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ABsTrACT. We consider a wide variety of scattering problems including scattering by Dirichlet,
Neumann, and penetrable obstacles. We show that for any fixed perfectly-matched-layer (PML)
width and a steep-enough scaling angle, the PML solution is exponentially close, both in fre-
quency and the tangent of the scaling angle, to the true scattering solution. Moreover, for a
fixed scaling angle and large enough PML width, the PML solution is exponentially close to the
true scattering solution in both frequency and the PML width. In fact, the exponential bound
holds with rate of decay c(wtan6 — C)k where w is the PML width and 6 is the scaling angle.
More generally, the results of the paper hold in the framework of black-box scattering under the
assumption of an exponential bound on the norm of the cutoff resolvent, thus including prob-
lems with strong trapping. These are the first results on the exponential accuracy of PML at
high-frequency with non-trivial scatterers.

1. INTRODUCTION

1.1. Context and background. Since the work of Berenger [Ber94|, perfectly matched layers
(PMLs) have become a standard tool in the numerical simulation of frequency-domain wave prob-
lems such as the Helmholtz equation. This method approximates the solution of a scattering
problem in an unbounded domain by making a complex change of variables in a layer away from
the region of interest and truncating the problem with a Dirichlet condition.

It is well known that, for fixed frequency, the error in the truncation decreases exponentially
with the width of the PML; see [LS98, Theorem 2.1], [LS01, Theorem A], [HSZ03, Theorem 5.8],
[BP07, Theorem 3.4]. However these error bounds are not explicit in the frequency.

The only frequency-explicit error bounds on the accuracy of PML obtained up till now are for
the model problem of no scatterer. In this case, the error is known to decrease exponentially in the
width of the PML, the tangent of the scaling angle, and the frequency; this was proved in [CX13,
Lemma 3.4] (for d = 2) and [LW19, Theorem 3.7] (for d = 2, 3) using the fact that the solution of
this problem can be written explicitly.

In this paper, we consider a wide variety of scattering problems, including scattering by Dirichlet,
Neumann, and penetrable obstacles in any dimension, and including problems with strong trapping.
We prove that, provided that the PML change of variables is C?, the error decreases exponentially
in frequency, the PML width, and the scaling angle with a rate that, at least in one dimension, is
sharp.

1.2. Main results applied to plane-wave scattering by an impenetrable obstacle. Let
Q_ C R? be bounded and open with Lipschitz boundary I'_ := 9Q_ and connected open comple-
ment, 0, := R?\ Q_. Truncation by a perfectly matched layer (PML) is widely used to compute
approximations to the exterior Helmholtz problem

@) (~A —EHu® =01in Q4 , Bu® = —Bexp(ikz - a) for z € T_,

1.1 _
(0, — ik)u® = 0(1“%) as r:=|z| = oo.
Here, B is an operator on the boundary giving either the Dirichlet (sound-soft) condition, u — u|p_
or Neumann (sound-hard) condition u — (d,u)|pr_, and v(z) is the outward unit normal to 2_.
Physically, u® corresponds to the scattered wave generated when the plane wave exp(ikx - a) hits
the obstacle Q_.
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FIGURE 1.1. The diagram shows the obstacle, _, the ball of radius Ry (outside
of which the scaling begins), the ball of radius Ry, and Qi 4 (shaded in the
hatched lines) where the domain exterior to {2_ is truncated.

Let Rp(k) denote the solution operator for (1.1) (see Proposition 2.1 for the precise definition),
and let y € C°(R?) with y = 1 in a neighbourhood of the convex hull of Q_. We define the
exponential rate of growth for the solution operator through a subset J C R that is unbounded
above:

. 1
(1.2) AP, J) := hlrensup Elog IXRp(K)x|lL2— L2
— 00
keJ

We write A(P) for A(P,R). If T'_ is C*° then A(P) < oo. If, in addition, I'_ is nontrapping, then
A(P) = 0. Finally, if I'_ is only Lipschitz, then for all 6 > 0 there is a set J C R with R\ J| <46
such that A(P,J) = 0; see §1.3 and §2.1 for details and references.

We now describe the geometric set-up for the PML truncation; see Figure 1.1 for a schematic.
Let Ry > R; > 0, such that Q_ € B(0, Ry). Next, let Ry > Ry and Q4 C R? be a bounded open
subset with B(0, Ry;) C Q. Finally, let Qg 4 := Qi N Q4 T3 = 94y, and 0 < 0 < 7/2. The
PML method replaces (1.1) by the following problem

(1.3) (—Ag — kv =01in Qy o, Bv® = —Bexp(ikz-a) forx € T_, v¥ =0 for x € T,.

Here, —Ay is a second order differential operator that is given in spherical coordinates (r,w) €
[0,00) x S4=1 by

1 2 d—1 1

——0,) + - - O + - AVRR

L+ifg(r) ) (r+ifo(r))(1+ifg(r)) (r+ifo(r))?

with A,, the surface Laplacian on S9! and fq(r) € C3([0,00);R) given by fa(r) = f(r) tan6 for
some f satisfying

(1.5) {fr)=0}={f'(r =0t ={r <R}, f(r)=0, f(r)=ronr>Rs.

(1.4) Ay = (

We emphasize that Ry > R; can be arbitrarily large and therefore, given any bounded interval
[0, R] and any function g € C3([0, R]) satisfying

(1.6) {g() =0} ={g' (=0t ={r<Ri}, ¢'(r) 20,

our results hold for an f with f| g = g. A concrete example of a g(r) satisfying the condi-
tions (1.6) is the piecewise degree-three polynomial

(1.7) g(r) = (r = R1)’1[r, o0 (r).

In practice, one computes on truncation domains with bounded radius, and our results therefore
cover this situation with any scaling function f € C? satisfying (1.6) (with g replaced by f).

Remark 1.1 (Link with notation used in the numerical-analysis literature). In (1.3)-(1.5) the PML
problem is written using notation from the method of complex scaling (see, e.g., [DZ19, §4.5]). In
the numerical-analysis literature on PML, the scaled variable is often written as r(1 + io(r)) with
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a(r) = og for r sufficiently large, see, e.g., [HSZ03, §4]|, [BP07, §2]|. To convert from our notation,
set a(r) = fo(r)/r and g = tané.

The following two functions appear in our error estimate;

(18) By(r) = {inft?o [ (4 il )1~ e )| 422
fé(r)a d= 1’
Ry
1.9 0 P,J,Rr = 0 : b d _AP,J )
(1.9) o or) Sup{ /R1 o(r) dr < A( )}

Figure 1.2 plots ®y(r) (for d > 2) and its integral for f(r) given by (1.7).

Theorem 1.2. Let T'_ be Lipschitz and J C R unbounded above with A(P,J) < oco. Then for all
n,e > 0 there are C,C’, ko > 0 such that for all Ry, > Ry + ¢, B(0, Ryy) C Qi € R? with Lipschitz
boundary, 0o(P,J,Ry) + € < 0 < 7/2—¢, k > ko with k € J, a € R?, u¥ solving (1.1), and v°
solving (1.3)

S _ .S Ry
HZ‘ ’l; HHl(B(O,Rl)\Q_) < Cexp <k((277)/ .::[)0(7,.)(17,7:))A(-P7 J)))7
lu® + el L2 (mo, R0 ) Ry

(1.10)
, Hus - USHHl(B(O,R1)\Q—)

HuS + eikm'a”LQ(B(O,Rl)\Q_) .

[u® = 0™ g Bo.RNG) <

Observe that Theorem 1.2 bounds both the absolute and the relative error in the PML approxi-
mation of the total field u® + e”**¢. Moreover, when d = 1, explicit calculations show that our
estimate is nearly optimal in the sense that the factor 2 — n multiplying [ Ifl " ®y(r)dr in (1.10)
cannot be replaced by any number larger than 2.

To better understand the estimate (1.10), we record five properties of the function ®¢(r); note
that Properties (1), (3) and (4) are illustrated in the right-hand plots of Figures 1.2 and 1.3.

Lemma 1.3.
(1) For all 6 > 0, there is c5 > 0 such that ®g(r) > cstand onr > Ry + 9, 0 > 6.
(2) ®o(r) = fo(r) if and only if
r? 2r
1.11 tan® 6 > — :
— SRIGERNEGTO

(3) If f(r) =r, f'(r) =1, then ®o(r) = fy(r).
(4) For all § > 0, there is 05 < 7/2 such that for 6 > 05, ®g(r) = fj(r) onr > Ry + 0,
(5) The map (r,0) — Po(r) is continuous for (r,0) € [0,00) x (0,7/2).

Point (1) in Lemma 1.3 implies that, for Ry, > Ry + 9,

Ryr
(1.12) — / (I)g(’/’) dr < —Cg(Rtr — R1 — 5) tan 6.
Ry
Points (1) and (3) in Lemma 1.3 imply that, for Ry, > Ra,
Ryx
(1.13) - / Oy (r)dr < —cs(R2 — Ry — d)tanf — (Ryy — Ra)tand < —(Ry, — R2) tan 0;
Ry

Point (4) in Lemma 1.3 implies that for all § > 0 there is 5 < /2 such that for 6 > 65,

Ryr
(1.14) - / ®g(r)dr < —(f(Ru) — f(R1 +6)) tan 6.

R
By (1.12), for Ry > Ry + 6, the right-hand side of (1.10) is less than or equal to

Cexp ( —k((2—n)cs(Rey — Ry — 0) tan§ — 3A(P, J)))

for some ¢s > 0; analogous bounds follow using (1.13) and (1.14). These bounds show that the
error between u® and v° decreases exponentially in the frequency, the PML width, and the tangent
of the scaling angle.
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FIGURE 1.2. Plots of f(r) with f|j ¢ given by (1.7), f'(r)
and f; g (r) dr for Ry = 3.
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FIGure 1.3. Plots of f(r) given by (1.15), f'(r)
tan@qu)O r)dr for Ry =3 and Ry = 5.

Dy(r) (for d > 2), and

_1
> tan6

An example f that satisfies (1.5) is the piecewise degree-eight polynomial

(1.15) flr) = r(/r (t — R1)*(Ra — )1, Ry () dt> </R2 (t—R1)*(Ry —t)3 dt> _1;

Rl Rl
see [BP07, §2]|. See Figure 1.3 for plots of ®y(r) and its integral in this case.

1.3. The main results for black-box scattering. We now describe our results for black-box
operators, namely, operators that are equal to the Laplacian outside a ball and are equal to some
self-adjoint operator inside the ball (see §2 for a careful definition of these operators). Black-
box operators (a.k.a. black-box Hamiltonians) include examples such as scattering by Dirichlet,
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Neumann, and penetrable obstacles, and scattering by inhomogeneous media. Let Ry > 0 and
P : D — H be a black-box operator equal to the Laplacian outside B(0, Ry). Let x € C°(RY)
with x =1 on B(0, Ry). Then, by [DZ19, Theorem 4.4] (see Proposition 2.1), the cutoff resolvent

X(P—=X)"'x:H — D, —Z <Arg(\) < 3,
is meromorphic with finite rank poles. Let Rp(\) := (P — \?)~!
The analogue of (1.2) in the black box setting is

(1.16) A(P, J) = limsup logllxRP( X[#—n € [0, 0.
T

Many black-box Hamiltonians satisfy A(P) < co. They include scattering by Dirichlet, Neu-
mann, and penetrable obstacles with smooth boundaries, and scattering by inhomogeneous media
with smooth wavespeeds (see §2.1 for details). In addition, for all black-box Hamiltonians satisfy-
ing a polynomial bound on the number of eigenvalues of the reference operator (see, e.g., [DZ19,
Equation 4.3.10]) and all § > 0, there is a set J C R with |R\ J| < ¢ such that A(P,J) = 0; see
[LSW20, Theorem 1.1] or (under an additional assumption about how close the resonances can be
to the real axis) [Ste01, Proposition 3].

Let Ry > Ry > Ry and €, bounded and open with Lipschitz boundary such that B(0, Rt,) C
Oy, and define 0y(P, J, Ry;) as in (1.9). We define the complex-scaled operator Py corresponding
to a black-box Hamiltonian as in (1.4) (for the more general setup, see (A.1)). We then study the
difference between the solutions

(1.17) (Py — K*)v = f, vlr, =0
and
(1.18) (P—E)u=f, (O —ik)u = o(rl;Zd) as r — 00.

Theorem 1.4. Let J C R and P be a black-box Hamiltonian with A(P,J) < oco. Let x €
C*(B(0, Ry)) with x = 1 in a neighbourhood of B(O Ry), and n,e > 0. Then there are C, ko > 0
such that for all Ry > Ry + ¢, B(0, Ryy) C Q¢ C R with Lipschitz boundary, 0o(P,J, Rey) + € <
0 <m/2—¢, fGH k> ko, k € J, u solving (1.18) with f = Xf and v solving (1.17) with f = xf,
(1.19)

Rt!‘ ~
(=0l + 10 =00~ oy < Cosp (= k(2= [ @) ar =382.0) ) Il

Ry

One ingredient of the proof of Theorem 1.4 is the following resolvent estimate for (1.17).

Theorem 1.5. Let J C R, P be a black-box Hamiltonian with A(P,J) < oo, x € C*(B(0, Ry))
with x = 1 in a neighbourhood of B(0, Ry), and n,e > 0. Then there are C ko > 0 such that for
all Ry > Ry + ¢, B(0, Ryy) C Q4 € R with Lipschitz boundary, 0o(P, J, Ryy) + € < 0 < 7/2 — ¢,
all f € H with supp f C iy, all k > ko, k € J and all v solving (1.17),

(1.20) [Vl + 5210l D00 < ClIxRe ()X lre—mll £l
where H(Quy) and D(Qy) are defined in (3.14).

Another ingredient of the proof of Theorem 1.4 that may be of independent interest is that a
bound on the cutoff resolvent y Rpy implies the same bound on the scaled resolvent.

Theorem 1.6. Suppose x € C°(B(0,Ry)) with x = 1 in a neighbourhood of B(0, Ry). Then,
there are C, kg > 0 such that for k > ko,

1(Po = k) Hlasre + 572 [1(Po = k) Hlzsp < ClIxRp (k)X |l3-2.

We also point out that, although it follows the same ideas as the smooth case, complex scaling
with C%® scaling functions as described in Appendix A is new. While the assumption that the
scaling function is C%“ is essential for the analysis in Appendix A, and the assumption that it is
(3 is used to prove resolvent bounds for the free problem via defect measures, other methods of
complex scaling exist, see e.g. [AC71, Sim78, Sim79|, and apply to, e.g., piecewise linear scaling
functions.
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Remark 1.7. In numerical analysis, piecewise linear scaling functions of the form fg(r) = tan6(r—
R1)+ are often used (see §1.5). Although our theorems do not apply to this case, we now sketch the
key ingredients needed to extend our estimates to this type of scaling function. First, define a mod-
ified scaling function fo(r) satisfying (i) fo(r) = fo(r) onr < Ry, (i) for some Rs > Ry, 61 >0,
fo(r) = rtany for r > Rs, (iii) fo(r) satisfies (1.5) on {r > Ry}, and (iv) fo € C®({r > Ri}).
We would then need two results: first, the nontrapping resolvent estimate for the free problem (i.e.,
the analogue of Theorem 3.2) and second, agreement of the scaled resolvent and unscaled resol-
vent away from scaling (see Proposition 3.1). Provided one has these two results, the bounds in
Theorems 1.4 and 1.5 follow.

