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Abstract. We characterize the defect measures of sequences of Laplace eigenfunctions with max-
imal L∞ growth. As a consequence, we obtain new proofs of results on the geometry of manifolds
with maximal eigenfunction growth obtained by Sogge–Toth–Zelditch [STZ11], and generalize those
of Sogge–Zelditch [SZ16a] to the smooth setting. We also obtain explicit geometric dependence on
the constant in Hörmander’s L∞ bound for high energy eigenfunctions, improving on estimates of
Donnelly [Don01].

1. Introduction

Let (M, g) be a C∞ compact manifold of dimension n without boundary. Consider the solutions
to

(1.1) (−∆g − λ2
j )uλj = 0, ‖uλj‖L2 = 1

as λj → ∞. It is well known [Ava56, Lev52, Hör68] (see also [Zwo12, Chapter 7]) that solutions
to (1.1) satisfy

(1.2) ‖uλj‖L∞(M) ≤ Cλ
n−1
2

j

and that this bound is saturated e.g. on the sphere. It is natural to consider situations which
produce sharp examples for (1.2). Previous works [Bér77, IS95, TZ02, SZ02, TZ03, STZ11, SZ16a,
SZ16b] have studied the connections between growth of L∞ norms of eigenfunctions and the global
geometry of the manifold M .

In this article, we study the relationship between L∞ growth and L2 concentration of eigenfunc-
tions (this direction of inquiry was initiated in [GT17]). We measure L2 concentration of eigen-
functions using defect measures - a sequence {uhj} has defect measure µ if for any a ∈ C∞c (T ∗M),

(1.3)
〈
a(x, hjD)uhj , uhj

〉
→
∫
T ∗M

a(x, ξ)dµ.

We write a(x, hD) for a semiclassical pseudodifferential operator given by the quantization of the
symbol a(x, ξ) (see [Zwo12, Chapters 4, 14]) and let hj = λ−1

j when considering the solutions

to (1.1).
By an elementary compactness/diagonalization argument it follows that any L2 bounded se-

quence uh possesses a further subsequence that has a defect measure in the sense of (1.3) [Zwo12,
Theorem 5.2]. Moreover, a standard commutator argument shows that if

p(x, hD)u = oL2(h),

for p ∈ Sk(T ∗M) real valued with

|p| ≥ c〈ξ〉k on |ξ| ≥ R,
then µ is supported on Σ := {p = 0} and is invariant under the bicharacteristic flow of p; that is,
if Gt = exp(tHp) : Σ → Σ is the bicharacteristic flow, (Gt)∗µ = µ, ∀t ∈ R [Zwo12, Theorems 5.3,
5.4].
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Rather than studying only eigenfunctions of the Laplacian, we replace −∆g − λ2
j by a general

semiclassical pseudodifferential operator and replace eigenfunctions with quasimodes. To this end,
we say that u is compactly microlocalized if there exists χ ∈ C∞c (R) with

(1− χ(|hD|))u = OS(h∞).

For P ∈ Ψm(M) an h-pseudodifferential operator, we say that u is a quasimode for P if

Pu = oL2(h), ‖u‖L2 = 1.

Let Σx := Σ ∩ T ∗xM and define respectively the flow out of Σx and time T flowout of Σx by

Λx :=

∞⋃
T=0

Λx,T , Λx,T :=

T⋃
t=−T

Gt(Σx).

Let Hr denote the Hausdorff-r measure with respect to the Sasaki metric on T ∗M (see for example
[Bla10, Chapter 9] for a treatment of the Sasaki metric). For a Borel measure ρ on T ∗M , let
ρx := ρ|Λx i.e. ρx(A) := ρ(A ∩ Λx). Recall that two Borel measures on a set Ω, µ and ρ, are
mutually singular (written µ ⊥ ρ) if there exist disjoint sets N,P ⊂ Ω so that Ω = N ∪ P and
µ(N) = ρ(P ) = 0.

The main theorem characterizes the defect measures of quasimodes with maximal growth.

Theorem 1. Let P ∈ Ψm(M) be an h-pseudodifferential operator with real principal symbol p
satisfying

(1.4) ∂ξp 6= 0 on {p = 0}.
Suppose u is a compactly microlocalized quasimode for P with

(1.5) lim sup
h→0

h
n−1
2 ‖u‖L∞ > 0

and defect measure µ. Then there exists x ∈M and x(h)→ x so that

(1.6) lim sup
h→0

h
n−1
2 |u(x(h))| > 0, µx = ρ+ fdHnx ,

where 0 6= f ∈ L1(Λx,Hnx), ρ ⊥ Hnx, and both fdHnx, and ρ are invariant under Gt.

One way of interpreting Theorem 1 is that a quasimode with maximal L∞ growth near x must
have energy on a positive measure set of directions entering T ∗xM . That is, it must have concen-
tration comparable to that of the zonal harmonic. (See [GT17, Section 4] for a description of the
defect measure of the zonal harmonic.)

Theorem 1 is an easy consequence of the following theorem (see section 2 for the proof that
Theorem 2 implies Theorem 1).

Theorem 2. Let x ∈ M and P ∈ Ψm(M) be an h-pseudodifferential operator with real principal
symbol p satisfying

∂ξp 6= 0 on {p = 0}.
There exists a constant Cn depending only on n with the following property: Suppose that u is
compactly microlocalized quasimode for P and has defect measure µ. Define ρ ⊥ Hnx and f ∈
L1(Λx;Hnx) by

µx =: ρ+ fdHnx .
Then for all r(h) = o(1),

lim sup
h→0

h
n−1
2 ‖u‖L∞(B(x,r(h)) ≤ Cn

∫
Σx

√
f

√
|ν(Hp)|
|∂ξp|g

dVolΣx
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where ν is a unit (with respect to the Sasaki metric) conormal to Σx in Λx, VolΣx is the measure
induced by the Euclidean metric on T ∗xM , and |∂ξp|g = |∂ξp · ∂x|g. Furthermore, fdHnx is Gt
invariant.

In particular, if µx ⊥ Hnx, then

‖u‖L∞(B(x,r(h)) = o(h
1−n
2 ).

To see that Theorem 2 applies to solutions of (1.1), let hj = λ−1
j . Writing u = uλj and h = hj ,

(−h2∆g − 1)u = 0.

Then, (−h2∆g − 1) = p(x, hD) with p = |ξ|2g − 1 + hr and therefore, the elliptic parametrix

construction shows that u is compactly microlocalized. Since ∂ξjp = 2gijξi, ∂ξp 6= 0 on p = 0 and

Theorem 2 applies. In Section 2, we use Theorem 2 with P = −h2∆g − 1 to give explicit bounds
on the constant C in (1.2) in terms of the injectivity radius of M , inj(M), thereby improving on
the bounds of [Don01] at high energies.

Corollary 1.1. There exists C̃n > 0 depending only on n so that for all (M, g) compact, bound-
aryless Riemannian manifolds of dimension n and all ε > 0, there exists λ0 = λ0(ε,M, g) > 0 so
that for λj > λ0 and uλj solving (1.1)

‖uλj‖L∞ ≤
( C̃n

inj(M)1/2
+ ε
)
λ
n−1
2

j .

Theorem 2 is sharp in the following sense. Let P = −h2∆g − 1 and Gt as above.

Theorem 3. Suppose there exists z ∈M , T > 0 so that GT (z, ξ) = (z, ξ) for all (z, ξ) ∈ S∗zM . Let
ρ ⊥ Hnz be a Radon measure on Λz invariant under Gt and 0 ≤ f ∈ L1(Λz,Hnz ) be invariant under
Gt so that

‖f‖L1(Λz ,Hnz ) + ρ(Λz) = 1.

Then there exist hj → 0 and {uhj}∞j=1 solving

(−h2
j∆

2
g − 1)uhj = o(hj), ‖uhj‖L2 = 1, lim sup

j→∞
h
n−1
2

j ‖uhj‖L∞ ≥ (2π)
1−n
2

∫
Σz

√
fdVolΣz

and having defect measure µ = ρ+ fdVolΛz .

Notice that we do not claim the existence of exact eigenfunctions having prescribed defect mea-
sures in Theorem 3, instead constructing only quasimodes.

1.1. Relation with previous results. As far as the author is aware, the only previous work
giving conditions on the defect measures of eigenfunctions with maximal L∞ growth is [GT17].
Theorem 2 improves on the conditions given in [GT17, Theorem 3]; replacing Hnx(suppµx) = 0
with the sharp condition µx ⊥ Hnx . To see an example of how these conditions differ, fix x ∈ M
such that every geodesic through x is closed and let {ξk}∞k=1 ⊂ S∗xM be a countable dense subset.
Suppose that the defect measure of {uλj} is given by

µ =
∑
k

akδγk , ak > 0

where γk is the geodesic emanation from (x, ξk). Then suppµx = Λx, but µx ⊥ Λx, so Theorem 2
applies to this sequence but the results of [GT17] do not. Furthermore, Theorem 2 gives quantitative
estimates on the growth rates of quasimodes in terms of their defect measures.

We are able to draw substantial conclusions about the global geometry of a manifold M having
quasimodes with maximal L∞ growth from Theorem 2. The results of [STZ11, Theorems 1(1),
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2] and hence also [SZ02, Theorem 1.1] are corollaries of Thoerem 2. For x ∈ M , define the map
Tx : Σx → R t {∞} by

(1.7) Tx(ξ) := inf{t > 0 | Gt(x, ξ) ∈ Σx}.

