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SCATTERING BY OBSTACLES WITH NEGATIVE WAVE SPEED
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ABSTRACT. We study scattering by metamaterials with negative indices of refraction, which are
known to support surface plasmons — long-lived states that are highly localized at the boundary
of the cavity. This type of states has found uses in a variety of modern technologies. In this
article, we study surface plasmons in the setting of non-trapping cavities; i.e. when all billiard
trajectories outside the cavity escape to infinity. We characterize the indices of refraction which
support surface plasmons, show that the corresponding resonances lie super-polynomially close to
the real axis, describe the localization properties of the corresponding resonant states, and give
an asymptotic formula for their number.

1. INTRODUCTION

We consider resonance phenomena for metamaterial cavities which exhibit a negative index
of refraction or negative wave speed. These structures are known, in some contexts, to support
surface plasmons — long lived states that are highly localized to the surface of the metamate-
rial [Mai07]. These surface plasmons offer strong light enhancement and are central to a range of
modern technologies [SHV08]. Although negative index of refraction metamaterials have attracted
some mathematical interest (see [CM23) [CdV25, [DBCM24, BBDCCI12, BBDCC13|, BBDCCJ14,
BHM21]) their asymptotic behavior has remained largely unexplored. Under a relatively mild
assumption on the metamaterial scatterer, we study plasmon resonances in a scalar model (i.e.
in the Transverse Electric or Transverse Magnetic polarization). In this article, we give an accu-
rate description of the asymptotic behavior of surface plasmons. We characterize the existence
and absence of surface plasmons, accurately describe their localization properties, and provide an
asymptotic formula for their number.

Let d > 2 and Q, C R? be a bounded open domain with smooth boundary and connected
complement. Define Q, := R\ Q.. We denote the shared boundary of Q, and Q, by 9Q and the
outward pointing normal of 2, by v. Although we work in the more general setting of negative
wave speeds below (see section , we state first a simple consequence of our main theorem. Let

the index of refraction n € C*°(€,;(0,00)) with |n|ag — 1] > 0. We call A € C\ i(—o0,0) a

resonance if there is a non-zero solution (u,,u,) € H*(Q,) ® HZ () to
(divn™IV = A)u, =0 in Q,
(=A = X)u, =0 in Q,,
Uy = Uy on 012, (1.1)
O, = —n_lc?,,uz on 0f,
| Uo is A-outgoing.
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Here, we say that u is A-outgoing if there is g € L2, ,(R?) such that u(x) = [Ro(\)g](z) for
|z| > 1, where Ro()) is the free, outgoing resolvent — when A is real, this outgoing condition

becomes the usual Sommerfel radiation condition and Ry()) is L?-bounded for Im()\) > 0.

The system (1.1) was studied for A € R in J[CM23] and is a special case of our more general
setting below (see (1.5) and Remark . We call uy = u;lo, + u,lo, a resonant state for A
and write R(n, §2;) for the set of resonances. We call a sequence of resonances {A;}32; C R with

|\j| = oo a plasmon resonance if for any ¢ € C°(R?) with suppyNdQ = 0, any N > 0, and any
sequence of resonant states u A WE have

XN [y
lim M s e _ (1.2)
g0 luyllz2a0)

That is, any sequence of resonant states associated to A; concentrates asymptotically at 0€2.

Throughout the text, we will assume that €2 is non-trapping (See Figure |_T[) That is, all billiard
trajectories (or more precisely generalized broken bicharacteristics; see e.g. [HO?, Section 24.3] for
a definition) escape any compact set in finite time. This condition guarantees that resonant states
corresponding to propagating modes cannot approach the real axis.

Non-trapping domain Trapping domain

Figure 1. Examples of trapping and non-trapping domains.

We first determine conditions on the index of refraction, n, such that there are no resonances
close to the real axis.

Theorem 1.1. Suppose that §) is non-trapping and n € C*(Q,; (0,0)) satisfies n|apg < 1. Then
for all M > 0 there is C' > 0 such that

R(n,Q,) N {|ReA| > C} € {Im\ < —M?}.

Next, in the complementary case, we describe the region in which resonances may lie and show
that any such resonances are plasmonic.

Theorem 1.2. Suppose that 2 is non-trapping and n € C*(,; (0,00)) satisfies n|pq > 1. Then
for all M >0, N > 0 there is C' such that

R(n,Q,) N{|Re| > C} C {ImA < —M or —|Re)|™™ <ImA\ < 0}.

Moreover, any sequence {\;}32; C R(n,€;) with |[Re Aj| — oo and [Im ;| bounded is a plasmon
resonance.
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Figure 2. The figure shows the resonances for (1.1) with n|so < 1 as x’s. The resonance
free region is determined by Theorem [1.1] or

AL ~ 8.4647 — 1.0396 x 1072 AR =~ 13.145 — 8.5412 x 1074

Figure 3. Lemma in fact shows that, modulo O(|\;|~°), all surface plasmons are as
pictured here (with , = B(0,1)). These plasmons concentrate in a |A;|~* neighborhood
of the boundary, 992 and oscillate at frequency ~ |A;| in 9Q. The functions plotted here
are the real parts of the resonant state corresponding to n|p,1) = 3 with resonance
Ap & 8.4647 x 10° — 1.0396 x 10721 (on the left) and Ap &~ 13.145 — 8.5412 x 10~ (on the
right).

Remark 1.3. We prove much more than that the resonant states with |Im \;| bounded are plas-
monic in the sense of (1.2) (see Lemma and Figure @) We are, in fact, able to describe
their localization properties modulo |\j|~>°. For instance, one can see that for any x € C°(R?),

_1
I8 us, (@)l 2y < CIA|7719, o] < 2.

The resonance free regions of Theorems and are pictured in Figures 2| and 4! respectively.
Finally, we determine the asymptotic number of plasmonic resonances, counted with multiplic-
ity.
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Theorem 1.4. Suppose that 2 is non-trapping andn € C*®(Q; (0,00)) satisfies n|apq > 1. Then
for all M >0,

#{)\; € R(n,9,) : 0<Re); <A, ImA > —M}

)\d—l o . )
= e ({@€) e o0 € <14

(2r %1}) o),

n(x')
where Geye 18 the metric induced on 92 by the Fuclidean metric on R,

Remark 1.5. Note that Theorem and [1.4] are the special cases of Theorem Theo-
rem 1.9, Theorem[1.10, and Theorem below.

Theorems to (and their analogs below) give a precise description of resonances near
the real axis for a wide class of negative index of refraction scattering problems. They determine
when such resonances exist, how many there are, and describe the asymptotic properties of the
corresponding resonant states. While it is often possible to obtain asymptotic upper bounds on
the number of resonances near the real axis (see e.g. [DD13] [DG17, Dyal9| [SZ07] and references
therein), it is very rare to be able to give an asymptotic count of these resonances — celebrated
examples include scattering in one dimension [Zwo87|, by convex obstacles [SZ99], by convex
transparent obstacles [CPV01], and with normally hyperbolic trapping [Dyal5]. Theorem[1.4)and
its more general analog Theorem provide another such example.

Relation with previous work on negative index of refraction metamaterials:

To the best of the authors’ knowledge, the first mathematical paper considering negative in-
dex of refraction scattering is [CS85], where the authors study materials with constant index of
refraction (i.e. n\QI = ¢, ) and show that the problem is Fredholm under certain conditions
on A and ¢,. The works [BBDCC12, BBDCC13, BBDCCJ14] build on this theory, allowing n to
be variable, and study the problem in lower regularity. In Appendix [Al we give a different proof
inspired by [CdV25] to show that (or indeed the more general problem (1.5))) is Fredholm
when n|gqo avoids 1.

We study scattering resonances in the context of negative index of refraction metamaterials. As
far as the authors are aware, the only previous works in this context are [CdV25| [CM23|, [DBCM24].
In [CM23, DBCM24], the authors study the case of d = 2 with €2, having smooth boundary and
show, without further assumptions on the geometry, that there are many resonances near the real
axis in the case n|pg > 1 and many negative eigenvalues in the case n|gg < 1. In fact, the authors
construct a sequence of quasimodes, u;, with quasi-eigenvalue A\; — 0o associated to so that
uj are highly localised near 0€). However, they do not show that the true resonant states are
highly localized. When n|pg > 1 is constant,

N = 27j(n — 1)
R T T

and, if €2, is non-trapping, we confirm from Theorem that this sequence of quasi-eigenvalues
captures most resonances near the real axis. Moreover, Theorem shows that all corresponding
resonant states are highly localized. Very recently, and independently from our work, [CdV25]
considers the higher dimensional analog of [CM23].
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Figure 4. The figure shows the resonances for with n|gq > 1. Non-plasmonic
resonances are denoted with x’s and plasmonic resonances with o’s. The resonance free
regions are those determined by Theorem [1.2]or Theorems [1.4] and determine the
asymptotic number of plasmonic resonances.

The present article differs from and strengthens these earlier works in two substantial ways.
First, under an additional natural dynamical assumption, we describe the location of all possible
resonances near the real axis and show that if there are any, they must correspond to highly
localized resonant states, and second, we determine how many such resonances there are.

Remark 1.6. There are variety transmission problems, including by positive index of refrac-
tion materials, which are much better developed in the mathematical literature (See e.g. [PV99b
CPV99, PV99al [CPV01] [Gall9al [Gall9b, IMS19] ).

1.1. Inhomogeneous metrics. In this article, we study the general situation of a cavity with
a negative definite Laplacian. This corresponds to a metamaterial where the material properties
are not homogoneous and exhibit an effective negative wave-speed. To this end, let g, be a
smooth Riemannian metric on Q, and g, a smooth Riemannian metric on 2,. Let also p, €

C*(£,;(0,00)) and p, € C*(,;(0,00)). We assume that the geometry is Euclidean near
infinity. That is

gl@) =8 pola) =1, forfa > 1.

For a metric g and positive function p, we define the operator

1 g
——=0,i (9”7 V/|g|pdju(z)), |g| :=|det gijl,

p/ldl

and note that A, , is symmetric on L?(pdvoly). We then define the unbounded operator P :
L*(Q,, prdvoly ) & L?(Q dvoly ) — L*(Q,, prdvoly ) & L*(Q,, podvoly, ) given by

Agptt =

O’pO

P(“I’ uo) - (AquPZ7 _Agovpo)
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with domain
D(P) = {u = (uz,up) € HHRY) N (H2(Q,) @ HX(Q,)) : } (1.3)
Po Oy, updvoly | oo = p;0,_dvoly  aa ’

where 9, and 9, denote respectively the outward unit normal to {2, with respect to g, and the
outward unit normal to €2, with respect to g,,.

The induced boundary volume forms from the exterior and interior metrics are not in general
the same, i.e. dvoly  is not necessarily the same as dvoly_. It is thus natural to define a function
on 0N to measure their difference. Hence, we define 7 € C°°(9)

Tdvolgo 00 = dvolgPaQ.

Notice that 7 is positive on 0f2.
We assume throughout the text that

olE s, = P5IE G, A0, (2,€) € TN (1.4)
Under assumption (1.4), the operator P is self-adjoint and is a black box Hamiltonian in the sense

of [DZ19, Section 4.1] (See Appendix [A)).

We then let Rp(A) := (P —A\2)"1: L2(Q,)® L*(Q,) — L*(Q,) ® L*(Q,). By [DZ19, Theorem
4.4], Rp()\) : L*(Q,) ® L*(Q,) — D(P) is meromorphic in Im A > 0 and has a meromorphic
continuation to C for d odd and the logarithmic cover of C \ {0} for d even as an operator
Rp(\) : L2(Q,) @ L2,,,,(Q,) = Dioc(P), where

comp
Dioe(P) = {u = (uzvuo) S Hl{)c(Rd) N (H2(Qz) @ leoc(Qo)) : poa’/ouo = szal’zuz}'

Defining (u,,u,) := Rp(AN)(f;, fo), (us,u,) satisfies

(

(AQZ,PI - /\2)uz =fz in Q,
(_Ag@ Po )\Q)UO = Jo in Q,,
Uy = Uy on 01}, (1.5)

PoOvyto — TP Oy u; =0 on O,

| Uo is A-outgoing.
Define the set of resonances of P by
R(P) :={X : Ais a pole of Rp(\)}.
Remark 1.7. Note that is a special case of our general setting with gg = i, géj =

y _d d—1
n 69, po=1,p,=n"2,andT=n 2 .

We now state the analogs of Theorems[1.1/to[1.4/in the more general setting of a negative wave
speed. We begin in the case

0>p2l'f; —7°p3lEl;,, (' €) e T O, (1.6)

where we show that there are no resonances close to the real axis.
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Theorem 1.8. Suppose that (Q,,9,) is a non-trapping domain and (1.6) holds. Then for all
M > 0, there is C' > 0 such that

R(P)N{|ReA| >C} C {ImA < —-M}.
Moreover, for x € C*(R%),
IXRp(N)xl2—r2 < CIN7H, A€ {ReX>C, Im\ > —M}.
Our next three theorems consider the opposite case:
0<p2lel;, —mo2E (@) e TN (1.7)

The combination of the next three theorems shows that there are many resonances resonances
superpolynomially close to the real axis, all of which are plasmonic and, moreover, any sequence
of resonances that is not superpolynomially close to the real axis must have imaginary part whose
absolute value tends to infinity.

The first theorem provides a resonances free region.

Theorem 1.9. Suppose that (Q,,9,) is a non-trapping domain and (1.7) holds. Then for all
M >0, N >0 there is C' > 0 such that

R(P)N{|Re\ > C} C {ImA < —M}U{—|\N <Im\ < 0}.
Moreover,

IXRp(N)X |l 12— r2 < C|Im A 7HAITL, Ae{ReA>C, —M <Im\ < (Re\) ™}

Next, we show that any resonances with bounded imaginary parts are necessarily plasmonic.

Theorem 1.10. Suppose that (Q,,g,) is a non-trapping domain and (1.7) holds. Then for any
{Aj}521 C R(P) with |[Re Aj| — 0o and sup |Im \j| < 0o, any 0 # uy; € Dioc(P) satisfying (1.5)
with (f;, fo) =0, N >0, and any 1 € C(RY) with suppp NI = 0, we have

XN w2 ray

Hu)\j HL2(aQ)

Finally, we give an asymptotic formula for the number of plasmonic resonances.

Theorem 1.11. Suppose that (,,9,) is a non-trapping domain and (1.7) holds. Then for all
M >0,

Ad—l
#{)\; ER(P) : 0<Re); <A :Im); > —M} = Wvolpag(]}) + oA,

where

Vi= {(@.&) e 00 : 2R — 2@, < pol@') + p2()r3)) |-
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1.2. Outline and ideas from the proof. We start by making a semiclassical rescaling, setting
A =h7Y1+ z), with |2] < Mh and 0 < h < 1. The goal of this article can then be rephrased in
the following way.

Let x € C(R?) with x =1 on Q_, L2(RY) > f = (fi, f,) € L*(Q,) ® L*(Q,). Our main goal
will be to prove estimates for the solution, (u,,u,,) to

(P, — 2%)u, = (hQAgI”OI — 2%)u, = hf; in Q,
(P, — 2Hu, = (_thgomo - 2%)u, = hxf, inQ,,
Uy = Uy on 05, (1.8)
PohOy,ue — TP hOy u, =0 on 01},
| Uo s z/h-outgoing.

In section [3, using the solution of the Dirichlet problem in €, and the outgoing Dirichlet
problem in 2, we reduce these estimates to the study of

(P, — 2%)v, =0 in Q,,
PohOy, Vo — TAL(2)v, =1 g € Hh% on 042, (1.9)
v, is z/h-outgoing,
where A, (z) is a certain Dirichlet-to-Neumann map associated with the inner problem. More
precisely, we define by A/, (z)w = p,/,, hOy_, Ur/o, Where u /, € Hﬁ)c(ﬁz/o) solves
(Pjo —2%)u; =0 inQ

u

z/o0
1o =W on 052,

u,, is z/h outgoing.

After the reduction to (1.9), it becomes natural to study the Dirichlet-to-Neumann map for

operators of the form
P(w;g,L) := —h*A, + hL — w,
where L = Zle Li(x)hD,:, and |w — wg| < Ch.

Our next theorem yields a parametrix for the Dirichlet-to-Neumann map in the elliptic region.
Theorem 1.12. Let wy € R, L be a smooth vector field, and (M,qg) a Riemannian manifold
with boundary. Then for all e > 0, C > 0, and |w — wo| < Ch there is E, € WY(0Q) with
0(Ew) = 1/I€'2 — wo such that for any s > 5, X € WO(OM) with WF,(X) C {|¢'|; > wo}, 6 > 0,
N >0, there is C1 > 0 such that for all0 < h <1,

_1
X (hdyyu = Ey(ulons)) g 0n1) < Cr(h™2[|P(w; g, L)UHH;*%@M(S) + Nl o)

where
OMys:={x € M : d(x,0M) < §}.