1.4. Ideas and method of proof. PML can be understood as an adaptation (used in numerical
analysis) of the method of complex scaling, which originated with [AC71, BC71] and was developed
in its modern form for black-box scatterers in [SZ91] (see §3 or [DZ19, §4.5] for an introductory
treatment of the subject). In complex scaling, R? is deformed to a submanifold, I'y € C¢ in such
a way that the radiating solutions of (1.1) deform to L? bounded solutions, uj, of the deformed
problem on I'g := {x +ify(|z|) 731 }:

(1.21) {(_AF(; —k*ug =0 onTy\Q_

Bujy = —Bexp(ikr-a) x€T_.

Moreover this deformation has the property that ug | BO,RAN\O. = u’| B(0,RA\O The PML equa-
tion (1.3) is then the Dirichlet truncation of (1.21).

Because uj and u® agree on B(0, Ry) \ 2_, we are able to prove Theorem 1.2 by comparing uj
and v°. The crucial fact (see §4.1) that leads to exponentially good estimates on the error between
ug and v° is that both w3 and v° are exponentially decaying in R > Ry (both in |z| and k).
Thus, the boundary values for ug on I'y, are exponentially small and one can expect that ug and
v® are exponentially close. Combining these exponential estimates together with a basic elliptic
estimate for v¥ near I'y, and bounds on the cutoff resolvent for (1.21), we can complete the proof

of Theorem 1.2. Naively, this argument leads to an exponential improvement ~ k |’ Ifl = Dy (r)dr.

To obtain the rate ~ 2k [ Ifl Oy (r) dr, one must then use that errors near the truncation boundary
only propagate with exponential damping toward R;. This leads to the second factor in our bound;
see the discussion in the caption of Figure 1.4.

To understand the appearance of the function ®y(r), we recall that the semiclassical principal
symbol of —h?Ag — 1 (where h := 1/k) is

TR Py s L
U AL+ ifg(r) (r+ifo(r))?
Replacing &, by the corresponding operator iD,, (D, := —id,), one obtains a family of ODEs

in r depending on |§w|?;d_1. The infinitessimal growth/decay of the two possible solutions to this
ODE at a point 7 is then given by the imaginary part of the roots, s; and s_, of the polynomial
&= p(r €, w, &y). The function ®y(r) is then given by

Dy(r) = \é:gomm {IImsy|, [Ims_|};

thus it is the smallest possible decay obtained in this way (see Lemma 4.1 for more details).

1.5. Immediate implications for the numerical analysis of the finite-element method
with PML truncation. There have been two recent papers on the k-explicit analysis of the h-
version of the finite-element method (FEM) applied to the Helmholtz equation with PML trunca-
tion (recall that in the h-version of the FEM, convergence is achieved by decreasing the meshwidth
h whilst keeping the polynomial degree constant). The paper [LW19] considers the Helmholtz
equation in free space (i.e., with no scatterer) and fp(r) = oo(r — R1)+ (where zy = x for z > 0
and = 0 for x < 0). [CFGT18] considers the Helmholtz equation posed in the exterior of a smooth,
starshaped Dirichlet obstacle with fy(r) = 7o /k) with & € C! (and independent of k).

For the h-FEM applied to the Helmholtz equation, a fundamental question is: how must h
decrease with k to maintain accuracy of the Galerkin solution as k increases? Both [LW19] and
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Ty

- -

Rd

exp (—k fI;l Do (s)ds)

exp (—k fTR“ Dy (s)ds — k f:;“ Dy (s)ds)

FIGURE 1.4. The figure shows a wave u(;g (in blue) propagating toward Iy, from
near the obstacle 2_. The wave ug decays exponentially as it enters the scaling
region (where I'y # R?); this exponential decay is shown in the orange dotted
line. The wave vg then reflects off I'y,. There are two possible solutions: one
exponentially growing towards the interior and one exponentially decaying towards
the interior. Fortunately, the solution exponentially growing towards the interior
corresponds to the exponentially decaying (away from the interior) u; and this
solution does not produce an error. The exponentially decaying (towards the
interior) part of vg, however, does produce an error in the interior. This solution
is again exponentially damped as it travels toward the interior; this solution is
shown in red and the decay rate is shown by the brown dashed line.

[CFGT18| prove that, for the PML problems they consider, the answer is the same as for the
respective Helmholtz problems truncated with the exact outgoing Dirichlet-to-Neumann map.

Indeed, [LW19, Theorem 4.4] proves that if the approximation spaces consist of piecewise linear
polynomials and hk®/? is sufficiently small, then the Galerkin approximation, vy, to v satisfying
(1.17) (with Py = —Ay) exists, is unique, and satisfies

(1.22) IV (v —vn)llz2 + kllv — vnll e < CRES?| f|| 2

(cf. the results in [LSW19] for the Helmholtz problem with the exact outgoing Dirichlet-to-
Neumann map). Furthermore, with piecewise polynomial of degree p, if hPkPT! is sufficiently
small, then [CFGT18, Theorem 5.4] proves that, for the exterior Dirichlet problem with star-
shaped Q_, the Galerkin solution exists, is unique, and satisfies a quasioptimal error estimate
with quasioptimality constant independent of k (cf. the results in [MS10, MS11] for the Helmholtz
exterior Dirichlet problem truncated with the exact outgoing Dirichlet-to-Neumann map).

Combining the results in the present paper with the FEM analysis in [LW19|, we immediately
have that the results of [LW19] (i.e., existence, uniqueness, and the error bound (1.22) for the
Galerkin solution when hk3/? is sufficiently small) extend to the FEM solution of any of the
Helmholtz problems in §2.1, provided that (i) fg(r) satisfies the assumptions in §1.2, (ii)

IxRp(k)x||lnon < C/k  forall k > kg

(which occurs, for example, when the problem is nontrapping) and (iii) the domain of the PML
problem D()y, ), defined by (3.14), equals H*(Q,). Indeed, Theorem 1.5 is a generalisation (modulo
the differences in scaling functions) of [LW19, Theorem 3.1] and Theorem 1.4 is a generalisation
of [LW19, Theorem 3.7].

The results in [CFGT18], however, rely crucially on the fact that fy(r) ~ 1/k (e.g., the com-
parison with the sponge layer in [CFGT18, §5| fails if fo(r) > 1/k); therefore, the results of the
present paper cannot be combined with those in [CFGT18]. We expect the error in the PML
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solution when fy(r) ~ 1/k to be only O(1) as k — oo. This is in contrast to the exponentially
small error when fy(r) ~ 1 (as shown in Theorem 1.4).

1.6. Outline of the paper. §2 recaps the framework of black-box scattering. §3 recaps the
method of complex scaling and proves Theorem 1.6. §4 proves elliptic estimates in the scaling
region. §5 proves Theorems 1.4 and 1.5 (i.e., the main results in the black-box framework). §6
proves the bound on the relative error in Theorem 1.2 for the plane-wave scattering problem.
§7 proves the nontrapping estimate on the free resolvent for the scaled problem with C? scaling
function. §A proves results about complex scaling with C%© scaling function. §B recalls results
from semiclassical analysis. §C proves Lemma 1.3 (i.e., properties of ®y(r)).

Acknowledgements. The authors thank Maciej Zworski for several helpful conversations. DL
and EAS were supported by EPSRC grant EP/R005591/1.

2. BLACK-BOX HAMILTONIANS

Throughout this paper we work in the setting of black-box Hamiltonians (see [DZ19, §4.1]); we
now review this notion.

Let H be a complex Hilbert space with the orthogonal decomposition
(2.1) H=Hp, ®L*(R?\ B(0,Ry)).
We take the standard convention that if y € L>(R?) with xy = ¢y € C on B(0, Ry), then for u € H
with u = u\B(07RO) + u|]Rd\B(O,R0) s U|R0 S HRO, and U‘Rd\B(O,RO) € LZ(Rd \ B(O, RQ)),

Xt = co(ulB(o,ro)) + (XIre\B(0,R0)) (Ur\ B0, R0)) € H-

We say that P is a black-box Hamiltonian if, for H as in (2.1), P : H — H is an unbounded
self-adjoint operator with domain D C H such that

lga\5(0,r)D C H2(R?\ B(0, Ro)), 1z (o, (Pu) = —A(ulra\50,ry));
(2.2) {ue H*(RY) : u| B0, Ryt¢) = 0 for some € > 0} C D,
1B(0,Ry) (P + i)~ : H — H is compact.
We equip D with the norm
(2.3) lullp = [lull3, + [Pully;, — weD,
and define D? for s € [0, 1] by interpolation between H and D. We also define
Heomp = {u € H : ulpa\p0,Ro) € Leomp}s  Hioc = Hro & Li(R*\ B(0, Ry)),
Deomp := D N Heomps Dioe := {t € Hioe : xu € D, for all y € C°(RY), x =1 on B(0, Ry)}.
We now recall some properties of the resolvent of a black-box Hamiltonian.
Proposition 2.1 (Theorem 4.4 [DZ19]). Suppose that P is a black-box Hamiltonian. Then,
Rp(\) := (P — X?)"' : H — D is meromorphic for Tm A > 0
with finite rank poles. Moreover, for all x € C°(R?) with x =1 on B(0, Ry),
Rp(A) t Heomp — Dioc is meromorphic for — % < Arg(\) < &,

with finite rank poles.

2.1. Examples.

1. Scattering by a Dirichlet obstacle. Let Q_ C B(0, Ry) be an open set such that I'_
is Lipschitz and Q, := R?\ Q_ is connected. If # = L?(2,) and
D={uec H (Q) : ulr_ =0, —Au € L*(Q,)},

then P = —A is a black-box Hamiltonian by [LSW20, Lemma 2.1]. If I'_ is C*° then
by [Bur98, Vod00] A(P) < co. If Q_ is nontrapping [Vai75, MS82] [DZ19, Theorem 4.43],
or Q_ is star shaped [Mor75, CWMO0§]|, then A(P) = 0.
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2. Scattering by a Neumann obstacle. Let Q_ C B(0, Ry) be an open set such that I'_

is Lipschitz and €, := R\ Q_ is connected. If H = L?(Q,) and

D={uec H () : (u)lr_ =0, —Au € L*(Qy)},
then P = —A is a black-box Hamiltonian by [LSW20, Lemma 2.1]. If T'_ is C*° then
by [Bur98, Vod00] A(P) < co. If _ is nontrapping [Vai75, MS82] [DZ19, Theorem 4.43],
or I'_ € C3 and Q_ is convex [Mor75|, then A(P) = 0.

3. Scattering by inhomogeneous media. Let o > 0, A € C?*(R% Myyq) be real, sym-
metric, and positive definite, b € C1*(R%; R%), and ¢ € C%*(R%; R) with Alga\B(0,re) = 1,
supp b,suppc C B(0, Ry). If # = L?(R%) and D = H?(RY), then

P = 0;A%(x)0; + (b'(z)D; + D;b'(x)) + c(z).
is a black-box Hamiltonian. If the Hamiltonian flow for A“¢;¢; is nontrapping, then
A(P) = 0 [GSW20]. Moreover, if A% bl c € C°°, then A(P) < oo [Bur98, Vod00]. We note
that we could combine this example with either of Examples 1 and 2, with the result that
scattering by an inhomogeneous media contained either a Dirichlet or Neumann obstacle
is covered by the black-box framework.

4. Scattering by a penetrable obstacle. Let Q_ C B(0, Ry) be an open set such that I
is Lipschitz and Q. := R\ Q_ is connected. Let A = (A_, A,) with Ay € C%(Qx, Mgxq)
real, symmetric, positive definite, and such that Alga\ g r,) = 1. Let ¢ € L>(2_) be
such that cpin < ¢ < ¢max With 0 < cpin < Cmax < 00, and 8 > 0. Let v be the unit normal

vector field on 9Q2_ pointing from _ into Q,, and let 9, 4 the corresponding conormal
derivative from either Q_ or Q. If # = L?(R?) and

D :=v=(v_,v where v_ € HY(Q_ V- (A_Vuv_) e L*(Q_
{v=(0-vp) (Q), V-(AVu)eI*Q),
vy € H'(RU\QD), V- (A1Vuy)) € LA(RY\QD),
vy =v_ and O,a,vy=pB0,4a_ v_ on 89_},

then
Poi= (Y (A_Y0.), V- (4,0,)),

is a black-box Hamiltonian by [LSW21, Lemma 2.4]. If 0Q_ € C* and Ay, c € C*, then
A(P) < oo [Bel03].

3. COMPLEX SCALING AND PERFECTLY MATCHED LAYERS

In §3.1 we review the method of complex scaling; as discussed in the introduction, this plays a
crucial role in our analysis of PML. In §3.2 we prove Theorem 1.6. In §3.3 we formulate the PML
problem in the black-box framework using the language of complex scaling.

3.1. The scaled operator. Let Ry > Ry > Ry > 0 and P a black-box Hamiltonian as in (2.2).
Let fo € C%%([0,00); R) satisfy

(3.1) fo(r)=0onr < Ry, fh(r) >0, fo(r) =rtand on r > Ry,

and define Ay as in (1.4). The theory of complex scaling when fy is smooth is standard (see [DZ19,
§4.5]) but when fy € C*%, some modifications to the standard proofs are required. We record
the main outputs of this theory for the operator Ay here and provide the general theory for C%
scalings in Appendix A.

We now define the complex-scaled operator for a black-box Hamiltonian. With xy € C°(B(0, Ry))
equal to 1 on B(0, Ry), define Py : H — H with domain D by

(3.2) Pou = P(xu) + (=Ag)((1 — x)u).
Proposition 3.1. Let Py, D, and H, 0 < 0 < 7/2 be as in (3.2). If Im(e’?)\) > 0, then
Py—XN:D—H
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is a Fredholm operator of index 0. Moreover, for Ry < Ry and x € C°(B(0, R1)) with x =1 on
B(0, Ry),

1o, (P = A) .k = 1B0.r)(Po = X) por),  Im(e?)) >0.
We also record the following nontrapping estimate on the free resolvent of the scaled problem,
which is proved in §7.

