DEFECT MEASURES OF EIGENFUNCTIONS WITH
MAXIMAL L* GROWTH

JEFFREY GALKOWSKI

ABSTRACT. We characterize the defect measures of sequences of Laplace eigenfunctions with max-
imal L°° growth. As a consequence, we obtain new proofs of results on the geometry of manifolds
with maximal eigenfunction growth obtained by Sogge—Toth—Zelditch [STZ11], and generalize those
of Sogge—Zelditch [SZ16a] to the smooth setting. We also obtain explicit geometric dependence on
the constant in Hérmander’s L bound for high energy eigenfunctions, improving on estimates of
Donnelly [Don01].

1. INTRODUCTION

Let (M, g) be a C*° compact manifold of dimension n without boundary. Consider the solutions
to

(11) (_Ag - )\?)U)\j = 07 ||U)\j ||L2 =1

as A; — oo. It is well known [Avab6, Lev52, Hor68| (see also [Zwol2, Chapter 7]) that solutions
to (1.1) satisfy

n-1
(1.2) l[u; llLoe(ary < CA; 2

and that this bound is saturated e.g. on the sphere. It is natural to consider situations which
produce sharp examples for (1.2). Previous works [Bér77, 1S95, TZ02, SZ02, TZ03, STZ11, SZ16a,
SZ16b] have studied the connections between growth of L norms of eigenfunctions and the global
geometry of the manifold M.

In this article, we study the relationship between L> growth and L? concentration of eigenfunc-
tions (this direction of inquiry was initiated in [GT17]). We measure L? concentration of eigen-
functions using defect measures - a sequence {uy, } has defect measure p if for any a € CZ°(T* M),

(1.3) (a(x, hjD)uy,,up, ) — /*Ma(:v,f)du.

We write a(x, hD) for a semiclassical pseudodifferential operator given by the quantization of the
symbol a(z,£) (see [Zwol2, Chapters 4, 14]) and let h; = )\j_l when considering the solutions
to (1.1).

By an elementary compactness/diagonalization argument it follows that any L? bounded se-
quence uy, possesses a further subsequence that has a defect measure in the sense of (1.3) [Zwol2,
Theorem 5.2]. Moreover, a standard commutator argument shows that if

p(z, hD)u = or2(h),
for p € S¥(T*M) real valued with
[Pl > c(€)* on || > R,

then p is supported on ¥ := {p = 0} and is invariant under the bicharacteristic flow of p; that is,
if Gy = exp(tHp) : ¥ — X is the bicharacteristic flow, (G¢).p = p, ¥Vt € R [Zwol2, Theorems 5.3,
5.4].
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Rather than studying only eigenfunctions of the Laplacian, we replace —A, — A? by a general
semiclassical pseudodifferential operator and replace eigenfunctions with quasimodes. To this end,
we say that u is compactly microlocalized if there exists x € C2°(R) with

(1 =x([hD]))u = Os(h).
For P € U™(M) an h-pseudodifferential operator, we say that u is a quasimode for P if
Pu=opa(h),  [ullp=1.
Let ¥, := X NT;M and define respectively the flow out of £, and time T flowout of X, by

o) T
Ay = U Awr, Ayt = U Gi(3).
T=0 t=—T

Let ‘H" denote the Hausdorff-r measure with respect to the Sasaki metric on T*M (see for example
[Blal0, Chapter 9] for a treatment of the Sasaki metric). For a Borel measure p on T*M, let
pz = pla, 1e. pz(A) = p(ANA;). Recall that two Borel measures on a set 2, pu and p, are
mutually singular (written p L p) if there exist disjoint sets N, P C €2 so that & = N U P and
u(N) = p(P) = 0.

The main theorem characterizes the defect measures of quasimodes with maximal growth.

THEOREM 1. Let P € W™ (M) be an h-pseudodifferential operator with real principal symbol p
satisfying

(1.4) O¢p # 0 on {p = 0}.

Suppose u is a compactly microlocalized quasimode for P with

(1.5) limsup "2 ||ul| > 0
h—0

and defect measure . Then there exists © € M and x(h) — x so that

(1.6) lim sup h%]u(x(h))| > 0, poe = p+ fdH,
h—0

where 0 # f € LY(Ag, HD), p L H?, and both fdH?, and p are invariant under Gy.

One way of interpreting Theorem 1 is that a quasimode with maximal L growth near x must
have energy on a positive measure set of directions entering 7 M. That is, it must have concen-
tration comparable to that of the zonal harmonic. (See [GT17, Section 4] for a description of the
defect measure of the zonal harmonic.)

Theorem 1 is an easy consequence of the following theorem (see section 2 for the proof that
Theorem 2 implies Theorem 1).

THEOREM 2. Let x € M and P € W™ (M) be an h-pseudodifferential operator with real principal
symbol p satisfying

dep # 0 on {p = 0}.
There exists a constant C,, depending only on n with the following property: Suppose that u is
compactly microlocalized quasimode for P and has defect measure p. Define p L H} and f €
LM (Ag; HE) by

pg =: p+ fdHE.

Then for all r(h) = o(1),

limsuph 2 ||ullpeoBlarin)) < Cn / P2 dVoly,
0 SUp 1wl oo (B(2,r(h)) o \/ﬂ/ Depl, >
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where v is a unit (with respect to the Sasaki metric) conormal to ¥, in Ay, Vols, is the measure
induced by the Euclidean metric on Ty M, and |0¢plg = |Ogp - Oulg. Furthermore, fdH} is Gy
mvariant.

In particular, if p, L H}, then

1-n
lull oo (B(zr(n)) = 0(h"2 ).
To see that Theorem 2 applies to solutions of (1.1), let hj = /\j_l. Writing u = uy, and h = hj,
(=h2A, — 1)u = 0.

Then, (—h%?A, — 1) = p(x,hD) with p = |£\3 — 1 4 hr and therefore, the elliptic parametrix
construction shows that u is compactly microlocalized. Since 0¢;p = 2¢g4¢;, O¢p # 0 on p=0and
Theorem 2 applies. In Section 2, we use Theorem 2 with P = —hQAg — 1 to give explicit bounds

on the constant C' in (1.2) in terms of the injectivity radius of M, inj(M), thereby improving on
the bounds of [Don01] at high energies.

COROLLARY 1.1. There exists Cp, > 0 depending only on n so that for all (M, g) compact, bound-
aryless Riemannian manifolds of dimension n and all € > 0, there exists A\g = Ao(e, M, g) > 0 so
that for \j > Ao and uy; solving (1.1)

Cn n;l
[[ux; [l < (mj(W +5>/\j :

Theorem 2 is sharp in the following sense. Let P = —h?A, — 1 and G as above.

THEOREM 3. Suppose there exists z € M, T > 0 so that Gr(z,£) = (z,§) for all (z,£) € SEM. Let
p L H? be a Radon measure on A, invariant under Gy and 0 < f € Ll(AZ, HY) be invariant under
Gy so that

Iz Az emy + p(A2) = 1.
Then there exist hj — 0 and {up, }32, solving

. n—l 1-n
(K382~ D, =ofhy). Juny iz =1, Tnsuph 7 fun e = (2m)'3 [ /Favols,
.

J]—00

and having defect measure p = p+ fdVoly, .

Notice that we do not claim the existence of exact eigenfunctions having prescribed defect mea-
sures in Theorem 3, instead constructing only quasimodes.