Then, define the loop set by

Lx := {ξ ∈ Σx | Tx(ξ) <∞},
and the first return map ηx : Lx → Σx by

GTx(ξ)(x, ξ) = (x, ηx(ξ)).

Finally, define the set of recurrent points by

(1.8) Rx :=

{
ξ ∈ Σx | ξ ∈

(⋂
T>0

⋃
t>T

Gt(x, ξ) ∩ Σx

)⋂(⋂
T>0

⋃
t>T

G−t(x, ξ) ∩ Σx

)}
,

where the closure is with respect to the subspace topology on Σx.

Corollary 1.2. Let (M, g) be a compact boundaryless Riemannian manifold and P satisfy (1.4).
Suppose that VolΣx(Rx) = 0. Than for any r(h) = o(1) and u a compactly microlocalized quasimode
for P ,

‖u‖L∞(B(x,r(h)) = o(h
1−n
2 ).

Moreover, the forward direction of [SZ16a, Theorem 1.1] with the analyticity assumption removed
is an easy corollary of Theorem 2. To state the theorem let dVolΣx denote the measure induced
on Σx from the Euclidean metric on T ∗xM . We define the unitary Perron–Frobenius operator

Ux : L2(Rx,
√
|ν(Hp)|dVolΣx)→ L2(Rx,

√
|ν(Hp)|dVolΣx) by

(1.9) Ux(f)(ξ) :=
√
Jx(ξ)f(ηx(ξ)),

where, writing

Gt(x, ξ) = (xt(x, ξ), ηt(x, ξ)),

we have that

(1.10) Jx(ξ) =
∣∣detDξηt|t=Tx(ξ)

∣∣ · ∣∣∣∣ν(Hp)(ηx(ξ))

ν(Hp)(ξ)

∣∣∣∣
is the Jacobian factor so that for f ∈ L1(Σx) supported on Lx,∫

η∗xfJx(ξ)|ν(Hp)|(ξ)dVolΣx =

∫
f(ξ)|ν(Hp)|(ξ)dVolΣx .

See [Saf88, Section 4] for a more detailed discussion of Ux. We say that x is dissipative if

(1.11)
{
f ∈ L2

(
Rx,

√
|ν(Hp)|dVolΣx

) ∣∣∣Ux(f) = f
}

= {0}.

Corollary 1.3. Let (M, g) be a compact boundaryless Riemannian manifold and P satisfy (1.4).
Suppose that x is dissipative. Then for r(h) = o(1) and u a compactly microlocalized quasimode for
P ,

‖u‖L∞(B(x,r(h))) = o(h
1−n
2 ).

The dynamical arguments in [SZ16b] show that if (M, g) is a real analytic surface and P =
−h2∆g − 1, then x being non-dissipative implies that x is a periodic point for the geodesic flow,
i.e. a point so that there is a T > 0 so that every geodesic starting from (x, ξ) ∈ S∗xM smoothly
closes at time T .
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1.2. Comments on the proof. While the assumption Pu = oL2(h) implies a global assumption
on u, similar to that in [GT17], the analysis here is entirely local. The global consequences in
Corollaries 1.2 and 1.3 follow from dynamical arguments using invariance of defect measures.

We take a different approach from that in [GT17] choosing to base our method on the Koch–
Tataru–Zworski method [KTZ07] rather than explicit knowledge of the spectral projector. This
approach gives a more explicit explanation for the L∞ improvements from defect measures. In
Section 7 we sketch the proof of Theorem 2 in the case that µx ⊥ Hnx using the spectral projector.

The idea behind our proof is to estimate the absolute value of u at x in terms of the degree to
which energy concentrates along any bicharacteristics passing through Σx. Either too much local-
ization or too little localization will yield an improvement over the naive bound. By covering Λx
with appropriate cutoffs to tubes around bicharacteristics we are then able to give o(h

1−n
2 ) bounds

whenever µx ⊥ Hnx . The proof relies, roughly, on the fact that if a compactly microlocalized func-
tion u on Rm has defect measure supported at (x0, ξ0), then ‖u‖L∞ = o(h−m/2) rather than the

standard estimate O(h−m/2).

Acknowledgements The author would like to thank John Toth for many stimulating discussions
and for comments on a previous version. Thanks also to the National Science Foundation for
support under the Mathematical Sciences Postdoctoral Research Fellowship DMS-1502661.

2. Consequences of Theorem 2

We first formulate a local result matching those in [SZ02, STZ11] more closely.

Corollary 2.1. Let x ∈M and P ∈ Ψm(M) satisfying the assumption of Theorem 2. Then there
exists a constant Cn depending only on n with the following property. Suppose that u is a compactly
microlocalized quasimode for P , and has defect measure µ. Define ρ ⊥ Hnx and f ∈ L1(Λx;Hnx) by

µx =: ρ+ fdHnx .
Then for all ε > 0, there exists a neighborhood N (ε) of x and h0(ε) such that for 0 < h < h0(ε),

‖u‖L∞(N (ε)) ≤ h−
n−1
2

(
Cn

∫
Σx

√
f

√
|ν(Hp)|
|∂ξp|g

dVolΣx + ε

)
.

Proof that Theorem 2 implies Corollary 2.1. Let

Ãx := Cn

∫
Σx

√
f

√
ν(Hp)

|∂ξp|g
dVolΣx

and suppose that there exists ε > 0 such that for all r > 0,

(2.1) lim sup
h→0

h
1−n
2 ‖uh‖L∞(B(x,r)) > Ãx + ε.

Fix r0 > 0. Then by (2.1) there exists x0 ∈ B(x, r0), h0 > 0 so that

|uh0(x0)|h
n−1
2

0 ≥ Ãx +
ε

2
.

Assume that there exist {hj}Nj=0 and {xj}Nj=0 so that

hj ≤
hj−1

2
, xj ∈ B(x, r02−j), h

n−1
2

j |u(xj)| ≥ Ãx +
ε

2
.

By (2.1), there exists hk ↓ 0 and xk ∈ B(x, r02−N−1) such that

h
1−n
2

k |uhk(xk)| ≥ Ãx +
ε

2
.
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Therefore, we can choose k0 large enough so that hk0 ≤
hN
2 and let (hN+1, xN+1) = (hk0 , xk0),

Hence, by induction, there exists hj ↓ 0, xj → x such that

h
n−1
2

j |uhj (xj)| ≥ Ãx +
ε

2
,

contradicting Theorem 2. �

Proof that Theorem 2 implies Theorem 1. Compactness of M together with Corollary 2.1 with f ≡
0 implies the contrapositive of Theorem 1, in particular, if µx ⊥ Hnx for all x, then ‖u‖L∞ =

o(h
1−n
2 ). �

2.1. Proof of Corollaries 1.2 and 1.3 from Theorem 2.

Lemma 2.2. Fix x ∈M and suppose that u is compactly microlocalized with Pu = oL2(h). Define
ρ ⊥ Hnx and f ∈ L1(Λx;Hnx) by

µx = ρ+ fdHnx .
Then supp f |Σx ⊂ Rx.

Proof. For ξ ∈ Σx and ε > 0 let B(ξ, ε) ⊂ Σx be the open ball of radius ε and

V :=
⋃

−2δ<t<2δ

Gt(B(ξ, ε)).

Observe that by Theorem 2 the triple (Λx, fdHnx , Gt) forms a measure preserving dynamical sys-
tem. The Poincaré recurrence theorem [BS02, Proposition 4.2.1, 4.2.2] implies that for fdHnx a.e.
(x0, ξ0) ∈ V there exists t±n → ±∞ so that Gt±n (x0, ξ0) ∈ V . By the definition of V , there exists s±n
with |s±n − t±n | < 2δ such that Gs±n (x0, ξ0) ∈ B(ξ, ε). In particular, for fdHnx a.e. (x0, ξ0) ∈ V ,

(2.2)

⋂
T>0

⋃
t≥T

Gt(x0, ξ0) ∩B(ξ, ε)

⋃⋂
T>0

⋃
t≥T

G−t(x0, ξ0) ∩B(ξ, ε)

 6= ∅.
Let

µΣx := f |Σx |ν(Hp)||ΣxdVolΣx .

We next show that (2.2) holds for µΣx a.e. point in B(ξ, ε). To do so, suppose the opposite. Then
there exists A ⊂ B(ξ, ε) with µΣx(A) > 0 so that for each (x0, ξ0) ∈ A, there exists T > 0 with

(2.3)

⋃
t≥T

Gt(x0, ξ0)

⋃⋃
t≥T

G−t(x0, ξ0)

⋂B(ξ, ε) = ∅.

Let

Aδ :=
δ⋃

t=−δ
Gt(A).

