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Abstract. We prove a Weyl upper bound on the number of scattering resonances in strips for manifolds

with Euclidean infinite ends. In contrast with previous results, we do not make any strong structural
assumptions on the geodesic flow on the trapped set (such as hyperbolicity) and instead use propagation

statements up to the Ehrenfest time. By a similar method we prove a decay statement with high probability

for linear waves with random initial data. The latter statement is related heuristically to the Weyl upper
bound. For geodesic flows with positive escape rate, we obtain a power improvement over the trivial Weyl

bound and exponential decay up to twice the Ehrenfest time.

1. Introduction

In this paper, we study asymptotics of scattering resonances and linear waves on a d-dimensional non-
compact Riemannian manifold (M, g) with Euclidean infinite ends (see §2.1). Resonances are the spectral
data for the Laplacian on non-compact manifolds analogous to eigenvalues in the compact setting. They
are defined as poles of the meromorphic continuation of the L2 resolvent (see §3.1)

(1.1) Rg(λ) = (−∆g − λ2)−1 :

{
L2(M)→ L2(M), Imλ > 0,

L2
comp(M)→ L2

loc(M), λ ∈ C \ (−∞, 0].

Our results involve the structure of the homogeneous geodesic flow

(1.2) ϕt = exp(tHp) : T ∗M \ 0→ T ∗M \ 0, p(x, ξ) = |ξ|g(x).

1.1. Weyl bounds. Our first result is an upper bound on the number of resonances in strips,

(1.3) N (R, β) := #{λ ∈ [R,R+ 1] + i[−β, 0] : λ is a resonance}, β ≥ 0, R→∞.

We first state the following simple corollary of the main result:

Theorem 1. For all β > 0 we have

(1.4) N (R, β) = O(Rd−1).

Moreover, if the trapped set K ⊂ T ∗M \ 0 of ϕt has volume zero (see (2.6)), then

(1.5) N (R, β) = o(Rd−1) as R→∞.

The bound (1.4) has previously been established in various settings by Petkov–Zworski [PZ99, (1.6)],
Bony [Bon01], and Sjöstrand–Zworski [SZ07, Theorem 2].

To state a more precise bound, we use Liouville volume of the set of trajectories trapped for time t

(1.6) V(t) = µL(S∗M ∩ T (t)), T (t) = π−1(B) ∩ ϕ−t(π−1(B)),
1
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Figure 1. (a) A plot of the exponent m(β, γ) from (1.11) in the case of positive classical
expansion rate γ, as compared to the standard Weyl law m = d− 1 and to the exponent
m′(β, δ) from [Dya15a] in the case of hyperbolic manifolds. (b) A plot of the typical
behavior of the norm ‖ψU(t)ψuR‖L2 from Theorem 3.

where π : T ∗M \ 0→M is the projection map, S∗M = {|ξ|g = 1} is the cosphere bundle, and B is a large
compact set with smooth boundary, see (2.12). We also use the Ehrenfest time at frequency R > 0,

(1.7) te(R) =
logR

2Λmax
, Λmax := lim sup

|t|→∞

1

|t|
log sup

(x,ξ)∈T (t)

‖dϕt(x, ξ)‖.

Here Λmax ∈ [0,∞) is the maximal expansion rate and if Λmax = 0, we may replace Λmax by an arbitrarily
small positive number and accordingly take te(R) = C logR for any fixed constant C.

The following is our main Weyl bound, which immediately implies Theorem 1 since V(t) is always
bounded and limt→∞ V(t) = 0 when K has volume zero. A connection between the function V(t) and
resonance counting has previously been used heuristically in the literature, see [Zwo99b, (10)].

Theorem 2. For each β ≥ 0, ε > 0, there exists a constant C > 0 such that

(1.8) N (R, β) ≤ CRd−1 min
[
V
(
(1− ε)te(R)

)
, exp

(
2βte(R)

)
· V
(
2(1− ε)te(R)

)]
.

The proof of Theorem 2 follows the strategy of [Dya15a]. We first construct an approximate inverse for
the complex scaled version of the operator −∆g−λ2 which shows that if λ is a resonance, then I−A(λ) is not
invertible, where A(λ) is a pseudodifferential operator whose symbol is supported in a small neighborhood
of the trapped set. By Jensen’s inequality, the number of resonances can be estimated using bounds on the
determinant of I−A(λ)2, which is controlled by the Hilbert–Schmidt norm ‖A(λ)‖HS. The latter norm can
be bounded by the right-hand side of (1.8). The operator A(λ) is defined using the dynamics of the flow for
time te(R), and due to Egorov’s theorem up to Ehrenfest time it lies in a mildly exotic pseudodifferential
calculus.

The expression (1.8) can be bounded in terms of the classical escape rate

(1.9) γ := − lim sup
t→∞

1

t
logV(t) ≥ 0.
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Theorem 2 implies that (see Figure 1(a))

(1.10) N (R, β) = O(Rm(β,γ)+), m(β, γ) :=


d− 1− γ − β

Λmax
, 0 ≤ β ≤ γ

2
;

d− 1− γ

2Λmax
, β ≥ γ

2
.

where O(Rm+) stands for a function which is O(Rm+ε) for each ε > 0. Note that the change in behavior for
m(β, γ) happens when β is equal to half the classical escape rate, which is the depth at which accumulation
of resonances has previously been observed mathematically, numerically, and experimentally – see §1.3.

Under the assumption that the trapped set is hyperbolic, there exist several previous results giving bounds
on N (R, β) which are stronger than (1.10), see §1.3. For instance, in the case of d-dimensional convex co-
compact hyperbolic quotients with limit set of dimension δ ∈ [0, d− 1) we have [Dya15a, Theorem 1]

(1.11) N (R, β) = O(Rm
′(β,δ)+), m′(β, δ) = min(2δ + 2β + 1− d, δ).

Since in this case γ = d− 1− δ and Λmax = 1, the bound (1.11) corresponds to (1.10) with Λmax replaced
by 1

2Λmax, or equivalently te(R) replaced by 2te(R). The lack of optimality of (1.8) is thus due to the fact
that without the hyperbolicity assumption we can only propagate quantum observables up to the Ehrenfest
time (rather than twice the Ehrenfest time as in [Dya15a]). Upper bounds on N (R, β) are also available
in the case of normally hyperbolic trapping – see §1.3.

On the other hand, little is known on resonance bounds in strips for smooth metrics when ϕt is not
hyperbolic or normally hyperbolic on the trapped set, and Theorem 2 appears to give the first general
upper bound depending on the dynamics of ϕt. (For operators with real analytic coefficients, a bound
depending on the volume of an R−1/2 sized neighborhood of the trapped set was proved by Sjöstrand [Sjö90,
Theorem 4.2].) In particular, if the escape rate is positive then Theorem 2 gives a power improvement
over O(Rd−1). The most promising potential example of such systems which are not hyperbolic/normally
hyperbolic is given by uniformly partially hyperbolic systems, see [CP14] and [You90, Theorem 4].

An example with zero escape rate is given by manifolds of revolution with cylindrical or degenerate
hyperbolic trapping, where Theorem 2 gives an improvement which is a power of logR – see §7. See
the work of Christianson [Chr13] for a related question of resolvent bounds on more general manifolds of
revolution.

1.2. Wave decay for random initial data. Our next theorem concerns high probability decay estimates
for the half-wave group

U(t) := exp(−it
√
−∆g).

We apply U(t) to a function chosen at random using the following procedure. Let B be the large smooth
compact subset of M given by (2.12), ∆B be the Dirichlet Laplacian on B with respect to the metric g,
and {(ek, λk)}∞k=1 be an orthonormal basis of L2(B) with

(−∆B − λ2
k)ek = 0.

Fix small ε′ > 0. For R > 0 consider the subspace of L2(B)

(1.12) ER :=

{ ∑
k∈IR

akek(x), ak ∈ C
}
, IR := {k : λk ∈ R[1− ε′, 1 + ε′]}.

By the Weyl law [Hör09, Theorem 29.3.3], ER has dimension cRd +O(Rd−1) for some c > 0. Let

uR ∈ SR := {u ∈ ER : ‖u‖L2 = 1}
be chosen at random with respect to the standard measure on the sphere. As before, denote by K ⊂ T ∗M\0
the trapped set. Then our result is as follows:
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Theorem 3. Suppose that K 6= ∅ and ψ ∈ C∞c (B◦). Fix C0, α, ε > 0. Then there exists C > 0 such that
for all m ≥ C,

(1.13) P
[
‖ψU(t)ψuR‖L2 ≤ m

√
V
(
(1− ε) min(t, 2te(R))

)
for all t ∈ [α logR,C0R]

]
≥ 1− Ce−m

2/C .

A related result in the setting of the damped wave equation was proved by Burq–Lebeau [BL13, page 6].

In terms of the escape rate γ from (1.9), Theorem 3 gives the following bound with high probability for
each ε > 0 (see Figure 1(b)):

(1.14) ‖ψU(t)ψuR‖L2 =

{
O(e−γt/2+εt), α logR ≤ t ≤ 2te(R);

O(R−γ/(2Λmax)+ε), 2te(R) ≤ t ≤ C0R.

The bounds (1.10) and (1.14) (and more generally Theorems 2 and 3) are related by the following heuristic.
To simplify the formulas below assume that Λmax = 1. Take small β > 0, then by (1.10) the number of
resonances in

Ω = {λ : R/2 ≤ |Reλ| ≤ R, Imλ ≥ −β}
is O(Rd−γ+β+). Suppose that U(t) has a resonance expansion up to Imλ = −β (similar to [DZ, Theo-
rem 3.9] but with infinitely many terms in the expansion; such resonance expansions are quite rare which
is one of the reasons why the argument below is heuristic). Then we expect for some N ,

(1.15) ψU(t)ψuR =
∑
λ∈Ω

λ resonance

e−itλ〈ψuR, vλ〉ψwλ +O(RNe−βt) +O(R−∞).

Here resonances with Imλ ≥ −β and |Reλ| /∈ [R/2, 2R] would contribute O(R−∞) because the corre-
sponding coresonant states live in a different band of frequencies than ψuR.

If we additionally knew that the resonant and coresonant states wλ, vλ are bounded in L2
loc and form

approximately orthonormal systems on suppψ, then with high probability we would have 〈ψuR, vλ〉 ∼
R−d/2. Estimating the norm of the sum on the right-hand side of (1.15), we then expect that

‖ψU(t)ψuR‖L2 ≤ O(R
β−γ

2 +) +O(RNe−βt).

For t ≥ C1 logR and C1 large enough, the first term on the right-hand side dominates and we recover (1.13)
(given that β can be chosen small). Note that (1.13) also holds for t ≤ C1 logR, but this cannot be seen
from the resonance expansion because the error term in this expansion dominates for short times.

We remark that while the above heuristic is useful to relate Theorems 2 and 3, the proof of Theorem 3
does not rely on it. Instead, by a concentration of measure argument we reduce to estimating the Hilbert–
Schmidt norm of the cutoff propagator ψU(t)ψ restricted to a range of frequencies. The latter norm is
next bounded in terms of the volume V(t). As in the proof of Theorem 2, this strategy can only be used
up to time 2te(R) so that the resulting symbols still lie in a mildly exotic calculus.

1.3. Previous results. We now briefly review previous results on Weyl bounds for resonances in strips,
referring the reader to the reviews of Nonnenmacher [Non11, §§4,7] and Zworski [Zwo16, §3.4] for more
information.

When the trapping is hyperbolic, upper bounds on N (R, β) have been proved in various settings by
Sjöstrand [Sjö90], Zworski [Zwo99a], Guillopé–Lin–Zworski [GLZ04], Sjöstrand–Zworski [SZ07], Datchev–
Dyatlov [DD13], and Nonnenmacher–Sjöstrand–Zworski [NSZ14]. These bounds take the form

(1.16) N (R, β) = O(Rδ+)

where 2δ+1 is the upper Minkowski dimension of K∩S∗M , and Rδ+ can be replaced by Rδ if K∩S∗M has
pure Minkowski dimension. The bound (1.16) is stronger than the one in Theorem 2. Indeed, ϕ−t/2(T (t))
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contains an e−(Λmax+ε)t/2 sized neighborhood of the trapped set K, which implies that (assuming that the
upper and lower Minkowski dimensions of K agree)

V((1− ε)t) ≥ C−1e−Λmax(d−1−δ)t.

Therefore

Rd−1 min
[
V
(
(1− ε)te(R)

)
, exp

(
2βte(R)

)
· V
(
2(1− ε)te(R)

)]
≥ C−1 min

(
R
d−1+δ

2 , Rδ+β/Λmax
)
.

See also the discussion following (1.11).

In the setting of hyperbolic quotients, Naud [Nau14], Jakobson–Naud [JN16], and Dyatlov [Dya15a]
have obtained bounds which improve over (1.16) when δ < γ/2; here γ > 0 is the escape rate defined
in (1.9). See also the work of Dyatlov–Jin [DJ15] in the case of open quantum maps. Concentration of
resonances near the line {Imλ = −γ/2} has been observed numerically (for the semiclassical zeta function
in obstacle scattering) by Lu–Sridhar–Zworski [LSZ03] and experimentally (for microwave scattering) by
Barkhofen et al. [BWP+13].

For r-normally hyperbolic trapped sets (such as those appearing in Kerr–de Sitter black holes), Dyat-
lov [Dya15b] obtained an upper bound of the form (1.16). In this setting K is smooth and δ is an integer.
Under a pinching condition, it is shown in [Dya15b, Dya16] that resonances in strips have a band structure
and the number of resonances in the first band with |λ| ≤ R grows like Rδ+1.

1.4. Structure of the paper.

• In §2 we review geometry and dynamics of manifolds with Euclidean ends (§2.1) and semiclassical
analysis (§§2.2, 2.3).

• In §3 we perform analysis of the scattering resolvent and the wave propagator near the infinite
ends of M to reduce to a neighborhood of the trapped set.

• In §4 we construct dynamical cutoff functions used in the proofs.
• In §5, we prove Theorem 2.
• In §6, we prove Theorem 3.
• In §7, we estimate the quantity V(t) for two examples of manifolds of revolution.

Acknowledgements. The authors would like to thank Maciej Zworski, Nicolas Burq, Stéphane Nonnen-
macher, and András Vasy for many useful discussions. This research was conducted during the period
SD served as a Clay Research Fellow. JG was partially supported by an NSF Mathematical Science
Postdoctoral Research Fellowship DMS-1502661.

