SEMICLASSICAL RESOLVENT BOUNDS FOR LONG RANGE LIPSCHITZ POTENTIALS

JEFFREY GALKOWSKI AND JACOB SHAPIRO

Abstract. We give an elementary proof of weighted resolvent estimates for the semiclassical Schrödinger operator \(-\hbar^2\Delta + V(x) - E\) in dimension \(n \neq 2\), where \(\hbar, E > 0\). The potential is real-valued and \(V\) and \(\partial_r V\) exhibit long range decay. The resolvent norm grows exponentially in \(\hbar^{-1}\), but near infinity it grows linearly. When \(V\) is compactly supported, we obtain linear growth if the resolvent is multiplied by weights supported outside a ball of radius \(CE^{-1/2}\) for some \(C > 0\). This \(E\)-dependence is sharp and answers a question of Datchev and Jin.

1. Introduction and Statement of Result

Let \(\Delta := \sum_{i=1}^n \partial_i^2 \leq 0\) be the Laplacian on \(\mathbb{R}^n\), \(n \neq 2\). We consider the semiclassical Schrödinger operator of the form

\[
P = P(h) := -\hbar^2 \Delta + V : L^2_2(\mathbb{R}^n) \to L^2_2(\mathbb{R}^n), \quad h > 0.
\]

We use \((r, \theta) = (|x|, x/|x|) \in (0, \infty) \times \mathbb{S}^{n-1}\) to denote polar coordinates on \(\mathbb{R}^n \setminus \{0\}\). We suppose the potential satisfies \(V \in L^\infty(\mathbb{R}^n; \mathbb{R})\) with

\[
V(x) \leq p(|x|)
\]

for some function \(p(r) > 0\) decreasing to zero as \(r \to \infty\). We also suppose there exist \(c_0 > 0\) and a function \(0 < m(r) \leq 1\) so that

\[
\lim_{r \to \infty} m(r) = 0, \quad (r + 1)^{-1} m(r) \in L^1(0, \infty)
\]

and

\[
\partial_r V(x) \leq c_0 (r + 1)^{-1} m(r).
\]

The prototypes we have in mind for (1.2) are the long range cases

\[
m = \log^{-1-\rho}(r + e), \quad m = (r + 1)^{-\rho}, \quad \rho > 0.
\]

By the Kato-Rellich Theorem, the operator \(P\) is self-adjoint with respect to the domain \(H^2(\mathbb{R}^n)\). Therefore, the resolvent \((P - z)^{-1}\) is bounded \(L^2_2(\mathbb{R}^n) \to L^2_2(\mathbb{R}^n)\) for all \(z \in \mathbb{C} \setminus \mathbb{R}\). For \(E > 0\) and \(s > 1/2\) fixed, and \(h, \varepsilon > 0\), our goal is to establish \(h\)-dependent upper bounds on the weighted resolvent norms

\[
g^+_{\varepsilon}(h, \varepsilon) := \|\langle x \rangle^{-s} (P(h) - E \pm i\varepsilon)^{-1} \langle x \rangle^{-s} \|_{L^2_2(\mathbb{R}^n) \to L^2_2(\mathbb{R}^n)}, \quad \rho > 0.
\]

\[
g^\pm_{\varepsilon}(h, \rho, \varepsilon) := \|\langle x \rangle^{-s} 1_{|x| \geq M} (P(h) - E \pm i\varepsilon)^{-1} 1_{|x| \geq M} \langle x \rangle^{-s} \|_{L^2_2(\mathbb{R}^n) \to L^2_2(\mathbb{R}^n)},
\]

Here, \(\langle x \rangle = \langle r \rangle := (1 + r^2)^{1/2}\).

In our main theorem, we give estimates on both (1.4) and (1.5) and show that for \(V\) compactly supported there are constants \(C_1, h_0 > 0\), such that (1.5) grows linearly in \(h^{-1}\), provided \(M \geq C_1 E^{-1/2}, \varepsilon > 0\) and \(h \in (0, h_0]\).