Notice that Theorem implies that A_(z) € U(9€2) with principal symbol

o(Ag () = py 1€, +1 (1.10)
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and, moreover, for X € ¥9(9Q) with WF;,(X) C {|¢'|,, > 1}, XA, (z) € ¥1(09Q) with

0(XA,(2) = pio(X),/|¢ 527@ — 1. (1.11)

The distinction between and ( can be seen from (| and (1.11)). Indeed,

U(AO B TA = pio \/ |€,‘2 —1- TP |€, + L, ’£/|go > 1,

and this symbol does not vanish in the case of (1.6), while it does in the case of (1.7). One can
also see why the existence of (z/,¢") € T*9 such that

T pl"é. ’91 - po’§ |g(9
may cause problems with self-adjointness. Indeed, in this case, the symbol is not uniformly elliptic
as [¢'| = oo and hence, standard elliptic regularity results will fail.

In the case of (1.6), the knowledge of the symbol of A, and that of A, at high frequency is
sufficient. However, in the case of (1.7) we need one more subtle piece of information about the
Dirichlet-to-Neumann maps.

Theorem 1.13. Let M > 0. Then there is ¢ > 0 such that for all0 < h <1, |1 — z| < Mh, and
1
u e H7(09),

Furthermore, for all X € W™ with WF,(X) C {|'|g, > 1}, and N > 0, there are ¢ > 0 and
Cn > 0 such that for all0 < h <1, |1 — 2| < Mh, and u € L?(09), we have

—sgn(Tm 2%) Im(7A u, U>L2(aQ,dvolgO) < —¢[Im 22|||u||2L2(39)'

sgn(Im ZQ)Im<AOuvU>L2(8Q,dvolgo) < —(c| Imzz\ - CNhN)HUH%Z(aQ)-

Provided that |Imz| > A" for some N, Theorem allows us to obtain estimates where
A, — TA, fails to be elliptic.

In order to finish the proofs of Theorem |1.8 and we need to obtain estimates on ||, <1
For this, we employ defect measure arguments similar to those in [GMS21l [GSW20, Bur02].

The proof of Theorem relies on Theorem and a contour integration. Let V'(h) :=
[1—2¢,14+2¢] xi[—h, h]. First, using a complex absorbing potential to reduce to operators of trace
class, one can find a compactly microlocalized pseudodifferential operator, X, with WF,(X) C
{I¢'lg, > 1+ 2¢} such that

> (A / V(2)(Ap (2) = TAL(2)) 1 0:(Ag (2) — Az (2) Xdz + O(h™),
~ 2mi av (h)
A€V (h)

where 1) € C°((1 — 2¢,1 + 2¢)) and ¢ is an almost analytic extension of ).

Then, since on WF,(X), A, — 7A, is a pseudodifferential operator with symbol

porJlEB. =22 — 7o i, + 22,

we will argue in this sketch as though the whole operator was such a pseudodifferential operator.
In particular, we can find E an elliptic pseudodifferential operator such that

Ao —TA; = B(B(2) - 2%),

o
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where B(z) € ¥? with
B(z) = By + hBi(2), B, e U3
and
polE s, — Pam?IE s,
Pyt

o(Bo) =

Next, we closely follow the proof of the Weyl law for self-adjoint pseudodifferential operators.
In particular, for FIm 2z > 0, we write

i +oo
(B— 221 = h/o Ut)ert t,

where
(hD; — B(2))U(t) =0, U)=1.
Then,

a0 =Yl /iw [ @U@0 B 0.0 2) - Ay ()W + O)
]—i o7 )y v z e (A, (2 L(z z ,

A€V (h)

and, integrating by parts in z, we are able to replace the integral to time infinity by a finite
integral; i.e. for x € COO(—l, 1) with x = 1 near 0, we have

—ht? gl z) — z z ).
> 00 =g [ [ SOGB40 (2) — Ay ()W +O()

A€V (h)

At this point we can use an oscillatory integral approximation of U(t) to compute the integrals
and then approximate 1j;_. 14, by cutoff functions 1, thereby finishing the proof of theorem.

1.3. Structure of the paper. Section 2 contains a review of some preliminary material includ-
ing basic notation for semiclassical operators, and defect measures as well as propagation of defect
measure results. In Section |3| we reformulate the problem as a scattering problem in the exte-
rior of the obstacle (2, with a non-standard boundary condition. Next, in Section , we prove
Theorem by implementing a factorization scheme for the Laplace—Beltrami operator near the
boundary. We apply these methods specifically to P, — 2% and P, — 2% and prove Theorem
in Sections [4.4] and 4.5 . In Section [5, we prove Theorems 1.8/ [1.9, and [1.10. Finally, in Section 0},
we prove Theorem [1.11. Appendix [A] shows that P is a black-box Hamiltonian.
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Thanks also to Janosch Preuss for help with numerical experimentation. JG was supported by
ERC Synergy Grant: PSINumScat - 101167139, Leverhulme Research Project Grant: RPG-2023-
325, EPSRC Early Career Fellowship: EP/V001760/1, and EPSRC Standard Grant: EP/V051636/1.
YF was supported by EPSRC Standard Grant: EP/V051636/1.
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2. PRELIMINARIES

2.1. Semiclassical rescaling and pseudodifferential operators. In order to prove our esti-
mates, we reformulate our problem in semiclassical language; i.e. let 0 < h < 1, z = 2(h) € C
with |1 — 2| < Mh and set A = h~1z. We will also need semiclassical Sobolev spaces defined on a
Riemannian manifold (M, g), for k € N by the norm

lull2ay = 30 10D 22
|| <k

We then define Hj for s > 0 by interpolation and H, ® by duality (Notice that when M has a
boundary H, * is the space of supported distributions).

We then write f € Hj, (M) if for all x € C°(M), xf € Hi(M). We write f € Hy . if
f € Hj(M) and f is compactly supported.

We use the language of semiclassical pseudodifferential operators frequently in this paper. We
now briefly recall the concepts and notation (see [Zwol2] and[DZ19, Appendix E] for a complete
treatment). We will define pseudodifferential operators on R?, the definitions on manifolds being
similar and refer the reader to [DZ19, Appendix E] for the precise definitions on a manifold.

Semiclassical Pseudodifferential Operators on R? We say a € C®(T*R%) is a symbol of
order m and write a € S™(T*R?) if for all a, B € N%, there is Cap > 0 such that

0000 a(x,€)] < Cap&™ P, (€)= (1 + [PV

We then quantize a € S™(T*R?) using the quantization

1

Op(@yl(a) = s [ eF ala ulp)aya

and define the class of semiclassical pseudodifferential operators of order m,
UT(RY) := {Op(a) : a € S™(T*RY)}.
We write U5°(R?) := U,,, U7 (R?) and ¥, *°(RY) := N, T7*(RY).

We next recall a few technical lemmas and definitions from the calculus of semiclassical pseu-
dodifferential operators. The first gives the basic elements of the calculus.

Lemma 2.1 (Theorem 9.5 [Zwol2]). Let a € S™ (R?) and b € S™2(R?). Then,
h™!(Op(a) Op(b) — Op(ab)) € L™~ H(R),
h~'(Op(a)* — Op(a)) € T 1 (RY),
h=*([0p(a), Op(b)] + hi Op({a,b})) € T F™27*(RY).

The next defines the principal symbol.

Lemma 2.2 (Principal Symbol Map, Proposition E.14 [DZ19]). There is a map oy, : ¥(R?) —
S™(T*R?) so that
A — Op(o(A)) € hI™ 1(RY).
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We write T*R4 = T*R? U R? x §91 for the fiber radially compactified cotangent bundle i.e.
the cotangent bundle with the sphere at infinity in & attached.

We can now define the notion of the elliptic set.

Definition 2.3. Let A € W7(R%). For (x0,&) € T*M, we say that A is elliptic at (z9,&) and
write (xo,&o) € elly(A) if there is a neighborhood, U of (x0,&) and ¢ > 0 such that

0(A)(z, &) = (™, (2,8 €U.
Next, we define the wavefront set of a pseudodifferential operator.

Definition 2.4. Let A € U7(R%). For (z0,&) € T*M we say that (z,&) is not in the wavefront
set of A and write (zg,&0) ¢ WEL(A) if there is a € S™ such that

A = 0p(a) + O(h™)

and (xg,&y) ¢ supp a.

The next lemma gives the so-called elliptic parametrix construction.

Lemma 2.5 (Proposiion E.32 [DZ19]). Suppose that A € U7 (RY) and B € U (R?) and
WEF},(A) C elly(B). Then there is E € U7~ ™2(R?) with WF),(E) C WF,(A) such that

A=EB+0(h®)y .

The final lemma concerns boundedness of pseudodifferential operators.

Lemma 2.6 (Proposition E.19 [DZ19]). Let A € ¥*(R?). Then, for all s € R, there is C > 0
such that for all u € H;7™(RY) and 0 < h < 1,

HAU’HH}SL(Rd) S C”UHHZer(Rd).

Tangential Pseudodifferential operators We will also have occasion to use tangential pseu-
dodifferential operators on a domain Q C R¢ with smooth boundary. Once again, we make these
definition in local coordinates R, x RY !, we Q = {2 > 0}.

We say that a € C®(R x T*R%1) is a tangential symbol of order m and write a € S/ if
a € C®(R,1;S™(RI1)). We then define the class of tangential pseudodifferential operators of
order m by

th = {Op(a) : a € ngh}.
We also write W5, := Umllfffh(Rd) and \Il;EO(Rd) = ﬂm\IJ??h(]Rd).

Notice that for any A € U™ and y € R A can be restricted to an operator on {z! = y} and
this operator lies in ¥/ ({z! = y}).
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2.2. The operator in Fermi Normal Coordinates. In Fermi normal coordinates z = (x!,2"),
where ! is the signed distance to the boundary, Q is given by 2! > 0 and the metric is of the
form

d
g=(dz")? + Z Gop(x)dz*da’.
a,f=2

Then,

—h*A,, — 2% = (hDy)* + ha(x)hDy — R(z', 2, hD,). (2.1)
Here, a is a smooth function given by a = (1/|g]p) ' Dy \/@ p with \/m being the Riemannian
density function. Moreover, R is a tangential differential operator of order 2. The semiclassical
principal symbol of R is given by o(R) = r(z',2,¢') with r(0,2/,¢') =1 — |¢'|2.

2.3. Semiclassical defect measures. Semiclassical defect measures are measures associated
with a sequence (possibly subsequence) of functions {u(h)}o<n<pn,. Some well-known existence
theorem of semiclassical defect measures can be found in [DZ19, Appendix E.3] or [Zwo12l, Chapter
5]. We will summarise them in the following.

o If u; := u(h;) satisfies
Ixuillz2@) < Cx (2.2)

for some constant C', depending on x € C2°(€2) but not j, then there is a subsequence jj,
and a non-negative Radon measure p on 72 such that

(Opy(a)(z, hj, D)uj, , uj,) — a(z,§)dp for Va e CF(T7Q). (2.3)
T*Q
o If u; satisfies
lujllz200) < Cb, (2.4)
then there is a subsequence j, and a non-negative Radon measure vp on T*9€) such that
(Opy(b) (2, hj D )uj, uj) — b(z',&)dvp for Vb e C°(T*O0N).
T*082
o If u; satisfies
[hDyujlr2(60) < CN, (2.5)
then there exists a non-negative Radon measure vy on 702 such that
(Opy, (b) (2, hjD")hDyuj, hDyu;) — b(z',&Ydvuy for Vb e C°(T*09).
T*90Q
o If u; satisfies (2.4) and (2.5) then in addition to measures vp and vy, there exists another
Radon measure vpy on T*0N2 such that

(Opy, (b) (2, hjD")u;, hDyuj) — b(z', & Ydvpy for Vb e CX(T*ON).
T*002
o Let u; satisfy

F&—ﬁmzwﬁ in Q, 26)

(h]’Dyo + A)UJ =g; on 89,
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1
for some f; € L2,,,0(), || fjllz2 < C and g; € H? (89), ngHHh% < C, and A € U} (90).
Then there exists Radon measures py on 7% and o4, on T*0€2 such that
<Oph(a)($7 th)uj7 f> - a(iL‘, g)d:u'f for Va e CSO(T*Q)a
T*Q

(Opy, (b) (2, hjD")u;, g) — o b(z',&)dv, for Vbe CZ(T*00N).

If u; further satisfies (2.2)), then supp(p) NT*Q C £, := {p = 0}.
Notice that if u; satisfies (2.4)), (2.5)) and (2.6 then

vg = vpN + o (A)vp. (2.7)

To obtain relationships between the interior defect measures and boundary defect measures one
uses the following integration by parts formula.

Lemma 2.7 (Integration by parts). Suppose that
P = (hD,1)* + ha(x)hD,y1 — R(x, hD,)
is formally self adjoint with respect to the density pdx. Let B = By + BihD,1 with B; €
O p ((—26,20) 1 Wy (RTY)) for i = 1,2. Moreover, ) is defined for z' > 0. Then we have
P, Blu,u) 2y = — T ((Bu, Pu) zq@y) + 2 (P, (B — BY)u) 12
- <<Bou, hDg1u) p2(90) + (BihDgiu, hDyu) p2a0) + (BiRu, u) 2 o0)

+(hDy1 Bou, u) 12(90)+([ADg1, BilhDyiu, u) 1290y +h{[a, BilhDgiu, u) 1290)+h{aBou, U>L2(8Q)) :

where a = p~tD1p.

Proof. Using the measures pdx in {#! > 0} = Q and pdz’ on {z! = 0} = 09, from expression

(2.1), we have

(PBu, u)LQ(Q,pd:c) = <Bu, PU>L2(Q) + ih (<hDI1 Bu, U>L2(8S2) + <BU, th1u>L2(8Q)) y
(BPu,u)r2q) = (Pu, Bu)r2(q) + (Pu, (B" = B)u)r2(q) + ih(Pu, Biu)12(50)-

One also has

<hD:tlBua U>L2 (09) — <(th1)2ua BT”)LQ(BQ)
—+ <thl Bou, u>L2(ag) + <[th1 , Bl]thl u, U>L2 (09)-
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Therefore, the boundary contributions of ([P, Blu, u) £2() is given by ih multiplying with
(Bu, hDg1u) 12(p0) + (hDp1 Bu, u) 12(90) — (Pu, Biu)12(s0)
= (Bu, hDg1u) 12(90) + (R — ah® Dg1 )u, Biu) 12(oq)
+ (hD_ 1 Byu, u>L2(@Q) + ([hD1, B1)hD 1 u, u>L2(39)
= (Bu, hDj1u) 12(90) + (B1Ru, u) 1290y + (hDg1 Bou, u) 1250
+ ([ADg1, BilhDgiu, u) 1290y + h{[a, BilhDgiu, u) 12(50) + h(aBow, u) 12 (s0)-
This completes the proof. ]
When By = 0, we have
i
E<[P’ Blthl]u, U>L2(Q) =
2 i . ok
— % Im (<B1th1U, Pu>L2(Q)) + E(Pu, (B1hDy1 — (hDg )" BY)u) r2(q)
- (<Blth1U’ th1u>L2(8Q) + (B1 Ru, u>L2(8Q)

+ h{[a, BilhDgit, u) 12(06) + ([BDg1, BilhDyru, u) Lzm)) .
When By = 0, we have

i 2 i x
E<[P’ B()]u, u>L2(Q) = _E Im (<B()u, PU>L2(Q)) + E<Pu, (BO - BO)U>L2(Q)
— (<Bgu, hD ’LL>L2((9Q) + <th1 Byu, u>L2(aQ) + h<CLBou, U>L2(6Q)) .

Using Lemma one can obtain the results of [Mil00] (see also [GLS24]) on boundary defect
measures.

Theorem 2.8. Let u; satisfy (2.2)), (2.4), (2.5), and (2.6), then supppu C {o(P —1) =0} NT*Q

and we have
p(Hpa) = —2Im py(Rea) — 2iIm py(Ima)
— 2Revg(teven) — 2|lo(A)| Imvp(aeven) — VN (aodd) — UD(rGodd), (2.8)
where Geven = %(a(:v,T%,fl) + a(x, 77‘%,5’)), Godd = %L%(a(:v,ré,f’) —a(x, 77‘%,5’)) andr = o(R)
in (2.1). Let m: T*Q — T*Q define as w(xt,2/,&,¢) = (2b,2/,21&,¢). If 0Q is nowhere
tangent to H, to infinite order. Then, for q € C’go(bT*Q;R), we have

t
m(q 0 pr) — mepi(q) = / (—2Im iy — 2090 ® (Revpn) + vg) (g 0 @s)ds, (2.9)
0

where @, is the bicharacteristic flow and the measure vg is only supported on the glancing set.
Moreover, iy =0 if f = o(1) and, similarly, Revpn = vg =0 if g = o(1).