1.1. Relation with previous results. As far as the author is aware, the only previous work
giving conditions on the defect measures of eigenfunctions with maximal L* growth is [GT17].
Theorem 2 improves on the conditions given in [GT17, Theorem 3|; replacing M (supp ) = 0
with the sharp condition p, L H}. To see an example of how these conditions differ, fix x € M
such that every geodesic through z is closed and let {£;}2°, C S;M be a countable dense subset.
Suppose that the defect measure of {uy;} is given by

u:Zakcsvk, ap >0
k

where 7 is the geodesic emanation from (z,&). Then supp p, = Ay, but p; L Ay, so Theorem 2
applies to this sequence but the results of [GT17] do not. Furthermore, Theorem 2 gives quantitative
estimates on the growth rates of quasimodes in terms of their defect measures.

We are able to draw substantial conclusions about the global geometry of a manifold M having
quasimodes with maximal L* growth from Theorem 2. The results of [STZ11, Theorems 1(1),
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2] and hence also [SZ02, Theorem 1.1] are corollaries of Thoerem 2. For x € M, define the map
T, : ¥z - RU{oo} by
(1.7) T.(§) :=1inf{t > 0| Gi(x,&) € X, }.
Then, define the loop set by
Ly :={§€X, | Ty < oo},
and the first return map 1, : L, — 3 by

Finally, define the set of recurrent points by

(1.8) Ry:= {fezmrfe (ﬂ UGt(x,fs)mzm)ﬂ(ﬂ UG_t<m,£>mzz>},

T>0t>T T>0t>T

where the closure is with respect to the subspace topology on .

COROLLARY 1.2. Let (M, g) be a compact boundaryless Riemannian manifold and P satisfy (1.4).

Suppose that Voly, (Rz) = 0. Than for any r(h) = o(1) and u a compactly microlocalized quasimode
for P,

1—n

lull oo (B(z,r(n)) = (R 2 ).

Moreover, the forward direction of [SZ16a, Theorem 1.1] with the analyticity assumption removed
is an easy corollary of Theorem 2. To state the theorem let dVoly, denote the measure induced
on X, from the Euclidean metric on T, M. We define the unitary Perron-Frobenius operator

Uz : L*(Ray, \/Iv(Hp)|dVols,) — L?(Ry, \/|v(H,)|dVols,) by
(1.9) Us()(€) ==V Ju(§) f(12(€)),

where, writing

Gt('xﬁé) = (xt(%f)ﬁt(%f))’

we have that

(1.10) Jo(€) = | det Derely—r, ()|

v(Hp)(1z(€)) ‘
v(Hp)(€)

is the Jacobian factor so that for f € L'(X,) supported on L.,

/ 0o () v (Hy) [(€)dVolss, = / ()W (H,)|(€)dVols,

See [Saf88, Section 4] for a more detailed discussion of U,. We say that x is dissipative if

(1.11) {f € L(Ros\ /() ldVoly., ) | Ua(F) = £ = {0},

COROLLARY 1.3. Let (M, g) be a compact boundaryless Riemannian manifold and P satisfy (1.4).

Suppose that x is dissipative. Then for r(h) = o(1) and u a compactly microlocalized quasimode for
P,

1-—n

[ull Lo (B(zr(n))) = 0(h72).

The dynamical arguments in [SZ16b] show that if (M, g) is a real analytic surface and P =
—h2Ag — 1, then x being non-dissipative implies that x is a periodic point for the geodesic flow,
i.e. a point so that there is a 7' > 0 so that every geodesic starting from (z,&) € SiM smoothly
closes at time 7.
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1.2. Comments on the proof. While the assumption Pu = or2(h) implies a global assumption
on u, similar to that in [GT17], the analysis here is entirely local. The global consequences in
Corollaries 1.2 and 1.3 follow from dynamical arguments using invariance of defect measures.

We take a different approach from that in [GT17] choosing to base our method on the Koch—
Tataru—Zworski method [KTZ07| rather than explicit knowledge of the spectral projector. This
approach gives a more explicit explanation for the L improvements from defect measures. In
Section 7 we sketch the proof of Theorem 2 in the case that p, L H} using the spectral projector.

The idea behind our proof is to estimate the absolute value of u at = in terms of the degree to
which energy concentrates along any bicharacteristics passing through ¥,.. Either too much local-
ization or too little localization will yield an improvement over the naive bound. By covering A,
with appropriate cutoffs to tubes around bicharacteristics we are then able to give o(h 2 ) bounds
whenever p, L H7. The proof relies, roughly, on the fact that if a compactly microlocalized func-
tion u on R™ has defect measure supported at (zg,&), then |lul[z- = o(h~™/?) rather than the
standard estimate O(h~"/2).

ACKNOWLEDGEMENTS The author would like to thank John Toth for many stimulating discussions
and for comments on a previous version. Thanks also to the National Science Foundation for
support under the Mathematical Sciences Postdoctoral Research Fellowship DMS-1502661.

2. CONSEQUENCES OF THEOREM 2
We first formulate a local result matching those in [SZ02, STZ11] more closely.

COROLLARY 2.1. Let x € M and P € W™ (M) satisfying the assumption of Theorem 2. Then there
exists a constant Cy, depending only on n with the following property. Suppose that u is a compactly
microlocalized quasimode for P, and has defect measure ju. Define p L H? and f € L' (Ay; H?) by

po =: p+ fdHE.
Then for all € > 0, there exists a neighborhood N (g) of © and hy(g) such that for 0 < h < ho(e),

l[wll poo (ar <h—‘< /\/\/Edvm +s>

Proof that Theorem 2 implies Corollary 2.1. Let

A, = C, / NG V(Hp)d\/olgz
Sz |9¢plg

and suppose that there exists € > 0 such that for all » > 0,

. 1-n -
(2.1) limsuph 2 ||upl| oo (B(z,r)) > Az + €.
h—0
Fix r9 > 0. Then by (2.1) there exists xg € B(z,7¢), ho > 0 so that

n—1

n-l €
[ung (z0)lhg® = Az + 3

Assume that there exist {h; } ", and {ZL‘J} ' so that

h’—l . n—1 ~
hj S j2 ) x] € B(l',?"()Q ])7 h]2 ‘U(Q?])‘ Z Aﬂ? +

By (2.1), there exists hy . 0 and xy, € B(z,702~ V1) such that

1-—n

1n ~ €
th |uhk(l‘k)| > A, + 5
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Therefore, we can choose ko large enough so that hg, < hTN and let (hyy1,2n+1) = (Pkys The )s

Hence, by induction, there exists h; | 0, z; — = such that

n 1

* uny ()] > A, +5 5’
contradicting Theorem 2. O

Proof that Theorem 2 implies Theorem 1. Compactness of M together with Corollary 2.1 with f =
0 implies the contrapositive of Theorem 1, in particular, if p, L H? for all z, then ||u||f~ =

o(h2"). O
1. Proof of Corollaries 1.2 and 1.3 from Theorem 2.

LEMMA 2.2. Fiz x € M and suppose that u is compactly microlocalized with Pu = or2(h). Define
p LHY and f € LY (Ay;HD) by

o = p+ fdH;.
Then supp f|x, C Rx.

