow from the same proof that yielded (8.56). To see that (8.64)

holds, observe that if ρ /∈ Sz(n, 1
2α`+1, (g`)

R,δ
σ )), then there is t ∈ (1

2z, (n −
1
2)z) such that

d
(
ϕ

(g`)
R,δ
σ

t (ρ), ρ
)
< 1

2α`+1. Thus, by (8.58) and (8.65), we know ‖ϕg`t − ϕ
(g`)

R,δ
σ )

t ‖C1 ≤ 1
2α`+1. In

particular, d
(
ϕg`t (ρ), ρ

)
< α`+1, and hence ρ /∈ Sz(n, α`+1, κ`) as needed.

Finally, we address (8.53). Let 0 ≤ i ≤ j, ai−1 < n ≤ ai, b(`+ 1) ≤ j ≤ `, and 1 ≤ q ≤ aj/b−i.
We claim that, provided (8.68) and (8.71) below hold,

Rz(n, βi,j,`+1q
−3, (g`)

R,δ
σ ) ⊂ Rz(n, βi,j,`q

−3, g`), Sz(n, αj,`+1, (g`)
R,δ
σ ) ⊂ Sz(n, αj,`, g`) (8.66)

Γ ∩Rz(n, βi,j,`q
−3, g`) ∩N q,z(n, βi,j,`, g`) ⊂ N q,z(n, βi,j,`+1, (g`)

R,δ
σ ). (8.67)

Note that combining (8.66) and (8.67) with (8.26) yields the claim in (8.53).

For (8.66) we argue as in the proofs of the first part of (8.56) and (8.64), and use that αj,`+1 ≥
1
2αj,`. We can do this provided

δ < min
(
C−a

`z−1
0 Rϑ3(βi,j,` − βi,j,`+1)(aj/b−i)−3 , C−a

`z−1
0 Rϑ3 1

2αj,`

)
. (8.68)

We note that (8.68) holds for ε0 small enough since {αj}j is decreasing and β`,` ≤ βi,j .
The inclusion in (8.67) will follow from Lemma 8.8 below with β = βi,j,`. Indeed, provided

‖g` − (g`)
R,δ
σ ‖C3 ≤ min(C−nq1 β2ℵq−4ℵ−1, δG − β), (8.69)

we have by Lemma 8.8

Γ ∩Rz(n, βi,j,`q
−3, g`) ∩N q,z(n, βi,j,`, g`)

⊂ Γ ∩Rz(n, βi,j,`, g`) ∩N q,z(n, βi,j,`, g`)

⊂ N q,z(n, βi,j,`(1− ‖g` − (g`)
R,δ
σ ‖C3β−2ℵ

i,j,` C
nq
1 q4ℵ+1)1/2ℵ, (g`)

R,δ
σ ).

(8.70)

Since,

δ < Rϑ3C−a
j/b−1

1 (aj/b−i)−4ℵ+1β2ℵ
i,j,`(1− s2ℵ

`−j), (8.71)

the bound on ‖g` − (g`)
R,δ
σ ‖C3 from (8.54) and (8.71) imply the first part of (8.69) and

βi,j,`+1 ≤ βi,j,`(1− ‖g` − (g`)
R,δ
σ ‖C3β−2ℵ

i,j,` C
nqq4ℵ+1)1/2ℵ. (8.72)

Furthermore, for ε < C−1
0 , we have βi,j,` ≤

δ
G
2 , and ‖g` − (g`)

R,δ
σ ‖C3 <

δ
G
2 . Therefore, the second

part of (8.69) holds. Combining (8.70) with (8.72) then implies (8.67) as claimed. �

Lemma 8.8. Let K ⊂ G 3 bounded and C1 > 0 as above. Then for g1, g2 ∈ K, β ∈ (0, δG), q ∈ N,
and ε > 0 satisfying

‖g1 − g2‖C3 ≤ ε, ε ≤ min(C−nq1 β2ℵq−4ℵ−1, δG − β)

we have

Γ ∩R(n, β, g1) ∩N q,z(n, β, g1) ⊂ N q,z(n, β(1− εβ−2ℵCnqq4ℵ+1)1/2ℵ, g2).
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Proof. Let ρ ∈ Γ ∩R(n, β, g1) ∩N q,z(n, β, g1) and (ψ,U) ∈ A such that B(ρ, CGδG) ⊂ U . Then,

there are I and m such that T (m)
I [g1](ρ) ∈

[
(n− 1)z− CGβ , nz + CGβ

]
,

sup
m≤n

d(P(m)
I [g1](ρ),Γ) < δG ,

and ∥∥(I − [(d((P(m)
I [g1])ψ)(ρ)]q)−1

∥∥
(1 + ‖d((P(m)

I [g1])ψ)(ρ)‖q)2ℵ−1
≤ (5

2q
2β−1)2ℵ. (8.73)

Note that (1 + ‖d((P(m)
I [g])ψ)(ρ′)‖q)2ℵ−1 ≤ Cnq1 for all g ∈ K and ρ′ ∈ D(m)

I [g].

Now, by Lemma 6.13, ρ ∈ D(m)
I [g2]. Therefore, defining

Aq = I − [(d((P(m)
I [g1])ψ)(ρ)]q, ∆q = [(d((P(m)

I [g1])ψ)(ρ)]q − [(d((P(m)
I [g2])ψ)(ρ)]q,

(8.73) yields ‖A−1
q ‖ ≤ 52ℵ

22ℵC
nq
1 β−2ℵq4ℵ. Next, note that

‖∆q‖ =
∥∥∥ q∑
j=1

[(d((P(m)
I [g1])ψ)(ρ)]q−j [d((P(m)

I [g1])ψ)(ρ)− (d((P(m)
I [g1])ψ)](ρ)[(d((P(m)

I [g2])ψ)(ρ)]j
∥∥∥

≤ qCnq1 ‖P
(m)
I [g1]− P(m)

I [g2]‖C1 ≤ qCn(q+1)
1 ε,

where we take the C1 norm on the intersection of the two domains and the last inequality follows
from (6.11). In particular,∥∥(I − [(d((P(m)

I [g2])ψ)(ρ)]q)−1
∥∥

(1 + ‖d((P(m)
I [g2])ψ)(ρ)‖q)2ℵ−1

≤ ‖(Aq + ∆q)
−1‖ ≤

‖A−1
q ‖

1− ‖A−1
q ‖qεCn(q+1)

1

which yields the desired bound since qεC
n(q+1)
1 ≤ 1

2
22ℵ

52ℵC
−nq
1 β2ℵq−4ℵ ≤ 1

2‖A
−1
q ‖−1.

Finally, we also note that

(n− 1)z− CGδG ≤(n− 1)z− CG(β + ε) ≤ T (m)
I [g2](ρ) ≤ nz + CG(β + ε)≤ nz + CGδG ,

and hence, ρ ∈ N q,z(n, β(1− εβ−2ℵCnq1 q4ℵ+1)1/2ℵ, g2) as claimed. �

8.2.4. Step 3: Controlling the volume of bad perturbations. This step is dedicated to finishing the
induction argument that yields the proof of Proposition 8.3. We still assume the conclusions of
Proposition 8.3 hold up to some ` ≥ dloga 2e − 1, and will show they also hold up to `+ 1.

In what follows, we work with R := R`+1, δ := δ`+1, and for 0 ≤ i ≤ `+ 1 set

βi,`+1 = 1
2 min
ai−1<n≤ai

υn(`), υn(`) := 2β`+1,`+1ε
(n−a`+1) dim sp(2ℵ). (8.74)

The first step is to show that for (g,σ) ∈ K ×Σ`(Rε) such that F`(g,σ) ∈ G ν\L
T,`

,

{
σ̀

+1
∈ Σ(R`+1) : F`+1(g, (σ, σ̀

+1
)) ∈ L

T,`+1

}
⊂

a`+1⋃
n=0

SR,δF`(g,σ̂`)
(n, 1

2α`+1, υn(`)) (8.75)

for SR,δF`(g,σ̂`)
as defined in Corollary 7.7.
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To prove (8.75), first note that if σ
`+1

is such that

g`+1 := F`+1(g, (σ, σ̀
+1

)) = QR,δ(F`(g,σ), σ̀
+1

) ∈ L
T,`+1

,

by the definition of L
T,`+1

, then either (8.25) or (8.26) does not hold with (g, `) = (g`+1, ` + 1).
We claim that in this setting, one actually has that (8.26) does not hold with (g, `, j) = (g`+1, `+

1, `+ 1). That is, there exist 0 ≤ i ≤ `+ 1, ai−1 < n ≤ ai, and 1 ≤ q ≤ a(`+1)/b−i+1, such that

Γ ∩Rz(n, βi,`+1,`+1q
−3, g`+1) ∩Sz(n, α`+1,`+1, g`+1) * N q,z(n, βi,`+1,`+1, g`+1). (8.76)

Indeed, suppose (8.25) does not hold with (g, `) = (g`+1, `+1). Then, since F`(g,σ) ∈ G ν\L
T,`

,

by Lemma 8.7 equation (8.51), (8.25) can only fail when i = `+ 1. Thus, there are a` < n ≤ a`+1

and

ρ ∈ Γ ∩Rz(n, β̃`+1,`+1, g`+1)\N z(n, β̃`+1,`+1, g`+1).

Since β̃`+1,`+1 ≤ α`+1,`+1 = 1
2α`+1, Lemma 8.7 equation (8.52) yields that ρ ∈ Sz(n, α`+1,`+1, g`+1).

Furthermore, since β̃`+1,`+1 ≤ 2β`+1,`+1 = β`+1,`+1,`+1, we also have ρ ∈ Γ∩Rz(n, β`+1,`+1,`+1, g`+1).

Using that f(β`+1,`+1,`+1, 1) ≤ 1/β̃`+1,`+1, this implies (8.76) for q = 1 and i = ` + 1 since

N 1,z(n, β`+1,`+1,`+1, g`+1) ⊂ N z(n, β̃`+1,`+1, g`+1).

For any σ
`+1

such that g`+1 = F`+1(g, (σ, σ̀
+1

)) ∈ Lz,`+1
, we have showed that (8.26) does not

hold with (g, `) = (g`+1, ` + 1). Since Lemma 8.7 equation (8.53) yields that (8.26) holds for all
j ≤ `, we conclude the claim in (8.76). In particular, since βi,`+1,`+1 ≤ υn(`) for all i ≤ `+ 1 and

ai−1 < n ≤ ai, we conclude there exists n ≤ a`+1 such that σ`+1 ∈ SR,δF`(g,σ̂`),δ
(n, α`+1,`+1, υ`(n)).

This yields the claim in (8.75).

Next, we apply Corollary 7.7 with R = R`+1(ε), δ = δ`+1(ε), α = 1
2α`+1, and β = υn(`).

Note that since n ≤ a`+1 one may choose ε0 so that the conditions (7.19) on R, δ are satisfied.

Furthermore, since β`+1,`+1 = εd
∑`+1
j=1 c`+1−jaj/bβc

`+1

0,0 , one can check that there is d large enough

(depending only on a, b,ℵ) such that

C0R
L−2ℵ−1δ−L

∞∑
n=0

C
n(L−2ℵ−1)
0 υn(`) < ε2−`−2, (8.77)

and c ≥ 2ℵ(mνL + y′(1 − dim sp(2ℵ))). To see this, we use estimate the left hand side of (8.77)
using the definitions of β`,` (8.21), υn (8.74), R`, and δ` (8.29), α` (8.22) and γ` (8.19) to obtain
that there is C > 0 such that

C0R
L−2ℵ−1δ−L

∞∑
n=0

C
n(L−2ℵ−1)
0 υn(`) ≤ Cβc+2ℵ(dim Sp(2ℵ)−1)y′−mνL

`,` ε(d−C)a`/b2C`aC`/b.

Choosing d large enough the estimate (8.77) follows provided c ≥ 2ℵ(mνL+y′(1−dim sp(2ℵ))).

One can also check that β = υn(`) ≤ cnRy′

`+1 provided c ≥ 2ℵy′ and hence, we may apply

Corollary 7.7. Optimizing in y′ ≥ y we obtain c = max(2ℵmνL
L−2ℵ , 2ℵy).

Corollary 7.7 together with (8.77) and (8.75) then yield that (8.24) holds up to index `+ 1 in
place of `.
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We next show that (8.23) is a consequence of (8.24). Given σ ∈ Σ`+1(R), if

∃j ≤ `+ 1 s.t. Fj(g, σ̂j) ∈ Lz,j ,

then either there exists 1 ≤ j ≤ ` + 1 such that Fj(g, σ̂j) ∈ Lz,j and Fj−1(g, σ̂j−1) ∈ G ν\Lz,j−1

or F0(g, σ̂0) ∈ Lz,0 . Therefore, by Fubini’s theorem and the induction hypothesis (8.24)

m
Σ`+1(R)

(
σ ∈ Σ`+1(R) : ∃j ≤ `+ 1 s.t. Fj(g, σ̂j) ∈ Lz,j

)
≤

`+1∑
j=0

ε2−j−1 ≤ (1− 2−(`+2))ε.

Now, notice that

m
Σ`(R)

(
σ ∈ Σ`(R) : ∃j ≤ `+ 1 s.t. Fj(g, σ̂j) ∈ Lz,j

)
=

m
Σ∞(R)

(
σ ∈ Σ∞(R) : ∃j ≤ ` s.t. Fj(g, σ̂j) ∈ Lz,j

)
and hence (8.23) holds. This finishes the proof of Proposition 8.3.

8.3. Predominance of quantitative non-degeneracy. We now turn to the proof that (8.1)
holds for a predominant set of g. The next proposition is the key technical result of the article. We

will find sequences δε and Rε such that (8.1) holds for an F := {(FRε,δε
∞ ,∞)}ε predominant set

of metrics (with FRε,δε
∞ as in Section 8.1 built using any family perturbations QR,δ that are good

in the sense of Definition 7.2). More precisely, provided we are able find a collection {(Γ, G)}G∈G
of (z, b, y) admissible pairs for {QR,δ}R,δ such that

⋃
G∈G G = G ν , for each ε > 0 and K ⊂ G ν

bounded we will find a C > 0 so that we can control the measure of the set of bad parameter
values σ ∈ Σ∞(R) such that F∞(g,σ) does not satisfy (8.1) with that C and any g ∈ K. This
result will be used in Section 11 to prove Theorem 1.3.