Proof. We will briefly mention the proof. Identity (2.8)) follows from identity (2.7), Lemma
and the fact that (Hpa)|g«pe = Hp(a|g+pa). Here, H, is the Hamiltonian vector field generated
by p = o(P). The proof of (2.9) can be found in [GLS24, Section 2]. It is clear that f = o(1)
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implies 1y = 0. For g = o(1), we know from (2.7) that vpy = —o(itA,)vp, whose real part is
zero as o(iTA,) is purely imaginary (see Proposition |4.20). Finally, vg = 0 follows immediately
from Revpy = 0. ([l

2.4. An estimate for the Neumann Trace.

Lemma 2.9. Suppose that
= (hDy1)? + ha(z)hDy — R(z, hDy)

is formally self adjoint with respect to the density pdx. Then, for s < % and e > 0, there is C' > 0
such that for u € H,% with Pu € L?,

[ADp1uls1—oll 2 a0) < CPH[Pullr2(0.6) + Cllul g1 0,6) + Cllular=oll g2+ (a0
Proof. Let E € W5 (99) elliptic, x € C°([0,¢)) with x = 1 near 0, set By := x(z')E, By = 0,
B := E*Ex(x 1)hD$1 Then, by Lemmam

= E<[P’ Blu,u) 120y — 7 Im<BUa Pu) 20y — (ERu, Eu)12(50)
+ h{[a, x(«") E* EJhDyru, u) 12 (50

< Cllullfy o, + Ch~ ullmy .01 Pullz2e) + ke =l o0
) )

+ Ch?||hDgrul 1ol rz o 1tk 0 51 (90
< Cllully 0y + 011l 0y + CH 207 | Pl oo
+ OO+ 67 ool ) + AR a1l ol o0
Taking 6 > 0 small enough completes the proof of the lemma. O

3. REFORMULATION OF NEGATIVE INDEX OF REFRACTION PROBLEM AS AN EXTERIOR
PROBLEM

In this section, we reformulate the estimates for Rp(z) in terms of an exterior scattering
problem. To do this, we first review estimates for more classical resolvents.

3.1. Review of estimates for the Dirichlet resolvent in . Since (2, is connected, P, is
self-adjoint with domain Hg N H?, and g% (x) = 6, p(x) = 1 for || large enough, the theory of
black-box scattering [DZ19, Chapter 4] implies that there is a meromorphic family of operators
R, (2): L2, (Q,) — HfQL,loc N H&,loc(Qo) satisfying

comp
(P, —2)R,(2)f = f in Q,, R,(z/h)f is z/h-outgoing.

Moreover, since g,, is non-trapping on 2, combining [Bur02, Theorem 1.3] with elliptic regularity,
we have for any M > 0, there is hg > 0 such that R, (z) is analytic in, |1 — z| < Mh and for all
X € C°(Q,) there is C > 0 such that

”XRO(Z)XHLQ(QO)—)H?L(QO) S Ch_l, 0<h< ho, |1 — Z‘ < Mh. (31)
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By Lemma [2.9] this implies and hence also
100, RNl oy < OF '+ IXBa (Wl ongiog) <R (32)

Moreover, letting E, : HZ/Q((?Q) — Hf%,comp(QO)7 be an extension operator, the operator
Go(2) - Hy*(99) — H} () defined by
G,(2)v:=E,v—R,(2)E
is a meromorphic family of operators satisfying
(P, — 2)G,(2)v =01in Q,, G,(2)gloa = v, G, (2)v is z/h-outgoing.

We now obtain an improved version of [BSW16, Theorem 3.5]. The following proposition is
an improvement of [BSW16, Theorem 3.5], where we combine the method used in the proof of
[BSW16l, Theorem 3.5] and Lemma

Ov’

Proposition 3.1. Let G, j, be the Dirichlet map for (P, — z%) satisfying z/h outgoing condition.
Then for all M > 0, x € C(Q,,), and j = 0,1 there are C,hg > 0 such that for 0 < h < hy,

IXGob 1 rosie, S € For L= 21 M, (33)

and

ho, G . 1 < C. 3.4
H ) O(Z)XHHh%ﬂ(am_)Hh %H(c’m) = ( )

Proof. Let g € H}ll/2(8(2) and w be a solution to
{ - h2AgO’pOw+ — (1+ih)*wy =0 in Q,
wy =g on 0.
Then Green’s identity implies
hlwill72q, ) < Chl{hdwy, gonl,

9 9 (3.5)
s s,y < Clws oy, + lthB w4 6)oal).
where the boundary contribution at infinity is zero since h > 0 implies wy € H".
Applying Lemma one has for s < %,
1000 Wil =1 a0y < 1w ll2@llwsllm @) + 9] a5 00)- (3.6)
Hence, using (3.6) with s = 3 and (3.5), we obtain
le+llayag) < Cellw g +Cle+< ol s
In particular, taking ¢ = %, we have
lwillmp o, < Cllgll i3 o0y (3.7)
Note also that if g € H}?:/Q, then by elliptic regularity for —h2Ago7po +1,

s liziag) < Cllws iy + 9] r2000)) < Cllall g (3.8)
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Let x1,x2 € C5°(2,) x1 = 1 near 02, and supp(1 — x2) Nsupp x1 = @. Then, notice that
Go(2)g = x1ws — Ry (2)(Py — 2%)x1ws
= x1wy — Ry (2)x2[-h* Dy, o x1]wr — (1 4ih)? = 2%) Ry (2) x2x1w4-
The estimate (3.3)) now follows from (3.7), (3.8), and the estimates
IxRoxallL20,)»m20,) < Ch, I1=h*Agg e X1l 112 < Ch.
The estimate (3.4) now follows from Lemma [2.9. O
3.2. Review of estimates for the Dirichlet resolvent in 2,. Since P, is self-adjoint with

domain H}(Q,) N H2(Q,) and P, < Ch, for |1 — z| < Cph, there is a holomorphic family of
operators R, (z) := (P, — z2)71 : L2(Q,) — H2(Q,) N H}(Q,) satisfying

(PI - ZQ)RI(Z)f =/fin QI’
Moreover, [|R;(2)[r2(0,)-r2(,) < C. Hence by elliptic regularity estimates (see e.g. [McLO00),
Theorem 4.18]),

IR () 20,y »m2(0,) £ C (3.9)

and by Lemma [2.9

1h0, R, (2)]| <C. (3.10)

L2 (QI)—>Hh% (02)
In addition, letting £ : Hi’/z(@Q) — HZ2(Q,) be an extension operator with

1/2
HEIHH]:_)’L/Q((?Q)_}H}ZZ(QI) S Ch )

and defining G, (z) : H2/2(OQ) — H3(2,) by
G,(z)v:= E,v— R, (2)E,v.
G, (z) satisfies
(P, = 2%)G1(2)g =0in Q, G(2)glon = g,
and for any M > 0 there is hg > 0 such that for 0 < h < hg, 7 =0,1
1GL(2)g] 1y T+ 1ROLGL(2)

h

Hh%ﬂ—)H X||Hh%+j—>H,:%+j <C, 0<h<hol|l—2z2 < Mh (3.11)
3.3. Reformulation of the negative index of refraction problem. It is convenient to reduce
our problem to studying the case of f = 0 at the cost of placing inhomogeneous data in the

boundary condition. To do this, define v, :=u, — R, (2)hxf, and v, :=u, — R, (2)hf,.
Then, using (1.8) we obtain

(P, —2%v, =0 in .,
(P, —2%)v, =0 in Q,,
Vy = Vg on 0L, (3.12)

PohOy,vo — TP RO, v, =1 g on 09,

(Vo 18 z/h-outgoing.
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Notice that by (3.1),

IX(v = uo)lm2 () < CP7 I follL2, (3.13)
by
oz =ty lzzga,) < Cllflze. (3.14)
Next, by and ,
gl /> < Ch™ M follze + 12 1lz2)- (3.15)
Finally, observe that
o llz < Cllooll o2y (3.16)
Using (3.13), (3.14), (3.15), and (3.16), Theorem [1.§ will follow from the estimate
o li00) + ol 3 ) < Clolgpngry: 1Tzl < 2ah (317)
and Theorem will follow from the estimate
Ixvollmz () + ||vo||th om <€ fm 2 “Hlgll 7290y, —Mh < Tmz < =A%, (3.18)

Since our goal is now to prove (3.17) and (3.18)), we can now reduce (3.12) to an exterior
scattering problem with a non-standard Robin-type boundary condition. For this, let A (z) :

H(09) — H;7'(09) be the Dirichlet-to-Neumann (DtN) map defined as follows. A, (2)ug :=
hp; 0, G uo, where v, is outward normal with respect to the metric g,. We then rewrite
as
(P, — 2%)v, =0 in Q,,
PohOu, Vo — TAL(2)V5]00 =g on 09, (3.19)
v, is z/h-outgoing.
The proof of Theorems and will consist of proving estimates on the solution to (3.19).

Since we have eliminated v, from (3.19), we will abuse notation slightly and simply write v, = v
from now on.

4. MICROLOCAL DESCRIPTION OF THE DIRICHLET-TO-NEUMANN MAP

In addition to the DtN map A, (z), we will use the outgoing DtN map, A,(z) : Hj(092) —
H;71(0Q) defined as hpoOy,Go(2). In this section we provide a full description of A, (z) as a

pseudodifferential operator and a microlocal description of A,(z) on [£'| 9o > 1. In particular, we
prove Theorem [1.12]
In fact, we generalize our situation slightly, defining for L := Zgzl Li(x)hD,: and w = wg +
hwy + O(hQ),
P(w;g,L) := —h*A, + hL — w. (4.1)
Notice that
h?

Py—w=- 9igd\/1glpdj — w
° VAT ’

(4.2)
= —h’Ag, — hp ' (0ip)gIhd; — w = P(w; go, Ly,
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with
. .
L, :==—p (0ip)g? ho;.
Similarly, there is L, such that

— P, +w=P(—w;g,,L,). (4.3)

4.1. Semiclassical Lee-Uhlmann constructions. To the best of authors’ knowledge, the ear-
liest paper showing DtN map as a classical (i.e. non-semiclassical) pseudodifferential operator
and providing a way of calculating the full classical symbol expression of DtN map can be found
in the work of Sylvester and Uhlmann [SU8S|. The method of Sylvester and Uhlmann is based on
the study of Calderén projector. A more direct approach to DtN map via factorization modulo
smoothing operators can be found in the work of Lee—Uhlmann [LU89|, and their method allows
one to calculate its full classical asymptotic expansions in a simpler and more intuitive way. In
this section, we give a semiclassical version of Lee-Uhlmann approach. While the results in this
sections are considered folk-lore knowledge, we were unable to find a reference in the literature.

Remark 4.1. In the simplest form of factorization problem, say solving the equation
p(z;\) =2 =22 =0 (4.4)

for some unknown number x, we can factorize p(x;\) as (x — X\)(z + A) and obtain x = X\ or
x = —\ as solutions to this toy problem. To further determine which solution to be wvalid, we
would need more information about x. Lee—Uhlmann’s idea is essentially solving an analogue of
for p(z; X) being the Laplace-Beltrami operator, x being an unknown operator with some given
classical pseudodifferential operator \ and, furthermore, the right-hand-side of 1s replaced by
some smoothing operator. To determine which solution of x to be the right candidate boils down
to choosing which X that gives the well-posedness of the heat equation. In fact, it is due to the
nature that the heat operator e is only well-posed in positive time t for —\ if we assume X > 0
(See [LU8Y, Proposition 1.2]).

Our approach is essentially a semiclassical version of Lee-Uhlmann’s method, i.e. p(x;\), x
and A are now semiclassical pseudodifferential operators. Note that Lemmas [4.5 and [{.6 to be
proved in this section imply that depending on the sign of principal symbol of A\, the operator x — A
enjoys different microlocal estimates. In other words, the operator x+ X\ and x — X\ satisfy different
microlocal estimates if we fix . In this way, we replaces the fulfillment of the well-posedness of
the heat equation, as in Lee—Uhlmann’s construction, by microlocal estimates. See Remark|4.9 for
further details.

The following lemma gives a semiclassical factorisation of the semiclassical Laplace-Beltrami
with potentials.

Lemma 4.2. Let wy € R and suppose that |wg — w| < Ch. Then, for X € Y, (Q) such that
WEF,(X) C {(z,§) : H‘f’|§ — wo| > 0}, we have, in the boundary normal coordinates,

XP(w;g,L) =X (hDy + ha —iEL(z,hDy)) (hDy +iE4(z,hDyr)) + O(hoo)ql—zo
t,
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in the boundary normal coordinates, where @ = a+ L', B+ € \Il%h(Q) and its principal symbols is

given by
+iyfwo — €12 €2 — wo <0,
o(By) =e; := - s (4.5)
_\/|§/|g_w0 ‘f ’g_wo > 0.

Proof. Our strategy is to show Ey = 3. h'=7 Opy(e;) for some e; € S{"O(T*GQ). First, set
E4 = Opy(e1) with eg as in (4.5). Then it follows from equation (2.1) and definition of P(w, g, L)
that

Xy (hDyi + ha —iEy(x,hDy)) (hDy +1E4(x,hDy)) = X1 P(w; g, L) + hX F1,

where F; € \I'?h. This proves our first induction step. Suppose that we have proved the k-th
induction step, i.e.

Xy (hDy1 + hii — B4 (2, hDy)) (hDys + 1B 1(2, hDy)) = X1 Plws g) + WX F,

where Ei = > _1)<j<1 h'=7 Opy,(e;) and Fy, € \I'%;k Then we set e_(,_1) = —3fr/€1 with
fr = o(Fk).

X4 (hDgr + ha — 1By gy1) (hDy1 +1E4 k1)
- X, (thl + ha — iy, — ih* oph(e,(k,l))) (thl F By + iRk oph(e,(k,l))>
= X4 (P(w; 9) + WX Fy + +h*(Ey 1 Opy(e_(i—1)) + Opp(e—h-1)) By 1)
+ ihk[thhOph(ef(kfl))]) + O(thrl)\p;g—l = X P(w;g) + B X Fyy,
which proves the (k + 1)-th induction step and hence completes the proof. O

When wy < 0, Lemma 4.2 gives a full factorization for P(w;g).

Corollary 4.3. Let wy < 0 and suppose that |w — wo| < Ch. Consider operator P(w;g,L). Then
P is strongly elliptic and we have, in the boundary normal coordinates,

P(w;g) = (hDg1 + hi — iBx (2, hDy)) (ADygs +iBa(w,hDy0)) + O(h®)y -, (4.6)

where Ey is a first order semiclassical operator whose principal symbol is chosen to be o(Ey) =

:|:, / |€/|Z — wy-

Proof. The proof follows immediately from Proposition with X = I. O

4.2. Energy estimates for first order operators. The first estimate is the following basic
energy estimate, which can be applied to E.

Lemma 4.4. Let A € \D%h(ﬂ) with Imo(A) < 0. Then, for all s € R, and ty < t1, we have

olr—to 00 < C (RHI(ADs = AVl (o s oy + 10220 itz 00 ) -
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Proof. Let A = (hD')5. We work in the boundary normal coordinates as before and start with
the derivative of |lv(z!, I r2ga-1y in r!. Omitting arguments ! and R9~!, we have

g@xl |Av||3; = — Im(hD,1 Av, Av) = —Im{(hDy1 — A)Av, Av) — Im(AAv, Av)

= —Im(A(hD,1 — A)v, Av) — Im ( (A + [A, A]A_l) Av, Av)
> —|A(hDy1 — A)o| 2| AXv[| 2 — Chl|Av]7,
> —h | A(hDgr + A2 — Chl|Av|Z2,  (4.7)
where Garding’s inequality is used for Im<(A + [A, A]Ail) Av, Av>. In other words,
Ourllellyy = —~C (21 (D + Mol + 10l )

Let t_ < tg and ¢ € C°(t_,t3) with ¢ > 0 and ¢ = 1 in a neighbourhood of x! = 5. Then we
have

Joteo)l == [ 0. (elo)oto) ) as
< [ s)lgds = [ etsoluolds

to to
< € (W2 (hDa1 = Mo($) o oz o) + 10 o 011700 ) -
]

Our next estimate allows us to both microlocalize and work in higher regularity than Lemma|4.4
The method for microlocalization was communicated from [GL25].