2. Preliminaries

2.1. Manifolds with Euclidean ends. Thoughout the paper we assume that (M, g) is a noncompact
complete d-dimensional Riemannian manifold which has Euclidean infinite ends in the following sense:

• there exists a function r ∈ C∞(M ;R) such that the sets {r ≤ c} are compact for all c, and
• there exists r0 > 0 such that {r ≥ r0} is the disjoint union of finitely many components, each

of which is isometric to Rd \ B(0, r0) with the Euclidean metric, and the pullback of r under the
isometry is the Euclidean length function.

The connected components of {r ≥ r0} are called the infinite ends of M . We parametrize each of them

by a Euclidean coordinate y ∈ Rd \ B(0, r0) so that g =
∑d
j=1 dy

2
j . We lift r to a function on T ∗M and

parametrize the cotangent bundle of each infinite end by (y, η) ∈ T ∗(Rd \B(0, r0)).
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As in (1.2), put p(x, ξ) := |ξ|g(x) and ϕt := exp(tHp). Then on each infinite end, we have

(2.1) p(y, η) = |η|, Hp =
〈η, ∂y〉
|η|

.

Define the directly escaping sets in T ∗Rd by

(2.2)
E±,R := {(y, η) ∈ T ∗Rd : |y| ≥ r0, ±〈y, η〉Rd ≥ 0},

E◦±,R := {(y, η) ∈ T ∗Rd : |y| > r0, ±〈y, η〉Rd > 0},

and pull these back by the Euclidean coordinates in the infinite ends of M to

(2.3) E±, E◦± ⊂ {r ≥ r0} ⊂ T ∗M.

It follows from (2.1) that for x ∈ T ∗M \ 0,

(2.4) x ∈ E± =⇒ ϕ±t(x) ∈ E±, r(ϕ±t(x)) ≥
√
r(x)2 + t2 for all t ≥ 0,

in particular r(ϕt(x))→∞ as t→ ±∞. Arguing by contradiction, this implies that for all x ∈ T ∗M \ 0

(2.5) r(x) ≥ r0, r(ϕ∓t0(x)) ≤ r(x) for some t0 > 0 =⇒ ±〈y(x), η(x)〉Rd > 0.

Therefore, if a trajectory of ϕt starting on {r < r0} enters some infinite end, it escapes to infinity inside
this end.

Define the incoming/outgoing tails Γ± and the trapped set K by

(2.6) Γ± := {x ∈ T ∗M \ 0 : r(ϕt(x)) 6→ ∞ as t→ ∓∞}, K := Γ+ ∩ Γ−.

The next lemma establishes basic properties of Γ± and K; see [DZ, §6.1] for a more general setting.

Lemma 2.1. 1. The sets Γ±,K are closed in T ∗M \ 0 and

(2.7) K ⊂ {r < r0},

in particular K ∩ S∗M is compact.

2. We have locally uniformly in x,

(2.8) x ∈ Γ± =⇒ d(ϕt(x),K)→ 0 as t→ ∓∞.

3. Let U be a neighborhood of K and V ⊂ T ∗M \ 0 be compact. Then there exists T > 0 such that

(2.9) ϕ−t(V ) ∩ ϕs(V ) ⊂ U for all t, s ≥ T.

4. Assume that V ⊂ T ∗M \ 0 is compact and V ∩ Γ± = ∅. Then there exists T > 0 such that

(2.10) ϕ∓t(V ) ⊂ E◦∓ ∩
{
r ≥

√
r2
0 + (t− T )2

}
for all t ≥ T.

Moreover, the set
⋃
∓t≥0 ϕt(V ) is closed in T ∗M .

Proof. 1. We first show that Γ− is closed in T ∗M \ 0. Assume that x0 ∈ T ∗M \ 0 and x0 /∈ Γ−. Then
r(ϕt(x0)) → ∞ as t → ∞, thus by (2.5) there exists t0 > 0 such that ϕt0(x0) ∈ E◦+. Since E◦+ is open, we
have ϕt0(x) ∈ E◦+ for all x which are sufficiently close to x0. By (2.4), we have x /∈ Γ−, showing that x0

does not lie in the closure of Γ−. A similar argument shows that Γ+, and thus K, is closed.

It remains to show (2.7). Assume that x ∈ T ∗M \ 0 and r(x) ≥ r0. If 〈y(x), η(x)〉Rd ≥ 0, then by (2.4)
we have x /∈ Γ−. Similarly if 〈y(x), η(x)〉Rd ≤ 0, then x /∈ Γ+.
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2. We consider the case of Γ−; the case of Γ+ is handled similarly. Assume (2.8) is false. Then there
exists ε > 0 and sequences xk ∈ Γ−, tk → ∞ such that xk lie in a compact subset of T ∗M \ 0 and
d(ϕtk(xk),K) > ε. By (2.4) and (2.5), xk ∈ Γ− implies that r(ϕtk(xk)) is bounded, specifically

r(ϕtk(xk)) ≤ max(r(xk), r0) when tk ≥ 0.

By passing to a subsequence, we may assume that

ϕtk(xk)→ x∞ ∈ T ∗M \ 0.

We have x∞ /∈ K; however, since Γ− is closed and invariant under the flow, x∞ ∈ Γ−. Therefore x∞ /∈ Γ+.
By (2.5), there exists T > 0 such that ϕ−T (x∞) ∈ E◦−. Then for large enough k, ϕtk−T (xk) ∈ E◦−. It
follows from (2.4) applied to ϕtk−T (xk) that as k →∞,

r(xk) = r
(
ϕ−(tk−T )(ϕtk−T (xk))

)
≥
√
r2
0 + (tk − T )2 → ∞,

contradicting the fact that xk varies in a compact set.

3. Assume (2.9) is false. Then there exist sequences

tk, sk →∞, xk ∈ ϕ−tk(V ) ∩ ϕsk(V ), xk /∈ U.
By (2.4), assuming tk, sk ≥ 0, we have

r(xk) ≤ max(maxV r, r0).

Passing to a subsequence, we may assume

xk → x∞ ∈ T ∗M \ 0.

We have x∞ /∈ K, thus x∞ /∈ Γ+ or x∞ /∈ Γ−. We assume x∞ /∈ Γ−, the other case being handled
similarly. By (2.5), there exists T > 0 such that ϕT (x∞) ∈ E◦+. Therefore, for k large enough we have
ϕT (xk) ∈ E◦+. It follows from (2.4) applied to ϕT (xk) that as k →∞,

r(ϕtk(xk)) = r
(
ϕtk−T (ϕT (xk))

)
≥
√
r2
0 + (tk − T )2 →∞

contradicting the fact that ϕtk(xk) ∈ V .

4. We assume V ∩ Γ− = ∅, the case V ∩ Γ+ = ∅ being handled similarly. Arguing as in part 1, we see that
each x0 ∈ V has an open neighborhood U(x0) such that for some T = T (x0) > 0 and all x ∈ U(x0), we
have ϕT (x) ∈ E◦+. By (2.4) applied to ϕT (x),

ϕt(x) ∈ E◦+ ∩
{
r ≥

√
r2
0 + (t− T (x0))2

}
for all x ∈ U(x0), t ≥ T (x0).

To show (2.10), it remains to cover V by finitely many open sets of the form U(x0) and let T be the
maximum of the corresponding times T (x0).

To show that
⋃
t≥0 ϕt(V ) is closed, take sequences xj ∈ V , tj ≥ 0, and assume that ϕtj (xj) converges

to some y∞ ∈ T ∗M . Then r(ϕtj (xj)) is bounded, so by (2.10) the sequence tj is bounded as well. Passing
to subsequences, we may assume that tj → t∞ ≥ 0, xj → x∞ ∈ V . Then y∞ = ϕt∞(x∞) ∈

⋃
t≥0 ϕt(V ),

finishing the proof. �

Following (1.6) we define for B ⊂M

VB(t) := µL(S∗M ∩ TB(t)), TB(t) := π−1(B) ∩ ϕ−t(π−1(B)).

By (2.9), if π−1(B) contains a neighborhood of K and B′ ⊂ M is compact, then there exists T > 0 such
that

TB′(t+ 2T ) ⊂ ϕ−T (TB(t)), t ≥ 0,
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thus in particular

(2.11) VB′(t+ 2T ) ≤ VB(t), t ≥ 0.

Since Theorems 2 and 3 use quantities of the form V((1− ε)t) where t ≥ C−1 logR, by slightly changing ε
and using (2.11) we see that these theorems do not depend on the choice of B, as long as π−1(B) contains
a neighborhood of K. We henceforth fix r1 > r0 and put

(2.12) B := {r ≤ r1}.
By (2.4), the set B is geodesically convex, therefore

TB(t+ t0) ⊂ ϕ−t0
(
TB(t)

)
for all t, t0 ≥ 0,

implying that

(2.13) VB(t+ t0) ≤ VB(t) for all t, t0 ≥ 0.

Moreover, if K ∩ S∗M 6= ∅, then we have for each Λ > Λmax,

(2.14) VB(t) ≥ C−1e−2(d−1)Λt, t ≥ 0.

Indeed, if (x0, ξ0) ∈ K ∩ S∗M , then TB(t)∩ S∗M contains an e−Λt sized neighborhood of ϕs(x0, ξ0) for all
s ∈ [0, 1].

2.2. Semiclassical analysis. We next briefly review the tools from semiclassical analysis used in this
paper, referring the reader to [Zwo12] and [DZ, Appendix E] for a comprehensive introduction to the
subject.

For an h-dependent family of smooth functions a(x, ξ;h) on T ∗M , we say that a lies in the symbol class
Smh,ν(T ∗M) if it satisfies the following derivative bounds on T ∗M , uniformly in h:

|∂αy ∂βη a(y, η;h)| ≤ Cαβh−ν(|α|+|β|)〈η〉m−|β|.

Here ν ∈ [0, 1/2) and m ∈ R are parameters; y is any coordinate system on M which coincides with the
Euclidean coordinate in each infinite end. Note that we require the bounds to be uniform as y →∞.

We fix a quantization procedure Oph, mapping each a ∈ Smh,ν(T ∗M) to an h-dependent family of
operators

Oph(a) : S (M)→ S (M), S ′(M)→ S ′(M).

Here S (M) denotes the space of Schwartz functions and S ′(M) the space of tempered distributions on M ,
defined using Euclidean coordinates in the infinite ends. In case M = Rd, Oph(a) is defined by the standard
formula

(2.15) Oph(a)u(x) = (2πh)−d
∫
R2d

e
i
h 〈x−y,ξ〉a(x, ξ)u(y) dydξ,

and for general M it is constructed from (2.15) using coordinate charts (taking the Euclidean coordinate in
each infinite end of M) and a partition of unity, see for instance [DZ, Proposition E.14]. We also arrange
so that

(2.16) Oph(1) = I.

This gives a class of operators (which is independent of the choice of coordinate charts; see below for the
definition of h∞Ψ−∞(M))

Ψm
h,ν(M) = {Oph(a) +O(h∞)Ψ−∞(M) : a ∈ Smh,ν(T ∗M)}.

The principal symbol map

σh : Ψm
h,ν(M)→ Smh,ν(T ∗M)/h1−2νSm−1

h,ν (T ∗M), σh(Oph(a)) = a,
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is independent of the choice of local coordinates and satisfies for A ∈ Ψm
h,ν(M), B ∈ Ψm′

h,ν(M)

σh(A∗) = σh(A) +O(h1−2ν)Sm−1
h,ν

,(2.17)

σh(AB) = σh(A)σh(B) +O(h1−2ν)
Sm+m′−1
h,ν

,(2.18)

σh([A,B]) = −ih{σh(A), σh(B)}+O(h2(1−2ν))
Sm+m′−2
h,ν

.(2.19)

We have σh(A) = 0 if and only if A ∈ h1−2νΨm−1
h,ν (M). Every A ∈ Ψm

h,ν(M) is bounded uniformly in h as
an operator

A : Hs
h(M)→ Hs−m

h (M), s ∈ R,
where Hs

h(M) is the (global) semiclassical Sobolev space, defined using Euclidean coordinates in the infinite
ends (see [DZ, §E.1.6]). See for instance [Zwo12, Theorems 4.14, 9.5, 14.1, 14.2] for the proofs in the case
ν = 0, which adapt directly to the case of general ν (see [Zwo12, Theorems 4.17, 4.18]). We also have for
all A ∈ Ψ0

h,ν(M),

(2.20) ‖A‖L2(M)→L2(M) ≤ sup |σh(A)|+O(h1/2−ν).

See for instance [Zwo12, Theorem 5.1] whose proof adapts to operators in Ψ0
h,ν . Using the explicit formula

for the integral kernel of Oph(a), we also have the Hilbert–Schmidt bound

(2.21) ‖Oph(a)‖2HS ≤ C2h−d Vol(supp a), a ∈ S0
h,ν .

where C is some S0
h,ν seminorm of a.

The residual class for Smh,ν(M), denoted by h∞Ψ−∞(M) or O(h∞)Ψ−∞(M), is defined as follows:

A ∈ h∞Ψ−∞(M) ⇐⇒ ‖A‖H−Nh (M)→HNh (M) ≤ CNh
N for all N.

We also use the class of compactly microlocalized operators

Ψcomp
h,ν (M) = {A = Oph(a) +O(h∞)Ψ−∞ | a ∈ C∞c (T ∗M)}.

The standard classes of symbols and operators are given by the case ν = 0:

Smh (T ∗M) := Smh,0(T ∗M), Ψm
h (M) := Ψm

h,0(M), Ψcomp
h (M) := Ψcomp

h,0 (M).

We have the following improvement of (2.19) when M = Rd, the quantization (2.15) is used, and one of
the symbols in question is in Smh :

(2.22) a ∈ Smh (T ∗Rd), b ∈ Sm
′

h,ν(T ∗Rd) =⇒ [Oph(a),Oph(b)] = −ihOph({a, b}) +O(h2−2ν)
Ψm+m′−2
h,ν (Rd)

.

This follows immediately from the asymptotic expansion for the full symbol of Oph(a) Oph(b), see [Zwo12,
Theorems 4.14, 4.17].