Theorem. Fix \(E > 0\) and \(s > 1/2\). Suppose \(V \in L^\infty(\mathbb{R}^n; \mathbb{R})\) satisfies (1.1) and (1.2). There exist \(M = M(E, p, c_0, m)\), \(C_2 = C_2(E, s, p, c_0, m)\), \(C_3 = C_3(E, s, p, m) > 0\) and \(h_0 \in (0, 1]\) so that, for all \(\varepsilon > 0\) and \(h \in (0, h_0]\),

\[
\|\langle x \rangle^{-s} (P(h) - E \pm i\varepsilon)^{-1} \langle x \rangle^{-s} \|_{L^2_2(\mathbb{R}^n) \to L^2_2(\mathbb{R}^n)} \leq C_3 \frac{1}{h},
\]
and

$$\|\langle x \rangle^{-s}1_{|x| \geq M}(P(h) - E + i \varepsilon)^{-1}1_{|x| \geq M}(\langle x \rangle^{-s})\|_{L^2(\mathbb{R}^n) \rightarrow L^2(\mathbb{R}^n)} \leq C_2/h. \quad (1.7)$$

Moreover, if supp $V \subseteq B(0, R_0)$, then $M \leq C_1(p, c_0, R_0)E^{-1/2}$.

The main novelty of the Theorem is in the compactly supported case, where we have that, for (1.7) to hold, M need not be larger than a constant times $E^{-1/2}$. This seems to be the first bound of the form $g^\pm_s(h, M, \varepsilon) \leq Ch^{-1}$ for which M depends explicitly on E. Moreover, owing to a construction of Datchev and Jin [DaJi20, Theorem 1], this E-dependence of M is optimal. In particular, if $V \in C^\infty_0(\mathbb{R}^n; \mathbb{R})$, $n \geq 2$ is radial and $\min(V) < 0$, then there is $M \leq cE^{-1/2}$ with $g^\pm_s(h, M, \varepsilon) \geq e^{C/h}$.

Cardoso and Vodev [CaVo02], refining earlier work of Burq [Bu98], were the first to prove an exterior estimate of the form (1.7). They did so for smooth V on a large class of infinite volume Riemannian manifolds. Exterior estimates were subsequently established under a wide range of regularity and geometric conditions [Da14, Vo14, RoTa15, DadeH16, Sh19].

For the semiclassical Schrödinger operator on \mathbb{R}^n, the conditions (1.1) and (1.2) on V appear to be the most general yet under which it is known that (1.6) and (1.7) hold. Burq [Bu98] was the first to show $g^\pm_s \leq e^{Ch^{-1}}$ for compactly supported perturbations of the Laplacian on \mathbb{R}^n. This bound was refined and extended many times [Vo00, Bu02, Sj02, CaVo02, Da14, Sh19, Vo20b] and is sharp in general, see [DDZ15].

Stronger bounds on g^\pm_s are known when V is smooth and conditions are imposed on the classical flow $\Phi(t) = \exp t(2\xi_\partial_x - \partial_x V(x)\partial_x)$ (note that $\Phi(t)$ may be undefined in our case). The key dynamical object is the trapped set $\mathcal{K}(E)$ at energy $E > 0$, defined as the set of $(x, \xi) \in T^\ast \mathbb{R}^n$ such that $|\xi|^2 + V(x) = E$ and $|\Phi(t)(x, \xi)|$ is bounded as $|t| \rightarrow \infty$. If $\mathcal{K}(E) = \emptyset$, that is, if E is nontrapping, Robert and Tamura [RoTa87] showed $g^\pm_s \leq Ch^{-1}$. We may think of (1.7) as a low regularity analog; it says that applying cutoffs supported far away from zero removes the losses from (1.6) due to trapping.