Lemma 4.5. Let A € W}, e >0, X, X € U0, () such that WF;(X) C ellp(X) and WF;(X) C
{(z,€) : Imo(A)(z,8) < —e(§)}. Also, let s € R and 0 < tg < t1 < to. Then, there exists
ho, ¢, C' > 0 such that

1
Xv(t s h 2| X
X O)HH’l(am b2 UHLQ((tO,t1)§H2+%(8Q)>

< Ch™z|| X(hD, — A)v||

N
-1 +h HUHL2((tO,t2);H;N(39))

L2 ((to,tg);Hh (ag))

+ BN (Dot = D)l a4y 10150 (00
for all 0 < h < hg.

Proof. Let A = (hD')". Exactly as in (4.7)), one has

gax1 HAXUH%Q(BQ) = —Im(A(hDy — A)Xv, AXv) — Im((A + [A, AJA™) AXv, AXv). (4.8)

By the microlocal Garding inequality [DZ19, Proposition E.34],

Im(AAXv, AXv) < —¢|| Xv]||? + hNHvHiI
H

5+l —N Q )
h 2(89) h (a )



SURFACE PLASMONIS IN METAMATERIALS

23
Therefore, plugging into (4.8)), we arrive at
h

—0.1||AXv]? > —||(hD,1 — A)Xv|? X2
5 o [AXV[|7200) 2 —[[(AD ) UHHZ,%(QQ)HH vHH

— WV |lo|? _
b gy~ M

o (49)
We now claim that if tg < ¢; < t2, and X' € \119“(9) with WF,(X) C ell,(X'), then,

HXU(to)H%(;(aQ) +ch™H | Xl

L2 ((to,tl);Hff%(m))
< O YX (WD — Ao .
[?((to,tg);ff}L

N
+h ||U\|L2((t0,t2);H;N(aQ))'

1 + C||X/’UH2
% (09))

1 (4.10)
L2((tot2);H,, *(09))

To prove this, t_ < tg and ¢ € C*°((t_,t2);[0,1]) with ¢ =1 on [to, t1]. Then by (4.9) with v,
we have

X000 == [ 07 (o)1 X0() o) o
0

< Ch_1<HX(hD$1 ~ A)l?

oy, Xl ey )
L2((to,t2);:H,, 2 (69)) L2((to,t2);H),  * (09))
+ CHXU”%2((t1,t2);Hi(8Q))
-1 2 N
+ Ch™|[[RDgr — A, X]U”m((to,tg);H;’%(aQ) + Ch HUHLQ((tO,tQ);H}:N(QQ))7

which implies (4.10) since HX”UH%Q(@1 1o):3 (99)) Can be absorbed by | Xv|?
’ sty
sufficiently small h and

12 . S+%
((toste);H, = 2 (09))

for
Ch™Y|[hDy — A, X]v|? 1
L2((to,t2);H, 2(09)
< C|IX"v|? .
L2((tost2);H),

+ || X0|? ol
L2((tot2);H, 2(09))

+ ChN v
o)+ P Il

ol
—

(to,t2);H, N (09))"

Now, we will prove by induction that for tg < t; < t» < t3, and X’ € U9 (Q) with WF,(X) C
eHh(X/)a

Xu(to)||% +ch™ | Xl
1 X0 (0)l7: a0 | HL2((to,t1);HZ+%(aQ))
< ChY| X' (hDyi — Aol

1 O X"|?
LQ((to,tg);H]‘_L 2 (BQ)) L2

o (4.11)
((to,t2);H, '™ 2 (09))
N N
BN L2 g )1y ¥ o) T 1 N (BDr = M)l 2 4 130N 062

By (4.10) we have (4.11) with 7 = 0. Suppose that (4.11) holds for some j > 0. Let ¢ty < t; <
t) <ty <tz and X", X" € U9 (Q) with WF,,(X) C ell,(X") and WEF),(z") C ell,(X’). Then, by
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the induction hypothesis (4.11]) holds.

Xv(to)||%s +ch Y| Xo|?

X O)HHh(aQ) | HLQ((tO,tl)§H2+%(8Q))

< Ch7H|X"(hDp — Aol o1 + CH || X"v|)? o1 (4.12)
L2((to,t3);H, 2(09)) L2((to,th);H,, ~ 2 (0%2))

)

N N
+h ||UHL2((tO7t3);H;N(89)) +h H(hD:rl - A)U‘|L2((t07t3) H;N(c’)ﬂ))‘

By (4.10) with s replaced by s — j and (to,t1,t2) replaced by (to,th,t2), and (X, X') replaced by
(X", X"), we have

1X |2 i1
L2((to 14 Hy % (990)

< C|X"(hDy1 — A)w? oy CRIX | -
L2((to,t2);H,, * 2(0Q)) L2((to,t2);H,, 2 (99))
N
BN L1 )11 (052))-

Using this in (4.12) then implies (4.11)) with j replaced by j + 1 and hence completes the proof of
the lemma. i

We also need an estimate analogous to Lemma for estimating v in the interior.

Lemma 4.6. Let A € W}, ¢ >0 X, X € ), (Q) such that WF,(X) C elly(X) and WF,(X) C

{(z,€) : Imo(A)(z,§) > €(§)}. Also, let s € R and 0 < tg < t1 < to. Then, there exists
ho,c,C > 0 such that

X
| U”Lz((tom;HZ*%(m))

< C|X (hDy — Ao

1
ST2

22 (o)t (o) (4.13)

1.~

) + Ch2 || Xv(to) | s (00

+ BN |v]| N + AN ||(hDy — A N
L2((to,t2);Hy N (09)) z L2((to,ta);Hy N (09))

BV o(t0) Ly oy

for all 0 < h < hyg.

Proof. Let A = (hD')*. We start again from (4.8) and use the microlocal Garding inequality
IDZ19, Proposition E.34] to obtain

> 2 N2
Im(AAXv, AXv) > 6”XU||H2+%(8Q) h Hv||Hh_N(89).
Therefore, plugging into (4.8), we arrive at
h 2 2 2 N2
— < — — . .
28IIHAXUHL2(8Q) < [[(RDya A)XUHHZ’%(BQ) CHXUHHZJF%(BQ) +h HUHH’;N(aQ) (4.14)
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We now claim that if o < t; < t2, and X' € \1127t(§2) with WF,(X) C ell,(X'), then,
Xul|?
| ‘LQ((to,t1)§H2+%(3Q)>
< C||X(hDy — A)vl? + h|| Xv(to)]|% 4.1
SCIXIDa — Al -y Xl o (4.15
+ Ch|| X v|?

N
LQ((to,tz);HZ_%(ag)) +h HUHLQ((tO,tz);H;N(aQ))-

To prove this, let t_ < tg and ¢ € C*((t_,t2);[0,1]) with ¢ = 1 on [tg,¢1]. Then by (4.14)
with v, we have

X000 = = [ 0r (01X 00 o) o
0

> —Ch_1<HX(thl — A)?

ol — cf| Xl
L2((to,t2);H, 2(09))

LQ((to,t2)§HZ+%(8Q))>
- CHXU\|2L2((t1,t2);H;(aQ))

COW D —AXPIP = O el
LQ((to,tz);Hh 7((‘9Q)

which implies (4.15) since ||X1)H%2((t1 £2):H3 (992)) €A1 be absorbed by || Xv||?
) sty

for
e <(t0¢1);H 3 (89)>
sufficiently small h and

to,t2);H;, N (09))

h
Ch7Y|[hDy — A, X]o|? 1
L2((tot2);H, 2(09)

< Ol X"
L2((tot2);H

+ || Xv|? ol
L2((to,t2);H, 2(09))

O o] o

%(89)) (t07t2)§H}jN(8Q)).

Now, we will prove by induction that for ¢y < t; < ta < t3, and X’ € U9 (Q) with WF,(X) C
ell, (X7),

Xol? < C|X'(hDy — A)o|?
| ||L2 ((to,tl);H2+%(8Q)) < Ol XX ' ) HL?((to,ts);Hz_%(aﬂ))
+ Ch|| X v(to)||%s 00 + CRITH| X v||? _
H ( O)HHh(BQ) H ||L2((t0,t2)§H2_]_%(6Q))
N N
+h HUHLQ((tO,tg);H;N((?Q)) +h H(thl - A)UHLQ((tO,tg);H;N((?Q))
=+ hNH'U(tQ)HH;N(aﬂ).

(4.16)

By (4.15) we have (4.16) with 7 = 0. Suppose that (4.16) holds for some j > 0. Let ¢ty < t; <
th <o < ts and X", X' € U9 (Q) with WF,(X) C ell,(X”) and WF;,(X") C ell,(X’). Then, by
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the induction hypothesis (4.16]) holds.

Xol|? < C|X"(hDy — A)w||?
| ”m(ao,tl);H;*%(am) < CIX7(ADz1 — 4) ”L?((to,ts);Hff%(aﬂ»

F R)X0(t0) 120 50 + CRITE|X 0|2 ~
” ( O)HHh(afl) H ‘|L2((to,t/2);H27]7%(aQ)) (417)

N N
+h HUHL?((tO’tS);H;N(aQ)) + h|[(hDgr — A)U”L2((t0,t3);H;N(8Q))
+ hNHU(tO)HH}:N(aQ)‘

By (4.15) with s replaced by s — j — 1 and (to, t1, t2) replaced by (to, t5, t2), and (X, X') replaced
by (X", X’), we have

1X" 0|2 Y
L2((to,th);H, ~ 2 (09)
< C||X"(hDy — A)v|? _ + h|| X" v (to)]|?,—j—
— || ( 1 ) HLQ((to,tg);HZ_J_%(aQ)) || (O)HHh J 1(8Q)

+ Ch||X"0))? . + N v H- :
|| HLQ((tO,tz);H;ﬂ*%(aﬂ)) H ”L2((t0,t2),HhN(aQ))

Using this in (4.17)) then implies (4.16]) with j replaced by j + 1 and hence completes the proof of
the lemma. g

4.3. Estimates for the operator P. In this section, we use the factorisation, Lemma to-
gether with the estimates from the previous subsection to prove estimates on solutions to Pu = f.

Let EL be the factorisation operators of P defined in Lemma We have the following
microlocal estimates.

Lemma 4.7. Let X, X € \Ilg,h(Q) such that WF,(X) C ell,(X), then for ty < t1, we have
[ X (hDy1 + 1B+ )ulgpr—t, | 11 (002)
<C (hflHXP“”L?((to,tl);H;(aQ» + HX“”H,&((to,tl);Hﬂam)) + BV Xul g2 g 1), (052))

Proof. First note that

(hDy1 + ha —iEL) X (hDgy +1FE1)u
= XPu+ ([hDy + ha —iEy, X]|)(hDy +iEy)u + O(hoo)\pt—io (Xu) (4.18)

Let A = iE — ha, which satisfies the criteria in Lemmal4.4. Then by setting v = X (hD,1 +iF4 )u,
we have

loler—to 00 < C (RHI(AD = AVl (o s o) + 10220 itz 00 ) -
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That is
[ X (ADy1 +1E4)ulp—, || a5 00
< C(h_l||XPU||L2((to,t1);H,§(aQ)) + B [[hDgr + ha = iBy, X](RDgr + 1B )t 12 (G100, )31 (692)

+ | X (hDy + iEi)UHL2((t0,t1);Hg(aQ))> + hNHXUHL2((t0,t1);H;N(8Q))’
which proves the lemma. U

Lemma 4.8. Let e > 0, X, X € U0, (Q) such that WF,(X) C ellp(X) € WF,(X) C {(,¢) :
Reo(E_)(z,§) < —c}. Also, let s € R and tg < t1 < ta. Then, there exists hg,c,C > 0 such that

1
X(hD iE_)u(t s h™2|| X (hD ik
XD Pt om + KX OD 2l

< Ch™2|| X Pul| (4.19)

L2((tota)sH. 2 (00))

+ CRN [ul g + ChN|[Pul| 2

t07t2);H;N(69)) t07t2)?H}:N(8m)

for all 0 < h < hg. If Rea(E_)(x,£") < 0 on [to, ta] x T*0Q, then we have X = X = I and a
better estimate

1
hD 1E_)u(t s h™2||[(hD iE_
IHDe A JuCo)om WD P
(4.20)

_1 N
< OB g etz oy T O o oy o)

for all 0 < h < hyg.

Remark 4.9. Note that Lemma 4.7 says that both E1 and E_ are good approximation to hd
if we allow some H,{—ermr of u. Lemma says E_ is a better approrimation than E as the
Hé—error of u is reduced to h® small for E_.

An immediate corollary of Lemma [4.8]is the following elliptic estimate.

Corollary 4.10. Let wg € R and suppose that |wy — w| < Ch and P be given as in (4.1), Then,
there exists hg, C,w’ > 0 such that for 0 < h < hy,

_1
1R Dy ulto)llry00) < Ch™2||(P + w)ull

2((to,ta)sH) 2 (05) (4.21)

)

+ Hu(tO)HHZ“(aQ) + ChNHuHLQ((th) H;N(ag))a
and the following estimate holds,

[[Dgrull

< P+l -
) L2 ((to2):H. 2 (990))

s+l
L2 ((to,tl);Hh 2 (092)

N
- Hu||L2((to,t1)'Hs+%(89)) + ORIl 2 o )51 o)

Th
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Proof of Corollary[4.10. We only need to choose w’ large enough such that P + w’ makes
Reo(E_)(z,£) <0 on [ty,ta] x T* 00,

then estimate (4.20) holds for E_(w') and P + w'. O

Proof of Lemma [4.8. Let ty < t1 < t4, < ta. We consider the E_ factorisation of (4.18) in Lemma
In other words, we set A = iE_ — ha and substitute v = (hD,1 +1F_)u. Let X' € \Ilg’t(Q)

with WF,(X) C ell,(X1) and WF,(X) C ell,(X). Then replacing (X, X) by (X, X1) in Lemma,
4.5, we obtain

1
X(hD iE_)u(t s h™2|| X (hD ik
XD Bt om + R XD Bl i)
(4.22)

< Ch™z|| X, Pu + ChN || X1 (hDy1 +1E-)ul| o

L2((t0,t'2);H;j’% (69)) (to,th);H, ™ (992))

N
+Ch “PUHL2((tO,t’2);Hh_N(8Q))'
To obtain (4.19) we simply estimate

h™2 || X, Pul| + ChN|| X1 (hDgr +1E-Jul|

L2((to,th): .2 (602) (to,th);H,;, N (092)

_1 i’ N v
< Ch 2HXPu”L2((t0,t’2);H2_%(39)) + O Xl g g 20~ (002))

N
+ChENPull a1 1), (002

Now, we are left with the case Reo(E_)(z,£) < 0 on T*Q. Note that by setting X = X; =1

in (4.22), one has

1
hD iE_u(t s h=2||(hD ik_
||( 2! 1 )u( O)HHh(aQ) +c 2”( 2! 1 )U||L2((to,t1);HZ+%(3Q))

_1 N
< Ch™z ||PUHL2((t0,t/2);HZ_%(89)) h Hu||L2((to¢’2);H;ZN(3Q))

+ RN (hDp +1B-)ull 12 (4.23)

(to,th):H, N (99))"

Since Reo(E_)(z,£') < 0 on [ty, t2] x T*0Q implies P is elliptic in the neighbourhood of [t1, t5] x
012, this means

ADor + 3B ull iy 0y gy 009y = CNPU L2 ao,tayiar ¥ o) + 100zt 01et1; 02

which can be applied to (4.23)) to complete the proof. O

The application of Lemma to E is given by the following.
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Lemma 4.11. Let e > 0, X, X € U9, (Q) such that WF,(X) C elly(X) € WF(X) C {(x,¢) :
Reo(E;)(x,§) > e}. Also, let s € R and ty < t1 < ta. Then, there exists hg,c,C > 0 such that

X(hD iE
IXOD0 2O o)

1
ST3

<c|xp
= H UHLZ ((to,tz);Hh (69)

1,5 3
+Ch2 [ X (hDg + 14 Julto) | ;00
) (4.24)

N : N
+h H(th.l+1E+)u||L2((t07t2);H};N(8Q))+h HPUHLQ((to’tz);H;N(BQ))
+ W ||(hD 1 + iE+)u(t0)HH;N(aQ).

for all 0 < h < hg. If Rea(Ey)(x,£") > 0 on [ty, ta] x T*0Q, then we have X = X = I and a
better estimate

|(hDys +iE4 )ul

s+%

2 ((oayity A 0m)

1 .
< ClPull + Ch2[[(hDy1 +1Ey u(to)l s (o) (4.25)

a1
((to,tg);Hh 2(8Q)>
for all 0 < h < hyg.