Then Aδ ⊂ V and for all (x0, ξ0) ∈ Aδ, there exists T > 0 so that (2.3) holds. Moreover, invariance
of fdHnx under Gt together with Lemma 3.4 implies that

(fdHnx)(Aδ) = 2δµΣx(A) > 0

which contradicts (2.2). Thus (2.2) holds for µΣx a.e. point in B(ξ, ε).
Let {B(ξi, εi)} be a countable basis for the topology on Σx. Then for each i, there is a subset

of full measure, B̃i ⊂ B(ξi, εi) so that for every point of B̃i (2.2) holds with ξ = ξi, ε = εi. Noting

that Xi = B̃i∪ (Σx \B(ξi, εi)) has full measure, we conclude that Σ̃x = ∩iXi ⊂ Rx has full measure
and thus, µΣx(Rx) = µΣx(Σx), finishing the proof of the lemma. �
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Proof of Corollary 1.2. Let u solve Pu = oL2(h). Then we can extract a subsequence with a
defect measure µ. By Lemma 2.2, µx = ρ + fdHnx with ρ ⊥ Hnx and supp f |Σx ⊂ Rx. Now, if
VolΣx(Rx) = 0, ∫

Σx

√
f

√
|ν(Hp)|
|∂ξp|g

dVolΣx = 0.

Plugging this into Theorem 2 proves the corollary �

Proof of Corollary 1.3. Let u solve Pu = oL2(h). Then we can extract a subsequence with a defect
measure µ. By Lemma 2.2 and Theorem 2, µx = ρ + fdHnx where ρ ⊥ Hnx , supp f |Σx ⊂ Rx, and
fdHnx is Gt invariant.

Let Tx be as in (1.7). Fix T <∞ and suppose

A ⊂ ΩT := {η ∈ Σx | Tx(η) ≤ T}.

Write (0, T ] =
⊔N(ε)
i=1 (Ti − ε, Ti + ε] and

ΩT =

N(ε)⊔
i=1

T−1
x ((Ti − ε, Ti + ε]).

Then, by Lemma 3.4, for any 0 < δ small enough∫
1Af |ν(Hp)|dVolΣx =

1

2δ

∫
1⋃δ
−δ Gt(A)fdH

n
x

=
∑
i

1

2δ

∫
1⋃ti+δ

ti−δ
Gt(A∩Ωi)

fdHnx

=
∑
i

1

2δ

∫
1⋃δ+O(ε)
−δ+O(ε)

Gt(ηx(A∩Ωi))
fdHnx

=
1

2δ

∫
1⋃δ+O(ε)
−δ+O(ε)

Gt(ηx(A))
fdHnx

So, sending ε→ 0, applying the dominated convergence theorem and then δ → 0 gives∫
1Af |ν(Hp)|dVolΣx =

∫
1ηx(A)f |ν(Hp)|dVolΣx

for all A ⊂ ΩT measurable. Taking T → ∞ then proves this for all A ⊂ Lx measurable. In
particular, changing variables, and using that supp f ⊂ Rx ⊂ Lx, and writing Jx(ξ) as in (1.10)

f(ξ) · |ν(Hp)|(ξ)dVolΣx(ξ) = f(ηx(ξ)) · Jx(ξ) · |ν(Hp)|(ξ)dVolΣx(ξ)

which implies Ux
√
f =

√
f where Ux is defined in (1.9). Observe that since x is dissipative and√

f ∈ L2(Rx,
√
|ν(Hp)|dVolΣx), (1.11) implies

√
f = 0. Theorem 2 then completes the proof. �

2.2. Spectral cluster estimates for −∆g. Let (M, g) be a smooth, compact, boundaryless Rie-
mannian manifold of dimension n, p = |ξ|2g − 1, Gt = exp(tHp) and

Ax :=
Cn
2

(
VolΣx(Rx)

infξ∈Rx Tx(ξ)

)1/2

where Tx is as in (1.7) and Cn is the constant in Theorem 2. We consider an orthonormal basis
{uλj}∞j=1 of eigenfunctions of −∆g (i.e. solving (1.1)) and let

Π[λ,λ+δ] := 1[λ,λ+δ](
√
−∆g).
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Corollary 2.3. For all ε > 0, x ∈ M , there exists δ = δ(x, ε) > 0, a neighborhood N (x, ε) of x,
and λ0 = λ0(x, ε) > 0 so that for λ > λ0,

(2.4) ‖Π[λ,λ+δ]‖2L2→L∞(N (x,ε)) = sup
y∈N (x,ε)

∑
λj∈[λ,λ+δ]

|uλj (y)|2 ≤ (A2
x + ε)λn−1.

Note that since Gt|S∗M parametrizes the speed 2 geodesic flow and therefore

inf
ξ∈Rx

Tx(ξ) ≥ 1

2
L(x,M) ≥ inj(M),

L(x,M) := inf{t > 0 | there exists a geodesic of length t starting and ending at x},
and inj(M) denotes the injectivity radius of M . Therefore, we could replace Ax in (2.4) by either
of

A′x = Cn

(
VolΣx(Rx)

2 · L(x,M)

)1/2

, A′′x = Cn

(
VolΣx(Rx)

4 · inj(M)

)1/2

.

to obtain a weaker, but more easily understood statement. Corollary 2.3 is closely related to the
work of Donnelly [Don01] and gives explicit dependence of the constant in the Hörmander bound
in terms of geometric quantities.

Proof. For U ⊂M

(2.5) ‖Π[λ,λ+δ]‖2L2(M)→L∞(U) = sup
x∈U

∑
λj∈[λ,λ+δ]

|uλj (x)|2.

For w ∈ L2(M),

(2.6) ‖(−∆g − λ2)Π[λ,λ+δ]w‖L2 ≤ 2λδ‖Π[λ,λ+δ]w‖L2 .

Suppose that for some ε > 0 no δ, N (x), and λ0 exist so that (2.4) holds. Then for all δ > 0,
r > 0,

lim sup
λ→∞

λ
1−n
2 ‖Π[λ,λ+δ]‖L2(M)→L∞(B(x,r)) > Ax + ε.

Therefore, for all δ > 0, there exists λk,δ ↑ ∞ so that

λ
1−n
2

k,δ ‖Π[λk,δ,λk,δ+δ]‖L2(M)→L∞(B(x,r)) > Ax + ε.

Moreover, we may assume that for δ1 < δ2, λk,δ1 > λk,δ2 . So, since for δ1 ≤ δ2,

‖Π[λ,λ+δ1]‖L2(M)→L∞(B(x,r)) ≤ ‖Π[λ,λ+δ2]‖L2(M)→L∞(B(x,r)),

letting λl = λl,l−1 , λl →∞ and

λ
1−n
2

l ‖Π[λl,λl+l−1]‖L2(M)→L∞(B(x,r)) > Ax + ε.

By (2.6) for w ∈ L2(M)

‖(−λ−2
l ∆g − 1)Π[λl,λl+l−1]w‖L2→L2 = o(λ−1

l )‖Π[λl,λl+l−1]w‖L2→L2 .

Fix wl ∈ L2(M) with ‖wl‖L2 = 1, so that

λ
1−n
2

l ‖vl‖L∞(B(x,r)) > Ax + ε, vl := Π[λl,λl+l−1]wl.

Then extracting a further subsequence, subsequence if necessary, we may assume that vl has defect
measure µ with µx = ρ + fdHnx and hence that Corollary 2.1 applies to vl. Furthermore, since
‖vl‖L2 ≤ ‖wl‖L2 = 1,

(2.7)

∫
Λx

fdHnx ≤ 1.
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By computing in normal geodesic coordinates at x, observe that for p = |ξ|2g − 1, |ν(Hp)| =
|∂ξp|g = 2. Thus, Corollary 2.1, implies the existence of r > 0 small enough so that

Ax + ε ≤ lim sup
l→∞

λ
1−n
2

l ‖vl‖L∞(B(x,r)) ≤ Cn
∫

Σx

√
fdVolΣx(2.8)

Finally, by Lemma 2.2 and (2.7), supp f ⊂ Rx and ‖f‖L1(Λx,Hnx) ≤ 1. Therefore,

Cn

∫
Σx

√
fdVolΣx ≤ Cn

(
1

2

∫
Σx

f |ν(Hp)|dVolΣx

)1/2 (
VolΣx(Rx

))1/2
= Cn

(
1

4 · infξ∈Rx(Tx(ξ))

∫
Λx,infRx Tx(ξ)

fdHnx

)1/2 (
VolΣx(Rx

))1/2
≤ Cn

2

(
|Rx|

infξ∈Rx(Tx(ξ))

)1/2

= Ax,

contradicting (2.8). �

Compactness of M , the fact that VolΣx(Rx) ≤ Vol(Sn−1), and Corollary 2.3 imply Corollary 1.1.

3. Dynamical and measure theoretic preliminaries

3.1. Dynamical preliminaries. The following lemma gives an estimate on how much spreading
the geodesic flow has near a point.

Lemma 3.1. Fix x ∈M . Then there exists δ > 0 small enough so that uniformly for t ∈ [0, δ],

(3.1)
1

2
d(ξ1, ξ2) +O(d(ξ1, ξ2)2) ≤ d(Gt(x, ξ2), Gt(x, ξ1)) ≤ 2d(ξ1, ξ2) +O(d(ξ1, ξ2)2).

Furthermore if Gt(x, ξi) = (xi(t), ξi(t)),

(3.2) d(x1(t), x2(t)) = O(d(ξ1, ξ2)δ).