Proposition 8.9. Let ν ≥ 5, y ≥ 1, b > 0, N : (0, 1)→ N, and {QR,δ}R,δ be a (ν,N)-good family
of perturbations. For 0 < ε < 1, there are δε = {δj(ε)}∞j=0, Rε := {Rj(ε)}∞j=0, such that

∞∑
j=0

δj(ε)Rj(ε)
−ϑν ≤ ε,

and, for all (Γ, G) an (z, b, y)-admissible pair for {QR,δ}R,δ, K ⊂ G bounded, there is ε0 > 0 and
C > 0 such that, for all 0 < ε < ε0 and g ∈ K there exists Borel set Sg,ε ⊂ Σ∞(Rε) such that

sup
g∈K

m
Σ∞(R)

(
Sg,ε

)
≤ ε,

and for all g ∈ K {
σ ∈ Σ∞(Rε) : FRε,δε

∞ (g,σ) ∈ L∞(ε)
}
⊂ Sg,ε

where, FRε,δε
∞ is defined in Lemma 8.1,

L∞(ε) =
{
g ∈ G ν : ∃n such that Γ ∩Rz(n, βn(ε), g) * N z(n, βn(ε), g)

}
, (8.78)

and
βn(ε) := εCn

γ
C−n

γ
n−C log ε−1nγ , (8.79)

with γ := 1 + log2

[
max

(2ℵ(2ℵ+3)
2ℵ+1 mν , 2ℵy

)]
and mν = max(b, ϑν , ϑ5 + 1, 2ϑ̃4, 1). In addition,

L∞(ε) is Borel.
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Proof. From Proposition 8.3, for all 1 < a < 2 there are {δj(ε)}∞j=0 and {Rj(ε)}∞j=0 such that

(8.5), (8.23) and (8.20) hold. Let (Γ, G) satisfying Definition 7.3 and K ⊂ G bounded. Suppose
that g ∈ K, and σ ∈ Σ∞(R). Then, by Lemma 8.1, F∞(g,σ) ∈ G ν is well defined. We claim
that the statement holds with

Sg,ε :=
∞⋃
`=1

Sg,ε(`), Sg,ε(`) := {σ ∈ Σ∞(R) : ∃j ≤ ` s.t. Fj(g, σ̂j) ∈ Lz,j},

with Lz,j as defined in Proposition 8.3. Note that by Proposition 8.3, there exists ε0 > 0 such that

for all 0 < ε < ε0 and g ∈ K, m
Σ∞(R)

(
Sg,ε(`)

)
≤ (1− 2−`−1)ε, and so, since Sg,ε(`+ 1) ⊂ Sg,ε(`),

for all 0 < ε < ε0 and g ∈ K, m
Σ∞(R)

(
Sg,ε

)
≤ ε, as claimed.

Next, we claim that
{
σ ∈ Σ∞(Rε) : FRε,δε

∞ (g,σ) ∈ L∞(ε)
}
⊂ Sg,ε. For σ ∈ Σ∞(R) \ Sg,ε we

will show that FRε,δε
∞ (g,σ) /∈ L∞(ε). Writing g` = F`(g, σ̂`), we have that g` ∈ G ν\Lz,` for all `.

In particular, for all `, 0 ≤ i ≤ `, and ai−1 < n ≤ ai,

Γ ∩Rz(n, β̃i,`, g`) ⊂ N z(n, β̃i,`, g`).

By definition, β̃i,` = 1+2−`

1+2−i
β̃i,i. Therefore, for `, 0 ≤ i ≤ `, and ai−1 < n ≤ ai, we have

Γ ∩Rz(n, 1
2 β̃i,i, g`) ⊂ N z(n, 1

2 β̃i,i, g`).

Now, by (8.20), we have ‖g` − g`−1‖Cν ≤ C2−`−1ε. Therefore, g` → F∞(g,σ) =: g∞ ∈ Cν with
‖g∞ − g‖Cν ≤ ε.

Fix ai−1 < n ≤ ai. We claim that

Γ ∩Rz(n, 1
4 β̃i,i, g∞) ⊂ N z(n, 1

4 β̃i,i, g∞). (8.80)

To see this, suppose that ρ ∈ Γ ∩Rz(n, 1
4 β̃i,i, g∞). Then, for ` large enough,

ρ ∈ Γ ∩Rz(n, 1
2 β̃i,i, g`) ⊂ N z(n, 1

2 β̃i,i, g`) ⊂ N z(n, βn(ε), g∞).

In particular, ρ ∈ N z(n, 1
4 β̃i,i, g∞).

Finally, we choose 1 < a < 2 (and hence find {Rε} and {δε}) such that (8.80) implies that for
all n ≥ 1,

Γ ∩Rz(n, βn(ε), g∞) ⊂ N z(n, βn(ε), g∞), (8.81)

and hence that g∞ /∈ L∞. To check (8.81), we need only show that for a`−1 < n ≤ a`, we have
1
4 β̃`,` ≥ βn(ε).

By definition, β`,` = βc
`

0,0ε
dc`−1

∑`−1
j=0(c−1a

1
b )j . In addition, lima→2− a

− 1
b = 2

− log2 a
1−log2 a = 0. There-

fore, we may choose a so that

ca−1/b = 1, (8.82)

where c = max
(2ℵ(2ℵ+3)

2ℵ+1 mν , 2ℵy
)
> 1 and mν = max(b, ϑν , ϑ5 + 1, 2ϑ̃4, 1). Therefore,

β̃`,` = ε2ℵ−1β2ℵ
`,` = β2ℵc`

0,0 ε2ℵdc`−1`ε2ℵ−1

≥ β2ℵc`
0,0 ε2ℵdc`−1`+2ℵ−1.

Moreover, (8.82) implies log2 a = log2 c
1+log2 c and, in particular, log2 c

log2 a = 1 + log2 c = γ.
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Notice that loga n < ` ≤ 1 + loga n since a`−1 < n ≤ a` and hence c` ≤ cnγ which, using that
β0,0(ε) ≥ cεN for some c > 0 and N ≥ 0, yields, for C > 0 large enough (in the definition of
βn(ε)) depending on c, ℵ, and d, yields

β̃`,` ≥ [β0,0(ε)]2ℵcn
γ
n
−2ℵdγ log2 ε

−1

log2 c
nγ
ε2ℵdnγ+2ℵ−1 ≥ 4βn(ε).

�

9. Nice perturbations in the space of metrics

In this section, we define families of perturbations that satisfy Definition 7.2 and 7.3. The
basic perturbation takes place on a small ball through which a geodesic passes exactly once and is
inspired by those in [Ano82, Kli78]. We then build a large family of these perturbations in order
to be able to handle any possible geodesic.

9.1. The elementary family of perturbations. Let ν ≥ 0. We fix a reference metric, g
f
∈

G ν+2. Let ρ0 ∈ S̃∗M and e1, . . . , ed ∈ Tπ
M

(ρ0)M an orthonormal set of vectors for g
f
.

For g? ∈ G ν , consider the geodesic

γg?ρ0
(t) := πM (ϕg?t (ρ0)).

We choose a basis Eg?1 , . . . , Eg?d ∈ Tγg?ρ0 (0)M , orthonormal with respect to g? by applying Gram-

Schmidt process to (γ̇ρ0(0), e1, . . . , ed) so that, in particular, Eg?d = γ̇ρ0(0). (Here, we only use
ed if γ̇ρ0(0), e1, . . . , ed−1 are linearly dependent.) Let Eg?i (t) ∈ Tγg?ρ0 (t)M be the parallel transport

(again with respect to g?) of Eg?i along γg?ρ0 . For ε
f
> 0, define the map

Φg?
ρ0

: BRd−1(0, ε
f
)× R→M, Φg?

ρ0
(u, t) = exp

g
f

γg?ρ0 (t)

( d−1∑
i=1

uiEg?i (t)
)
, (9.1)

where exp
g
f

γρ0 (t) denotes the exponential map for the metric g
f

with base point γρ0(t). Then for

ε
f
> 0 small enough depending only on g

f
, and any small enough (depending on g? and g

f
)

interval I ⊂ R, Φg?
ρ0 |I×B(0,ε

f
) is a diffeomorphsim onto its image.

The reason for using g
f

above rather than g? itself is that, in our perturbation argument, g?

will vary, remaining bounded in G ν , but not necessarily in G ν′ for ν ′ > ν. It will therefore be
important for us to control the Cν norms of Φg?

ρ0 using only the G ν norms of g? (See Lemma 9.4).
This is not possible if one replaces g

f
by g?.

Remark 9.1. Although Φg?
ρ0 is not a global diffeomorphism, it is locally a diffeomorphism, and we

will often ignore this fact in order to simplify the presentation. When defining our perturbations
below, we will work in a (u, t) neighborhood where the map is a genuine diffeomorphism.

Lemma 9.2. In the (u, t) coordinates g? satisfies

gij? (0, t) = δij , gdd? (0, t) = 1, gjd? (0, t) = 0, ∂ujg
dd
? (0, t) = 0.

where, here and below, we write i, j, k, ` for indices in {1, . . . , d− 1}.
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Proof. The first three equalities follow from the fact that {Eg?i (t)}di=1 is an orthonormal frame

with respect to g?. Since (0, t) is a geodesics for g?, letting x(s) = (0, s) ∈ Rd−1
u × Rt, we have

∂2
sx

β +
1

2
gµβ? (∂αg?,µν + ∂νg?,µα − ∂µg?,αν)∂sx

α∂sx
ν = 0.

Since xi = ∂sx
i = ∂2

sx
i = 0 for i = 1, . . . , d − 1, ∂sx

d = 1, and ∂2
sx

d = 0, we have that for
i = 1, . . . , d− 1

1

2
gµi? (∂dg?,µd + ∂dg?,µd − ∂µg?,dd) = −1

2
∂uig?,dd = 0.

Since g?,ij(0, t) is the identity, ∂uig
dd
? = 0. �

Lemma 9.3. The map F : G ν → Cν−1(Rd;M) given by F (g) := Φg
ρ0 is Frechet differentiable and,

moreover, for any bounded subset G ⊂ G ν there is C > 0 such that for g ∈ G,

‖DF |gδg‖Cν−1 ≤ C‖δg‖Cν−1 .

Proof. To prove the lemma, we work locally in a coordinate chart so that we may identify vectors
along a curve with Rd.

Define the map E0 : G ν → (Rd)d by E0(g) := (Eg1(0), . . . , Egd(0)) with Egi defined as above.

Let E : G ν × Cν+1([0, 1];Rd)× (Rd)d → Cν([0, 1]; (Rd)d) be the map E(g, γ, (ei)
d
i=1) := (egi )

d
i=1,

where egi ∈ Cν([0, 1];Rd) is a parallel frame along γ (with respect to g) with initial conditions

(egi (0))di=1 = (ei)
d
i=1.

In addition, define expgf : Rd × Rd → Rd by expgf (x, v) := exp
g
f
x (v) and let Ψ : S̃∗M × G ν →

Cν+1([0, 1];Rd) be the map Ψ(ρ, g) := γgρ where γgρ is the unit speed geodesic for the metric g
with initial conditions given by ρ. Finally, let Y : Cν+1([0, 1];Rd)×Cν([0, 1]; (Rd)d)→ Cν([0, 1]×
Rd−1;Rd), [

Y (γ, (Ei)
d
i=1)

]
(t, u) = exp

g
f

γ(t)

( d−1∑
i=1

uiEi(t)
)
.

We are interested in studying their composition

F (g) = Y
(

Ψ(ρ0, g) , E
(
g,Ψ(ρ0, g), E0(g)

))
= Φg

ρ0
.

To clarify the exposition, in what follows we write S ν for the space of symmetric tensors
endowed with the Cν topology.

Note that g 7→ DgE0 is bounded and continuous in the G ν topology. By writing the ordinary

differential equation satisfied by a parallel vector field and using that γ̇ ∈ Cν−1([0, 1];Rd), ∂xg ∈
S ν−1, one can check that DgE : S ν−1 → Cν−1([0, 1]; (Rd)d) and the map (g, γ) 7→ DgE|(g,γ) is

continuous in the G ν ×Cν topology with codomain the set of bounded linear maps from S ν−1 to
Cν−1([0, 1]× (Rd)d).

Next, again using the parallel transport equation and γ̇ ∈ Cν−1, g ∈ G ν , the map DγE :

S ν−1 → Cν−1([0, 1]; (Rd)d) is bounded and the map (g, γ) 7→ DγE|(g,γ) continuous in the G ν ×Cν

topology with codomain the set of bounded linear maps from S ν−1 to Cν−1([0, 1]; (Rd)d).
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Furthermore, it is easy to see that

D
(γ,E)

Y : Cν([0, 1];Rd)× Cν−1([0, 1]; (Rd)d)→ Cν−1([0, 1]× Rd−1;Rd)

is bounded and (γ,E) 7→ D
(γ,E)

Y is continuous in the Cν([0, 1];Rd) × Cν−1([0, 1]; (Rd)d) topol-

ogy with codomain the set of bounded linear maps from Cν([0, 1];Rd) × Cν−1([0, 1]; (Rd)d) to
Cν−1([0, 1]× Rd−1;Rd).

Finally, using the geodesic equation together with g ∈ G ν and that geodesics for a G ν metric lie
in Cν+1, we have DgΨ : S ν−1 → Cν([0, 1];Rd) is bounded and the map g0 7→ DgΨ|g0 is continuous
as a function of g0 in the G ν topology with with codomain the set of bounded linear maps from
S ν−1 to Cν([0, 1];Rd).

With these estimates in place it is now easy to see that DgF : S ν−1 → Cν−1([0, 1]× Rd−1;Rd)
is bounded and g0 7→ DgF |g0 is continuous in the G ν topology with with codomain the set of

bounded linear maps from S ν−1 to Cν−1([0, 1]× Rd−1;Rd). �

Lemma 9.4. Let ν ≥ 2 and K ⊂ G ν be bounded. Then there is C > 0 such that for all g? ∈ K
and ρ0 ∈ S̃∗M ,

‖Φg?
ρ0
‖Cν ≤ C.