Proof. By setting A =iE; — ha and v = (hD,1 +iE)u in equation (4.13), which gives equation
(4.24]). Equation (4.25) follows immediately from equation (4.24). O

Combining Lemma 4.8 and Lemma yields the following estimate.
Lemma 4.12. Let ¢ > 0, B € ¥}(99Q), X,X ¢ \Ilgh(Q) such that WF,(X) C ell(X) C

WF,(X) C {(2,€) : Reo(E_)(x,&) < —e}. Also, let s € R and tg < t; < to. If Reo(E_)(x,&) <
—e, then there exists hg,C' > 0 such that

1wl bt ((0.000:000) + I 2 00,07 o)

- 1, ~
< CIXPull (1 40): - (002)) T Ch2\|XU(t0)HH5+%(am (4.26)
h

+ CR g g sy oy + 1 NP 2 g ;1 oy O Tt oy
for all 0 < h < hyg.

Proof. Let WF,(X) C ell,(X') € WF,(X') C ellh(X) C WFh(X) Combining (4.19) and (4.24)
ield
yields ) | |
h2 || X (hDy1 +iE-)u(to)| s a0) + cl| X (hDgyr +iE_)ull

s+%

22 (st 00
< C|X'Pul

L2((tot2)sH 2 (990))

N N
+Ch HUHH}L((tQ,tg);H;N(aﬂ)) +Ch ||PU\|L2((to,tz);H;N(8Q))
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and
|X (hDyr +iEs

s+2

22 ( (ot 2 o))

1 .

o1
L2 <(t0,t2);Hh Q(BQ)
N : N
BTN Dar + B ull o (4,10),01,~ 00) + 1 IPUl L2 (01501~ (00
+ hN||(hDy1 + iE+)U(tO)HH;N(BQ).
With parallelogram law on Hilbert spaces, we have

PP (g iom) I =

2( (to,t1);H;, 2 (692) e

(tost1);:H,

o))

< CHX’PU,H —i—Ch%HX/(hDgc1 +iE—)U(t0)HH;(8Q)

L2((toyt2);H, % (02))
1

+ Ch2 || X' (Ey — E-)u(to)l| g o0) + Ch™ ull g1 o 105 052
N N :

+ OV | Pull gy oy + CHN (Dt +3E-)u(to) - oy

This shows
hD 1 X X
|| zl U||L2 ((to,tl);HZ+%(8Q)) + || U||L2 ((to,t ) S+2(aQ))
~ 1 ~
<C|XP Chz|| Xu(t s
<l u”L2<<to,t2>;H2’%(am> + Oh1Xulto) 5 o)

+ CR Nl s (s 02y + OB PN 2 g 4.1 (02
+ChNHhD 1“(750)“}1 aQ)+ChN‘|U(tO)HH 8Q)+h‘HX ul|

s+2

22 ( (it % o))

A similar bootstrap argument as used in the proof of Lemma will allow us to absorb the

term A/ Xu| 2(( - ”7(69) . On the other hand, estimate (4.21)) allows us to kill the term
L2{ (to,t1 )
ChNHhDIIU(tO)HH—N(BQ). This proves the Lemma by replacing s with s — 1. O
h

A simple elliptic parametrix estimate then yields

Lemma 4.13. Let ¢ > 0, B € ¥}(0Q), X, X € ¥, (Q) such that WF(X) C elly(X) C

WFL(X) € {(z,€) : Rea(E)(z,£) < —e}N{(x,€) : |o(B) —io(E)|(x,£) > 0}. Also, let s € R and
to < t1 < to. Then, there exists hg,C' > 0 such that

1Kl L2 (10,0124 02))

- 1.~
< ClIXPull 12 ((tg,10).115 (90)) + CH2I1X (R D1 + B)U(to)HHs_f(dQ) (4.27)
h

N N N
+ Ch ‘|u||H}l((to,t2);H;N(BQ)) + Ch HPuﬂLz((tO,tz);H;N(aQ)) + Ch HU(tO)HH;N(aﬂ)
for all 0 < h < hy.
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Proof. Microlocal elliptic estimate says

Xu(t <C|X(B—iE_)u(t
XU 1o < CIXB =B ulto)l g

/ N
ORI ulto) omy o+ OB ult0)] g oy

h
< C|| X (hDy1 + B)u(to)||

_1
2

C|| X (hDy1 +iE_)u(t
HZ_%(aﬂ)—i_ | X (hDy1 +1iE_)u( O)HHZ_%(E)Q)
X N
+ Ch|| u(to)IIHZ,%(aQ) + ChN [ulto) | - (90

1l

N N
+ CP|ull g (1 a)sm N 002y T C1 NP L2 (40 287N 000
+ Ch|| Xu(to)

N
3 oy * P 1) gy
Using the bootstrapping argument as in Section |4.2, we can replace ChHXu(tO)HHS*%@Q) by
h
ChN ||lu(to)| H-N (69) and estimate (4.27) follows immediately from (4.26]). O

Finally, we can combine the above estimates to obtain higher regularity in the normal variable.

Lemma 4.14. Let ¢ > 0, B € ¥}(0Q), X, X € ¥, (Q) such that WF(X) C elly(X) C

WF,(X) C {(z,€) : Reo(E)(x,§) < —e} N{(x,&) : |o(B) —io(E)|(z,£) > 0}. Also, let k € N,
k>2,s€R and ty < t1 < ty. Then, there exists hg, C > 0 such that

HXUHH}If((tOM);Hﬁ) + ||Xu||H§71((t07t1);HZ+l) + ||Xu||H;§72((to7t1);Hfl+2)
k—2

5 L
<C). 1XPull 23 (4 )59y + Ch2 [ Xulto)]
=0

17} on) (4.28)

N N N
+ Ch HUHH}L((tO,tg);H;N(aQ))+Ch HPUHL2((t0,t2);H;N(6Q))+Oh HU(t[))HH;N(aQ)

and

HXUHH,’j((tmtl);H;) + HX“HH:—l((tO,tl);H;LH) + HXUHHS—Q((tO,tl);H;H)
k—2
~ l ~
< O IXPull s pyaazsy + ChEIX (hDys + Blu(to) | i
§=0 i

N N N
+ CR iy (o aysr > 06y + CPT IR 2 01001, 052y + CP (o)l oo

% 00 (4.29)

for all 0 < h < hyg.

Proof. First note that for k > 2
(hDp1)*X = (hDy1)* 2 (X (hDy1)? + 2[hDy1, X] + [hDy1, [hD,1, X]))
= (hD,1)fF 72 (X(P — Ag) + 2[hDy1, X] + [hDy1, [hD,1, X]])
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where Ay = ha(z)hD, — R(z',2’,hD,/) and R € V2, () as defined in (2.1). Therefore

k
[(hDg1) XUHLQ((tO,tl)§HZ)

< ”(thl)k72XPuHL2((to,t1);Hf;) + H(thl)k72Xu||L2((t0,t1);HfL+2) (4.30)

. N
+ Ch”Xu”H;:72((to,t1);HZ+2) +Ch HUHH}’f*Q((tO,tl);H;N)

implies
|(hD2)? Xl eyt
= HXP““L?((tO,tl);H,j) + HX“HLQ((tO,tI);H;”)
+ C’h”XUHLQ((tO’tl);H}SLH) 4 ChNHu”LQ((tO’tl);H;N).
Then, together with Lemma we obtain for the case k = 2 and all s € R. Now, suppose
holds for k£ and all s € R. Then says

1AD)  Xul| a4 1))

< HXPUHH;:’I((to,h);H,SL) + HXUHH;S*1<(to,t1)%H}SL+2)

& N
+ ChHXuHH’;*I((to,t1);Hfl+2) + Ch HuHH;f*l((to,tl);H;N)‘
Moreover, (4.28) with s replacing by s + 1 says

HXUHH}f((to,tl);Hfl“) + HXuHH,’f*l((to,tl);HZH)
k—2 ~ —
< CZ ||XPUHH:727j((to,tz);H;+l+j) + Chz || Xu(to)]|

skt L
= H, 2(09)

N N N
+ Ch HUHH}L((tO,tg);H;N(BQ))+Ch ||P“HLQ((to,tz);H;N(aﬂ))+Ch ”u(tO)HHEN‘

This implies

HXUHH’;H((tO,tl);H;) + HXUHH}:((tO,h);HZH) + HXuHH;f*l((to,tl);Hflﬂ)

(k+1)—2
- 15
<C 2} HXPUHHf(lk-&-l)—Z—j((t07t2);H2+j)+Ch2”Xu(t(])HH}sL-!—(k-H)—%(BQ)
j:

N N N
+ ORIl g (0.t o) F CPT NP a0 y:08 o) + CP H1Eo) g
which completes the proof for (4.28) and (4.29) follows similarly. O

Remark 4.15. The classical interior elliptic estimate follows immediately from Lemma 4.1}
That is, if P is a classical second-order elliptic operator, then for any V € U, we have

ullzzvy < CUIPull L2y + lull2w))-
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4.4. Exterior problem. In this section, we apply the results of the previous sections to P, — 22

Lemma 4.16. Let g9 > 0, M > 0, X, Xp € W™(9Q) with WF,(X2) C {|¢']g, > 1+ o} and
WE,(X) N WEF,(I — X3) = 0. Let U be a Fermi normal coordinate neighborhood of 92 in Q,
with coordinates (z',2'), E_ as in Proposition|{.2. Then for all x € C°(—1,1) with x = 1 near

0, € > 0 small enough, all k,N >0, and ¢ € C>X(Q,,), there is C > 0 such that for all0 < h <1,
z € [1 — e, 1+ e0) +i[-Mh, Mh] and u € L*(0Q) we have

W02 (x(e™ Yo — Go Xu)lp2(a,) < OB [[ull2(00).
where v satisfies
(hDj — Ao =0, V] = Xu, A= —i(E_X2 — (I — X3) Op({(£))). (4.31)
Moreover, for X" € W™ with WF),(I — X') N WFy(X) =0,

17 = X0 xvll gy < OnBY |[ull 200

Proof. Let € > 0 small enough so that {d(0€2,z) < 3¢} C U. We will require a few microlocal
cutoffs below. Let X; € U{9"P(Q), j =0,1,...,4 such that Xy = X,

WFL(X;) C{[¢']lg, —1—€0>0} for j=0,1,...,4,
WEL(X;) NWF,(I— X;) =0 for j<j.
Notice that, with A := —i(E_Xs — (I — X2) Op(({’))), we have Imo(A) > cp(¢’) > 0. Define

coocl

oz, 7)) == e 2 v(x!, 2,
so that v satisfies
(hDyi — (A —i%)5=0,  Bly1_0 = Xu. (4.32)
We claim that for any Xy € U™ with WF;,(I — X4) N WF,(X2) = 0, any k > 0, and any
0<¢e <3,
- 1
10551 12((0 30y (962 < CRZ [ X0l 12090 (4.33)
((0,3¢);Hy' (692))
(I = Xa)OE5) v 0,1y x0y < ONB™ [[ull L2 (00)- (4.34)

For k = 0, using that Imo(A —i%) > ©(¢'), we have by Lemma 4.6 with X replaced by I that,
- 1
HUHL2((073€);H}SL(39)) < Chz2 HXUHL2(BQ)- (4~35)
Using Lemma 4.6 again, this time with X and X replaced by (I — X3) and (I — X) respectively,
we obtain that
”(I - X3)6||L2((075/);H2(8Q))

” (4.36)
< CNhN(||U||L2((0,36);H;N(ag)) + lullr200)) < RNl z200)-
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Hence, using (4.32) again, many times,

(1 — X4)(thl)k77||L2((075/);H}1L\’*’6(aQ))

= |(1 — X4)(A - i%o)kéum((o,e');Hﬁ"“(aQ))
<|I(A - i%’)k(l - X4)17||L2<(076,);H}Jl\/7k(ag)) + Ch||(I — X3)17||L2((o,s’);H{]—l(aQ))~

That is -
(I — X4)U||H}’f((0,5’);H;]L\]7k(89))

< (I — X4)1~)HL2((0,5’);H}LV(BQ)) + Chl|(I - X3)7~)HLQ((O,s’);H,JlVA@Q))’
Combining with (4.36)), one has
(I = Xa)3ll gz (0,07 o) < ONPN [l L2 o0 (4.37)

Now, suppose that (4.33) and (4.37) hold for 0 < k < K — 1. Then, observe that
(hDy — (A+i9)055 = S ()05, 0Klpg =0,

0<j<K-1

where Aj(z) € ¥{5"" can be computed from derivatives of A in z. Applying Lemma as in

(4.35) and (4.36), we obtain respectively

||8§77HL2((0,35);H;) <C Z 1023
J<K-1

1
a(oaeary = Il o0

and ¢’ < " < 3¢,

(L — X4)a§(f)HLQ((O,E’);H;(E)Q)) <C Z I~ X3)Ajagﬁ”LQ((Oﬁ”);HZ*l(@Q))
0<j<K-1

N K ~ 5
+COnh™ | |0, vHLz((o,an);H;Nm)) + Z HAJ“%“”L2(<0,E”);H,7N(69))
0<j<K-1

< CnhM|ull p2(a0)-

Hence, arguing as we did to obtain (4.37)), we have that (4.33)) and (4.34) hold for all K.

Now that we have (4.33) and (4.34)), we finish the proof of the lemma by understanding 90X (P, —
22)x(z')v. Observe that

0 (Py — 2%)x(a')v

= 0K X, (hD,1 — ha —iE_(x,hDy))(hDy +iE_ (2, hDy))x(z')v
+ O (I = Xa)(Py — 2°)x(z!)o + O(h“)wp;;ox(wl)v

= 08X, (hD,1 — ha —iE_(x,hDy))x(z')(hDy — A
—ih X405 (hDyr — ha —iE_(x, hDy))x (z1)v
+ (I — X205 (P, — 2%)x(z") (I — X3)v + O(hoo)q,;’?ox(xl)v.

(4.38)
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By (4.34), we have

_coz! -
(1 — X3)85U||H{L\’((0,25)><89) = |le” 2 (I — X3)0f%

< Ol r2(00),
HYN((0,26)x09)

by - we have for any j, and B; € \Ifcomp,
| X4(hDgr — Bj))X' 3§U||L2(QO)
< XX hDp 0120, + RIXiX B0 2(,) + 10201 ) o)

Coz

e "2n 83

J
<Cy 102l 2 (e 22y o)) < €

L2 ( (£,2¢);H} (89))

< Ce*i”“”L?(aQ),
and by (4.35]), we have

Ci CEI .
e~ 2 0Ip < ChY2 |l 1290

L2((0,32);H; (09))

Hence, using (4.39), (4.40), and (4.41) in (4.38), we obtain
105 (Py = 2)x(a")ol 20,y < OB [l L2(00) -

Taking K = 0, using that G, (2)Xu is outgiong, we first obtain for any ¢ € C>(9Q,,),

102011 L2 (0,30)5113 02)) =

35

(4.39)

(4.40)

(4.41)

(4.42)

1¥(Go (2)Xu = x(z" )W)l 52 () = ¥R (2)(Po — 2)x(2)0llg2(0,) < ON" [[ull290)-

Now, suppose by induction that for 0 < j < K — 1, and any ¢ € C>(9Q,,),
[$02(Go (2)Xu = x(2")0) | 20, < ONEY|ull 2 (a0 -

Then, observe that 0% (G, (2)Xu — xv)|aq = 0, and
K—1

(P = 220 (G (2)Xu = xv)] = Y (a7 +b;2)0(Co (2)Xu = xv) = OF [(Py — 2%)x2],

j=0

where aj,b; € C. By (4.42) and the inductive hypothesis, we have for any Ve C(Q,),

I9[(Py — 2%)0X (Go (2)Xu — xv)]ll 12 < CnhY|[ull 2 o0).