Theorem 3.2. Suppose that fy is as in (3.1) and 0 < 0 < 7 /2. Then for all e > 0 there are C > 0
and ko > 0 such that for k > ko, —1<m <0,0<s<2, ande <0 <7/2—F¢,

||(_Ag - k‘2)71HH7n*>Hs+'m S OkS*l.

3.2. From cutoff resolvent estimates estimates to scaled resolvent estimates. We now
prove Theorem 1.6; i.e., we show that an estimate on the cutoff resolvent, xRp(\)x, can be
transferred to one on (Py — A?)~!. Since most estimates in the literature are stated for the cutoff
resolvent, this allows us to directly transfer those estimates to the scaled operator.

Lemma 3.3. Suppose there are R > Ry and g : [0,00) — (0, 00] such that, for all p € C°(B(0, R); [0, 1])
with p = 1 in a neighborhood of B(0, Ry) and k > ko,

(33) lpRp(K)pllH—s2n < g(k).
Then, given € > 0, there exists C > 0 such that, fore <0 < 7m/2 —¢€, k > ko, and 0 < s <1,
(34) 1(Py — k)~ lsps < CE*g(k)

Theorem 1.6 follows from Lemma 3.3 taking g(k) = |[xRp(k)x||x—n-

Remark 3.4. Note that one always has || pRp(k)pll3—n > ck™'. Indeed, given p € C2°(B(0, R);[0,1])
with p = 1 in a neighborhood of B(0, Ry), let x € C°(B(0, R) \ B(0, Ry)) with suppx C {p = 1}.
Let u = xe™* for some a € R? with |a| = 1. Then,

1P = K2)ull = (=A — K2)ul g2 = [[—A, X]e™ ] 1 = |(2ik{Dx, a) + Ax)e™ | < ck,
and ||ul|ly > ¢. Therefore, since supp x C {p = 1},
IpRp(k)p(P — k*)ullse = llpulls > [[ullse = ck™H[(P — k?)ull3.
Proof of Lemma 3.3. The idea of the proof is to approximate (P — k?)~! away from the black-
box using the free scaled resolvent, and near the black-box using the unscaled resolvent. Let
R:=min(R, Ry), f € H and xo, x1 € C°(B(0, R)) with x1 = 1 in a neighborhood of supp xo and

Xo = 1 in a neighborhood of B(0, Rp). Let u = (Py — k?)~1f and v = (—=Ay — k2)71(1 — x1)f.
Then, we define

(Py = k) (u— (1= x0)v) = f + [~ xolv = (1 = x0)(1 = xa).f = xaf + [=A, xolv =:

and observe that f satisfies supp f € B(0,R). Let & = (Py — k2)=1f so that u = @ + (1 — yo)v.
By Theorem 3.2,

(3.5) lu =@l = (1 = x0) (=g = k*) (1 = x1) flls < Ck7H| fllae
Therefore, we need only estimate u. By Theorem 3.2 again,

(3:6) [1fll3 < lxafllae + =2, xolvllza < I fll2e + IT=A, xol (=20 = &)~ (1= x1) fllz2 < ClIf -
Since supp f € B(0, R), there is p € C>°(B(0, R)) such that p = 1 on supp fUB(0, Ry) and hence
U= (Py— k)" pf.

Let p1 € C°(B(0, R)) with p; = 1 in a neighborhood of supp p. Then,
(D¢ — K} (1= pr)ii = (1 = p1)pf — [~ pali = [p1, —AJ2,

and thus
(1—p)u=(-A¢ — k*) " [p1, —Alu.
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Therefore, for py € C(B(0, R) \ B(0, Ry)) with py = 1 on supp dpy, and ps € C°(B(0, R)) with
p3 =1 on supp pz Usupp p1,
11 = )il e = [[(= 29 = k)" o1, = Alpaiill 2 < Cllpotil| 2 = Cllp2ps(Ps — k) papfla
= C|lp2psRp(k)pspfln
< Cy(k)llofll < Co(k)IIlIn,

where we have used both Theorem 3.2 and the assumption (3.3). Putting this together with

Ipr@tllz = llp1pstllae < llps(Po — k2 pspflla = losRe(k)pspflln < a(k) o flln < gkl fllae
we have
@z < Cg(k)|| fll2-

Finally, using (3.5) and (3.6) and the fact that g(k) > ck~! (by Remark 3.4) completes the proof
of (3.4) for s = 0.

By the definition of || - |[p (2.3), to obtain the estimate for s = 1, we need to bound ||Pul|.
Let ¢; € C°(B(0,Ry)), i = —1,0,1 with ¢); = 1 in a neighborhood of B(0, Ry), and suppt; C
{thix1 = 1}. Tt is then sufficient to bound || Py ullx and ||(1 — xo)u||g2. Now, since P = Py on
B(Oa Rl)v

(3.7) Piru = k*Yru+ i f + [—A, 1]u,
and
(—Ag — k?)(1 — vo)u = [A, volu+ (1 — o) f;

a priori, we only have u € H, and thus the right-hand side of the last equation is, a priori, only in
H~'. By two applications of Theorem 3.2 (the first with m = —1 and s = 2 and the second with
m=0and s =1),

(3:8) (1 = o)ullgr < Ckllulls + Cl fll2-
Since

(=4, rull 2 < Cl|(1 = ho)ullm,
using (3.8) in (3.7), we have

(3.9) [Pyrullze < C (K ullz + [ fll2) < CK*(g(k) +k72) [ fll2.
If we can show that Ag((1 —1o)u) € L?, then, by elliptic regularity,
(3.10) 11— to)ull a2 < C([[A6(1 — o)ull 2 + [lulls),

with a uniform constant for 6 € [e, 7/2 — €]. Exactly the same argument used to prove (3.8) shows
that

(3.11) (1 =_1)ullgr < Ckllully + C flln-
Now
Ng((1 —1po)u) = (1 — o) (K*u + f) — [Ag, Yo]u,
and
(3.12) 1As, olullLz = [[[A, to]ullLe < CJ|(1 —tp_1)ull g

Therefore, combining (3.10), (3.11), and (3.12), and using the bound (3.4) with s = 0, we obtain
that

(3.13) 11 = tpo)ullz < C (R [[ullae + [1fll3) < CK*(g(k) +£2) [ f ]l

The combination of (3.12) and (3.13) proves the bound (3.4) for s = 1; the bound (3.4) for0 < s < 1
then follows by interpolation. O
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3.3. The PML operator. In addition to the Fredholm property for Py, we need Fredholm
properties for the corresponding PML operator. Let €, € R? have Lipschitz boundary and
B(0, Ry) C Q4. We study the PML operator PGD — A2 on Q,. That is, we define

H(Qu) == Hr, ® L*(Q: \ B(0, Ro)),

D(Qy) = {u € H(Qw) : for all x € CX(B(0,Ry)), x = 1 on B(0, Ry),
. xu €D, (1= x)u € Hj(Qu), —Bo((1 = x)u) € L) |,

Pyu = P(xu) + (~Ag)((1 — x)u).
We then consider PP : H () — H(Qr) with domain D(€2,) and norm
(3.15) lullBion) = lullfian) + 1P w3,y @€ D(Qu).
Proposition 3.5. Let PP, H(Q,), and D(Q,) be as in (3.14). Then, PP — X2 : D(Qy) — H(Qr)
1s Fredholm with indez 0.

Proposition 3.5 is proved in Appendix A; see Proposition A.12.

4. ELLIPTIC ESTIMATES

In this section, we prove the necessary bounds on the solutions to (Py — k*)u = f and (PP —
k*)v = f for k € R, k> 1. The Carleman estimates in §4.1 describe how both u and v propagate
in the scaling region. The bound in §4.2 (obtained essentially by integration by parts) describes
the behaviour of v in a neighbourhood of T'y;.

It is convenient to use the semiclassical rescaling & = k~' ! and write these equations as
(PP —Nu=0f, (PP —1)v="n/,

and we do so throughout the rest of the paper. We use the semiclassically-scaled Sobolev norms
for ¢ € N defined by

N [

lal<t
where D := —id. Then, for ¢/ € N, Hh_é = (Hf)* and the norms for s € R are defined by
interpolation. With (-) := (14 | - |?)'/2, these norms satisfy

l[ullzrg ~ [IKAD) u] L2
4.1. Carleman estimates. We start by proving an exponential estimate for solutions to
(7h2A9 - 1)“ = f7

for u supported in r > R;. Our estimates are proved using Carleman estimates with weight
¥ = 1(r). To this end, for ¢p € C*>°([0,00)), we define

(4.1) Py = eV/M(—h2Ap — 1)e ¥/,

with semiclassical principal symbol

— 1.

& + i/ )2 [
L+ifg(r) (r+ifo(r))?
Lemma 4.1. Let € > 0 and ®g be as in (1.8). Then there is c..y > 0 such that for r > Ri + €

and € < 0 < 7w/2 —¢€, Py(r) > Ce,f- Moreover, given 0 < a < 1, there is ¢ > 0 such that for all
e<0<7/2—€andr > Ry + € such that

(42) [Y'(r)] < a®e(r),
Py is uniformly elliptic in r > Ry +€; t.e.,
lpyl > ¢©)?, r>Ri+e

pd)(ra ¢7 £T7 f(b) = (

1The semiclassical parameter is often denoted by h, but we use i to avoid a notational clash with the meshwidth
of the FEM appearing in §1.5.
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Proof. In the following arguments, ct ., Cf > 0 are constants depending on f and € whose values
may change from line to line. Throughout the proof, r > R; + € and 0 € [e, 7/2 — €].

The solutions, s+ to

~ s 2 [
= - + : -1=0
Pls) (1 —Hfé(r)) (r +ifo(r))?
are given by
: €012
sy =1 +ifj(r)/1 - —2—.
+ ( fe( ))\/ (T+Zf9(7‘))2
The definition of ®y(r) (1.8) then implies that
43 Bg(r) = inf min{|Tms,| |Tms_|}.
(43) 0(r) = dnf win (| s |, [T [}

By cousidering the real and imaginary parts of p(s), we find that,
Ip(s)] Zcf,€(|Res|2+|£¢|2/r2+1), Ims =0,

where we have used the particular form of fy(r), i.e., fo(r) = f(r)tand and the fact that 6 €
[e, /2 — €] to get uniformity in 6. Therefore, since there exists ¢ > 0 such that,

0sD] < cp.elsl,
there is ¢y > 0 such that
(1.4) [5)| = cre(|Re s + &[22 +1),  |Tms| < ey,
and in particular, [Im sy | > ¢y .. Therefore, by (4.3), ®o(r) > c..
Hence, if |Im s| < a®y(r), then
miin |s — 51| > cre(l—a).

In particular, since

_ 254
0sD(s4)| = | 73| = Ches
’ (L +ifs(r2l =™
and
025(s)| = ———5 < O
P e =
there is cq, ¢, > 0 such that
|ﬁ($)| 2 Ca,f,e-

Finally, observe that there is Cy. > 0 such that, for |Res|* 4 [£5]?/r? > Cy.,
B(s)] = C e (IRes| + [&]7/7* + 1),

Together, we have shown that for |Im s| < a®q(r),
5(s)] = cape(|Re s + |60 /72 +1)

and the claim follows. O

In the rest of the paper we use the notation that (a,b), := B(0,b) \ B(0,a).

Lemma 4.2. Let € > 0, n > 0. Then there are C > 0, hig > 0, and 0 < 7] < €/6 such that for all
e<O0<7m/2—¢,6>c,ucL? 0<h< hg,

(4.5)  Nullgz(ry+s-27.8,+5-m, < CI(=h*Lg = VullL2(r, R, +5),
(1—n) [+
+ Cexp ( - / Dy(s) dS)hHU||H,§(R1,R1+ﬁ)T + Chllull 1 (R, 67, R1+6),

Ry
and

(4.6)  Nlullg2(ry+5-27.00), < CI(=h*Ag = VullL2(R, 00),
(1-n)

Ri1+6
+ C exp ( i /R Dy(s) ds) h||u||H;L(R1,R1+;,~)T.
1
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X- X2 X1 X+
R Ri+7 Ri+27  Ri+0-27 Ry40—7 Ri+0
Y(t) < —(1=n) [5° By(r)dr ¥(t) =0

FIGURE 4.1. The cut-off functions and behaviour of the function ¢ (¢) in the proof
of Lemma 4.2. Although 7 appears large here (for readability), we emphasise that
n < 6.

Proof. Let Py be as in (4.1). To prove the lemma, we construct a v satisfying (4.2) witha =1-79
for some, not yet specified, 7. Let 1y € C((277,0 — 27);[0,1]) with ¢p9 = 1 on (37,5 — 37).
Then, let 0 < ®y(r) € C with (1 — 27))@s(r) < Pp(r) < (1 —7)Py(r) on [Ry + 7, 00) and
supp @y C (Ry + 77/2,00). Then define

(47) vt) =~ [ Bulo)in(s - Br)ds,
t
and choose 0 < 7] < €/6 small enough such that
oo ~ R1+6
(48) ~ [ Sasits — Ryds < () [ walsds
—00 Ry

note that this choice can be made uniformly in § > e. By (4.7) and the support properties of vy,

|9/ (8)] = @g(8)[tho(t — Ra)| < (1 =) Po (),
so that, by Lemma 4.1, [py| > c(£)?, for all t. In addition
@9) () = —/ Bo(s)to(s — Ri)ds, t— Ry <27, and w(t) =0, t— R >3- 2,
see Figure 4.1, and

|0%Y(t)| < Caze  for all t.

To prove (4.5), let x1, x2 € C°(R, R+ ) with x1 = 1 in a neighborhood of [R; + 17, Ry + 3 — 7],
X2 =1 onsuppxi. Let x— € C°((R1,R1+ 7)), x+ € C(R1+6—1,R+0)) with xo + x4+ =1
on supp(x2 — x1); see Figure 4.1.

Now,

Py = Opp(po.y) +hOpy(p1,p)-

with Do,y € Cl’a52, P1,y € Cov"Sl, and
po.y| > cai(€)?.
Let p = 1%} Then, by Lemmas B.6 and B.7, there is py,  satisfying
020 P (3, €)] < Cegagh™?7 (€)™ P17,

and

10 (Phw) = Pyllp—r2 < Cegh.