Proof. First, recall that in any coordinate system x on M with dual coordinates ξ, if ρ0 =
(0, (0, . . . , 0, 1)), then γρ0(s) is given by the solution x(s) to

ẋα =
gαβ? ξβ
|ξ|g

, ξ̇α = −
∂xαg

µβ
? ξµξβ
|ξ|g

, (x(0), ξ(0)) = (0, (0, . . . , 0, 1)).

Therefore, standard regularity theory for ODEs shows that γρ0(t) ∈ Cν+1(R;M) and there exists
CK > 0 with ‖γρ0‖Cν+1 ≤ CK . In particular, ‖γ̇ρ0‖Cν ≤ CK . Next, recall that for each i the
equations for parallel transport take the form Ei(t) = eα(t)∂xα where eα(t) solves an equation
of the form ėα(t) = Γe(t)γ̇g?ρ0 (t) with Γ representing the Christoffel symbol for g. In particular,
‖eα‖Cν ≤ CK and hence ‖Ei‖Cν ≤ CK .

Now, since g
f
∈ G ν+2 is independent of K, the exponential map (p, V ) 7→ exp

g
f
p (V ) is in

Cν(TM ;M) with bounds independent of K. Therefore, Φg?
ρ0 satisfies the desired estimates. �

For s ∈ R and ε > 0 small let

Zs := Φg?
ρ0

(B(0, ε
f
)× {s}), Hs := S̃∗ZsM ∩BS̃∗M

(ϕg?s (ρ0), ε). (9.2)

Here, we use the metric g
f

to define the ball in S̃∗M .

Note that Hs is a smooth hypersurface such that ρ0 ∈ H0, and Hs is transverse to H|ξ|g? ; in

particular, satisfying,

|H|ξ|g? (ρ)f | ≥ 1

2
|df |, for f defining Hs and all ρ ∈ Hs.

Despite the fact that we define Hs as a subset of S̃∗M , it will be convenient in the rest of this

section to identify S̃∗M with S∗gM for each g i.e. the unit sphere bundle with respect to the metric
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g. To do this, we define the canonical isomorphism from S̃∗M → S∗gM to by (x, [ξ]) 7→ (x, ξ
|ξ|g ).

Here, we have used that [ξ] =
[ ξ
|ξ|g

]
in S̃∗M .

We now define a family of perturbations gσ ∈ G 4 of a metric g0 ∈ G 4 close to g? as follows: Let

Σ1 := Rd−1 × Rd−1, Σ2 := Sym(d− 1)×M(d− 1)× Sym(d− 1), Σ := Σ1 × Σ2

and denote the elements of Σ by

σ := (σ1, σ2) =
(
(A,B), (C,D,E)

)
∈ Σ. (9.3)

The closeness of g0 to g? will be crucial in Lemma 9.12.

Then, for g0 ∈ G g, ρ0 ∈ S̃∗M , σ ∈ Σ, R > 0, and t? ∈ R, the family of perturbations

gσ = gσ(ρ0, t?, R, g0, σ)

is defined in the (u, t) coordinates introduced in (9.1) as follows

gddσ (u, t) = gdd0 (u, t)−
(
〈A, u〉+ 1

2〈Cu, u〉
)
χR(u, t− t?),

gjdσ (u, t) = gjd0 (u, t) + 1
2

(
Bj + (Du)j

)
χR(u, t− t?),

gijσ (u, t) = gij0 (u, t) + 1
2EijχR(u, t− t?),

(9.4)

χR(u, t) = 1
Rχ( 1

R t)χ( 1
R |u|) and χ ∈ C∞c ((−

√
2,
√

2); [0, 1]) even with χ ≡ 1 on [−1
4 ,

1
4 ] and

´
χ = 1.

In order to identify gσ with a metric on M , we let K ⊂ G 3 be bounded and work with g? ∈ K. In
addition, we require that 0 < R < R0 where R0 = R0(K) is chosen such that for all 0 < R < R0,
g? ∈ K, and t ∈ R, we have

Φg?
ρ0

(
BRd−1(0,

√
2R)× [t−

√
2R, t+

√
2R]
)
⊂ Bg?(γg?ρ0

(t), 3R) (9.5)

with Φg?
ρ0 as in (9.1). This is possible since, by Lemma 9.2, gij? (0, t) = δij , for all t ∈ R and

i, j = 1, . . . , d. In addition, will fix T0 > 0 below and require that(
(Φg?

ρ0
)−1(B(γg?ρ0

(t?), 3R)) ∩BRd−1(0, εf )× [0, T0]
)
⊂ BRd−1(0, εf )× [t? − 3R, T? + 3R].

That is, the geodesic γg?ρ0 passes near γg?ρ0 (t?) only once between time 0 and T0.

Remark 9.5. Observe that χR is chosen so that the integral along (0, t) is 1.

Define the map ζ : BRd−1(0, ε
f
)×BRd−1(0, ε

f
)× G 4 × Σ→ H0

ζ(z0, g0, σ) := (u0, 0, ω0, τ0(z0, g0, σ)), z0 := (u0, ω0) (9.6)

where τ0 > 0 is defined so that |(ω0, τ0)|gσ(u0,0) = 1 and ζ(z0, g0, σ) ∈ H0. In particular,

ρ0 = ζ(0, g0, 0) = (0, 0, 0, 1) ∈ H0. (9.7)

Let u, t,ω, τ be functions defined on R×BRd−1(0, ε
f
)×BRd−1(0, ε

f
)× G 4 × Σ such that

ϕgσs (ζ(z0, g0, σ)) =
(
u, t,ω, τ

)
(s, z0, g0, σ). (9.8)

Note that by the definition of ζ, for all s and σ

|(ω, τ )|gσ(u,t) = 1.
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Also, t(s, 0, g?, σ) = s. Next, define the matrices

∆σ(s, z0, g0) :=

(
∂u0u(s, z0, g0, σ) ∂ω0u(s, z0, g0, σ)
∂u0ω(s, z0, g0, σ) ∂ω0ω(s, z0, g0, σ)

)
,

∆̃σ := ∆σ − [∂st]
−1

(
∂su
∂sω

)(
∂u0t ∂ω0t

)
.

(9.9)

We note that ∆̃σ ∈ Sp(2(d− 1)). Indeed, for each fixed s, observe that ∆̃σ is the derivative of the
following Poincaré map (a symplectomorphism)

Pσ : H0 → Ht(s,z0,g0,σ), Pσ(z0) = (u(S, z0, g0, σ),ω(S, z0, g0, σ)),

where S = S(s, z0, g0, σ) is defined such that ϕgσS (ζ(z0, σ)) ∈ Ht(s,z0,g0,σ). Here, we are identifying
H0 with B(0, ε

f
) × B(0, ε

f
) via z0 = (u0, ω0) 7→ ζ(z0, σ). Note also that the symplectic form

induced on Hs from T ∗M is the standard symplectic form in (u, ω) coordinates.

Let T0 ∈ R, g0 ∈ G 4, and z0 ∈ BRd−1(0, ε
f
) × BRd−1(0, ε

f
). Define the map Ψg0

z0
: Σ →

Rd−1 × Rd−1 × Sp(2(d− 1)) by

Ψg0,T0
z0

(σ) := (Ξ1(z0, g0, σ),Ξ2(z0, g0, σ)) (9.10)

Ξ1(z0, g0, σ) :=
(
u(T, z0, g0, σ),ω(T, z0, g0, σ)

)
, Ξ2(z0, g0, σ) := ∆̃σ∆̃−1

0 (T, z0, g0),

where T = T (z0, g0, σ, T0) is defined by

ϕgσ
T (z0,g0,σ,T0)

(ζ(z0, g0, σ)) ∈ HT0
.

Note that T (0, g?, 0, T0) = T0, i.e., ϕg?
T0

(ρ0) ∈ HT0
.

Remark 9.6. The choice of ∆̃σ∆̃−1
0 as the last entry of Ψg0

z0(σ) is motivated by the fact that

we intend to write an ODE (in the s variable) which ∂δ∆̃δσ|δ=0∆̃−1
0 (s) solves. Because ∆̃δσ(s) ∈

Sp(2d−1), ∂δ∆̃δσ(s)|δ=0 ∈ T∆̃0(s) Sp(2d−1), while ∂δ∆̃δσ(s)|δ=0∆̃−1
0 ∈ TI Sp(2d−1) = sp(2d−1).

Because this is a linear subspace of M(2(d − 1)) which is independent of s, ODEs posed in this
space are much simpler to work with.

For the purposes of the next calculations, we take g0 = g?. In Lemma 9.10 we show how to
handle g0 6= g?. Note that, with g0 = g?, we have (u, t,ω, τ )|σ=0 = (0, s, 0, 1) when z0 = (0, 0).
Let

uσ(s) := u(s, 0, g?, σ), ωσ(s) = ω(s, 0, g?, σ), tσ(s) = t(s, 0, g?, σ). (9.11)

We continue to write σ =
(
A,B,C,D,E

)
and define

Lσ :=

(
∂ukg

dj
σ gjkσ

−1
2∂

2
ujuk

gddσ −∂ujgdkσ

)
∈ sp(2(d− 1)).

Next, we calculate how derivatives of ∆δσ and Ξ1(z0, g0, δσ) with respect to δ behave.

Lemma 9.7. Let K ⊂ G 3 bounded. Then there is R0 > 0 such that for all g? ∈ K the following

holds. Let ρ0 ∈ S̃∗M , T0 ∈ R, 0 < R < R0 and t? ∈ [3R, T0 − 3R] be such that the set

{t ∈ [0, T0] : γg?ρ0
(t) ∩B(γg?ρ0

(t?), 3R)} (9.12)

is connected.
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H
T0

ϕg?T0
(ρ0)

ϕgσT (z0)
(ζ)

H0

ρ0

ζ

Figure 4. The figure shows the setup for the definition of the functions t and T .
Here, we abbreviate ζ = ζ(z0, g0, σ) and T (z0) = T (z0, g0, σ). The hypersurface
H0 parametrized by z0 = (u0, ω0) via z0 7→ ζ(z0, σ), while the corresponding points
in HT0

are (u,ω) = Ξ1(z0, g0, σ).

Let g0 = g?, σ =
(
A,B,C,D,E

)
∈ Σ and δ > 0. Then, with uσ and ωσ as defined in (9.11),

for s ∈ [0, T0]

∂s

(
∂δuδσ|δ=0

∂δωδσ|δ=0

)
= L0

(
∂δuδσ|δ=0

∂δωδσ|δ=0

)
+ 1

2

(
B
A

)
χR(0, s− t?), (9.13)

and

∂s
(
∂δ∆δσ

∣∣
δ=0

∆−1
0

)
= 1

2

(
Dj
k Ejk

Cjk −Dk
j

)
χR(0, s− t?) + [L0, ∂δ∆δσ

∣∣
δ=0

∆−1
0 ] + FR(A,B, s), (9.14)

where Lσ is given by (9.18), FR(A,B, s) ∈ sp(2(d− 1)) and

|FR(A,B, s)| ≤ CeC|s−t?|‖(A,B)‖
with C = C(‖g?‖C3).

Proof. There is R0 = R0(K) > 0 such that (9.5) holds and we can work with coordinates (u, t)
on the ball B(γg?ρ0 (t?), 3R0). Moreover, by the connectedness of the set in (9.12)(

(Φg?
ρ0

)−1(B(γg?ρ0
(t?), 3R0)) ∩BRd−1(0, εf )× [0, T0]

)
⊂ BRd−1(0, εf )× [t? − 3R0, T? + 3R0].

Since the support of the perturbation is inside B(γg?ρ0 (t?), 3R0), this allows us to identify the
perturbation gσ with a genuine metric perturbation on M and to treat (u, t) as though they were
global coordinates for the purposes of the calculations in this lemma. By (9.8), the Hamiltonian
flow, ϕgσs , for |ξ|gσ is defined by

∂su
j = gijσ ωi + gdjσ τ , ∂sωj = −1

2∂ujg
i`
σ ωiω` + ∂ujg

d`
σ τω` + 1

2∂ujg
dd
σ τ

2,

∂st = gdjσ ωj + gddσ τ , ∂sτ = −1
2∂tg

i`
σ ωiω` + ∂tg

d`
σ τω` + 1

2∂tg
dd
σ τ

2,
(9.15)

where ξ = (ω, τ ).
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Combining the Hamilton equations (9.15) together with (9.4) and Lemma 9.2 yields (9.13).

Here, we are using that ∂tg
jd
? (0, t) = gjd? (0, t) = ∂t∂ujg

dd
? = ∂ujg

dd
? = 0, ∂δuδσ|s=0 ≡ 0, and

∂δωδσ|s=0 ≡ 0. The last two equalities follow from the facts that ∂δuδ|s=0 = ∂δ(uδ|s=0) and
uδ|s=0 ≡ u0, and the analogue for ωδ.

The same computation yields that at z0 = (0, 0),

∂s∆0 = L0∆0, ∆0|s=0 = I. (9.16)

Differentiating in (u0, ω0), then δ, using that ∆σ|s=0 = I, and that ∂δuδσ|δ=0 and ∂δωδσ|δ=0

depend only on (A,B) and satisfy

‖(∂δuδσ|δ=0(s), ∂δωδσ|δ=0(s)‖ ≤ CeC|s−t?|, (9.17)

we find there is FR(A,B, s) such that at z0 = (0, 0),

∂s∂δ∆δσ|δ=0 = L0∂δ∆δσ|δ=0 + ∂δLδσ|δ=0∆0 + FR(A,B, s)∆0, ∂δ∆δσ|s=0 = 0.

Note that

∂δLδσ|δ=0 = 1
2

(
Dj
k Ejk

Cjk −Dk
j

)
χR(0, s− t?). (9.18)

Therefore, at z0 = (0, 0), by (9.16) we have (∂δ∆δσ|δ=0∆−1
0 )|s=0 = 0 and conclude (9.14). We

claim that (9.14) implies

FR(A,B, s) ∈ sp(2(d− 1)).