Hence, since 95 G(z)Xu is outgoing, that for any 1) € C°(€);) with supp ¥ Nsupp(l — ) = 0,

1902 (Go (2)Xu = x0)]l g2 () < AN [lullr2(90)-

0

Proposition 4.17. Let g9 > 0, M > 0, X € ¥9(9Q) with WF,(X) € {(z,¢) : €']g, > 1+ €0}

Then for all z € [1 —eg, 1 + o] + i[—Mh, Mh], we have X \,(z) € ¥} (99Q) and

o(XAo(2) = 0(X)po (I, — (Re2)?) "
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Moreover, for X. € W;""(09) with WFy(X,) C {|/|y, > 1+ <0}, and k >0, X 9EA, € Uy
with symbol

N

o(XDEho) = o(Xe)podh (I€2, —%)". (4.43)

Proof. In this case, we recall (4.2)). In particular, by (4.19) and Lemma

[(X(ADy1 +iE_)G, (2)u0)(0)] m; (902)
< ChNHGo (Z)UOHH}IL((tO,tQ) N o)) < Ch HUOHH N oy

. . _1 .
where we have used the non—trz?pplng estimate of ||xG, || HN (00)— H2 (9, < Ch™". Hence, since
A, (2)ug = —p,hOul g = —ip, hDy1ul1—g

XAo(2)up = (—Xp,E— + O(h™)g-o) up,

and the first statement follows since o( \/ |’ \2 (Rez)2. The second statement follows
directly from Lemma |4.16
O

Lemma 4.18. Let g9 > 0 and M > 0. Then for X € W;*"P(0Q), with WF;,(X) C {|¢'; >
1+¢eo} and z € [1 — 9,1 + eg] +i[—Mh, Mh], we have

— sgn(lm 2%) Im(A, (2) Xu, Xu) L2 (90,dvol, ) 0a) = C|Tm 2/ XulF2g90) + O ull?:2(o0)-

for some C > 0.

Proof. First observe that, integration by parts on B(0, R) N Q,, yields
— hIm(Aq (2) Xu, Xu) 12(50,dvol, o0)

= Tm 2%||G o Xull72(5 0.1 + hIm(p, hd, G Xu, G X ) 12(9B(0,R) dvol,

)N 0 dvolg,) ) 96 0B(0,R))"

To simplify the notation, we will omit the dependence on p,,. In order to complete the proof, we
need to understand G, Xu.

We now apply Lemma [4.16

—hIm(A, (2)G o Xu, Xu)1250) = Im22||x(a:1)v|]%2(go) + O(hOO)HuH%Q(aQ).
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Finally, we have, letting X" € W{3™ with WFj,(I — X') N WF,(X) =0
1Xul22 50 = / Oy (213 |23 gy o

—/ 2Re (0,1 (x 1)),x(x1)v(a:1)>L2(aQ) dat

< Ch™Y|x (@) hDgrv]| L2 ((0,2e) xoe X ()0l L2 (0,26)x02) + ClIV 1172 (0,29 x0)
= Ch™Y[x (") Al L2 ((0,.2¢) o0 X (210l L2 ((0,26) w02y + ClIVlIT2 (0,20 %00

< Ch7YAX x (2"l 220,20 09 IX (@) 0]l £2((0,20) x002) + O™
< ChHIx(="ollfziq ) + OnAY [[ullZz og).

)

which completes the proof of the lemma. ]

4.5. Application to the interior problem. Next, we apply our estimates to P, — 22

Lemma 4.19. Let g > 0, M > 0, U be a Fermi normal coordinate neighborhood of 02 in
with coordinates (x',2'), E_ as in Proposition with P, — 2* = —P(—2%,g,,L;) (as in (4.3)).
Then there for all x € C°(—1,1) with x = 1 near 0, € > 0 small enough, and k, N > 0 there is
C > 0 such that for all0 < h <1, z € [1 — g9, 1 + &q] +i[~Mh, Mh], and u € L*(0S), we have

102 (x(e™ 2 Yo = G|z o) < OB lull 2(a0),

where v satisfies
(hDy +iE_)v =0, V|1 = u.

Proof. The proof of this lemma is nearly identical to Lemma with the caveat that all cutoffs
can be taken to be the identity, which simplifies the proof substantially. O

Proposition 4.20. Let g > 0, M > 0. Then for all z € [1 — g9, 1 + go] + i[—Mh, M h|, we have
A, (z) € U} (0) with principal symbol

o820 = s (€8, + (Re2)?)

Moreover
1

o(020,(2)) = p,02 (I, +27)" (4.44)

Proof. The Proposition follows directly from Lemma once we calculate the symbol of E_.
Recall that o(E_) = —, /¢ |§I + 1. Recall that vy is the outward normal with respect to the

metric g, and we have —8:% = ('9,,91 In particular, the DtN map with respect to g, is given by
A (2)up = pzha,,z uolaQI, which can be written as

Ay (2o = (—ps B + O(h*)y =) up.
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Lemma 4.21. Leteg > 0 and M > 0. Then for X € U5 (09), and z € [1—eg, 1+eo|+i[—Mh, Mh],
we have

sgn(Im 2%) Tm(A, Xu, Xu) 2(90,dvol, o0) = C1Tm 2| X w7250,

97,09

or equivalently,
Sgn(lm 22) IIl’l(TAIXU, Xu)LQ((?Q,dVng ,0Q) > O| Im Z2| ||‘Xvu||2L2 (09)>

for some constant C > 0.

Proof. Observe that, from Section [3], one has

hIm(TA; Xu, Xu)r2(50,dvol, hIm(A ; Xu, Xu) 2590, dvol

gI,BSZ)

= Im 2%|| G, (2) Xul 72

O,asz) -

= Im<22GI(2’)XU, GI(Z)XU>L2(Q (445)

I,pIdvolgI) I,pIdvolgz)'

We will omit the dependence of p, to ease the notations. Now, (P, — 22)G,(2)g = 0in Q,,
G, (%)glaa = g and hence, using the factorization (4.6)), we have by Lemma with X = X =1,

1
1G2 () Xullg1(0.0):12(00)) < ChNHGI(Z)XuHH}L(((]’Qg) ;N o)) T Oh?2 [ XullL2a0)-

iHy
Subtracting part of the first term on the left to the right-hand side and using local elliptic
regularity for P, — 2% and applying (3.11) we have

1
1G2(2) Xullgr1(0,.0):12(00)) < ChN||Gz(Z)XU|\H,1L((5726);H;N(ag)) + Ch2 || Xul| 290

N . (4.46)
< Ch7 |G (2) Xullr2(0,) + Ch2 || Xul| 2(90),
where we have used that for U € €2, one has the interior elliptic estimate
G2 (2)Xull gy @y < CRY |G (2) X ull 20, )- (4.47)
Combining (4.46) and (4.47), one obtains
1
1G 2 (2) Xull g1 (0,20):12(00)) < ChN”GI(Z)XU||L2(QI) + Ch2 || Xul[2(50)- (4.48)

Hence, letting ¢ € C2°([0,2¢)) with ¢ = 1 on [0,¢],
Xulsom = = [ 0 (e IG ()X ua) xn,y) do'
< ClIG, ()Xt o)+ O [ 1D o) Xl 2oy |G () X 2oy

< Ch7 (011G () Xuld (0 aepsnzomy + (1 + 6 DG (2)Xull 20, v,
< Ch™H (R X ul| 22 o0y + (2 + 6 HDIGL(2) Xull 120, )

where we used (4.48) in the last step. Now, choosing ¢ small enough in the above estimate, we
have

HXUH%?(GQ) < Ch_lHGI(Z)XU”%%QZ)-
The lemma now follows by combining this with (4.45). O
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4.6. Combination of interior and exterior problems. Thanks to the ellipticity of the interior
problem, we have an accurate representation of A, (z) and so we work with pIhE),,IuI replaced by
A, (2)u,. However, the exterior Dirichlet-to-Neumann map can only be accurately approximated
microlocally in [¢'[g > 1 (this is done in Proposition [4.17). Therefore, the difference of the ex-
terior Dirichlet-to-Neumann and the interior Dirichlet-to-Neumann can only be directly analyzed
microlocally on microlocally in [£']g, > 1.

Proposition 4.22. Let eg > 0, M >0, and X € ¥;”""(09), with WF,(X) C {|¢'[s, > 1+ &0}
Then, for all N € N, there exists C,Cn,ho > 0 such that for 0 < h < hy and z € [1 —e0,1+¢] +
i[—Mh, Mh],

(1Tm 22| Xl 2 90y — OB [0]22(00) < € (1((Ao = 7A) Xt Xt} 120010001, o) -

Proof. Observe that by Lemmas and
[ Tm{(TA; — Ay ) Xu, Xu)r2(90,dvol | > C(|Tm 22[[| X a2 90) — ON™ [[ulZ2(90)):

90 ,852)

which proves the proposition once relabeling the constant C. O

5. PrROOFs oF THEOREMS [1.§], [1.9, AND [1.10

In this section, we prove the first three main theorems on our article.

5.1. Microlocal estimates for boundary traces. Before proceeding to the proofs of the the-
orems, we require some microlocalized apriori estimates on boundary traces.

Lemma 5.1. Let A € ¥} (9Q),X, X € U (09Q) with WF,(X) C ell,(a(R + A*A)) Nell,(X), and
= (hDy1)? + hahDy1 — R(x, hD,)
be formally self-adjoint. Then for all s € R, € > 0, there is C' > 0 such that
[ Xular—oll gro+1 (a0 + X Darulpr—o| 3 (902
< CHU||L2((0,5);H;L—2(39)) + Chil||PUHL2((0,5);H;L(aQ)) + C”X(thl - A)U|x1=0||H;;(aQ)
+ChY Ny T CRY | (hDy — A)ulg1—oll - o0-

Proof. We first claim that for any X, X € U9 (9Q) with WEF,(X) C ellp(o(R + A*A)) Nell,(X),
we have

”XUHH5+1 09) < CHu”LZ( 0,e) HS 2(69)) + Ch_2HPuH%2( ) + ChJHXu‘xlz(]’P

(0.);H;,(69) et

(69)
+ O(hoo)H(hDazl - )u”2 H;N09)
(5.1)

+ HX(hDazl - A)u”?{fl(ﬁﬂ) + CNhNHquq;N(aQ)

Since o(R + A*A) is real valued, we may assume without loss of generality that
WEF,(X) C {xo(R+ A*A) > 0}

for some choice of #+.
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((A— B)u, (A — B)u) + (Bu, Bu) + 2Re((A — B)u, Bu) = (Au, Au)
Let Ey € V3 (09), with WF,(X) C elly(Ep) and
WF,(Ey) C {£o(R+ A"A) > 0}.
Also, let x € C°(R) with x = 1 near 0 and set E = x(z!)E} Ey, and assume that X1 » € ¥9(99)
with WE},(Ep) C ellp(X1) € WF(X1) C ellp(X2). Then, define
Q(u; E) := (EgEohDyiu, hDpu) r2(p0) + (Eg EoRu, u) r200) + h((a, Eg Eo]hDyiu, u) 12 (50)
= (Eo(hDy1 — A)u, Eg(hDyr — A)u) r290) + 2 Re(EoAu, Eg(hDy1 — Au) r2(a0)
(BEoEoR + A"EGEoA + hla, E§Eo]A)u, u) r2(90) + h{[a, E§Eo](hDy — A)u, u) 1250
= (Eo(hDy1 — A)u, Eog(hDy1 — ANu)r290) + 2 Re((AEy + [Eo, A])u, Eo(hDy1 — A)u) 120
(EoEoR + A"EgEoA + hla, E§EolA)u, u) 12(90) + [a, EgEo](hDy — A)u, u)r2(90)-
Next, notice that
(EgEoR + N EGEoA)u, u) 1250
= ((Eg(REo + [Eo, R]) + (EgA™ + [A”, Eg)) (AEo + [Eo, A]))u, u) 200
= (R + A*A) Egu, Equ) + O(h)HXlqu + 0(h°0)||u||§{h_N

;+%(89 (092)°
Then, using the microlocal Garding inequality, we obtain
2 ) 2 Ny, 112
oy om) < Qs B+ ORIX 2y ot O™l g o
+ ||X1(hD:v1 - A)”H%Iﬁ(@ﬁ) + CNhNH(hD:El - A)“Hi{}:N(aQ)

Next, we have

i 2
|Q(U, E)| = ‘ - E<[Pa Ethl]ua u>L2(Q) - Elm (<Ethlu7Pu>L2(Q))
i *
+ =(Pu, (EhDys — (D) E)@wm‘

< (”XluHH}QL((O,a);HfL’l(aﬂ)) + HXluHH}l((O,a);H}j(BQ)) + ||X1“||L2((o,a);H;;“(aQ))>
X HXWHLQ((O,&);HS(BQ)) + ChilHXluHH}L((O,e);Hﬁ(aQ))HXlPuHLQ((O,e);HfL(aQ))
N
+Ch (HUHHg((o,g);H;N(aQ)) + HUHH;((O,S);H;N(aQ)) + H“HLQ((O,E);H}jN(aﬂ))) :
Now Lemma |4.14 says
Xl 2 (0,0):1z -1 00)) F 1K1 2 (0,017 00)) + 1K1 20,0150+ 000

- ~ 1, ~
< ||X'PuHL2((075);H2_1(8Q)) + C||XU||L2((075);1{;—1(39)) + Chz2 ||XU’x1=O||Hs+%(8Q)
h

N N N
+ OOVl g1 0y (o) + CHN P 0,015 00y) + CHN Mtk ol o0
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and
HUHHQ((O o) H; N (09)) T ”“”H;((o,s);H;N(aQ)) + H“Hm((o,g);H;N(aﬂ))

2
< ||pu||L2((0 et o0y) T CNll (0 eyt o) + CPIIulzr=oll Gy +2 g
+CcnM HU’:c1:O||Hh—M(aQ)'

Hence, the estimate for |Q(u; E)| becomes

Qs B)| < CH2 X Pull} o s o) + CIX2U (0.t 00) +ChHXUIx1=o”ZZ+%(aQ) .
+ CBN ulZol ;- (o |
Now apply Lemma to P + ' for sufficiently large w’, we have
HXQUHH}L((O,E);Hz_l(89)) + ||X2“||L2((o,e);H;(aQ))
< CHXPUHL?((tO,tQ);HZ_Q(QQ)) + Cw’||XU||L2((075);HZ—2(39)) + Ch%HXU‘xl:OHH?%(aQ)

+ Ch [ull g1 0,095 a5y + OB 1Pl 20 03,11 012y + CH Nl =oll gy
and
HUHH}L((O,E);HZ*I(BQ)) + ”“Hp((o,s);ﬂg(am)
1
< ClPull g2 ((40,t) 15 -200) T Cor lll 219 ;1832 (002)) + O ”u(tO)HH;‘%(aQ)’
which implies

”X2U||L2( 0,6);H; (69))

< CllPull g2 (49 10): 152 002)) T Cor [l 120 ,0):113 2 002)) + ChE|| Xl o Wb (54)
+CnY ”u|x1:0HH—N aQ)‘
Plugging (5.3) and ( into ( , we have
2
HEOUHHl (09) <Ch” HPUH (05 HS(gQ)) +C||UHL2( iH; ™ 2(39)) +ChHXu|xl OH s+§(6ﬂ)

IR (0D — Al oy + OB [l ol oy + OBV [(0Dyt = A)al, e

from which (5.1) with j = 1 follows. Next, suppose that (5.1) holds for some J > 1. Then, let
X' € U9 (0Q) with

WFh(X) - ellh(X’), WFh(X/) C ellh(R + A*A)
Then, using (5.1) with j = .J, and (X, X) replaced by (X, X")

)+Ch 2| Pu|? )+ChJ\|X’uH?

”X“”HS+1 o) = Hu”LQ( (0,e);H;2(99) L2((0,6); H; (99) s+1ﬁ

2 (09)
X (hDer = Al oy + Cwb™ ully,_x + O | (hDy1 Ayu? 2 ony
(5.5)
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Then, applying (5.1) with j =1, (X, X) replaced by (X', X), and s replaced by s — £, we obtain

X'ul|? < |lull? + Ch™2|| Pul|? + Ch||Xu
Pty = ) O TP ) HH%%@D
+ | X (hDy — )UHHS(aﬂ) +CNhNHU\|2 N o) T O [(hDg —A)Ullzgw(m)-
(5.6)

Inserting (5.6)) in (5.5) then implies (5.1]) with j = J+1. The proof of the lemma is then completed
by the fact that

IXBDull o0y < 1 Xul o1 o0y + 1X (ADg1 = Mull g o) + Cnh™ [l o1 zoll 7 (50
U

Estimates for the boundary traces of the transmission problem We are now in a position
to obtain apriori estimates for the problem (3.19). We start in the simpler situation when (1.6)
holds.

Lemma 5.2. Suppose that (1.6) holds. Then for all M >0, s € R, and e > 0, there are C,hg > 0
such that for all 0 < h < hg, |1 — z| < Ch and u € L? ((0,¢); H;%(09)) solutions to (3.19), we

have
||u||HZ+1({)Q) + HthluanL(aQ) < C(HUHL2((0,5);HZ—2(39)) + HQHH;@Q))
for 0 < h < hg.

Proof. Recall that in Fermi normal coordinates
P, — 2*> = (hDy1)* 4 ha(x)hDy — R(x, hDy)

with o(R) =1 — yg'|§o.