For A ∈ Ψm
h,ν(M), the wavefront set WFh(A) ⊂ T ∗M is defined as follows: (x0, ξ0) ∈ T ∗M does not lie

in WFh(A) if and only if A = Oph(a) +O(h∞)Ψ−∞ for some a ∈ Smh,ν(M) such that a = O(h∞〈ξ〉−∞) in

a neighborhood of (x0, ξ0) in T
∗
M . Here T

∗
M is the fiber-radially compactified cotangent bundle, see for

instance [DZ, §§E.1.2, E.2.1]. For A,B ∈ Ψm
h,ν(M) and some h-independent open set U ⊂ T ∗M , we say

A = B +O(h∞)Ψ−∞ microlocally in U,

if WFh(A − B) ∩ U = ∅. For A ∈ Ψm
h,ν(M), the elliptic set ellh(A) ⊂ T

∗
M is defined as follows: (x, ξ) ∈

ellh(A) if 〈ξ〉−mσh(A) is bounded away from zero in a neighborhood of (x, ξ).
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2.3. Functional calculus and the half-wave propagator. By the functional calculus of self-adjoint
operators in Ψm

h (M) (see for instance [DS99, §8]), for each ψ ∈ C∞c (R) the operator

ψ(−h2∆g) : L2(M)→ L2(M)

lies in Ψ−Nh (M) for each N . Moreover,

σh(ψ(−h2∆g)) = ψ
(
|ξ|2g
)
, WFh(ψ(−h2∆g)) ⊂ {|ξ|2g ∈ suppψ},

and for each open set U ⊂ R,

(2.23) ψ = 1 on U =⇒ ψ(−h2∆g) = I +O(h∞)Ψ−∞ microlocally in {|ξ|2g ∈ U}.

This makes it possible to describe the square root
√
−∆g microlocally in T ∗M \ 0:

Lemma 2.2. Assume that A ∈ Ψcomp
h (M),WFh(A) ⊂ T ∗M \ 0. Then for each N , with p(x, ξ) = |ξ|g(x),

(2.24)
h
√
−∆gA, Ah

√
−∆g ∈ Ψ−Nh (M), σh(h

√
−∆gA) = σh(Ah

√
−∆g) = p · σh(A);

WFh(h
√
−∆gA),WFh(Ah

√
−∆g) ⊂WFh(A).

Proof. We consider the case of the operator h
√
−∆gA. Fix C > 0 such that WFh(A) ⊂ {C−1 ≤ |ξ|2g ≤ C}.

Choose ψ ∈ C∞c ((0,∞)) such that ψ = 1 near [C−1, C]. Then by (2.23)

A = ψ(−h2∆g)A+O(h∞)Ψ−∞ .

Put ϕ(λ) =
√
λψ(λ), then ϕ ∈ C∞c (R) and

h
√
−∆gA = ϕ(−h2∆g)A+O(h∞)Ψ−∞

and (2.24) follows. �

We next prove a Egorov theorem for the half-wave propagator

U(t) = exp(−it
√
−∆g) : L2(M)→ L2(M).

Recall that ϕt = exp(tHp) is the homogeneous geodesic flow on T ∗M \ 0.

Lemma 2.3. Assume that a ∈ S0
h,ν(T ∗M) for some ν ∈ [0, 1/2) and supp a is contained in an h-

independent compact subset of T ∗M \ 0. Then there exists a smooth family of symbols compactly supported
in T ∗M \ 0

at ∈ S0
h,ν(T ∗M), t ∈ R; supp at ⊂ ϕ−t(supp a), at = a ◦ ϕt +O(h1−2ν)S0

h,ν
,

such that, with constants in the remainder uniform as long as t is in a bounded set

U(−t) Oph(a)U(t) = Oph(at) +O(h∞)Ψ−∞ .

Proof. Since U(t) is bounded on all Sobolev spaces, it suffices to construct at such that

(2.25) a0 = a, dt
(
U(t) Oph(at)U(−t)

)
= O(h∞)Ψ−∞ .

Using a partition of unity for a, it suffices to consider the case when supp a is contained in a coordinate
chart on M . Moreover, by induction on time we see that it is enough to study the case when t is small and
thus ϕ−s(a) lies in a fixed coordinate chart for all s between 0 and t. We thus reduce to the case when
M = Rd and Oph is given by (2.15).

The differential equation in (2.25) can be rewritten as

(2.26) Oph(∂tat) +
i

h
[Oph(at), h

√
−∆g] = O(h∞)Ψ−∞ .
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We construct at as an asymptotic series

(2.27) at ∼
∞∑
j=0

a
(j)
t , a

(j)
t ∈ hj(1−2ν)S0

h,ν(T ∗Rd), supp a
(j)
t ⊂ ϕ−t(supp a).

To satisfy (2.26) it suffices take a
(j)
t such that for some symbols

b
(j)
t ∈ hj(1−2ν)S0

h,ν(T ∗Rd), supp b
(j)
t ⊂ ϕ−t(supp a), b

(0)
t = 0,

we have

(2.28) Oph(∂ta
(j)
t ) +

i

h
[Oph(a

(j)
t ), h

√
−∆g] + Oph(b

(j)
t ) = Oph(b

(j+1)
t ) +O(h∞)Ψ−∞ .

We construct a
(j)
t , b

(j+1)
t by induction, assuming b

(j)
t is already known. Since a

(j)
t is compactly supported

in T ∗M \ 0, by Lemma 2.2 and (2.22) the left-hand side of (2.28) is

Oph
(
∂ta

(j)
t −Hpa

(j)
t + b

(j)
t

)
+O(h(j+1)(1−2ν))Ψ0

h,ν(Rd).

Then (2.28) holds for some b
(j+1)
t ∈ h(j+1)(1−2ν)S0

h,ν(T ∗Rd) if a
(j)
t satisfies the transport equation

(2.29) ∂ta
(j)
t = Hpa

(j)
t − b

(j)
t .

We now put

a
(j)
t := νj0(a ◦ ϕt)−

∫ t

0

b(j)s ◦ ϕt−s ds.

Then (2.29) is satisfied and thus (2.28) holds for some choice of b
(j+1)
t . The support condition on a

(j)
t

follows from the support condition on b
(j)
s . The support condition on b

(j+1)
t follows from this and the fact

that the asymptotic expansion for the full symbol of the left-hand side of (2.28) at each point only depends

on the values of all derivatives of a
(j)
t , b

(j)
t at this point. With at given by (2.27) we also have a0 = a and

at = a ◦ ϕt +O(h1−2ν), finishing the proof. �

Lemma 2.3 gives us the following approximate inverse statement for the semiclassical Helmholtz operator
−h2∆g − ω2, which is a version of propagation of singularities used in the proof of Lemma 3.4.

Lemma 2.4. Assume that a, b ∈ S0
h,ν(T ∗M) are supported in an h-independent compact subset of T ∗M \0,

B′ ∈ Ψ0
h(M) is compactly supported, and for some T ≥ 0,

(2.30) ϕ−T (supp a) ∩ supp(1− b) = ∅, WFh(I −B′) ∩
T⋃
t=0

ϕ−t(supp a) = ∅.

Then for any constant C and ω ∈ [C−1, C] + ih[−C,C], we have

(2.31) Oph(a) = Z(ω)B′(−h2∆g − ω2) + eiωT/h Oph(a)U(T ) Oph(b) +O(h∞)Ψ−∞

where Z(ω) is holomorphic in ω and satisfies the estimate for all N ,

‖Z(ω)‖H−Nh (M)→HNh (M) ≤ CNh
−1| sup a|.

Proof. Observe that

hDt

(
e
iωt
h U(t)

)
= e

iωt
h U(t)(−h

√
−∆g + ω), U(0) = I.
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Therefore,

(2.32)

I = e
iωT
h U(T ) +

i

h

∫ T

0

e
iωt
h U(t)(h

√
−∆g − ω)dt

= e
iωT
h U(T ) +

i

h

∫ T

0

e
iωt
h U(t)(h

√
−∆g + ω)−1(−h2∆g − ω2)dt.

By (2.16), Lemma 2.3, and (2.30), we have

Oph(a)U(T )(I −Oph(b)) = O(h∞)Ψ−∞ ,

Oph(a)U(t)(h
√
−∆g + ω)−1(I −B′) = O(h∞)Ψ−∞ for all t ∈ [0, T ],

where U(−t) Oph(a)U(t)(h
√
−∆g +ω)−1 is a pseudodifferential operator similarly to (2.24). It remains to

apply Oph(a) on the left to (2.32) and put

Z(ω) :=
i

h

∫ T

0

e
iωt
h Oph(a)U(t)(h

√
−∆g + ω)−1 dt. �

We finally establish properties of certain spectral cutoffs of width h for the operator h2∆g:

Lemma 2.5. Assume that ψ ∈ C∞(R) is bounded and its Fourier transform ψ̂ satisfies for some T0, T1 ∈ R

(2.33) supp ψ̂ ⊂ (T0, T1).

For ω ∈ C varying in an h-sized neighborhood of 1, define B(ω) := ψ
(−h2∆g−ω2

h

)
: L2(M) → L2(M),

where ψ extends to an entire function by (2.33). Then:

1. If A1, A2 ∈ Ψ0
h,ν(M) satisfy

(2.34) etHp2
(

WFh(A2)
)
∩WFh(A1) = ∅ for all t ∈ [T0, T1],

and at least one of A1, A2 is in Ψcomp
h,ν (M), then A2B(ω)A1 = O(h∞)Ψ−∞ .

2. If additionally ψ ∈ S (R) and a ∈ S0
h,ν(M) is supported in an h-independent compact subset of

T ∗M , then we have the Hilbert–Schmidt norm bound with the constants depending only on ψ, some S0
h,ν

seminorm of a, and a fixed compact set containing supp a,

(2.35)
∥∥Oph(a)B(ω)‖2HS,

∥∥B(ω) Oph(a)‖2HS ≤ Ch1−dµL(S∗M ∩ supp a) +O(h∞).

Proof. We write B(ω) using the Fourier inversion formula:

B(ω) =
1

2π

∫ T1

T0

ψ̂(t)e−itω
2/he−ith∆g dt.

Then (2.34) follows from the wavefront set properties of the Schrödinger propagator e−ith∆g (see for
instance [DG14, Proposition 3.8]). The estimate (2.35) follows from the proof of [DG14, Lemma 3.11]. �

3. Reduction to the trapped set

In this section we review the global properties of the scattering resolvent and the half-wave propagator
and prove several statements which reduce the analysis to a neighborhood of the trapped set K.
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3.1. Scattering resolvent. The L2 resolvent

Rg(λ) = (−∆g − λ2)−1 : L2(M)→ L2(M), Imλ > 0

admits a meromorphic continuation

Rg(λ) : L2
comp(M)→ L2

loc(M), λ ∈ C \ (−∞, 0].

In fact, when the dimension d is odd, Rg(λ) continues meromorphically to λ ∈ C, and when d is even, Rg(λ)
continues meromorphically to the logarithmic cover of C. One way to prove meromorphic continuation is
by constructing an approximate inverse to −∆g − λ2 modulo a compact remainder which uses the free
resolvent in Rd – see for instance [DZ, §4.2] or [SZ91, Theorem 1.1]. (When M has several infinite ends, we
need to include the free resolvent on each of these ends.) Another way is by using the method of complex
scaling which is reviewed below.

To study resonances in the region (1.3), we put h := R−1 and use the semiclassically rescaled resolvent

Rg(ω) = h−2Rg(h
−1ω), ω ∈ C \ (−∞, 0],

which is a right inverse to the operator −h2∆g − ω2. For λ = h−1ω, the region in (1.3) corresponds to

(3.1) ω ∈ Ω := [1, 1 + h] + i[−βh, 0].

For resonance counting, it is convenient to prove estimates in a larger region,

(3.2) Ω̃ := [1− 2h, 1 + 2h] + i[−β̃h, 2h], β̃ > β.

We next review the method of complex scaling, following [Dya15b, §4.3]. Fix small θ > 0 (the angle of
scaling) and r1 > r0 (the place where scaling starts). Consider the following totally real submanifold:

Γθ :=
{
y + ifθ

(
|y|
) y
|y|

: y ∈ Rd
}
⊂ Cd

where fθ ∈ C∞([0,∞)) is chosen so that

(3.3)
fθ(r) = 0, r ≤ r1; fθ(r) = r tan θ, r ≥ 2r1;

f ′θ(r) ≥ 0, r ≥ 0; {f ′θ(r) = 0} = {fθ(r) = 0}.
Define the complex scaled differential operator Pθ on M as follows:

• on {r < r1}, Pθ is equal to −h2∆g;
• on each infinite end of M with Euclidean coordinate y, Pθ is the restriction of the semiclassical

Euclidean Laplacian −h2∆ to Γθ parametrized by y; in polar coordinates y = rϕ,

Pθ =

(
1

1 + if ′θ(r)
hDr

)2

− (d− 1)i

(r + ifθ(r))(1 + if ′θ(r))
h2Dr −

h2∆ϕ

(r + ifθ(r))2

with ∆ϕ denoting Laplacian on the round sphere Rd−1.

Then Pθ ∈ Ψ2
h(M) is a second order semiclassical differential operator on M with principal symbol

pθ := σh(Pθ)

given by pθ(x, ξ) = p(x, ξ)2 on {r < r1} and on each infinite end, in the polar coordinates y = rϕ,

(3.4) pθ(r, ϕ, ηr, ηϕ) =
η2
r

(1 + if ′θ(r))
2

+
|ηϕ|2

(r + ifθ(r))2
.

As shown for instance in [DZ, Theorems 4.36 and 4.38] (whose proofs extend directly to the case of several

Euclidean ends), for h small enough so that Ω̃ ⊂ {Im(eiθω) > 0} and all s ∈ R

Pθ − ω2 is a Fredholm operator of index zero Hs+2(M)→ Hs(M), ω ∈ Ω̃,
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K Γ+

Γ−

Figure 2. An illustration of Lemma 3.1, showing trajectories of ϕt on S∗M . The shaded
regions show places where Pθ− iQ−ω2 is elliptic: the darker shaded region is {σh(Q) > 0}
and the lighter shaded region is {fθ(r) 6= 0}.

and the poles of (Pθ − ω2)−1 in Ω̃ coincide with the poles of Rg(ω), counted with multiplicities.

The next statement uses the structure of the complex scaled operator together with propagation of
singularities to show existence of a nontrapping parametrix (see Figure 2):

Lemma 3.1. Assume that Q ∈ Ψcomp
h (M) is supported inside {r < r0} and its principal symbol is inde-

pendent of h and satisfies

(3.5)
σh(Q) ≥ 0 everywhere;

σh(Q) > 0 on K ∩ S∗M.