Indeed, this follows from the fact that 1) ∆0 ∈ Sp(2(d− 1)) and 2) ∂δ∆δσ|δ=0∆−1
0 ∈ TI Sp(2(d−

1)) = sp(2(d−1)). Claim 1) follows from the fact that ∂s(u,ω)|(u0,ω0)=0 = 0 and hence that ∆0 =

∆̃0 ∈ Sp(2(d−1)). Claim 2) The claim is not obvious since we do not know that ∆σ ∈ Sp(2(d−1))
for all σ 6= 0. However, using that ∂u0t|δ=0 = ∂ω0t|δ=0 = 0 and ∂su|δ=0 = ∂sω|δ=0 = 0, we have

∂δ∆δσ|δ=0 = ∂δ∆̃δσ|δ=0, and hence, since ∆̃σ ∈ Sp(2(d− 1)), ∂δ(∆
T
δσJ∆δσ)|δ=0 = 0. In particular,

this implies that

(∂δ∆δσ|δ=0∆−1
0 )TJ∂δ∆δσ|δ=0∆−1

0 = (∆T
0 )−1(∂δ(∆

T
δσJ∆δσ)|δ=0)∆−1

0 = 0,

and hence that ∂δ∆δσ|δ=0∆−1
0 ∈ sp(2(d− 1)).

The estimate on FR(A,B, s), now follows from (9.17). �

In what follows we prove that ∂σΨg?
0
|σ=0 is bijective and bound its inverse. We write σ =

(σ1, σ2) as introduced in (9.3). We note that Ψg0,T0
z0 (σ) is defined using the Hamiltonian flow for

gσ = gσ(ρ0, t?, R, g0, σ), where gσ is a perturbation of the metric g0 done in a neighborhood of the
point γg?ρ0 (t?). Indeed, in the (u, t) coordinates, the perturbation is supported where χR(u, t− t?)
is, i.e. for |u| ≤

√
2R and |t− t?| ≤

√
2R.

Lemma 9.8. Let K ⊂ G 3 bounded. Then there is C > 0 and R0 > 0 suc that for all g? ∈ K the

following holds. Let ρ0 ∈ S̃∗M , T0 ∈ R, 0 < R < R0 and t? ∈ [3R, T0 − 3R] be such that the set

{t ∈ [0, T0] : γg?ρ0
(t) ∩B(γg?ρ0

(t?), 3R)} (9.19)

is connected. For 0 < R < R0 and j = 1, 2, let Ξj(σ) := Ξj(0, g?, σ) be the maps Ξj introduced in
(9.10), which are defined using the perturbations gσ = gσ(ρ0, t?, R, g?, σ) introduced in (9.4).
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Then, the map ∂σ1Ξ1(0)|Σ1
: Σ1 → R2d−2 is bijective with inverse bounded by CeC|T0−t?| and

∂σ2Ξ1(0)|Σ1
= 0. Also, for every fixed σ1 ∈ Σ1, the map ∂σ2Ξ2(σ1, 0)|Σ2

: Σ2 → sp(2(d − 1))

is bijective with inverse bounded by CeC|T0−t?|, and the map ∂σ1Ξ2(0)|Σ1
: Σ1 → sp(2(d − 1)) is

bounded by CeC|T0−t?|. In particular,

∂σΨg?,T0
0
|σ=0 is bijective with inverse bounded by CeC|T0−t?|.

Proof. First, note that ∂δΞ1(δσ)|δ=0 = (∂δuδσ(T0), ∂δωδσ(T0))
∣∣
δ=0

since ∂s(u,ω)(T0, z0, g?, 0) = 0.

Fix v ∈ R2d−2. By the connectedness of the set (9.19), and the fact that t? ∈ [3R, T0 − 3R], the
right hand side of the equation (9.13) is the same as that in Lemma A.2. In particular, taking R0

small enough, Lemma A.2 together with (9.13), there are R0, C1 > 0 depending on ‖g‖C2 such
that for all R < R0, there are σ1 = (A,B) ∈ R2d−2 satisfying

(∂δuδ(σ1,0)(T0), ∂δωδ(σ1,0)(T0)) = v, ‖σ1‖ ≤ C1e
C1|T0−t?|‖v‖.

Thus, the map σ1 7→ (∂δuδ(σ1,0)(T0), ∂δωδ(σ1,0)(T0)), which equals ∂δΞ1(0)|Σ1
, is bijective with

inverse bounded by C1e
C1|T0−t?|.

Checking that ∂δΞ1(δσ)|δ=0 = 0 when σ1 = 0 is straightforward. It follows that ∂σ2Ξ1(0)|Σ1 = 0.

Next, since Ξ2(δσ) = [∆̃δσ∆̃−1
0 ](T (z0, g?, δσ, T0), z0, g?), by (9.9)

∂δΞ2(δσ)
∣∣∣
δ=0

=
(
∂δ∆δσ − ∂δ

[
[∂stδσ]−1

(
∂suδσ
∂sωδσ

)(
∂u0tδσ ∂ω0tδσ

) ])∣∣∣s=T0
δ=0

∆−1
0 (T0)

=
(
∂δ∆δσ

∣∣
δ=0

∆−1
0

)∣∣∣
s=T0

. (9.20)

Where to obtain the final equality, we observe that(
∂u0t ∂ω0t

) ∣∣∣s=T0
z0=0

= 0, and

(
∂su
∂sω

) ∣∣∣s=T0
z0=0

= 0.

We now write Q0 for the solution of

∂sQ0 = [L0, Q0] + FR(A,B, s), Q0(0) = 0. (9.21)

Note that since L0(s), FR(A,B, s) ∈ sp(2(d − 1)) we have Q0(s) ∈ sp(2(d − 1)). Observe that,

working with σ = (σ1, 0), we have ∂δΞ2(δσ)
∣∣∣
δ=0

= ∂σ1Ξ2(0)σ1 and so (9.14) yields∥∥∂σ1Ξ2(0)σ1

∥∥ = ‖Q0(T0)‖ ≤ CeC|T0−t?|‖σ1‖,

where C = C(‖g‖C3), and hence ‖∂σ1Ξ2(0)|Σ1
‖ ≤ CeC|T0−t?|, as claimed.

Next, we show that ∂σ2Ξ2(0)|Σ2
is invertible. Fix L ∈ sp(2(d− 1)). Then, we use Lemma A.2

to find σ2 = (C,D,E) such that the solution Q1 to

∂sQ1 = [L0, Q1] +
1

2

(
Dj
k Ejk

Cjk −Dk
j

)
χR(0, s− t?), Q1(0) = 0 (9.22)

satisfies Q1(T0) = L and such that

∂σ2Ξ2(0)σ2 = Q1(T0) = L, ‖σ2‖ ≤ CeC|T0−t?|‖L‖,
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and hence ∂σ2Ξ2(0) is invertible as claimed.

The application Lemma A.2 requires a brief explanation. Observe that, again using the con-
nectedness of (9.19), (9.22) is a differential equation on sp(2(d− 1)) of the form

∂sQ1 = RQ1 +
∑
i

aif
R
i,t?

where R(s) is a linear map on sp(2(d − 1)) with ‖R‖L∞ ≤ C‖g‖C2 and the ai are a basis for
sp(2(d− 1)).

Finally, we show that ∂σΨg?,T0
0
|σ=0 has the required properties. Notice that, as a map from

R2(d−1) × sp(2(d− 1)) to itself,

∂σΨg?,T0
0
|σ=0 =

(
∂σ1Ξ1 ∂σ2Ξ1

∂σ1Ξ2 ∂σ2Ξ2

)
=

(
∂σ1Ξ1 0
∂σ1Ξ2 ∂σ2Ξ2

)
.

Remark 9.9. Here it is crucial that ∂σ1Ξ2 : R2d−2 → sp(2(d − 1)) so that we may think of the
map ∂σΨg?,T0

0
|σ=0 acting on R2d−2 × sp(2(d− 1)). This follows from the fact that FR(A,B, s) ∈

sp(2(d− 1)).

In particular, we have

[∂σΨg?,T0
0
|σ=0]−1 =

(
(∂σ1Ξ1)−1 0

−[∂σ2Ξ2]−1∂σ1Ξ2(∂σ1Ξ1)−1 [∂σ2Ξ2]−1

)
,

from which the estimates on [∂σΨg?,T0
0
|σ=0]−1 easily follow. �

Before we prove that the estimates in Lemma 9.8 are stable under small changes of the metric
or initial position, we need to control how much these changes affect ∂σΨg?,T0

0
|σ=0. This is done

in our next lemma.

Lemma 9.10. Given K ⊂ G 4 bounded, there is C > 0 such that the following holds.

Let g? ∈ K and R0 be as in Lemma 9.8. Let ρ0 ∈ S̃∗M , T0 ∈ R, 0 < R < R0, and t? ∈
[3R, T0 − 3R] be such that the set {t ∈ [0, T0] : γg?ρ0 (t) ∩ B(γg?ρ0 (t?), 3R)} is connected. Then, for
all g0 ∈ G 4 with ‖g0 − g?‖C4 ≤ 1, z0 ∈ Rd−1(0, ε

f
)×BRd−1(0, ε

f
), and all R > 0,

‖dσ(Ψg0,T0
z0 −Ψg?,T0

0 )|σ=0‖C0 ≤ C(1 +R−2)
(
‖g0 − g?‖C1 + |z0|

)
eC|T0|, (9.23)

where Ψg0
z0 is the map introduced in (9.10), defined using the perturbations gσ = gσ(ρ0, t?, R, g0, σ)

introduced in (9.4).

Remark 9.11. It is possible to replace R−2 in (9.23) by R−1 through a more careful study of the
terms produced by perturbing g? and z0. In particular, using the fact that the L1 norm of the
worst terms produced gains a power of R. This would, in turn, lead to a slightly smaller power
Ων in our main theorems: Theorems 1.1, 1.2, and 1.3. However, the form of the power would still
be the same so we do not pursue this here.

Proof. First, observe that ‖H|ξ|g0 − H|ξ|g? ‖Ck−1 ≤ ‖g0 − g?‖Ck . In particular, defining ρ0(t) and

ρ?(t) such that ∂tρ0(t) = H|ξ|g0
(ρ0(t)), ∂tρ?(t) = H|ξ|g? (ρ?(t)), and ρ0(0) = ρ?(0), we obtain for
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all t ∈ R

|ρ0(t)− ρ?(t)| ≤
ˆ t

0
|H|ξ|g0 (ρ0(s))−H|ξ|g? (ρ?(s))|ds

≤
ˆ t

0
(‖g0‖C2 + ‖g?‖C2)|ρ0(s)− ρ?(s)|ds+ t‖g0 − g?‖C1 .

Therefore, using Gronwall’s inequality, there is C = C(‖g?‖C2 , ‖g0‖C2) such that

d(ϕg0
t (ρ), ϕg?t (ρ)) ≤ C‖g0 − g?‖C1eC|t|, for all ρ ∈ T ∗M \ {0}.

In addition, recall that for every metric g there is C = C(‖g‖C2) such that for all ρ1, ρ2 ∈ T ∗M\{0}

d(ϕgt (ρ1), ϕgt (ρ2)) ≤ Cd(ρ1, ρ2)eC|t|.

In particular, there is C = C(‖g?‖C2) such that for ‖g?−g0‖C2 ≤ 1, and ρ0, ρ? ∈ T ∗M \{0}, t ∈ R,

d(ϕg0
t (ρ0), ϕg?t (ρ?)) ≤ C(‖g? − g0‖C1 + d(ρ0, ρ?))e

C|t|. (9.24)

Next, in analogy with (9.11), for σ ∈ Σ let

uσ(s) := u(s, z0, g0, σ), ωσ(s) = ω(s, z0, g0, σ), tσ(s) = t(s, z0, g0, σ).

and differentiate (9.15) to get

∂s

(
∂δuδσ|δ=0

∂δωδσ|δ=0

)
= L0

(
∂δuδσ|δ=0

∂δωδσ|δ=0

)
+ 1

2

(
B
A

)
χR(0, s− t?) + E1, ∂s∂δtδσ|δ=0 = Ẽ1, (9.25)

where

‖Ẽ1‖+ ‖E1‖ ≤ C
(

(1 +R−2)(‖g0 − g?‖C1 + |z0|)eC|s|
)
‖σ‖. (9.26)

Note that (9.25) reduces to (9.13) when (z0, g0) = (0, g?). To obtain (9.25), we differentiate (9.15)
and use (9.24) together with Lipschitz bounds on g0, g?, and χR to estimate the change from (9.13).

The bound on (9.26) follows from combining (9.24) together with |∂δu|+ |∂δω|+ |∂δτ |+ |∂δt| ≤
CeC|s|‖σ‖ where C = C(‖g0‖C2 , ‖g?‖C3).

Similarly, differentiating again as to obtain (9.14),

∂s
(
(∂δ∆δσ|δ=0)∆−1

0

)
= 1

2

(
Dj
k Ejk

Cjk −Dk
j

)
χR(0, s− t?) + [L0, (∂δ∆δσ|δ=0)∆−1

0 ] + FR(A,B, s) + E2,

∂s∂δ∂(u0,ω0)t|δ=0 = Ẽ2

where

‖Ẽ2‖+ ‖E2‖ ≤ C(‖g?‖C4)
(

(1 +R−2)(‖g0 − g?‖C1 + |z0|)eCs
)
‖σ‖.

By (9.13) and (9.14), the bounds on E1 and E2 directly imply that for any s > 0,

‖dσ
(
(u,ω,∆σ∆−1

0 )(s, z0, g0, σ)− (u,ω,∆σ∆−1
0 )(s, 0, g?, σ)

)
|σ=0‖

≤ C(‖g?‖C4)(1 +R−2)(‖g0 − g?‖C1 + |z0|)eCs.
In addition, computing as in (9.20), we have

‖dσ∆̃σ∆̃−1
0 (T0, z0, g0, σ)− dσ∆σ∆−1

0 (T0, z0, g0, σ)‖ ≤ C(‖g?‖C4)(1 +R−2)(‖g0 − g?‖C1 + |z0|)eCT0

and hence, we obtain (9.23). �
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supp(g0 − gσ)H0 HT̃0

γg?ρ
ϕg?T0

(ρ)

Vi0

ρ

Wi1

ρ̃ ρ̃1

γg0ρ̃

ρ0

Figure 5. The figures shows the geometric setup used in Lemma 9.12 to pass
from the special hypersurfaces defined using the coordinates Φg?