Let A = i—A ;(2) and recall that o(A,(2)) = p/I¢'; + 1. Then,

(hDacl - A)u’azlzo - (_i(hav + iAI(Z))u = i%g,
and
% _1\2
G(RAAN) =1— €2+ (r05")’ 2L, +1) = pg2(0%, + 7202 + 7221 2, — 2L,

In particular, (7p,)?|¢’ |31 > p2 ¢ |3@ for all £ € T*0Q implies that there exists a positive con-
stant, ¢; such that

e1l€/lgy < (T 2N, — PAIE2, . for all € € T*00.
Now we have, for some constant co,
o(R+ A*A) > cp(|¢/],,)* > 0.
Hence, Lemma [5.1] yields
Hu|cc1:0HHZ+1(aQ) + ”th1U|x1:0HHfL(8§2) < CH“HLz((o e);HE2(09)) + CHQ”HS (09)
+ O [l —oll o + ext™ 91l oy
< COllull g2 ((0,00:3-20629) + Cll9ll 300
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Next, we consider the case of (1.7)).

Lemma 5.3. Suppose that (1.7) holds. Then for all M >0, s € R, € > 0, andX, X € w0 (09)
satisfying

WEL(X) N {2162~ r22I¢ 2, = o2 + 722} = 0

and WF,(X) C elly(X), there are C, ho > 0 such that for all 0 < h < hg, |1 — z| < Mh and all
u € L?((0,e); Hi2(09)) solutions to we have

HXUHH5+1 ooy T 1XAD 1l a0

< C (Il (00132 00) + 1 X911z 00) + ONEV Il 1 oy + ONEN et g o))
for 0 < h < hg.

Proof. As before, we need only consider R + A*A with A = iT,O;lAI(Z). Observe that if

o(R+AA) = p, (pO + 72 pI +7 pz‘f ’gI PZK/@O) =0,
then
oI5, —T203E s, = ph + Tk
Hence, Lemma [5.1] yields
||Xu’$1:0||HZ+1(8Q) + HXh‘Dxlu|x1:0HHfL(3Q) S CHU’HLQ( 06)'H872(89)) + CHXg”Hs aﬂ
+CNh [|] 31 OHH N (o0) +CNh HQHH N o)
]

Finally, we need an estimate on the high frequencies of a solution to (P, — 22)u = 0 in terms
of the traces of u on the boundary.

Lemma 5.4. Let M > 0, N > 0, x0, x1 € C°(R?) with xo = 1 near 052, supp xoNsupp(l—x1) =
0, ¢ € CX(R) with

supp(1 — ¢) N {[¢lg, : 3z € Q, such that |€|§o <2} =0, (5.7)

and define @ := Op(¢([€lg,, ). Then there are C,ho > 0 such that for all0 < h < hg, |[1—z| < Mh
and u € L2 () satisfying
(P, — 2*)u =0,

we have
;
10 = ®)xoullzz < € (h3 (lullz2am) + 17Dy ull2(00) + 5™ Ixaulzze) -
Proof. Let @ € L2 _(R?) @ := lqu. Then gives

(P, — 2%)i = h? ;900 @ (pouloa) — hdoq © (Pohauou\asz> , (5.8)



44 YAN-LONG FANG AND JEFFREY GALKOWSKI

where (0] daq @ (ulaq), @) = Joq 0y, pdS and (doq ® (h&,ou]ag> o) = o <h(9yo u) dS for
¢ € CX(RY).

Let ¥ € C°(R%) with supp(1 — ¥) Nsupp xo = supp X Nsupp(l — x1) = 0. Since WF,,(I —®) C
elly (P, — z2), there is E € ¥, ?(R?) with WF,(E) Nsupp(l — x1) = 0 such that

(I — @)xot = E(P, — 2*)X1 + O(h™) g X
= EX(Po — 2%)i+ B[P, X[xau + O(h™)y-=x1
= EX(P, — 2%)ii + O(h™) g X11.
Since E € Qf,:Q(Rd), one has
11— ®)x0il oy < (P — )il g2zt + O™ [xaull e, (5.9)
Using , we know that

I(Py = 22)itll g2 gy < Ch (||h8j0539 @ (ulon) || -2 (ga) + 1000 @ (h%ulasz) IIH};z(R@)

R (5.10)
< Cn? (Jlull2qon) + 1hv, ull2on) ) -
Combining with (5.9) and (5.10), one has
~ 1
11 = ®)x0il 2y < Ch* (Jlull 2oy + 1R Dvg ullz2am) ) + Cwh™ Ixaul 2oy,
which completes the proof. ]

5.2. Resolvent estimates - the absence of plasmon resonances. This section will prove
Theorem In particular, we obtain the desired resolvent estimates under the condition (1.6)).

We start with a lemma that we use repeatedly to prove our estimates. It applies the relevant
propagation of defect measures results to obtain estimates.

Lemma 5.5. Let X, X € U9 (9Q) with
2 (142 20 ¢1)2
(202, — 1) = P22 +1) = 0} A WE(X) = 0,

and WF,(X) N (WF,(I — X)) = 0. Then, for any M > 0, N > 0 and x € C°(Q,), there are
ho >0 and C > 0 such that for all 0 < h < hg, |z — 1| < Mh, and u € L} () satisfying

(P, — 2% u =0 in Q,
pohDy, u—TA (2)u=g on 0Q, (5.11)
u s z/h outgoing,
we have
% N
el 3 o+l s o+l < CORal s IT=X D0l oy )

Remark 5.6. Notice that for a > 0, we have A p(az) = a=*A;(z,ah) and hence, by rescaling h,
we see that, provided

(P12, — 22) = 72(E2, +2%) = 0} N WF(X) =0,
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for z € [1 — e9,1+ eq], Lemma 5.5 continues to hold for z € [1 — e9,1 + o] +i[—Mh, Mh).

Proof. We first claim it is enough to show that for any x € C2°(Q,),
% N
Ixull 20y < C(||X9||Hh%(8m I = X)ullz200)) + h7 19l -~ (a0)- (5.12)

Indeed, let x; € C2°(Q) with supp x Nsupp(1 — x1) = 0. By Lemmas and Lemma we

have
IXhDugul o+ 105

< C(HXQHH%({)Q + lIxaull 2 o) + CNhNHgHH Non) T CNhNHUHH N (o))
h

Hence, using Lemma [2.9| and Proposition [3.1] to control the normal derivative and xu, we have
[hDy, ull + ul + Ixull 2o
(5.13)

1
H2(09)
|3

3
H)? (09)
(-

< O(|I Xyl + O = X)ull s + [Ixaullz2o )+ ONEYlgll g oe)-

H,? (69)

We will prove (5.12)) by contradiction. Suppose that inequality (5.12) is false. That is, there
exist sequences of solutions u; = u(h;) and z; such that

Ixusllrz) =1, and [1 = zj[ < Mhj,

10303+ 10 = X002 00y + 51T = 005 = o)

(5.14)
(99)

Let x0,x1 € C(Q) with xo = 1 in a neighborhood of 99 and supp xo N supp(l — x) =
supp x Nsupp(1 — x1) = 0. Observe that

(P, — 2*)(1 = x0)u; = [x0, Pplxty,
and hence

So that, by (3.1
||(1 —X0)ujllr2() < Cllixo, Polxujllrz@) < Clixullrz) < €,

where in the second-to-last 1nequahty, we have used that by elliptic regularlty,

(1 = xo0)uj = Rylx0, Polxuy-

”uj”H}L(suppaxo) < ||XujHL2(Q)
In particular,
Ixaujl 20y < C. (5.15)

From Section and the first condition in (5.14), up to extracting a subsequence, we may
assume that there is a defect measure p associated with u; (See (2.3)). Furthermore, by (5.13)),
the boundary measures also exist. Since u; is outgoing, we have

WFh(uj) N {(-’B,f) : |.%" > TO} C S+ = {(xvf) : |l” > 1o, <£L‘,§> > 0}
for some rg > 0.

That is
p(x*v-) =0, (5.16)
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where supp(¥_) C S_ := {(=,¢) : || > ro, (z,£) < 0}.
By the second condition of (5.14) and Theorem [2.8, we have
W*M(Q(mg,{g) o pt) = 71-"<'u(q(9’30,£0))’

where ¢ € C®(°T*Q;R) and WEL(Q(wo,60)) € Blao,go)(6) N S— with By ¢)(0) being the ball
centered at (x,&p) with radius . Since 0f2 is non-trapping, there exists t > 0 and ¢;(xo, &) =
(z1,&1) € S4+. This shows

p(x*0y) =0.
Together with (5.16), we have
u(x?) = 0. (5.17)

Let ¢ € CX(RY) satisfy (5.7) and ® = ¢(hD). Then, by (5.15) and (5.13) together with
Lemma we have

(1 — ®)x(ula)ll 2(re) < ChZ + COxhY.
In particular, using (5.17)),
1= Jlggo Ix(uilo)l L2 maey < .hm [Px(ujlo)ll L2 mey +jli)1"go (I — ®)x(ujla)ll L2 (ray
p(x*¢?) < ulx*) =0,

which is a contradiction. O

The next theorem gives the estimates (3.17) and hence proves Theorem [1.8|

Theorem 5.7. Suppose that (1.6) holds. Then for any M > 0 and x € CX(Q,), there are
ho,C > 0 such that for all 0 < h < hg, |z — 1| < Mh, and u € L} () satisfying (5.11) we have

1Dy, ul + [lul + lIxull 20y < Cllgll

ey e
h8 ha) hQ)

Proof. The theorem follows from Lemma with X, X = 1.
O

5.3. Resolvent estimates and plasmonic resonances. In this subsection, we prove Theo-
rem In particular, we obtain the estimates (3.18)) under the condition (1.7)) and hence prove
Theorem

Theorem 5.8. Suppose that (1.7) holds. For all M, N >0, x € C2°(Q), X € U;”"P(0Q) with
WEL(I = X) N {2 I€2 =221, =2 + 7202} =0, WEW(X) C {I¢ly, > 1} (5.18)

there are C,hg > 0 such that for all 0 < h < hg, |1 — 2| < Mh, Imz < —h", and u € L2 ()
satisfying - we have

Ixull ) < Clmz[ 7| X gl r290) + ClI(I = X)g]

1
1k (o0)
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Proof. Let X; € U™P(89), i = 0, 1,2 with WF,(X;) A WF,(I — Xi1) =0, i = 0,1 and
WE (I = Xo) 1 {2 |2 — T22I/2, = p2 + 722} =0, WEL(X2) C elly(X),

Using that XoA,, A, Xo € UP(9Q), and the wavefront set properties of X1,
WFh([AO — TAI, Xl]) C ellh(X(Ao — TAI))
and hence there is E € hWU™P guch that

Ao —TAL, X1] = EXo(A, —TAL)) + O(hoo)\p;‘”

Thus, by Proposition
|Imz|||X1UH%2(aQ)
< (Ao — TAL) X1u, X1u)| + O [[ul|72 o0
< [(X1g. Xaw)| + [{[Ao — TAz, XaJu, Xinu)| + CnhY|[ul|2 o0,
= (X1, X1u)| + [(EXag + O(h*) g, X'u)| + Cnh" |[ul 7250
< <||X29HL2(aQ) +OM) U9l -~ a0y + el g o0 )) [ X1ull200) + OB [0 Z2(a0)-
Hence, using that X € ¥37"P(9Q) for the first inequality

T 2| Xaull a2 ) < ClTm 2| Xaullz2go0) + Cnh™ ullr2ga0)

(69) N (5.19)
< C|Xagll 2o + Cnh™ (1l 2oy + 191l o))
Now, by Lemma [5.5/ with X = I — X, and X = I — X,
Dy, u b + [Jul o + [Ixull g2
Hh h
N
S c(lI - Xo)gHHh% ooy T IX1tl 72 o0y + B9l v )
1
< C([[(I = Xo)g| i 00 + [Im 2|~ {| Xog|| %an))
<Co((I-X I Yix
0= X003+ 110 1K
which completes the proof. ]

5.4. The plasmonic nature of resonances. . In this subsection, we show that all resonances
close to the real axis are plasmonic. In particular, we prove Theorem [I.10

Lemma 5.9. Suppose that (1.7) holds. Then for all M > 0, x € C°(Q,) with x = 1 in a
neighborhood of 0 and ¢ € C°(Q,) (i.e. suppy NI = 0) the following holds. There is ¢ > 0
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such that for all |1 — z(h)| < Mh and u = u(h) € L} () satisfies
(P, —22)u=0 in Q,
(Poh0y, — TAL(2))u=0 on 09,
[ullz200) = 1,
u is z/h outgoing.
then ) )
ch? < |xullpz) = O(h?), and [[Yul| gz = O(h™).

Proof. Let X; € \Ilcomp(8ﬂ) J = 0,1,2,3 satisfy (5.18) with WF,(I — X;11) N WF,(X;) = 0.
Then from Proposmon , and the elliptic parametrlx construction, there is E € \Ifc‘)mp(am
such that

(X2 — Xo) = E(Ao — TAl) + O(hoo)\l,;oo

Hence, using that
WEL([A, — TA;, X1]) € WEF,(X1) NWF, (I — X7) C ellp (X2 — Xo),

we have
[(pohOy, —TA;)G,, Xl“HHN(aQ) = (Ao = TAL) X1ul g a0y

= [l[(Ao = 7AL), XaJul g 90y < ChI[(X2 = Xo)ull gy 9a) + O(h™)
= Ch[E(Ao = TAL)ul gy a0y + O(hY) = O(R).

Define w := u — G, Xju. Then, we have

(Pp —2*)w =0 in Q,
g = pohdy, w— TA, (2)w = O(h™) on 09,
w= (I —X1)u on 01},

w is z/h outgoing.
Now, by Lemma [5.5| with X = I — X and X = I,
1hDygwl 3 A lwll g+ lxwllaze) < C(HgHHh% — I Xowll 372 o)

2(09) HZ2(69)
= Ol 3,

= O(h™).

oy 10U = Xl 25

Using Lemma to bound HxGoXluHHz(Q), we obtain

1

IxullL2) < Clixwllazq) + IXGo X1ull g2 ) < Ch2.
Next, using Lemma [4.16 again, observe that ¢ € C°(Q,,), one has
[G o Xaull gz = O(h™).
Finally, observe that
el 2y < Il + (¥ Go Xrul ) = OA™),
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which completes the proof. ]
We can now complete the proof of Theorem [1.10]

Proof of Theorem [1.10. Let ¢ € C°(RY) with suppt N IR = 0. Suppose that \; € R(P) with
Re\j — oo and [Im \;| < C and uy, satisfies (1.5) with f, = f, =0, and [luy,||r290) = 1-

Set hj = Re )\;1. Then Lemma applies to uy, , and hence
lYux;0llmpi0,) = OBT), llusllgsr2 pq) < C-
To finish the proof of Theorem it suffices apply Lemma to see that
[0Grux; 2l m2(0,) = O(BT).

6. COUNTING OF PLASMON RESONANCES

In this section, we prove Theorem We start by finding an operator that is uniformly
invertible near the real axis and approximates (A, (2) — 7A,(2))~! well.

Lemma 6.1. Suppose that Q € W"P(9Q) satisfy
[2IR, ~ P2, =+ 722} Celu(@).  WEA(@ C {Ely, > 1) (61)

Then, there is € > 0 such that for all M > 0 there are hg,C > 0 such that for 0 < h < hg,
z € [1 —2e9,14 2¢0] +i[—Mh, Mh],

Rq(2) = (Ao (2) — TAL(2) —1Q) ™"
erists and satisfies
<C.

R
H Q(Z)HHh% (89)—>Hh% Ci9)

Proof. Let Xo, X1 € W*™P(9Q) such that WF,(Xo) C WF,(I — X1), WFy(X1) C {[¢]g, >
1+ 2}, WER(Q) N WFL(I — Xp) = (), and

WF,(Xo) C ell(X1(A, — TA; —iQ)),
WE(I = Xo) N {2IE' 2~ T22I 2, = o222 + 72222} =0, z€[l-21+¢]
Then, the elliptic parametrix construction implies
1 Xoull iz 00) < Cll(Ag () = TAL(2) = iQ)ull o1 (agy + Ch™ [l - (50
Hence, by Lemma (together with Remark with X =T — X and X = I, we have
Dol 3 o+ 103 o+ Iy < CUQI 3 o+ 10wl o)
< CIXoull yar2 o) + B 0l = (00

< Cll(8o(z) — 7hz(z) = iQull y o+ H g o)
h
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which completes the proof after absorbing the last term on the right-hand side.
O

We now fix @) satisfying , let € > 0 as in Lemma and are interested in the number of
resonances in
Ve(h) :==1[1 —¢,1+4¢| +i[—h,h].
Define
Z.(h) :=={z € V.(h) : (A,(2) —TA,(2)) is not invertible}.