Resolvent estimates such as (1.6) and (1.7) are useful for several applications. Burq [Bu98, Bu02] used the exponential bound to show logarithmic local energy decay for solutions to the wave equation. This technique was subsequently used in many settings [Be03, CaVo04, Mo16, Sh18, Ga19]. As shown in section XIII.7 of [ReSi78], the exterior resolvent bound is related to exterior smoothing and Strichartz estimates for Schrödinger propagators, see also [BoTz07, MMT08] and Section 7.1 of [DyZw19]. Furthermore, Christiansen [Ch17] used an estimate like (1.7) to find a lower bound on the resonance counting function for compactly supported perturbations on the Laplacian on even-dimensional Riemannian manifolds.

To prove the Theorem, we adapt the Carleman estimate from [GaSh20], which was used to prove a resolvent estimate for L^∞ potentials. The key ingredients remain a weight $w(r)$ and phase $\varphi(r)$ that obey a crucial lower bound, see (3.7) below. The main technical innovation is that, by leveraging the additional regularity of V, we can decrease φ^\prime to zero (outside of a compact set) in an explicit, E-dependent fashion. We then obtain (1.7) for any M such that $1_{|x| \geq M}$ is supported in the set where φ is constant.

If we do not assume anything about the derivatives of V, for instance, if $V \in L^\infty_{\text{comp}}(\mathbb{R}_p; \mathbb{R})$, then the best known bound in general is $g^\pm_s \leq \exp(Ch^{-4/3}\log(h^{-1}))$ [KIVo19, Sh20], although Vodev [Vo20c] showed this can be improved to $g^\pm_s \leq \exp(Ch^{-4/3})$ if V is short range and radial. See also [Vo19a, Vo20b, Vo20a, GaSh20]. On the other hand, it is not known whether an exterior estimate like (1.7) holds for L^∞ potentials, except in dimension one [DaSh20], and there $1_{|x| \geq M}$ and V need only have disjoint supports.

We remark that the Theorem should hold in dimension two, too, provided the left side of (1.2) is replaced by $|\nabla V|$. The extra difficulty in dimension two comes from the effective potential term,
see (2.1) below, having a negative singularity at \(r = 0 \). This necessitates a stronger assumption on the derivatives of \(V \), see [Sh19] for more details.

For more background on semiclassical resolvent estimates, we refer the reader to the introductions of [DaJi20, GaSh20].

Acknowledgements. The authors would like to thank Kiril Datchev for helpful comments and for reading an early version of this article. J. Shapiro was supported in part by the Australian Research Council through grant DP180100589.

2. Notation and Preliminary Calculations

Throughout the paper, we use “prime” notation to indicate differentiation with respect to the radial variable \(r = |x| \), e.g., \(u' = \partial_r u \). As in most previous proofs of resolvent estimates for low regularity potentials, the backbone of the proof is a Carleman estimate. We start from the identities

\[
\begin{align*}
 r^{\frac{n-1}{2}} (-\Delta)^{\frac{n-1}{4}} &= -\partial_r^2 + \Lambda, \\
 \Lambda &:= \frac{1}{r^2} \left(-\Delta_{S^{n-1}} + \frac{(n-1)(n-3)}{4} \right) \geq 0, \\
\end{align*}
\]

where \(\Delta_{S^{n-1}} \) denotes the negative Laplace-Beltrami operator on \(S^{n-1} \). Then, for a phase \(\varphi \) that we construct below, we form the conjugated operator

\[
P_{\varphi}^\pm (h) := e^{\varphi/h} r^{\frac{n-1}{2}} (P(h) - E \pm i\varepsilon) r^{-\frac{n-1}{2}} e^{-\varphi/h} \\
= -h^2 \partial_r^2 + 2h \varphi' \partial_r + h^2 \Lambda + V - (\varphi')^2 + h \varphi'' - E \pm i\varepsilon.
\]