ρ to a given well

separated set (Γ, Γ̃).

In what follows we use the notion of a well-separated set introduced in Definition 6.5.

Lemma 9.12. Let G ⊂ G 4 bounded, z > 0, and {(Wi,Vi)}Ni=1 be z-well separated for G. There
exist δ > 0, R0 > 0, C > 0, and C1 > 0, such that the following holds. Let g? ∈ G, T0 > 0,
t? ∈ [3R0, T0 − 3R0], ρ ∈ Vi0, and i1 ∈ {1, . . . , N} such that

ϕg?T0
(ρ) ∈ Wi1 , d(ϕg?T0

(ρ),Vi1) < δ,

and the set

{t ∈ [0, T0] : γg?ρ (t) ∩B(γg?ρ (t?), 3R0) 6= ∅} (9.27)

is connected. Then for all

0 < R < R0, 0 < ε ≤ R2e−C1|T0|/C1,

g0 ∈ G 4 and ρ̃ ∈ Vi0 with

‖g? − g0‖G 4 ≤ ε, ‖d(ρ̃, ρ)‖ ≤ ε,
the map

dσ(Pσ|q=ρ̃, dqPσ|q=ρ̃)|σ=0 : Σ→ TP0(ρ̃)Wi0 × TdqP0|q=ρ̃ Sp(Tρ̃Wi0 ;TP0(ρ̃)Wi1),

is bijective with inverse bounded by CeC|T0|, where Pσ : BVi0 (ρ̃, e−C1|T0|/C1) ⊂ Vi0 → Wi1 is the
map

Pσ(q) := ϕgσT gσ (q)(q), T g?(ρ̃) = T0, ϕgσT gσ (q)(q) ∈ Wi1 ,

with T gσ(q) smooth in σ and q, gσ = gσ(ρ, t?, R, g0, σ) is the perturbed metric defined in (9.4),
and Sp(Tρ̃Wi0 ;TP0(ρ̃)Wi1) denotes the symplectic linear maps from Tρ̃Wi to TP0(ρ̃)Wi1.

Proof. Let (u0, t0) be such that Φg?
ρ (u0, t0) = πM (ρ̃). Next, let ρ0 := γg?ρ (t0). From now on we

work with the system of coordinates (u, t) induced by (u, t) 7→ Φg?
ρ0(u, t) and with Hs as defined

in (9.2). Note that ρ̃ ∈ Vi0 ∩H0.

Let ρ̃1 := P0(ρ̃) = ϕg0

T g0 (ρ̃)(ρ̃) ∈ Wi1 , and T̃0 be such that ρ̃1 ∈ Wi1 ∩HT̃0
Define the maps

Q0,σ :Wi0 → H0, Q1,σ : H
T̃0
→Wi1 ,
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by

Q0,σ(q) = ϕgσ
S0(q)

(q), Q1,σ(q) = ϕgσ
S1(q)

(q),

where S0(q) is the real number with smallest absolute value such that ϕgσ
S0(q)

(q) ∈ Ht0 , and S1(q)

is the real number with smallest absolute value such that ϕgσ
S1(q)

(q) ∈ Wi1 .

Note that, by construction, the perturbation is supported on (u, t) such that |t − t?| ≤
√

2R.
Hence, since t? > 3R0 and R < R0, the perturbation is supported away from Wi0 and Wi1 .
Therefore, choosing R0 small enough, Q0,σ(q) = Q0,0(q) for all q with d(q, ρ)� R0 and Q1,σ(q) =
Q1,0(q) for all q with d(q, ρ1)� R0.

In the (u, t) coordinate system, with ω dual to u, we write Z0,σ and Z1,σ for the (u, ω) repre-
sentation of Q0,σ and Q1,σ respectively. Next, consider the map

Ψg0,T̃0
z0

(σ) := (Ξ1(z0, g0, σ),Ξ2(z0, g0, σ))

defined in (9.10) with T̃0 in place of T0. Using that the perturbation is supported away from Wi0

and Wi1 , we have Zj,σ(z0) = Zj,0(z0) for |z0| � R0.

Now, abbreviating Ξj,σ(z0) := Ξj(z0, g0, σ), and putting Ξ̃2,σ(z0) := Ξ2,σ(z0)∆̃0(T, z0, g0), with

∆̃0 as in (9.9) and T = T (z0, g0, σ, T̃0) as in (9.10) with T0 replaced by T̃0, we have (in the (u0, ω0)
coordinates),

Pσ = Z1,σ ◦ Ξ1,σ ◦ Z0,σ, dρPσ = dρZ1,σ ◦ Ξ̃2,σ ◦ dρZ0,σ. (9.28)

Thus, since for |z0| < ε with C1 to be determined later, and ‖σ‖ ≤ 1, we have |Ξ1,σ(Z0,σ(z0))| � R0

and |z0| � R0, and hence we may replace Zj,σ by Zj,0 in (9.28) to obtain

dσ((Pσ(z0), dρPσ(z0)))|σ=0

=
(
dρZ1,0|Ξ1,0(Z0,0(z0))dσΞ1,σ(Z0,0(z0))|σ=0 , d

2
ρZ1,0|Ξ1,0(Z0,0(z0))Ξ̃2,0dρZ0,0

+ dρZ1,0|Ξ1(Z0,0(z0)dσΞ̃2,σ(Z0,0(z0))|σ=0dρZ0,0|z0
)
.

Next, observe that by Lemmas 9.8 and 9.10

‖dσ2Ξ1,σ(Z0,0(z0))|σ=0‖ ≤ C(1 +R−2)εeC|T̃0|,

‖dσ1Ξ1,σ(Z0,0(z0))|σ=0‖+ ‖dσ1Ξ2,σ(Z0,0(z0))|σ=0‖ ≤ CeC|T̃0|,

and, provided that C1 is chosen large enough,

‖(dσ1Ξ1,σ(Z0,0(z0))|σ=0)−1‖+ ‖(dσ2Ξ2,σ(Z0,0(z0))|σ=0)−1‖ ≤ CeC|T̃1|.

Together with the fact that

‖d2
ρZk,0‖+ ‖dρZk,0‖+ ‖(dρZk,0)−1‖ ≤ C, ‖∆0‖ ≤ CeC|T̃0|,

this implies the lemma. To see this, observe that, taking C1 large enough, the estimates above
imply that dσ((Pσ(q), dρPσ(q)))|σ=0 takes the form

(
A R
B D

)
, where ‖BA−1R‖ < 1

2‖D
−1‖. �
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9.2. Probing families of metrics. Before defining our family of probing metrics, we need one
more auxiliary lemma which will allow us to control the size of the perturbation, gσ − g0, in the
Cν norm on symmetric tensors. Here, we recall that, to make sense of Cν norms, we use the fixed
norm as in Remark 1.5. Note that, in the (u, t) coordinates from (9.4), controlling the size of
the perturbation is trivial. However, we need to estimate how the coordinate change, Φg?

ρ affects
these norms. This is the purpose of our next lemma.

Lemma 9.13. Let ν ≥ 2 and K ⊂ G ν be bounded. Then there are Cν > 0 and R0 > 0 such that
for all g? ∈ K, t0 ∈ R, 0 < R < R0 and v ∈ Cν(Rn) supported in the ball B((0, t0), 2R), we have

‖[(Φg?
ρ )−1]∗v‖Cν ≤ Cν‖v‖Cν ,

Proof. Once we understand the Cν norms of (Φg?
ρ )−1, it will remain to apply the Faà di Bruno

formula. To do this, we first choose R0 � 1 small enough such that for all g? in K, Φg?
ρ is a

diffeomorphism on B((0, t0), 2R) for any t0 and R < R0.

To estimate the Cν norms of (Φg?
ρ )−1, it is enough to estimate (dΦg?

ρ |(0,t))−1 from below and

‖Φg?
ρ ‖Cν from above. To see that estimating the inverse at u = 0 is sufficient, observe that

‖dΦg?
ρ |(0,t) − dΦg?

ρ |(ũ,t)‖ ≤ ‖Φg?
ρ ‖C2 |ũ| ≤ R0‖Φg?

ρ ‖C2 ,

for (ũ, t) ∈ supp v. Therefore, provided ‖(dΦg?
ρ |(0,t))−1‖ < 1

2R0‖Φg?ρ ‖C2
, we have dΦg?

ρ is also

invertible in the support of v.

Observe that there is C > 0 such that for all g ∈ K and V ∈ TM
C−1|V |g ≤ |V |

S̃∗M
≤ C|V |g. (9.29)

Therefore, since
dΦg?

ρ |(0,t0)(E
i(0)δui + Ed(0)δt) = Ed(t0)δt + Ei(t0)δui ,

we have

C|dΦg?
ρ |(0,t0)(E

i(0)δui + Ed(0)δt)|2S̃∗M ≥ |dΦg?
ρ |(0,t0)(E

i(0)δui + Ed(0)δt)|2g?
= |(Ei(0)δui + Ed(0)δt|2g? ≥ C

−1|Ed(0)δt + Ei(0)δui)|2S̃∗M .

and hence ‖(dΦg?
ρ |(0,t))−1‖ ≤ C2.

Next, Lemma 9.4 implies that there is C, depending only on K, such that ‖Φg?
ρ ‖Cν ≤ C. In

particular, we obtain that there is c0 > 0 depending on K such that for R ≤ c0 there is Cν
depending on K and ν such that ‖(Φg?

ρ )−1‖Cν ≤ Cν on Φg?
ρ (supp v). Using this in the Faà di

Bruno formula then completes the proof of the lemma. �

Let r > 0 and {ρi(r)}N(r)
i=1 be a maximal r separated set in S̃∗M so that

S̃∗M ⊂
N(r)⋃
i=1

B(ρi, r). (9.30)

We associate to each ρi(r), a family of perturbations defined by iterative application of the
construction (9.4). In particular, let

Σ(r) :=
(
B

RL
(0, 1)

)N(r)
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We define for δ,R > 0, σ ∈ Σ(r), and g? ∈ G ν ,

gr,R,δσ,g? = g? +

N(r)∑
j=1

(gδσj (ρj , 0, R, g?, δσj)− g?),

where gσ = gσ(ρj , 0, R, g?, σ) is the metric perturbation of g? defined along γg?ρj (t) inR-neighborhood
of ρj = γg?ρj (0) (see (9.4)).

In what follows, we write S ν for the space of Cν symmetric tensors on M .

For R, r, δ > 0 define the map Q : G ν ×Σ(R)→ S ν by

Qr,R,δ(g,σ) := gr,R,δσ,g . (9.31)

Lemma 9.14. Let ι : G ν → G ν−1 be the natural embedding. Then, for all K ⊂ G ν bounded, there
is ε0 > 0 such that if

δR−1r−2d+1 max(r,R)d < ε0,

then
Qr,R,δ : K ×Σ(R)→ G ν . (9.32)

Moreover, with Q̃r,R,δ := ι ◦ Qr,R,δ : G ν × Σ(R) → G ν is Frechet differentiable, the map g →
D(g,σ)Q̃

r,R,δ is continuous, and

DgQ̃
r,R,δ : S ν−1 → S ν−1

is bijective, where we have extended DgQ̃
r,R,δ to S ν−1 by density. Moreover, for all K ⊂ G ν

bounded, there is C > 0 such that for all δ, r, R > 0, g ∈ K, and σ ∈ Σ(R),

‖DσQr,R,δ‖`∞→Cν ≤ CδR−1−νr−2d+1 max(r,R)d, (9.33)

‖DgQ
r,R,δ(g,σ)− I‖Cν−1→Cν−1 ≤ C1δR

−νr−2d+1 max(r,R)d, (9.34)

‖∂σjQr,R,δ(g,σ)‖B
RL

(0,1)→Cν ≤ CδR−1−ν , (9.35)

∂ασjQ
r,R,δ(g,σ) = 0, |α| ≥ 2. (9.36)

Proof. First observe that (9.33) implies (9.32), so we only check the estimates (9.33) through (9.36).

Let ρ ∈ {ρi}N(r)
i=1 and σ ∈ B

RL
(0, 1), and set gσ := gδσ(ρ, 0, R, g, σ). Observe that (Φg

ρ)∗gδσ =

(Φg
ρ)∗g + δhσ where hσ does not depend on g and

|∂αhσ| ≤ CαR−|α|‖σ‖, |∂αDσhσ| ≤ CαR−|α|, ∂ασhσ = 0, |α| ≥ 2

and hσ is supported in a ball of radius 2R around (Φg
ρ)−1πM (ρ). Therefore, using Lemma 9.13

‖Dσgδσ‖Cν = ‖δDσ((Φg
ρ)
−1)∗hσ‖Cν ≤ CνR−1−νδ, Dα

σgδσ = 0, |α| ≥ 2.

This proves (9.35) and (9.36).

Next, let gi ∈ G ν , i = 0, 1 and note

(g0)δσ − g0 − [(g1)δσ − g1] =
[
([Φg0

ρ ]−1)∗ − ([Φg1
ρ ]−1)∗

]
δhσ.

Therefore, by Lemmas 9.3 and 9.13,

‖Dg[(g)δσ − g]‖Cν−1→Cν−1 ≤ Cνδ‖σ‖R−ν , (9.37)
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the map (g, σ) 7→ Dg[gδσ − g] is continuous in the G ν × B
RL

(0, 1) topology, and the range of the

derivative is supported in a ball of radius CR around πM (ρ) where C > 0 depends only on K.

Using these estimates together with the definition of Qr,R,δ, the lemma follows after a counting
argument. In particular, it is enough to bound

sup
j

#{i ∈ {1, . . . , N(r)} : B(πM (ρj), 2R) ∩B(πM (ρi), 2R) 6= ∅}.

To do this, note that since ρj are a maximal r separated set, there is a constant D depending

only on d and C such that there are {J`}D`=1, J` ⊂ {1, . . . N(r)} such that

{1, . . . , N(r)} =
⋃
`

J`, B(ρj , Cr) ∩B(ρi, Cr) = ∅, i 6= j, i, j ∈ J`.