Proof. For £ € ¥, and € > 0 let B({,¢) C X, be the open ball of radius € and
Vi= | GuB(9).
—20<t<20

Observe that by Theorem 2 the triple (A, fdHY, G;) forms a measure preserving dynamical sys-
tem. The Poincaré recurrence theorem [BS02, Proposition 4.2.1, 4.2.2] implies that for fdH} a.e.
(w0,&) € V there exists t — Fo0o so that G+ (20,&0) € V. By the definition of V, there exists st

with [s — | < 26 such that G+ (w0,%) € B( ). In particular, for fdH} a.e. (0,%0) €V,

(2:2) N U Gilzo, &) nBEe) | U | () U G-i(z0,60) N B(&,e) | #0.

T>0t>T T>0t>T
Let

We next show that (2.2) holds for Us, a.e. pomt in B (§ ,€). To do so, suppose the opposite. Then
there exists A C B(&,¢) with px, (A) > 0 so that for each (z9,&y) € A, there exists T' > 0 with

(2.3) U Gi@o. &) | U | U G-i(xo, &) | | [ B(& ) = 0.

t>T t>T

Let

Then As C V and for all (z9,&y) € As, there exists T' > 0 so that (2.3) holds. Moreover, invariance
of fdH} under G; together with Lemma 3.4 implies that

(FaHD)(As) = 25y, (4) > 0
which contradicts (2.2). Thus (2.2) holds for uyx, a.e. point in B(,¢).

Let {B(&, 51)} be a countable basis for the topology on X,. Then for each i, there is a subset
of full measure, B; C B(&;,¢;) so that for every point of B; (2.2) holds with £ = &, ¢ = &;. Noting

that X; = B; U (X2 \ B(&,¢:)) has full measure, we conclude that ¥, = N;X; C R, has full measure
and thus, ps, (Rz) = px, (2z), finishing the proof of the lemma. O



DEFECT MEASURES OF EIGENFUNCTIONS WITH MAXIMAL L* GROWTH 7

Proof of Corollary 1.2. Let u solve Pu = orz2(h). Then we can extract a subsequence with a
defect measure p. By Lemma 2.2, u, = p + fdH2 with p L H? and supp f|s, C Rz. Now, if
Vols, (Rz) =0,

H
Vf p)|dV012$ =0.
b |0¢plg

Plugging this into Theorem 2 proves the corollary O

Proof of Corollary 1.5. Let u solve Pu = or2(h). Then we can extract a subsequence with a defect
measure p. By Lemma 2.2 and Theorem 2, u, = p + fdH? where p L H?, supp f|n, C Rz, and
fdH? is G invariant.

Let T, be as in (1.7). Fix T' < oo and suppose

ACQr:={nex,; | T,(n) <T}.

Write (0,7] = |_|£i(1€) (T; —,T; + €] and
N(e)
Qr = |_| T —¢e,T; +¢]).

Then, by Lemma 3.4, for any 0 < § small enough

1
[ rasitmavors, = 5 15 g0 far:
1 n
Z% / 1u§%t‘§ Gu(anayt T
- Z 26 / U560, G (na(An)d WMz

2 / UTosL,, G (o) e

So, sending € — 0, applying the dominated convergence theorem and then é — 0 gives

[ 1astlavols. = [ 1, o fvHlavols,

for all A C Qr measurable. Taking T — oo then proves this for all A C £, measurable. In
particular, changing variables, and using that supp f C R, C L, and writing J,(£) as in (1.10)

F&) - [v(Hp)|(§)dVols, (&) = f(12(€)) - J2 (&) - [v(Hp)[(§)dVols, (€)
which implies Uzv/f = \/f where U, is defined in (1.9). Observe that since x is dissipative and
Vf € L*(Ry, /lv(Hp)|dVols,), (1.11) implies v/f = 0. Theorem 2 then completes the proof.  [J

2.2. Spectral cluster estimates for —A,. Let (M, g) be a smooth, compact, boundaryless Rie-
mannian manifold of dimension n, p = \§|£27 —1, Gy = exp(tH,) and

A = Cn( Voly, (Ra) >1/2
T2 infeer, T ()

where Ty, is as in (1.7) and C,, is the constant in Theorem 2. We consider an orthonormal basis
{un;}52, of eigenfunctions of —A, (i.e. solving (1.1)) and let

Mot = Ipoaga (v —Ag)-
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COROLLARY 2.3. For alle >0, z € M, there exists § = §(x,€) > 0, a neighborhood N (z,¢) of x,
and Ng = \o(z,€) > 0 so that for X > Ao,

(2.4) I A 0]l 72 oo (r(ee)) = SUP Yo lua P < (A7 +2a
VEN(2:€) ) e[\ A+4]

Note that since Gy

s+ parametrizes the speed 2 geodesic flow and therefore
. 1 ..
dnf T(6) = 5L, M) = inj ),

L(z, M) :=inf{t > 0| there exists a geodesic of length ¢ starting and ending at x},

and inj(M) denotes the injectivity radius of M. Therefore, we could replace A, in (2.4) by either
of
Voly, (Rz) Voly, (R)

/ 1/2 § 1/2
%:%@mmMQ ’ %:%<4mw0 '

to obtain a weaker, but more easily understood statement. Corollary 2.3 is closely related to the
work of Donnelly [Don01] and gives explicit dependence of the constant in the Hérmander bound
in terms of geometric quantities.

Proof. For U C M
(2.5) s a0 1 2200 Lo (o) = sup Z |un, ()],
TEY N €A A+0]
For w € L*(M),
(2.6) 1(=Ag = M) aggjwll e < 2A8|[ Ty syl L2
Suppose that for some € > 0 no §, N (z), and \g exist so that (2.4) holds. Then for all § > 0,
r >0,

. 1-n
limsup A2 [ ava)ll 2 (an - 2o (B > Az + &
A—00

Therefore, for all § > 0, there exists A\; 5 T 0o so that

1-n
s M s s+o)ll L2y oo (B(ar)) > Aa + &
Moreover, we may assume that for 01 < d2, Ars5; > Ais,. So, since for §; < do,
ITxaro:1 120y 2o (B < M passall 22— Loo (B@r)s
letting Ay = A\; -1, Ay — oo and

A2 I s 22 ()= Los (Bagry) > Az + e
By (2.6) for w € L?(M)

(=X 28g = DIy s -l 2 2 = o DT, s -1wll 2o 2
Fix w; € L?(M) with |Jwy||z2 = 1, so that

1—n

)‘ITHUZHL“(B(W)) > Ay e, o = Hpy oy 4i-1)wi-

Then extracting a further subsequence, subsequence if necessary, we may assume that v; has defect
measure p with uy = p + fdH} and hence that Corollary 2.1 applies to v;. Furthermore, since
lorll 2 < flwillpz =1,

(2.7) /A fAH? < 1.
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By computing in normal geodesic coordinates at x, observe that for p = [£[> — 1, [v(H,)| =
|0¢p|g = 2. Thus, Corollary 2.1, implies the existence of r > 0 small enough so that

1-n
(2.8) A, +e< li?isup )\l 2 HUZHLOO(B(CE,T)) < C'n/2 \/}dvolgz

Finally, by Lemma 2.2 and (2.7), supp f C R, and || f||p1(a, 2n) < 1. Therefore,

1 1/2
o [ Vivors. ¢, (3 [ fitavls, ) (Vols, (R.))"”
P P

1

1/2
deQ) (Volg, (R.))"?