Proof. By Taylor’s theorem

Gt(x, ξ1)−Gt(x, ξ2) = dξGt(x, ξ2))(ξ1 − ξ2) +OC∞(sup
q∈Σ
|d2
ξGt(q)|(ξ1 − ξ2)2)

Now,

Gt(x, ξ) = (x, ξ) + (∂ξp(x, ξ)t,−∂xp(x, ξ)t) +O(t2)

so

dξGt(x, ξ) = (0, I) + t(∂2
ξp,−∂2

ξxp) +O(t2)

In particular,

Gt(x, ξ1)−Gt(x, ξ2) = ((0, I) +O(t))(ξ1 − ξ2) +O((ξ1 − ξ2)2)

and choosing δ > 0 small enough gives the result. �

3.2. Measure theoretic preliminaries. We will need a few measure theoretic lemmas to prove
our main theorem.

Lemma 3.2. Suppose that µx = ρx + fdHnx is a finite Borel measure invariant under Gt and
ρx ⊥ Hnx. Then ρx and fdHnx are invariant under Gt.
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Proof. Since ρx ⊥ Hnx , there exist disjoint N,P such that ρx(P ) = Hnx(N) = 0 and Λx = N ∪ P .
Suppose A is Borel. Then the invariance of µx implies

(3.3)

∫
(1A ◦G−t − 1A)dρx =

∫
(1A − 1A ◦G−t)fdHnx .

Now, if A ⊂ N then the fact that Gt is a diffeomorphism implies Hnx(A) = Hnx(Gt(A)) = 0.
Therefore,

(3.4) ρx(A) = ρx(Gt(A)), A ⊂ N
In particular,

ρx(N) = ρx(Gt(N)) = ρx(Λx).

Using again that for t ∈ R, Gt : Σ→ Σ is a diffeomorphism, we have

ρx(Gt(P )) = ρx(Λx \Gt(N)) = ρx(Λx)− ρx(Gt(N)) = 0.

So, in particular,

(3.5) ρx(Gt(A)) = 0, A ⊂ P.
Combining (3.4) with (3.5) proves that ρx is Gt invariant and hence (3.3) proves the lemma. �

Let B(ξ, r) ⊂ Σx be the geodesic ball (with respect tot he Sasaki metric) of radius r around ξ
and define

(3.6) T (ξ, r) :=

∞⋃
t=−∞

Gt({(x, ξ) | ξ ∈ B(ξ, r)}).

Lemma 3.3. Suppose ρx is a finite measure invariant under Gt and ρx ⊥ Hnx. Then for all ε > 0,
there exist ξj ∈ Σx and rj > 0, j = 1, . . . so that

∑
rn−1
j < ε, ρx

⋃
j

T (ξj , rj)

 = ρx(Λx).(3.7)

Proof. Fix δ > 0 so that

[−δ, δ]× Σx 3 (t, ξ) 7→ Gt(x, ξ) ∈ Λx,δ

is a diffeomorphism and use (t, ξ) as coordinates on Λx,δ.
We integrate ρx over Λx,δ to obtain a measure on Σx. In particular, for A ⊂ Σx Borel, define the

measure

(3.8) ρ̃x(A) :=
1

δ
ρx

(
δ⋃
t=0

Gt(A)

)
.

Then, the invariance of ρx implies that ρx � dt×dρ̃x and in particular, there exists f ∈ L1(dt×dρ̃x)
so that

ρx = f(t, ξ)dt× dρ̃x(ξ).

Moreover, since ρx is invariant under Gt, f(t, ξ) = f(ξ). Finally (3.8) implies f is a constant and
in particular,

(3.9) ρx = dt× dρ̃x.
Now, notice that Hnx = g(t, ξ)dt× dVolΣx where 0 < c < g ∈ C∞. In particular, since

dt× dρ̃x ⊥ dt× dVolΣx

we have that ρ̃x ⊥ dVolΣx .
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Thus, there exists N,P ⊂ Σx so that ρ̃x(P ) = VolΣx(N) = 0 and Σx = N t P . Hence for any
ε > 0, there exist ξj ∈ Σx and rj > 0 so that

∑
j

rn−1
j < ε, ρ̃x

⋃
j

B(ξj , rj)

 = ρ̃x(Σx).

The lemma then follows from (3.9) and invariance of ρx. �

Lemma 3.4. Suppose that 0 ≤ f ∈ L1(Λx,Hnx) with fdHnx invariant under Gt. Then for δ0 > 0
small enough, write

[−δ0, δ0]× Σx 3 (t, q) 7→ Gt(q) ∈ Λx

for coordinates on Λx,δ0. We have

f1Λx,δ0
dHnx = f̃(q)1[−δ0,δ0](t)dt× dVolΣx

where
f̃(q) = f(0, q)|ν(Hp)|(0, q)

and ν is a unit normal to Σx b Λx,δ0 with respect to the Sasaki metric.

Proof. Observe that 1Λx,δ0
dHnx is the volume measure on Λx,δ0 . Therefore, 1Λx,δ0

dHnx � 1[−δ0,δ0](t)dt×
dVolΣx and in particular,

f1Λx,δ0
dHnx = f(t, q)

d(dHnx)

d(dt× dVolΣx)
(t, q)1[−δ0,δ0](t)dt× dVolΣx .

But, since fdHnx is invariant under Gt. That is, under translation in t,

f(t, q)
d(dHnx)

d(dt× dVolΣx)
(t, q) = f̃(q)

is constant in time.
To compute f̃(q), we need only compute

d(dHnx)

d(dt× dVolΣx)
(0, q).

For this, observe that 1Λx,δHnx is the volume measure on Λx,δ with respect to the Sasaki metric.
Therefore, we have dVolΣx = NydVolΛx,δ0 where N is a unit normal to Σx. More precisely, if

r ∈ C∞(Λx0,δ0) has dr|Σx(V ) = 〈N,V 〉gs where gs denotes the Sasaki metric and V ∈ TΣxΛx,δ0 ,
then ν = dr|Σx is a unit conormal to Σx and

d(dHnx)

d(dt× dVolΣx)
(0, q) = |∂t(r ◦Gt)|t=0|(q) = |ν(Hp)|(q).

�

4. L∞ estimates microlocalized to Λx

For the next two sections, we assume that u is compactly microlocalized and Pu = oL2(h) where
P is as in Theorem 2.

Lemma 4.1. Suppose that P is as in Theorem 2, u is compactly microlocalized, and Pu = oL2(h).
Then for q, a ∈ S∞(T ∗M)

‖a(x, hD)q(x, hD)u‖2L2 =

∫
|a|2|q|2dµ+ o(1),

‖a(x, hD)Pq(x, hD)u‖2L2 = h2

∫
|a|2|Hpq|2dµ+ o(h2).
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Proof. First observe that since u is compactly microlocalized, there exists χ ∈ C∞c (T ∗M) so that

u = χ(x, hD)u+OS(h∞).

Therefore, we may assume q, a ∈ C∞c (T ∗M). The first equality then follows from the definition of
the defect measure and the fact that [a(x, hD)]∗ = ā(x, hD) + OL2→L2(h). For the second, note
that

Pq(x, hD)u = q(x, hD)Pu+ [P, q(x, hD)]u

= q(x, hD)Pu+
h

i
{p, q}(x, hD)u+OL2(h2).

The lemma follows since Pu = oL2(h). �

At this point, following the argument in Koch–Tataru–Zworski [KTZ07], we work h-microlocally.
The first step is to reduce the L2 → L∞ bounds to a neighbourhood of Σ = {p = 0}.

Lemma 4.2. Suppose that u is compactly microlocalized and Pu = oL2(h). Then for χΣ ∈ C∞c (T ∗M)
with χΣ ≡ 1 in a neighborhood of Σ = {p = 0},

(4.1) ‖(1− χΣ(x, hD))u‖L∞ = o(h
2−n
2 ).

Proof. Since u is compactly microlocalized, there exists χ ∈ C∞c (T ∗M) so that

u = χ(x, hD)u+OS(h∞).

For χΣ ∈ C∞c (T ∗M) with χΣ ≡ 1 in a neighborhood of Σ, |p| ≥ c > 0 on supp (1−χΣ)χ. Therefore,
by the elliptic parametrix construction, for any q ∈ S∞(T ∗M), there exists e ∈ C∞c (T ∗M) so that

e(x, hD)P = (1− χΣ)(x, hD)q(x, hD)χ(x, hD) +OD′→S(h∞)

and in particular,

(4.2) (1− χΣ)(x, hD)q(x, hD)u = oL2(h).

Tthe compact microlocalization of u together with (4.2) and the Sobolev estimate [Zwo12, Lemma
7.10] implies

‖(1− χΣ(x, hD))u‖L∞ = o(h
2−n
2 ).

�

To simplify the writing somewhat, we introduce the notation uΣ := χΣ(x, hD)u.

4.1. Microlocal L∞ bounds near Σ. In view of (4.1), it suffices to consider points in an arbi-
trarily small tubular neighborhood of Σ = {p = 0}. More precisely, we cover suppχΣ by a union
∪Nj=0Bj of open balls Bj centered at points (xj , ξj) ∈ Σ ⊂ {p = 0}. We let χj ∈ C∞0 (Bj) be a
corresponding partition of unity with

uΣ =
N∑
j=0

χj(x, hD)uΣ +OS(h∞)

By possible refinement, the supports of χj can be chosen arbitrarily small.
Since the argument here is entirely local, it suffices to h-microlocalize to supp χ0 ⊂ B0 where

B0 has center (x0, ξ0) ∈ {p = 0}. Since we have assumed ∂ξp 6= 0 in {p = 0}, we may assume that
∂ξ1p(x0, ξ0) 6= 0 and ∂ξ′p(x0, ξ0) = 0. Therefore, choosing suppχ supported sufficiently close to
(x0, ξ0), it follows from the implicit function theorem that

pχ = e(x, ξ)(ξ1 − a(x, ξ′))
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with e(x, ξ) elliptic on suppχ0 provided the latter support is chosen small enough. Thus,

Pχ0 = E(x, hD)(hDx1 − a(x, hDx′))χ0(x, hD) + hRχ0(x, hD).