In particular, for each fixed j,

#{i ∈ {1, . . . , N(r)} : B(πM (ρj), 2R) ∩B(πM (ρi), 2R) 6= ∅}
≤ #{i ∈ {1, . . . , N(r)} : πM (ρi) ∈ BM (πM (ρj), 4R)}
≤ #{i ∈ {1, . . . , N(r)} : πM (B

S̃∗M
(ρi, 2r)) ⊂ BM (πM (ρj), 4R+ 2r)}

≤ CdD vol
(
ρ ∈ S̃∗M : πM (ρ) ∈ BM (πM (ρj), 2r + 4R)

)
r−2d+1

≤ CdD̃(max(r,R))dr−2d+1

Combining this bound with (9.35) implies (9.33), and with (9.37) implies (9.34). �

10. Construction of well separated sets

In this section, we construct a well-separated set for a small neighborhood of a metric g† ∈ G 3.
We then show that these well-separated sets are admissible in the sense of Definition 7.3 for the
perturbation from Section 9.

10.1. Construction of the well-separated set. Define for g ∈ G 3

Ψg : R× S̃∗M → S̃∗M, Ψg(t, q) = ϕgt (q),

and for T > 0, V ⊂ S̃∗M , consider the geodesic tube

T g
V

(T ) := Ψg
(
(−T, T )× V

)
.

Lemma 10.1. Let g† ∈ G 3. There exist N > 0, δ > 0, hypsersurfaces Zi ⊂ M , i = 1, . . . , N ,

and open subsets Vi b Wi ⊂ S̃∗ZiM such that H|ξ|g†
is transverse to Wi and there is a bounded

neighborhood G ⊂ G 3 of g† such that for all g ∈ G,

T gWi
(δ) ∩ T gWj

(δ) = ∅, i 6= j, and S̃∗M ⊂
N⋃
i=1

T gVi(
1
3T†), (10.1)

where T† = injg†
(M). Moreover, Ψg : (−

T†
3 ,

T†
3 ) ×Wi → S̃∗M is a C1-diffeomorphism onto its

image.
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Proof. For each q ∈ S̃∗M , let Zq ⊂M be a hypersurface with q ∈ N∗Zq and such that we can work
with Fermi normal coordinates associated to Zq. That is, we assume that there is εq > 0 such
that (x1, x

′) are well defined coordinates for |(x1, x
′)| < 2εq with the property that (0, 0) = πM (q)

and Zq = {(x1, x
′) : |x′| < εq, x1 = 0}. Let

Hεqq := {(0, x′, ξ1, ξ
′) ∈ S̃∗M : |ξ1| > 1

2 |ξ|g† , |x
′| < εq},

where we write (ξ1, ξ
′) for the dual coordinates so that we have q = (0, 0, 1, 0). Shrinking εq if

necessary, we may further assume that Ψg† : (−1
2T† ,

1
2T†) ×H

3εq
q → S̃∗M is a C1-diffeomorphism

onto its image.

Next, for each q ∈ S̃∗M and x1 ∈ (−εq, εq) let Zq(x1) := {(x1, x
′) : |x′| < 3εq}. Observe that

there exist 0 < δq < εq and Cq > 0 such that for x1 ∈ (0, δq) and ρ ∈ H2εq
q ,

Tx1(ρ) := inf
{
t > 0 : πM (ϕ

g†
t (ρ)) ∈ Zq(x1)

}
< Cq|x1|,

and the map ρ 7→ ϕ
g†
Tx1 (ρ)(ρ) is a C1-diffeomorphism from H2εq

q onto its image. In particular,

choosing δq small enough, we have for x1 ∈ (0, δq), V ⊂ H
2εq
q open, we have

T
g†
V (1

5T†) ⊂ T
g†
V [x1](

1
4T†), V [x1] := T

g†
V (1

2T†) ∩ ˜S∗Zq(x1), (10.2)

and V [x1] is C1-diffeomorphic to V . Therefore, we can shift slightly the initial position of our
tubes without changing covering properties. Moreover, after possibly shrinking δq, we may assume
that

sup
x1∈[0,δq)

diam
(
V [x1]

)
≤ 4 diam(V ). (10.3)

By compactness, there are {qi}Li=1 ⊂ S̃∗M such that S̃∗M ⊂
⋃L
i=1 THεqiqi

(1
5T†). Fix r > 0. For

each i = 1, . . . , L, we let {ρij}Ni(r)j=1 be a maximal r/2 separated set on H2εqi
qi so that

Hεqiqi ⊂
Ni(r)⋃
j=1

B
H

2εqi
qi

(ρij , r/2),

and there is D > 0, independent of r > 0, and a partition {1, . . . , Ni(r)} = ∪Dk=1Jk such that for
any k ∈ 1, . . . ,D and any j1 6= j2, j1, j2 ∈ Jk

B
H

2εqi
qi

(ρij1 , 4r) ∩B
H

2εqi
qi

(ρij2 , 4r) = ∅.

In particular, since L is independent of r, there is D̃ > 0 independent of r such that the tubes

Tij(4r, 1
2T†) := Ψg† ((−1

2T† ,
1
2T†)×BH2εqi

qi

(ρij , 4r)),

can be divided into D̃ collections of disjoint tubes, and

S̃∗M ⊂
L⋃
i=1

T
H
εqi
qi

(1
5T†) ⊂

L⋃
i=1

Ni(r)⋃
j=1

Tij(1
2r,

1
5T†). (10.4)
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We now fix 0 < r < δ0
100D̃

, where δ0 = mini δqi . By (10.3), for |x1| < δ0,

max
i,j

diam
(
B
H

2εqi
qi

(ρij , 4r)
)
[x1] ≤ 32r.

Therefore, we may find |x1(i, j)| < δ0 for all i, j such that for (i, j) 6= (k, `),

Wij ∩Wkl = ∅, Wij :=
(
B
H

2εqi
qi

(ρi,j , 4r)
)
[x1(i, j)]. (10.5)

(This is possible, for instance, using a greedy algorithm where we simply select x1(i, j) iteratively
for each intersecting tube.)

Thus, by (10.2) and (10.4),

S̃∗M ⊂
L⋃
i=1

Ni(r)⋃
j=1

T
g†
Vij

(1
4T†), Vij :=

(
B
H

2εqi
qi

(ρij ,
1
2r)
)
[x1(i, j)].

Moreover, by (10.5) there is δ > 0 such that for (i, j) 6= (k, `),

T
g†
Wij

(2δ) ∩ T
g†
Wkl

(2δ) = ∅.

Finally, since the map G 3 3 g 7→ Ψg ∈ C1 is continuous, Ψg† : (−1
2T† ,

1
2T†)×H

3εq
q → S̃∗M is a

C1-diffeomorphism, which this proves the claim. �

Lemma 10.2. Let g† ∈ G 3 and {(Wi, Vi)}Ni=1 as in Lemma 10.1. Let Vi = Vi, Vi b Wi b Wi.

Then, there is a bounded neighborhood G ⊂ G 3 of g† and z > 0 such that {(Wi,Vi)}Ni=1 is a
z-well separated set for G.

Proof. Let G, δ, and T† as in Lemma 10.1. Shrinking G if necessary, we may assume that H|ξ|g is

uniformly transverse to Γ̃ for g ∈ G.

We need to check the conditions (6.3). Let z = 1
2δ. Then, by the second condition in (10.1),

the first condition in (6.3) follows with CΓ =
4T†
3δ .

Next, by the first condition in (10.1), the second condition in (6.3) holds with cΓ = 2. Finally,

since for all g ∈ G, and i, Ψg(−
T†
3 ,

T†
3 ) ×Wi → S̃∗M is a C1-diffeomorphism onto its image, and

Wi bWi,

inf
ρ∈Wi

inf{t > 0 : ϕgt (ρ) ∈ W i} ≥
2T†
3

=
4T†
3δ

z ≥ CΓz,

and hence, the last condition in (6.3) holds. �

10.2. Admissibility of the family of perturbations from Section 9. In order to show that
the well separated-sets constructed above are admissible for the perturbations from Section 9, we
study these perturbations near simple points.

We start by showing that one can find a ball through which the geodesic emanating from a
simple point passes only once.
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Lemma 10.3. Let K ⊂ G 3 bounded, z < infg∈K injg(M). Then there are c0 > 0 and c1 > 0
such that if 0 < α < c0, n ∈ N, and ρ ∈ Sz(n, α, g), then for every R > 0 and any maximal R

separated set {xj}J(R)
j=1 on M , and any g ∈ K

#{j : Ig(xj , R) 6= ∅ and Ig(xj , 4R) is disconnected} ≤ n2z2

αcn1
,

where Ig(xj , R) := {t ∈ [0, (n− 1
2)z] : πM (ϕgt (ρ)) ∩B(xj , R) 6= ∅}.

Proof. We claim that since ρ ∈ Sz(n, α, g), there is ε > 0, 0 < c1 < 1 such that if g ∈ K, α < ε ,

0 ≤ t, s ≤ (n− 1
2)z, and |t− s| > cn−1

1 α, then

d(ϕgs(ρ), ϕgt (ρ)) ≥ cn1α. (10.6)

To prove the claim in (10.6), recall that there is C > 0 such that d(ϕgt (ρ1), ϕgt (ρ2)) ≤ C |t|d(ρ1, ρ2),

for g ∈ K and all ρ1, ρ2 ∈ S̃∗M . In addition, by Lemma 6.6, for all g ∈ K and ρ ∈ S̃∗M we have

d(ϕgt (ρ), ρ) ≥ |t|/C, |t| ≤ z. (10.7)

By contradiction, suppose there are 0 ≤ t ≤ s−cn−1
1 α and s ≤ (n− 1

2)z such that d(ϕgs(ρ), ϕgt (ρ)) ≤
cn1α. First, by (10.7), if |t− s| ≤ z, we have

C−1|s− t| ≤ d(ϕgs−t(ϕ
g
t (ρ)), ϕgt (ρ)) ≤ cn1α.

This contradicts t ≤ s − cn−1
1 α for c1 chosen small enough. In particular, we have |s − t| ≥ z.

Next, applying the flow for time −t,

d(ϕgs−t(ρ), ρ) ≤ cn1Ctα ≤ cn1Cnzα.

Since |s − t| ≥ 1
2z, this contradicts the fact that ρ ∈ Sz(n, α, g) and hence proves the claim in

(10.6).

We next claim that there is c0 > 0 such that if g ∈ K, ρ ∈ Sz(n, α, g), t0, s0 ∈ [0, (n − 1
2)z],

|s0 − t0| ≥ cn1α, and

d(πM (ϕgt0(ρ)), πM (ϕgs0(ρ))) < 4R,

then for |t− t0| < c0 and |s− s0| < c0,

d(πM (ϕgt (ρ)), πM (ϕgs(ρ)) > c0(|t− t0|+ |s− s0|)cn1α− 8R. (10.8)

We now prove (10.8). Without loss of generality, we may assume cn1α ≥ 8R since other-
wise (10.8) is trivial. Since we are working locally near ϕgs0(ρ), we may work in geodesic normal
coordinates such that ϕgs0(ρ) = (0, e1) where e1 := (1, 0, . . . , 0) and ϕgt0(ρ) = (x1, ξ1). Observe
that by (10.6),

cn1α ≤ |(x1, ξ1)− (0, e1)| ≤ 4R+ |ξ1 − e1|.
Thus, |ξ1 − e1| ≥ 1

2c
n
1α. Then, define

(x(t, (x0, ξ0)), ξ(t, (x0, ξ0))) := ϕgt (x0, ξ0).

We first claim that

|ξ(t0 − s0, (0, e1)) + e1| > 1
2c
n
1α. (10.9)
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Indeed, suppose not. Then,

|x(t0 − s0, (0, e1))|+ |ξ(t0 − s0, (0, e1)) + e1| ≤ 4R+ 1
2c
n
1α < cn1α.

In particular, applying the backward flow, we have

d
((
x(t0−s0−t, (0, e1)), ξ(t0−s0−t, (0, e1))

)
,
(
x(−t, (0,−e1)), ξ(−t, (0,−e1))

))
< C |t|cn1α. (10.10)

Next, observe that

(x(−t, (0,−e1)), ξ(−t, (0,−e1))) = (x(t, (0, e1)),−ξ(t, (0, e1)).

Therefore, putting t = t0−s0
2 in (10.10), we have

d
((
x( t0−s02 , (0, e1)), ξ( t0−s02 , (0, e1))

)
,
(
x( t0−s02 , (0, e1)),−ξ( t0−s02 , (0, e1)

))
< Cnzcn1α.

Choosing c1 small enough (uniformly in K), this is a contradiction since |ξ( t0−s02 , (0, e1))|g = 1.
In particular, (10.9) holds.

Now, we prove (10.8). Since we work in geodesic normal coordinates at x(s0, (0, e1)), we have

|x(s− s0, (0, e1))− x(t− t0, (x1, ξ1))|
≥ |x(s− s0, (0, e1))− x(t− t0, (0, ξ1))| − |x(t− t0, (0, ξ1))− x(t− t0, (x1, ξ1))|
≥ |(s− s0)e1 − (t− t0)ξ1| − (1 + C|t− t0|)|x1|
≥ c0c

n
1α(|s− s0|+ |t− t0|)− 8R,

where in the last line we have used that |ξ1|g(x1) = |e1| = 1, min(|ξ1 − e1|, |ξ1 + e1|) > c0c
n
1α, and

that C|t− t0| < Cc0 ≤ 1. This proves the claim in (10.8).

We now use (10.8) to control the length of time for which the (projection to the base of the) seg-

ment of the geodesic near t0 can be close to that near s0. Let Ω := B
(⋃

|s−s0|<c0 πM (ϕgs(ρ)), 8R
)

.

We claim that ∣∣∣{t : |t− t0| < c0, B(πM (ϕgt (ρ)), 4R) ∩ Ω 6= ∅
}∣∣∣ ≤ CR

c0cn1α
, (10.11)

where C depends only on K. To see (10.11), note that if t lies in the left hand side, then there is
s such that |s− s0| < c0 and, by (10.8), we have

12R > d(πM (ϕt(ρ)), πM (ϕs(ρ))) ≥ c0c
n
1α|t− t0| − 8R.

In particular, (10.11) holds.