Let \(u \in e^{\varphi/h} r^{(n-1)/2} C^\infty_0 (\mathbb{R}^n) \), define a spherical energy functional \(F[u](r) \),

\[
F(r) = F[u](r) := \| hu'(r, \cdot) \|^2 - \langle (h^2 \Lambda + V - (\varphi')^2 - E) u(r, \cdot), u(r, \cdot) \rangle,
\]

where \(\| \cdot \| \) and \(\langle \cdot, \cdot \rangle \) denote the norm and inner product on \(L^2(S^{n-1}_0) \), respectively (or in the \(n = 1 \) case, we take (2.3) to simply be a pointwise energy). It is easy to compute (see e.g. [Da14, Sh19, Sh20, GaSh20]) that for \(w \in C^0 \) and piecewise \(C^1 \), \((wF)'\), as a distribution on \((0, \infty)\), is given by

\[
(wF)' = -2w \Re \langle P_{\varphi}^\pm (h) u, u' \rangle + 2\varepsilon w \Im \langle u, u' \rangle + (2wr^{-1} - w')(h^2 \Lambda u, u) \\
+ (4h^{-1}(w' + w')\|hu'\|^2 + (w(E + (\varphi')^2 - V))'\|u\|^2 + 2w \Re \langle h\varphi'' u, u' \rangle.
\]

We will construct \(w \) such that

\[
2wr^{-1} - w' \geq 0,
\]

and use (2.1) to control the term involving \(\Lambda \). Using (2.5) together with \(2ab \geq -(\gamma a^2 + \gamma^{-1}b^2) \) for \(\gamma > 0 \), we find

\[
wF + wF' \geq -\frac{3w^2}{h^2 w'} \|P_{\varphi}^\pm (h) u\|^2 + 2\varepsilon w \Im \langle u, u' \rangle + \frac{1}{3} (w' + 4h^{-1} \varphi') \|hu'\|^2 \\
+ (w(E + (\varphi')^2 - V))'\|u\|^2 - \frac{3(w\varphi'')^2}{w' + 4h^{-1} \varphi' w} \|u\|^2.
\]

To complete the proof of the Carleman estimate, we seek to build \(w \) and \(\varphi \) so that the second line of (2.6) has a good lower bound. Indeed, putting

\[
A(r) := (w(E + (\varphi')^2 - V))', \quad B(r) := \frac{(w\varphi'')^2}{w' + 4h^{-1} \varphi' w},
\]

it suffices for \(w \) and \(\varphi \) to satisfy, for \(K > 0 \) fixed,

\[
A(r) - KB(r) \geq \frac{E}{2} w', \quad 0 < h \ll 1,
\]

along with a few other properties (see (3.3) through (3.6)).
In order to construct the weight and phase functions for our Carleman estimates, we adapt the method in [GaSh20]. Whenever $|w'|, |\varphi'| > 0$, put
\[
\Phi := \frac{\varphi''}{\varphi} = (\log \varphi)' , \quad W := \frac{w}{w'} = \frac{1}{(\log w)'},
\] (2.9)

Then, as in [GaSh20, (2.10)],
\[
A(r) - KB(r) \geq w \left[E + (\varphi')^2 (1 + 2W \Phi - KW \Phi^2 \min(W, \frac{h}{1+2s})) - V - WV' \right].
\] (2.10)

So when $|w'|, |\varphi'| > 0$, to show (2.8), it is enough to bound the bracketed expression in (2.10) from below by $E/2$.

3. Construction of the phase and weight functions

Throughout this section, we assume $E > 0$, $s > 1/2$ are fixed and suppose V satisfies (1.1) and (1.2). Using (1.1) and (1.2), let
\[
b := \max \left(\sup \{ r \mid V(r) + (r + 1)\partial_r V(r) \geq \frac{E}{4} \}, 1 \right)
\]
so that b is independent of h and
\[
V + (r + 1)\partial_r V \leq (|V| + (r + 1)\partial_r V)1_{0 < r < M} + E/4 1_{b > r}.
\] (3.1)

(Noted that b can be chosen to depend only on p, m, c_0, and E, and that $b \leq R_0$ provided $\text{supp} V \subseteq B(0, R_0)$.) Additionally, let
\[
M > a \geq b, \quad \tau_0 \geq 1,
\]
be parameters, independent of h, to be specified in the proof of Lemma 3.1 below.