Then for h small enough and ω ∈ Ω̃, the operator Pθ− iQ−ω2 is invertible H2(M)→ L2(M). The inverse

(3.6) RQ(ω) := (Pθ − iQ− ω2)−1 : L2(M)→ H2(M)

is holomorphic and satisfies for each s

(3.7) ‖RQ(ω)‖Hsh(M)→Hs+2
h (M) ≤ Ch

−1.

Moreover, the operator RQ(ω) is semiclassically outgoing in the sense that A2RQ(ω)A1 = O(h∞)Ψ−∞(M)

for all compactly supported A1, A2 ∈ Ψ0
h(M) such that

(3.8) WFh(A1) ∩WFh(A2) = etHp
(

WFh(A1)
)
∩WFh(A2) ∩ S∗M = ∅ for all t ≥ 0.

Proof. We follow [Dya15b, §4.3], see also [DZ, §6.2.1]. We use semiclassical elliptic and propagation
estimates for solutions to the equation

Pu = f ∈ Hs(M), u ∈ Hs+2(M)

where

P := Pθ − iQ− ω2 ∈ Ψ2
h(M), σh(P) = pθ − iσh(Q)− 1.

The operator P is elliptic for r ≥ 2r1, since

σh(P)(y, η) =
|η|2

(1 + i tan θ)2
− 1 for |y| ≥ 2r1.
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Moreover, P is elliptic near the fiber infinity of M , that is for large enough |ξ|. By the elliptic estimate in
the class Ψ2

h(M) (see for instance [Zwo12, Theorem 4.29], [DZ16, Proposition 2.4], or [DZ, §E.2.2]) there
exists χ ∈ C∞c (M) such that for all N ,

(3.9) ‖(1− χ)u‖Hs+2
h (M) ≤ C‖f‖Hsh(M) +O(h∞)‖u‖H−Nh (M).

It remains to estimate u in a compact set. By (3.3) and (3.4) the operator P is elliptic outside the set
S∗M ∩ {fθ(r) = 0} ∩ {σh(Q) = 0}. By the elliptic estimate, we have for all N

(3.10)

‖Bu‖Hs+2
h (M) ≤ C‖B

′f‖Hsh(M) +O(h∞)‖u‖H−Nh (M)

for all compactly supported B,B′ ∈ Ψ0
h(M) such that

WFh(B) ∩ S∗M ∩ {fθ(r) = 0} ∩ {σh(Q) = 0} = ∅, WFh(B) ⊂ ellh(B′).

To estimate ‖Au‖ for general A, we use the following statement: for each (x, ξ) ∈ T ∗M , there exists
T(x,ξ) ≥ 0 such that

(3.11) exp(−T(x,ξ)HReσh(P))(x, ξ) /∈ S∗M ∩ {fθ(r) = 0} ∩ {σh(Q) = 0}.

Indeed, assume the contrary, and put γ(t) = exp(tHReσh(P))(x, ξ). Clearly (x, ξ) ∈ S∗M . For all t ≤ 0, we
have γ(t) ∈ {fθ(r) = 0} and thus (using that f ′θ(r) = f ′′θ (r) = 0 on {fθ(r) = 0})

γ(t) = exp(tHp2)(x, ξ) = ϕ2t(x, ξ).

Now, if (x, ξ) ∈ Γ+, then ϕ−T (x, ξ) ∈ {σh(Q) > 0} for some T > 0, by (2.8) and (3.5). If (x, ξ) /∈ Γ+, then
ϕ−T (x, ξ) ∈ {r ≥ 2r1} ⊂ {fθ(r) 6= 0} for some T > 0. In either case we reach a contradiction, finishing the
proof of (3.11).

By (3.4) and (3.5),

(3.12) Imσh(P) ≤ 0 everywhere.

Using semiclassical propagation of singularities (see for instance [DZ, Theorem E.49] or [DZ16, Proposi-
tion 2.5]) and (3.10), we deduce that

(3.13)

‖Au‖Hs+2
h (M) ≤ Ch

−1‖A′f‖Hsh(M) +O(h∞)‖u‖H−Nh (M)

for all compactly supported A,A′ ∈ Ψ0
h(M) such that WFh(A) ⊂ ellh(A′) and

ϕ−2t(x, ξ) ∈ ellh(A′) for all (x, ξ) ∈ S∗M ∩WFh(A), t ∈ [0, T(x,ξ)].

Indeed, by a pseudodifferential partition of unity we may reduce to the case when WFh(A) is contained

in a small neighborhood of some (x, ξ) ∈ T ∗M . If (x, ξ) /∈ S∗M , then we use (3.10). Otherwise we use
propagation of singularities and (3.11), (3.12), and bound the term on the right-hand side of the propagation
estimate by (3.10).

Together (3.9) and (3.13) imply that

(3.14) ‖u‖Hs+2
h (M) ≤ Ch

−1‖Pu‖Hsh(M) +O(h∞)‖u‖H2
h(M) for all u ∈ Hs+2(M).

As a compact perturbation of Pθ − ω2, P is a Fredholm operator Hs+2(M) → Hs(M), therefore (3.14)
implies that for h small enough, P : Hs+2(M) → Hs(M) is invertible and (3.7) holds. The restriction of
the inverse to C∞c (M) does not depend on s.

It remains to show that under the condition (3.8), we have A2RQ(ω)A1 = O(h∞)Ψ−∞(M). If WFh(A1)∩
S∗M = ∅ or WFh(A2) ∩ S∗M = ∅, this follows from the elliptic estimate; thus we may assume that

A1, A2 ∈ Ψcomp
h (M). Take f̃ ∈ H−N (M) and put

f := A1f̃ , u := P−1f.
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By (3.8), we may find A′ ∈ Ψ0
h(M) such that WFh(A1) ∩WFh(A′) = ∅ and (3.13) holds for A := A2

and A′. Then

‖A2u‖Hs+2
h (M) ≤ Ch

−1‖A′A1f̃‖Hsh(M) +O(h∞)‖u‖H−Nh (M) = O(h∞)‖f̃‖H−Nh (M),

finishing the proof. �

We now prove two corollaries of Lemma 3.1, which in particular imply estimates on solutions to

(3.15) (Pθ − ω2)u = f, u, f ∈ L2(M), ω ∈ Ω̃.

The first statement implies that

‖A1u‖Hs+2
h (M) ≤ Ch

−1‖f‖Hsh(M) +O(h∞)‖u‖H−Nh (M) when WFh(A1) ∩ Γ+ ∩ S∗M = ∅.

Lemma 3.2. Assume that A1 ∈ Ψ0
h,ν(M) is compactly supported and WFh(A1) ∩ Γ+ ∩ S∗M = ∅. Then

there exists a neighborhood U of K ∩ S∗M such that for all Q satisfying (3.5) and WFh(Q) ⊂ U , we have

(3.16) A1

(
I −RQ(ω)(Pθ − ω2)

)
= O(h∞)Ψ−∞ , ω ∈ Ω̃.

Proof. Choose U such that

U ∩WFh(A1) = U ∩
⋃
t≥0

ϕ−t
(

WFh(A1) ∩ S∗M
)

= ∅.

This is possible by part 4 of Lemma 2.1. Now

A1

(
I −RQ(ω)(Pθ − ω2)

)
= −iA1RQ(ω)Q = O(h∞)Ψ−∞

by the semiclassically outgoing property in Lemma 3.1 (inserting an operator in Ψ0
h(M) between A1 and

RQ(ω)). �

The second corollary of Lemma 3.1 implies the following bound for solutions of (3.15):

‖u‖Hs+2
h
≤ C‖Bu‖Hsh + Ch−1‖f‖Hsh +O(h∞)‖u‖H−Nh when K ∩ S∗M ⊂ ellh(B).

Lemma 3.3. Assume that B ∈ Ψ0
h(M) is compactly supported and elliptic on K ∩ S∗M . Then for all Q

satisfying (3.5) and WFh(Q) ⊂ ellh(B), there exist B0, B1, B2 ∈ Ψcomp
h (M) such that

(3.17) I = (B1 + hRQ(ω)B2)B +RQ(ω)(I −B0)(Pθ − ω2) +O(h∞)Ψ−∞ , ω ∈ Ω̃.

Proof. Take B0 such that

WFh(Q) ∩WFh(I −B0) = ∅, WFh(B0) ⊂ ellh(B).

Then

I −B0 = RQ(ω)(Pθ − ω2 − iQ)(I −B0)

implies that

I = B0 +RQ(ω)(I −B0)(Pθ − ω2)−RQ(ω)[Pθ, B0] +O(h∞)Ψ−∞ .

It remains to use the elliptic parametrix construction to find B1, B2 so that

B2B = −h−1[Pθ, B0] +O(h∞)Ψ−∞ , B1B = B0 +O(h∞)Ψ−∞

and (3.17) follows. �

The next statement, which is an important technical tool in the construction of the approximate inverse
in §5.1, is obtained by iteration of Lemmas 2.4 and 3.2. See Figure 3.



FRACTAL WEYL LAWS AND WAVE DECAY FOR GENERAL TRAPPING 17

ψa0ψa1

aL

(1− ψ)a0(1− ψ)a1

ϕt1(V )

· · ·

Figure 3. An illustration of Lemma 3.4, showing the supports of ψaj , (1 − ψ)aj , and
(ψaj) ◦ ϕt1 (dashed), as well as ϕt1(V ) (shaded). The arrows correspond to ϕt1 . At each
step of the iteration, (1− ψ)aj is expressed using Lemma 3.2 and ψaj is reduced to aj+1

using Lemma 2.4.

Lemma 3.4. Fix ν ∈ [0, 1/2) and assume that a sequence of symbols

aj ∈ S0
h,ν(T ∗M), j = 0, 1, . . . , L = L(h), 0 < L(h) ≤ C log(1/h)

is supported in a fixed compact subset W ⊂ T ∗M \ 0 and each S0
h,ν seminorm of aj is bounded uniformly

in j. Assume moreover that |aj | ≤ 1 and the following dynamical conditions hold for some t1 > 0 bounded
independenly of h and some fixed open neighborhood V of Γ+ ∩ S∗M :

ϕ−t1(supp aj) ∩ supp(1− aj+1) ∩ V = ∅ for all j = 0, . . . , L− 1,(3.18)

ϕ−t(W ) ⊂ {r < r1} for all t ∈ [0, t1].(3.19)

Then we have for all ω ∈ Ω̃, on H2(M)

(3.20) Oph(a0) = Z(ω)(Pθ − ω2) + J(ω) Oph(aL) +O(h∞)Ψ−∞

where Z(ω) : L2(M) → H2(M), J(ω) : H−N (M) → HN (M) are holomorphic in ω ∈ Ω̃ and satisfy the
bounds for each ε1 > 0

‖Z(ω)‖Hsh→Hs+2
h
≤ Cs,ε1h−1 exp

(
(β̃t1 + ε1)L

)
,(3.21)

‖J(ω)‖H−Nh →HNh
≤ CN,ε1 exp

((
− Imω

h
t1 + ε1

)
L
)
.(3.22)

Finally, if a0 = 1 on some h-independent neighborhood of K∩S∗M , then a decomposition of the form (3.20)
holds with Oph(a0) replaced by the identity operator.

Proof. Fix h-independent ψ ∈ C∞c (ϕt1(V ); [0, 1]) such that

supp(1− ψ) ∩ Γ+ ∩ S∗M ∩W = ∅.

Then supp((1−ψ)aj) is contained in an h-independent compact subset of T ∗M not intersecting Γ+∩S∗M ,
thus by Lemma 3.2 for an appropriate choice of Q we have for j = 0, . . . , L− 1

(3.23) Oph
(
(1− ψ)aj

)
= Oph

(
(1− ψ)aj

)
RQ(ω)(Pθ − ω2) +O(h∞)Ψ−∞ .

Next, by (3.18) we have

ϕ−t1(supp(ψaj)) ∩ supp(1− aj+1) = ∅.
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Therefore by Lemma 2.4, using (3.19) and the fact that Pθ = −h2∆g on {r < r1},

(3.24) Oph(ψaj) = Zj(ω)(Pθ − ω2) + eiωt1/h Oph(ψaj)U(t1) Oph(aj+1) +O(h∞)Ψ−∞

for all ω ∈ Ω̃, where Zj(ω) is holomorphic in ω ∈ Ω̃ and satisfies

‖Zj(ω)‖H−Nh →HNh
≤ CNh−1

and the constant CN , as well as the constants in O(h∞)Ψ−∞ , is independent of h and j.

Adding (3.23) and (3.24) and iterating in j, we obtain (3.20) with

Z(ω) =

L−1∑
j=0

eiωjt1/h
( j−1∏
`=0

Oph(ψa`)U(t1)
)(

Oph
(
(1− ψ)aj

)
RQ(ω) + Zj(ω)

)
,

J(ω) = eiωLt1/h
L−1∏
j=0

Oph(ψaj)U(t1).

The bounds (3.21) and (3.22) follow from here and estimate on the operator norm following from (2.20):

max
j
‖Oph(ψaj)‖L2→L2 ≤ 1 + o(1) as h→ 0.

To show the last statement of the lemma, assume that a0 = 1 on an h-independent neighborhood U of
K ∩ S∗M . Take B ∈ Ψcomp

h (M) elliptic on K ∩ S∗M and satisfying WFh(B) ⊂ U . Then by Lemma 3.3,
we have for an appropriate choice of Q,B0, B1, B2 ∈ Ψcomp

h (M),

I = RQ(ω)(I −B0)(Pθ − ω2) + (B1 + hRQ(ω)B2)BOph(a0) +O(h∞)Ψ−∞ .

Combining this with the representation (3.20) of Oph(a0), we obtain (3.20) with the identity operator on
the left-hand side. �

3.2. Wave propagator. We next study the long time behavior of the half-wave propagator U(t) =
exp(−it

√
−∆g). We first prove a microlocal estimate on the free half-wave propagator on Rd,

U0(t) = exp(−it
√
−∆0) : L2(Rd)→ L2(Rd),

where ∆0 is the flat Laplacian.

Lemma 3.5. Let A1, A2 ∈ Ψk
h(Rd) such that there exists R > 0 with

WFh(A1) ∪WFh(A2) ⊂ {|y| < R},

at least one of WFh(A1), WFh(A2) is a compact subset of T ∗Rd \ 0, and

(3.25) (y′, η) ∈WFh(A1), η 6= 0, t ≥ 0 =⇒
(
y′ + t

η

|η|
, η
)
/∈WFh(A2).