Now, let I` := [`c0, (`+ 2)c0), ` = 1, . . . , L−1, L = bz(n− 1
2

)−2c0
c0

c+ 1, IL := [Lc0,z(n− 1
2)], and

Ω` := B
( ⋃
t∈I`

πM (ϕgt (ρ)), 8R
)
.

Since for |`− k| > 1, inft∈I`,s∈Ik |t− s| ≥ 2c0, using (10.11) for each pair `, k with |`− k| > 1,∣∣∣{t : ∃k, ` s.t. |k − `| > 1, t ∈ I`, B(πM (ϕgt (ρ)), 4R) ∩ Ωk 6= ∅}
∣∣∣ ≤ CR

c0cn1α

n2z2

c2
0

.
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Next, note that there exists c > 0 such that the following holds. Let g ∈ K and j such that
Ig(xj , R) 6= ∅ and Ig(xj , 4R) is disconnected there is an interval of length ≥ cR inside the set

{t : ∃k, ` s.t. |`− k| > 1, t ∈ I`, B(πM (ϕgt (ρ)), 4R) ∩ Ωk 6= ∅},

and therefore the lemma follows.

Indeed, to see the last claim, shrinking c0 so that 4c0 < infg∈K injg(M) if necessary, we can find

t1 ∈ Ik1 , t2 ∈ Ik2 such that πM (ϕgt1(ρ)) ∈ B(xj , R) and πM (ϕgt2(ρ)) ∈ B(xj , 4R), with |t1−t2| > 4c0

and hence |k1 − k2| > 1. Notice that B(xj , 4R) ⊂ Ωk2 and hence, since πM (ϕgt1(ρ)) ∈ B(xj , R),

we have πM (ϕgt (ρ)) ∈ Ωk2 for |t − t1| ≤ cR (here, again c > 0 is a constant depending only on
K). �

Let Qr,R,δ be the map that defines the perturbation of the metric as introduced in (9.31). We
now check that for any ν0 and y > 2, there is b such that (Γ, G) is a (z, b, y) admissible pair for
{QRy,R,δ}R,δ. (see Definition 7.3).

Lemma 10.4. Let ν0 ≥ 5 and g† ∈ G 3. Let z > 0, G ⊂ G 3 be the bounded neighborhood G ⊂ G 3

of g†, and {(Wi,Vi)}Ni=1 be the z-well separated set for G given by Lemma 10.2. Let Γ :=
⊔N
i=1 Vi.

Then, for y > 2,

(Γ, G) is a (z, b, y)− admissible pair for {QR,δ}R,δ,

with b := 7− y + d(2y− 1) and QR,δ := QR
y,R,δ as defined in (9.31).

Proof. Let K ⊂ G bounded in G ν0 . We will show that there are c > 0, ε > 0 such that for all
δ > 0, g ∈ K, α ∈ (0, c), n ∈ N, 0 < R < cnα, 0 < δ ≤ Rbcn+1, and

ρ0 ∈ Γ ∩Sz(n, α, g) ∩Rz(n, ε, g),

then there are i0 ∈ {1, . . . , N(R)}, I0, and m0 such that BΓ(ρ0, R
y) ⊂ D(m0)

I0
[QR,δ(g,σ)] for all

σ ∈ Σ
N(R)

, T (m0)
I0

[g](ρ) ∈
[
(n−1)z−CGδG , nz+CGδG

]
, and for all ρ ∈ BΓ(ρ0, R

y) and σ ∈ Σ
N(R)

,

the lower bound in (7.6) holds.

By Lemma 6.12, for c,R, ε small enough there are I and m such that ρ0 ∈ D(m)
I [g], T (m)

I [g](ρ) ∈[
(n− 1)z− CGε , nz + CGε

]
, and d(P(m)

I [g](ρ0), ρ0) < CGε holds.

Let δ0 be as in Lemma 6.13. Next, since

sup
g∈G

sup
ρ∈Γ̃

inf{t > 0 : ϕgt (ρ) ∈ Γ} < CΓz,

by removing elements from I, there is C > 0 depending only on G such that for any δ0 > 0, we
find (m0, I0) such that T (m0)

I0
[g](ρ0) ∈

[
(n− 1)z− CGε , nz + CGε

]
and

sup
m≤m0

d(P(m)
I0

[g](ρ0),Γ) ≤ max(CGε, δ0).

In particular, for c small enough (depending only on G) and

δ< R1−y+3+d(2y−1)cn+1, 0 < R̃ < cn+1, (10.12)
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we have by Lemma 6.13 that B(ρ0, R̃) ⊂ D(m)
I0 [QR,δ(g,σ)], for all σ ∈ Σ

N(R)
and m ≤ m0. Indeed,

since
CΓzm0 ≥ T (m0)

I0
[g](ρ0) ≥ cΓzm0 > zm0,

we have n ≤ CΓm0 + 2 and m0 ≤ (n + 1). Thus, R̃ < cn ≤ cm0 and the condition on δ yields
‖QR,δ(g,σ)− g‖C3< cn+1 ≤ cm0 as needed, after applying Lemma 9.14 with (Ry, R, δ, 3) in place
of (r,R, δ, ν).

We now study the action of the perturbation QR,δ on ΨR,δ
g,I0

as defined in (7.7). To do this, we
will use Lemma 9.12 with g? = g, and some appropriate choice of ρ, g0, and T0.

Note that for any maximal R separated set {xj}J(R)
j=1 ⊂M , since z < injg(M),

#
{
j : there exists t ∈ [z/5,z/4] satisfying πM (ϕgt (ρ0)) ∈ B(xj , R)

}
≥ czR−1.

Therefore, by Lemma 10.3 if

α < c0 and
n2z2

αcn1
< czR−1, (10.13)

then there is an index j0 such that

{t ∈ [0, (n− 1
2)z] : πM (ϕgt (ρ0)) ∩B(xj0 , 4R) 6= ∅} is connected (10.14)

and there is t ∈ [z/5,z/4] satisfying πM (ϕgt (ρ0)) ∈ B(xj0 , R).

Moreover, there is c = c(z) > 0 such that, with {ρi}N(R)
i=1 as in (9.30), if

Ry ≤ cR̃, (10.15)

then for some i0 = 1, . . . , N(R) satisfying πM (ρi0) ∈ B(xj0 , R + Ry) there are ρ? ∈ B(ρ0, R̃) and
t? ∈ (1/6z,z/3) such that ϕgt?(ρ?) = ρi0 . In addition, if

R̃ < cnR, (10.16)

then (10.14) implies

{t ∈ [0, (n− 1
2)z] : πM (ϕgt (ρ?)) ∩B(xj0 ,

7
2R) 6= ∅} is connected. (10.17)

To obtain the lower bound in (7.6), we aim to apply Lemma 9.12. To do this, let T0 =

T (m0)
I0

[g](ρ?), since T (m0)
I0

[g](ρ0) ∈
[
(n− 1)z− CGε , nz + CGε

]
,

(n− 1)z− CGε− C
nR̃ ≤ T0 ≤ nz + CGε+ CnR̃.

Now, we claim that

{t ∈ [0, T0] : πM (ϕgt (ρ?)) ∩B(πM (ϕgt (ρ?)),
7
2R) 6= ∅} is connected. (10.18)

Indeed, if T0 ≤ (n − 1
2)z, then this is true by (10.17). Suppose instead that T0 > (n − 1

2)z.

We need to show that there is no t ∈ [(n − 1
2)z, T0] such that πM (ϕgt (ρ?)) ∈ B(xj ,

7
2R). To do

this, recall that ρ? ∈ Wl ⊂ Γ̃, Wl ⊂ S̃∗ZM for some hypersurface Z ⊂ M , H|ξ|g is transverse

to Wl and z is chosen small enough that there are local coordinates Ω 3 (y1, y
′)

ψ7→ V ⊂ M
with Z = ψ({y1 = 0} ∩ Ω), πM (ϕt(Wl)) ⊂ V for |t| ≤ z, and H|ξ|g (ψ−1)∗y1 > c > 0 on ϕt(Wl)

for |t| ≤ z. Therefore, y1(πM (ϕt(ρ?))) ≥ ct. In particular, since πM (ϕgt?(ρ?)) ∈ B(xj0 , R + Ry)
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and t? ∈ (1/6z,z/3), this implies for R small enough (depending only on G and z), we have
B(xj0 ,

7
2R) ⊂ {y1 > 0}.

We claim that ϕgT0
(ρ?) ∈ Wl. To see this, note that if R̃ is small enough, then ρ0 ∈ Wl.

This implies that P(m0)
I0

[g](ρ0) ∈ Wl, and hence, since B(ρ0, R̃) ∈ D(m0)
I0

[g], P(m0)
I0

[g](ρ?) ∈ Wl.

Therefore, the claim holds. Now, since ϕgT0
(ρ?) ∈ Wl, we have y1(πM (ϕgT0−s(ρ?)) ≤ −cs for

0 ≤ s < z. In particular, since T0 ≤ nz+CGε+CnR̃ < (n+ 1
2)z (for ε and R̃ chosen small enough

as above), for t ∈ [(n− 1
2)z, T0], πM (ϕt(ρ?)) ∈ {y1 ≤ 0}, and hence πM (ϕgt (ρ?)) /∈ B(xj0 ,

7
2R), as

claimed. This proves (10.18).

Shrinking δ0 if necessary and collecting (10.15), (10.12),(10.13),(10.16), and that, by (9.33),

‖QR,δ(g,σ)− g‖G 4 < CδR−5−y(2d−1)+d < R2δR−7−d(2y−1)+ycn+1 < cn+1 < R2e−C1(n+1)z/C1,
(10.19)

for c chosen small enough, provided δ < Rbcn+1 with b = 7−y+d(2y−1). we conclude that (10.18)
yields that the hypotheses of Lemma 9.12 hold with ρ = ρ?, g? = g, ε = max(Ry, ‖Ry − g0‖G 4),
g0 = QR,δ(g,σ), R0 = 7

6R, provided

Ry ≤ cR̃ ≤ min(cn+1, cnR2), R ≤ cnα, δ < R7−y+d(2y−1)cn+1.

Next, noticing that, since ϕg?t? (ρ?) = ρi0 ,

QR,δ(g,σ + δσi0) = gδσi0 (ρi0 , 0, R, g0, δσi0) = gδσi0 (ρ?, t?, R, g0, δσi0),

with Pσ : BΓ(ρ?, R
y) ⊂ Wi0 →Wim0

as defined in Lemma 9.12 with T0 = T (m0)
I0

[g](ρ?) we have

ΨR,δ
g,I0

(m0,σ + δσi0 , ρ) =
(
P(m0)
I0

[gδσi0 ](ρ) , dρ
(
P(m0)
I0

[gδσi0 ]
)
(ρ)
)

= (Pδσi0
(ρ), dρPδσi0

(ρ)).

Since y > 2

Ry < R2Ry−2 < R2cn(y−2) < R2e−C1(n+1)z/C1, (10.20)

for c chosen small enough and C1 as in Lemma 9.12. Note that we have used y > 2 and d ≥ 2
to obtain the next to last inequality. In particular, (10.20) and (10.19) show that Lemma 9.12
implies (7.6): that for all ρ ∈ BΓ(ρ?, R

y),

|dσi0 ΨR,δ
g,I0

(m0,σ, ρ)v| ≥ δcn|v|, v ∈ Tσi0BRL(0,1).

From Definition 7.3 it follows that (Γ, G) is (z, b, y) admissible for QR
y,R,δ with b = 7−y+d(2y−

1). �

11. Proof of Theorem 1.3

We now use Proposition 8.9 to prove Theorem 1.3. Let ν ≥ 5 and Ω > Ων .

Let y > 2 to be chosen close to 2 later, and Q̃R,δ(g, σ) := QRy,R,δ(g, σ) with Q as in (9.31). Let

F := {(FRε,δε
∞ ,∞)}ε be the G ν−1 family of probing maps for G ν constructed as in Proposition 8.9

(see also Lemma 8.1).

Let Kn ⊂ G ν bounded such that Kn ⊂ Kn+1 and
⋃
nKn = G ν . Then for each g ∈ Kn, by

Lemmas 10.2 and 10.4, there are rg > 0, zg > 0, and a symplectic manifold Γg such that (Γg, Gg)
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is zg well separated with Gg := B
G 3 (g, 2rg) ∩ G ν . Moreover, (Γg, Gg) is (zg, b, y) admissible for

Q̃R,δ with b = 7− y + d(2y− 1).

Since ν > 3, Kn is compact in G 3, there are {gi,n}Nni=1 such that Kn ⊂
⋃Nn
i=1BG 3 (gi,n, rgi,n). We

relabel {gi}∞i=1 = ∪n ∪Nni=1 {gi,n}. Next, fix K ⊂ G ν bounded and let NK be such that

K ⊂
N
K⋃

i=1

B
G 3 (gi, rgi).

To each i ∈ {1, . . . , NK} apply Proposition 8.9 to (Γgi , Ggi ∩K) in place of (Γ,K). Let εi, Ci be
the constants ε0, C given by the proposition. Let εK,1 = min1≤i≤N

K
εi.

Next, let

εK,2 = sup{ε > 0 : ‖FRε,δε
∞ (g,σ)− g‖G ν < min

1≤i≤NK
rgi for all g ∈ K, σ ∈ Σ∞},

and set εK := min(εK,1 , εK,2) > 0. By Proposition 8.9, for each i ∈ {1, . . . , NK} and 0 < ε < εK
there exists Sg,ε(gi) ⊂ Σ∞(Rε) an m

Σ∞(R)
measurable set such that for all g ∈ K ∩Ggi{

σ ∈ Σ∞(Rε) : FRε,δε
∞ (g,σ) ∈ L∞(ε, gi)

}
⊂ Sg,ε(gi), sup

g∈K∩Ggi
m

Σ∞(R)

(
Sg,ε(gi)

)
≤ ε, (11.1)

where L∞(ε, gi) :=
{
g ∈ G ν : ∃n such that Γgi ∩ Rzgi

(n, βn(ε, gi), g) * N zgi
(n, βn(ε, gi), g)

}
,

with

βn(ε, gi) := εCin
γ
C−n

γ

i n−Ci log ε−1nγ ,

where, as in (8.79), γ = γν(y) is given by

γν(y) := 1 + log2

[
max

(2ℵ(2ℵ+3)
2ℵ+1 mν(y), 2ℵy

)]
, mν(y) := 1 + ν + (2d− 1)y− d.