By a standard elliptic-parametrix construction for p; in an exotic symbol class (see Theorem
B.2 for the standard elliptic-parametrix construction and [Tay96, §7.3-7.4] for the construction in
exotic calculi), there is £ : L? — H%, such that

x1 = EOpp(pry) + O(h%)g-o.
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Moreover, both E and the error are uniform over 6 > ¢, ¢ < 6 < 7/2 — e. Therefore,

x1e""u = x1x26¥""u = E Opy (pn,y) x2€? "t + Oge(h) g—oe X2 M0
(4.10) = E(Py + (Opu(pn.p) — Py))xae?/"u + O5c(h™) g x2e?"u

= Exze?/" f — Ee?/M [ A, xalu + Oge(N) s 2 x26% ",

where f := (—h?Ag — 1)u. Therefore, since dx3 is supported where x, + y_ = 1,
(411) [xae” ull gz < Cllxae®’™ fll 2 + OBl e/ ™ul gy + Chllxs e/ "ull gy + Chllxoe® "y
Since x2 = (x2 — x1) + x1 and x4 + x— = 1 on supp(x2 — Xx1);
(4.12) Ix2e?"ull gy < Clix—e*"ullmy + Clixse? ullmy + [xae? ull gy -
Combining (4.11) and (4.12) and taking 7 sufficiently small (depending only on 7 and €), we have
(413) e ullg < Cllxae® e + Chllx_e*/Mull gy + Chllxs e/l gy
Ri1+6

Then, since ¢ < —(1—n) [, Po(s)ds on supp x— (by (4.8) and (4.9); see Figure 4.1), and 1) <0
everywhere (and thus, in particular, on supp x4 ),

(1—n)
h
The lemma now follows since x1 = 1 and ) = 0 on (R; +6—27, Ry +0—17), supp x— C (R1, R1+7),

and supp x4+ C (R; +d — 7, R; + ), and ¢ < 0 everywhere.

R1+6
| wads) bl ully + Chlluln.

e’ "l < Cllxae?”" fll g2 + Cexp -
Ry

To prove (4.6), we make the same argument as above except that x1,x2 € C°°(R1,00) with
X1 = 1 in a neighborhood of [R; 4 7],00), x2 = 1 on supp x1, and x4 = 0. |
Next, we need an elliptic estimate away from the support of the right hand side.

Lemma 4.3. Let ¢,n > 0. Then there are C > 0, hy > 0, and 0 < 7] < €/6 such that for all
e<O0<Tm/2—€, €e<8<d—¢€ 6>2€ and all u € L? satisfying

(—1*Ag — Nu=f
with supp f N (R1,R1 +0), C (R1+ 6 —17,R1 +9),, and all 0 < h < hy,

(1—p) [Mt
(4.14) ”u||H§(R1+s—2?i,R1+s+2?;)T < Cexp ( - 7 Dy(r) dT) h||u||H;(R1,R1+ﬁ)T

Ry
(1—n) [P
e (=S [ gty ar) (Il + Bl 5,0, )
Ri+s
(Note that, since 7 < €/6 and s < d — €, Ry + s+ 2 < Ry 4+ 6 — 77, the norm on the left-hand side
of (4.14) is indeed away from supp f.)

Proof. As in the proof of Lemma 4.2, we use a Carleman estimate with Py as in (4.1). Let
Yo € C((21,s — 27);[0,1]) with ¥_ =1 on (377,s — 37), and ¥ € C((s + 27,0 — 273; [0, 1]))
with ¥»; =1 on (s + 37, — 377). Then, exactly as in the proof of Lemma 4.2, let 0 < Dy (r)e C™
with (1 — 27)®g(r) < ®p(r) < (1 —7)Pg(r) on [Ry + 7, 00) and supp @y C (Ry + g,oo), for some,
not yet specified, 7. Let

(4.15) v) = [ (= R~ v~ R)Balr)
Ryi+s
and choose 0 < 77 < €/6 such that
%) _ Ri1+6
(4.16) - Yy(r— Ry)Pp(r)dr < —(1—n) / Dy (r) dr,
Ri+s Ri+s
and
Ri+s _ Ri+s
(4.17) _/ W (r — R)Bp(r)dr < —(1— n)/ Bo(r) dr
—00 R1
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X- X2 X1 Xt
jjj\ Ry + 27 Ri+46—-2p
< KX X———— X X a3 ~ a3
Ry Ry +17 Ri+s—20 Ri+s+27n Ri+6—1 Ri+4§
N———

W(t) < —(1—n) [F By(r)dr (1) =0 p(t) < —(1—n) [F5 Bo(r)dr

FIGURE 4.2. The cut-off functions and behaviour of the function ¢ (t) in the proof
of Lemma 4.3. Although 77 appears large here (for readability), we emphasise that
n < 6.

note that this choice can be made uniformly in 6 > 2e and € < s < § —e. By (4.15) and the support
properties of ¢y_ and 9y,

[ (0)] < (I (t = Ra)| + |4 (t = R)|)@g(t) < (1= )y (1),

and
(4.18) W(t) = — - Yo (r— Ry)®g(r)dr, t—Ry>6—2i,
Ri+s
P(t) =0, s=2n<t—R; <s+4 27,
Ryi+s _
(4.19) P(t) = —/ _(r—Ry)®y(r)dr, t— Ry <27,

see Figure 4.2.

To prove the lemma, let x1, X2, X—, X+ be as in the proof of Lemma 4.2, i.e., x1, x2 € C°(R1, R1+
d) with x1 = 1 in a neighborhood of [Ry + 7,R1 + 6 — 7], x2 = 1 on suppyi, and x_ €
C((R1, Ba + 1)), x4+ € CP(R1 + 6 — 1, R +6)) with x— + x4+ = 1 on supp(x2 — x1). Ap-
plying the same argument as in the proof of Lemma 4.2, we obtain

x1e¥Mu = Exae?/" f — Be?PPyg A, xolu + Oge(h) g r2e?/ " xou

(see (4.10)). Arguing exactly as before, we obtain (4.13). Therefore, since ¢ < —(1—n) }};1”_8 Oy(r)dr

on supp x— (by (4.17) and (4.19)) and v < —(1—1) Iflljj Dy (r) dr on supp x+ Usupp f (by (4.16)
and (4.18)),

1_ ,rl Ri+s
aaeulg < Cexp (= S5 [ watr) )l
1

1_ Ri+6
e (= 52 [ watr) ar) (11 + bl
1+s

The bound (4.14) now follows using the support properties of x4+ and the facts that x; = 1 and

Y =0on (Ry +s— 21, R+ s+27). O

4.2. Estimate on the PML solution near the boundary.

Lemma 4.4. For any € > 0, there exists hy > 0 and C > 0 so that for any e < 0 < w/2—¢, Ry >
Ry +¢, B(0,Ry) € Q, C RY with Lipschitz boundary, if v € L? is supported in Qi \ B(0, Ry + €)
and v =0 on 04, then, for all 0 < h < Ay,

(4.20) [l @) < CENREPY = 1)vllz2(0,)-



PERFECTLY-MATCHED-LAYER TRUNCATION IS EXPONENTIALLY ACCURATE 17
Proof. We use results from Appendix A, and use that, by Lemma A.4, Fy(z) > d(e) > 0 in the
sense of quadratic forms for € suppv. Since v is zero in a neighbourhood of B(0, Ry)
(4.21) (P = 1)v,0)12(0,) = ((=1*Dg = 1)v,v) 15, .
However, by (A.7) and (A.8),
(4.22) ((=h*A¢ — v, v) 2 = |w][F2 — [|F (2)wl[ 72 — 20(Fy (2)w, w) + h{Ag () hdyv, v) — |[v]|7e,

where Ag(x) € C%* and w := (I + F}/(z)?)~'hd,v. Taking the imaginary part of (4.22) and using
the fact that Fy'(z) > 6(e) > 0 for = € suppv, and then using (4.21), we obtain that

10,0l3: < Cllulfe < C(F (@)w, w) < C|Tm((~hAg — 1v,v)| + C| Im A Ay (@) D0, v)
(4.23) < Ol(R* Py = 1)vl|zz|vll L2 + CRl|Rdyv]| 2 |v]| 2,
where C' depends a-priori on §. Now taking the real part of (4.22), we get
(4.24) lollZe < Cllndzvl[72 + Cll(H* B — 1)vl|z2 o]l 2 + Chllhdyvl| 2 o] 2.
Thus, combining (4.23) and (4.24), we have
lllF: < Cll(R* Py = 1ol zllv]lrz + Chllhdzvl 2 [[v]] 2.

With Fy and fy related by (A.2), and fy(r) = f(r) tan @ satisfying (3.1), all the implicit constants
appearing above depend continuously on tanf. Hence, for € < 6 < 7/2 — ¢, there is C(e) > 0,
depending only on €, such that

loll7 < C(e)|I(B* PP = D)vllz2|lvll 2 + ﬁllhﬁxvllmllvllw};

the bound (4.20) then follows by taking & > 0 small enough depending only on e. O

5. PROOF OF THEOREMS 1.4 AND 1.5 (THE MAIN RESULTS IN THE BLACK-BOX SETTING)

Proof of Theorem 1.5. The overall idea is to use the elliptic estimates in §4 to bound v near I',
in terms of v away from I'y; and the data f, and then use Lemma 3.3 to bound v away from I',.
First, by (4.5) (from Lemma 4.2) with 6 = Ry, — Ry, there is 0 < 7 < €/6 such that

[0l 12 Ry —27, B =), < O\ fll 2 (80 Rer),
(1—mn)

R
+ Cexp ( i /R Py (r) dT) Ml ry rovm), + ORIV L2 (Re—77, Rur) -
1

(5.1)

Let x € C®(R?\ B(0, Ry, — 27)) with x = 1 on Q; \ B(0, Ryy — 77). Then, by Lemma 4.4

0]l 12 20\ B0, Ber—7) < XV 111 (20 < CR2(Py = k) x0ll L2

(5.2) 2 2
< C(R7IxfllLz@u) + =R A0, X]V L2 (00,))-

Combining (5.1) and (5.2), using that the derivatives of x are uniform in Ri, > Rs + €, and
supp dx C B(0, Ry — 1) \ B(0, Ry, — 27), and shrinking hj if necessary, we have
(5.3)
(1-mn)

Ry
0]l 2 20\ B0, er—277) < ORI fl| 22 (@0\B(0.R1)) +C exp (‘ " /R Po(r) dr) Ml a3 (e Ry, -
1

Next, let x1 € C(B(0, Ryy)) with x1 =1 on B(0, Ry — 277). Then,
(h* Py — 1)x1v = X1 f + [Py, xalv = B*xa1 f + [h* g, xa]v.
Now, by (5.3),

D1, =h*DoJvlln < Chllvll g (27,00,

3 (1-mn) A 2
< OR| fllL2(@u\B(0,Ry)) + C exp ( /. Dy(r) d?”)h vl &2 Ry, Ry 477, -
1
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Therefore, by Lemma 3.3, with g(k) = ||[xRp (k) x|l —%,
Ixuvll = [1(Po = k)~ (xa.f + [x1, —A]v) o

< Ok g) (11 +oxp (~ K1 =) [

Ry

Rtr
@o(r) rdr ) lloll iy r, 7,19, )
Similarly,

vl = 1P = B)7 0 f + Dea, =h2Aalo) e

Ryr
< Colb) (Il +esp (= k=) [ @0(r)rar) ol s, )

By the definition of 0y(P, J, R;) (1.9), the fact that 8§ > 6y + ¢, and the fact that ®y(r) is a
continuous function of (r,6) by Lemma 1.3, shrinking n > 0 if necessary, we have that A(P,J) —

(1—mn) f}fl“' ®y(r)dr < —ce < 0. Then, using the definition of A(P,J) (1.16), and choosing k large
enough, depending only on € and 7, we have
(5.4) Ixavliz +k~2(Ixavllo < Cg(k)|| £l
The definition of x; and interpolation imply that
[l 2 (e s 4, < CIxavlize +E72(Ixav]p),
and thus combining this, (5.4), and (5.3), we obtain that
[0ll3(00) < Ca(k)I fllae for all k > ko.

Since || P v]|30.) = K2 [[vllxn) + 1 ]1#(0.), the result (1.20) then follows from the definition of
[0l D6 (3:15). O

Proof of Theorem 1.4. To avoid writing ||xRp(k)x||#—n repeatedly, we let g(k) : [0,00) — (0, 00]
be such that, for all x € C°(B(0, R1); [0, 1]),

IxRp(E)Xx||#—n < g(k) for all k£ > k;.

Given € > 0,n > 0, let 7 equal the minimum of the ns from Lemmas 4.2 and 4.3. Let v =
(PP —k*)71f and u = (Py — k*)"1f. By (5.3), together with the fact that f is supported in
B(OaRl)v

(L—m) [f
(5.5) HUHH;(QH\B(O,Rn%ﬁ)) < Cexp ( - 7 " Dy (r) dr)h”U”H}L(Rl,RlJrﬁ),,u
1
Moreover, using (4.6),
(L—m) [
(5.6) 1wl &7 (2\ B0, Rex —27)) < C XD ( ) Dy (r) dr>h”u”H}L(R1,R1+?ﬁr'
1
Therefore, by Theorem 1.5 and Lemma 3.3,
(5.7)
<Cep(~ D [ 50y hg(h!
HU”H}L(QH\B(O,Rnfﬁﬁ + ”U”H}L(Qtr\B(O,Rtrfﬁﬁ = U exp 7 R o(r)dr )hg( M Nl
1

Let 0 = Ry — Ry, let € < s < § — € to be chosen and let x; € C°(B(0, Ryy); [0,1]) with x1 =1
on B(0, Ry, — 7). Since (—h2Ag — 1)(x1(u —v)) = [=h?Ag, x1](u — v) and

supp[—h*Ag, x1](u — v) € B(0, Ru) \ B(0, Rix — 1),
we can apply Lemma 4.3 to x1(u — v) and obtain
(1—m)

Ri+s
(5:8) llu = vllmza, o2 mrosam, < Cexp (= /R Do (r) dr ) Bl = vl iy s s,
1

|y [Re
+ Cexp ( - % /R Dy (r) d?“) Al =l 5 (R~ Rer). -
1+s

Let x2 =1 on B(0, Ry + s — 21]) with supp x2 C B(0, Ry + s + 27). Then
(5.9) (=h*Ap — 1)(x2(u —v)) = [=h?Ag, x2](u — v).
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Hence, by Lemma 3.3, (5.8), and (5.7)
Ix2(u =)l + B[ x2(u = v)|Ip

< Cg(h™")h|lu — v||H}L(R1+572ﬁ,R1+s+2r7)T

_ 1—p) [ft
< Cg(h™YHh? (Cexp ( — % /R Dy (r) dr) lw = vllgp Ry, Ry 7).

(1 _ ,’7) Ry
+ Cexp ( — . Dy(r) dr) flu— U”H,%,(Rn—?i,Rn)T
1+s

_ 1—p) [
< Cg(h 1)h2<exp (* (h)‘/R @9(7') dr)”uiUHH}L(Rhchrﬁ)r
1

(5.10) + Cng(nyexp (L1 [/R Do (1) dr+/R” Do(r) er|f||H>

Ri+s Ry

Exactly as in the end of the proof of Theorem 1.5, by the definition of 6y (1.9), the fact that

6 > 6y + €, and the fact that ®y(r) is a continuous function of (r,8) shrinking n > 0 if necessary,
we have that A(P,J) — (1 —n) }1;1" Dy(r)dr < —ce < 0. We can now choose s (shrinking 7 further
if necessary) with € < s < § — € and

Ri+s
A(P.J,R) — (1 — 1) / Bo(r) dr < —c..