Therefore,

(hDx1 − a(x1, x
′, hDx′))χ0q(x, hD)u = E−1(x, hD)Pχ0q(x, hD)u+ hR1χ0(x, hD)q(x, hD)u.

In particular, from the standard energy estimate (see for example [KTZ07, Lemma 3.1]) with
(x1, x

′) ∈ Rn,

(4.3) ‖χ0q(x, hD)uΣ(x1 = s, ·)‖L2
x′ (R

n−1) ≤ ‖χ0q(x, hD)uΣ(x1 = t, ·)‖L2
x′ (R

n−1)

+ Ch−1|s− t|1/2(‖Pχ0q(x, hD)uΣ‖L2
x(Rn) + h‖R1χ0q(x, hD)uΣ‖L2

x(Rn)).

4.2. Microlocalization to the flowout. Our next goal will be to insert microlocal cutoffs re-
stricting to a neighborhood of Λx0,δ for some δ > 0 into the right hand side of (4.3).

Let ε� δ, χε,x0 ∈ C∞c (M ; [0, 1])) with

χε,x0 ≡ 1 on B(x0, ε), suppχε,x0 ⊂ B(x0, 2ε).

Let bε,x0 ∈ C∞c (T ∗M ; [0, 1]) with

(4.4)

supp bε,x0 ∩ {p = 0} ⊂
⋃

x∈B(x0,3ε)

Λx,3δ, supp bε,x0 ⊂ {|p| < 2ε},

bε,x0 ≡ 1 on

2δ⋃
t=−2δ

Gt {(x, ξ) | |p(x, ξ)| < ε, d(x, x0) < 2ε} .

Lemma 4.3. There exists C > 0, δ0 > 0 so that for all χj ∈ C∞c (T ∗M) supported sufficiently close
to (x0, ξ0), 0 < ε� δ < δ0, χε,x0, bε,x0 as above, q ∈ S∞(T ∗M), and y1 ∈ R

(4.5) ‖(qχε,x0χj)(x, hD)uΣ|x1=y1‖L2
x′ (R

n−1) ≤ 2δ
−1/2
0 ‖bε,x0(x, hD)q(x, hD)χj(x, hD)uΣ‖L2

x(Rn)

+ Cδ
1
2
0 h
−1‖bε,x0(x, hD)Pq(x, hD)χj(x, hD)uΣ‖L2

x(Rn) + oε,δ(1)

where δ0 := δ|∂ξp(x0, ξ0)|g and |∂ξp|g := |∂ξp · ∂x|g.

Remark 4.4: In (4.5), the local defining functions x1 depend on j, but we will abuse notation
somewhat and suppress the dependence on the index.

Proof. Let

A(x1, y1, x
′, hDx′) := −

∫ x1

y1

a(s, x′, hDx′)ds

and w = χ0q(x, hD)uΣ. Then

w(y1, x
′) = e−

i
h
A(t,y1,x′,hDx′ )w|x1=t −

i

h

∫ t

y1

e−
i
h
A(s,y1,x′,hDx′ )f(s, x′)ds

where

(4.6) f(x) := E−1(x, hD)Pχ0q(x, hD)uΣ + hR1χ0(x, hD)q(x, hD)uΣ.

Let δ0 := δ|∂ξp(x0, ξ0)|g and ψ ∈ C∞c (R; [0, 1]) with suppψ ⊂ [0, δ0] and
∫
ψ = 1. Then, integrating

in x1,

w(y1, x
′) =

∫
ψ(t)e−

i
h
A(t,y1,x′,hDx′ )w|x1=tdt−

i

h

∫
ψ(t)

∫ t

y1

e−
i
h
A(s,y1,x′,hDx′ )f(s, x′)dsdt



14 JEFFREY GALKOWSKI

Applying propagation of singularities,
(4.7)

χε,x0w(y1, x
′) =

∫
ψ(t)χε,x0e

− i
h
A(t,y1,x′,hDx′ )(bε,x0(x, hD)w)|x1=tdt

− i

h
χε,x0

∫
ψ(t)

∫ t

y1

e−
i
h
A(s,y1,x′,hDx′ )(bε,x0(x, hD)f)(s, x′)dsdt+ oε,δ(1)L∞y1L

2
x′

More precisely, for q1 ∈ S0(T ∗M), s ∈ [0, δ0], we show that

χε,x0(y1, x
′)e−

i
h
A(s,y1,x′,hDx′ )(1− bε,x0(x, hD))q1(x, hD)u = oε(h)L2

x
.

Let ϕ ∈ C∞c (R) with ϕ ≡ 1 on [−1, 1]. By (4.2)

χε,x0(y1, x
′)e−

i
h
A(x1,x′,hDx′ )(1− bε,x0(x, hD))q1(x, hD)(1− ϕ(ε−2p(x, hD)))u = oε(h)L2

x
.

Therefore, we need only estimate

(4.8) χε,x0(y1, x
′)e−

i
h
A(s,y1,x′,hDx′ )(1− bε,x0(x, hD))q1(x, hD)ϕ(ε−2p(x, hD))u.

Let G̃t denote the Hamiltonian flow of ξ1 − a(x, ξ′). Then, for (x, ξ) ∈ {|p| ≤ Cε2} and |t| ≤ 1,

d(Gt(x, ξ), G̃t(x, ξ)) ≤ Cε2. By (4.4), bε,x0 is identically 1 in an ε neighborhood of⋃
x∈suppχε,x0

Λx0,2δ

and thus for ε > 0 small enough on

2δ⋃
t=−2δ

G̃t
{

(x, ξ) | x ∈ suppχx0,ε, |p| ≤ Cε2
}
.

In particular, since we assume that ∂ξ′p(x0, ξ0) = 0, and suppψ ⊂ [0, δ0],

(4.9) ψ(s)χε,x0(y1, x
′)e−

i
h
A(s,y1,x′,hDx′ )(1− bε,x0(x, hD))a(x, hD)ϕ(ε−2p(x, hD))u = Oε(h

∞)L2
x
.

Together (4.8) and (4.9) give (4.7) which implies

‖χε,x0w(y1, ·)‖L2
x′ (R

n−1) ≤ δ
−1/2
0 ‖bε,x0(x, hD)w‖L2

x(Rn) + Cδ
1
2
0 h
−1‖bε,x0(x, hD)f‖L2

x(Rn) + oε,δ(1).

Now,

q(x, hD)χε,x0χ0(x, hD)uΣ = χε,x0χ0(x, hD)q(x, hD)uΣ + [q(x, hD), χε,x0χ0(x, hD)]uΣ.

Therefore, since

‖[q(x, hD), χε,x0χ0(x, hD)]uΣ(x1, ·)‖L2
x′ (R

n−1) = Oε(h
1/2),

we have the following L2 bound along the section x1 = y1 of suppχ0 ⊂ suppχΣ.

(4.10) ‖q(x, hD)χε,x0χ0(x, hD)uΣ(y1, ·)‖L2
x′ (R

n−1) ≤

δ
−1/2
0 ‖bε,x0(x, hD)w‖L2

x(Rn) + Cδ
1/2
0 h−1‖bε,x0(x, hD)f‖L2

x(Rn) + oε,δ(1).

Since the proof of (4.10) is local, by refining the supports of χj ; j = 1, ..., N if necessary and
using the definition of f , (4.6), (4.5) follows for all j = 1, ..., N, x0 ∈ M , χε,x0 supported in an ε
neighborhood of x0. �

Lemma 4.5. Suppose that for some δ > 0, q ∈ S0(T ∗M) has q ≡ 0 on Λx0,3δ. Then for r(h) = o(1).

lim sup
h→0

h
n−1
2 ‖q(x, hD)uΣ‖L∞(B(x0,r(h))) = 0.
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Proof. Observe that Lemma 4.3 gives for each j = 1, . . . N ,

‖(qχε,x0χj)(x, hD)uΣ|x1=y1‖L2
x′ (R

n−1) ≤ 2δ
−1/2
0 ‖bε,x0(x, hD)q(x, hD)χj(x, hD)uΣ‖L2

x(Rn)

+ Cδ
1
2
0 h
−1‖bε,x0(x, hD)Pq(x, hD)χj(x, hD)uΣ‖L2

x(Rn) + oε,δ(1).

Applying the Sobolev estimate [Zwo12, Lemma 7.10] and Lemma 4.1 gives

lim sup
h→0

hn−1‖(qχj)(x, hD)uΣ‖2L∞(B(x0,r(h))) ≤ 2δ−1
0

∫
b2ε,x0(x, hD)q2(x, hD)χ2

jdµ

+ Cδ0

∫
b2ε,x0(x, hD)|Hp(q(x, hD)χj)|2dµ.