(4 ) lnfgenz (1_‘-I (§)> Az,info Ty (€)
<O (B ) Y
~ 2 \linfeer, (T2(6)) "
contradicting (2.8). O

Compactness of M, the fact that Voly, (R;) < Vol(S™1), and Corollary 2.3 imply Corollary 1.1.

3. DYNAMICAL AND MEASURE THEORETIC PRELIMINARIES

3.1. Dynamical preliminaries. The following lemma gives an estimate on how much spreading
the geodesic flow has near a point.

LEMMA 3.1. Fiz x € M. Then there ezists § > 0 small enough so that uniformly for t € [0, 4],

(1) Hd6,6) + 06, &)) < d(Gilx, &), Gilr, &) < 2(E1, &) + Od(61,62))
Furthermore if Gy(x, &) = (z:(t), & (1)),
(32) A1 (8),2(8)) = O(d(€1,62)9).
Proof. By Taylor’s theorem
Gi(2,&1) — Gi(w,&2) = deGi(w,€2)) (& — §2) + Ocee (2161123 |d2G1(q)|(&1 — &)%)

Now,
Gil@,&) = (2,€) + (Fep(, E)t, —Oup(, E)t) + O(t?)
deGi(w,€) = (0, 1) + t(9¢p, —,p) + O(t?)
In particular,
Ge(z, &) — Gi(x, &) = ((0,1) + O(1) (& — &) + O((&1 — &)%)

and choosing § > 0 small enough gives the result. ([l

3.2. Measure theoretic preliminaries. We will need a few measure theoretic lemmas to prove
our main theorem.

LEMMA 3.2. Suppose that pgz = pg + fdHY is a finite Borel measure invariant under Gy and
pz L HE. Then py and fdHY are invariant under Gy.
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Proof. Since p, L HI, there exist disjoint N, P such that p,(P) = HZ(N) =0 and A, = N U P.
Suppose A is Borel. Then the invariance of u, implies

(3.3) /(1A 0 Gy — 14)dps — /(1A Ao G fAH.
Now, if A C N then the fact that G; is a diffeomorphism implies H2(A) = HZ(G¢(A)) = 0.
Therefore,
(3.4) px(A) = pz(Gi(A)), ACN
In particular,

Pa(N) = pz(Gi(N)) = pa(As).
Using again that for ¢t € R, G; : ¥ — ¥ is a diffeomorphism, we have

Pz(Gi(P)) = pz(Aa \ Ge(N)) = pa(Az) — pa(Gi(N)) = 0.

So, in particular,
(3.5) pe(Gi(A)) =0,  ACP.
Combining (3.4) with (3.5) proves that p, is G; invariant and hence (3.3) proves the lemma. [

Let B(§,r) C ¥, be the geodesic ball (with respect tot he Sasaki metric) of radius r around &
and define

(3.6) T r) = |J Gl{(z.9 &€ BEn)}).

t=—00

LEMMA 3.3. Suppose p, is a finite measure invariant under Gy and py L HY. Then for all e > 0,
there exist §§ € Xy andr; >0, j=1,... so that

(3.7) Sortt<e, o [UTG ) | = pa(Ae).
i

Proof. Fix 6 > 0 so that
[—0,0] X Xz 3 (t,8) = G(2,8) € Ays
is a diffeomorphism and use (¢,&) as coordinates on A 5.
We integrate p, over A, s to obtain a measure on ;. In particular, for A C 3, Borel, define the
measure

[
t=0

Then, the invariance of p, implies that p, < dt x dp, and in particular, there exists f € L'(dt x dp,)
so that

Pz = f(t7§)dt X dﬁx(ﬁ)

Moreover, since p, is invariant under Gy, f(t,£) = f(£). Finally (3.8) implies f is a constant and
in particular,

(3.9) pu = dt x dps.
Now, notice that H2 = g(¢,&)dt x dVoly, where 0 < ¢ < g € C*°. In particular, since
dt x dp, L dt x dVoly,,
we have that p; L dVoly,.
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Thus, there exists N, P C 3, so that p,(P) = Voly,(N) = 0 and ¥, = N U P. Hence for any
€ > 0, there exist {; € X, and r; > 0 so that

S t<e, p (UBE ) | = pa(S0):
J j

The lemma then follows from (3.9) and invariance of p,. t

LEMMA 3.4. Suppose that 0 < f € LY (A, H?) with fdH? invariant under Gy. Then for §o > 0
small enough, write
[—d0,00] X 3z D (t,q) — Gi(q) € Ay

for coordinates on A, s5,. We have

fl/\z,ao d'Hg = f(q)l[_(;oj(;o](t)dt x dVoly,
where 3
f(q@) = f(0,q)|v(Hp)[(0,q)

and v is a unit normal to ¥, € A, 5, with respect to the Sasaki metric.

Proof. Observe that 15, ; dH7 is the volume measure on Ay 5,. Therefore, 15, ; dHz < 1[_g, 5,)(t)dlx
dVoly,, and in particular,

d(dHT)
1 dHE = f(t, Q)
f Am,éo Hx f( 7q> d(dt % dVOlEI)
But, since fdH} is invariant under G;. That is, under translation in t,

) g i ) = @)

(t, q)l[—50,50] (t)dt X dVOle.

is constant in time.
To compute f(q), we need only compute

d(dHz)
a0t x dvols) 0 9"

For this, observe that 15, ,H7 is the volume measure on A, s with respect to the Sasaki metric.
Therefore, we have dVolg; =N —ldVOIAI,(;O where N is a unit normal to ¥,. More precisely, if
r € C®(Ag,5,) has dr|s, (V) = (N,V),, where g, denotes the Sasaki metric and V' € T A, 5,
then v = dr|y, is a unit conormal to ¥, and

) —10.0) = 04(r © GOlal(0) = 1) 0.

4. L* ESTIMATES MICROLOCALIZED TO A,

For the next two sections, we assume that u is compactly microlocalized and Pu = or2(h) where
P is as in Theorem 2.

LEMMA 4.1. Suppose that P is as in Theorem 2, u is compactly microlocalized, and Pu = orz2(h).
Then for q,a € S>®(T*M)

||a(x,hD)q(a:,hD)uH%2 —/\a]2\q]2du+o(1),

la(x, hD)Pq(z, hD)u|2 = 1 / laf2| Hyq 2y + o(h2).
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Proof. First observe that since u is compactly microlocalized, there exists y € C°(T*M) so that
u = x(z,hD)u + Os(h*).

Therefore, we may assume q,a € C°(T*M). The first equality then follows from the definition of
the defect measure and the fact that [a(z, hD)|* = a(x,hD) + Op2_,2(h). For the second, note
that

Pq(z,hD)u = q(x, hD)Pu + [P, q(xz,hD)]u
h
= q(w, hD)Pu+ ~{p, a}(z, hD)u + Op2(h?).
The lemma follows since Pu = or2(h). O

At this point, following the argument in Koch-Tataru—Zworski [KTZ07], we work h-microlocally.
The first step is to reduce the L2 — L bounds to a neighbourhood of ¥ = {p = 0}.

LEMMA 4.2. Suppose that u is compactly microlocalized and Pu = or2(h). Then for xx € C°(T*M)
with xs; = 1 in a neighborhood of ¥ = {p = 0},
2-n
(4.1) 11 = xs(z, hD))ull L = o(h=").
Proof. Since u is compactly microlocalized, there exists x € C2°(T*M) so that
u = x(x,hD)u+ Os(h™).