Ry

Then, using the definition of A(P, J, R;) (1.16), and choosing k large enough, depending only on
€ and 7, we can absorb the term involving [|u — v||g1 (g, r,+7), on the right-hand side of (5.10)
into the left-hand side.

The result (1.19) now follows from the fact that 1 gr,)u = Lpo,r)(Po — k) 'lp0,r)f =
15(0,r)RP(k)1B(0,R,)f by Proposition 3.1 and shrinking n if necessary.

6. PROOF OF THEOREM 1.2 (RELATIVE-ERROR ESTIMATE FOR SCATTERING BY A PLANE WAVE)

Recall that Q_ c R? is bounded and open with connected open complement, Qi = Qe \ Q-
is such that B(0, R,) C 4, for some Ry < Ri,. Let u® and v° be the solutions to (1.1) and (1.3),
respectively, and let u!(z) := exp(iz - a/h).

The key ingredient for the proof of Theorem 1.2, on top of the result of Theorem 1.4, is the
following lemma.

Lemma 6.1. Let Ry > 0 be such that Q_ € B(0,Ry). Given R > Rq there is C > 0 and hy such
that, for 0 < h < hy,

[ | 20,y < Cllu’ + vl 250, R\0)-
Proof. First observe that if

|l 2Bo.r0a ) = 201u’ 2280, R))

then the claim follows from the triangle inequality. Therefore, without loss of generality, we can
assume that HuSHLz(B(O,R)\QJ < C < 0. Under this assumption, the argument involving the free
resolvent in [GSW20, Proof of Lemma 3.2] shows that, for any compact set K C R9,

[ 22\ ) < Ck.

We now show that, for any 7 > 0 and ¢ € C2°(R? x R% R) satisfying [,. ¢*(2,a) dz > 0, there
exists C'r,, > 0 such that, for i > 0 sufficiently small,

| Opn(@)ul 2

(6.1) 'l r2(B(0,r)) < Chyp
Observe that, by the Fourier inversion fromula, for any ¢ € C°(R? x R%),

(6'2) <Oph('¢)ulaul> = ¢($aa) dz.

Rd
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Now, let ¢ € C°(R?) be such that 0 < ¢ < 1, ¢ = 1 in B(0, R) and is supported in B(0,2R).
Using (6.2), we obtain

I sy < low' e = [ 6o < |B(0.2R).
On the other hand, again using the Fourier inversion formula,
10mm(e! 2 = [ ) o

and thus (6.1) follows with
2 1 2 -1
Chy = 2\B(0,2R)|(7 v (z,a) dx) .
’ 2 Jpa

Let zo € 0B(0, Z) and V' C T*R? be such that
(l’o,(l) € Vv Vc {(xag) : <.’E,€> < 0} N T (B(O,?")\B(O,Ro)),

i.e., a is an “incoming” direction at zp. We take ¢ € C’g"(Rg), X € C=(R%) so that suppy C
B(0,R)\B(0, Ry), suppp(§)x(z) C V, and ¢ = 1 near a, x = 1 near xy. Letting ¢(x,§) =
w(&)x(x) and using (6.1) we get

(6.3) ' 2(B(0,r)) < Cryll Opp(¥)u’ ||z,
We now write
(6.4) Opy(¥)u" = Opy () (u! + ) — Opp(¢)u®.

By, e.g., [GLS21, Lemma 3.4], WF,(u®) N {(x,¢) : (x,€) <0, |z| > Ro} = (). Therefore, by, e.g.,
[DZ19, Proposition E.38],

WEF),(Opy,(1)u®) C supp ¢ N WFy(u®) = 0.

By the definition of WF, (see §B) and the fact that u® is uniformly bounded in L2 , there is
C > 0 such that, for A sufficiently small,

| Opy(¢)u®| 2 < Ch.
Now, by (6.2),
1
|2 (50, > 51 B0, B)]-
Therefore, with ¢’ := C(|B(0, R)|) ™", for h sufficiently small,

|| Opy (1) u®| 2 < CthUIHm(B(mR))-

Combining this last inequality with (6.3) and (6.4) and then using the fact that p(hDy;) € ¥*°
together with the support properties of x, we obtain that, for & sufficiently small,

u" || 2(B0,r)) < Cll O () (u" + u®)||r2 < Cllu’ + u® | 12(50,R)\B(O,R0):
and the proof is complete. O

Remark 6.2. The proof below shows that for any 0 < R < Ry such that Q_ € B(0, R) we can
replace the relative error

|lu® — USHHl(B(O,Rl)\Qf) [Ju® — US”Hl(B(UJ?l)\fL)
|uS + e*@e|| L2 B0, R\ ) [u + e*+¢| L2 (5 o,rN\02-)

in Theorem 1.2.

Proof of Theorem 1.2. Let 0 < Ry < R < Ry be such that Q_ € B(0, Ry) and let x € C=°(R?) be
such that y = 1 near B(0, Ry) and supp x € B(0, R). Observe that u® + yu! and v + yu! satisfy,
respectively,

(—R2A — 1) (u® 4+ xul) = [-R2A, xJu!  in R\Q_,
(6.5) B(u® 4+ xu!) =0 onl_,

u® + yu! is outgoing,
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and
(1280 — 1)(0° + xul) = 220, Ju! 0 RAQ.,
(6.6) B + xul) =0 onT_,
v 4+ xul =0 on I',.
Hence, by Theorem 1.4, there are C, hy > 0 such that, with 6y given by (1.9), for 6p+e < 0 < 7/2—¢
and any 0 < h < hg,

I(u® + xu") = (0% + xu)| g1 @0

Ryx

(6.7) < Cexp ( ~k((2- n)/ y(r) dr — A(P, J))) I=h2A, X 2 @uva)-

Ry
Since AVu! = iau?!,
(6.8) =24, XJu! |22 @as) < Cllu! |1 (0,r)) < ChllW!||L2(B(0.R))-
We now apply Lemma 6.1. We obtain, reducing fg again if necessary, that for 0 < k < Ay,
(6.9) ' |22 (B0,r)) < Cllu’ + v’ L2, RN )
The result (1.10) then follows by combining (6.7), (6.8), and (6.9). O

7. NONTRAPPING ESTIMATE ON THE FREE RESOLVENT WITH ROUGH SCALING
The goal of this section is to prove Theorem 3.2. This section uses notions of rough semiclassical
pseudo-differential operators recapped in §B.2. We first prove a propagation result.
Lemma 7.1. Assume that Q € C»*W? + hC%*U is such that, for any w € HE,
(7.1) (Im Qu, w) < Cohllwl?
H

b

Sl

and that o (Q) — q with q satisfying

(7.2) la(z, &) > clel?,  lg > C.
Given f € L?, with || f||z2 < C" with C" independent of h, let u satisfy Qu = hf. Let u have defect
measure pu as h — 0 (in the sense of (B.3)) and let u and f have joint measure p?/ (in the sense

of (B4)).
Then, (i) the measure u is supported in {q = 0}, (ii) for b € S* and x € C°, as h — 0,

(7.3) 1 Opp (b)xullz = u(lbl*x?),
and (iii) for any real-valued a € C°(T*R?),
(7.4) p(Hreqa® + Co(§)a®) > —2Im i/ (a).

Proof. The fact that supp pr C {¢ = 0} and (7.3) are shown in [GSW20, Proof of Lemma 3.6], where
the only assumptions used are that (a) the operator associated to the equation is in C1*W¥? +
RC%*W! and (b) the principal symbol satisfies the bound (7.2). We therefore only have to show
(7.4).

Let A := Opy(a). Following the calculations in [GMS21, Equation 2.32], we have
—2h" " Im(A*Au, Qu) = A ' Im ((A*ARe Q — Re QA* A)u,u) + 27 ' Re (A* AIm Qu, u)
= h ' Im ([A*A,Re QJu,u) + 21~ ' Re (Im QAu, Au)
+ 2k ' Re <A* [A, Im Q]u, u>
< h ' Im ([A" A, Re Qlu, u) + 2CO||AuHiI%

h

(7.5) + 2k ' Re (A*[A, Im Qlu, u).

by (7.1). We now examine each of the terms in (7.5), starting with the term on the left-hand side.
By (B.2) and the fact that a is real, o(A*A) = a?; using this and the fact that f is bounded in
L? uniformly in &, we have

|27 Im((A* A — Opy(a®))u, Qu)| < 2||A*A — Opy(a®)|| 2| fllz2 — O;
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hence, by the definition of 7 (B.4), as i — 0,

(7.6) — 2k Im(A* Au, Qu) = —2Tm(Opy,(a®)u, f) + o(1) — —2TIm p? (a?).

For the first term on the right-hand side of (7.9), by Lemma B.5, as i — 0,

(7.7) R~ Im([A* A, Re Qlu, u) — pu(Hgre qa?),

By the definition of u (B.3) and of the semi-classical Sobolev norms, as i — 0,

(7.8) ||AU||2§ — u((€)a®)

By Lemma B.5 and the fact that a is real, as i — 0,

(7.9) it (Re A*[A, Tm Qlu, u) — 0.

The result (7.4) then follows from using in (7.5) the limits (7.6), (7.7), (7.8), and (7.9). O

We now show that when Req is sufficiently regular, invariance statements of type (7.4) can
be translated to invariance statements at the level of the Hamiltonian flow. In this lemma, the
assumption p € C? ensures that the Hamiltonian flow is well defined; this is where the assumption
f € C? in our main results originates.

Lemma 7.2. Let u be a Radon measure on T*R® such that for any real-valued a € C°(T*R?)
and p € C?,

(7.10) w(Hya* + Co(€)a?) > 0.
Let ¢y be the Hamiltonian flow associated to p. Then, for any measurable B, and for allt > 0,

wr(B)) < u(B) + Co sup (€) / i(ipa(B)) ds.
(z,£)eB 0

Proof. We first show that (7.10) remains valid for a € C}. To do so, let a € CL. Let ¢ € C°
be such that ¢ > 0, supp¢ C B(0,1), and [¢ = 1. For e > 0, let ¢ := e 9¢(-/¢), and define
ac = ax* ¢, € C°. Since Hpa is continuous, Hpac = (Hpa) * ¢ — Hpa pointwise. Similarly,
a. — a pointwise. Hence Hpa? = 2a.Hya. — 2aH,a = H,a? pointwise. In addition, since the
derivatives of p are bounded on suppa, for 0 < e <1,

|Hpae(p)| = ‘ /Hpa(/’ —e()p(C) dC’ < Clp6suppa+B(0,1)'
Similarly |ac(p)| < C'1,esuppatB(0,1)- Hence [HyaZ(p)| < 2CC"1 yequpp at-B(0,1) and thus, by dom-
inated convergence, p(Hpa?) — p(Hpa?). In a similar way, p((€)a?) — p((€)a?); hence
N(Hpag + Co(€)a?) — N(Hpa2 + Co(€)a?).

By (7.10), the left-hand side is non-negative; since a, € C2°, so is the right-hand side, and hence
(7.10) remains true for a € C.

Now let a € C2°. Since the derivatives of p are bounded on supp a, by Hamilton’s equations
0sps is bounded on {cps € supp a} independently of time, and hence

105(a® 0 )| < Clx, forall (s,(z,€)) € [-t,0] x T*R?,

where

X = U ps(supp a).
s€[0,t]
By the dominated convergence theorem, interchanging the derivative and integral, we have

(0?0 p_1) — p(a?) = —/_ias(/a%sosdu) ds = —/_Ot/as(cﬁ 0 0y dyuds,

Since p € C% and ¢5 € C! for any s, a o o5 € C! for any s. Therefore, using (7.10),

0 0
p(a®) — pla® o py) = / /Hpa2 o s dpds > *Co/ /<£> a® o ps dpds.
—t —t

The result follows by approximating 1p by squares of smooth, compactly-supported symbols. [
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As a consequence, we obtain the following resolvent estimate.

Lemma 7.3. Let (Qg)oco be a family of (rough) semiclassical pseudo-differential operators with
© C R compact. We assume that Qg € CHW2 + hCH T yniformly in § € ©. We assume further
that (i) there exists Cy > 0 such that for any 0 € © and any w € HZ,

(7.11) (Im Qpw, w) < Cohljw|)?
H

)

ol

(ii) on(Qg) — qo where go € C? and depends smoothly on 6 € © together with its derivatives, (iii)
qo satisfies (7.2) uniformly in 0 € ©, and (iv)

(7.12) 3 >0, Vb, € O, ¥(z0,%) € {q9, =0}, 375, (w0,&0) > 0,
P (e (@0:€0) € ) {1 lan (. ©)| =},
[ASIC)
where @Y is the Hamiltonian flow associated with Re qp.
Then, there exists C > 0 and hy > 0 such that, for any 8 € ©, if u € L? is a solution of
Qou = Nf,
with f € L?, then, for 0 < h< hy, 1 <s<2,

ull ey < Cllf [l a2

Proof. For § > 0, let
&= ) {10 ao(. )| = 5}

e

We begin by showing two elliptic estimates ((7.16) and (7.17) below). Let b € S°(T*R9) be such
that b = 1 on &, /o and suppb C &,/4. We write Qy = Opy, g4 + hOpy, ¢f with ¢§ € C+*S? and
¢? € €% S uniformly in A — 0. Let 1 € C>°(R) be such that ¢ = 1 on [~2,2], and for € > 0 we
define ¢f (x,€) := (Y(e]De|)gf) (2, €). Then ¢f . € 5? and by Littlewood-Paley (see, e.g., [Zwol2,
§7.5.2]),

(713) zgg HD?(qg,e(vg) - qg('ag))HCO’Q < C€<€>2_|ﬁla

where C' is independent of € and the uniformity in 6 comes from the fact that all the involved
quantities depend continuously on 6 and © is compact. In particular, by (7.13), for € > 0 and
0 < h < hg small enough, qg)e is elliptic on supp b, uniformly in € > 0 and 8 € ©. Therefore, by
the elliptic parametrix (Theorem B.2), there exists Sc g € U*~2, bounded uniformly from H!" to
H,T*S“ in € > 0 and 0 € ©, and such that

(RD)*b(x, hD;) = Se 6 Opy(ah.c) + O(h™) g,
and thus
(7.14)  (AD)*b(x,hDy) = Se0Q — Se,0h OP4(47) + Se(Op(dh.c) — Opp(ag)) + O™ ).
But, by (7.13) together with Lemma B.4,

(7.15) sup | Opy(45,e) — OPp(a0) 1252 < Ce,

where C' is independent of € and h. In addition, by Lemma B.4 again, Opy(q¢}) € L(H}, L?)
uniformly in h and 6 € ©. Thus, using the fact that S 9 € ¥ uniformly in € > 0 small and 6 € O,
(7.14), and (7.15), we find that

(hD)*b(w, hDy) = Se0@Q + O(h) g1, pra—s + O(€) o, yra-s-

Evaluating in w € H} and letting € — 0, we conclude that there exists C' > 0 such that for / small
enough and any # € ©

(7.16) o(z, ADz)wl| g < C’||Q9wHH§72 + Chllw| gy,  forall w e H}.
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A near-identical argument, using (7.2), shows that for ¢ € C°([—2,2]) with ¢y =1 in [—1,1], and
K large enough, for any 6 € ©

(7.17) |(1 = (K~ RDg|))(1 — b) (2, hD)w|| s < C'|Qowl| yz-2 + C'hl|w]| gz for all w € H}.