Then we have the following version of propagation of singularities which is uniform in t ≥ 0:

(3.26) A2U0(t)A1 = O(h∞)Ψ−∞(Rd).

Proof. Write A1 = Oph(a1)∗ + O(h∞)Ψ−∞ , A2 = Oph(a2) + O(h∞)Ψ−∞ for some a1, a2 whose sup-
ports satisfy the conditions imposed on WFh(A1), WFh(A2), including (3.25). The Schwartz kernel of
Oph(a2)U0(t) Oph(a1)∗ is compactly supported and given by

K(y, y′) = (2πh)−2d

∫
Rd
e
i
h (〈y−y′,η〉−t|η|)a2(y, η)a1(y′, η) dη.(3.27)
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Put Φ = 〈y − y′, η〉 − t|η|. Then there exists c > 0 such that on the support of a2(y, η)a1(y′, η),

(3.28) |∂ηΦ| =
∣∣∣y − y′ − t η|η| ∣∣∣ ≥ c〈t〉 > 0.

Indeed, since y, y′ vary in a compact set and η is bounded away from zero, it is enough to consider the case
of bounded t. Then (3.28) follows from (3.25).

Now, repeated integration by parts in η gives that for each N ,

‖K‖CN (R2d) ≤ CNh
N 〈t〉−N .

This completes the proof. �

We next use U0(t) to write a parametrix for the propagator U(t). For ψ0 ∈ C∞c (M) with supp(1−ψ0) ⊂
{r > r0} and u ∈ L2(M), we define

(1− ψ0)U0(t)(1− ψ0)u ∈ L2(M)

as follows: we pull back the restriction of (1−ψ0)u to each infinite end to Rd using the Euclidean coordinate,
apply (1−ψ0)U0(t), and take the sum of the resulting functions pulled back to M . This gives an operator

(3.29) (1− ψ0)U0(t)(1− ψ0) : L2(M)→ L2(M).

Recall the sets E±, E◦± defined in (2.3).

Lemma 3.6. Suppose that A± ∈ Ψcomp
h (M), ψ0 ∈ C∞c (M) satisfy for some r2 > r0 (see Figure 4)

WFh(A±) ⊂ E◦± ∩ {r > r2}, suppψ0 ⊂ {r < r2}, supp(1− ψ0) ⊂ {r > r0}.

Then we have uniformly in 0 ≤ t ≤ Ch−1

U(t)A+ = (1− ψ0)U0(t)(1− ψ0)A+ +O(h∞)Ψ−∞(3.30)

U(−t)A− = (1− ψ0)U0(−t)(1− ψ0)A− +O(h∞)Ψ−∞ .(3.31)

Proof. We prove (3.30), with (3.31) established similarly. For simplicity of notation, we present the argu-
ment in the case when M is diffeomorphic to Rd. The general case is proved in the same way, reducing to
the case when A+ is supported on one infinite end and treating 1− ψ0 on this infinite end as an operator
L2(M)→ L2(Rd) and L2(Rd)→ L2(M). We identify M with Rd and use the quantization (2.15).

Since U0(t), U(t) are bounded uniformly in t on all Sobolev spaces and WFh(A+) ∩ suppψ0 = ∅,

U(t)A+ = U(t)(1− ψ0)2A+ +O(h∞)Ψ−∞ .

Therefore it remains to show that uniformly in 0 ≤ t ≤ Ch−1,

(3.32) W (t) = O(h∞)Ψ−∞ ,

where the operator W (t) on L2(M) is defined by

W (t) :=
(
(1− ψ0)U0(t)− U(t)(1− ψ0)

)
(1− ψ0)A+.

Using the wave operator �g = ∂2
t −∆g, we write

(3.33) W (t) = cos(t
√
−∆g)W (0) +

sin(t
√
−∆g)√
−∆g

W ′(0) +

∫ t

0

sin
(
(t− t′)

√
−∆g

)√
−∆g

�gW (t′) dt′.

We compute

(3.34) W (0) = 0.
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ψ = 1

0 < ψ < 1

r = r0

r = r2

A+

Figure 4. An illustration of Lemma 3.6 when 0 ≤ ψ0 ≤ 1, showing the regions ψ0 = 1
and 0 < ψ0 < 1 (shaded) and the projection of WFh(A+) onto M . The points (x, ξ) in
WFh(A), pictured by arrows, give rise to trajectories escaping to infinity in the future and
never entering suppψ0.

Next,

(3.35) ihW ′(0) =
(
(1− ψ0)h

√
−∆0 − h

√
−∆g(1− ψ0)

)
(1− ψ0)A+ = O(h∞)Ψ−∞ .

Indeed, by (2.24) both (1− ψ0)h
√
−∆0(1− ψ0)A+ and h

√
−∆g(1− ψ0)2A+ are in Ψ0

h(M). As explained
in the discussion following [DS99, Theorem 8.7], the asymptotic expansion for the full symbol of each of
these operators at some point can be computed using only the derivatives of ψ0 and the full symbols of
A+,∆0,∆g at this point. Since ∆0 = ∆g and ψ0 = 0 on {r > r2} ⊃WFh(A+), we obtain (3.35).

Finally, since ∆0 = ∆g on {r > r0} ⊃ supp(1− ψ0), we have

h2�gW (t) = [h2∆g, ψ0]U0(t)(1− ψ0)A+.

Now, with A2 := [h2∆g, ψ0]

WFh(A2) ⊂ supp dψ0 ⊂ {r0 < r < r2}.
Then A2 and A1 := A+ satisfy (3.25), thus by Lemma 3.5

(3.36) h2�gW (t) = O(h∞)Ψ−∞ .

Now (3.32) follows from (3.33)–(3.36), the bound t ≤ Ch−1, and the fact that for each s, the operators

cos(t
√
−∆g),

sin(t
√
−∆g)√
−∆g

: Hs
h(M)→ Hs

h(M)

are bounded in norm by C〈t〉. �

The next lemma shows that for times t = O(log(1/h)), the cutoff wave propagator A2U(t)A1, where
Aj ∈ Ψcomp

h,ν (T ∗M) and WFh(Aj) lies near S∗M , can be expressed in terms of cutoff wave propagators for
bounded time. It relies on Lemmas 3.5 and 3.6 and is a key component of the proof of Lemma 6.1 below.
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Lemma 3.7. Let A1 ∈ Ψcomp
h,ν (M), A2 ∈ Ψ0

h,ν(M), and χ ∈ S0
h(T ∗M ; [0, 1]) satisfy for some εE > 0

and r2 > r0

WFh(A1) ∪WFh(A2) ∪ suppχ ⊂ {r < r2}, WFh(A1) ⊂ {|ξ|2g ∈ (1− εE , 1 + εE)},(3.37)

supp(1− χ) ∩ {|ξ|2g ∈ [1− εE , 1 + εE ]} ∩ {r ≤ r0} = ∅.(3.38)

Put T :=
√
r2
2 − r2

0 and let C be an h-independent constant. Then for each sequence of times

t1, . . . , tL ≥ T, L ≤ Ch−1, tj ≤ C,
we have

A2U(t1 + · · ·+ tL)A1 = A2U(t1) Oph(χ)U(t2) · · ·Oph(χ)U(tL)A1 +O(h∞)Ψ−∞ .

Proof. We may assume that A1 ∈ Ψcomp
h (M), A2 ∈ Ψ0

h(M). Indeed, otherwise we may take A′1 ∈
Ψcomp
h (M), A′2 ∈ Ψ0

h(M) such that (I − A′1)A1 = O(h∞)Ψ−∞ , A2(I − A′2) = O(h∞)Ψ−∞ , and WFh(A′1),
WFh(A′2) satisfy (3.37), and apply the argument below with A1, A2 replaced by A′1, A

′
2.

We have

A2U(t1 + · · ·+ tL)A1 −A2U(t1) Oph(χ)U(t2) · · ·Oph(χ)U(tL)A1 =

L−1∑
`=1

B`,

B` := A2U(t1) Oph(χ) · · ·U(t`−1) Oph(χ)U(t`) Oph(1− χ)U(t`+1 + · · ·+ tL)A1.

Therefore it suffices to show that B` = O(h∞)L2→L2 uniformly in `. Since U(t) is unitary and Oph(χ)
satisfies the norm bound [Zwo12, Theorem 13.13]

(3.39) ‖Oph(χ)‖Hsh→Hsh ≤ 1 +O(h),

it is enough to show the following bounds uniform in ` (in fact (3.40) is used only for ` = 2, . . . , L − 1
and (3.41) is used only for ` = 1)

Oph(χ)U(t`) Oph(1− χ)U(t`+1 + · · ·+ tL)A1 = O(h∞)Ψ−∞ ,(3.40)

A2U(t`) Oph(1− χ)U(t`+1 + · · ·+ tL)A1 = O(h∞)Ψ−∞ .(3.41)

We show (3.40) with the same proof giving (3.41) as well. Take ψ1 ∈ C∞c (R) such that

suppψ1 ⊂ (1− εE , 1 + εE), WFh(A1) ∩ supp
(
1− ψ1(|ξ|2g)

)
= ∅.

We can replace A1 by ψ1(−h2∆g)A1 in (3.40) since

(I − ψ1(−h2∆g))A1 = O(h∞)Ψ−∞ .

Since U(t`+2 + · · ·+ tL) commutes with ψ1(−h2∆g), it suffices to show that

(3.42) AU(t`+2 + · · ·+ tL)A1 = O(h∞)Ψ−∞ ,

where
A := U(−t` − t`+1) Oph(χ)U(t`) Oph(1− χ)U(t`+1)ψ1(−h2∆g).

By Lemma 2.3, we have A ∈ Ψcomp
h (M) and

WFh(A) ⊂ ϕ−t`−t`+1
(suppχ) ∩ ϕ−t`+1

(supp(1− χ)) ∩ {|ξ|2g ∈ (1− εE , 1 + εE)}.
Take x ∈ ϕt`+1

(WFh(A)). By (3.38) we have x ∈ {r > r0} and by (3.37) we have ϕt`(x) ∈ {r < r2}.
By (2.4) and since t` ≥ T we see that x ∈ E◦−. Applying (2.4) again and using that t`+1 ≥ T we see that
ϕ−t`+1−s(x) ∈ E◦− ∩ {r > r2} for all s ≥ 0. Therefore

WFh(A) ⊂ E◦− ∩ {r > r2},(3.43)

ϕ−s(WFh(A)) ∩WFh(A1) = ∅ for all s ≥ 0.(3.44)



22 SEMYON DYATLOV AND JEFFREY GALKOWSKI

Denote t̃` := t`+2+· · ·+tL ∈ [0, Ch−1]. By (3.43) we may apply Lemma 3.6 to get for some ψ0 ∈ C∞c (M ;R),
supp(1− ψ0) ⊂ {r > r0}

U(−t̃`)A∗ = (1− ψ0)U0(−t̃`)(1− ψ0)A∗ +O(h∞)Ψ−∞ .

Taking adjoints, we get

(3.45) AU(t̃`) = A(1− ψ0)U0(t̃`)(1− ψ0) +O(h∞)Ψ−∞ .

By Lemma 3.5 and (3.44) we have

(3.46) A(1− ψ0)U0(t̃`)(1− ψ0)A1 = O(h∞)Ψ−∞ .

Combining (3.45) and (3.46), we obtain (3.42), finishing the proof. �

Using Lemma 3.7, we also obtain the following estimate used in §6.3:

Lemma 3.8. Assume that A1 ∈ Ψcomp
h (M), A2 ∈ Ψ0

h(M) satisfy for some r1 > r0 and εE > 0

(3.47) WFh(A1) ⊂ {r < r1} ∩ {|ξ|2g ∈ (1− εE , 1 + εE)}, WFh(A2) ⊂ {r < r1}.

Put T0 :=
√
r2
1 − r2

0 and assume that χ′ ∈ C∞c (M) satisfies

(3.48) supp(1− χ′) ∩ {r ≤ r1 + T0} = ∅.
Fix C0 > 0. Then for all t ∈ [T0, C0h

−1], s ∈ [0, C0h
−1], and u ∈ L2(M) we have

‖A2U(s+ t)A1u‖L2 ≤ ‖A2‖L2→L2 · ‖χ′U(t)A1u‖L2 +O(h∞)‖u‖L2 .

Proof. We first consider the case s ≥ T0. Fix χ ∈ C∞c (M ; [0, 1]) such that

suppχ ⊂ {r < r1}, supp(1− χ) ∩ {r ≤ r0} = ∅.
We write

t = t1 + · · ·+ tL, s = s1 + · · ·+ sL′ , tj , sj ∈ [T0, 2T0], L, L′ ≤ C0h
−1.

By Lemma 3.7 (with (r1, T0) taking the place of (r2, T )) we have

A2U(s+ t)A1 = A2U(s1)χ · · ·U(sL′)χU(t1) · · ·χU(tL)A1 +O(h∞)Ψ−∞ .

Therefore

‖A2U(s+ t)A1u‖L2 ≤ ‖A2‖L2→L2 · ‖χU(t1) · · ·χU(tL)A1u‖L2 +O(h∞)‖u‖L2 .

Another application of Lemma 3.7 gives

‖χU(t1) · · ·χU(tL)A1u− χU(t)A1u‖L2 = O(h∞)‖u‖L2 ,

finishing the proof since χ = χχ′.

We now consider the case 0 ≤ s ≤ T0. Fix ψ1 ∈ C∞c (R; [0, 1]) such that suppψ1 ⊂ (0,∞) and
supp(1− ψ1) ∩ [1− εE , 1 + εE ] = ∅. Since U(t) commutes with ψ1(−h2∆g), we have

A2U(s+ t)A1 = A2U(s+ t)ψ1(−h2∆g)A1 +O(h∞)Ψ−∞

= A2U(s)ψ1(−h2∆g)U(t)A1 +O(h∞)Ψ−∞ .

Therefore
‖A2U(s+ t)A1u‖L2 ≤ ‖U(−s)A2U(s)ψ1(−h2∆g)U(t)A1u‖L2 +O(h∞)‖u‖L2 .

By (3.47) and (3.48) we have (T ∗M \ 0) ∩ ϕ−s(WFh(A2)) ∩ supp(1− χ′) = ∅. Therefore by Lemma 2.3

U(−s)A2U(s)ψ1(−h2∆g)(1− χ′) = O(h∞)Ψ−∞ .