For xy € C°(T*M) with xy = 1 in a neighborhood of 3, |p| > ¢ > 0 on supp (1 — xx)x. Therefore,
by the elliptic parametrix construction, for any g € S*°(T*M), there exists e € C°(T*M) so that

e(z,hD)P = (1 — xs)(x, hD)q(x,hD)x(z, hD) + Ops(h™)
and in particular,
(4.2) (1 —x2)(z,hD)q(x,hD)u = or2(h).

Tthe compact microlocalization of u together with (4.2) and the Sobolev estimate [Zwo12, Lemma
7.10] implies

2—n

11 = xz (2, hD))ul L = o(h™2").

To simplify the writing somewhat, we introduce the notation uy, := xx(z, hD)u.

4.1. Microlocal L* bounds near ¥. In view of (4.1), it suffices to consider points in an arbi-
trarily small tubular neighborhood of ¥ = {p = 0}. More precisely, we cover supp yx by a union
Uévzij of open balls B; centered at points (z;,§;) € ¥ C {p = 0}. We let x; € C°(B;) be a
corresponding partition of unity with

N

ug =Y x;(@, hD)us + Os(h™)

j=0
By possible refinement, the supports of x; can be chosen arbitrarily small.

Since the argument here is entirely local, it suffices to h-microlocalize to supp xg C By where
By has center (x9,&o) € {p = 0}. Since we have assumed 0¢p # 0 in {p = 0}, we may assume that
Og,p(x0,&0) # 0 and Owp(xo, &) = 0. Therefore, choosing supp x supported sufficiently close to
(z0,&p), it follows from the implicit function theorem that

px = e(z, &) (&1 — a(z,£))
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with e(z, ) elliptic on supp xo provided the latter support is chosen small enough. Thus,
PXO = E(J:‘, hD)(hD:m - CL(.%, th’))XO(xa hD) + hRXO(:Ua hD)

Therefore,

(hDy, — a(z1, 2, hDy))x0q(z, hD)u = E~(x, hD)Pxoq(z, hD)u + hRyxo(z, hD)q(z, hD)u.

In particular, from the standard energy estimate (see for example [KTZ07, Lemma 3.1]) with
(x1,2") € R™,
(4.3)  lIxoq(z, hD)us (21 = s, )| 12, ®n-1) < [Ix0q(z, AD)us (21 = t,-)] 12, (0-1)

+ Ch™ s — t[V2(||Pxoq(x, hD)us | 12 (gny + hl| Rixoa(@, hD)us|| 12 gn))-

4.2. Microlocalization to the flowout. Our next goal will be to insert microlocal cutoffs re-
stricting to a neighborhood of A, 5 for some § > 0 into the right hand side of (4.3).
Let € < 9, Xez € C°(M;[0,1])) with

Xe,zo = 1 on B(zg, ), SUPP Xe.zo C B(zo, 2¢).
Let b 5, € C°(T*M;[0,1]) with
suppbesy N{p =0} C | J Asss,  suppbes, C {lp| < 2¢},

z€B(z0,3¢)
(4.4) 26

bewo =1on () Gi{(2.€) | Ip(x, )| < e,d(w, ) < 2¢}.
t=—26

LEMMA 4.3. There exists C > 0,00 > 0 so that for all x; € C°(T*M) supported sufficiently close
to (20,&0), 0 < e < <o, Xewos Dewo as above, g € S®(T*M), and y; € R

~1/2
(4'5) H(arIoXj)(xv hD)uE|JC1:y1 HLi,(R"*l) < 250 / HbE,LUO (1‘, hD)q(x, hD)Xj (1'7 hD)UZHLg(R”)

1

+ CO2 h™Y|be 1y (¢, D) Pg(z, hD) X (, hD)us|| 2 ®n) + 0c,5(1)
where §o := 0|0ep(x0,0)|g and |O¢p|g == |0cp - Olg-
Remark 4.4: In (4.5), the local defining functions z; depend on j, but we will abuse notation
somewhat and suppress the dependence on the index.
Proof. Let

1
A(xlvylaxlthz’) = _/ a(5,$l7hD$l)dS
Y1
and w = xoq(x, hD)uy. Then

h

. . t )
w(y17 :C/) — e_%A(t’yl7$/7thl)w‘x1:t _ l / 6_%A(Say1@/7hDg;’)f(5’ x/)ds
Y1

where
(46) f(.f) = E_l(x7 hD)PX(]q(.’IJ, hD)uE + thXO(xa hD)Q(.f, hD)UE

Let 0o := 0|0¢p(o, &0)|g and ¢ € C(R; [0,1]) with suppt) C [0,8] and [ ¢ = 1. Then, integrating
in I,

: ; t
w(yy,2') = /w(t)e;A(t’yl’xl’th’)w]xltdt— ;L/w(t)/ e~ m AT I £ (s o) dsdt

Y1
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Applying propagation of singularities,

(4.7)
X&Jiow(yla xl) = /w(t)xa,xoe;A(t’yhx hDqr) (ba,xo (Z‘, hD)w) ‘mitdt

- t
¢ — L A(s,y1,@ ’
—hxevgm/w(t)/ e~ Ay, th:c)(beyxo(m,hD)f)(s,x’)dsdt—i—0575(1)L§?Li/
Y1

More precisely, for g1 € SY(T*M), s € [0, 6], we show that
Xeywo(y1, 2 e~ #ACTID (1 b (2, hD))gy (x, hD)u = 0. () 2.
Let p € C°(R) with ¢ =1 on [—1,1]. By (4.2)
Xezo (1, 2)e RAET MDA (1 — b (3, hD)) gy (2, hD) (1 — (e 2p(ar, hD)))u = 0 (h) 2.

x

Therefore, we need only estimate
(4.8) Xeao (1, @' )e AP (1 b (@, hD))gy (w, hD)p(e*p(, hD))u.

Let Gy denote the Hamiltonian flow of §; — a(x,{’). Then, for (z,¢) € {|p| < Ce?} and |t < 1,
d(Gyi(z,€),Ge(z,€)) < Ce?. By (4.4), be 4, is identically 1 in an e neighborhood of

U Axo,25
TESUPP Xe,

and thus for € > 0 small enough on
26

U Ge{(2.6) | = € supp xap.z, Ipl < O}
t=—20

In particular, since we assume that dgp(xo, &) = 0, and supp ) C [0, do),
(4.9) () Xeumo (1, 2 e #AGYT MDD (1 — b (2, hD))a(x, hD)p(ep(x, hD))u = Oc(h™) 1.
Together (4.8) and (4.9) give (4.7) which implies

—1/2 1
X 20w (Y1, ')HLi,(R"*l) < 4o / [0 0 (, hD)wHLg(Rn) + Cogh 1Hbe,xo($, hD)fHLg(Rn) + 0:,5(1).

Now,
q(x, hD)Xe,zoX0(%, hD)us = XewoXo(x, hD)q(z, hD)us + q(x, hD), Xe,a0 X0(x, hD)]us.
Therefore, since
g, hD), Xe,o x0(, hD)Jug (21, )| 2, (1) = Oc(h'/?),
we have the following L? bound along the section x; = y; of supp xo C supp xx.