The next lemma reduces counting the number of resonances in Vz(h) to counting the number
of zeros of an analytic function and gives a crude upper bound on how many zeros there may be.

Lemma 6.2. There is hg > 0 such that for 0 < h < hy,

Z.={z¢eV.(h) : F(z) =0},
where

F(z) :=det(I +iRg(2)Q).
Moreover,there is C > 0 such that

|F(2)| < exp(Ch™%T1Y), z € Vo (6.2)

and

N(h) :== #2.(h) < Ch™ %1,
Proof. Observe that

Ay —7TA, = (A, —TA; —1Q)(I +1Rg(2)Q).

Therefore, since (A, — TA, —iQ) ! exists for all z € Vz(h), A, — TA, is invertible if and only if

I+iRg(2)Q is invertible. Since @ € TP Rp( is trace class and hence I +iRg (%)@ is invertible
if and only if F(z) # 0.

Now, observe that
|F(2)] < exp(|[Re(2)QIm) < exp(Ch™ ™), 2 € Vac(h). (6.3)

On the other hand, set z; = s + ih, then
(I+iRq(25)Q) ™" = (Ao (2s) = TAL(25)) " (A (25) = TAL(25) —1Q) = T —i(Ag (25) — TA,(2)) Q.
Therefore, for s € [1 — &, 1 + €], using that [|(A,(zs) — 7A,(25)|| < Ch™!, we have

|F(25)] 7" < exp(|| (Ao (25) = TAz(25)) ' Qllmy) < exp(CR™Y). (6.4)
Using and together with [DZ19, (D1.11)]

#{z€[s—h,s+h]+i[-h,h] : F(z) =0} <Ch %,  se[l—e,1+¢].

Hence,
N(h) < Ch 91,
as claimed. 0

With the crude estimate on the number of resonances, in hand, we can now write an effective
formula for counting zeros.
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Lemma 6.3. Let x € C°((1 —¢,1+¢)). Then,

> wRex) = o [ x(z)a;l?x)dszO(hoo), (6.5)
zj€Z. e,N

where X is an almost analytic extension of x.

Proof. First, as in [Dyalb|, page 375] by [Tit86, Lemma «, Section 3.9] and the estimate (6.2))
(splitting the region V(h) into h by h squares and applying Lemma « to each square, transformed
into the unit disk using the Riemann Mapping Theorem), we have
0.F(2)
F(z)

=Y 4G, RIS, ze Vi) Nsupk.

Hence, applying Stokes formula in
‘/E(h) \ UZjGZ(h)B(Zja ’f’),
sending r — 0, and using that supp x C {Rez € (1 —¢,1 +¢)}, we obtain

! )Z(z)aZF(z)dz = Z X(zj) + 2171'1/ 8;)282F(Z) dz N\ dz

27 Jov, F(z) ez Va(h) F(z)
= Z X(zj) + O(h™),
zj€Z:(h)

where the last equality follows from the bound N(h) < Ch= 91 |G(2)] < Ch™N, and 0:% =
O(] Im z|>).

Finally, since by Theorem |Im z;| = O(h™), the lemma follows. O

In order to obtain an asymptotic formula for the integral in (6.5), we will need to have an
accurate description of (A, (z) — TA,(2))7'X, for 2 € TZ(h) := [l —¢,1 + ¢] £ ih, for any
X € weomp(9Q) with WF,(X) C {[¢]g, > (1 +¢)?}.

Lemma 6.4. Let X € W"P(9Q) with WFy,(X) C {|¢'|y, > 1+¢}. Then,

: +oo )
(Ay(2) — TA,(2)) 71X = —% W*U(t, 2)W Xe /hat, +£Im 22 < —hV,
0

where, W € 0™ (9Q) and for some X € Cogp({I€']g, > (1 +€)%};[0,1]) with supp(1 — x) N
WFh(X) = @,

€8, =2+ 7oy I€G, +

o(W) =
Po+ 7707
there is ¢ > 0 such that for any «
IDSU(£t, 2)e /| 2 a0y s 1290y < Cae =R £ Im22 < —nN 1 >0,

and

(hDy — B()U(t,2) =0,  U(0,2) =1
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for B € W2 satisfying

R R
Po+ 7707

where x € Cegp ({1819, > (1 + £)?};[0,1]) with supp(1 — x) Nsupp(x) = 0.

o(B)

Y

Proof. Since the analysis only happens at the boundary, we will omit the argument of Sobolev
spaces. Define

W = Op

po\[IEB, =2 +7ory[IE, + 22
X
Po+ 1707

Now, let X7 € TP (9Q) with WF,(X1) Nsupp(l — x) = 0 and WF,(X) N WF,(I — X;) = 0.
Set
B(z) := Op(x)* (W (A — TA-)W* + 2%) Op(x).
Then,
XiW(Ay — TA)W* = X1(B(2) — 2%) + O(h™) g-o,
and, by (4.44) and (4.43),

2 (112 2 20112
ol lg, — 7P 1€
=2 gg — 7.2, 07 B(z) € hWeomp,
Po TTP7

a(B(2))

Moreover, using Proposition |4.22]
— sgn(Im 2?) Im((B(2) — 2%)u, u)
= —sgn(Im 2%) Im{(Op(x)*W (A, — 7A)W* Op(x) — 2%(1 — Op(x)* Op(x)))u, u)
> co| Im 22[[|W* Op(x)ul72 + [ Im 2%|{(1 — Op(x)* Op(x))u, u) — Cnh™ [[ul 72
= [Tm 2?|{(1 — Op(x)* Op(x) + cOp(x)* WW* Op(x))u, u) — Cxh™|Ju| 7.
> (| Tm 22 — k™) 22,
where the last line follows from Garding’s inequality and they fact that
(1= Op(x)* Op(x) + co Op(X)* WW* Op(x)) = 1 — x*(1 — c)W?) > 2¢ > 0.
Next, observe that, if (B(z) — 22)~! exists (and is polynomially bounded in h), then for any
A€ U0 with WF,(I — A) N WF,(X) = 0,
(B(2) = 2%) 71X = A(B(2) = 22) ' X + O(h™) g =,
and hence, since W is elliptic on WFy(X1),
(A, —TA)W*(B(2) — 22)'WX = XiW (A, — 7A)W*(B(2) — 22) "W X 4+ O(h™) g
=X+ O(h™?)g-co.
In particular, since (A, — 7A,)~! is tempered and bounded in h,

(Ap —TA) ' X = WH(B(2) — 22) " 'WX + O(h™) g, |Im z| > V.
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Therefore, we only need to invert B(z) — z%. For this, define U(t, 2) by
(hDy — B(2))(U(t,z)) =0, U(,z)=1.
Then, observe that on
— sgn(Im 22)hd;||U (t, 2)e 7 Mg |2,
= —2sgn(Im 2?) Re(h@t(Ue_itzz/huo), Ue_itzz/hu0>
= 2sgn(Im 22) Im((B(z) — z2)Uefitz2/hu0, UeiitZQ/hu(ﬁ
< —(c|Im 22| — Cy M) (U (t, 2)e ™" Mg |2,

In particular,

U (£, 2)e 4 Pug |2, < Cem 21/ )2, 0 £Im 2% < —AN, ¢ > 0.
Thus, we have
i +oo Ly
(B(z) —2*)! = —h/ U(t,z)e " /hdt,  +£Imz2% < V.
0

Finally, observe that
(hD;y — B)D,U = (D,B)U, D,U(0) = 0.
So that for ITm 22 < —hN, and ¢t > 0,

) 1 [t . .
|D-U(t2)e M| 2y < 5 / Ut — 5, 2)e =9=/M(D.B)U (5, 2)e /" La_, p2ds
0
< %6—ct|lm22\/h < Cle—ct|lm22|/h'

Now, suppose
IDEU(t, 2)e™ /My < Crem eI =10

is true for some C}, and k£ < J. Now, we have

Jityr S (T ik J+1
(hDy — B)D{ U = . |PEBDITRU - DIFIU(0) = 0.
k=1

Then

IDIHLU (8, 2)e M| 2, 0

1 A J+1 t : 2 S 2
<5 ( f ) / Ut — s, 2)e =)= /M(DEB)DIH1FU (5, 2)e 752/ 1o, pads
k=1 0
J+1
C J+1
< hB ( Z )CJJrlkectImzz/h < Oy pectlmz2l/n

k=1
which proves the induction step and hence the Lemma.

We can now prove Theorem [I.11]
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Proof of Theorem [1.11. We start by computing,

[ xe% = 3 res) + 00),

z 'EZE

Ny =

27 e,
where
'y :=[1—¢1+¢]£ih,
oriented to the left and right respectively. Here we have used Lemma to obtain the second
equality.
Observe first that, using cyclicity of the trace and the fact that Rg@Q € WP, we obtain

) =TI 4 iR ()Q) 0. Rl
= —iTr(A, — 7A,) " 10.(A, — TA,)Ro(2)Q
= —iTrX (A, — 7A,) "' X0.(A, — TA,) X Rg(2)Q + O(h™),
where X € U™ with WF,(Q) N WF,(I — X) = 0.

We can now use Lemma [6.4] to write

: +oo
Ne=Y ﬁ /F $(2) /0 TeXW*U(t, 2)W Xe /10, (A, — 7A,) X Ro(2)Qdtdz + O(h™).
+

We may now integrate by parts using —hDZ/(2z)e_it22/h = e712%/h {0 see that for p € CF with
1 ¢ Supp(l - p)7

: +o0
1 ~ * —itz [ee}
Ny = Ei oy X(z)/o p(OTeXW*U (L, 2)W Xe /15, (A, —7A,) X Ro(2)Qdtdz+0(h™).

Applying Stokes theorem on [1—¢, 14¢| xi[0, h|for the integral over I'y and on [1—¢, 14+¢]x —i[0, h],
we obtain

Fo0
Ny ZEF2 / / p(O)TrXW*U (t, Z)WXe*itﬂ/h@Z(AO —7A,)X Rg(2)Qdtdz + O(h™)
mh 0

i

=5 X(z)/ p(t )TrXW*U(t,z)WXefitzz/haz(Ao — 1A ) X Rg(2)Qdtdz + O(h™).
R

(6.6)
We now use [Zwol2, Theorem 10.4] to write in local coordinates

1 Lot zm)— —tz2 o
(%h)d_l/eh(w’ DW=t x,m, z)dn(X ) (y)dy+O <h HUHH;N((?Q)>7
where, with b = o(B),

8t(p(.1',77) = b(xaaIEgO% 90(071‘777) = (.%',7’]), a(07x7n7 Z) =1L
We can then perform stationary phase in (¢, z) (6.6) with critical point ¢ = 0, and z.(z,n) =

\/b(x,n). Or equivalently,

Ul(t, z)e*itzz/th =

ponlg, — T2 pzlnly,

2
z(x,m) =
P2+ 12p2

c




SURFACE PLASMONIS IN METAMATERIALS 55

’TpI

/ gI +22

stricting to the diagonal and integrating. This calculations yields
1

Ny = W /X(\/ b(x,n))dzdn.

Taking a sequence of y approximating 1j;_ ;4] shows that

RIER, - Tl

Moreover, o (0,(A, —TA,)) = —= <\/I§’IPQO = + \/\g ) We then compute the trace by re-
9o -z

A

2
#{z € 2.} = (27rh)1_dvolT*3Q{(ac,§) c(1-e)2< o <(1+ 5)2} + o(h'™9).

Po +T0;
Now, set a = %—J_ri, hj:=(1+¢)A"ta’/ and observe that
#{\; €R(P) : 0<ReA; <A :Im); > —-M}
[logq, A A A
= > #HNERP) : aTTA<ReN <a A Tm); > —M} +O(1)
§=0
[log,, Al 2 |¢l)2 2 .21¢12
< po’é‘ |g -7 pz’é |g 2 1—d
= (27hj) olppqd (z,€) = (1 —¢)? < S L <(14¢)p+o(h;7 %)
jgo { P2+ 12p2 } J
lloga A]
= o(A"™1) 4+ volregn(V) (L + )4 — (1 —e) T AT (1 + o) d2m) Y~ o/
§=0
= (2m) Dol ga (V)AL + o(N71),
which completes the proof. ]

APPENDIX A. PROPERTIES OF THE OPERATOR P

In this section, we show that P with domain (1.3)) is a black-box Hamiltonian.

We begin with a technical lemma

Lemma A.1. Suppose that M is a smooth, closed manifold (compact without boundary), m € R,
and A € (M) (i.e. a classical pseudodifferential operator of order m) with

o(A) ()] = €™, —[0,00) N {o(A)(@,€) © (1,€) € S"M} =0, (A1)
Then A is a Fredholm operator with index 0.
Proof. Let a = 0(A). (Recall that a is homogeneous degree m in &.)
A —Opy(a) = Rc 9™ 1(M).
Let x; € C°(R;[0,1]), i = 1,2 with x; = 1 near 0 and supp x1 Nsupp(l — x2) = 0. For h > 0, let
Ap = Opy(a(z, hE)(1 — x1(h[€]) + x2(R[E])).-
Observe that by (A.1)
la(z, h&)(1 — x1(hIE])) + x2(hIED] = c(h)™.
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Moreover,
Ap = Opp(alz,)(1 = x1(I€]) + x2(IE]) € Ty*(M).

Thus, there is £ € ¥, such that

EA, =1+hR_4, Ry € U, (M).
In particular, since

IRl (ary— 13 (ary < Cish,
for h small enough A, is invertible and A,:l e W, "™ (M).
Now,
A 'h™ A = A1 (Opy (a(z, hE)) + K™ R)
= A (An + Opy (xa (hl€Da(w, hIE]) = xa(RIE]) + h™R) = T + K,
where K : H*(M) — H*"1(M) and hence is compact. In particular,
A=h"T"A + f(,

where K : H*t"(M) — Hst" (M) < H*(M) is compact and hence, since Ay : H5T™(M) —
H#(M) is invertible, A is Fredholm with index 0. O

We now use Lemma to study the operator P.
Lemma A.2. The operator P is self-adjoint.

Proof. We start by showing that P is symmetric..Notice that, integration by parts implies that
for u,v € H2(Qy,),

<Ag@ o Us U>L2 (Q4,ppdvolg,,)
= (U 894,90 V) L2 poydvoly,, ) + (P0Dug, s U>L2(aﬂ,dvolgo,m) — (s o Oy, U>L2(aQ,dvolgo,@Q)-
In addition, for u,v € H?(Q2,),

<Agz,p1ua U)L?(Qz,pzdvolgz)

= (U gy, V) 120 pyavoly, ) T (TP, U 0) L2 (00,avol, 00) — (s TP2Ou,, V) L2 (00, dv0l, ) 00)-
In particular, the operator P is symmetric.

We next show that there is z with Imz > 0 such that (P — 2%) : D(P) — L? and (P — 22) :
D(P) — L? are surjective. This then implies that P — Re(z?) and hence also P is self-adjoint.

To do this, recall the definitions of R, (z), G,(z), R,(z) and G,(z) from Sections |3 and
and note that R, : L*(Q,) — H?*(Q,), G, : H¥?(0Q) — H*(Q,), R, : L[*(Q,) — H?*(Q,), and
G, : H3?(0Q) — H?(Q,) are analytic families of operators in Im z > 0.

In particular, A, (z) — 7A,(2) : HY?(0Q) — H'/?(9Q) is an analytic family of operators in
Imz > 0. Moreover, since A, — A, € U1(99Q) (i.e. is a non-semiclassical pseudodifferential
operator of order 1) has real principal symbol is elliptic in this class Lemma implies that
A, — TA,, is an analytic family of Fredholm operators with index 0 in Imz > 0. Thus, by the
analytic Fredholm theorem, (A, (z) — 7A,(2))~! is a meromorphic family of Fredholm operators
with index 0 in Im z > 0.
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Using this, we have, in Imz > 0

G, (2) _ R (z) 0 \ _
(P—2)| 1+ <Go(2)> (Ap(2) = TA,(2)7? (7200, —PoOy,) < 0 RO(2)> =1Ir2 2.

In particular, since the poles of (A, (z) — 7A,(2))~! form a discrete set in Im z > 0, one can find
z such that P — 22 : D(P) — L? and P — (%)% : D(P) — L? are surjective. O

Lemma A.3. The operator P is a black box Hamiltoniain in the sense of [DZ19, Definition 4.1].

Proof. The conditions [DZ19, (4.1.4) , (4.1.5), and (4.1.6)] are obviously satisfied. It remains to
check that for 1p g gy) (P + i)~! is compact, but this follows from the fact that (P +i)~!: L? —

D(P) C (H?*(R2,) ® H*(Q,)) N H'(RY) and the Rellich-Kondrachov embedding theorem. O
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