Therefore

‖U(−s)A2U(s)ψ1(−h2∆g)U(t)A1u‖L2 ≤ ‖A2‖L2→L2 · ‖χ′U(t)A1u‖L2 +O(h∞)‖u‖L2
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finishing the proof. �

4. Dynamical cutoff functions

In this section, we construct families of auxiliary cutoff functions which localize to smaller and smaller
neighborhoods of Γ± and are the key component of the proofs of Theorems 2 and 3. These functions are
defined by propagating a fixed cutoff function for a large time.

Fix constants

0 ≤ ρ < 2ν < 1.

We propagate up to time ρte where te is the Ehrenfest time from (1.7) in the semiclassical scaling:

(4.1) te =
log(1/h)

2Λmax
.

Fix a cutoff function

(4.2) χ ∈ C∞c (T ∗M \ 0; [0, 1]), supp(1− χ) ∩K ∩ S∗M = ∅.

Define the following functions living near Γ±:

(4.3) χ+
t = χ(χ ◦ ϕ−t), χ−t = χ(χ ◦ ϕt), t ≥ 0.

By the derivative estimates for the flow ϕt (see for instance [DG16, Lemma C.1]) we have uniformly in t,

(4.4) χ±t ∈ S
comp
h,ν (T ∗M), 0 ≤ t ≤ ρte.

By (2.9), there exists T > 0 such that

(4.5) ϕt1(suppχ) ∩ ϕ−t2(suppχ) ∩ supp(1− χ) ∩ S∗M = ∅ for all t1, t2 ≥ T.

This implies the following

Lemma 4.1. Let χ, T satisfy (4.2), (4.5). Then for all t0 ≥ T, t ≥ 0,

ϕt0+T (suppχ+
t ) ∩ supp(χ− χ+

t+t0) ∩ S∗M = ∅,(4.6)

ϕ−t0−T (suppχ−t ) ∩ supp(χ− χ−t+t0) ∩ S∗M = ∅,(4.7)

ϕ−t0(suppχ) ∩ supp(1− χ) ∩ Γ+ ∩ S∗M = ∅,(4.8)

ϕt0(suppχ) ∩ supp(1− χ) ∩ Γ− ∩ S∗M = ∅.(4.9)

Proof. For (4.6) it is enough to show that

ϕt+t0+T (suppχ) ∩ suppχ ∩ ϕt+t0(supp(1− χ)) ∩ S∗M = ∅

which follows immediately by applying ϕt+t0 to (4.5) with t1 = T, t2 = t+ t0.

For (4.7) it is enough to show that

ϕ−t−t0−T (suppχ) ∩ suppχ ∩ ϕ−t−t0(supp(1− χ)) ∩ S∗M = ∅

which follows immediately by applying ϕ−t−t0 to (4.5) with t1 = t+ t0, t2 = T .

To show (4.8), choose (x, ξ) in the left-hand side of this equation. Since (x, ξ) ∈ Γ+, by (2.8) we have
(x, ξ) ∈ ϕt1(suppχ) for all t1 ≥ 0 large enough depending on (x, ξ). Then

(x, ξ) ∈ ϕ−t0(suppχ) ∩ ϕt1(suppχ) ∩ supp(1− χ) ∩ S∗M

which is impossible by (4.5) with t2 = t0, as soon as t1 ≥ T .
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Finally, to show (4.9), choose (x, ξ) in the left-hand side of this equation. Since (x, ξ) ∈ Γ−, by (2.8) we
have (x, ξ) ∈ ϕ−t2(suppχ) for all t2 ≥ 0 large enough depending on (x, ξ). Then

(x, ξ) ∈ ϕt0(suppχ) ∩ ϕ−t2(suppχ) ∩ supp(1− χ) ∩ S∗M

which is impossible by (4.5) with t1 = t0 as soon as t2 ≥ T . �

5. Proof of the Weyl upper bound

In this section, we prove Theorem 2, following the method of [Dya15a]. We use the function χ and
the constant T satisfying (4.2), (4.5). We also assume that χ is chosen to be homogeneous of degree 0
near S∗M and suppχ ⊂ {r < r0} ∩ {|ξ|g ≤ 2}. We fix h-dependent

(5.1) ρ, ρ′ ∈ [0, 1),
1

2
max(ρ, ρ′) < ν <

1

2
, ρte, ρ

′te ≥ C0,

with C0 a large constant, ρ, ρ′ chosen at the end of the proof, and ν independent of h, and define the
following functions using (4.1) and (4.3):

χ+ := χ+
ρte , χ− := χ−ρ′te ,

which both lie in Scomp
h,ν (T ∗M) by (4.4). We also use a function

χE ∈ S (R), χE(0) = 1, supp χ̂E ⊂ (−1, 1).

5.1. Approximate inverse. We first construct an approximate inverse for the complex scaled operator
Pθ − ω2 (see §3.1), arguing similarly to the proof of [Dya15a, Proposition 2.1] and using the results of §4.

See (3.2) for the definitions of Ω̃, β̃.

Lemma 5.1. Fix ε0 > 0. Then there exist h-dependent families of operators holomorphic in ω ∈ Ω̃

Z(ω) : L2(M)→ H2(M), ‖Z(ω)‖L2(M)→H2
h(M) ≤ Ch−1e(β̃+ε0)(ρ+ρ′)te ,(5.2)

J (ω) : H2(M)→ H2(M), ‖J (ω)‖H2
h(M)→H2

h(M) ≤ Ce(−h−1 Imω+ε0)ρ′te ,(5.3)

such that for all ω ∈ Ω̃ and the constant C0 in (5.1) chosen large enough, we have on H2(M)

(5.4) I = Z(ω)(Pθ − ω2) + J (ω) Oph(χ−) Oph(χ+)χE

(−h2∆g − ω2

h

)
+R(ω),

and the remainder R(ω) is O(h∞)Ψ−∞ .

Proof. Throughout the proof we will assume that ω ∈ Ω̃; the operators we construct are holomorphic in ω.
Fix ε1 > 0 to be chosen at the end of the proof. We first show that

I = Z−(ω)(Pθ − ω2) + J−(ω) Oph(χ−) +O(h∞)Ψ−∞ ,(5.5)

‖Z−(ω)‖Hsh→Hs+2
h
≤ Cs,ε1h−1 exp

(
(1 + ε1)β̃ρ′te

)
,(5.6)

‖J−(ω)‖H−Nh →HNh
≤ CN,ε1 exp

((
− Imω

h
+ ε1β̃

)
ρ′te

)
.(5.7)

For that, fix t0 bounded independently of h and such that

t0 >
2T

ε1
, L :=

ρ′te
t0
∈ N.

We apply Lemma 3.4 to

aj = χ−t0j , t1 := t0 + T.
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Indeed, we have a0 = χ2 = 1 in an h-independent neighborhood of K∩S∗M and aL = χ−. To verify (3.18),
we first write by (4.7) with t = t0j,

(5.8) ϕ−t1(supp aj) ∩ supp(χ− aj+1) ∩ S∗M = ∅.

On the other hand, by (4.8)

(5.9) supp aj ⊂ suppχ, ϕ−t1(suppχ) ∩ supp(1− χ) ∩ Γ+ ∩ S∗M = ∅

Since χ is independent of h, aj , χ are homogeneous of order 0 near S∗M , and

supp(1− aj+1) ⊂ supp(1− χ) ∪ supp(χ− aj+1),

we see that ϕ−t1(supp aj) ∩ supp(1− aj+1) is contained in an h-independent compact set not intersecting
Γ+ ∩ S∗M and (3.18) follows by making V the complement of this compact set. Finally, to satisfy (3.19),
we take r1 large enough depending on t0. Now Lemma 3.4 applies and gives (5.5)–(5.7).

We next show that

Oph(χ) = Z+(ω)(Pθ − ω2) + Oph(χ+) +O(h∞)Ψ−∞ ,(5.10)

‖Z+(ω)‖Hsh→Hs+2
h
≤ Cs,ε1h−1 exp

(
(1 + ε1)β̃ρte

)
.(5.11)

For that, we fix t0 bounded independently of h and such that

t0 >
2T

ε1
, L :=

ρte
t0
− 1 ∈ N.

We apply Lemma 3.4 to

aj = χ− χ+
t0(L+1−j), t1 := t0 + T.

Then a0 = χ− χ+ and aL = χ− χ+
t0 . By (4.8), we have supp aL ∩ Γ+ ∩ S∗M = ∅; since aL is independent

of h, by Lemma 3.2 we have for an appropriate choice of Q

(5.12) Oph(aL) = Oph(aL)RQ(ω)(Pθ − ω2) +O(h∞)Ψ−∞ .

To verify (3.18), (3.19) we argue as in the proof of (5.5)–(5.7) above, using (5.8) (which follows from (4.6)
with t = t0(L− j)) and (5.9). Now Lemma 3.4 applies and, combined with (5.12), gives (5.10), (5.11).

We also have

(5.13) Oph(χ−) = Zχ(ω)(Pθ − ω2) + Oph(χ−) Oph(χ) +O(h∞)Ψ−∞ , ‖Zχ(ω)‖Hsh→Hs+2
h
≤ Csh−1.

Indeed, choose C0 in (5.1) large enough so that C0 ≥ 2T . Similarly to (4.5) we have for some ε′ > 0

supp(χ−) ∩ supp(1− χ) ∩ {1− ε′ ≤ |ξ|g ≤ 1 + ε′} ⊂ ϕ−T (suppχ) ∩ supp(1− χ).

The right-hand side is a compact set which by (4.8) does not intersect Γ+ ∩ S∗M . Now (5.13) follows by
Lemma 3.2 applied to the operator Oph(χ−) Oph(1− χ).

Finally, put

ZE(ω) := h−1ψE

(−h2∆g − ω2

h

)
, ψE(λ) =

1− χE(λ)

λ
, supp ψ̂E ⊂ (−1, 1).

Then

(5.14) I = ZE(ω)(−h2∆g − ω2) + χE

(−h2∆g − ω2

h

)
, ‖ZE(ω)‖Hsh→Hsh ≤ Csh

−1.

By (2.34) and the fact that Pθ = −h2∆g on {r < r1}, we see that as long as r1 > r0 + 10, we have

(5.15) Oph(χ+) = Oph(χ+)ZE(ω)(Pθ − ω2) + Oph(χ+)χE

(−h2∆g − ω2

h

)
+O(h∞)Ψ−∞ .
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Combining (5.5), (5.13), (5.10), (5.15), we obtain (5.4) with

Z(ω) = Z−(ω) + J−(ω)
(
Zχ(ω) + Oph(χ−)

(
Z+(ω) + Oph(χ+)ZE(ω)

))
,

J (ω) = J−(ω),

and (5.2), (5.3) follow from (5.6), (5.7), (5.11), (5.13), (5.14) as long as we choose ε1 < ε0/β. �

5.2. Proof of Theorem 2. Fix ε0 > 0 and let

A(ω) := J (ω) Oph(χ−) Oph(χ+)χE

(−h2∆g − ω2

h

)
+R(ω)

be the operator featured in Lemma 5.1. Then A(ω) is a Hilbert–Schmidt operator on H2
h(M) and its

Hilbert–Schmidt norm is estimated by (2.35) and (5.3):

(5.16)

‖A(ω)‖2HS ≤ ‖J (ω)‖2H2
h→H

2
h
·
∥∥∥Oph(χ−) Oph(χ+)χE

(−h2∆g − ω2

h

)∥∥∥2

HS
+O(h∞)

≤ Ch1−de2(−h−1 Imω+ε0)ρ′te · µL(S∗M ∩ suppχ+ ∩ suppχ−) +O(h∞)

≤ Ch1−de2(−h−1 Imω+ε0)ρ′te · V
(
(ρ+ ρ′)te

)
+O(h∞) =: Vρ,ρ′,ε0,h(−h−1 Imω)

where we use (1.6) and the fact that

suppχ+ ∩ suppχ− ⊂ ϕρte
(
T ((ρ+ ρ′)te)

)
.

Consider the Fredholm determinant

F (ω) = det(I −A(ω)2), ω ∈ Ω̃.

We have by (5.16)

(5.17) |F (ω)| ≤ exp
(
‖A(ω)2‖tr

)
≤ exp

(
‖A(ω)‖2HS

)
≤ exp

(
Vρ,ρ′,ε0,h(β̃)

)
for all ω ∈ Ω̃.

On the other hand, if we put ω0 := 1 + ih ∈ Ω̃, then by (5.3) the norm ‖A(ω0)‖H2
h→H

2
h

is bounded above

by 1
2 as long as the constant C0 in (5.1) is large enough. Therefore, we have ‖(I −A(ω0))−1‖H2

h→H
2
h
≤ 2

and thus

(5.18)
|F (ω0)|−1 = |det(I −A(ω0)2)−1| =

∣∣ det
(
I +A(ω0)2(I −A(ω0)2)−1

)∣∣
≤ exp

(
‖A(ω0)2(I −A(ω0)2)−1‖tr

)
≤ exp

(
2‖A(ω0)‖2HS

)
≤ exp

(
2Vρ,ρ′,ε0,h(β̃)

)
.

By (5.4) we have

(Pθ − ω2)−1 =
(
I −A(ω)2

)−1(
I +A(ω)

)
Z(ω).

Therefore, the poles of (Pθ−ω2)−1 in Ω̃ are contained in the set of poles of (I−A(ω)2)−1, that is in the set
of zeroes of F (ω), counting with multiplicity. (The multiplicities are handled using Gohberg–Sigal theory,
see for example [DZ, §C.4].) By (5.17), (5.18), Jensen’s bound on the number of zeroes of F (ω) (see for
instance [DJ15, Lemma 4.4]; we dilate the regions (3.1), (3.2) by h−1), and the relation of the poles of
(Pθ − ω2)−1 with resonances of ∆g, we see that the bound

(5.19) N (R, β) ≤ CRd−1 exp
(
2(β̃ + ε0)ρ′te(R)

)
· V
(
(ρ+ ρ′)te(R)

)
+O(R−∞)

holds for all ρ, ρ′ ∈ [0, 1) satisfying (5.1), ε0 > 0, and β̃ > β, with te(R) defined in (1.7). We assume that
K ∩ S∗M 6= ∅, since otherwise there is a resonance free strip of arbitrarily large size (see for instance [DZ,
Theorem 6.9]). Then by (2.14), we may remove the O(R−∞) remainder in (5.19).