(4.10) lg(z, hD)Xe mo X0 (%, hD)us(y1,-) || 12, (Re-1) <

85 2 lbesao (2, RDYw]| 12y + €3> b g (2, hD) f 3.y + 02,5(1)

Since the proof of (4.10) is local, by refining the supports of x;;j = 1,..., N if necessary and
using the definition of f, (4.6), (4.5) follows for all j = 1,..., N, g € M, Xc 4, supported in an ¢
neighborhood of x. O

LEMMA 4.5. Suppose that for some § > 0, ¢ € S°(T*M) has g =0 on Ay, 35. Then forr(h) = o(1).

. n=1
limsup h 2" [|g(x, hD)us|| Loo (B(zo,r(h))) = 0-
h—0
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Proof. Observe that Lemma 4.3 gives for each j =1,... N,
~1/2
(X 03) (s DYl 12 1) < 265 /2 ey (2, RD)ae, BD) s, hD)us | 2 e

1
+ 052 h_l ||b€ 0 (‘T hD)PQ(x hD)Xj(l’, hD)uEHL%(R") + 08,(5(1)'
Applying the Sobolev estimate [Zwol2, Lemma 7.10] and Lemma 4.1 gives

imsup 2" (03) . AD) sl e i) < 265" | 2y D)0 D) Gl
—

+050/ba 20 (@, hD)|Hp(q(z, hD)x;)|*dp.

Sending ¢ — 0 and using the dominated convergence thoerem proves the lemma since u(7T*M) =

1 < o0, lim._yg bs 20 S 1Az 350 and ¢ vanishes identically on Ay 35. O

5. DECOMPOSITION INTO WAVE PACKETS

We now choose a convenient partition x; and functions g¢;;, ¢ = 2,...n to prove the main
theorem. The x; localize to individual bicharacteristics, and ), ¢;; will measure concentration in
neighborhoods of each bicharacteristic. We then show that understanding the mass localization to
finer and finer neighborhoods of geodesics yields the structure of the defect measure.

5.1. L*° contributions near geodesics. We need the following version of the L Sobolev em-
bedding.

LEMMA 5.1. Suppose v € H/(R"™1) with | > (n —1)/2. Then for all e >0
n—1

ol < Coah ™ (&7 oll2: + 2"~ 271 S (hDa) 0112,
=1

In particular this holds if v is compactly microlocalized.

Proof. Let ¢ € C°([—2,2]) with ¢ =1 on [~1,1] and ((x) = ((e 12).
Then

M@=%WWYMJ/ PEMC(ED + (1= G(IEN))Fn(w) (€)dé

Applying the triangle inequality and Cauchy—Schwarz, and letting w;(§) = Z?:_ll &2

(5.1) [ol|7ee < A2 D HICI T2 Frol 7z + (1 = w1 unFuol72)

Now,

(1 - @)w*lniz =" (1 - Qw2
n—1
[ Frol|2e = / Zf | Fro(©)de =Y || Fa(hDL )35
=1

Using this in (5.1) proves the Lemma. O

LEMMA 5.2. There exists Cyp, > 0 depending only on n, 61 > 0 so that for 0 < § < &1 there exists
ro > 0 so that if (z0,§) € gy, 0 <7 < 1o and x; € C(T*M) with

supp xj N A, C T(§,7), Hyx; =0, on Ay 35
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where T(&,r) is as in (3.6). Then
(5.2) lim sup hn_l||XjUZ||%oo(B(xo7r(h))) < C’né_llagp(l‘,ﬁ)]g_l/ X?r”_ld,u,.
h—0 a5

Proof. Let aj;(x1), 1 =2,...n so that & — a;;(x1) vanishes on the bicharacteristic emanating from
(x,€;). This is possible since we have chosen coordinates so that J¢ p(xo,§;) # 0 and hence a
bicharacteristic may be written locally as

v=A{(z,8) | 21 € (=38,30), ' = 2/ (1), £ = a(21)}.
Let 20 >n — 1 and g;; = (& — ai(z1))". Then, using ¢ = ¢;; in (4.5) gives
[ (hDg,—a;i(z1))" Xe,w0 X;j (2 hD)us (21, ) Iz2, -1y < 26y /% |be .20 (2, hD) ;i (z, hD) x5 (, hD)us| 12 ®n)
+ Oy *h 7 e (. D) Paj (. hD)x; (2, DY 3 gy + 02.5(1)
where |0¢p|g = |0¢p - Ozlg. Next, ¢ =1 in (4.5) gives
Iemnxgusllzz, < 265" lbemg (@, hD)x; (@, hDYus| ey + O h ™ lbe o (2, AD) Pxgus| 2 gy +02,5(1).
Therefore, letting w = e~## @%@/ hy_ v with aj(z1) = (aj2(x1), ..., ajn (1)) we see that
|(hDz) wll 2, < 2052 be o ixsusll gy + O *h beizo Pagixsus oz sy + 02.5(1)

and
—1/2 1/2, —
lwll g2, < 2852 beyao Xgusllzz @) + €8y 1bezo Pxjusllca gy + 0-5(1).

Applying Lemma 5.1 to w (with € = o) and using the fact that ||w||zec = ||Xez0Xjus| L gives
for any o > 0 and r(h) = o(1)

lir}? sgp h"_lijugH%oo(B(xo,r(h)) < Gyt <lir}? Sz)lp |:50_1Hb5,x0XjUEH%% + C(Soh_z”bs,mOPXjUEH%%})
N —

n
+ C a2 <Z fizn sup {50_ Hbeotzixjuslzs +C 5oh2|!bs,xoPijz'XjquigD
i—9 —0
In particular, applying Lemma 4.1,

liI}Ill Sup W Ixgus e (o) < Cria™! /b?,xo(%lX? + Cool Hpxj|*)dp
_>

n
+ Cga™ Y / 0240 (00 X303 + Cool Hpx;ai 5|7 dpu.
1=2

Observe that by (4.4), 0 < b2, <1 and
)
il_l;r(l) b&,xo S 1Aac0,35'

Sending € — 0 and using H,x; = 0 on Ay, 35 (together with p(7*M) =1 to apply the dominated
convergence theorem) we have

limsup h" || xjus | Foo (Bagr(n)) < Cn,l5()_104n_1/ Xjdpe
0,30

h—0

(5.3) n
+ Cp a2 Z/A X305 a3 + CoolHygi *)dn
1=2

(9,38
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Now, x; is supported on T'(§,r) (see (3.6)). Letting v be the bicharacteristic through (z,¢), we
have by (3.1)

sup{d((z,fl),'y) ’ (x,fl) € T(gvr) N Axo,36} < 3r.

Hence,

sup |Hpqj.i| < Crl.
T(gvr)mAxO,Bé

Furthermore, by (3.2)

sup lgjil < rl(l + C(S)l + 0(7,21)
T(évr)mAzo,Bé

Thus, choosing § small enough we obtain from (5.3) that
lim sup h”_l||XjuE||%oo(B($0’T(h))) < Cpdy? / X?(Ozn_1 + o212y
h—0 Az 36

Optimizing in « and fixing | = n gives (5.2). O
We now find an appropriate cover of A, that is adapted to fi;.