Now, if the conclusion of the Lemma fails, there exists wy, fn, 0, € © and h, — 0 such that
Qo, (Tn)wn = R, Nwallmy, > 2l fall -2
Normalising, we can assume that
(7.18) lwnlla, =1 N fallgg-2 = o(1).

Therefore, extracting subsequences, we can assume that wy, has defect measure w. In addition, as
O is compact, we can assume that 6,, — 6 € ©.

Now, by (7.16) and (7.17),
1(1 = (KA Da ) (1 = b(a, hD:r))wnHH;‘{" + [[b(=, hD:v)wnHHﬁn
< h?“L(an”H;;2 + ||wn||H§n) = O(hn),
and in particular
14 O(hn) = 10K~ 1 Dal)(1 = b(a, KD, )wn ;.
< Ok |[¥(K Dy |) (1 = b(z, hDy))wy |2 < Ck-
Thus, by the support properties of b and v
(7.19) w( n/a (] <2K}) > ck, w(&y/2) =0, w(|¢] > 2K) =0.
Next, observe that letting u,, := O(K YDy |)(1 = b(z, hD,))w,, with ¢ € C°(R), ¢ = 1 on
[—2,2] and b € S°(R?) with b = 1 on supp b, we have
Qo, tn = (K Ry D|)(1 = b(w, AD2)) b fr + [Q, (K 1 ADy|) (1 = b(x, hDg ) )wn, =: By fin.
and u,, has defect measure p := (K~ 1¢|)(1 — b)*>(x, hD,)w. Now, by Lemma B.5

h;1<[Q9n,¢3(K*1|th|)(1 b(x, hDy)|wy, Y(K " |h, D])(1 — bz, th)wn>

= WK = bz, hD2)) Hy (KHE]) (1 = b, hD.)) = 0,
since supp Hgo (K 1E[) (1 — b(x, AD,)) N{|¢] < 2K} = 0 and w(|¢] > 2K) = 0.

In particular, this implies
1fallzz < Cllfall g2 +o(1) = o(1).

Therefore, u,, and fn have joint defect measure equal to 0, and hence, by Lemma 7.1 applied with
q := g5, together with Lemma 7.2, for any measurable B, denoting ¢ := ¢’

t
w(ei(B)) < u(B) + Cy sup (5}/ w(ps(B))ds, forall t >0,
(x,£)eB 0

and thus, by a Gronwall inequality
(7.20) 1(pe(B)) < u(B) x exp (Co sup (§)t) forallt>0.
(z,€)€B
But, by (7.19), u(&,/2) = 0. Together with (7.20), this implies that y is identically zero. Indeed,
let (x,€) € {q = 0} be arbitrary. By (7.12), if B = V(z,£) N {q = 0} where V(z, &) is a sufficiently
small neighbourhood of (x,§), there exists 7 = 7°(B) > 0 such that ¢_.«(B) C &,/ , and hence
p(p_r+(B)) = 0, from which
H(B) = plipr- (s (B)) < plip—r- (B)) x exp (G sup (€) 77) =0,
5=
where we used the fact that supy, _oy € | < co. This is a contradiction with the fact that, by
(7.19), p(EC),) = ¢ > 0. O
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We now show that the scaled operator satisfies the uniform escape-to-ellipticity condition (7.12)
under suitable uniformity assumptions for Fy.

Lemma 7.4. Let —Ay be as in §A.2, and let py be its principal symbol. Let © € (0,7/2). Assume
that Fy € C* uniformly in 0 € ©. Then, there exists v = v(©) > 0 such that, for any 0y € © and
any (wo,&0) € {Reps, = 1}, there exists 75 (x0,80) > 0 so that the trajectory % (x0,&0) of the
Hamiltonian flow associated to Re pg, and starting from (xo,&y) satisfies

P (e (@0:€0) € ) {1©Ipo(a. &) ~ 1] = v}

6ce
Proof. Suppose the conclusion fails. Then there are {0,,}>° ; and {(z,,&,)}22; such that

w‘i’;(mn,fn) C {(§>_2|p9n -1 < n_l} for all t > 0.

Since © is compact, we can assume 6,, — 0 € ©. Moreover, since there are ¢, C' > 0 such that, for
all § € O,

(7.21)  |pe(x, &) — 1| > c(€)? — C for all (z,¢), and lpo(x, &) — 1| > ¢ for all |z| > C,

we can assume that (x,,&,) — (20,&0). Now, for any fixed t > 0, p_¢(n,&n) — p—t(T0,&0)-
Therefore,

w—t(zo,&) C {lpg — 1| =0} for all ¢t > 0.
Now, by (A.8)
Impg(x,§) = —2(Fy (2)(I + Fg'(2)*) '€, (I + Fy (2)*)7'€).
Therefore, when Im py(z,&) = 0, since Fy/(z) > 0, this implies F}/(z)(I + F}/(z)?)~1¢ = 0 and
hence,
€= (I + (Fy (2)*)(I + (Fg (2))*) 76 = (I + (Fy'(2))*) €.
Now, again by (A.8)
Rep(,€) = (I + (Fg (2))*) '€, (I + (Fy (2))*)'€).
Therefore, when pg(z, &) = 1,
Repg(w,6) = €* =1, OcRepp = 2(I + (Fy'(2))*) 7 (I + (Fy'(2))*) 7€ = 2,
and, since Fy(z) is symmetric, and Fy'(z)€ = 0,
Oz, Repg = —2((1 + (Fy(2))*) (0, Fy Fy () + Fy' 00, Fy (1)) (1 + (F'(2))*) 716, (I + (g (2))%)71€)
= —2((00, Fy Fy(x)" + Fg 00, Fy(2)")8,€) = 0.
In particular, Hgep, = 2(€,0;) and |§| =1 on {pg — 1 = 0}. Thus, we have
p—t(z0,&0) = (20 — &0, &0) C {po = 1} for all ¢ > 0,
which contradicts (7.21). O

Proof of Theorem 3.2. We let Qg := —h2Ag — 1 and check that Qg satisfies the assumptions of
Lemma 7.3 with © := [¢,7/2 — €]. Lemma 7.4 shows that the escape-to-ellipticity condition (7.12)
is satisfied, where Fy € C® uniformly in 0 € [e,7/2 — €] since fa(r) = tan0f(r) with f satisfying
(1.5) and the functions Fy and fp are related by Lemma A.4. Moreover, since for such a scaling
function SUPc<g<r/2—e (I +3iF) (x))] <C,
inf “2lo(=h*Ag —1)| >0 >C

I N Y M ]
and hence (7.2) holds uniformly in 6 € [¢,7/2 — €]. Finally, (7.11) follows from (A.7) and (A.8);
indeed, for u € H %

(7.22) Im(—h?Agu, u) < Im(h?A(z)0pu, u) < Cii||u||21/27
h

where C' > 0 can be taken uniform in 6 thanks again to the particular form of the scaling function.
To see the last inequality in (7.22), observe that

(A(2)hdpu, u) = ((hD)~Y2A(z)(hD)Y*(hD) Y2 hd,u, (hD)Y ?u),
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and thus it suffices to observe that, since A(z) € Cl, A : H{l/z — Hﬁ_l/2 is bounded by
Lemma B.4.

Therefore, Lemma 7.3 applies to Qp := —h%?Ay — 1, © := [e,7/2 —¢]. Let —1 < s < 0, and
A > hy ! where Hg is given by Lemma 7.3. Then Lemma 7.3 implies

lull go+2 < CETHI(=H2Ag = V)ull
which implies that
lullze + k= Jullgere < R (A — B2)u -
In particular, (—Ag — k2)~! has no poles in k > hy ' and the required estimates hold. O

APPENDIX A. COMPLEX SCALING FOR ROUGH SCALING FUNCTIONS

We follow the treatment of complex scaling in [DZ19, Chapter 4|, making the necessary changes
to allow for C%? scaling functions.

A.1. The scaled manifold and operator. For 0 < 8 < 7, let Ty C C¢ be a deformation of R¢
satisfying the following properties

I'o N Bea(0, R1) = Bra(0, Ry), Lo N (C%\ Bea(0, Ry)) = RN (C4\ Bea(0, Ry)),
Ty = f@(Rd)a fe :R% — €4, is injective.

(A1)

Recall that for £ > 1, a manifold C“* manifold M c C? is called totally real if for all m € M,
Ty M N iT M = {0}.

(Note that we identify T}, M with a subspace of R?? 2 C? in this definition).

Furthermore, if u € C%*(M), we call u € C“*(C?) a (£,t)-almost analytic extension of u if

9:,u(z) = Og(d(z, M)*"1F9),  s<t
where, if z; = x; + 1y;,
0., = %(

Recall that a C! function, u, on Q C C? is holomorphic if and only if 5Zju =0forall j=1,...,d.

We next need the analog of [DZ19, Lemma 4.30] for C%! manifolds. To do this, we first need

a lemma which gives (¢, t)-almost analytic extensions of functions in C%*(R%) functions. For this,
we need to use the C5"" norm:

= 1
On, —i0,), Oy i= 5 (00, +10,,).

g += sup 2+ gt (Dl

where gy € C°(—1,1), p1 € C((3,2)), or(®) = ¢1(2'7%2), k > 1, and 3, ¢} = 1. We also
recall that for all s, ¢,

Cé,t C Cl,t
and for 0 < t < 1, 0%t = 5.

Lemma A.1. Let ¢ € Z,, 0 <t < 1 and suppose that u € C4*(RY). Then, there is u € iji (cm
such that tlga = u and for all s < t,

0,1 = Os(] Imz\”sfl).

Proof. Let x € C2°(B(0,2)) with x =1 on B(0,1) and v € C2°(R%) with ¢ = 1 on supp u. Define

(ﬁffjl / O\ (©yule!)da'de.

Note that when y = 0, u(x) = u(z) by the Fourier inversion formula and the support property of
1. Next, observe that for 0 <t <1

oy B w() ~ 020N/ (6)
y,y’ ly —y'|

u(x +1y) =

< Ca57<§>|5\+v—la\.
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and
y = 0e W (y(€)) € S

is continuous. Therefore, by [Tay11, Theorem 13.8.3], & € ,<,,, CET*(RY; C: (RY)) and is

compactly supported. In particular, u € C%*.
Finally, we compute
a ~ . 1 81/} € ile—z'+i
0.1(o i) = g st [ 0 IOy

+ ngrﬂi / T ox(€y)ule)da'dg = T+ 1T

Now, to estimate I, we observe that | — 2’| > 0 on the support of the integrand, and hence we
can integrate by parts in £. In particular,

1=y [ e (St @t s = o)

2 (2m)d |z — 2|2

On the other hand, to estimate I, observe that |(£)y| > 1 on supp dx((£)y). Therefore,

_ T @) [ iemarring gyers_OXUEY)
) O iy

and since

Sl;p ‘5?6—@,5) <f>é+s (|;2<§(><)i>_yl)+s < <§>€-&-s—|ﬁ|7

for all s < ¢,
11| < Cly|~ '+

We now give the analog of [DZ19, Lemma 4.30].

Lemma A.2. Let 0 <t < 1 and suppose M C C?% is a C* totally real submanifold. Then every
u € CHY(M) has a (£+t)-almost analytic extension, u, to C*. If P = > la|<k @02 is a holomorphic

differential operator near M |, then P defines a unique differential operator Py whose action on
CH (M) is given by

Pyu = (P(@))|u
Proof. The proof follows that of [DZ19, Lemma 4.30] where we replace references to almost analytic
by (£ + t)-almost analytic. O
We now recall [DZ19, Lemma 4.29].
Lemma A.3. Let T'y be as in (A.1). Then Ty is totally real if and only if
det(d, fo) # 0.
In particular, if 0 <0 < /2, and
(A.2) fo(x) = x40, Fp(z) : RY — C%,

where Fy : R? — R is conver, then L'y is totally real.

Throughout the paper we work in the case (A.2) as shown in the following lemma.
Lemma A.4. Let fo(z) :== = + zf9(|x|)ﬁ with fg as described in (1.5). Then there is F(x)
satisfying
F"(z) >0, F"(z) >0 on |z| > Ry
such that fo(x) is given by (A.2) with Fp(x) = tan 0F (z).
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Proof. We follow [DZ19, Example on Page 269]. If

0=
then fg(z) = z + i tan 09, g(|z|). With F(z) = g(|z|), direct calculation shows that

|zf? |z[?

which is positive semi-definite everywhere and positive definite on |z| > R;. ]

We can now define the complex-scaled operator for a black-box Hamiltonian. Suppose that I'g
is given by (A.1), with fy € C%t for some 0 < t < 1, and fy satisfying (A.2), and that P is a
black-box Hamiltonian as in §2. With x € C°(B(0, R1)) equal to 1 on B(0, Ry), define

Ho = Hr, ® L*(To \ B(0, Ry)),
(A.3) Dy={ucHp: xuecD, (1-x)ucH* Ty},
Pyu = P(xu) + (=A)((1 — x)u),
with Ag := Ar, defined as in Lemma A.2.
A.2. Fredholm properties of the scaled operator. Throughout this section we use the fol-
lowing standard characterization of Fredholm operators.

Lemma A.5. Let X and Y, Zx and Zy- be Banach spaces such that X C Zx is compact and
Y* C Zy~ is compact. Suppose that there is C' > 0 such that P : X — 'Y satisfies

[ulx < C([Pully +lullzy)  and  |lully= < C([[Pullx~ + [lul . )
Then P : X — Y is Fredholm.

It is easy to check that Ay is an elliptic second order differential operator given by
(A4) Agu = (I +iF})(x))710,) - (I +iF) (z)) "1 0,u), u € O (Ty);
see [DZ19, Equation 4.5.13 and Theorem 4.32].