Now, put ρ′ := C0/te(R), where C0 is the constant in (5.1), and ρ := 1− ε0, β̃ := β + ε0. Then (5.19)
implies (using (2.13))

(5.20) N (R, β) ≤ CRd−1 · V
(
(1− ε0)te(R)

)
.



FRACTAL WEYL LAWS AND WAVE DECAY FOR GENERAL TRAPPING 27

If we instead put ρ := ρ′ := 1− 2β−1ε0, β̃ := β + ε0, then (5.19) implies

(5.21) N (R, β) ≤ CRd−1 exp
(
2βte(R)

)
· V
(
2(1− 2β−1ε0)te(R)

)
.

Choosing ε0 small enough, we see that (5.20) and (5.21) imply the bound (1.8), finishing the proof of
Theorem 2.

6. Proof of wave decay on average

6.1. Hilbert–Schmidt bound. We first use the results of §3.2 to obtain a Hilbert–Schmidt bound for
the wave propagator. Assume that χ ∈ S0

h(T ∗M ; [0, 1]) satisfies for some r2 > r0 and εE > 0,

suppχ ⊂ {r < r2}, supp(1− χ) ∩ {|ξ|2g ∈ [1− εE , 1 + εE ]} ∩ {r ≤ r0} = ∅.

Put T :=
√
r2
2 − r2

0. By (2.4) the following stronger version of (4.5) holds:

(6.1) ϕt1(suppχ) ∩ ϕ−t2(suppχ) ∩ supp(1− χ) ∩ {|ξ|2g ∈ [1− εE , 1 + εE ]} = ∅ for all t1, t2 ≥ T.
Take an energy cutoff function ψ2 ∈ C∞c (R) such that

(6.2) suppψ2 ⊂ (1− εE , 1 + εE).

Fix constants 0 ≤ ρ < 2ν < 1 and denote by te the Ehrenfest time, see (4.1).

Lemma 6.1. Fix ε0 > 0. Then for each t ∈ [5ε−1
0 T, ρte],

(6.3) ‖Oph(χ2)U(2t)ψ2(−h2∆g) Oph(χ2)‖2HS ≤ Ch−dV
(
2(1− ε0)t

)
+O(h∞).

Proof. Fix t1 bounded independently of h and such that

t1 ≥
T

ε0
, L :=

t

t1
∈ N, L ≥ 5.

Put t0 := t1 − T ≥ 0. Fix ψ3 ∈ C∞c (R; [0, 1]) such that for some ε̃E < εE

suppψ3 ⊂ (1− εE , 1 + εE), supp(1− ψ3) ∩ [1− ε̃E , 1 + ε̃E ] = ∅, suppψ2 ⊂ (1− ε̃E , 1 + ε̃E).

Put
χ̃ := ψ3(|ξ|2g)χ, χ̃±s := χ̃(χ ◦ ϕ±s).

Similarly to (4.4), χ̃±s ∈ S
comp
h,ν (M) for |s| ≤ ρte. Using (6.1), the proof of (4.6), (4.7) gives for all s ≥ 0

ϕt1(supp χ̃+
s ) ∩ supp(χ̃− χ̃+

s+t0) = ∅,(6.4)

ϕ−t1(supp χ̃−s ) ∩ supp(χ̃− χ̃−s+t0) = ∅.(6.5)

We have ψ2(−h2∆g) Oph(χ2 − χ̃+
0 ) = O(h∞)Ψ−∞ . Moreover, since ψ2(−h2∆g) commutes with U(2t)

Oph(χ2 − χ̃−0 )U(2t)ψ2(−h2∆g) Oph(χ̃+
0 ) = O(h∞)Ψ−∞ .

It follows that

(6.6) Oph(χ2)U(2t)ψ2(−h2∆g) Oph(χ2) = Oph(χ̃−0 )U(2t)ψ2(−h2∆g) Oph(χ̃+
0 ) +O(h∞)Ψ−∞ .

From (6.6) and Lemma 3.7 (taking ε̃E in place of εE) we get

(6.7)
Oph(χ2)U(2t)ψ2(−h2∆g) Oph(χ2)

= Oph(χ̃−0 )U(t1)
(

Oph(χ̃)U(t1)
)2L−1

ψ2(−h2∆g) Oph(χ̃+
0 ) +O(h∞)Ψ−∞ .

We next transform the right-hand side of (6.7) into an expression involving the cutoffs χ̃±t . First of all, we
claim that

(6.8)
((

Oph(χ̃)U(t1)
)L −Oph(χ̃+

Lt0
)U(t1) · · ·Oph(χ̃+

t0)U(t1)
)
ψ2(−h2∆g) Oph(χ̃+

0 ) = O(h∞)Ψ−∞ .
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Indeed, the left-hand side of (6.8) is equal to
∑L
`=1B

+
` where

B+
` :=

(
Oph(χ̃)U(t1)

)L−`
Oph(χ̃− χ̃+

`t0
)U(t1) Oph(χ̃+

(`−1)t0
)U(t1) · · ·Oph(χ̃+

t0)U(t1)ψ2(−h2∆g) Oph(χ̃+
0 ).

By Lemma 2.3 and (6.4) with s := (`− 1)t0 we have

Oph(χ̃− χ̃+
`t0

)U(t1) Oph(χ̃+
(`−1)t0

)U(−t1) = O(h∞)Ψ−∞

for ` = 2, . . . , L and a similar argument with s := 0 gives

Oph(χ̃− χ̃+
t0)U(t1)ψ2(−h2∆g) Oph(χ̃+

0 )U(−t1) = O(h∞)Ψ−∞ .

Therefore B+
` = O(h∞)Ψ−∞ and (6.8) follows.

We next claim that

(6.9)
Oph(χ̃−0 )U(t1)

(
Oph(χ̃)U(t1)

)L−1
Oph(χ̃+

Lt0
)

−Oph(χ̃−0 )U(t1) · · ·Oph(χ̃−(L−1)t0
)U(t1) Oph

(
χ̃−Lt0(χ ◦ ϕ−Lt0)

)
= O(h∞)Ψ−∞ .

Indeed, the left-hand side of (6.9) has the form
∑L
`=1B

−
` where

B−` := Oph(χ̃−0 )U(t1) · · ·Oph(χ̃−(`−1)t0
)U(t1) Oph(χ̃− χ̃−`t0)U(t1)

(
Oph(χ̃)U(t1)

)L−`−1
Oph(χ̃+

Lt0
)

for ` = 1, . . . , L− 1 and

B−L := Oph(χ̃−0 )U(t1) · · ·Oph(χ̃−(L−1)t0
)U(t1) Oph

(
(χ̃− χ̃−Lt0)(χ ◦ ϕ−Lt0))

By Lemma 2.3 and (6.5) with s := (`− 1)t0, ` = 1, . . . , L− 1, we have

U(−t1) Oph(χ̃−(`−1)t0
)U(t1) Oph(χ̃− χ̃−`t0) = O(h∞)Ψ−∞

and a similar argument with s := (L− 1)t0 gives

U(−t1) Oph(χ̃−(L−1)t0
)U(t1) Oph

(
(χ̃− χ̃−Lt0)(χ ◦ ϕ−Lt0)) = O(h∞)Ψ−∞ .

Therefore B−` = O(h∞)Ψ−∞ and (6.9) follows.

Combining (6.7)–(6.9), we obtain

Oph(χ2)U(2t)ψ2(−h2∆g) Oph(χ2) = A−AA+ +O(h∞)Ψ−∞ ,

A− := Oph(χ̃−0 )U(t1) · · ·Oph(χ̃−(L−1)t0
)U(t1),

A := Oph
(
χ̃−Lt0(χ ◦ ϕ−Lt0)

)
,

A+ := U(t1) Oph(χ̃+
(L−1)t0

)U(t1) · · ·Oph(χ̃+
t0)U(t1)ψ2(−h2∆g) Oph(χ̃+

0 ).

In fact the remainder is O(h∞)HS since its range consists of functions supported in {r < r2}. By (2.20)
and since 0 ≤ χ̃±s ≤ 1, we have as h→ 0

‖A±‖L2→L2 = O(1).

Therefore

(6.10) ‖Oph(χ2)U(2t)ψ2(−h2∆g) Oph(χ2)‖HS ≤ C‖A‖HS +O(h∞).

Finally, we have by (2.21)

‖A‖2HS ≤ Ch−d Vol
(

supp χ̃ ∩ ϕLt0(suppχ) ∩ ϕ−Lt0(suppχ)
)
≤ Ch−dV(2Lt0) ≤ Ch−dV

(
2(1− ε0)t

)
where in the last inequality we use (2.13). Combined with (6.10) this gives (6.3). �
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6.2. Concentration of measures. Let ER ⊂ L2(B) be as in the introduction, in particular for some
constant c > 0

NR := dim ER = cRd + o(Rd).

Denote by SR the unit sphere in ER. Let uR ∈ SR be chosen randomly with respect to the standard
measure on the sphere.

Lemma 6.2. Let A : ER → L2(M) be a bounded linear operator and take R large enough so that NR ≥ 10.
Then for all m ≥ 10,

(6.11) P
(
‖AuR‖L2(M) > mN

−1/2
R ‖A‖HS

)
≤ 2e−m

2/16.

Proof. Denote by µ the standard probability measure on SR and let e1, . . . , eNR be an orthonormal basis
of ER. Consider the function f(u) = ‖Au‖L2(M), u ∈ SR. We have

E(f(uR)2) =

∫
SR

〈
AuR(a), AuR(a)

〉
L2 dµ(a)

=

∫
SR

NR∑
k,j=1

〈
akAek, ajAej

〉
L2 dµ(a)

=
1

NR

NR∑
k=1

‖Aek‖2 =
1

NR
‖A‖2HS.

The function f is Lipschitz continuous; indeed, for u, v ∈ SR∣∣‖Au‖L2 − ‖Av‖L2

∣∣ ≤ ‖A(u− v)‖L2 ≤ ‖A‖ER→L2 · ‖u− v‖ER ≤ ‖A‖HS · ‖u− v‖ER .

By the Levy concentration of measure theorem [Led01, (2.6)]

(6.12) P
(
|f(uR)−M(f)| > ‖A‖HS · η

)
≤ 2e−(NR−2)η2/2 ≤ 2e−NRη

2/4 for all η > 0

where M(f) is the median of f(uR), namely the unique number with the properties

P
(
f(uR) ≥M(f)

)
≥ 1

2
, P

(
f(uR) ≤M(f)

)
≥ 1

2
.

We next estimate the difference between M(f) and E(f(uR)). By (6.12)

|E(f(uR))−M(f)| ≤ E|f(uR)−M(f)| =
∫ ∞

0

P
(
|f(uR)−M(f)| > r

)
dr

≤ 2

∫ ∞
0

exp
(
− NRr

2

4‖A‖2HS

)
dr

≤ 4‖A‖HSN
−1/2
R .

Since |E(f(uR))| ≤
√
E(f(uR)2) by Jensen’s inequality, we have

M(f) ≤ 5‖A‖HSN
−1/2
R .

Using (6.12) with η := (m− 5)N
−1/2
R ≥ 1

2mN
−1/2
R , we obtain for m ≥ 10

P
(
f(uR) > mN

−1/2
R ‖A‖HS

)
≤ P

(
|f(uR)−M(f)| > η‖A‖HS

)
≤ 2e−m

2/16

finishing the proof. �
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6.3. Proof of Theorem 3. Recall from (2.12) that B = {r ≤ r1} for some r1 > r0. With ε′ > 0 the
parameter from (1.12), fix εE > 0 such that

(6.13) [(1− ε′)2, (1 + ε′)2] ⊂ (1− εE , 1 + εE)

and fix ψ2 ∈ C∞c (R) such that

(6.14) suppψ2 ⊂ (1− εE , 1 + εE), supp(1− ψ2) ∩ [(1− ε′)2, (1 + ε′)2] = ∅.
Let ψ ∈ C∞c (B◦) be chosen in Theorem 3. Without loss of generality we assume that |ψ| ≤ 1. We assume
that R is large and put

h := R−1.

We use the definition (1.12) of the space ER to show the following microlocalization statement:

Lemma 6.3. We have for all u ∈ ER
(6.15) ‖(I − ψ2(−h2∆g))ψu‖L2 = O(h∞)‖u‖L2 .

Proof. Let {ek} be an orthonormal basis of L2(B) with (−∆B − λ2
k)ek = 0. Then it suffices to show that

for each k such that hλk ∈ [1− ε′, 1 + ε′], we have

‖(I − ψ2(−h2∆g))ψek‖L2 = O(h∞).

Let ψ′ ∈ C∞c (B◦) satisfy suppψ ∩ supp(1 − ψ′) = ∅. Then (1 − ψ′)(I − ψ2(−h2∆g))ψ = O(h∞)Ψ−∞ ,
therefore it suffices to show that

(6.16) ‖Bek‖L2 = O(h∞), B := ψ′(I − ψ2(−h2∆g))ψ ∈ Ψ0
h(M).

The Schwartz kernel of B is compactly supported in B◦. The function ek solves the equation

(−h2∆g − (hλk)2)ek = 0 in B◦

and the operator −h2∆g − (hλk)2 ∈ Ψ2
h(B◦) is elliptic on WFh(B) due to (6.14). Then (6.16) follows from

the semiclassical elliptic estimate, see for instance [DZ, Theorem E.32]. �

Let χ′ ∈ C∞c (M) satisfy (3.48) and fix r2 > r1 such that suppχ′ ⊂ {r < r2}. By Lemma 3.8 combined
with (6.15) we have for all u ∈ SR

(6.17)
‖ψU(s+ t)ψu‖L2 ≤ ‖ψU(s+ t)ψ2(−h2∆g)ψu‖L2 +O(h∞)

≤ ‖χ′U(t)ψ2(−h2∆g)ψu‖L2 +O(h∞)

for all t ∈ [T0, C0h
−1], s ∈ [0, C0h

−1], where T0 :=
√
r2
1 − r2

0.

Using (6.17) and Lemmas 6.1–6.2, we now give

Proof of Theorem 3. With ε, α > 0 the parameters in the statement of Theorem 3, take ε0, ρ, ν such that

0 < ε0 < min
(ε

4
, α,

1

10Λmax
,

1

10

)
,

1

1 + ε0
< ρ < 2ν < 1.

Let te(R) be defined in (1.7). Fix a sequence of times

ε0 logR = t0 < t1 < · · · < tL = 2ρte(R), ti ≤ (1 + ε0)ti−1, i ≥ 1

with the following bound on L (seen by rewriting the inequality above as log ti ≤ log(1 + ε0) + log ti−1)

1 ≤ L ≤ 1− log(ε0Λmax)

log(1 + ε0)
.