Sending ε → 0 and using the dominated convergence thoerem proves the lemma since µ(T ∗M) =
1 <∞, limε→0 b

2
ε,x0 ≤ 1Λx0,3δ

, and q vanishes identically on Λx,3δ. �

5. Decomposition into wave packets

We now choose a convenient partition χj and functions qj,i, i = 2, . . . n to prove the main
theorem. The χj localize to individual bicharacteristics, and

∑
i qj,i will measure concentration in

neighborhoods of each bicharacteristic. We then show that understanding the mass localization to
finer and finer neighborhoods of geodesics yields the structure of the defect measure.

5.1. L∞ contributions near geodesics. We need the following version of the L∞ Sobolev em-
bedding.

Lemma 5.1. Suppose v ∈ H l(Rn−1) with l > (n− 1)/2. Then for all ε > 0

‖v‖2L∞ ≤ Cn,lh−n+1
(
εn−1‖v‖2L2 + εn−2l−1

n−1∑
i=1

‖(hDxi)
lv‖2L2

)
.

In particular this holds if v is compactly microlocalized.

Proof. Let ζ ∈ C∞c ([−2, 2]) with ζ ≡ 1 on [−1, 1] and ζε(x) = ζ(ε−1x).
Then

v(x) = (2πh)−n+1

∫
ei〈x,ξ〉/h[ζε(|ξ|) + (1− ζε(|ξ|))]Fh(v)(ξ)dξ

Applying the triangle inequality and Cauchy–Schwarz, and letting wl(ξ) =
√∑n−1

i=1 ξ
2l
i

‖v‖2L∞ ≤ h−2(n−1)(εn−1‖ζ‖2L2‖Fhv‖2L2 + ‖(1− ζε)w−1
l ‖

2
L2‖wlFhv‖2L2)(5.1)

Now,

‖(1− ζε)w−1
l ‖

2
L2 = εn−2l−1‖(1− ζ)w−1

l ‖
2
L2

‖wlFhv‖2L2 =

∫ n−1∑
i=1

ξ2l
i |Fhv(ξ)|2dξ =

n−1∑
i=1

‖Fh(hDl
xiv)‖2L2 .

Using this in (5.1) proves the Lemma. �

Lemma 5.2. There exists Cn > 0 depending only on n, δ1 > 0 so that for 0 < δ < δ1 there exists
r0 > 0 so that if (x0, ξ) ∈ Σx0, 0 < r < r0 and χj ∈ C∞c (T ∗M) with

suppχj ∩ Λx ⊂ T (ξ, r), Hpχj ≡ 0, on Λx0,3δ
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where T (ξ, r) is as in (3.6). Then

(5.2) lim sup
h→0

hn−1‖χjuΣ‖2L∞(B(x0,r(h))) ≤ Cnδ
−1|∂ξp(x, ξ)|−1

g

∫
Λx0,3δ

χ2
jr
n−1dµ.

Proof. Let aj,i(x1), i = 2, . . . n so that ξi− aj,i(x1) vanishes on the bicharacteristic emanating from
(x, ξj). This is possible since we have chosen coordinates so that ∂ξ1p(x0, ξj) 6= 0 and hence a
bicharacteristic may be written locally as

γ = {(x, ξ) | x1 ∈ (−3δ, 3δ), x′ = x′(x1), ξ = a(x1)}.

Let 2l > n− 1 and qj,i = (ξi − ai(x1))l. Then, using q = qj,i in (4.5) gives

‖(hDxi−ai(x1))lχε,x0χj(x, hD)uΣ(x1, ·)‖L2
x′ (R

n−1) ≤ 2δ
−1/2
0 ‖bε,x0(x, hD)qj,i(x, hD)χj(x, hD)uΣ‖L2

x(Rn)

+ Cδ
1/2
0 h−1‖bε,x0(x, hD)Pqj,i(x, hD)χj(x, hD)uΣ‖L2

x(Rn) + oε,δ(1)

where |∂ξp|g = |∂ξp · ∂x|g. Next, q = 1 in (4.5) gives

‖χε,x0χjuΣ‖L2
x′
≤ 2δ

−1/2
0 ‖bε,x0(x, hD)χj(x, hD)uΣ‖L2

x(Rn)+Cδ
1/2
0 h−1‖bε,x0(x, hD)PχjuΣ‖L2

x(Rn)+oε,δ(1).

Therefore, letting w = e−i〈x
′,aj(x1)〉/hχε,x0χju with aj(x1) = (aj,2(x1), . . . , aj,n(x1)) we see that

‖(hDxi)
lw‖L2

x′
≤ 2δ

−1/2
0 ‖bε,x0qj,iχjuΣ‖L2

x(Rn) + Cδ
1/2
0 h−1‖bε,x0Pqj,iχjuΣ‖L2

x(Rn) + oε,δ(1)

and

‖w‖L2
x′
≤ 2δ

−1/2
0 ‖bε,x0χjuΣ‖L2

x(Rn) + Cδ
1/2
0 h−1‖bε,x0PχjuΣ‖L2

x(Rn) + oε,δ(1).

Applying Lemma 5.1 to w (with ε = α) and using the fact that ‖w‖L∞ = ‖χε,x0χjuΣ‖L∞ gives
for any α > 0 and r(h) = o(1)

lim sup
h→0

hn−1‖χjuΣ‖2L∞(B(x0,r(h)) ≤ Cn,lα
n−1

(
lim sup
h→0

[
δ−1

0 ‖bε,x0χjuΣ‖2L2
x

+ Cδ0h
−2‖bε,x0PχjuΣ‖2L2

x

])
+ Cn,lα

n−2l−1

(
n∑
i=2

lim sup
h→0

[
δ−1

0 ‖bε,x0qj,iχjuΣ‖2L2
x

+ Cδ0h
−2‖bε,x0Pqj,iχjuΣ‖2L2

x

])
In particular, applying Lemma 4.1,

lim sup
h→0

hn−1‖χjuΣ‖2L∞(B(x0,r(h))) ≤ Cn,lα
n−1

∫
b2ε,x0(δ−1

0 χ2
j + Cδ0|Hpχj |2)dµ

+ Cn,lα
n−2l−1

n∑
i=2

∫
b2ε,x0(δ−1

0 χ2
jq

2
j,i + Cδ0|Hpχjqi,j |2)dµ.

Observe that by (4.4), 0 ≤ b2ε,x0 ≤ 1 and

lim
ε→0

b2ε,x0 ≤ 1Λx0,3δ
.

Sending ε→ 0 and using Hpχj = 0 on Λx0,3δ (together with µ(T ∗M) = 1 to apply the dominated
convergence theorem) we have

(5.3)

lim sup
h→0

hn−1‖χjuΣ‖2L∞(B(x0,r(h))) ≤ Cn,lδ
−1
0 αn−1

∫
Λx0,3δ

χ2
jdµ

+ Cn,lα
n−2l−1

n∑
i=2

∫
Λx0,3δ

χ2
j (δ
−1
0 q2

j,i + Cδ0|Hpqi,j |2)dµ
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Now, χj is supported on T (ξ, r) (see (3.6)). Letting γ be the bicharacteristic through (x, ξ), we
have by (3.1)

sup{d((x, ξ1), γ) | (x, ξ1) ∈ T (ξ, r) ∩ Λx0,3δ} ≤ 3r.

Hence,

sup
T (ξ,r)∩Λx0,3δ

|Hpqj,i| ≤ Crl.

Furthermore, by (3.2)

sup
T (ξ,r)∩Λx0,3δ

|qj,i| ≤ rl(1 + Cδ)l +O(r2l)

Thus, choosing δ small enough we obtain from (5.3) that

lim sup
h→0

hn−1‖χjuΣ‖2L∞(B(x0,r(h))) ≤ Cn,lδ
−1
0

∫
Λx0,3δ

χ2
j (α

n−1 + αn−2l−1r2l)dµ.

Optimizing in α and fixing l = n gives (5.2). �

We now find an appropriate cover of Λx0 that is adapted to µx.

5.2. Decomposition of Λx0. We start by constructing a convenient partition of unity to which
Lemma 5.2 applies.

Lemma 5.3. Fix (x0, ξj) ∈ Σx0 and rj > 0, j = 1, . . .K < ∞, δ > 0. Then there exist χj ∈
C∞c (T ∗M ; [0, 1]), j = 1 . . .K so that

(5.4)

suppχj ∩ Λx ⊂ T (ξj , 2rj) ∩ Λx,4δ, Hpχj ≡ 0 on Λx0,3δ∑
j

χj ≡ 1 on
K⋃
j=1

T (ξj , rj) ∩ Λx0,3δ, 0 ≤
∑
j

χj ≤ 1, on Λx

Furthermore, if

(5.5)

K⋃
j=1

T (ξj , 2rj) ⊃ Λx0,3δ,

there exists χj with (5.4) and

(5.6)
∑
j

χj ≡ 1 on Λx0,3δ.

Proof. Let χ̃j ∈ C∞c (Σx0 ; [0, 1]) have∑
j

χ̃j ≡ 1 on
K⋃
j=1

B(ξj , rj), supp χ̃j ⊂ B(ξj , 2rj) ∩ Σx0 , 0 ≤
∑
j

χ̃j ≤ 1.

Next, let ψ ∈ C∞c (R; [0, 1]) with ψ ≡ 1 on [−3δ, 3δ] and suppψ ⊂ (−4δ, 4δ). For δ > 0 small enough,
Gt : [−4δ, 4δ]× Σx0 → Λx0,4δ is a diffeomorphism and so we can define χj ∈ C∞c (Λx0,4δ; [0, 1]) by

χj(Gt(x, ξ)) = ψ(t)χ̃j(x, ξ)

so that Hpχj ≡ 0 on Λx0,3δ. Finally, extend χj from Λx0,4δ to a compactly supported function on
T ∗M arbitrarily. Then χj j = 1, . . .K satisfy (5.4).