Here, we have used mν(y) = 1 + max(ν, 6) + (2d − 1)y − d = max(b, ϑν) and that ϑν = 1 + ν +
(2d− 1)y− d by (9.33) with r = Ry.

Then, let

G̃i :=

{
g ∈ Ggi

∣∣∣ there exists C > 0 such that for all n > 0

Γgi ∩Rzgi
(n, (Cn)−Cn

γ
, g) ⊂ N zgi

(n, (Cn)−Cn
γ
, g)

}
. (11.2)

We claim that G̃ :=
⋃
i G̃i is F -predominant. To see this, fix ε > 0. We claim that for all

g ∈ K, there is an m
Σ∞(R)

-measurable set Sg,ε such that{
σ ∈ Σ∞(Rε) : FRε,δε

∞ (g,σ) ∈ G̃c} ⊂ Sg,ε, m
Σ∞(R)

(Sg,ε) ≤ ε. (11.3)

To obtain (11.3), fix g ∈ K. Then there is i such that g ∈ K∩G
G 3 (gi, rgi) and FRε,δε

∞ (g,σ) ∈ Ggi
for all σ ∈ Σ∞(Rε) (by our choice of εK,2). Now, since for all i and ε > 0 there is C > 0 such

that (Cn)−Cn
γ ≤ βn(ε, gi) for all n, we have

G̃c ∩Ggi ⊂
⋂
s>0

L∞(s, gi) ∩Ggi .
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Therefore,{
σ ∈ Σ∞(Rε) : FRε,δε

∞ (g,σ) ∈ G̃c} ⊂
{
σ ∈ Σ∞(Rε) : FRε,δε

∞ (g,σ) ∈
⋂
s>0

L∞(s, gi) ∩Ggi
}

⊂
{
σ ∈ Σ∞(Rε) : FRε,δε

∞ (g,σ) ∈ L∞(ε, gi) ∩Ggi
}
⊂ Sg,ε(gi).

In particular, (11.3) follows from (11.1).

We next show that if Ω > Ων , we may choose y > 2 such that if g ∈ G̃, and W = {WUi}i is a
family of transition maps for g, then there is CΩ > 0 such that for all t > zgi/2

R
(
t, C

−C
Ω

(t+1)Ω−1
Ω , g

)
⊂ N

(
t, C

−C
Ω

(t+1)Ω−1
Ω , (g,W)

)
. (11.4)

To see (11.4), let g ∈ G̃ and i such that g ∈ G̃i. Let Cg > 0 be such that for all n > 0

Γgi ∩Rzgi

(
n, (Cgn)−Cgn

γ
, g
)
⊂ N zgi

(
n, (Cgn)−Cgn

γ
, g
)
. (11.5)

Suppose that t > zgi/2 and ρ ∈ R(t, (Λ(t+ 1))−Λ(t+1)γ , g) for some Λ > 0. Define

s(ρ) := inf{s ≥ 0 : ϕgs(ρ) ∈ Γgi}, s̃±(ρ) := inf{s ≥ 0 : ϕg±s(ρ) ∈ Γ̃gi}

where Γ̃gi is defined as in (6.2). In what follows, C, c are two positive constants that depend only
on K. Note also that supρ∈S∗M s(ρ) < C injgi(M). Define ρ+ := ϕgs(ρ)(ρ) and observe that there

is a choice of ± such that

d(ρ+, ρt) < C(Λ(t+ 1))−Λ(t+1)γ , ρt := ϕ±s̃±(ϕgt (ρ))(ϕ
g
t (ρ)),

|s(ρ)− s̃±(ϕgt (ρ))| < C(Λ(t+ 1))−Λ(t+1)γ , or |s(ρ) + s̃±(ϕgt (ρ))| < C(Λ(t+ 1))−Λ(t+1)γ .

In particular, by Remark 6.10, there are I and m such that

P(m)
I [g](ρ+) = ρt, |T (m)

I [g](ρ+)− t| < C(Λ(t+ 1))−Λ(t+1)γ ,

and so, choosing Λ > 0 large enough, there is n with 1
4 < t

zgi
− 1

4 < n ≤ t
zgi

+ 3
4 , such that

ρ+ ∈ Γgi ∩Rzgi
(n, (cΛn)−cΛn

γ
, g). Furthermore, choosing Λ large enough, we have cΛ > Cg and

hence, by (11.5),

ρ+ ∈ N zgi
(n, (Cgn)−Cgn

γ
, g).

Now, let v ∈ Tρ(S∗M)g. Then, there is w ∈ RH|ξ|g (ρ) such that

dϕs(ρ)ṽ ∈ Tρ+Γgi , ṽ := w + v.

Therefore, choosing coordinates on Γgi near ρ+ to identify Tρ+Γgi and TρtΓgi , and writing the

identification of tangent spaces as W̃ρt,ρ+ : Tρ+Γgi → TρtΓgi ,

‖(dP(m)
I [g]− W̃ρt,ρ+)dϕgs(ρ)ṽ‖ ≥ (Cgn)−Cgn

γ‖ṽ‖.

In particular,

‖(dϕg−s(ρ)dP
(m)
I [g]dϕgs(ρ) − dϕ

g
−s(ρ)W̃ρt,ρ+dϕ

g
s(ρ))ṽ‖ ≥ c(Cgn)−Cgn

γ‖ṽ‖.
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Now, there is t̃ with |t̃− t| < C(Λ(t+ 1))−Λ(t+1)γ , such that

dϕg−s(ρ)dPI [g](m)dϕgs(ρ) = dϕg
t̃
,

and hence

‖(dϕg
t̃
− dϕg−s(ρ)W̃ρt,ρ+dϕ

g
s(ρ))ṽ‖ ≥ c(Cgn)−Cgn

γ‖ṽ‖.

Applying dϕg
t−t̃ on the left, we have

‖(dϕgt − dϕ
g

t−t̃dϕ
g
−s(ρ)W̃ρt,ρ+dϕ

g
s(ρ))ṽ‖ ≥ c(Cgn)−Cgn

γ‖ṽ‖. (11.6)

Now, the map dϕg
t−t̃dϕ

g
−s(ρ)W̃ρt,ρ+dϕ

g
s(ρ) identifies TρS

∗M/RHp with Tϕgt (ρ)S
∗M/RHp and has

uniformly bounded derivatives in t. SupposeW :=WUk is a transition map such that (ρ, ϕgt (ρ)) ∈
Uk. Then, there is CW > 0

‖Wϕgt (ρ),ρ − dϕ
g

t−t̃dϕ
g
−s(ρ)W̃ρt,ρ+dϕ

g
s(ρ)‖ ≤ CWd(ϕgt (ρ), ρ) ≤ CW (Λ(t+ 1))−Λ(t+1)γ . (11.7)

Hence, letting Λ be large enough, there is CW,g > 0, depending on g and W, such that

‖(dϕgt −Wϕgt (ρ),ρ)ṽ‖ ≥ (CW,g(t+ 1))−CW,g (t+1)γ‖ṽ‖. (11.8)

Next, we claim that

‖(dϕgt −Wϕgt (ρ),ρ)v + RHp‖ ≥ (CW,g(t+ 1))−CW,g (t+1)γ‖v + RHp‖. (11.9)

Note that then (11.9) implies ρ ∈ N (t, (CW,g(t + 1))−CW,g (t+1)γ , g). Thus, increasing Λ again if
necessary, we would conclude that there is CW,g = CW,g(g,W) > 0 such that, for t > zgi/2,

R(t, (CW,g(t+ 1))−CW,g (t+1)γ , g) ⊂ N (t, (CW,g(t+ 1))−CW,g (t+1)γ , g). (11.10)

To prove (11.9) recall the smooth decomposition TρS̃∗M = H (ρ)⊕RHp(ρ) and the fact that, by
Definition (1.3),W preserves this splitting. Therefore, letting v = vH + tHp(ρ) with vH ∈H (ρ),

(dϕgt −Wϕgt (ρ),ρ)v = (dϕgt −Wϕgt (ρ),ρ)ṽ = (dϕgt −Wϕgt (ρ),ρ)vH ∈H (ϕgt (ρ)).

In particular, since H (ρ) is uniformly transverse to Hp(ρ), there is c > 0 such that

‖(dϕgt −Wϕgt (ρ),ρ)v + RHp(ϕ
g
t (ρ))‖ = inf

s∈R
‖(dϕgt −Wϕgt (ρ),ρ)v + sHp(ϕ

g
t (ρ))‖

≥ c‖(dϕgt −Wϕgt (ρ),ρṽ‖.
(11.11)

Next, since v = ṽ + w, with w ∈ RHp, we have

‖ṽ‖ ≥ inf
s∈R
‖v + sHp‖ = ‖v + RHp‖. (11.12)

Combining (11.8), (11.11), and (11.12) implies (11.9).

Finally, to finish the proof of Theorem 1.3, we observe that y 7→ γ(y) is an increasing function
and Ων = γν(2). Therefore, for every Ω > Ων there is y > 2 such that γ(y) < Ω. In particular,
there is CΩ > 0 such that for t > zgi/2,

C−CΩ(t+1)Ω−1
Ω

< (C(t+ 1))−C(t+1)γ ,
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and hence (11.10) implies that (11.4) holds for g ∈ G̃i and t > zgi/2. Thus, since ∪iG̃i is
predominant, Theorem 1.3 follows after recalling that Lemma 6.6 implies that for all i there is
c > 0 such that for g ∈ Gi,

d(ϕgt (ρ), ρ) ≥ c|t|, |t| < zgi .
�

Appendix A. Elementary Control theory for ODEs

Let ℵ ∈ N, R > 0, t? ∈ R, and for 1 ≤ i ≤ ℵ and t ∈ R define

fRi,t?(t) := 1
Rχ( 1

R(t− t?))ei, ei := (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
ℵ−i

)t,

where χ ∈ C∞c ((−2, 2); [0, 1]) with
´
χ = 1.

Lemma A.1 (Observation). Let L ∈ L∞(R;M(ℵ)) and u0 ∈ Rℵ and suppose that u solves

u̇ + L∗u = 0, u(0) = u0.

Then, there are C,R0 > 0 depending on ‖L‖L∞ such that for any t0 ∈ R, 0 < R < R0, and T ∈ R

‖u(T )‖2 ≤ CeC(|T−t?|)
ℵ∑
i=1

|〈u, fRi,t?〉L2
t
|2.

Proof. Note that

〈u, fRi,t?〉 − ui(t0) = 〈u(t0), fRi,t?〉 − ui(t0)−
¨ t

0
L∗(s)u(s)fRi,t?(t)dsdt

= −
¨ t

0
L∗(s)u(s)fRi,t?(t)dsdt.

Then, since there is C > 0 depending only on ‖L∗‖L∞ such that ‖u(s)‖ ≤ C‖u(t0)‖ for |s−t0| ≤ 1,
we obtain for R < 1

2 ,∣∣∣¨ t

0
L∗(s)u(s)fRi,t?(t)dsdt

∣∣∣ ≤ C‖u(t0)‖
ˆ 2R

−2R
‖L∗(s)‖ds ≤ CR‖u(t0)‖‖L∗‖L∞ .

In particular,
∣∣〈u, fRi,t?〉 − ui(t0)

∣∣ ≤ CR‖L∗‖L∞‖u(t0)‖ for R < 1
2 . Therefore,

ℵ∑
i=1

∣∣〈u, fRi,t?〉∣∣2 ≥ ‖u(t0)‖2(
1

2
− CR2‖L∗‖2L∞).

In particular, taking R < 1
2C‖L∗‖L∞

, we have

ℵ∑
i=1

∣∣〈u, fRi,t?〉∣∣2 ≥ 1

4
‖u(t0)‖2.

The claim now follows from standard estimates on first order ODE’s. �
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Lemma A.2 (Control). Let L ∈ L∞(R;M(ℵ)). There are C,R0 > 0, depending only on ‖L‖L∞,
such that for all 0 < R < R0, v ∈ Rℵ, t? > 2R and T > t? + 2R, there is a ∈ Rℵ such that the
solution, w to

ẇ − Lw =
ℵ∑

i=1

aif
R
i,t? , w(0) = 0 (A.1)

satisfies w(T ) = v and, moreover, ‖a‖ ≤ CeC|T−t?|‖v‖.

Proof. Define a map K : Rℵ → Rℵ by

K(u0) =
∑
i

ˆ
〈u, fRi,t?〉(s)dsei

where u solves

u̇ + L∗u = 0, u(0) = u0. (A.2)

Next, fix v ∈ Rℵ and define the linear map `v : K(Rℵ)→ R by

`v(K(u0)) = 〈u(T ),v〉

where again u is as in (A.2). Then, by Lemma A.1, there are R0, C > 0 such that for 0 < R < R0,

‖u(T )‖ ≤ CeC|T−t?|‖K(u0)‖.

In particular, `v is a bounded linear function on the subspace K(Rℵ) with ‖`v‖ ≤ CeC|T−t?|‖v‖.
Thus, by the Hahn–Banach theorem, we can extend ` to a linear functional on Rℵ with the same
norm and there is a ∈ Rℵ with

‖a‖ ≤ CeC|T−t?|‖v‖

such that `(b) = 〈b,a〉, for all b ∈ Rℵ. Now, suppose that w solves

ẇ − Lw =
∑

i

aif
R
i,t? , w(T) = v.

Then, integrating by parts, we have for u solving (A.2),

ˆ T

0
−〈
∑
i

aif
R
i,t? ,u〉(s)ds =

ˆ T

0
〈w(s), u̇ + L∗u〉(s)ds+ 〈w(0),u(0)〉 − 〈w(T ),u(T )〉

= 〈w(0),u0〉 − 〈v,u(T )〉.

But, by construction of a, and that T > t? + 2R > 4R,〈∑
i

ˆ
〈u, fRi,t?〉(s)ds ei,a

〉
= 〈u(T ),v〉.

In particular, 〈w(0),u0〉 = 0 for all u0 ∈ Rℵ and hence w(0) = 0 and the lemma is proved. �
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