5.2. Decomposition of A;,. We start by constructing a convenient partition of unity to which
Lemma 5.2 applies.

LEMMA 5.3. Fiz (z9,&;) € gy and 7; > 0, j = 1,...K < 00, § > 0. Then there exist x; €
C*(T*M;[0,1]), j=1...K so that

supp x; N Ay C T(&;,2r5) N Ag 45, Hyx; =0 on Ay, 35

K

54

(54) ijzl on UT(SjaTj)ﬂAxo,za, OSZXJ-SL on A,
J 7j=1 j

Furthermore, if
K

(5.5) U 7. 2r5) D Ao 3,
j=1

there exists x; with (5.4) and

(5.6) ij =1 on Ay, 35

J
Proof. Let x; € C°(X4,;0,1]) have

K
Y xi=1on |JB(,r),  suppX; C B(&,2r;) NEe,  0<> %<1
j j=1 j

Next, let ¢ € C°(R;[0,1]) with ¢ = 1 on [—30, 3d] and supp ¢ C (—44,46). For § > 0 small enough,
Gy : [—40,40] X Ezy = Ay, 45 is a diffeomorphism and so we can define x; € C2°(Ag, 453 [0,1]) by

Xi (G, €)) = v(t)x;(, §)
so that H,x; = 0 on A, 35. Finally, extend x; from A, 45 to a compactly supported function on
T*M arbitrarily. Then x; j =1,... K satisfy (5.4).
If (5.5) holds, then we may take x; a partition of unity on ¥, subordinate to B(§;,2r;) and
hence obtain (5.6) by the same construction. O
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Proof of Theorem 2. Recall that
Mz = Pzxo + fd,H;:lo

where p;, L Hj, and pg, is invariant under G;. Therefore, by Lemma 3.2, p,, and fdHj, are
invariant under Gy.

Fix 0 < € < § arbitrary. By Lemma 3.3, there exist ((xo,&;),7;) € sy x Ry satisfying (3.7).
Let K be large enough so that

K

(5.7) Py | Ao \ U T(§j7rj) <e.
j=1

Let x; € C°(T*M;[0,1]) satisfy (5.4) for ((z9,&5),75) j=1,... K.
Define ¢ =1 — ) x;. Applying Lemma 5.2 (with { = &;, r = rj, x = x;j), summing and using
the triangle inequality, we have

K 1/2
. n—1 n—
hmwhzw—wwmmﬂmmmmng%Q)§DQOFﬁ@)

h—0 =1 0

1/2 1/2
<Cos | S]] S
i Axo
< On,651/2/~L(Ax0 )

where in the last line we use 0 < x; <1 and 0 < ZX]- <1.

Next we estimate ¢ (z, hD)uy. By the Besicovitch-Federer Covering Lemma [Hei01, Theorem
1.14, Example (c)], there exists a constant C), depending only on n and vy = v9(X,,) so that for
all 0 <y < 70, there exists {1, ... {n(y) with N(y) < C~'~™ so that

N(v)

Exo C U B(&k,’}/)

j=1

and each point in X, lies in at most C,, balls B(,7). Let ¢, k =1,... N(v) satisfy (5.4), (5.6)
(with & = &, 2r; = v, and K = N(v)). Observe that applying Lemma 5.2 (with { = &, r = v,
and Xj = 1/%%

hI;lSI[)lp hn—1||¢(x,hD)wk(x,hD)uEHQLOO(B(ImT(h))) < Cn5_1|0§p($0,§k)|g_1/j\ 1#;31&27”_1@
- (0,38

Notice that
D e =1 on Aggss
k

and therefore Lemma 4.5 implies

. n—1
limsuph 2
h—0

B SR N O
k

zo,r(h)))
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So, applying the triangle inequality,

limsuph 2 ‘1& (z hD)UZH

h—0

1/2
<Cns > ( /A w;%wQandpr) +Cub 7Y ( /
k z(,38 k

Azo,35

Lo (B(xo,r(h)))

1/2
|0ep(z0, £k)|91¢§¢27"1fd7i30>

—: Cpsl + 11

Use (5.7) to estimate
1/2

1/2 K
I< C"Y 2 N 1/2 (/ Zwk¢2dpwo> < Cpay | Mg \ U T(€j7rj) < ce'/?.

IO 35 k 7=1

Since for v small enough, C,, 14"~! < Voly,_ (B(&,7)) < Cpy™ L, where C,, depends only on n,

1/2
1
1T < Cpé~1/? / PR / fdH™ dVol
5.y & PO\ [0ep(ao, €0 Vols,, (B(E) Jrieemonagas Ero

1/2
1
<C/ 2 Ln(ee) <a§p<xo,sk>\gvolzzo< B(&, )>/ ey | OO VR, ) Vol

zo k
where in the last line we use that fdH} is G invariant and apply Lemma 3.4. The Lebesgue
differentiation theorem [Fol99, Theorem 3.21] then shows that

1/2
1
I e, S 1 / 0,)|[v(H,)|(0, ¢)dVols,
msup Cn ) Loieu <\agp<x0,§k>\gvolzzo< BE&) S’ O ENOD OE‘))

o, [flr(Hy)
|8€P’g

Furthermore, the weak type 1-1 boundedness of the Hardy—Littlewood maximal function [Fol99,
Theorem 3.17] implies

1/2
1
Voly, ey, su / flv(H,)|dVols, > o < Ca™?
Bea | £€ P | VJB( Vs, (B&e 1) Joieuy ) Eo)

and hence by the dominated convergence theorem,

(5.9) hm limsuph™z Hi/)(x hD)us || Loo (B(wo,r(h))) < Cn five dVOl o T Ccel/?,
=0 phso S |3§P|g
Sending h — 0, then € — 0, then v — 0 and using (5.8), (5.9) then proves the theorem. ([

6. CONSTRUCTION OF MODES - PROOF OF THEOREM 3

Proof of Theorem 3. We apply the construction in [STZ11, Lemma 7]. Let p = %(|§|§ — 1) and
G = exp(tH,) so that G¢|g- s is the unit speed geodesic flow. Let g1 € L*(S} M) have |g1|* = f|s:m
and g1 € C*°(STM) have [|g1 — g1l 12(s:0r) < €. For A C S7M Borel, define the measure

)
PA) = e ( U @(A)) .

t=—5
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Let g2 € C®(S*M) have |g2.|?dSs — p as a measure where S, is the surface measure on S"~1.
Finally, define g. = g1 + g2.c.

Then, lettmg Tt = R/TZ and parametrizing A, by Ty x S?~! 3 (t,w) — Gi(z,w) there exists

Q. ;€ o7 (M A, {h;}) with symbol

n—1_ 1l=n
0 (®e)(t,w) = ge(w)(2m)" 7 hy? |dpodt]'?
and having
I(=h2Ay — 1)@ jllz2 = O(h2),  C+0u(hj) > |®cjllze > ¢+ Oc(hy).

Moreover, using normal geodesic coordinates at z, we have in a neighborhood thereof,

®. ;(z) = (27hy) / i) /hs <|0|)XR(|9|)

where xg € C2°((0,00); [0, 1]) with xg =1 on [1, R], supp xr C (0,2R) and

(6.1) /XR(a)a"_lda =1.