If (5.5) holds, then we may take χ̃j a partition of unity on Σx0 subordinate to B(ξj , 2rj) and
hence obtain (5.6) by the same construction. �
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Proof of Theorem 2. Recall that

µx0 = ρx0 + fdHnx0

where ρx0 ⊥ Hnx0 and µx0 is invariant under Gt. Therefore, by Lemma 3.2, ρx0 and fdHnx0 are
invariant under Gt.

Fix 0 < ε � δ arbitrary. By Lemma 3.3, there exist ((x0, ξj), rj) ∈ Σx0 × R+ satisfying (3.7).
Let K be large enough so that

(5.7) ρx0

Λx0 \
K⋃
j=1

T (ξj , rj)

 < ε.

Let χj ∈ C∞c (T ∗M ; [0, 1]) satisfy (5.4) for ((x0, ξj), rj) j = 1, . . .K.
Define ψ = 1 −

∑
χj . Applying Lemma 5.2 (with ξ = ξj , r = rj , χ = χj), summing and using

the triangle inequality, we have

(5.8)

lim sup
h→0

h
n−1
2 ‖(1− ψ(x, hD))uΣ‖L∞(B(x0,r(h))) ≤ Cn,δ

K∑
j=1

r
(n−1)/2
j

(∫
Λx0

χ2
jdµ

)1/2

≤ Cn,δ

∑
j

rn−1
j

1/2∫
Λx0

∑
j

χ2
jdµ

1/2

≤ Cn,δε1/2µ(Λx0)

where in the last line we use 0 ≤ χj ≤ 1 and 0 ≤
∑
χj ≤ 1.

Next we estimate ψ(x, hD)uΣ. By the Besicovitch–Federer Covering Lemma [Hei01, Theorem
1.14, Example (c)], there exists a constant Cn depending only on n and γ0 = γ0(Σx0) so that for
all 0 < γ < γ0, there exists ξ1, . . . ξN(γ) with N(γ) ≤ Cγ1−n so that

Σx0 ⊂
N(γ)⋃
j=1

B(ξk, γ)

and each point in Σx0 lies in at most Cn balls B(ξk, γ). Let ψk, k = 1, . . . N(γ) satisfy (5.4), (5.6)
(with ξj = ξk, 2rj = γ, and K = N(γ)). Observe that applying Lemma 5.2 (with ξ = ξk, r = γ,
and χj = ψk),

lim sup
h→0

hn−1‖ψ(x, hD)ψk(x, hD)uΣ‖2L∞(B(x0,r(h))) ≤ Cnδ
−1|∂ξp(x0, ξk)|−1

g

∫
Λx0,3δ

ψ2
kψ

2γn−1dµ

Notice that ∑
k

ψψk ≡ 1 on Λx0,3δ

and therefore Lemma 4.5 implies

lim sup
h→0

h
n−1
2

∥∥∥ψ(x, hD)
[
1−

∑
k

ψk(x, hD)
]
uΣ

∥∥∥
L∞(B(x0,r(h)))

= 0.
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So, applying the triangle inequality,

lim sup
h→0

h
n−1
2

∥∥∥ψ(x, hD)uΣ

∥∥∥
L∞(B(x0,r(h)))

≤ Cn,δ
∑
k

(∫
Λx0,3δ

ψ2
kψ

2γn−1dρx0

)1/2

+ Cnδ
−1/2

∑
k

(∫
Λx0,3δ

|∂ξp(x0, ξk)|−1
g ψ2

kψ
2γn−1fdHnx0

)1/2

=: Cn,δI + II

Use (5.7) to estimate

I ≤ Cγ
n−1
2 N(γ)1/2

(∫
Λx0,3δ

∑
k

ψ2
kψ

2dρx0

)1/2

≤ Cρx0

Λx0 \
K⋃
j=1

T (ξj , rj)

1/2

≤ Cε1/2.

Since for γ small enough, C−1
n γn−1 ≤ VolΣx(B(ξk, γ)) ≤ Cnγn−1, where Cn depends only on n,

II ≤ Cnδ−1/2

∫
Σx0

∑
k

1B(ξk,γ)

(
1

|∂ξp(x0, ξk)|gVolΣx0 (B(ξk, γ))

∫
T (ξk,γ)∩Λx0,3δ

fdHnx0

)1/2

dVolΣx0

≤ Cn
∫

Σx0

∑
k

1B(ξk,γ)

(
1

|∂ξp(x0, ξk)|gVolΣx0 (B(ξk, γ))

∫
B(ξk,γ)

f(0, q)|ν(Hp)|(0, q)dVolΣx0

)1/2

dVolΣx0

where in the last line we use that fdHnx is Gt invariant and apply Lemma 3.4. The Lebesgue
differentiation theorem [Fol99, Theorem 3.21] then shows that

lim sup
γ→0

Cn
∑
k

1B(ξk,γ)

(
1

|∂ξp(x0, ξk)|gVolΣx0 (B(ξk, γ))

∫
B(ξk,γ)

f(0, q)|ν(Hp)|(0, q)dVolΣx0

)1/2

≤ Cn

√
f |ν(Hp)|
|∂ξp|g

a.e.

Furthermore, the weak type 1-1 boundedness of the Hardy–Littlewood maximal function [Fol99,
Theorem 3.17] implies

VolΣx0

ξ ∈ Σx0 |

sup
γ>0

(
1

VolΣx0 (B(ξk, γ))

∫
B(ξk,γ)

f |ν(Hp)|dVolΣx0

)1/2

≥ α


 ≤ Cα−2

and hence by the dominated convergence theorem,

(5.9) lim
γ→0

lim sup
h→0

h
n−1
2 ‖ψ(x, hD)uΣ‖L∞(B(x0,r(h))) ≤ Cn

∫
Σx0

√
f |ν(Hp)|
|∂ξp|g

dVolΣx0 + Cε1/2.

Sending h→ 0, then ε→ 0, then γ → 0 and using (5.8), (5.9) then proves the theorem. �

6. Construction of Modes - Proof of Theorem 3

Proof of Theorem 3. We apply the construction in [STZ11, Lemma 7]. Let p = 1
2(|ξ|2g − 1) and

Gt = exp(tHp) so that Gt|S∗M is the unit speed geodesic flow. Let g1 ∈ L2(S∗zM) have |g1|2 = f |S∗zM
and g1,ε ∈ C∞(S∗zM) have ‖g1,ε − g1‖L2(S∗zM) < ε. For A ⊂ S∗zM Borel, define the measure

ρ̃(A) =
1

2δ
ρ

(
δ⋃

t=−δ
Gt(A)

)
.
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Let g2,ε ∈ C∞(S∗zM) have |g2,ε|2dSφ → ρ̃ as a measure where Sφ is the surface measure on Sn−1.
Finally, define gε = g1,ε + g2,ε.

Then, letting TT = R/TZ and parametrizing Λz by TT × Sn−1 3 (t, ω) → Gt(z, ω) there exists

Φε,j ∈ O
n−1
2 (M,Λz, {hj}) with symbol

σ(Φε,j)(t, ω) = gε(ω)(2π)
n−1
2 h

1−n
2

j |dµωdt|1/2

and having

‖(−h2
j∆g − 1)Φε,j‖L2 = Oε(h

2
j ), C +Oε(hj) ≥ ‖Φε,j‖L2 ≥ c+Oε(hj).

Moreover, using normal geodesic coordinates at z, we have in a neighborhood thereof,

Φε,j(x) = (2πhj)
1−n
2

∫
e
i
〈
x, θ|θ|

〉
/hjgε

(
θ

|θ|

)
χR(|θ|)dθ,

where χR ∈ C∞c ((0,∞); [0, 1]) with χR ≡ 1 on [1, R], suppχR ⊂ (0, 2R) and

(6.1)

∫
χR(α)αn−1dα = 1.

Choose εj → 0 so slowly that

lim
j→∞

‖(−h2
j∆g − 12)Φεj ,j‖L2h−1

j → 0, 2C ≥ lim sup
j→∞

‖Φεj ,j‖L2 ≥ lim inf
j→∞

‖Φεj ,j‖L2 > c/2.

Then,

‖(−h2
j∆g − 1)Φεj ,j‖L2 = o(hj‖Φεj ,j‖L2).

Fix N > 0 to be chosen large and εj → 0 slowly enough so that

(6.2) sup
|α|≤N

sup
S∗xM
|∂|α|gεj |hj → 0.

Under this condition, we compute the defect measure of Φεj ,j . Let b ∈ C∞c (T ∗M) supported in

Aδ := {x | δ ≤ |r(z, x)| ≤ 2δ}.

Then, letting ψ ∈ C∞c (R \ {0}) have ψ ≡ 1 on [δ, 2δ],

b(x, hjD)Φεj ,j = (2πhj)
1−3n

2

∫
e
i
(
〈x−y,ξ〉+

〈
y, θ|θ|

〉)
/hjb(x, ξ)ψ(|y|)gεj

(
θ

|θ|

)
χR(|θ|)dθdydξ+OL2(h∞j ).