Let $\omega \in C_0^\infty((-3/4, 3/4); [0, 1])$ with $\omega = 1$ near $[-1/2, 1/2]$. The weight w and phase φ, which will be shown to satisfy (2.8), are functions of the radial variable $r = |x|$ only, and are defined by
\[
\hat{m}(r) := \min \left(\frac{E}{2c_0} m^{-1}(r), (r + 1)^{2s-1} \right),
\] (3.2)
\[
w(0) = 0, \quad w'(0) = 1, \quad \frac{w}{w'} = W := \begin{cases}
\frac{r(1+\omega(r))}{r+1} & 0 < r < M \\
\frac{r+1}{2} \hat{m}(r) & r \geq M
\end{cases},
\] (3.3)
\[
\varphi(0) = 0, \quad \varphi'(0) = \tau_0, \quad \frac{\varphi''}{\varphi} = \Phi := \begin{cases}
\frac{-1}{r+1} & 0 < r < a \\
\frac{-1}{M-r} & a \leq r < M \\
0 & r \geq M
\end{cases}, \quad \varphi' = 0 \quad r \geq M.
\] (3.4)

Short computations yield,
\[
w = \begin{cases}
\frac{r}{2} e^{\int_{r/2}^{r} 2 (1/(1+\omega(s)))^2 ds} & 0 < r < 1/2 \\
w(M) e^{\int_{r}^{r} 2 (1/(1+\omega(s)))^2 ds} & r \geq M
\end{cases}, \quad w' = \begin{cases}
1 & 0 < r < 1/2 \\
\frac{1}{r(1+\omega(r))} w & 1/2 < r < M \\
\frac{w(M) e^{\int_{r}^{r} 2 (1/(1+\omega(s)))^2 ds}}{(r+1)/2} & r \geq M
\end{cases}
\] (3.5)
\[
\varphi' = \begin{cases}
\varphi'(a) \left(\frac{M-a}{M-a} \right)^2 & 0 < r < a \\
\varphi'(a) \left(\frac{M-a}{M-a} \right)^2 & a \leq r < M \\
0 & r \geq M
\end{cases}.
\] (3.6)

We now prove the crucial lower bound involving E, w and φ that is needed to prove the Carleman estimate.
Lemma 3.1. Fix $K > 0$ and let V satisfy (1.1) and (1.2). Then, using the notation of (2.7) and (3.2) through (3.6), there exist suitable M, a and τ_0 so that

$$A - KB \geq \frac{E}{2} w', \quad h \in (0, h_0], \ r \neq a, M. \quad (3.7)$$

Once Lemma 3.1 is proved, we can use the standard argument found, e.g., in [GaSh20, Sections 5.6] to prove the following Carleman estimate.

Lemma 3.2. There are $C, h_0 > 0$ independent of h and ε so that

$$\| (x)^{-s} e^{\varphi / h} v \|_{L^2}^2 \leq \frac{C}{h^2} \| (x)^{s} e^{\varphi / h} (P(h) - E \pm i\varepsilon) v \|_{L^2}^2 + \frac{C \varepsilon}{h} \| e^{\varphi / h} v \|_{L^2}^2, \quad (3.8)$$

for all $v \in C_0^\infty(\mathbb{R}^n)$, $\varepsilon \geq 0$ and $h \in (0, h_0]$.

From here, (1.6) and (1.7) follow from the last proof of [Da14, Section 2].

Proof of Lemma 3.1. Case $0 < r < a$:

First, recall (2.10):

$$A(r) - KB(r) \geq w' \left[E + \frac{(\varphi')^2 (1 + 2 W \Phi - K W \Phi^2 \min(W, \frac{h}{4 \varphi'}))}{4} - V - W V' \right].$$

By (3.3) and (3.4),

$$4 + 2 W \Phi \geq \frac{1}{4(r + 1)}, \quad 0 < r < a.$$

Also by (3.3), $|W| \leq r$ when $0 < r < a$, hence appealing to (3.1),

$$V + W V' \leq (|V| + |(r + 1) \partial_r V|) 1_{\leq b} + E \frac{1}{4} 1_{> b}.$$