Choose €; — 0 so slowly that

lim ||(— h?Ag - 12)<I>£j7j||Lzhj_1 — 0, 2C > limsup || P, jl|z2 > hmlnf e, jllz2 > ¢/2.
Jj—oo j—oo
Then,

I(=h3Ag = 1)@, jll 12 = o(hyl|e, 5] £2)-
Fix N > 0 to be chosen large and €; — 0 slowly enough so that

(6.2) sup sup |8 ‘gE |hj — 0.
la|<N S3M

Under this condition, we compute the defect measure of ., ;. Let b € CZ°(T* M) supported in
As ={z |0 <|r(z,z)| < 20}.
Then, letting ¢ € C°(R\ {0}) have ¢ =1 on [0, 24],

1-3n i (x— 0 . 0
by D)0, = 2my) 5 [T i e b, (1

) xa9dbayds+012(15°).
Performing stationary phase in the (y, &) variables gives
1-n i<m,i>/hj 0 -
b(x,hjD)®., j = (2wh;) 2 [ e\ b ’ | + hje(z,0) | ge, 1l xr(10])d0 + Op2(h3°)
where e € C°°(R?") has suppr C suppb and is independent of .
(b(z, h;D)® EJJ,CD i) =
\ x 2 — 0 o) w
(2mh;) // 161 >g < >{b< )—i—he:c@}g.()XRGXRdedwdaz
As €j |9| ‘9| ( ) €j |w‘ (’ ’) (| ’)

+ O(h3°).

We write the integral in polar coordinates x = r¢, § = a©, and w = . Since |r| > § on As, we
perform stationary phase in 2 and ©. Using (6.2) with M > n + 2 together with the remainder
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estimate [Zwol2, Theorem 3.16] to control the error uniformly as j — oo, gives

/ / 192, (&) *b(r, &) + |4, (— ) 2b(r, —9)
sn-1 Jr3

+ 16?7 Mg (6)ge, (—D)(r, d) + cae 2 Mg, (~d)gz, (9)b(re, —))a" 15"
xr(a)xr(B)¥(r)dadBdrdSy + o(1)

Integration by parts in r then shows that the second two terms are lower order and yields

Lo L s (@P606.6) + Loz, (=) Pbiro, ~0)la™ 8" xn(a)xr(8)daddras, + of1)

Sending j — oo gives

( / OOXR(a)a”—lda>2 [ sro.onaate) + laPassar= [ e €)(dp -+ faVol.)

where we use (6.1).
Using that the defect measure of P, ; is invariant under G; then shows that P, 5 has defect
measure

w=dp+ fdVoly,.

and hence ||®; ;[ ;2 — 1. Moreover,

050 = 2n)' % [ g, () oo = ey 3 [

Sn—

) (91,5]' (¢) + 925 (¢))d8¢

Since p L dVolg, and [ga; |2dS¢ — p as a measure, for any § > 0, there exists A C S"! so that

/ |92,¢,%dS — 0, / dSy < 6.
Ac A

1/2 1/2
/ gg,e]-<¢>ds¢‘ <c ( / rgz,ej|2ds¢> 4 ( / g2, st¢> 5172
Sn—l AB Sn—l

so, for all § > 0,

Therefore,

lim sup / gg}sj(qb)d&;)’ < s\,
j—o0 n—1
In particular,
lim 92¢; (ng)dS¢ = 0.

j—}OO Sn—1
Finally, using that g1, — g1 in L? and hence also in L'
n=1 1-n
lim i (2)h? = (2m) 3" /S _ i(6)ds;.

J—00

Letting u; = ®¢, ;/||®c, |2 then proves the lemma. O
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7. A PROOF OF THEOREM 2 FOR THE LAPLACIAN

One can use a strategy similar to that in [GT17] to prove Theorem 2 for eigenfunctions of the
Laplacian (or Schrodinger operators). We sketch the proof in the case p, L H] for the convenience
of the reader.

Sketch. Fix 6 > 0 and let p € S(R) with p(0) =1 and supp p C [J, 26]. Let

STM(v) == {(2,8); [[gle — 1] <~}

and x(z, &) € C°(T*M) be a cutoff near the cosphere S*M with x(z,§) = 1 for (z,£) € S*M(y)
and x(z,€) = 0 when (x,&) € T*M \ S*M (27).
Suppose that (—h*A, — 1)up, = 0, and wuy, has defect measure y with

pa = p L Hy.
Then

(7.1) up = p(h~ [=h*A = 1])uy, = / () =AU (2, hDYuy, dt + 0o (h™).
R

Setting V (t,x,y, h) := ([}(t)e”[*th*”/hx(x, hD)) (t,z,y), by propagation of singularities,
WEL(V(t,--,h) C{(2,8y.m); (z,€) = Gely, ), |lE] — 1] < 2,1 € [5,24]}.
Let by ~(y,n) € CX(T*M) have
supp bz, C {(y,1) | (y,1) = Gi(wo, &) for some (20,§) € Sy M (37y) withr(x,z0) < 7, [t|] < 36}
with
bey =1 on {(y,n) | (y,1) = Gi(zo, &) for some (20, ) € Sz, M (27) withr(z, z) < 27, [t| < 46}

Then, by wavefront calculus, it follows that

(72) w@) = [ V(0 (D Jun(u)dy + 05 (),
where,
V(z,y,h) ::/Rﬁ(t)(e“[_hZ)A_l]/hx(az,hD))(t,:c,y) dt.

By a standard stationary phase argument [Sog93, Chapter 5],
(7:3) (2,9, h) = h =" = @D (5, ) p(r(x, ) + Oy (),

1%
where a+(z,y,h) € S°(1).
Then, in view of (7.3) and (7.2),
(7.4)

w(e) = 2T Y [ @ g (1,1, )Pz, 1)) ban (39, Dy un (y)dy + Oy (h).
T Jo<|y—x|<26

Let x;, be as in (5.4) with T'(§;,r;) satisfying (5.7) and Zr;‘_l < e. Define ¢y =1 -3, x;.
Then

up(x) =Y Ie + I+ + Oy (h™)
+
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where
(7.5)
1—n . .
I = (2rh) = / eEr@W/ha y (z,y, 1) p(r(x,y) ¥y, hDy)bs o (y, hDy)up(y)dy
o< |y—z|<26
1—n . N
Iy = (2rh) = /5 s eEr@W/ha y (z,y, 1) p(r(x,y)) X (Y hDy)be (y, Dy )up (y)dy
<|y—z|<

J
An application of Cauchy-Schwarz to I gives

(7.6) limsup A7 L4 < Climsup |¢(y, hDy)bs ~(y, kD, )up|| 12
h—0 h—0
But,
}/%%%Hw(yahl)y)bz,'y(% hDy)u|72 %lg% /S*M [0 1be~ (1, &) [*dp < Cp(supp¥)) < Ce

On the other hand, by propagation of singularities, for each x; in I, we may insert ¢; € C2°(M)
localized to

n(T(&,75) N {6 < r(z,z) < 20})
where 7 : T*M — M is projection to the base. In particular, replacing x;(y, hDy) by v;(y)x;(y, hDy)
and applying Cauchy-Schwarz to each term of I1, we have

. n—1 .
(7.7) limsuph"2 |IIt| < C Y |l@jllz2 limsup ||x;be  (y, hDyYup | 2
h—0 P h—0
Now, since ¢; is supported on a tube of radius rj, ||¢;|| 2 < er(n_l)m. Furthermore,

N 2 2 2 2
Jinm Jimn {[; (y, h-Dy)be (4 hDy)ul7» —%glg)[g*ij!bx,w(yvé)l dp < C/Am Xjdp

Thus, applying Cauchy-Schwarz once again to the sum in (7.7),

1/2 1/2
lim sup hnT_l\IIH <C 7‘?71 /Z)@du < Cel/?,
h—0 - -
J J
Sending € — 0 proves the theorem. ([l
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