Performing stationary phase in the (y, ξ) variables gives

b(x, hjD)Φεj ,j = (2πhj)
1−n
2

∫
e
i
〈
x, θ|θ|

〉
/hj

[
b

(
x,

θ

|θ|

)
+ hje(x, θ)

]
gεj

(
θ

|θ|

)
χR(|θ|)dθ +OL2(h∞j )

where e ∈ C∞(R2n) has supp r ⊂ supp b and is independent of ε.

〈b(x, hjD)Φεj ,j ,Φεj ,j〉 =

(2πhj)
1−n

∫
Aδ

∫
e
i
|x|
hj

〈
x
|x| ,

θ
|θ|−

ω
|ω|

〉
gεj

(
θ

|θ|

)[
b

(
x,

θ

|θ|

)
+ hje(x, θ)

]
gεj

(
ω

|ω|

)
χR(|θ|)χR(|ω|)dθdωdx

+O(h∞j ).

We write the integral in polar coordinates x = rφ, θ = αΘ, and ω = βΩ. Since |r| > δ on Aδ, we
perform stationary phase in Ω and Θ. Using (6.2) with M > n + 2 together with the remainder
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estimate [Zwo12, Theorem 3.16] to control the error uniformly as j →∞, gives∫
Sn−1

∫
R3
+

[|gεj (φ)|2b(rφ, φ) + |gεj (−φ)|2b(rφ,−φ)

+ c1e
2ir/hgεj (φ)gεj (−φ)b(rφ, φ) + c2e

−2ir/hgεj (−φ)gεj (φ)b(rφ,−φ)]αn−1βn−1

χR(α)χR(β)ψ(r)dαdβdrdSφ + o(1)

Integration by parts in r then shows that the second two terms are lower order and yields∫
Sn−1

∫
R3
+

[|gεj (φ)|2b(rφ, φ) + |gεj (−φ)|2b(rφ,−φ)]αn−1βn−1χR(α)χR(β)dαdβdrdSφ + o(1)

Sending j →∞ gives(∫ ∞
0

χR(α)αn−1dα

)2 ∫
R

∫
Sn−1

b(rφ, φ)(dρ̃(φ) + |g1|2dSφ)dr =

∫
Λz

b(x, ξ)(dρ+ fdVolΛz)

where we use (6.1).
Using that the defect measure of Φεj ,j is invariant under Gt then shows that Φεj .j has defect

measure

µ = dρ+ fdVolΛz .

and hence ‖Φεj ,j‖L2 → 1. Moreover,

Φεj ,j(z) = (2πhj)
1−n
2

∫
Rn
gεj

(
θ

|θ|

)
χR(|θ|)dθ = (2πhj)

1−n
2

∫
Sn−1

(g1,εj (φ) + g2,εj (φ))dSφ.

Since ρ̃ ⊥ dVolΣx and |g2,εj |2dSφ → ρ̃ as a measure, for any δ > 0, there exists A ⊂ Sn−1 so that∫
Ac
|g2,εj |2dSφ → 0,

∫
A
dSφ < δ.

Therefore, ∣∣∣∣∫
Sn−1

g2,εj (φ)dSφ

∣∣∣∣ ≤ C (∫
Ac
|g2,εj |2dSφ

)1/2

+

(∫
Sn−1

|g2,εj |2dSφ
)1/2

δ1/2

so, for all δ > 0,

lim sup
j→∞

∣∣∣∣∫
Sn−1

g2,εj (φ)dSφ

∣∣∣∣ ≤ Cδ1/2.

In particular,

lim
j→∞

∫
Sn−1

g2,εj (φ)dSφ = 0.

Finally, using that g1,εj → g1 in L2 and hence also in L1

lim
j→∞

uj(z)h
n−1
2

j = (2π)
1−n
2

∫
Sn−1

g1(φ)dSφ.

Letting uj = Φεj ,j/‖Φεj ,j‖L2 then proves the lemma. �
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7. A proof of Theorem 2 for the Laplacian

One can use a strategy similar to that in [GT17] to prove Theorem 2 for eigenfunctions of the
Laplacian (or Schrödinger operators). We sketch the proof in the case µx ⊥ Hnx for the convenience
of the reader.

Sketch. Fix δ > 0 and let ρ ∈ S(R) with ρ(0) = 1 and supp ρ̂ ⊂ [δ, 2δ]. Let

S∗M(γ) := {(x, ξ); ||ξ|x − 1| ≤ γ}

and χ(x, ξ) ∈ C∞0 (T ∗M) be a cutoff near the cosphere S∗M with χ(x, ξ) = 1 for (x, ξ) ∈ S∗M(γ)
and χ(x, ξ) = 0 when (x, ξ) ∈ T ∗M \ S∗M(2γ).

Suppose that (−h2∆g − 1)uh = 0, and uh has defect measure µ with

µx = ρ ⊥ Hnx .

Then

uh = ρ(h−1[−h2∆− 1])uh =

∫
R
ρ̂(t)eit[−h

2∆−1]/hχ(x, hD)uh dt+Oγ(h∞).(7.1)

Setting V (t, x, y, h) :=
(
ρ̂(t)eit[−h

2∆−1]/hχ(x, hD)
)

(t, x, y), by propagation of singularities,

WF ′h(V (t, ·, ·, h)) ⊂ {(x, ξ, y, η); (x, ξ) = Gt(y, η), ||ξ| − 1| ≤ 2γ , t ∈ [δ, 2δ]}.

Let bx,γ(y, η) ∈ C∞c (T ∗M) have

supp bx,γ ⊂ {(y, η) | (y, η) = Gt(x0, ξ) for some (x0, ξ) ∈ S∗x0M(3γ) with r(x, x0) < γ, |t| ≤ 3δ}

with

bx,γ ≡ 1 on {(y, η) | (y, η) = Gt(x0, ξ) for some (x0, ξ) ∈ S∗x0M(2γ) with r(x, x0) < 2γ, |t| ≤ 4δ}.

Then, by wavefront calculus, it follows that

(7.2) uh(x) =

∫
M
V̄ (x, y, h) bx,γ(y, hDy)uh(y)dy +Oγ(h∞),

where,

V̄ (x, y, h) :=

∫
R
ρ̂(t)

(
eit[−h

2∆−1]/hχ(x, hD)
)
(t, x, y) dt.

By a standard stationary phase argument [Sog93, Chapter 5],

(7.3) V̄ (x, y, h) = h
1−n
2 e±ir(x,y)/ha±(x, y, h) ρ̂(r(x, y)) +Oγ(h∞),

where a±(x, y, h) ∈ S0(1).
Then, in view of (7.3) and (7.2),

(7.4)

uh(x) = (2πh)
1−n
2

∑
±

∫
δ<|y−x|<2δ

e±ir(x,y)/ha±(x, y, h)ρ̂(r(x, y)) bx,γ(y, hDy)uh(y)dy +Oγ(h∞).

Let χj , be as in (5.4) with T (ξj , rj) satisfying (5.7) and
∑
rn−1
j < ε. Define ψ = 1 −

∑
j χj .

Then

uh(x) =
∑
±
I± + II± +Oγ(h∞)
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where
(7.5)

I± = (2πh)
1−n
2

∫
δ<|y−x|<2δ

e±ir(x,y)/ha±(x, y, h)ρ̂(r(x, y))ψ(y, hDy)bx,γ(y, hDy)uh(y)dy

II± =
∑
j

(2πh)
1−n
2

∫
δ<|y−x|<2δ

e±ir(x,y)/ha±(x, y, h)ρ̂(r(x, y))χj(y, hDy)bx,γ(y, hDy)uh(y)dy

An application of Cauchy-Schwarz to I gives

lim sup
h→0

h
n−1
2 |I±| ≤ C lim sup

h→0
‖ψ(y, hDy)bx,γ(y, hDy)uh‖L2(7.6)

But,

lim
γ→0

lim
h→0
‖ψ(y, hDy)bx,γ(y, hDy)u‖2L2 = lim

γ→0

∫
S∗M
|ψ|2|bx,γ(y, ξ)|2dµ ≤ Cρ(suppψ) ≤ Cε

On the other hand, by propagation of singularities, for each χj in II, we may insert ϕj ∈ C∞c (M)
localized to

π(T (ξj , rj) ∩ {δ < r(x, x0) < 2δ})
where π : T ∗M →M is projection to the base. In particular, replacing χj(y, hDy) by ϕj(y)χj(y, hDy)
and applying Cauchy-Schwarz to each term of II, we have

lim sup
h→0

h
n−1
2 |II±| ≤ C

∑
j

‖ϕj‖L2 lim sup
h→0

‖χjbx,γ(y, hDy)uh‖L2(7.7)

Now, since ϕj is supported on a tube of radius rj , ‖ϕj‖L2 ≤ Cr(n−1)/2
j . Furthermore,

lim
γ→0

lim
h→0
‖χj(y, hDy)bx,γ(y, hDy)u‖2L2 = lim

γ→0

∫
S∗M

χ2
j |bx,γ(y, ξ)|2dµ ≤ C

∫
Λx

χ2
jdµ

Thus, applying Cauchy-Schwarz once again to the sum in (7.7),

lim sup
h→0

h
n−1
2 |II±| ≤ C

∑
j

rn−1
j

1/2∫ ∑
j

χ2
jdµ

1/2

≤ Cε1/2.

Sending ε→ 0 proves the theorem. �
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