Furthermore, using $|W| \leq r$ again, by (3.4) $\Phi^2 = (r + 1)^{-2}$, and by (3.6) $\varphi' = \tau_0 (r + 1)^{-1}$,

$$(\varphi')^2 W \Phi^2 \min(W, \frac{h}{4 \varphi'}) \leq \frac{h \tau_0}{(r + 1)^3}, \quad 0 < r < a.$$

From these estimates, and using once more that $\varphi' = \tau_0 (r + 1)^{-1}$, we find,

$$A(r) - KB(r) \geq w' \left[E + \frac{(\varphi')^2 (1 + 2 W \Phi - K h \tau_0 (r + 1)^3 - |V| + |(r + 1) \partial_r V|) 1_{\leq b} - E \frac{1}{4} 1_{> b}}{4} \right].$$

We now choose

$$\tau_0 := 2 \sup_{0 \leq r \leq b} \frac{r}{(r + 1)^{3/2} \sqrt{|V| + (r + 1)|\partial_r V|}},$$

so that the second term in line two of (3.9) is nonnegative. We then take $h_0 = h_0(K, \tau_0, E) \in (0, 1]$ sufficiently small to achieve

$$A - KB \geq \frac{E}{2} w', \quad h \in (0, h_0], \ 0 < r < a. \quad (3.10)$$

Case $a < r < M$:

As in the previous case, we begin from (2.10). We use (3.3), (3.4) and (3.6) to see

$$(\varphi')^2 (1 + 2 W \Phi) = (\varphi'(a))^2 \left(\frac{M - r}{M - a} \right)^4 \left(1 - \frac{2r}{M - r} \right).$$

Next, we use $a \geq b$, $|W| \leq r/2$ and (3.1) to obtain

$$V + W V' \leq E \frac{1}{4} 1_{> b}.$$
Then, again by (3.3), (3.4), and (3.6),

$$(\varphi')^2 W \Phi^2 \min(W, \frac{\hbar}{4\varphi}) \leq \frac{hr\varphi'(a)}{2(M-a)^2}.$$

Combining these bounds with (2.10) and the formula (3.6) for $\varphi'(a)$, we have

$$A(r) - KB(r) \geq w' \left[\frac{3E}{4} + (\varphi'(a))^2 \frac{M-r}{M-a} \right] (1 - \frac{2r}{M-r}) - 2^{-1} K h \varphi'(a) \frac{1}{(M-a)^2}.$$

(3.11)

Now, choose $M = 2a$ and estimate, for $a < r < M$,

$$2r (\frac{M-r}{M-a})^3 \leq 4, \quad \frac{r}{(M-a)^2} \leq \frac{2}{a}.$$

Therefore, we choose

$$a = \max(\sqrt{20} \tau_0 E^{1/2}, b)$$

and $h_0 = K^{-1}$, ensuring that the bracketed terms in the second line of (3.11) are bounded from below by $E/2$. This yields

$$A - KB \geq \frac{E}{2} w', \quad h \in (0, h_0), \ a < r < M. \quad (3.12)$$

Case $r > M$:

In this final case we have $\varphi' = 0$, so appealing to (2.7), we have

$$A - KB = w'[E - V - W V'].$$

By (3.1), $V \leq \frac{E}{4}$. By (3.2) and (3.3), $W V' \leq c_0 \tilde{m}/2 \leq E/4$. Hence,

$$A - KB = w'[E - V - W V'] \geq w' \left[\frac{3E}{4} - \frac{c_0 \tilde{m}}{2} \right] \geq \frac{E}{2} w', \quad h \in (0, 1), \ r > M.$$

This completes the proof of the Lemma.

\[\square\]

References

[DadeH16] K. Datchev and M. V. de Hoop. Iterative reconstruction of the wavespeed for the wave equation with bounded frequency boundary data. *Inverse Probl.* 32(2) (2016), 025008

Department of Mathematics, University College London, London, UK
Email address: j.galkowski@ucl.ac.uk

Department of Mathematics, University of Dayton, Dayton, OH 45469-2316
Email address: jshapiro1@udayton.edu