Fix χ = χ(x) ∈ C∞c (M ; [0, 1]) such that

(6.18) suppχ ⊂ {r < r2}, supp(1− χ) ∩ {r ≤ r1} = ∅, supp(1− χ) ∩ suppχ′ = ∅.
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We view χ as a function of (x, ξ) ∈ T ∗M and note that χ, ψ2 satisfy the assumptions of §6.1. Then
Lemma 6.1 (with t := ti/2) gives for all i = 1, . . . , L

‖χ2U(ti)ψ2(−h2∆g)χ
2‖2HS ≤ Ch−dV

(
(1− ε0)ti

)
where we remove the O(h∞) remainder by (2.14) using the assumption K 6= ∅. Furthermore, χ2χ′ = χ′

and χ2ψ = ψ, so

(6.19) ‖χ′U(ti)ψ2(−h2∆g)ψ‖HS ≤ Ch−d/2
√
V((1− ε0)ti).

Write tL+1 := C0R. Suppose that t ∈ [ε0 logR,C0R]. Then there exists i ≥ 0 so that t ∈ [ti, ti+1].
By (6.17) with (ti, t− ti) taking the role of (t, s)

(6.20) P
[
‖ψU(t)ψuR‖L2 ≤ m

√
V
(
(1− 2ε0) min(t, 2te(R))

)
for all t ∈ [ti, ti+1]

]
≥

P
[
‖χ′U(ti)ψ2(−h2∆g)ψuR‖L2 ≤ m

2

√
V
(
(1− 2ε0) min(ti+1, 2te(R))

) ]
where we again use (2.14) and the monotonicity (2.13) of V(t) to remove the O(h∞) error. Now, since
ti+1 ≤ (1 + ε0)ti for i = 0, . . . , L− 1 and 2te(R) ≤ (1 + ε0)tL,

(1− 2ε0) min(ti+1, 2te(R)) ≤ (1− 2ε0)(1 + ε0)ti ≤ (1− ε0)ti.

Using (6.19) and the monotonicity of V(t), we have

N
−1/2
R ‖χ′U(ti)ψ2(−h2∆g)ψ‖HS ≤ C

√
V((1− ε0)ti) ≤ C

√
V
(
(1− 2ε0) min(ti+1, 2te(R))

)
.

Lemma 6.2 applied to A := χ′U(ti)ψ2(−h2∆g)ψ then implies for all m ≥ C

P
[
‖χ′U(ti)ψ2(−h2∆)ψuR‖L2 >

m

2

√
V
(
(1− 2ε0) min(ti+1, 2te(R))

)]
≤ 2e−m

2/C .

Therefore, by (6.20)

P
[
‖ψU(t)ψuR‖L2 ≤ m

√
V
(
(1− 2ε0) min(t, 2te(R))

)
for all t ∈ [ti, ti+1]

]
≥ 1− 2e−m

2/C .

Taking an intersection of these events for i = 0, . . . , L then gives

P
[
‖ψU(t)ψuR‖L2 ≤ m

√
V
(
(1− 2ε0) min(t, 2te(R))

)
for all t ∈ [ε0 logR,C0R]

]
≥ 1− 4Le−m

2/C ,

finishing the proof. �

7. Examples

7.1. Manifolds of revolution. Consider the warped product M = Rr × Sd−1
θ with metric

g = dr2 + α(r)2g0(θ, dθ)

where g0 is the round metric on the sphere, α ∈ C∞(R;R+), and there exists C > 0 so that

α(r) = |r|, |r| > C.

Then M is a manifold with two Euclidean ends so Theorems 2 and 3 apply. The symbol of the Laplacian
is given

p2 = ρ2 + α−2(r)p0, p0 := |η|2g0(θ)

where ρ, η denote the momenta dual to r, θ. We compute

2pHp = Hp2 = 2ρ∂r + 2α−3(r)α′(r)p0∂ρ + α−2(r)Hp0 .
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Therefore, for a geodesic (r(t), ω(t), ρ(t), η(t)),
ṙ = p−1ρ

ρ̇ = p−1α−3(r)α′(r)p0

ṗ0 = 0.

Throughout this section, we assume that

(7.1) ±α′(r) ≥ 0 for ± r ≥ 0.

Notice that

(7.2) r̈ = p−2α−3(r)α′(r)p0.

To understand trapping on M , we use

Lemma 7.1. For any geodesic (r(t), θ(t), ρ(t), η(t)) ∈ {p = 1}, we have for all t ≥ 0

ρ(0)r(0) ≥ 0 =⇒ |r(t)| ≥ |r(0)|+ |ρ(0)t|,(7.3)

ρ(0)r(0) ≤ 0 =⇒ |r(−t)| ≥ |r(0)|+ |ρ(0)t|.(7.4)

Proof. We prove (7.3) under the assumption r(0) ≥ 0, ρ(0) ≥ 0, with the other cases handled similarly.
By (7.1) and (7.2), we have r(t)r̈(t) ≥ 0 for all t. Moreover, ṙ(0) ≥ 0. This implies that r(t) ≥ 0 for all
t ≥ 0 and thus ṙ(t) ≥ ṙ(0) = ρ(0) for t ≥ 0. This immediately gives (7.3). �

Denote by K ⊂ T ∗M \ 0 the trapped set, see (2.6). Lemma 7.1 implies that

K ⊂ {α′(r) = 0, ρ = 0}.
On the other hand, if ρ(0) = 0 and α′(r(0)) = 0, then r ≡ r(0) and hence

(7.5) K = {α′(r) = 0, ρ = 0}.

7.2. Example with cylindrical trapping. We now consider two special examples of manifolds of revo-
lution. First, let M be given as above with (see Figure 5)

α(r) =

{
1, |r| ≤ 2;

|r|, |r| ≥ 4.

such that rα′(r) > 0 when |r| > 2. Then by (7.5),

K = {|r| ≤ 2, ρ = 0}.
We estimate V(t) when t� 1. Fix

B := {|r| ≤ 3}.
Since ρ̇ = 0 for |r| ≤ 2, we have

{|r| ≤ 1, |ρ| ≤ p/t} ⊂ TB(t).

On the other hand, suppose that |ρ(0)| ≥ 4p/t. Then by Lemma 7.1,

max(|r(t)|, |r(−t)|) ≥ 4.

Therefore,

ϕ−t(TB(2t)) ⊂ {|r| ≤ 3, |ρ| ≤ 4p/t}.
In particular, this shows that there exists C > 0 so that

C−1t−1 ≤ V(t) ≤ Ct−1.
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Figure 5. Examples of surfaces of revolution studied in §7.2 (left) and §7.3 (right).

7.3. Example with degenerate hyperbolic trapping. Next, we study a less degenerate situation. Fix
an integer n ≥ 2 and let M be given as above with (see Figure 5)

α(r) =

1 +
r2n

2
+O(r2n+1), |r| ≤ 1;

|r|, |r| ≥ 4.

such that rα′(r) > 0 for r 6= 0. Then by (7.5)

K = {r = 0, ρ = 0}.

Fix small τ > 0 to be chosen later and let

B = {|r| ≤ τ}.

We consider the flow on {p = 1} = S∗M , so that

ρ2 = 1− α(r)−2p0 ≥ 1− p0.

Recall that p0 is constant on each geodesic.

We henceforth assume that t ≥ 1. Observe that if p0 < 1−τ , then |ρ(0)| > τ1/2 and hence by Lemma 7.1
max(|r(t)|, |r(−t)|) >

√
τ ≥ τ . Therefore

ϕ−t(TB(2t)) ∩ S∗M ⊂ {|r| ≤ τ, p0 ≥ 1− τ}.

By symmetry considerations, to understand the set ϕ−t(TB(2t)) ∩ S∗M it suffices to consider the set of
trajectories which satisfy

(7.6) p = 1, p0 ≥ 1− τ, r(0) ≥ 0, ρ(0) ≥ 0, r(t) ≤ τ.

Lemma 7.2. Under the assumption (7.6), for τ > 0 fixed small enough and large t we have

r(0) ≤ Ct−
1

n−1 ,(7.7)

ρ(0) ≤ Ct−
n
n−1 .(7.8)

Proof. Note that 0 ≤ r(0) ≤ r(t) ≤ τ . Moreover, we have α(r(0)) ≥ √p0. Since ṙ = ρ =
√

1− α(r)−2p0,
we have

t =

∫ r(t)

r(0)

dr√
1− α(r)−2p0

≤
∫ τ

r(0)

dr√
1− α(r)−2p0

.
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Using the inequality α(r)− α(s) ≥ C−1(r − s)r2n−1, 0 ≤ s ≤ r ≤ τ , we have

t ≤
∫ τ

r(0)

(
1− α(r(0))2

α(r)2

)−1/2

dr ≤ C
∫ τ

r(0)

(
α(r)− α(r(0))

)−1/2
dr

≤ C
∫ τ

r(0)

(r − r(0))−1/2r1/2−n dr ≤ Cr(0)1−n
∫ ∞

1

(u− 1)−1/2u1/2−n du ≤ Cr(0)1−n.

This implies (7.7).

Next if p0 ≥ 1 then

ρ(0)2 ≤ 1− α(r(0))−2 ≤ Cr(0)2n

and in this case (7.7) implies (7.8).

Finally, consider the case p0 < 1. Since for 0 ≤ r ≤ τ , 1− α(r)−2p0 ≥ 1− p0 + 1
4r

2n, we have

t ≤
∫ τ

0

dr√
1− α(r)−2p0

≤
∫ ∞

0

dr√
1− p0 + r2n/4

.

Making the change of variables r = (4(1− p0))
1

2nu, we get

t ≤ C(1− p0)
1−n
2n

∫ ∞
0

du√
1 + u2n

≤ C(1− p0)
1−n
2n

which impiles

1− p0 ≤ Ct−
2n
n−1 .

We now have by (7.7)

ρ(0)2 = 1− α(r(0))−2p0 ≤ 1− p0 + Cr(0)2n ≤ Ct−
2n
n−1

which gives (7.8). �

Applying Lemma 7.2, we obtain the volume bound µL(ϕ−t(S
∗M ∩ TB(2t))) ≤ Ct−

n+1
n−1 and thus

V(t) ≤ Ct−
n+1
n−1 .
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[SZ07] Johannes Sjöstrand and Maciej Zworski. Fractal upper bounds on the density of semiclassical resonances.

Duke Math. J., 137(3):381–459, 2007. URL: http://dx.doi.org/10.1215/S0012-7094-07-13731-1, doi:10.1215/
S0012-7094-07-13731-1.

[You90] Lai-Sang Young. Large deviations in dynamical systems. Trans. Amer. Math. Soc., 318(2):525–543, 1990. URL:

http://dx.doi.org/10.2307/2001318, doi:10.2307/2001318.
[Zwo99a] Maciej Zworski. Dimension of the limit set and the density of resonances for convex co-compact hyperbolic

surfaces. Invent. Math., 136(2):353–409, 1999. URL: http://dx.doi.org/10.1007/s002220050313, doi:10.1007/

s002220050313.
[Zwo99b] Maciej Zworski. Resonances in physics and geometry. Notices Amer. Math. Soc., 46(3):319–328, 1999.

[Zwo12] Maciej Zworski. Semiclassical analysis, volume 138 of Graduate Studies in Mathematics. American Mathematical

Society, Providence, RI, 2012.
[Zwo16] Maciej Zworski. Mathematical study of scattering resonances. arXiv preprint, 2016. URL: http://arxiv.org/

abs/1609.03550.

http://arxiv.org/abs/1608.02238
http://dx.doi.org/10.1017/CBO9780511662195
http://dx.doi.org/10.1017/CBO9780511662195
http://dx.doi.org/10.1017/CBO9780511662195
http://arxiv.org/abs/1512.00836
http://arxiv.org/abs/1512.00836
http://dx.doi.org/10.1090/S0894-0347-2014-00822-5
http://dx.doi.org/10.1090/S0894-0347-2014-00822-5
http://dx.doi.org/10.1090/S0894-0347-2014-00822-5
http://aif.cedram.org/item?id=AIF_2016__66_1_55_0
http://math.berkeley.edu/~dyatlov/res/
http://math.berkeley.edu/~dyatlov/res/
http://dx.doi.org/10.1007/978-3-642-00136-9
http://dx.doi.org/10.1007/978-3-642-00136-9
http://dx.doi.org/10.1007/978-3-642-00136-9
http://link.aps.org/doi/10.1103/PhysRevLett.91.154101
http://dx.doi.org/10.1103/PhysRevLett.91.154101
http://dx.doi.org/10.1103/PhysRevLett.91.154101
http://dx.doi.org/10.1007/s00222-013-0463-2
http://dx.doi.org/10.1007/s00222-013-0463-2
http://dx.doi.org/10.1007/s00222-013-0463-2
http://dx.doi.org/10.4007/annals.2014.179.1.3
http://dx.doi.org/10.4007/annals.2014.179.1.3
http://dx.doi.org/10.4007/annals.2014.179.1.3
http://dx.doi.org/10.1007/s002200050648
http://dx.doi.org/10.1007/s002200050648
http://dx.doi.org/10.1215/S0012-7094-90-06001-6
http://dx.doi.org/10.1215/S0012-7094-90-06001-6
http://dx.doi.org/10.1215/S0012-7094-90-06001-6
http://dx.doi.org/10.2307/2939287
http://dx.doi.org/10.2307/2939287
http://dx.doi.org/10.1215/S0012-7094-07-13731-1
http://dx.doi.org/10.1215/S0012-7094-07-13731-1
http://dx.doi.org/10.1215/S0012-7094-07-13731-1
http://dx.doi.org/10.2307/2001318
http://dx.doi.org/10.2307/2001318
http://dx.doi.org/10.1007/s002220050313
http://dx.doi.org/10.1007/s002220050313
http://dx.doi.org/10.1007/s002220050313
http://arxiv.org/abs/1609.03550
http://arxiv.org/abs/1609.03550


36 SEMYON DYATLOV AND JEFFREY GALKOWSKI

E-mail address: dyatlov@math.mit.edu

Department of Mathematics, Massachusetts Institute of Technology, Cambridge, MA, USA

E-mail address: jeffrey.galkowski@mcgill.ca

Department of Mathematics, McGill University, Montréal, QC, Canada
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