Lemma A.6. Foru € HY(R?), and all e >0

(A.5) Im(—Agu,u) < ellul|fpn + CeHullFzy  ulln < C{(=Agu,u)| + CllulZ-.
Furthermore,
(A.6) ||u|\§11 < C’(| Re(—Apu, u>| — Im(—Apu,u) + ||u||%2)

Proof. By the definition of the operator —Ay (A.4) acting on H*,
(A7) (—Agu,u) = (I +iF} () 0pu, (I —iFy () ' 0pu) + (A(2)0pu, u)
where A(x) € C%*. First, note that

[(A(2) 05w, u)| < Cllull [l e

Next, put v = (I + Fj/(z)?)"'0,u. (Note that the inverse exists and is bounded since F}/(z) is
real, symmetric, and tends to tan6 I.) Then,

(I +iFg ()™ Opu, (I — iFy (2)) 7' 0pu) = (I — iFg ())v, (I +iFg (x))v)
(A.8) = ((I —iFy (x))*v, )
= IIUIILz — |1 (2)vll72 — 2i(Fg ()v, v).

H—1 g1

Therefore, since Fj is positive semi-definite, the first inequality in (A.5) holds.
To obtain the second inequality in (A.5), observe that if
—Im (I +iFy(z)) ' Opu, (I —iFy (x)) ' Opu) = 2(Fy (x)v,v) > 2¢[|v|?,
then (A.5) holds. On the other hand, since F} is positive semi-definite,
(A.9) (F} (z)v,v) < e||v||22 implies that IFY (2)v])22 < Ced[|v]2s.
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Indeed, the multiplication operator Fj : L?(R%; C?) — L?(R%; C?) is positive semidefinite and self
adjoint. Therefore, letting II. be the spectral projector onto the spectrum < Eé, we have
ellvl* > (Fg'v,v) = (Fgllev, Tev) + (F' (I = Hev, (I - TLe)v)
> ¢5[(1 — Mo 7.
Therefore,
1E3 olI72 = [ FyTev|Fz + [|Ff (I = Tv|fz < Ces o7
Thus, using (A.8) together with (A.9) with € > 0 small enough, we have
(I +iFy (2)) ™ Opu, (I — iFg ()T 0pu)| 2 c|lvll72 = ¢l OpulZe,
and (A.5) follows.
To obtain (A.6), we use the second equation in (A.5) to obtain that
lullF < ClRe(=Agu, u)| + C| Im(=Agu, u)| + CllulZ-
< C|Re{—Agu,u)| + C’! Im{(—Agu, u) — e||u||2Hl — Ce_lHu||2Lz‘ +C(1+ 6_1)”’(1,”%2 + Ce||u||%p
= C|Re(~Agu, u)| — CTm(~Agu,u) + Cellul| 3 + C* Hull2 + CA+ e Hullz2 + Cellullzn,
and e > 0 small enough. O

Lemma A.7. The operator
—Ap — N2 H'(RY) — HY(RY)
is an analytic family of Fredholm operators with index 0 in Im(e?*\) > 0. Furthermore,
Roo(N\) = (=Ag — A1 HTYRY) — HY(RY)

s a meromorphic family of operators with finite rank poles and there is tg > 0 such that fort > tq,

= Q

[Roo(e %)l -1 22 <

Proof. First note that
CeTZOA N2 = e 20 (L A~ (Ae™®)?) : HS(RY) — HPT2(RY)
is invertible for Im(\e?) # 0 since —A : L? — L? is self adjoint.
Suppose that
(—=Ap — N)u = f.
Let x € C°(R?) with y =1 on B(0, R2). Then,
(1=x)f =1 =0*PA = 2M)u= (A=) (1 - xu+ e’ [-A,x]u.

Therefore,
(A.10) 11 = X)ullg < COIA =) -1 + el 2 supp o)) -
On the other hand, by Lemma A.6 for ¢ € C°(R9), and v¢; € C>°(R?) with ¢); = 1 on supp .
(A.11) lbullm < C(1rflla- + [¥rull 2).
In particular, combining (A.10) and (A.11), there is 1)1 € C2° such that
(A.12) lullzr < C(I1(=20 = X)ull -1 + [drull2).-
Now, since

(—e**A - X?): H'(RY) - H'(RY)
is invertible, an identical argument shows that
lull g < C(I1(=20 = X*) ull -1 + oull 2).
Lemma A.5 now shows that (—Ag — A\?) : H' — H~! is Fredholm for Im(e*®\) > 0.



30 JEFFREY GALKOWSKI, DAVID LAFONTAINE, AND EUAN A. SPENCE

Finally, we check the index of this operator. For u € H*, A = e'Tt, and ¢ = 1/v2, by (A.6),
(=g — /\2)u,u>‘ > ¢|Re(—Agu, u)| + c|(Im(—Agu, u) — t2||u\|2|
(A.13) > ¢| Re(—Agu, u)| — cIm(—Agu, u) + ct?||ul|?
> cllullF + (ct® = O)lul|Ze.
Thus,
cllullfp + (ct® = O)lullze < 2 lI(=A = M)ullfr—s + 5llullin
and hence, choosing € > 0 small enough,

V(et2 = O)l|ull gz + cllull < [[(=29 = A)ul| -1
Similarly,

Vi(et? = O)ullzz + cllullm < [1(=80 = A)*ull -1,

and hence, for ¢ sufficiently large, (—Ag — (e5¢)2) : H' — H~! is invertible. O

Lemma A.8. For Im(e??)\) > 0, Rog(\) : L2(R?Y) — H?(R?) and there are C > 0 and to > 0 such
that fort > tg, and £ =10,1,2,

|Roo(e FD)llpa e < CH2.

Proof. Suppose f € L?. Then, Ry () f € H'(R?) and (—Ag—A?)Ro¢(\)f = f, and using (A.13),
we obtain

1Ro,6( M) z2r2 < Ct72.
By H? elliptic regularity (see, e.g., [Eva98, Section 6.3, Theorem 1]), for u € H*,

(A.14) lullzzz < CUI(=A0 = X)ullL2 + [Jull2).

Therefore Rog(\) : L? — H? and
[ Ro,6(MN)lr2—m2 < C;
the bound L? — H' follows by interpolation. O

Lemma A.9. Suppose that P(\) : X — Y is an analytic family of operators in Q C C and there
are Q(A) 1Y — X and S(\) : Y — X meromorphic families of operators with finite rank poles
such that

PN =T+ Ki(N), SNP(N) =1+ Ka(N\)
with K1 :Y =Y compact and Ko : X — X compact. Then, P(X) is Fredholm.

Proof. Let A\g € Q. By the definition of a meromorphic family of operators (see, e.g., [DZ19,
Definition C.7]), there are J > 0, Ag(A) : Y — X and A, : Y — X such that Ay(\) is holomorphic
near \g, A; is finite rank, 7 =1,...,J, and

Then, we claim that

T P(V)A,
(A.15) ()\_7)\0;]» = P(A)(Q(A) — Ao(N)) =T + K1(A) = P(A)Ao(N).
j=1

is an analytic family of compact operators. Indeed, the left hand side of this equality is a mero-
morphic family of operators with uniformly bounded rank. On the other hand, the right hand side
I+ K1(A)—P(M\)Ap(A) is analytic. In fact, by Taylor-expanding P(A) about A = \¢ and demanding
that the coefficients of (A — X\g)*~7 on the left-hand side of (A.15) equal zero for k =0,...,J — 1,
we see that, for 0 < k < J -1,

k
OV P|r=
y A=t |,A_/\° Aj—tin =0.
n:

n=0
Thus,
Lornva K
Y o = 2 [BAPher s + OA = doDxv] 4j,

=1 j=1
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and this operator is an analytic family of compact operators as claimed. We then observe that

PVA 14 ko

P(NAo(A) =T+ Ki(A) - Z A=)

with K;(\) an analytic family of compact operators.
Writing
J B.
S(A) = Bo(A —

with Byp(A) : ¥ — X analytic and B; : Y — X finite rank, j = 1,...,J, and applying the
same argument shows that By()) is an approximate left inverse for P()A). Since P(\) has both an
approximate left and right inverse, it is Fredholm (see, e.g., [DZ19, (C.2.8)]). O

Proposition A.10. Let Py, Dy, and Hg, 0 < 0 < 7/2, be as in (A.3). If Im(e?’\) > 0, then
Py — X2 :Dy — He
1s a Fredholm operator of index 0 and there is tyg > 0 such that for t > tg, and 0 < s <1,

(A.16) 1Py — i)y oy < CE22
Moreover, let Ry < Ry with Ry as in (A.1). Then
(A.17) 150,80 (P = X)) p0.r) = 1a0,8:)(Po — A*) " 1p(0,R1) Im(e’\) > 0.

Proof. Together with Lemma A.9, the proofs of [DZ19, Theorems 4.36, 4.37| prove the result with
(A.17) replaced by
(A.18) X(P = X))y = x(Py — M)y, Im(e?\) > 0,

for x € C°(B(0, Ry)) with x =1 on B(0, Ry). (Although the bound (A.16) is not explicitly stated
in [DZ19, Theorems 4.36, 4.37], it is essentially contained in Step 3 of the proof of [DZ19, Theorem
4.36].)

Replacing x on the left of both sides of (A.18) by the indicator functions in (A.17) follows by
the unique continuation principle since P = Py on B(0, R;). To replace x on the right of both
sides of (A.18), we approximate f € Hpg, ® L?(B(0, R1) \ B(0,Ro)) by fn € Hr, ® L*(B(0, Ry —
n~1)\ B(0, Ry)) and use continuity of (Py — A?)~! : Hy — Hg and Rp(A) : Heomp — Hioc- O

A.3. Fredholm properties for the PML operator. Now that we have obtained the Fredholm
property of Py, we study the Fredholm properties of the corresponding PML operator. Let 2y € T'g
have Lipschitz boundary and B(0, R;) C €y. We study the PML operator Py — A\? on Q. Let

Ho(Qo) := Hp, ® L*(Q9 \ B(0, Ry)),
(A.19) Dy(Qg) :={u € Hg : xu €D, (1—-x)uc Hy(Q), —Ag((1—x)u) € L*(Q)},
Pou := P(xu) + (=A¢)((1 = x)u),
We start by showing the Fredholm property when there is no black-box Hamiltonian i.e. when
Py = —Ay.
Lemma A.11. The operator
(—Dp — A\ : HY () — H 1 (Q)

is Fredholm with index 0. Let Ré?e(/\) = (=Ap =271 HY(Qg) — HY(Qg). Then there isty >0
such that fort > tg, and 0 < s <1,

(A.20) HRODﬁ(ei%t)HL2(§29)—>HS(QQ) <Ot 2,

Proof. Repeating the arguments in the proof of Lemma A.6 for u € H} () instead of u € H'(R?),
we obtain that, for u € Hg (),
(A.21)

Im(=Agu, u)q, < 6||UH%11(QQ) + 06_1”“”%2(99)7 HUH%H(QG) < C[(—Agu, u)o, | + C||UH%2(QQ)7
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and

(A.22) [ullF 0,y < CIRe{=Agu, uq,| — Im(—Agu, u)a, + [ulZ2(q,))-

The second estimate in (A.21) together with the fact that —Agy : H}(Qg) — H () is bounded,
implies the Fredholm property for (—Ag — \2) : H}(Q) — H~1(Qp) (similar to in the proof of
Lemma A.7). To check that the index of the operator is 0 we argue as in (A.13). The estimate
(A.22) implies that, for A\ = e ¢, the estimate (A.13) holds. The bound (A.20) for s = 0,1, then

follows from (A.13) (exactly as in Lemma A.8), and the bound (A.20) for 0 < s < 1 then follows
via interpolation. O

Finally, we show that the black-box PML operator (A.19) is Fredholm with index 0.

Proposition A.12. Let Py, Ho(Q), and Dg(Qy) be as in (A.19). Then, Pp — N2 : Dy(Qy) —
Ho(Qg) is Fredholm with index 0.

Proof. To show that Py — A2 is Fredholm, we find meromorphic families of operators giving both
an approximate left and right inverse for Py — A2, Applying Lemma A.9 then shows that Py — \? is
Fredholm. To show Py — A2 has index zero we find \y where Py — )\% is invertible (since the index
is constant in A by, e.g., [DZ19, Theorem C.5]).

Approzimate right inverse.

Let xo € C*(R%[0,1]) with xo = 1 on B(0, Ry + €) for some € > 0. Then choose x; €
C2°(R%[0,1]), j = 1,2 such that

(A.23) Xx; =1 on suppx;_1,, supp x; C B(0, Ry).
Let
Qo :=(1—x0)Rs(NA —x1),  Q1:=x2(Py— ) 'xa.
Then,
(Po = A*)Qo = (1 = x1) + [Ag, X0l Rpp (M) (1 = x1),
(Pp — A)Q1 = x1 + [~ A, x2](Pp — A?) " 'x1,
and thus

(Po—N)(Qo+ Q1) =T+ K(\), where K(X):=Ko(A)+Ki(N),

KO(A) = [Aea XO]ROD,Q()‘>(1 - X1)7 Kl ()\) = [_A97X2](P9 - )‘2)_1X1-
By Lemma A.11, RYy : L*(€) — Dg(§2). Since Qy is Lipschitz, Dy(Q) C H/?(€y) by [CDIS,
Lemme 2|, [JK95, Corollary 5.7]. Therefore, since (1 — x1) : He(29) — L*(Qp) and [—Ay, xo] :

H3/2(Qp) — HY?(B(0,R1)\ B(0, Ro+¢€)), Ko(\) : Ho(Q) — HY?(B(0,R1)\ B(0, Ry +¢)). Thus,
Ko(N) : Ho(Q9) — Ho(S2p) is compact.

Next, by Proposition A.10, (Pp — A?)~1 : Hg — Dy. Therefore, since x1 : Hg(p) — Heg, and
[_A97X2] :D9—>H1 (B(O7R1)\B(07R0+6)5

comp
K1(X) : Ho(Q9) — Hlop (B(0, Ry) \ B(0, Ry + ).
In particular, K1(X\) : He(Q) — He() is compact and thus K(X) : He(Qs) — He(Qg) is
compact.

Invertibility of the right inverse.

We now show that for A = ¢ % ¢ and ¢ sufficiently large, I + K () is invertible. By Lemma A.11
and Proposition A.10, respectively, for ¢ > tg,

(A.24) IRDg (€% )| L2(y)—tri(g) < Ct™1 and  [|(Pp — it?) 7 <Ct .

1
Ho —>D92

Furthermore, [Ag, xo] : H' () — Ho(Q) and [Ag, x2] : DG% — Ho(Qp). Using these bounds and
mapping properties in the definition of K()), we find that, for ¢ > ¢,

||K(e%t)“7‘£9(99)—)’}{9(99) <Cctl

hence I + K (e'Tt) is invertible for ¢ sufficiently large.
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Approzimate left inverse.

For the left inverse, let

So(A) = (1 = x1)Ryp(M)(1 = x0) + x1(Ps = A*) "' xa,
and observe that
Se(N) (P — A?) = I+ Lg()),
where
Lo(N) := (1 = x1)Rgly (M) [x0, Do) + x1(Po = A%) " [x2, —Ag].

Note that Sy : Hg(Qp) — Dy(Qp) and hence, Ly : Dp(2g) — Dp(Qy).

The fact that Ly : He(Q) — Hae(Q) is compact follows from the mapping properties
(A.25) RPy(\) : HH(Qg) — HE(Q9), (P —X2)7':D,* = D>

Therefore, by the definition of |- ||p,q,) (inherited from (2.3)), to show that Ly : Dg(29) — Da(29)
is compact, it is enough to show that (Py — A2)Lg()\) : Dp(Qe) — He(p) is compact. Now, using
(A.23), we obtain that

(A.26) (Py = A*)Lo(A) = [Ag, x1]Rg 5 (M) X0, Ag] + [ A, x1](Ps = A*) ™! [x2, — Aol

The compactness of (Py — A2)Lg(A\) : Dy(p) — He () then follows since [—Ag,x;] : Dy —
HY(B(0,R1)\ B(0, Ry +¢)),

[=A, X (Po =A%), [=A, xi] Rgp(A) : H'(B(0, R1) \ B(0, Ro +¢€)) — H'(B(0, R1) \ B(0, Ro +¢)),
and I : HY(B(0,R1) \ B(0, Ry +¢€)) — Ho(p) is compact.
Invertibility of the left inverse.

Finally, we show that for A = eT¢ and ¢ sufficiently large, I + Lg()\) : Dg(Q) — Dp(Qp) is
invertible. As a map Hg(Qp) — Ho(Qe), (I + Lo(N))~! exists by the same argument used to show
that I + K () was invertible (and the corresponding estimates on RODﬁ()\) c H71(Qp) — L2(Qy),

and (Py — \?) : D;l/Z — Hy obtained from (A.24) by duality).

Therefore, by the definition of | - [|p,(q,), to show that (I 4+ Lg(X))~! : Dy(Qy) — Dy(Qp), it is
sufficient to show that (Py — A2)(I + Lg(A\)) ™! : Dp(Qg) — He (). Since

(Pp = A)(I + Log(N) "t =Py — X2 — (Py — AN Lo(\) (I + Lo(\) 1,

it is enough to prove that (Py — A?)Lg()\) : He(2) — He(Qy), and this follows from (A.26) and
the mapping properties (A.25). O

APPENDIX B. SEMICLASSICAL ANALYSIS

B.1. Semiclassical pseudo-differential operators. We review here the notation and definitions
for semiclassical pseudodifferential operators on R? used in this paper.

Semiclassical Sobolev spaces. We say that u € H;(R?) if

1€) Fr(u)(€)[|l 2 < o0, where (€):= (1+[¢[})? and Fu(u)(€) == / e+ W u(y) dy

is the semiclassical Fourier transform.

Symbols and operators. We say that a € C>°(T*R?) is a symbol of order m if
0507 a(w, €)| < Cap(&)™,

and write a € S™(T*R?). Throughout this section we fix xo € C°(R)) to be identically 1 near 0.
We then say that an operator A : C°(R?) — D'(RY) is a semiclassical pseudodifferential operator
of order m, and write A € U7*(R?), if A can be written as

1 i
) Aule) = sy [ R ala Onolle — yu(p)dyde +
where a € S™(T*R%) and E = O(h™)g-~, i.e. for all N > 0 there exists Cy > 0 such that

||E||H;N(Rd)_>HiJi\7(Rd) < CNhN.
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We use the notation Opy, a or a(z, hD,) for the operator A in (B.1) with E = 0. We then define
e, s =5 e e, 50| o,
Theorem B.1. (|[DZ19, Propositions E.17 and E.19].) If A € V" and B € V;'?, then

(i) AB € Uyntmz,
(i) [A, B] € ptma—l
(tii) For any s € R, A is bounded uniformly in h as an operator from Hj to Hy ™.

Principal symbol. There exists a map
ot W™ — §™ /hST
called the principal symbol map and such that the sequence

m
O or

0 — hS™ 1 B gm 2y gmpgm=1 _

is exact where Op,(a) = a(z, hD). When applying the map o} to elements of U™, we denote it
by o (i.e. we omit the m dependence). Key properites of o, are the following

(B-2)  on(AB) = on(A)on(B),  on(A) =Tn(A),  ih~ on([A, B]) = {on(A),on(B)}

where {-,-} denotes the Poisson bracket; see [DZ19, Proposition E.17].

Operator wavefront set. To introduce a notion of wavefront set that respects both decay in &
as well as smoothing properties of pseudodifferential operators, we introduce the set

T*Rd := T*R4 L (R? x §471)

where LI denotes disjoint union and we view R¢ x S%~1 as the ‘sphere at infinity’ in each cotangent
fiber (see also |DZ19, §E.1.3] for a more systematic approach where T*R¢ is introduced as the
fiber-radial compactification of T*R%). We endow T*R¢ with the usual topology near points
(w0,&) € T*R? and define a system of neighbourhoods of a point (zg, &) € R? x S9! to be

Ve ={(@,6) € TR [|o — ol < e,[€] > 7!, | 1§ — &o] < ¢}

U {(z,€) € RY x §971 ¢ |z — x| < e, |€—&| < €}.

We now say that a point (xg, &) € T*R¢ is not in the wavefront set of an operator A € ™, and
write (z9,&y) ¢ WFp(A), if there exists a neighbourhood U of (¢, &p) such that A can be written
as in (B.1) with

sup [050¢ a(x, §)(E)N] < Capnh™.
(z,&)eU

Elliptic set and elliptic parametrix. We say that (xq, &) € T*R9 is in the elliptic set of A, and
write (zo, &) € Ell(A), if there exists a neighbourhood U of (g, &y) such that A can be written as
in (B.1) with
inf |a(x, M >e>0.
it la(a,€)() ) >

The motivation behind this definition is that semiclassical pseudo-differential operators are, up to
a negligible term, micro-locally invertible on their elliptic set, as appears in the following elliptic
parametrix construction.

Theorem B.2. ([DZ19, Proposition E.32|.) Suppose that A € ¥™ and B € ¥};"* with WFj(A) C
ElN(B). Then there exist Ey, Ey € W™ ™™ such that

A=EB+0h®)g-w, A=BEy+0h™)g -«
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Wavefront set of a tempered family of distributions. We say that uy is tempered if for all
X € C(RY) there exists N > 0 such that

HXUHH;;N < 00.

For a tempered family of functions, uj, we say that (xo,&) € T*R? is not in the wavefront set of
up, and write (29, &) € WFp(up) if there exists A € WO with (z¢,&) € Ell(A) such that for all N
there is C > 0 such that

||Auh||Hé\r S CNhN.

Semiclassical defect measures. If i, — 0, we say that a sequence (up)n>0 C leoc

sical defect measure p as n — oo (associated to h,) if p is a positive Radon measure on T*R? such
that, as n — oo

has semiclas-

(B.3) for all a € C°(T*RY),  (a(x, hp Dy )tn, un) — /adu.

In addition, if (f,)n>0 C L& ., we say that u, and f, have joint measure p/ if @/ is a Radon
measure such that

(B.4) for all a € C°(T*RY),  (a(x, hyDy)tn, fn) — / ady’.

Theorem B.3. ([Zwol2, Theorem 5.2|.) Assume that (u,)n>0 C L2 . is uniformly bounded in

loc

L%, that is, for any x € C°(R?), there exists C > 0 such that for any n, || xun| 2 < C. Then,
(Un)n>0 has a subsequence (un,)r>0 admitting a semi-classical defect measure. If, in addition,
(fn)n>0 C L? is bounded in L? independently of n, ny can be taken such that (u,,)e>o and (fn,)e0
have a joint defect measure.

B.2. Rough calculus. We need a semi-classical pseudo-differential calculus for C™® symbols. We
collect here the definition and properties of such operators that we use throughout the paper. For
reN,0<a<1land0<p<1, wesay that p e C"*S™ if

IDEp(-.€)lcne < Cale)™ 17,
Moreover, we say that B € C™*U™ if B = Op,(b) with b € C™*S™.

Lemma B.4. ([GSW20, Lemma 3.8].) Foranyr >0,0<a <1, -r—a<s<r+a, andm R,
the map Opy, : C™*S™ — L(H; ™™, H}) is bounded independently of h. Moreover, for a € C°,

CH*S™ 3 p s h™[Opy(p), Opyla)] € L(L? L?)
s bounded independently of h.

Lemma B.5. Let 0 < o < 1 and Q = Opy,(qo) + hOpy(q1) with gqo € C»*S? and ¢, € C**S°
and suppose that u has defect measure p. Then for a,b € C2°,

i<h_1 Opﬁ(b) [Opﬁ(a)’ Q]u’ u> - M(quoa)’ _i<u7 h_l Oph(b) [Oph(a)’ Q]U> - M(quoa)
Proof. Let ¢ € C°(R) be such that ¥y =1 on [—2,2], and for € > 0 we define

Qi,e(xag) = (¢(€|Dm|)(h)($,§),
where qo € S? and ¢; € S', and

(B5) Qe := Oph(qo,s) + hOph(Ql,e)a Ge := %lir(l) q0,e-
By [GSW20, Equations 3.8 and 3.9],
12 Opr (a1 — q1,¢); Opp(@)ull 2 < Che? |Jul| 2 + Oc(h?),
1[OPr (g0 — qo.¢), Opp(a)]ull Lz < Chellul 2.
Therefore,
(B6)  |n(0py(@), @ — QuJus uu, | + | (w5 ([Op4(a),  — Quyu, | < Ce¥ + O(h).
On the other hand, since, for any T, U € ¥,
(B.7) W ton([T,U)) = —i{on(T),on(U)},
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we have that, as A — 0,
ih™"(Op, (0)[Opy(a), Qclu, u) — p(bHg.a),  —ih™" (u,0p,(0)[Opy(a), Qclu) — pu(Hg,a).

Therefore, sending h — 0 in (B.6) we obtain, by the above,

i lim i={Opy, (6)[Opy(a), QJu, u)—p(bHj.a)

Finally, since gy € C*S? uniformly in 7, H; — Hg,. Sending € — 0 and applying the dominated
convergence theorem then proves the lemma. O

|~ im 77" (u, Op () Opy (@), QJu) —p(bHg, a)| < Cet.

Lemma B.6. Suppose 0 < <1 and
ID{a] < Gt (gym=IPI=rtedd | Da|gpe < Cp(g)™ 1.
Then, Opy(a) : H™ — L2, and
[ Opp (@)l g2 < Chlre)s,

Proof. Tt is enough to check this for m = 6(r + «). For this, we unitarily transform to the case
h=1. Let Thu(x) = h¥/?u(h%z). Then, Ty : L? — L? is unitary and T Op,(a)T* = Op, (ap) with
an(z, &) = a(hz, h'7%).

It is now easy to check that
[Dfan| < Ch® ()=l ||Dfal|cre < Cph® (€)71177.
Therefore, the lemma follows from [Tayll, Chapter 13, Proposition 9.10]. ]
Lemma B.7. Suppose that a € C"*S™. Then there is ay, satisfying
020 an(, €)] < Cygh=* ()1,

1D (a— ap)| < AT+ (gmIPm0H? DY (a - ap) (-, €)lore < Cp(e)™ 1P,
Proof. Let o € C°(—1,1), ¢ € C(4%,2) such that

c

eallsl) + > *(277]s)) = 1.

j>0
Then put
_ 2(%p 2 2(p09—Jp 2
an(@,€) = (£§(W|Da)a) (2, )5 (€) + Y (05 (72777|Dy)a) (w, )03 (€).-
j=0
The estimates now follow as in the proof of [Tayl1l, Chapter 13, Proposition 9.9]. ]

APPENDIX C. PROPERTIES OF ®y(r)

Proof of Lemma 1.3. We first note that, using the principle square root,
2
{ZE(C : Im\/gza} = {%—(f—f—iy : yER} =: Z,.
a
Therefore, if z lies to the left of Z,, then Im+/z > a.
We are interested in
2t +ify(r)”

z2(t,r) = (1 +if)(r - , t>0.

( ) ( f@( )) (7"+Zf9(7"))2

Note in particular, that z(0,r) € Zyr(ry and the tangent to Zy () at z(0,r) is given by
21/ (r
folr) | (1+if5(r)).

2fg(r)? fo(r)
Next, observe that

Oz(t,r) =—(1+ z’fé(r))w-

(r+ifo(r))
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Hence, since Zy/ ;) is convex, z(t,7) lies to the left of Zy, ) for ¢t > 0 (and thus ItIl>1(I)1 Im/z(t,r) =
2(0,r)) if and only if -
- : / 2
Im—wzlm—(lJr,ltanef(r)) >0 N tang > e 2r
(r+ifo(r))? (r+itan@f(r))?
and Point (2) follows. Point (3) then follows from Point (2)

Now, fix § > 0 and let g(r) denote the right-hand side of (1.11). Then, there is ¢s > 0 such
that both f(r) > ¢s and f'(r) > ¢s on r > Ry + 4, and thus ¢g(r) < Cs. Then by (1.11), since
tanf — oo as 6 1T /2, there is 65 such that for 6 > 65, ®y(r) = f4(r) and hence (4) holds.

To obtain (1), observe that by (4), for » > Ry + 6, and 6 > 05, ®y(r) = f(r)tand > cstané.
Therefore, the result follows if ®y(r) > ¢s for § < 6 < 65, which was proved in Lemma 4.1.

Finally, we prove (5). Indeed, for r < Ry, ®y(r) = 0, and for r > Ra, Py(r) = rtanf. Therefore,
we need only consider (r,0) € [Ry, Ra] x (0,7/2).

~—

Since we are using the principle square root and fg > 0, f5 > 0, we have, for ¢ > 0,

t
Arg \/1 - W € [0,7/2),

and thus

Do(r) = inf y(r.1) where  By(r.1) = Im ((1 —|—ifé(r))\/1 - m)
Next, for r > Ry, 0 >0

tlizgo @9(7‘, t) = 003

therefore, the infimum is achieved at some finite ¢, which we denote by t,, = t,,(r,0). It is easy to
check that, when (1.11) does not hold,

(C.1) b (. 6) = max (Im ((L+ify)2(r —ife)*) 0>'

Im ((1+4f})2(r —ife)?)’
Therefore
0 if Im(14if)(r—ife)* <0,
tn (1, 0) = (Im (L +if)2(r —ife)*)
max , .
Im ((1+4f})2(r —ife)?)
Note that ¢,,(r,0) is continuous since the numerator of the left entry of the maximum in (C.1)

is zero when Im ((1 +if§)(r — ifg)?) = 0, and the singularity in the left entry of the maximum
in (C.1) occurs when Im ((1+14f})(r — ifg)?) > 0; this completes the proof. O

, 0) otherwise
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